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Abstract
In the last years renewed investigation of operator precedence languages (OPL) led to discover
important properties thereof: OPL are closed with respect to all major operations, are character-
ized, besides the original grammar family, in terms of an automata family (OPA) and an MSO
logic; furthermore they significantly generalize the well-known visibly pushdown languages (VPL).
In another area of research, quantitative models of systems are also greatly in demand. In this
paper, we lay the foundation to marry these two research fields. We introduce weighted operator
precedence automata and show how they are both strict extensions of OPA and weighted visibly
pushdown automata. We prove a Nivat-like result which shows that quantitative OPL can be
described by unweighted OPA and very particular weighted OPA. In a Büchi-like theorem, we
show that weighted OPA are expressively equivalent to a weighted MSO-logic for OPL.
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1 Introduction

In the long history of formal languages the family of regular languages (RL) has always played
a major role: thanks to its simplicity and naturalness, it enjoys many positive mathematical
properties which have been thoroughly exploited in disparate practical applications; among
them, those of main interest in this paper are the following:
• RL have been characterized in terms of various mathematical logics. Originally, Büchi,

Elgot, and Trakhtenbrot [6, 18, 34] independently developed a monadic second order
(MSO) logic defining exactly the RL family. This work has been followed by many further
results; in particular those that exploited weaker but simpler logics such as first-order,
propositional, and temporal ones culminated in the breakthrough of model checking to
support automatic verification [28, 19, 7].

• Weighted RL have been introduced by Schützenberger in [32]: by assigning a weight in a
suitable algebra to each language word, we may specify several attributes of the word, e.g.,
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31:2 Weighted Operator Precedence Languages

relevance, probability, etc. Much research then followed and extended Schützenberger’s
original work in various directions, cf. the books [4, 17, 23, 31, 13].

Unfortunately, all families with greater expressive power than RL –typically context-free
languages (CFL), which are the most widely used family in practical applications– pay a
price in terms of algebraic and logic properties and, consequently, of possible tools supporting
their automatic analysis. For instance, for CFL, the containment problem is undecidable.

What was not possible for general CFL, however, has been possible for important
subclasses of this family, which together we call structured CFL. Informally, by this term we
denote those CFL where the syntactic tree-structure of their words is immediately “visible”
in the words themselves. Two first equivalent examples of such families are parenthesis
languages [27], which are generated by grammars whose right hand sides are enclosed within
pairs of parentheses, and tree-automata [33], which generalize finite state machines (FSM)
from the recognition of linear strings to tree-like structures. Among the many variations
of parenthesis languages the recent family of input-driven languages [29, 35], alias visibly
pushdown languages (VPL) [2], has received much attention in recent literature. For most of
these structured CFL, including VPL, the relevant algebraic properties of RL still hold [2].
One of the most noticeable results has been a characterization of VPL in terms of a MSO
logic that is a natural extension of Büchi’s original one for RL [24, 2].

This fact has suggested to extend the investigation of weighted RL to various cases of
structured languages. The result of such a fertile approach is a rich collection of weighted
logics, first studied by Droste and Gastin [11], associated with weighted tree automata [16]
and weighted extensions of VPA (the automata recognizing VPL) [26].

In an originally unrelated way operator precedence languages (OPL) have been defined
and studied in two phases temporally separated by four decades. In his seminal work [20]
Floyd was inspired by the precedence of multiplicative operations over additive ones in the
execution of arithmetic expressions and extended such a relation to the whole input alphabet
in such a way that it could drive a deterministic parsing algorithm that builds the syntax
tree of any word that reflects the word’s semantics; Fig. 1 and Section 2 give an intuition of
how an OP grammar generates arithmetic expressions and assigns them a natural structure.

OPL do not cover all deterministic CFL, but they enjoy a distinguishing property, not
possessed by general deterministic CFL, which we can intuitively describe as “OPL are input
driven but not visible”. They can be claimed as input-driven since the parsing actions on
their words –whether to push or pop– depend exclusively on the input alphabet and on the
relation defined thereon, but their structure is not visible in their words: e.g, they can include
unparenthesized expressions where the precedence of multiplicative operators over additive
ones is explicit in the syntax trees but hidden in their frontiers (see Fig. 1). Furthermore,
unlike other structured CFL, OPL include deterministic CFL that are not real-time [25].

This recent remark suggested to resume their investigation systematically at the light
of the recent technological advances and related challenges. Such a renewed investigation
led to prove their closure under all major language operations [8] and to characterize them,
besides Floyd’s original grammars, in terms of an appropriate class of pushdown automata
(OPA) and in terms of a MSO logic which is a fairly natural but not trivial extension of the
previous ones defined to characterize RL and VPL [25]. Thus, OPL enjoy the same nice
properties of RL and many structured CFL but considerably extend their applicability by
breaking the barrier of visibility and real-time push-down recognition.

