
Weighted Automata and Logics
on Hierarchical Structures

and Graphs

Von der Fakultät für Mathematik und Informatik
der Universität Leipzig

angenommene

DISSERTAT ION

zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM
(Dr. rer. nat.)

im Fachgebiet

Informatik

vorgelegt von

Dipl.-Math. Stefan Dück

geboren am 21. Juli 1988 in Leipzig

Die Annahme der Dissertation wurde empfohlen von

1. Prof. Dr. Manfred Droste (Leipzig)

2. Prof. Dr. Frank Drewes (Ume̊a)

Die Verleihung des akademischen Grades erfolgt mit
Bestehen der Verteidigung am 21.11.2017 mit dem

Gesamtprädikat magna cum laude.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Qucosa - Publikationsserver der Universität Leipzig

https://core.ac.uk/display/226128131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Contents

1 Introduction 5

2 Foundations 11

2.1 Finite Word Automata and Büchi’s Theorem 11

2.2 Relational Structures and Graphs 12

2.3 MSO Logic on Relational Structures 19

2.4 Hanf’s Theorem and Adding An Infinity Operator 21

3 Quantitative Aspects 25

3.1 Semirings . 25

3.2 Valuation Monoids . 26

3.3 Weighted Logics . 29

3.4 Transformation Theorem . 31

4 Weighted Automata for Infinite Nested Words 43

4.1 Infinite Nested Words . 44

4.2 Weighted Stair Muller Nested Word Automata 45

4.3 Regularity of Valuation Monoids 49

4.4 Weighted MSO-Logic for Nested Words 52

4.5 Characterization of Recognizable Series 56

5 Weighted Operator Precedence Languages 65

5.1 Operator Precedence Languages 67

5.2 Weighted OPL and Their Relation to Weighted VPL 70

5.3 A Nivat Theorem for Weighted OPL 80

5.4 Weighted MSO-Logic for OPL 82

5.5 Characterization of Weighted OPL 86

6 Graph Automata 95

6.1 Thomas’ Graph Acceptors . 97

6.2 Weighted Graph Automata (WGA) 99

6.2.1 Introduction and Properties of WGA 99

6.2.2 Robustness of WGA: A Nivat Theorem 109

3

4 CONTENTS

6.2.3 Characterization of WGA: A Büchi-Theorem 113
6.2.4 A Deeper Look at Regularity of Weight Structures . . . 123

6.3 Words and other Special Cases 135
6.3.1 Reduction to WGA without Occurrence Constraint . . . 135
6.3.2 Words, Trees, and Pictures 137
6.3.3 Nested Words . 141

6.4 Automata and Logics on Infinite Graphs 144
6.4.1 Graph Acceptors for Infinite Graphs 145
6.4.2 A Büchi Result for WGA on Infinite Graphs 146

7 Conclusion 149

8 Acknowledgments 153

Bibliography 155

Chapter 1

Introduction

Classical formal language theory goes back as far as 1956, to Noam Chomsky
[Cho56]. It was originally introduced to model our natural spoken languages
and to understand the structure and, consequently, the properties of languages.
Nowadays, the use of formal languages also includes the definition and visu-
alization of programming languages, and the examination and verification of
algorithms and systems. Formal languages are not only used to analyze the
computability and complexity of given problems and algorithms, they are also
instrumental in proving the correct behavior of automated systems, e.g., to
avoid that a flight guidance system navigates two airplanes too close to each
other.

As we will see in the following, one ingredient of this success story is the
comparatively easy definition of a formal language. However, ultimately, this
vast field of applications is built upon a very well investigated and coherent
theoretical basis. It is the goal of this dissertation to add to this theoretical
foundation and to explore ways to make formal languages and their models
more expressive. More specifically, we are interested in models which are
able to handle quantitative information over very general structures, which we
sketch in the following.

A formal language is a set of words, and every word is a concatenation
of symbols over a given set, called alphabet. By enforcing certain rules or
patterns into this set of words, we can describe different languages with varying
complexity. Often, such a word is seen as a possible sequence of events and we
ask how a given system or automaton reacts to one particular of all the possible
chains of events. While this representation very intuitively models sequential
events, the enforced linear structure of words (“one symbol after another”) can
also be limiting. For example, it may be essential to not only look at one possible
sequence, but at a branching tree of possible outcomes. Another example can
be found in programming languages, where the procedure calls and returns of a
program induce a certain hierarchy. Such hierarchical information can naturally
be embedded into a word with an additional hierarchical structure. In a more

5

6 CHAPTER 1. INTRODUCTION

general setting, we may be interested not only in modeling chronological events,
but instead ask how a system reacts to a whole given environment. Often, such
an environment can be naturally modeled as a graph instead of as a linear
word. In this work, we consider automata over both types of structures; words
with additional hierarchical information as well as general graphs.

