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This article focuses on particular ways in which visual representations 
contribute to the development of mathematical knowledge. I give ex-
amples of diagrammatic representations that enable one to observe new 
properties and cases where representations contribute to classifi cation. 
I propose that fruitful representations in mathematics are iconic repre-
sentations that involve conventional or symbolic elements, that is, iconic 
metaphors. In the last part of the article, I explain what these are and 
how they apply in the considered examples.

Keywords: Visual representations, discovery, iconic metaphors, 
manipulation, Peirce.

1. Introduction
Many scholars have commented on the advantages for mathematics 
of choosing appropriate notations. Euler, for example, expressed that 
Leibniz’s notation for the differential was superior to Newton’s:

It might be uncivil to argue with the English about the use of words 
and a defi nition, and we might easily be defeated in a judgment about 
the purity of Latin and the adequacy of expression, but there is no 
doubt that we have won the prize from the English when it is a question 
of notation. For example, the tenth differential, or fl uxion, is very 
inconveniently represented with ten dots, while our notation, , is 
very easily understood. (Euler 2000: 64)

Other mathematicians comment on the potential “fruitfulness” of a 
good choice of notation:

It only becomes possible at all after the mathematical notation has, as a 
result of genuine thought, been so developed that it does the thinking for us, 
so to speak. (Frege 1953: xvi)
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Another concern is the choice of representations in mathematics. A re-
cent such interest is the role of visual representations, or diagrams. 
The aim here is to show particular ways in which visual representa-
tions contribute to the development of mathematical knowledge. One 
focus will be to illustrate how these representations enable you to see or 
observe certain patterns which leads to the formulation of new hypoth-
eses. A puzzle that I will address—but only partially solve—concerns 
the question of how and why certain representations contribute to the 
development of mathematics. One part of the answer (see Carter 2019) 
is that it is often fruitful to have available iconic representations that 
are possible to manipulate. Taking as a starting point Peirce’s charac-
terisation of an icon, I will fi rst propose that icons used in mathematics 
are best understood as iconic metaphors and explain what this means. 
In this context, I will note that iconic representations that can be ma-
nipulated play a key role in Peirce’s characterisation of mathematical 
reasoning. Second, I will indicate that we still lack an account of how to 
fi nd a useful representation or notation in mathematics.

The use of visual representations and notations has contributed 
to the development of mathematics in various ways. Sometimes the 
choice of a particular notation enables one to see that there is a problem 
of a certain type. As an example, I could mention Descartes’ convention 
of writing  instead of ,  instead of  and so on. This made 
him able to write, for the fi rst time, a quadratic equation (almost) as we 
do today, for example as . This convention made it possible 
to formulate a general n-degree equation and formulate the Funda-
mental Theorem of Algebra. As is noted by Manders this invention also 
suggested to Descartes why the classical problems of duplicating a cube 
and trisecting an angle by ruler and compass were impossible to solve:

First, its degree, algebraically the key feature. Descartes guesses 
that the degree determines by what means solutions may be con-
structed, e.g., because angle trisection problem gives an irreducible 
third-degree equation, it cannot be done by ruler and compass. But 
there is no direct way to predict the degree of its equation from the 
appearance of a geometrical fi gure. (Manders 1989: 558).

Descartes was able to translate, for example, the problem of duplicating a 
cube into the cubic equation . Given a cube with side b and volume 

, z corresponds to the side of the cube that has two times this volume. 
Having found that roots of quadratic equations could be constructed by 
ruler and compass, Descartes formed a hypothesis that this could not be 
the case for irreducible cubic equations. He also formed what he thought 
was a proof of this. But it turned out not to be correct. See (Lützen 2010) 
for details. Descartes did not yet have the required algebraic tools, for 
example, fi eld extensions and formulated a geometric proof.1