In this paper we join the two research fields above, namely we introduce weighted OPL
and show that they are able to model system behaviors that cannot be specified by means
of less powerful weighted formalisms such as weighted VPL. For instance, one might be
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interested in the behavior of a system which handles calls and returns but is subject to some
emergency interrupts. Then it is important to evaluate how critically the occurrences of
interrupts affect the normal system behavior, e.g., by counting the number of pending calls
that have been preempted by an interrupt. As another example we consider a system logging
all hierarchical calls and returns over words where this structural information is hidden.
Depending on changing exterior factors like energy level, such a system could decide to log
the above information in a selective way.

Our main contributions in this paper are the following.
• The model of weighted OPA, which have semiring weights at their transitions, significantly

increases the descriptive power of previous weighted extensions of VPA, and has desired
closure and robustness properties.

• For arbitrary semirings, there is a relevant difference in the expressive power of the
model depending on whether it permits assigning weights to pop transitions or not. For
commutative semirings, however, weights on pop transitions do not increase the expressive
power of the automata. The difference in descriptive power between weighted OPA with
arbitrary weights and without weights at pop transitions is due to the fact that OPL may
be non-real-time and therefore OPA may execute several pop moves without advancing
their reading heads.

• An extension of the classical result of Nivat [30] to weighted OPL. This robustness result
shows that the behaviors of weighted OPA without weights at pop transitions are exactly
those that can be constructed from weighted OPA with only one state, intersected with
OPL, and applying projections which preserve the structural information.

• A weighted MSO logic and, for arbitrary semirings, a Büchi-Elgot-Trakhtenbrot-Theorem
proving its expressive equivalence to weighted OPA without weights at pop transitions.
As a corollary, for commutative semirings this weighted logic is equivalent to weighted
OPA including weights at pop transitions.

Various possibilities arise for future research concerning theory and applications of our new
model which will be discussed in the conclusion. The full version of this paper [10] provides
all omitted technicalities and more explanatory comments and examples.

2 Preliminaries

Consider the CFG of Fig. 1 (left) and the syntax tree (center) which makes the structure of its
frontier n+n× (n+n) visible. To drive a parsing algorithm in the deterministic construction
of the tree associated with the string, Floyd introduced three precedence relations, l (yields
precedence), .= (equal in precedence), m (takes precedence), (algorithmically derived from the
grammar) between terminal symbols (Fig. 1 right). They do not satisfy any order axioms
and are used to mark, respectively, the beginning, the internal elements, and the end of a
grammar right hand side in the substitution rules of a shift-reduce parsing algorithm. For a
complete description of Floyd’s parsing algorithms driven by these relations, see, e.g, [21].

In this paper, instead, we exploit the more recent characterization of OPL in terms of
recognizing automata [25], which are defined on a given alphabet and precedence matrix.
We define an OP alphabet as a pair (Σ,M), where Σ is an alphabet and M , the operator
precedence matrix (OPM), is a |Σ ∪ {#}|2 array describing for each ordered pair of symbols
at most one (operator precedence) relation, that is, every entry of M is either l, .=, m, or
empty (no relation). We use the symbol # to mark the beginning and the end of a word and
always let # l a and am # for all a ∈ Σ.

Let w = (a1...an) ∈ Σ+ be a non-empty word. We say a0 = an+1 = # and define

MFCS 2017
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Figure 1 A grammar generating arithmetic expressions (left), an example derivation tree (center),
and the precedence matrix (right). E.g. M [1, 2] = l means that + yields precedence to ×.

a new chain relation y on the set of all positions of #w#, inductively, as follows. Let
0 ≤ i < j ≤ n+1. We write iy j if there exists a sequence of positions i = k1 < ... < km = j,
m ≥ 3, such that ak1 l ak2

.= ...
.= akm−1 m akm and either ks + 1 = ks+1 or ks y ks+1 for

each s ∈ {1, ...,m− 1}. We say that w is compatible with M if for #w#, we have 0 y n+ 1.
We denote by (Σ+,M) the set of all non-empty words over Σ which are compatible with M .
For a complete OPM M , i.e. one without empty entries, this is Σ+.

The chain relation can be compared with the nesting or matching relation of [2], which is
also originating from additional information on the alphabet. However, instead of partitioning
the alphabet into three disjoint parts (calls, internals, and returns), we add a binary relation
for every pair of symbols denoting their precedence relation. Therefore, in contrast to the
nesting relation, the same symbol can be either call or return depending on its context, and
the same position can be part of multiple chain relations.

I Definition 1. A (nondeterministic) operator precedence automaton (OPA) A over an OP
alphabet (Σ,M) is a tuple A = (Q, I, F, δ), where δ = (δshift, δpush, δpop), consisting of

a finite set of states Q, the set of initial states I ⊆ Q, the set of final states F ⊆ Q, and
the transition relations δshift, δpush ⊆ Q× Σ×Q, and δpop ⊆ Q×Q×Q.