Another price to pay for the power of classical formal language theory is
that a language is purely qualitative: a word is either contained in a language
or it is not. For example, we have no way of counting desirable or undesirable
patterns in a word, and we have no way of assessing how close to or how
far away a non-language word is from a language (e.g. whether it is only a
simple typing error). Similarly, when a system reads a sequence of events or
a complete situation given as graph, it answers only with “accepted” or “not
accepted”. Such a system can neither count nor calculate and when considering
the input of the system as a possible solution, we can only measure it in terms
of 0 or 1.

To tackle the restriction to qualitative statements, various models of quan-
titative systems have been studied in the literature. Weighted automata were
introduced by Schützenberger [Sch61] over semirings like (N,+, ·, 0, 1) and soon
developed a flourishing theory, cf. the books [BR88, Eil74, KS86, SS78] and
the handbook [DKV09]. Such a system, for example, can not only tell whether
an error occurred, but also how many of them. We can answer questions like
“How often does an event appear?”, “What is the cost of this solution?”, or
“What is the distance of this word to a given language?” (see e.g. [Moh03] for
the last question).

Quantitative automata modeling the long-time average or discounted be-
havior of systems were investigated by Chatterjee, Doyen, and Henzinger
[CDH08, CDH09]. The insight that many previous results can be extended to
weight structures other than semirings motivated the introduction of valua-
tion monoids [DM12], which formalize non-semiring behaviors like average or
discounting but also incorporate classical semirings.

Another very powerful tool to describe languages is monadic second or-
der logic (MSO logic). In their seminal papers, Büchi, Elgot, and Trakht-
enbrot [Büc60, Elg61, Tra61] independently proved that the languages rec-
ognizable by finite automata are exactly the languages definable by MSO
logic. This fundamental result not only shows the decidability of MSO logic
over words, but also led to multiple extensions covering e.g. finite and infi-
nite trees [Don70, Rab69, TW68], traces [Tho90, DR95], pictures [GRST96],
nested words [AM09], texts [HtP97], and graphs [Tho91]. Weighted logics
were introduced by Droste and Gastin in [DG07]. There, the authors proved a
respective connection between weighted automata and weighted logic for words.
This in turn inspired several extensions e.g. to infinite words [DR06], trees
[DV06, DGMM11], traces [Mei06], pictures [Fic11], nested words [Mat10b],
texts [Mat10a], and pushdown automata with general storage types [VDH16].

7

However, notably, a general result for weighted automata and weighted logics
covering graphs and linking the previous results remained, up to now, open.

In this thesis, we apply semirings and valuation monoids to define and
characterize weighted automata and weighted logics which are able to read
and rate structures with hierarchical information, and weighted automata
and weighted logics operating on graphs. In the following, orientated on the
structure of this dissertation, we give the background and the details of our
approaches and specify our contributions.

In Chapter 2, we start with background on the theories used thesis. We
recapitulate classical MSO logic and Büchi’s theorem for words. We introduce
relational structures, which can be employed to describe finite and infinite
graphs. Graphs cover, in particular, words, trees, nested words, pictures, and
many other structures. We restate a very useful and fundamental result of Hanf
[Han65] connecting first order sentences of MSO logic with counting occurrences
of local patterns. We conclude the chapter by studying the following extension
of this result based on work of Bollig and Kuske [BK07] on the logic FO∞. This
first order logic features an additional existential quantifier that expresses that
there are infinitely many positions satisfying a formula. In a context different
from ours, namely for Muller message-passing automata, Bollig and Kuske
were able to formulate an extended Ehrenfeucht-Fräıssé [Fra54, Ehr61] game
to develop a Hanf-like theorem for this logic. We show how this result can
be applied to infinite graphs to replace a sentence of FO∞ with an equivalent
expression that counts occurrences of local patterns and is able to distinguish
between a finite and an infinite number of occurrences.

In Chapter 3, we introduce the weights and weight structures that are used
to assign quantitative values to relational structures. In addition to classical
semirings, we define valuation monoids, a very general weight structure which
incorporates average and discounted computations of weights. Valuation
monoids are particularly useful in applying weights to infinite structures.
Following the approach of Droste and Gastin [DG07] for words, we introduce
a general weighted MSO-logic for relational structures (see also [Mat09]).
We study different, suitable fragments of this weighted logic and show a
transformation result between them, which provides us with a ‘normal-form’
of weighted formulas. Furthermore, this Transformation Theorem establishes a
direct connection between the assumptions on our weight structure and the
expressive power of the weighted MSO-logic over this weight structure.