1 Lützen (2010) remarks that it is not strange that Descartes formulated a 
geometric proof: There was a long tradition of giving geometrical proofs at the time, 
combined with the fact that algebra was still in its infancy and so not considered as 
trustworthy.
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Another example concerns how a particular choice of representation 
of a problem contributes to classifi cation: a particular representation 
may help one to formulate—and solve—all problems of a particular 
type in a systematic way. The Arabic mathematician Al-Khwarizmi (c. 
780–850) formulated quadratic equations in terms of the “three types 
of numbers” roots (the unknown), squares and numbers.2 One of these 
types of equations is ‘Square and roots is equal to a number’. Perhaps 
these expressions and their geometrical representations, when demon-
strating their solution, helped him to formulate all types of quadratic 
equations. In any case, one usually attributes to the Arabic mathema-
ticians the fi rst systematic solution of quadratic equations. Other ex-
amples of representations contributing to a classifi cation of a type of 
objects can be found in (Eckes and Giardino 2018).

In the next section we shall see that these two roles of represen-
tations also occur in contemporary mathematics. That is, one fi nds 
examples of representations that enable one to see certain properties 
and cases where representations contribute to classifi cation. In both 
examples the representations consist of diagrams.

2. Visual representations in contemporary mathematics
Representations in free probability theory—seeing
It is possible to fi nd examples from contemporary mathematics where 
a specifi c form of representation has contributed to the formulation of 
new hypotheses. One such example is presented in Carter (2010). This 
example illustrates how the visual appearance of a particular repre-
sentation may lead to the formulation of a new concept. The example 
has to do with permutations on the set  which appear in a 
certain combinatorial expression in free probability theory. By repre-
senting these permutations in a certain way, certain properties of them 
became visible. Similar representations further contribute to make vis-
ible that these properties have an effect on the value of the expression. 

The expression and its value is  = . 
The ’s in the expression stand for  matrices and their entries are 
Gaussian random variables. After taking the trace of the multiplied 
matrices, it therefore makes sense to take the expectation, ‘ ’. The in-
dices contain ‘ ’ which denotes a permutation on the set . 
A permutation is a 1–1 and onto function on a set to itself. The num-
bers,  and , in the above formula refer to the number of odd and 
even numbers, respectively, of certain equivalence classes on the set 

. The total number of equivalence classes turns out to de-
pend on properties of the permutation. I will show the representation 
of permutations that revealed this property. Representing a permuta-

2 Al-Khwarizmi formulates and solves six different problems, for example, the 
problem ‘square and roots identical to number’ and ‘square and number identical to 
roots’, see (Berggren 1986).
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tion by certain diagrams gives rise to the concept of a ‘non-crossing 
permutation’. See (Carter 2010) or (Haagerup and Thorbjørnsen 1999) 
for further details about the case. 

Below are two examples of representing a permutation on the set 
. In the diagram on the left in fi gure 1, you may observe that 

the lines do not cross, whereas they do in the right-hand diagram. This 
gives rise to the notion of a non-crossing and a crossing permutation.

1

2

34

5

6 1

2

34

5

6

Figure 1. The left diagram is a representation of a non-crossing permu-
tation. In two-cycles, the permutation can be written as (12)(36)(45). The 
diagram on the right shows a crossing permutation. The represented 
permutation in this case is (12)(35)(46).

It turns out that the above-mentioned result depends on whether lines 
cross or not, that is, whether the permutation is crossing or not. To 
see this, the mathematicians visualised, or represented, equivalence 
classes of an equivalence relation formed on the set . (First 
the permutation is rewritten, taking into account that there are  ma-
trices in the expression. The new permutation is denoted .) The rela-
tion is  (mod 2p). Representations of such equivalence classes 
can be seen below in fi gure 2.
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Figure 2. Numbers that are in the same equivalence class are joined by 
lines. I have identifi ed the equivalence classes of the two permutations 
shown in fi gure 1. In the left fi gure one sees that the number 1 is related 
to  3.  is seen to be 2 in the left-hand diagram in fi gure 1. 
Similarly, 1 1 (mod 6), so {1,3} form one equivalence class. 
It can be seen that 2 is related to itself, so there is only one number in 
this equivalence class (marked by a fi lled circle). It is seen that there are 
4 equivalence classes in the left-hand diagram, whereas there are only 2 
in the right-hand diagram. Recall that this corresponds to the crossing 
permutation.