Let Γ = Σ×Q. A configuration of A is a triple C = 〈Π, q, w#〉, where Π ∈ ⊥Γ∗ represents a
stack, q ∈ Q the current state, and w the remaining input to read. A run of A on w = a1...an
is a finite sequence of configurations C0 ` ... ` Cm, such that every transition Ci ` Ci+1 has
one of the following forms, where a is the first component of the topmost symbol of the stack
Π, or # if the stack is ⊥, and b is the next symbol of the input to read:

push move : 〈Π, q, bx〉 ` 〈Π[b, q], r, x〉 if al b and (q, b, r) ∈ δpush,

shift move : 〈Π[a, p], q, bx〉 ` 〈Π[b, p], r, x〉 if a .= b and (q, b, r) ∈ δshift,

pop move : 〈Π[a, p], q, bx〉 ` 〈Π, r, bx〉 if am b and (q, p, r) ∈ δpop.

An accepting run of A on w is a run from 〈⊥, qI , w#〉 to 〈⊥, qF ,#〉, where qI ∈ I and qF ∈ F .
The language accepted by A, denoted L(A), consists of all words over (Σ+,M) which have
an accepting run on A. We say L ⊆ (Σ+,M) is an OPL if L is accepted by an OPA over
(Σ,M). As proven in [25], the deterministic variant of an OPA, using a single initial state
and transition functions instead of relations, is as expressive as nondeterministic OPA.

An example automaton is depicted in Fig. 2: with the OPM of Fig. 1 (right), it accepts
the same language as the grammar of Fig. 1 (left).

I Definition 2. The logic MSO(Σ,M), short MSO, and its semantics is defined as in [25]

β ::= Laba(x) | x ≤ y | xy y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β
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Figure 2 An OPA recognizing the language of the grammar of Fig. 1. The graphical notation is
imported from [25]: pushes are normal arrows, shifts are dashed, pops are double arrows.

where a ∈ Σ ∪ {#} and x, y,X are first resp. second order variables. The predicate Laba(x)
asserts that position x is labeled a. The semantics of y is defined by the chain relation.

I Theorem 3 ([25]). A language L over (Σ,M) is an OPL iff it is MSO-definable.

3 Weighted OPL and Their Relation to Weighted VPL

In this section, we introduce a weighted extension of OPA. We show that weighted OPL
include weighted visibly pushdown automata (VPL) and give examples showing how these
weighted automata can express behaviors which were not expressible before.

Let K = (K,+, ·, 0, 1) be a semiring, i.e., (K,+, 0) is a commutative monoid, (K, ·, 1) is a
monoid, (x+y) ·z = x ·z+y ·z, x · (y+z) = x ·y+x ·z, and 0 ·x = x ·0 = 0 for all x, y, z ∈ K.
K is called commutative if (K, ·, 1) is commutative. Important examples of commutative
semirings include the Boolean semiring B = ({0, 1},∨,∧, 0, 1), the semiring of the natural
numbers N = (N,+, ·, 0, 1), or the tropical semirings Rmax = (R∪{−∞},max,+,−∞, 0) and
Rmin = (R ∪ {∞},min,+,∞, 0). Significant non-commutative semirings are n× n-matrices
over semirings K with matrix addition and multiplication as usual (n ≥ 2), or the semiring
(P(Σ∗),∪, ·, ∅, {ε}) of languages over Σ.

I Definition 4. A weighted OPA (wOPA) A over an OP alphabet (Σ,M) and a semiring K
is a tuple A = (Q, I, F, δ,wt), where wt = (wtshift,wtpush,wtpop), consisting of

an OPA A′ = (Q, I, F, δ) over (Σ,M) and
the weight functions wtop : δop → K, op ∈ {shift,push,pop}.

We call a wOPA restricted, denoted by rwOPA, if wtpop(q, p, r) = 1 for each (q, p, r) ∈ δpop.

A configuration of a wOPA is a tuple 〈Π, q, w#, k〉, where (Π, q, w#) is a configuration of
the OPA A′ and k ∈ K. A run of A is defined as for OPA, where, additionally, the weight k
is updated by multiplying with the weight of the encountered transition, as follows.

〈Π, q, bx, k〉 ` 〈Π[b, q], r, x, k · wtpush(q, b, r)〉 if al b and (q, b, r) ∈ δpush,

〈Π[a, p], q, bx, k〉 ` 〈Π[b, p], r, x, k · wtshift(q, b, r)〉 if a .= b and (q, b, r) ∈ δshift,

〈Π[a, p], q, bx, k〉 ` 〈Π, r, bx, k · wtpop(q, p, r)〉 if am b and (q, p, r) ∈ δpop.

We call a run ρ accepting if it goes from 〈⊥, qI , w#, 1〉 to 〈⊥, qF ,#, k〉, where qI ∈ I and
qF ∈ F . For such an accepting run, the weight of ρ is defined as wt(ρ) = k. Finally, the
behavior of A is a function JAK : (Σ+,M)→ K, defined as

JAK(w) =
∑

ρ acc. run of A on w
wt(ρ) .

Every function S : (Σ+,M)→ K is called an OP-series (short: series, also weighted language).
A wOPA A accepts a series S if JAK = S. A series S is called recognizable or a wOPL if there
exists an wOPA A accepting it. S is strictly recognizable or an rwOPL if there exists an
rwOPA A accepting it.