In Chapter 4 and Chapter 5, we study weighted automata over hierarchical
structures. In Chapter 4, we study nested words, which were introduced by
Alur and Madhusudan [AM09], and are used to capture structures with both
linear and hierarchical order like XML documents. Alur and Madhusudan
also introduced automata and equivalent logics for both finite and infinite
nested words, thus extending Büchi’s theorem to nested words. They proved
that the languages recognizable by nested word automata correspond to the

8 CHAPTER 1. INTRODUCTION

class of visibly pushdown languages (VPL) and have valuable closure properties
comparable to those of regular languages. Here, using valuation monoids,
we introduce and investigate weighted automata models and weighted MSO
logics for infinite nested words. In the main result of Chapter 4, we show a
Büchi-like result connecting weighted automata and weighted MSO logic for
infinite nested words. Applying the logic Transformation Theorem of Chapter
3 to nested words, we obtain, depending on the assumptions on the valuation
monoid, three characterizations of regular weighted nested word languages in
the form of successively more expressive weighted logics.

In Chapter 5, we study (semiring-) weighted operator precedence languages
(wOPL) for finite words. In the last years, renewed investigation of OPL
led to the discovery of important properties of this class: OPL are closed
with respect to all boolean operations and can be characterized, besides the
original grammar family, in terms of an automata family and an MSO logic.
Furthermore, they significantly generalize the class of VPL. This chapter can,
therefore, also be seen as an extension of previous works considering finite
nested words [Mat10b, DP14b]. We introduce weighted operator precedence
automata (wOPA) and show how they are both strict extensions of OPA and
weighted visibly pushdown automata. We prove a Nivat-like result which
shows that quantitative OPL can be described by unweighted OPA and very
particular weighted OPA. In a Büchi-like theorem, we show that weighted
OPA are expressively equivalent to a weighted MSO-logic for OPL. Note that
operator precedence automata feature pop operations which do not consume
a symbol. We were able to prove that for arbitrary semirings, wOPA with
weights at pop transitions are strictly more expressive than wOPA with only
trivial weights at pop transitions. For commutative semirings, however, weights
on pop transitions do not increase the expressive power of the automata.

In Chapter 6, we study weighted languages of finite and infinite graphs.
We introduce a general model of weighted automata operating on finite graphs.
This model provides a quantitative version of Thomas’ unweighted model of
graph acceptors [Tho91] and is a direct extension of both this unweighted model
and the weighted automata investigated for various other structures, like words,
trees, pictures, and nested words. We derive a Nivat theorem for weighted graph
automata, which shows that their behaviors are precisely those obtainable from
very particular weighted graph automata and unweighted graph acceptors. We
also show that weighted MSO logic over graphs is expressively equivalent to
weighted graph automata. As a consequence, we obtain Büchi-type equivalence
results known from the recent literature for weighted automata and weighted
logics on words, trees, pictures, and nested words. Establishing such a general
result has been an open problem in weighted logics for some time.

Finally, we study unweighted and weighted automata for infinite graphs.
This model features an acceptance condition which is able to distinguish
infinitely many occurrences from finitely many ones. Using proof ideas from

9

Thomas [Tho96] and the result from Chapter 2, the latter relying on Bollig
and Kuske’s extension of first order logic [BK07], we show that graph acceptors
and EMSO∞-logic for infinite graphs are equally expressive. Using valuation
monoids which naturally assign weights to infinite structures, we are then
able to lift the Büchi-characterization of weighted graph automata to infinite
graphs.

Note that although Chapter 6 is strongly connected to Chapter 4, the
direct restriction of weighted graph automata to word, tree, and in particular
nested word automata is shown only in the finite case and therefore does not
cover infinite nested words. While we conjecture that such a direct connection
can also be shown for infinite structures, this is one of the future problems
to attack. Furthermore, graph automata can only read graphs with bounded
vertex-degree, but the structures considered by operator precedence languages
in Chapter 5 in general admit no such bound.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Foundations

In the following, we introduce general concepts used throughout the whole
thesis. We shortly recapitulate finite automata and Büchi’s theorem for words.
Then, we introduce relational structures, with a focus on graphs and special
classes of graphs. We define classical MSO over relational structures. Finally,
we show our first result, which is a corollary of an extension of Hanf’s theorem
by Bollig and Kuske [BK07]. This result will be used in Chapter 6 for infinite
graphs.

We denote by N the natural numbers starting with 0. We set N+ = N \ {0}.
We denote disjoint unions by ⊍.