By drawing a number of such diagrams, varying the permutation, it is 
possible to detect a pattern. If  and so  one 
will see that whenever the permutation is non-crossing, there are 4 
equivalence classes. If the lines cross, there will be fewer. In general, 
the mathematicians were able to formulate the hypothesis, that the to-
tal number of equivalence classes depends on whether the permutation 
is crossing or non-crossing: If it is non-crossing, the number of equiva-
lence classes is p+1. If it is crossing, this number will be strictly less. 

In the published papers presenting this result, there are no dia-
grams. In order to formulate these propositions and proofs of them, the 
property of being a crossing permutation therefore had to be reformu-
lated. The formal defi nition of a crossing permutation is as follows: A 
permutation  has a crossing, if for some a<b<c<d 
in  it is the case that  and . If it has no crossings, 
it is said to be a non-crossing permutation.

One point is that there is a difference in how we perceive these defi -
nitions. In the diagrams the properties are shown. One can actually 
perceive the lines crossing. In the formal mathematical language, we 
cannot see this directly. The defi nitions of these properties are only de-
scribed. (See Carter 2019 for an elaboration of this point.) Note also that 
this example illustrates Manders’ point; that a different representation 
may reveal new properties or explanations. Whereas Manders discusses 
an algebraic representation of geometrical fi gures, the example present-
ed here conversely considers a representation of a formal expression.
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Representations in analysis—classifi cation
In analysis, one fi eld studied concerns -algebras and their classifi ca-
tion. That is, having defi ned -algebras, one wishes to fi gure out the 
different types of such objects there are up to isomorphism. A tool to 
do that is to defi ne so-called invariants. The mathematician George El-
liott has formulated a program where the hope is that K-theory could 
provide such a tool: That two -algebras are isomorphic if and only if 
their corresponding K-groups are pairwise isomorphic. This turned out 
only to be true in simple cases. The study of their K-groups, however, is 
still an important fi eld of study. For -algebras it is possible to defi ne 
two such groups, denoted  and . It is generally quite complicated to 
calculate these groups from their original defi nitions. Recently a much 
easier way to calculate them has been found. The trick is fi rst to repre-
sent the algebras in a different way, as directed graphs. From this rep-
resentation, it is possible to fi nd a different way to access these groups. 
I give a few details of these concepts here before coming to the main 
(philosophical) points: That certain diagrammatic representations are 
used as tools for classifying -algebras and that these diagrams can be 
manipulated.

A directed graph is defi ned by a four-tuple, . Here  
consists of the vertices of the graph and  consists of the edges. That 
E is a directed graph means that edges have a direction, which is ex-
pressed by a range and a source function. For each edge, these func-
tions say where it ends and starts: . An example of a (fi nite) 
graph is given in fi gure 3. This graph has three vertices, named  
and , and three edges,  and . The arrows indicate their source 
and range. The source of the fi rst two is , the source of  is the vertex 

. The ranges are given as follows:  and .

Figure 3. A directed graph, E, with three vertices.

A directed graph gives rise to certain generators and relations that 
the generators must fulfi l, which then generate a -algebra. The 
-algebra generated by the graph, E, is denoted For details of how 
such algebras are constructed, see Szymanski (2002). Read in a differ-
ent way, a graph gives rise to a linear map, , where V is the 
set of vertices that emit edges. It turns out that the two -groups can 
easily be calculated from this map. First, the linear map is defi ned on 
vertices, , that emit edges as
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.

The two groups  and  can be calculated as the cokernel and kernel 
of this map:

and
.

In the case of quadratic equations, I suggested that the geometric rep-
resentation of them contributed to the formulation of, and solution to, 
all types of such equations. In other words: a classifi cation of quad-
ratic equations. The directed graphs can be used as tools for classifi ca-
tion. But they are not themselves objects of such a classifi cation in the 
sense that two different graphs correspond to two different types of 

-algebras. To a particular directed graph corresponds a linear map 
from which the proposed invariants,  and  can be obtained. Fur-
thermore, two different graphs will give rise to different linear maps. 
But unfortunately, the information obtained from the -groups is not 
always suffi cient to tell whether the corresponding -algebras are iso-
morphic or not. The graphs are epistemic tools in the sense that they 
have made calculations of the -groups easier (Carter 2018).