MFCS 2017
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q0 q1 q2
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Figure 3 The weighted OPA Aitr penalizing unmatched calls nondeterministically, and its
precedence matrix (right). Weights are given in parentheses at transitions. The weight semiring is
Zmax = (Z ∪ {−∞}, max, +,−∞, 0).

q0 q1

call(c), itr(i) ret(r)

q0(p)

call(ε)

call(ε)

call(ε), itr(i)ret(ε)

q0(ε), q1(ε)

Figure 4 The wOPA Alog nondeterministically writes logs at different levels of detail.

I Example 5. Consider a system that manages calls and returns (in VPL terminology) in
a traditional LIFO policy but discards all pending calls if an interrupt (itr) occurs. Such
a system can be naturally modeled by suitable OPA that can formalize various types of
policies to manage interrupts [25]1. We can use weights to, for instance, count the number
of interrupted calls. A first simple wOPA could attach a negative weight to calls and a
compensating one to corresponding returns so that the final weight assigned to the string
would be “neutral” only if no call is discarded.

Consider now a more complex system where the penalties for unmatched calls may change
nondeterministically. Here, we assume words to be separated into different intervals by the
symbol $, of which one nondeterministically chosen represents, e.g., a critical operating time,
during which unmatched calls are penalized. The wOPA Aitr given in Fig. 3 formalizes such
a system by assigning to an input sequence a global weight that is the maximal number of
unmatched calls in one interval.
Aitr can be easily modified to formalize several variations of its policy: e.g., different

policies could be associated with different intervals, different weights could be assigned to
different types of calls and/or interrupts, different policies could also be defined by choosing
different semirings, etc. Note that Aitr is restricted. J

I Example 6. The automaton Alog, depicted in Fig. 4, chooses non-deterministically between
logging everything and logging only ‘important’ information, e.g., only interrupts (this could
be a system dependent on energy, WiFi, etc.). Notice that in this case assigning nontrivial
weights to pop transitions is crucial. Let Σ = {call, ret, itr}, and define M as the obvious
projection of Aitr’s OPM. We employ the semiring (FinΣ′ ,∪, ◦, ∅, {ε}) of all finite languages
over Σ′ = {c, r, p, i}. Then, JAlogK(w) yields all possible logs on w. J

The above example can be exploited to show by a pumping-like argument that wOPA are
more expressive than rwOPA. This is due to the fact that a number of consecutive pops can
attach to one position a product of size only bounded by the word-length and it is impossible
to attach these weights at other positions without destroying their sequential order.

1 A similar motivation inspired the recent extension of VPL as colored nested words by [1].
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Σcall Σret Σint

Σcall l .= l
Σret m m m
Σint m m m

E.g. w = a〈car〉, over Σint = {a}, Σcall = {〈c}, Σret = {r〉}

NWA: q0
a−−−−−−→ q1

〈c−−→ q2
a−−−−−−→ q3

r〉−−−−−−→ q4

OPA: q0
a−→ q′

1 ⇒ q1
〈c−−→ q2

a−→ q′
3 ⇒ q3

r〉
99K q′

4 ⇒ q4

Figure 5 The OPM M for VPL and an example of the translation of runs from NWA to OPA.

I Proposition 7. There exist an OP alphabet (Σ,M), a semiring K, and a weighted language
S : (Σ+,M)→ K such that S is recognizable but not strictly recognizable.

On the other hand, for commutative semirings rwOPA and wOPA are equally expressive.

I Theorem 8. Let A be a wOPA over an OP alphabet (Σ,M) and a commutative semiring
K. Then, there exists an rwOPA B over (Σ,M) and K with JAK = JBK.

Proof (Sketch). Let A = (Q, I, F, δ,wt) be a wOPA over (Σ,M) and K. We construct an
rwOPA B over (Σ,M) and K with the state set Q′ = Q×Q×Q and with the same behavior
as A as follows. In the first state component B simulates A. In the second and third state
component of Q′ the automaton B guesses the states q and r of the pop transition (q, p, r)
of A which corresponds to the next push transition following after this configuration. This
enables us to transfer the weight from the pop transition to the correct push transition. J

In the following, we show that rwOPL strictly include weighted visibly pushdown languages
(wVPL). VPL is the class of languages corresponding to nested words [2] and recognized
by visibly pushdown automata (VPA) or the expressively equivalent nested word automata
(NWA). Let Σ be a visibly pushdown alphabet consisting of calls, internals, and returns. In
[8], it was shown that for every VPA over Σ, there exists an equivalent OPA [25] over (Σ,M),
where M is the OPM defined in Fig. 5.

In [26, 15], weighted nested word automata (wNWA) were introduced. These add semiring
weights at every transition again depending on the information which symbols are calls,
internals, or returns. Since every nested word has a unique representation over a visibly
pushdown alphabet Σ, it can be interpreted as a compatible word of (Σ+,M). In particular,
we can interpret a wVPL, i.e., the language of a wNWA, as an OP-series (Σ+,M)→ K.

I Theorem 9. Let K be a semiring and M be the OPM of Fig. 5. Then for every wNWA A
as defined in [15], there exists an rwOPA B with JAK(w) = JBK(w) for all w ∈ (Σ+,M).