2.1 Finite Word Automata and Büchi’s Theorem

In its core, formal language theory is the study of patterns. A word is an abstract
form of describing a sequence of possible events. We analyze structural rules of
how these words are built up and how they form sets, called languages, often
sharing certain characteristics. The four most established ways to formulate
these rules and therefore to define languages are the following. We can describe
a set of words by a rational expression – which describes the patterns directly –,
by a finite state machine, an automaton, or a finite set of rules, a regular
grammar – which are both a form of a build-up plan for the language –, and
logical sentences of an MSO logic – which describe the rules in a formalism
close to our natural language –. The classes of languages expressibly by
these mechanism are usually called rational, recognizable, regular, or definable
languages, respectively, and in fact describe the same class. In other words, all
these different mechanisms are equally powerful.

The connection between MSO logic and automata is due to Büchi, Elgot,
and Trakhtenbrot [Büc60, Elg61, Tra61] and has proven most fruitful in for-
mal language theory. In the following, we shortly recapitulate the classical
definitions and the Büchi-Elgot-Trakhtenbrot theorem, also called Büchi’s
theorem.

11

12 CHAPTER 2. FOUNDATIONS

Formally, let Σ be a set and n ∈ N. A (finite) word w over Σ is a sequence
w = a1a2...an of symbols of Σ. We call n the length of w. If w has length 0,
we call it the empty word, denoted by ε. We denote by Σ∗ the set of all words
over Σ, and by Σ+ the set of all non-empty words over Σ. An infinite word
w = a1a2... is an infinite sequence of Σ. We denote by Σω the set of all infinite
words over Σ. We call a subset L of Σ∗ a language (of finite words) over Σ.

In the following, Σ will always be a finite set, called an alphabet.

Definition 2.1. A finite (deterministic) automaton over Σ is a quadruple
A = (Q, qI , δ, F) consisting of

• a finite set of states Q,

• an initial state qI ∈ Q,

• the transition function δ : Q× Σ→ Q,

• a set of accepting states F ⊆ Q.

A run r of a finite automaton A on a word w = a1a2...an is a sequence of
states r = (q0, q1, ..., qn) such that qi = δ(qi−1, ai) for all 0 < i ≤ n. A run is
called accepting if q0 = qI and qn ∈ F . A word w is accepted by A if A has an
accepting run on w. We define L(A), the language accepted by A as the set of
all words accepted by A. A language L is called recognizable if there exists an
automaton A such that L(A) = L.

Now, we introduce the second concept to describe languages, namely a
classical monadic second order logic over words. We denote by x, y, ... first-
order variables ranging over positions and by X,Y, ... second order variables
ranging over sets of positions. We define the formulas of MSO(Σ∗) inductively
by the following grammar

ϕ ::= Laba(x) | x ≤ y | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ and Laba(x) describes that a position of a word is labeled with
the symbol a.

Then, the semantics, i.e., the satisfaction relation |= is defined as usual,
compare the full semantics for relational structures in Section 2.3. We call ϕ
a sentence if ϕ contains no free variables. We define L(ϕ), the language of
ϕ as the set of all words w such that w |= ϕ. We call a language L (MSO-)
definable if L = L(ϕ) for some MSO-sentence ϕ. Then, the fundamental result
of Büchi, Elgot, and Trakhtenbrot [Büc60, Elg61, Tra61] is the following.

Theorem 2.2. A language of words is recognizable if and only if it is definable.

2.2 Relational Structures and Graphs

In this section, we introduce the general concept of relational structures. Here,
our focus is on graphs and special classes of graphs like words, trees, pictures,

2.2. RELATIONAL STRUCTURES AND GRAPHS 13

a a a

b

b a a

b

a

a

x

x

y

x

z z

z z

y

y

center of the sphere

root of the graph

Figure 2.1: A graph of pDG3({a, b}, {x, y, z}) together with one of its 1-spheres.

nested words and a new structure that we call precedence words, which arises
later from studying operator precedence languages.

Relational structures

A (relational) signature (σ, rk) consists of a set of relation symbols σ together
with an arity for every symbol rk : σ → N. We define a σ-structure (also
structure or relational structure if the context is clear) as s = (V (s), (Rs)R∈σ)
consisting of a set V (s), the domain, and a relation Rs of arity rk(R) for every
R ∈ σ. We write V for V (s) and R for Rs if the context is clear.

We say two σ-structures s = (V (s), (Rs)R∈σ) and s′ = (V (s′), (Rs′)R∈σ)
are isomorphic if there exists a bijective map ϕ from V (s) to V (s′) such that
for all R ∈ σ and for all x1, ..., xrk(R) ∈ V (s), we have (x1, ..., xrk(R)) ∈ Rs if
and only if (ϕ(x1), ..., ϕ(xrk(R))) ∈ Rs′ . In this case, we call ϕ an isomorphism.

