Nested words introduced by Alur and Madhusudan are used to capture structures
with both linear and hierarchical order, e.g. XML documents, without losing
valuable closure properties. Furthermore, Alur and Madhusudan introduced
automata and equivalent logics for both finite and infinite nested words, thus
extending B\"uchi's theorem to nested words. Recently, average and discounted
computations of weights in quantitative systems found much interest. Here, we
will introduce and investigate weighted automata models and weighted MSO logics
for infinite nested words. As weight structures we consider valuation monoids
which incorporate average and discounted computations of weights as well as the
classical semirings. We show that under suitable assumptions, two resp. three
fragments of our weighted logics can be transformed into each other. Moreover,
we show that the logic fragments have the same expressive power as weighted
nested word automata.Comment: LATA 2014, 12 page