We give an intuition for this result as follows. Note that pushes, shifts, and pops significantly
differ from calls, internals, and returns. Indeed, a return of a NWA reads and ‘consumes’ a
symbol, while a pop of an OPA just pops the stack and leaves the next symbol untouched.
Studying the OPM M and the example runs of Fig. 5, we see that every symbol of Σret
forces a shift transition of an OPA immediately followed by a pop. This suggests a fairly
natural construction where we can simulate every weighted call by a weighted push, every
weighted internal by a weighted push together with a pop and every weighted return by a
weighted shift together with a pop. Hence, we may omit weights at pop transitions.

Since OPA are strictly more expressive than VPA [8], this gives, together with Proposition
7, a complete picture of the expressive power of these three classes of weighted languages:

wVPL ( rwOPL ( wOPL .

Note that in the context of formal power series, wVPL strictly contain recognizable power
series and wOPL form a proper subset of the class of algebraic power series, i.e., series
recognized by weighted pushdown automata [23].

MFCS 2017
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4 A Nivat Theorem

In this section, we show that strictly recognizable series are exactly those series which can be
derived from a restricted weighted OPA with only one state, intersected with an unweighted
OPL, and using an OPM-preserving projection of the alphabet.

In the following, we study closure properties of wOPL and rwOPL. As usual, we extend
the operations + and · to series by means of pointwise definitions.

I Proposition 10. Let S : (Σ+,M) → K be a recognizable (resp. strictly recognizable)

series and L ⊆ (Σ+,M) an OPL. Then, the series (S ∩ L)(w) =
{
S(w) , if w ∈ L
0 , otherwise

}
is

recognizable (resp. strictly recognizable).
Furthermore, if K is commutative, then the product of two recognizable (resp. strictly

recognizable) series over (Σ+,M) is again recognizable (resp. strictly recognizable).

Next, we show that recognizable series are closed under projections which preserve the
OPM. For two OP alphabets (Σ,M), (Γ,M ′), we write h : (Σ,M)→ (Γ,M ′) for a mapping
h : Σ→ Γ such that for all • ∈ {l, .=,m}, we have a • b if and only if h(a) • h(b). We can
extend h to a function h : (Σ+,M)→ (Γ+,M ′) by setting h(a1a2...an) = h(a1)h(a2)...h(an).
Let S : (Σ+,M)→ K be a series. We define h(S) : (Γ+,M ′)→ K for each v ∈ (Γ+,M ′) by

h(S)(v) =
∑

w∈(Σ+,M),h(w)=v

S(w) . (1)

I Proposition 11. Let K be a semiring, S : (Σ+,M) → K recognizable (resp. strictly
recognizable), and h : (Σ,M)→ (Γ,M ′). Then, h(S) : (Γ+,M ′)→ K is recognizable (resp.
strictly recognizable).

Let h be a map between two alphabets. Given h : Γ→ Σ and an OP alphabet (Σ,M), we
define h−1(M) by setting h−1(M)a′b′ = Mh(a′)h(b′) for all a′, b′ ∈ Γ. As h is OPM-preserving,
for every series S : (Σ+,M)→ K, we get a series h(S) : (Γ+, h−1(M))→ K, using the sum
over all pre-images as in formula (1).

Let N (Σ,M,K) comprise all series S : (Σ+,M)→ K for which there exist an alphabet
Γ, a map h : Γ→ Σ, and a one-state rwOPA B over (Γ, h−1(M)) and K and an OPL L over
(Γ, h−1(M)) such that S = h(JBK ∩ L).

Then, we can show that every rwOPL can be decomposed into the above introduced
fragments. Using this decomposition and the closure properties of Prop. 10 and Prop. 11,
we get the following Nivat-Theorem for weighted operator precedence automata.

I Theorem 12. Let K be a semiring and S : (Σ+,M)→ K be a series. Then S is strictly
recognizable if and only if S ∈ N (Σ,M,K).

5 Weighted MSO-Logic for OPL

We use modified ideas from Droste and Gastin [11], also incorporating the distinction into
boolean formulas β and weighted formulas ϕ as in [5]. The boolean formulas model classical
unweighted features, whereas weighted formulas may deal with quantitative aspects.

I Definition 13. We define the weighted logic MSO(K, (Σ,M)), short MSO(K), as

β ::= Laba(x) | x ≤ y | xy y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β
ϕ ::= β | k | ϕ⊕ ϕ | ϕ⊗ ϕ |

⊕
x ϕ |

⊕
X ϕ |

∏
x ϕ

where a ∈ Σ ∪ {#}, k ∈ K; x, y are first order variables; and X is a second order variable.



M. Droste, S. Dück, D. Mandrioli, M. Pradella 31:9

JβKV(w, σ) =
{

1 , if (w, σ) |= β

0 , otherwise J
⊕

x ϕKV(w, σ) =
∑
i∈|w|

JϕKV∪{x}(w, σ[x→ i])

JkKV(w, σ) = k for all k ∈ K J
⊕

X ϕKV(w, σ) =
∑
I⊆|w|

JϕKV∪{X}(w, σ[X → I])

Jϕ⊕ ψKV(w, σ) = JϕKV(w, σ) + JψKV(w, σ) J
∏
x ϕKV(w, σ) =

∏
i∈|w|

JϕKV∪{x}(w, σ[x→ i])

Jϕ⊗ ψKV(w, σ) = JϕKV(w, σ) · JψKV(w, σ)

Figure 6 Semantics of weighted MSO logic for OPL.