In the following, we distinguish σ-structures only up to isomorphism. Fur-
thermore, we only consider structures s where V (s) is a subset of the natural
numbers N. We let Cσ be a fixed class of such σ-structures.

Graphs

Following [Tho96] and [DD15], we define a (directed, unpointed) graph over
two finite alphabets A and B as G = (V, (Laba)a∈A, (Eb)b∈B), where V is a
non-empty set of vertices, the sets Laba (a ∈ A) form a partition of V , and the
sets Eb (b ∈ B) are pairwise disjoint irreflexive binary relations on V , called

14 CHAPTER 2. FOUNDATIONS

edges. We denote by E =
⋃
b∈B Eb the set of all edges. Then the elements of

A are the vertex labels, and the elements of B are the edge labels. Further,
every graph is a σ-relational structure for σ = {Laba | a ∈ A} ∪ {Eb | b ∈ B},
rk(Laba) = 1 for all a ∈ A, and rk(Eb) = 2 for all b ∈ B. We denote by
LabG(v) the label of the vertex v of the graph G.

The in-degree (resp. out-degree) of a vertex v is the number of edges ending
(resp. beginning) in v. The degree of v is the in-degree plus the out-degree of v.
A graph is bounded by t if every vertex has a degree smaller than or equal to t.
We denote by DGt(A,B) the class of all finite directed graphs over A and B
bounded by t.

We call a class of graphs pointed if every graph G of this class is pointed
with a vertex v, i.e., it has a uniquely designated vertex v ∈ V . Formally, a
pointed graph (G, v) is a graph G together with a unary relation root such that
root = {v}. We denote by pDGt(A,B) the class of all finite, directed, and
pointed graphs over A and B, bounded by t.

Let G be a graph G and r a natural number. For two vertices u and
v, we say the distance of u and v is smaller than or equal to r, denoted by
dist(u, v) ≤ r, if there exists a path (u = u0, u1, ..., uj = v) with j ≤ r and
(ui, ui+1) ∈ E or (ui+1, ui) ∈ E for all i < j. If there exists no such path, we
say the distance between u and v is infinite. A graph is connected if there exists
no pair of vertices with an infinite distance. Note that here the distance and
the connectivity of graphs do not take the orientation of edges into account.

We consider subgraphs around a vertex v of an unpointed graph G as
follows. We denote by sphr(G, v), the r-sphere of G around the vertex v, the
unique subgraph of G pointed with v and consisting of all vertices with distance
to v smaller than or equal to r, together with their edges. We call (H, v) an
r-tile if (H, v) = sphr(H, v).

Intuitively, subgraphs and r-tiles of a pointed graph (G, u) are defined
analogously. However, in this case, we have to take care of the root u as
follows. We call (H, v,w) a pointed r-tile if (H, v) is an r-tile and either w is an
additional distinguished vertex of H or we write w = empty. Then, we denote
by sphr((G, u), v) the unique pointed r-tile (H, v,w) s.t. (H, v) = sphr(G, v)
and w = u if u ∈ sphr(G, v) and w = empty, otherwise.

Note that in DGt(A,B), resp. pDGt(A,B), there exist only finitely many
pairwise non-isomorphic r-tiles, resp. pointed r-tiles. Given a tile τ = (H, v)
or a pointed tile τ = (H, v,w), we say v is the center of τ . An example of a
pointed graph together with one of its 1-spheres can be seen in Figure 2.1. We
may omit the explicit root u of a graph and the radius r of a tile if the context
is clear. While many of our results hold for both pointed and unpointed graphs,
the pointing is crucial for some results and is useful for some of the considered
valuation monoids, especially for infinite graphs.

We call a graph G = (V, (Laba)a∈A, (Eb)b∈B) infinite if V is infinite. We
denote by pDG∞t (A,B) the class of all infinite, directed, and pointed graphs

2.2. RELATIONAL STRUCTURES AND GRAPHS 15

1

a

2

a

3

b

4

b

a a b b

Figure 2.2: The word aabb as a labeled graph of DG2({a, b}, {1}) on the left.
We omitted the edge labels which are all 1. As we distinguish relational
structures only up to isomorphism, the actual vertex names {1, 2, 3, 4} can also
be omitted, which results in the usual representation of this word on the right.

over A and B, bounded by t. Note that pointed r-tiles of infinite graphs
are finite structures, and there still exist only finitely many non-isomorphic
different pointed r-tiles since the degree of every considered infinite graph is
bounded by t.

