1,043 research outputs found

    Weighted Logics for Nested Words and Algebraic Formal Power Series

    Full text link
    Nested words, a model for recursive programs proposed by Alur and Madhusudan, have recently gained much interest. In this paper we introduce quantitative extensions and study nested word series which assign to nested words elements of a semiring. We show that regular nested word series coincide with series definable in weighted logics as introduced by Droste and Gastin. For this we establish a connection between nested words and the free bisemigroup. Applying our result, we obtain characterizations of algebraic formal power series in terms of weighted logics. This generalizes results of Lautemann, Schwentick and Therien on context-free languages

    Weighted Automata and Logics for Infinite Nested Words

    Full text link
    Nested words introduced by Alur and Madhusudan are used to capture structures with both linear and hierarchical order, e.g. XML documents, without losing valuable closure properties. Furthermore, Alur and Madhusudan introduced automata and equivalent logics for both finite and infinite nested words, thus extending B\"uchi's theorem to nested words. Recently, average and discounted computations of weights in quantitative systems found much interest. Here, we will introduce and investigate weighted automata models and weighted MSO logics for infinite nested words. As weight structures we consider valuation monoids which incorporate average and discounted computations of weights as well as the classical semirings. We show that under suitable assumptions, two resp. three fragments of our weighted logics can be transformed into each other. Moreover, we show that the logic fragments have the same expressive power as weighted nested word automata.Comment: LATA 2014, 12 page

    Advances and applications of automata on words and trees : abstracts collection

    Get PDF
    From 12.12.2010 to 17.12.2010, the Dagstuhl Seminar 10501 "Advances and Applications of Automata on Words and Trees" was held in Schloss Dagstuhl - Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Weighted Operator Precedence Languages

    Get PDF
    In the last years renewed investigation of operator precedence languages (OPL) led to discover important properties thereof: OPL are closed with respect to all major operations, are characterized, besides the original grammar family, in terms of an automata family (OPA) and an MSO logic; furthermore they significantly generalize the well-known visibly pushdown languages (VPL). In another area of research, quantitative models of systems are also greatly in demand. In this paper, we lay the foundation to marry these two research fields. We introduce weighted operator precedence automata and show how they are both strict extensions of OPA and weighted visibly pushdown automata. We prove a Nivat-like result which shows that quantitative OPL can be described by unweighted OPA and very particular weighted OPA. In a BĂĽchi-like theorem, we show that weighted OPA are expressively equivalent to a weighted MSO-logic for OPL

    Nivat-Theorem and Logic for Weighted Pushdown Automata on Infinite Words

    Get PDF

    Generalizing input-driven languages: theoretical and practical benefits

    Get PDF
    Regular languages (RL) are the simplest family in Chomsky's hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time. Context-free languages (CFL) are another major family well-suited to formalize programming, natural, and many other classes of languages; their increased generative power w.r.t. RL, however, causes the loss of several closure properties and of the decidability of important problems; furthermore they need complex parsing algorithms. Thus, various subclasses thereof have been defined with different goals, spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic verification techniques. Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible in the sentences, exhibit many of the algebraic and logic properties of RL, whereas deterministic CFL have been thoroughly exploited in compiler construction and other application fields. After surveying and comparing the main properties of those various language families, we go back to operator precedence languages (OPL), an old family through which R. Floyd pioneered deterministic parsing, and we show that they offer unexpected properties in two fields so far investigated in totally independent ways: they enable parsing parallelization in a more effective way than traditional sequential parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive language families

    Weighted Automata and Logics on Hierarchical Structures and Graphs

    Get PDF
    Formal language theory, originally developed to model and study our natural spoken languages, is nowadays also put to use in many other fields. These include, but are not limited to, the definition and visualization of programming languages and the examination and verification of algorithms and systems. Formal languages are instrumental in proving the correct behavior of automated systems, e.g., to avoid that a flight guidance system navigates two airplanes too close to each other. This vast field of applications is built upon a very well investigated and coherent theoretical basis. It is the goal of this dissertation to add to this theoretical foundation and to explore ways to make formal languages and their models more expressive. More specifically, we are interested in models that are able to model quantitative features of the behavior of systems. To this end, we define and characterize weighted automata over structures with hierarchical information and over graphs. In particular, we study infinite nested words, operator precedence languages, and finite and infinite graphs. We show BĂĽchi-like results connecting weighted automata and weighted monadic second order (MSO) logic for the respective classes of weighted languages over these structures. As special cases, we obtain BĂĽchi-type equivalence results known from the recent literature for weighted automata and weighted logics on words, trees, pictures, and nested words. Establishing such a general result for graphs has been an open problem for weighted logics for some time. We conjecture that our techniques can be applied to derive similar equivalence results in other contexts like traces, texts, and distributed systems

    10501 Abstracts Collection -- Advances and Applications of Automata on Words and Trees

    Get PDF
    From 12.12.2010 to 17.12.2010, the Dagstuhl Seminar 10501 ``Advances and Applications of Automata on Words and Trees\u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    26. Theorietag Automaten und Formale Sprachen 23. Jahrestagung Logik in der Informatik: Tagungsband

    Get PDF
    Der Theorietag ist die Jahrestagung der Fachgruppe Automaten und Formale Sprachen der Gesellschaft für Informatik und fand erstmals 1991 in Magdeburg statt. Seit dem Jahr 1996 wird der Theorietag von einem eintägigen Workshop mit eingeladenen Vorträgen begleitet. Die Jahrestagung der Fachgruppe Logik in der Informatik der Gesellschaft für Informatik fand erstmals 1993 in Leipzig statt. Im Laufe beider Jahrestagungen finden auch die jährliche Fachgruppensitzungen statt. In diesem Jahr wird der Theorietag der Fachgruppe Automaten und Formale Sprachen erstmalig zusammen mit der Jahrestagung der Fachgruppe Logik in der Informatik abgehalten. Organisiert wurde die gemeinsame Veranstaltung von der Arbeitsgruppe Zuverlässige Systeme des Instituts für Informatik an der Christian-Albrechts-Universität Kiel vom 4. bis 7. Oktober im Tagungshotel Tannenfelde bei Neumünster. Während des Tre↵ens wird ein Workshop für alle Interessierten statt finden. In Tannenfelde werden • Christoph Löding (Aachen) • Tomás Masopust (Dresden) • Henning Schnoor (Kiel) • Nicole Schweikardt (Berlin) • Georg Zetzsche (Paris) eingeladene Vorträge zu ihrer aktuellen Arbeit halten. Darüber hinaus werden 26 Vorträge von Teilnehmern und Teilnehmerinnen gehalten, 17 auf dem Theorietag Automaten und formale Sprachen und neun auf der Jahrestagung Logik in der Informatik. Der vorliegende Band enthält Kurzfassungen aller Beiträge. Wir danken der Gesellschaft für Informatik, der Christian-Albrechts-Universität zu Kiel und dem Tagungshotel Tannenfelde für die Unterstützung dieses Theorietags. Ein besonderer Dank geht an das Organisationsteam: Maike Bradler, Philipp Sieweck, Joel Day. Kiel, Oktober 2016 Florin Manea, Dirk Nowotka und Thomas Wilk

    Monitor Logics for Quantitative Monitor Automata

    Get PDF
    We introduce a new logic called Monitor Logic and show that it is expressively equivalent to Quantitative Monitor Automata
    • …
    corecore