Let w ∈ (Σ+,M) and ϕ ∈ MSO(K). As usual, let [w] = {1, ..., |w|} and V be a finite set
of variables containing free(ϕ), all free variables of ϕ. A (V, w)-assignment σ is a function
assigning to every first order variable of V an element of [w] and to every second order variable
a subset of [w]. We define σ[x→ i] (and analogously σ[X → I]) as the (V∪{x}, w)-assignment
mapping x to i and coinciding with σ on all variables different from x.

By following classical approaches, we consider the extended alphabet ΣV = A× {0, 1}V
together with its natural OPM MV defined such that for all (a, s), (b, t) ∈ ΣV and all
• ∈ {l, .=,m}, we have (a, s) • (b, t) if and only if a • b. We represent the word w together
with the assignment σ as a word (w, σ) over (ΣV ,MV) such that 1 denotes every position
where x resp. X holds. A word over ΣV is called valid, if every first order variable is assigned
to exactly one position. Being valid is a property which can be checked by an OPA.

We define the semantics of ϕ ∈ MSO(K) as a function JϕKV : (Σ+
V ,MV)→ K inductively

for all valid (w, σ) ∈ (Σ+
V ,MV) in Fig. 6. For not valid (w, σ), we set JϕKV(w, σ) = 0. We

write JϕK for JϕKfree(ϕ). We can show that semantics ϕV for different V are consistent with
each other as long as V contains all free variables of ϕ. If ϕ contains no free variables, ϕ is a
sentence and JϕK : (Σ+,M)→ K.

I Example 14. Let us go back to the automaton Aitr depicted in Fig. 3. The following
boolean formula β defines three subsets of string positions, X0, X1, X2, representing, respec-
tively, the string portions where unmatched calls are not penalized, namely X0, X2, and the
portion where they are, namely X1:

β = x ∈ X0 ↔ ∃y∃z(y > x ∧ z > x ∧ Lab$(y) ∧ Lab$(z))
∧ x ∈ X1 ↔ ∃y∃z(y ≤ x ≤ z ∧ Lab$(y) ∧ Lab$(z) ∧ (x 6= y ∧ x 6= z → ¬Lab$(x)))
∧ x ∈ X2 ↔ ∃y∃z(y < x ∧ z < x ∧ Lab$(y) ∧ Lab$(z)) .

Weight assignment is formalized by the formula ϕ which assigns weight 0 to calls, returns,
and interrupts outside portion X1; and weights 1,−1, 0 to calls, returns, and interrupts,
respectively, within portion X1:

ϕ = (¬((x ∈ X0 ∨ x ∈ X2) ∧ (Labcall(x) ∨ Labret(x) ∨ Labitr(x)))⊕ 0)
⊗ (¬(x ∈ X1 ∧ Labcall(x))⊕ 1)⊗ (¬(x ∈ X1 ∧ Labret(x))⊕−1)
⊗ (¬(x ∈ X1 ∧ Labitr(x))⊕ 0)⊗ (¬Lab$(x)⊕ 0) .

Then, the formula ψ =
∏
x(β ⊗ ϕ) defines the weight assigned by Aitr to an input string

through a single nondeterministic run and finally χ =
⊕

X0

⊕
X1

⊕
X2
ψ defines the global

weight of every string in an equivalent way as the one defined by Aitr. J

As shown by [11] in the case of words, the full weighted logic is strictly more powerful than
weighted automata. A similar example also applies here. Therefore, in the following, we
restrict our logic in an appropriate way.
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I Definition 15. The set of almost boolean formulas is the smallest set of all formulas of
MSO(K) containing all k ∈ K and all boolean formulas which is closed under ⊕ and ⊗.

Adapting ideas from [14], we can show by structural induction that almost boolean formulas
describe precisely a certain form of wOPA’s behaviors, called OPL step functions, which are
all series S that can be written as S =

∑n
i=1 ki1Li

, where Li are OPL forming a partition of
(Σ+,M) and ki ∈ K for each i ∈ {1, ..., n}. Furthermore, OPL step functions are recognizable
by rwOPA and are closed under the natural extension of the semiring’s + and · to series.

I Definition 16. We call ϕ ∈ MSO(K) restricted if for all subformulas ψ ⊗ θ of ϕ either ψ
is almost boolean or all semiring weights occurring in ψ and θ commute elementwise, and
additionally, for all subformulas

∏
x ψ of ϕ, ψ is almost boolean.

In Example 14, the formula β is boolean, the formula ϕ is almost boolean, and ψ and χ are
restricted. Notice that ψ and χ would be restricted even if K were not commutative.

I Proposition 17. Let ϕ and ψ be two formulas of MSO(K) such that JϕK and JψK are
recognizable (resp. strictly recognizable). Then we have

Jϕ⊕ ψK, J
∑
x ϕK, and J

∑
X ϕK are recognizable (resp. strictly recognizable).