Special Classes of Graphs

In the following, we give examples of specific relational structures, namely
words, trees, pictures, nested words, and a new structure we call precedence
words. Note that all the following structures can be naturally introduced as
finite and as infinite structures. Here, we choose the respective version that
will be used throughout the thesis. Both finite and infinite version of these
structures are special instances of pointed and connected graphs.

In contrast to graphs, the following structures are defined over only one
alphabet. In our interpretation of these structures as graphs, this is the vertex
alphabet A. We will see that the respective edge alphabet is either trivial or
predefined by the structure itself (e.g. for pictures it is {1, 2} to distinguish
between vertical and horizontal edges). To stress this difference, the following
structures are introduced over a finite alphabet Σ instead of A.

Words

A word w = a1...an over Σ can also be regarded as a relational structure
({1, ..., n}, (Laba)a∈Σ, S), where s is the usual successor relation: S = {(i, i+1) |
1 ≤ i ≤ n− 1}. That is, a word of length n is a graph in DG2(Σ, {1}) as seen
in Figure 2.2 consisting of n labeled vertices together with unlabeled edges
going from the left most position to the end of the word. If not given explicitly,
the root of a word can be uniquely described by its first position, which is the
only position without any incoming edges.

Sometimes words are introduced together with the order relation ≤ instead
of the successor relation S; however, this does not fit our context as it would
yield graphs without a bound on the vertex-degree.

16 CHAPTER 2. FOUNDATIONS

a

c b

c c c

0 1

0 1 2

εa

0c 1b

10c 11c 12c

Figure 2.3: Left: A tree as a graph of DG4(Σ, {0, 1, 2}), Σ = {a, b, c}, with
labels inside the nodes. Right: The same tree in a classical representation,
with essential node names.

Trees

We introduce the set of trees as a special class of graphs as follow. A directed
path from vertex u to vertex v, is a path (u = u0, u1, ..., uj = v) with j > 0
and (ui, ui+1) ∈ E for all i < j. Then, a tree is a pointed graph (G, u) of
pDGt(A,B) such that the in-degree of u is 0, the out-degree of u is at most
t − 1 and for every vertex v 6= u, the in-degree of v is 1 and there exists a
directed path from u to v.

As usual, in the following, we consider all our trees to be ordered, that is,
the edge alphabet is given by B = {1, .., t − 1} and for every vertex v with
out-degree d, the outgoing edges of v are uniquely labeled with 1, ..., d.

Note that every word is a tree and as for words, we may omit the explicit
root of a tree, as it is the uniquely defined vertex without incoming edges.

It is also noteworthy that as subsets of DGt(A,B) our trees are rank
bounded by t − 1. Therefore, there exists an alphabet partitioning, which
transforms every tree into a ranked tree, i.e., a tree over a ranked alphabet
were every symbol has a predefined number of successors. In the context of
tree automata, ranked trees are often defined over a ranked alphabet Σ with a
non-empty, prefix-closed subset of N∗ which also respects the rank of its labels.
Then every such ranked tree is a graph of DGr+1(Σ, {1, ..., r}), where r is the
maximum rank of Σ. See Figure 2.3 for an example of a tree represented as a
graph and in a classical representation over a prefix-closed domain.

Pictures or Two-dimensional Words

Intuitively, a two-dimensional word, also called picture or grid, is a matrix
over an alphabet Σ. More precisely, a picture is a relational structure P =
({1, ..., n} × {1, ...,m}, (Laba)a∈Σ, S1, S2), where S1 = {((i, j), (i+ 1, j)) | 1 ≤
i ≤ n− 1, 1 ≤ j ≤ m− 1} and S2 = {((i, j), (i, j + 1)) | 1 ≤ i ≤ n− 1, 1 ≤ j ≤
m − 1}. A picture can be seen as rooted in (1, 1) and every picture can be

2.2. RELATIONAL STRUCTURES AND GRAPHS 17

c

b

a

b

a

b

a

b

c

b

c

c

Figure 2.4: A picture of DG4(Σ, {1, 2}), Σ = {a, b, c}, of height 3 and width 4.
Every horizontal edge is implicitly marked with 1 and every vertical edge with
2.

depicted as a graph of DG4(Σ, {1, 2}), see Figure 2.4 for an example.

Infinite Nested Words

Informally, an infinite nested word is an infinite word with an additional
hierarchical structure. Formally, nested words and their regular languages, also
known as visibly pushdown languages, were introduced by Alur and Madhusudan
in [AM09]. They find their origins in input-driven languages [Meh80, vBV83,
LST94]. While not given explicitly in the following, finite nested words can be
defined analogously to the following.