Another point is that the directed graphs can be manipulated. In 
order to illustrate this point, we consider a result from (Szymanski 
2002). It is proven that a large class of algebras can be generated 
by directed graphs—and so that their K-groups can easily be calcu-
lated. This result has been found by manipulating directed graphs. The 
result states that, given two specifi c groups,  and , it is possible to 
construct a directed graph, E, such that the algebra it generates 
has these two as its  and -groups, that is,  for i=0 and 1. 
The proof—and the way this result was found—starts by considering a 
particular graph that gets the result partially. That is, the fi rst graph 
has the right -group but the other group is zero. After that a number 
of subgraphs are added, so one gradually gets closer to the sought for 
graph. One adds vertices and edges and along the way calculates how 
these changes alter the K-groups. Manipulating graphs, i.e., adding 
and removing edges and vertices, therefore contributed to the result 
in question.

Manipulating iconic representations
We now address the observed similarities of the two case studies. In 
both cases certain objects are represented by diagrams. In the fi rst 
case, the objects represented are permutations and, in the second, 

-algebras. In the fi rst case the visual representation contributed with 
a new concept (that of a crossing permutation). The second example is 
slightly different—the representation has made progress possible be-
cause calculations of K-groups turned out to be much easier. In both 
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cases particular instances of concepts, that is particular examples of 
permutations and -algebras, can be represented by diagrams. One 
reason that these representations contribute to new knowledge, is the 
fact that they can be manipulated. In this way they become tools for 
experimentation. By, for example, producing a number of examples of 
permutations and their equivalence classes one is able to detect a gen-
eral pattern: that this number depends on the visual appearance of the 
lines in the diagram.

Another key feature of a fruitful representation is that it shares rel-
evant “structure” with the problem, it represents. In C.S. Peirce’s semi-
otics such representa  tions are referred to as icons. An icon is the par-
ticular type of sign that is able to represent its object because it is like 
this object in some respect. This also entails that an iconic sign should 
hold the capacity to reveal more information about the object it repre-
sents, than is required to identify it as a representation of that object. 
Stjernfelt (2007) refers to this feature as the ‘operational account’ of 
similarity, and so of an icon. Simple examples of iconic representations 
consist of images and, in mathematics, of geometrical fi gures. These 
representations visually resemble what they represent. According to 
Peirce, icons play a key role in mathematics in general. But mathemati-
cal icons are rarely simply pictures of what they stand for. This means 
that the likeness must consist of something else besides visual resem-
blance. When Peirce characterises icons, he sometimes refers to them as 
having conventional (i.e. symbolic) features or that they have a purpose:

For example, a geometrical fi gure drawn on paper may be an icon of a 
triangle or other geometrical form. If one meets a man whose language 
one does not know and res orts to imitative sounds and gestures, these 
approach the character of an icon. The reason they are not pure icons is 
that the purpose of them is emphasized. A pure icon is independent of any 
purpose. It serves as a sign solely and simply by exhibiting the quality it 
serves to signify. (Peirce 1998: 309)

Note that, according to Peirce, not even a drawn geometrical fi gure is a 
pure icon. I therefore propose that icons used in mathematics contain 
conventional, or symbolic elements—and so cannot be pure icons. They 
are what he refers to as iconic metaphors (Collected Papers 2.277). A 
related point is that, according to Peirce, a sign must be interpreted as 
a sign in order to function as such. To identify in which respect a sign 
stands for another mathematical object is therefore part of the role of 
the interpretant of a sign. The conventional element of an iconic sign 
or, in other words, the information given so that one may identify how 
a given sign stands for another object, I will refer to as formulating 
the underlying convention or rule for interpretation. I propose that it is 
a combination of (what follows from) the underlying conventions and 
properties of the representation that contributes to the successful use 
of iconic representations in mathematics.