Jϕ⊗ ψK is (resp. strictly) recognizable if ϕ⊗ ψ is a subformula of a restricted formula.
J
∏
x ϕK is strictly recognizable if ϕ is an almost boolean formula of MSO(K).

Proof (Sketch). Closure under ⊕ is dealt with by an usual disjoint union of two wOPA
(resp. rwOPA). Closure under restricted ⊗ is dealt with by Proposition 10. For the sum quan-
tification, we utilize Proposition 11. The closure under the restricted product quantification
is non-trivial, but can be proved by adapting previous techniques to OPL step functions. J

Then, by induction on the structure of a weighted formula and using Proposition 17, we get

I Proposition 18. For every restricted MSO(K)-sentence ϕ, there exists an rwOPA A with
JAK = JϕK.

Now, we show that the converse of Proposition 18 holds as well.

I Proposition 19. For every rwOPA A, there exists a restricted MSO(K)-sentence ϕ with
JAK = JϕK. If K is commutative, then for every wOPA A, there exists a restricted MSO(K)-
sentence ϕ with JAK = JϕK.

Proof. The rationale adopted to build formula ϕ from A integrates the approach followed
in [11, 15] with the one of [25]. On the one hand we need second order variables suitable
to “carry” weights; on the other hand, unlike previous non-OP cases which are managed
through real-time automata, an OPA can perform several transitions while remaining in the
same position. Thus, we introduce the following second order variables: Xpush

p,a,q represents the
set of positions where A performs a push move from state p, reading symbol a and reaching
state q; Xshift

p,a,q has the same meaning as Xpush
p,a,q for a shift operation; and Xpop

p,q,r represents the
set of positions of the symbol that is on top of the stack when A performs a pop transition
from state p, with q on top of the stack, reaching r.

Let V consist of all Xpush
p,a,q, Xshift

p,a,q, and Xpop
p,q,r such that a ∈ Σ, p, q, r ∈ Q and (p, a, q) ∈

δpush, resp. δshift, resp. (p, q, r) ∈ δpop. We denote by X̄push, X̄shift, and X̄pop enumerations
over the respective set of second order variables. Using usual abbreviations for MSO-formulas
and some adapted shortcuts from [25] and [11], we define the following unweighted formula
ψ to characterize all accepted runs of A

ψ = Part(X̄push, X̄shift) ∧ Unique(X̄pop) ∧ InitFinal ∧ Trpush ∧ Trshift ∧ Trpop .
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◦ Xpop
3,1,3 ◦ Xpop

3,0,3

◦ Xpop
3,1,3 ◦ Xpop

3,3,3

◦ Xpop
1,0,1 ◦ Xpop

1,0,1 ◦ Xpop
3,2,3 ◦ Xpop

3,2,3

Xpush
0,n,1 Xpush

1,+,0 Xpush
0,n,1 Xpush

1,×,0 Xpush
0,(,2 Xpush

2,n,3 Xpush
3,+,2 Xpush

2,n,3 Xshift
3,),3

# n + n × ( n + n ) #
0 1 2 3 4 5 6 7 8 9 10

Figure 7 The string of Fig. 1 with the 2nd order variables evidenced for the automaton of Fig. 2.

Here, the subformula Part will enforce the push and shift sets to be (together) a partition of
all positions, while the Unique will make sure that we mark every position with at most one
Xpop. InitFinal controls the initial and the acceptance condition and Trpush, Trshift, and
Trpop the respective transitions of the run according to their labels as follows.

Trpush = ∀x.
∧
p,q∈Q,a∈Σ

(
x ∈ Xpush

p,a,q →
[

Laba(x) ∧ ∃z.(z l x ∧ (Nextp(z, x) ∨ Succp(z, x)))
])

Trshift = ∀x.
∧
p,q∈Q,a∈Σ

(
x ∈ Xshift

p,a,q →
[

Laba(x) ∧ ∃z.(z .= x ∧ (Nextp(z, x) ∨ Succp(z, x)))
])

Trpop = ∀v.
∧
p,q∈Q

([∨
r∈Q v ∈ Xpop

p,q,r

]
↔
[
∃x∃y∃z.(Treep,q(x, z, v, y))

])
.

The main idea is that for every xy y, we encode in Tree(x, z, v, y) the two other ‘critical’
positions for this chain, namely z, which is the (either direct or hierarchical) successor of x
in this chain and which is the position where we execute the push resulting from xl z; and
v, which is the ‘chain-predecessor’ of y and the position we mark with the respective Xpop

resulting from v m y. E.g., with reference to Fig. 1 and Fig. 7, we have Tree(4, 5, 9, 10).
Furthermore, Succq(x, y) holds for two successive positions where the OPA reaches state

q through a push or shift at position y, while Nextq(x, y) holds when a pop move reaches
state q while completing a chain xy y. Then Treep,q explicitly controls the current state
and the state on top of the stack when the pop move is executed as follows.