Definition 2.3. A matching relation ν over N+ is a subset of ({−∞}∪N+)×
(N+ ∪ {∞}) such that:

(i) ν(i, j)⇒ i < j,

(ii) ∀i ∈ N+ : |{j : ν(i, j)}| ≤ 1 ∧ |{j : ν(j, i)}| ≤ 1,

(iii) ν(i, j) ∧ ν(i′, j′) ∧ i < i′ ⇒ j < i′ ∨ j > j′,

(iv) (−∞,∞) /∈ ν.

An infinite nested word, also nested ω-word over Σ is a pair nw = (w, ν) =
(a1a2..., ν) where w = a1a2... is an ω-word over Σ and ν is a matching relation
over N+. We denote by NWω(Σ) the set of all nested ω-words over Σ, and we
call every subset of NWω(Σ) a language of nested ω-words.

If ν(i, j) holds, we call i a call position and j a return position. In case
of j =∞, i is a pending call otherwise a matched call. In case of i = −∞, j
is a pending return otherwise a matched return. Note that similar to [AM09],
condition (iii) ensures that nestings of calls and returns are either disjoint or
hierarchical; in particular, a position cannot be both a call and a return. If a
position i is neither call nor return, then we say i is an internal. If a (finite or
infinite) nested word contains no pending calls and no pending returns, we call
it well-matched.

Together with the usual successor function S, a finite nested word can be
written as a relational structure ({1, ..., n}, (Laba)a∈Σ, S, ν) and defines a graph

18 CHAPTER 2. FOUNDATIONS

a b a b a b a

call internal return

hier

hier hier

Figure 2.5: The graph representation of the finite nested word
(abababa, {(1, 5), (2, 3), (6, 7)}), which could also be written as 〈a〈ba〉ba〉〈ba〉.
The linear edge labels lin were omitted.

of DG3(Σ, {lin, hier}), which distinguished between linear and hierarchical
edges. Figure 2.5 depicts an example of a finite well-matched nested word. To
handle pending edges, we need two more predicates, call and ret, describing
also the calls, resp. returns without a matching position of N. Then, a nested
ω-word can be written as a relational structure (N, (Laba)a∈Σ, S, call, ret, ν).

Precedence Words

In the following, we introduce precedence words, a structure which is closely
related to nested words, but in particular features unbounded calls or returns
at a position and is therefore not in any of the classes DGt(A,B). Precedence
words are closely related to the language class of operator precedence languages
[CMM78], which was shown to be a strict extension of visibly pushdown
languages [CM12] and still retains valuable closure properties. Furthermore,
operator precedence languages can be characterized in terms of a grammar
family, a class of pushdown automata, and an MSO-logic [LMPP15].

Precedence words and weighted operator precedence languages will be
considered in detail in Chapter 5. They feature a hierarchical structure, which
we call chain relation and denote by y. This new relation can be compared
with the nesting or matching relation of [AM09], as it also is a non-crossing
relation, going always forward and originating from additional information on
the alphabet. However, it features significant differences: Instead of adding
unary information to symbols, which partition the alphabet into three disjoint
parts (calls, internals, and returns), we add a binary relation for every pair
of symbols denoting their precedence relation. Therefore, in contrast to the
nesting relation, the same symbol can be either call or return depending on
its context. Furthermore, the same position can be part of multiple chain
relations.

Following [CM12], we define an OP alphabet as a pair (Σ,M), where Σ is an
alphabet and M , the operator precedence matrix (OPM), is a |Σ ∪ {#}|2 array
describing for each ordered pair of symbols at most one precedence relation,

2.3. MSO LOGIC ON RELATIONAL STRUCTURES 19

M =

a + × #

a m m m
+ l m l m
× .

= m
l l l .

=

a × a + a × a

Figure 2.6: The graph representation of the precedence word (a × a + a ×
a) over an OPM M over Σ = {a,+,×} together with its chain relation
{(0, 2), (4, 6), (0, 4), (4, 8), (0, 8)}). The edge labels were omitted.

that is, every entry of M is either l (yields precedence),
.
= (equal in precedence,

m (takes precedence), or empty (no relation). Note that these relations are not
required any order axioms.

Let w = (a1...an) ∈ Σ+ be a non-empty word and (Σ,M) an OP alphabet.
We set a0 = an+1 = # and define a new relation y on the set of all positions of
#w#, inductively, as follows. Let i, j ∈ {0, 1, ..., n+ 1}, i < j. Then, we write
i y j if there exists a sequence of positions k1...km such that i = k1 < ... <
km = j, ak1lak2

.
= ...

.
= akm−1makm , and either ks+1 = ks+1 or ks y ks+1 for

each s ∈ {1, ...,m− 1}. In particular, iy j holds if ail ai+1
.
= ...