To give a simple example of an iconic metaphor, I return to the 
second example mentioned in the introduction. The particular exam-
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ple concerns the geometric representations of quadratic equations. 
One of the problems formulated by Al-Khwarizmi was ‘A square and 
10 of its roots is 39’. Using contemporary notation, we can also write: 

. When forming a geometric representation of this prob-
lem we could formulate the following conventions: (1) both sides of the 
equality sign denote (the area of) geometrical fi gures, (2) ‘x’ and 10 
refer to (the length of) line segments, (3) addition means that the geo-
metrical fi gures are joined, (4) multiplication of two line segments gives 
a rectangle (or a square). These lead to a representation of the equa-
tion as shown in fi gure 4. This geometric fi gure can be manipulated to 
determine the line segment, . I speculate that it is easier to obtain the 
solution of the equation by these manipulations than manipulating the 
corresponding expression or equation. It appears at least to be the way 
that the solution was originally found: Al Khwarizmi is said to have 
been inspired by Babylonian mathematicians. According to (Høyrup 
2002) they solved such equations geometrically. The steps are shown in 
fi gure 5. One fi rst cuts off half of the rectangle and moves it below the 
fi gure as shown in fi gure 5. In the next step, the “square is completed”: 
one adds a square with area , so that the area is now 64. The 
side of the square is then 8 and the sought for line segment is 8–5=3.

Figure 4. A geometric representation of .
x 10

5

5

Figure 5. Illustrating the geometric solution of .
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Once the solution has been found geometrically, it is possible to for-
mulate the manipulations of the fi gures in Figure 5 in the original 
language: The top fi gure expresses that  is the same as 

. The stippled lines in the bottom fi gure state that: 
. The fi gure further shows that this is 

a square with side , that is, . Finally, one takes the 
square root and subtracts 5 to obtain .

Given this terminology, we can say that a -algebra is an iconic 
metaphor of a directed graph. There are specifi c rules that defi ne how 
to read a particular graph. Similarly, other defi nitions say how to read 
the graph in a different way and so obtain the linear map. This means 
that the linear map is also a metaphorical representation of the di-
rected graph. Intricate mathematical arguments are needed in order 
to determine the relation between this map and the K-groups referred 
to above.

It is much easier to comprehend how diagrams represent permuta-
tions as was shown in the fi rst case study. The employed convention 
is simply to place numbers on a circle and to draw a line between the 
numbers  and  of a given permutation, . By using this convention, 
one may consider these diagrams as iconic representations of permuta-
tions. After manipulating such diagrams, the discovered property of 
being a crossing permutation can be reformulated in the original vo-
cabulary of the permutation as a mapping.

The examples shown illustrate that the manipulation of iconic rep-
resentations is a fruitful practice in mathematics. This brings me to 
the fi nal point of this paper: that both these features play a central 
role in Peirce’s characterisation of mathematical reasoning. In ‘On the 
algebra of logic. A contribution to the philosophy of notation’ Peirce 
writes the following about reasoning, mentioning the role of icons and 
our ability to manipulate them:

The truth, however, appears to be that all deductive reasoning, even simple 
syllogism, involves an element of observation; namely, deduction consists in 
constructing an icon or diagram the relations of whose parts shall present 
a complete analogy with those of the parts of the object of reasoning, of 
experimenting upon this image in the imagination, and of observing the 
result so as to discover unnoticed and hidden relations among the parts. ... 
As for algebra, the very idea of the art is that it presents formulae which 
can be manipulated, and that by observing the effects of such manipula-
tion we fi nd properties not to be otherwise discerned. (Peirce in Collected 
Papers 3.363)

In this paper I have emphasised the role of visual representations, or 
diagrams. But it is clear from the above quote, that also other types 
of representations, that is, general mathematical expressions, are ex-
amples of iconic representations that can be manipulated—and so con-
tribute to the development of mathematics.
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3. Conclusion
I have shown various examples illustrating the effectiveness of visual 
representations in contemporary mathematics. In the fi rst example a 
particular diagrammatic representation revealed new properties of a 
permutation. In the second example, a diagrammatic representation 
has contributed with tools that potentially make classifi cation of -al-
gebras simpler.

I have also noted that fruitful representations in mathematics are 
iconic metaphors that can be manipulated. Furthermore, such repre-
sentations need not be visual or diagrammatic. Finally, I should say 
that what has been formulated here is only a proposal of what kinds 
of representations are effective. The question of how they can be found 
remains.
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