Tree(x, z, v, y) := xy y ∧
(

(x+ 1 = z ∨ xy z) ∧ ¬∃t(z < t < y ∧ xy t)∧
(v + 1 = y ∨ v y y) ∧ ¬∃t(x < t < v ∧ ty y)

)
Nextr(x, y) := ∃z∃v.

(
Tree(x, z, v, y) ∧

∨
p,q∈Q v ∈ Xpop

p,q,r

)
Treei,j(x, z, v, y) := Tree(x, z, v, y) ∧ (Succi(v, y) ∨Nexti(v, y)) ∧ (Succi(x, z) ∨Nexti(x, z))

Notice that in the transition formulas, the partition (resp. uniqueness) axioms guarantee
that in every run, the left side of the implication (resp. equivalence) is satisfied for only one
triple (p, a, q), resp. (p, q, r). Thus, with arguments similar to [25], it can be shown that the
sentences satisfying ψ are exactly those accepted by the unweighted OPA subjacent to A.

Now, we add weights to ψ by defining the following restricted weighted formula

θ = ψ ⊗
∏
x ⊗
p,q∈Q

(
⊗
a∈Σ

(x ∈ Xpush
p,a,q ⊗ wtpush(p, a, q))⊕ (¬(x ∈ Xpush

p,a,q)⊗ 1)

⊗ ⊗
a∈Σ

(x ∈ Xshift
p,a,q ⊗ wtpush(p, a, q))⊕ (¬(x ∈ Xshift

p,a,q)⊗ 1)

⊗ ⊗
r∈Q

(x ∈ Xpop
p,q,r ⊗ wtpush(p, q, r))⊕ (¬(x ∈ Xpop

p,q,r)⊗ 1)
)
.

Here, the second part of θ multiplies up all weights of the encountered transitions. This is
the crucial part where we either need that K is commutative or all pop weights are trivial
because the product quantifier of θ assigns the pop weight at a different position than
the occurrence of the respective pop transition in the automaton. Using only one product
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quantifier (weighted universal quantifier) this is unavoidable, since the number of pops at a
given position is only bounded by the word length.

Since the subformulas x ∈ X()
() ⊗ wt(...) of θ are almost boolean, the subformula

∏
x(...)

of θ is
∏
-restricted. Also, ψ is boolean and so θ is ⊗-restricted. Thus, θ is a restricted

formula. Finally, we define ϕ =
⊕

X1

⊕
X2
...
⊕

Xm
θ . This implies JϕK(w) = JAK(w), for all

w ∈ (Σ+,M). Therefore, ϕ is our required restricted sentence with JAK = JϕK. J

By Proposition 18 and Proposition 19, we obtain the main result of this section.

I Theorem 20. Let K be a semiring and S : (Σ+,M)→ K a series.
1. The following are equivalent:

a. S = JAK for some rwOPA.
b. S = JϕK for some restricted sentence ϕ of MSO(K).

2. Let K be commutative. Then, the following are equivalent:
a. S = JAK for some wOPA.
b. S = JϕK for some restricted sentence ϕ of MSO(K).

Theorem 20 shows that the typical logical characterization of weighted languages does not
generalize in the same way to the whole class wOPL: for non-rwOPL we need the extra
hypothesis that K be commutative. Notice, however, that rwOPL may execute unbounded
pop sequences; thus, they are powerful enough to include languages that are neither real-time
nor visible. This remark naturally raises new intriguing questions which we will briefly
address in the conclusion.

6 Conclusion

This paper moves a further step in the path of generalizing a series of results beyond the
barrier of regular and structured –or visible– CFL [27, 33, 2, 25]. We introduced and
investigated weighted operator precedence automata and a corresponding weighted MSO
logic. In our main results we show, for any semiring, that wOPA without pop weights and a
restricted weighted MSO logic have the same expressive power. Furthermore, these behaviors
can also be described as homomorphic images of the behaviors of particularly simple wOPA
reduced to arbitrary unweighted OPA. If the semiring is commutative, these results apply
also to wOPA with arbitrary pop weights.

Theorem 20 also raises the problems to find, for arbitrary semirings and for wOPA with
pop weights, both an expressively equivalent weighted MSO logic and a Nivat-type result. In
[16], very similar problems arose for weighted automata on unranked trees and weighted MSO
logic. In [12], the authors showed that with another definition of the behavior of weighted
unranked tree automata, an equivalence result for the restricted weighted MSO logic could
be derived. Is there another definition of the behavior of wOPA (with pop weights) making
them expressively equivalent to our restricted weighted MSO logic?

In [25], OPL of infinite words were investigated and shown to be practically important,
so the problem arises to develop a theory of wOPA on infinite words. In order to define their
quantitative behaviors, one could try to use valuation monoids as in [14, 9].

Finally, a new investigation field can be opened by exploiting the natural suitability of
OPL towards parallel elaboration [3]. Computing weights, in fact, can be seen as a special
case of semantic elaboration which can be performed hand-in-hand with parsing. In this
case too, we can expect different challenges depending on whether the weight semiring is
commutative or not and/or weights are attached to pop transitions too, which would be the
natural way to follow the traditional semantic evaluation through synthesized attributes [22].
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