.
= aj−1 m aj .

We say w is a precedence word over (Σ,M) if w is not empty and for #w#
we have 0 y n+ 1. By making the chain relation explicit, every precedence
word induces a relational structure ({1, ..., n}, (Laba)a∈Σ, S,y). An example
for this representation of a precedence word together with its OPM can be
seen in Figure 2.6.

2.3 MSO Logic on Relational Structures

Next, we introduce a classical monadic second order logic over relational
structures. We denote by x, y, ... first-order variables ranging over vertices and
by X,Y, ... second order variables ranging over sets of vertices. For a relation
R, we write R(x1, ..., xrk(R)) if (x1, ..., xrk(R)) ∈ R. For a binary relation R, we
may write xRy if (x, y) ∈ R. Given a signature σ, we define the formulas of
MSO(σ) inductively by the following grammar

ϕ ::= R(x1, ..., xrk(R)) | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

20 CHAPTER 2. FOUNDATIONS

(s, γ) |= R(x1, ..., xrk(R)) iff R(γ(x1), ..., γ(xrk(R))))

(s, γ) |= x = y iff γ(x) = γ(y)

(s, γ) |= x ∈ X iff γ(x) ∈ γ(X)

(s, γ) |= x ∨ y iff γ(x) ∨ γ(y)

(s, γ) |= ¬ϕ iff (s, γ) |= ϕ does not hold

(s, γ) |= ∃x.ϕ iff there exists a u ∈ V (s) s.t. (s, γ[x→ u]) |= ϕ

(s, γ) |= ∃X.ϕ iff there exists a U ⊆ V (s) s.t. (s, γ[X → U]) |= ϕ

Figure 2.7: Semantics of MSO(σ)

where R ∈ σ. Using common abbreviations, we define ∧, →, ↔, ∀x, ∀X, and
true (tautology). Notice that MSO logics can be both applied to finite and
infinite structures. If the context is clear, we write MSO instead of MSO(σ).

An FO-formula is a formula of MSO without set quantifications, i.e. without
using ∃X. An EMSO-formula is a formula of the form ∃X1...∃Xk.ϕ where ϕ
is an FO-formula.

We follow classical approaches for logics to define the semantics of formulas
of MSO(σ). Let s be a σ-structure and ϕ ∈ MSO(σ). Let free(ϕ) be the set of
all free variables in ϕ, and let V be a finite set of variables containing free(ϕ).
A (V, s)-assignment γ is a function assigning to every first-order variable of V
an element of V (s) and to every second order variable a subset of V (s). We
define γ[x→ v] as the (V ∪ {x}, s)-assignment mapping x to v and equaling
γ everywhere else. The assignment γ[X → V] is defined analogously. Then,
the satisfaction relation (s, γ) |= ϕ for a relational structure s together with an
assignment γ and an MSO-formula ϕ is defined inductively as seen in Figure
2.7.

Furthermore, we call ϕ a sentence if it contains no free variables. In this
case, the assignment γ can be the empty function and then we write s instead
of (s, γ). For a sentence ϕ ∈ MSO, we define L(ϕ), the language of ϕ as the
class of all σ-structures s such that s |= ϕ. We call a class of σ-structures L
MSO-definable (resp. FO-definable) if L equals L(ϕ) for some MSO-sentence
(resp. FO-sentence) ϕ.

Later, all our considered signatures will contain a unary labeling with an
alphabet Σ. In this case, we can as usual encode every structure s together with
an assignment γ as a structure s′ over an extended alphabet Σ′ = Σ× {0, 1}V .
Then, we call a structure s′ over Σ′ valid if s′ = (s, γ) for a structure s and
an assignment γ. Note that a structure is valid if and only if every first-
order variable is assigned to exactly one position, which can be checked by an
FO-formula.

Example 2.1. Following this approach, we get an MSO logic for all relational
structures introduced in Section 2.2. As an example, we compare with the

2.4. HANF’S THEOREM AND ADDING AN INFINITY OPERATOR 21

grammar of MSO(Σ∗), the MSO logic for words over Σ given in Section 2.1,
and MSO(DGt(A,B)), the MSO logic for graphs over A and B (cf. [Tho96]):

words ϕ ::= Laba(x) | x ≤ y | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ
graphs ϕ ::= Laba(x) | Eb(x, y) | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, resp. a ∈ A and b ∈ B. �

2.4 Hanf’s Theorem and
Adding An Infinity Operator

In the following, we restate a Hanf-like result [Han65] of Bollig and Kuske
[BK07] for the logic FO∞. This logic features a first-order quantification ∃∞x.ϕ
to express that there exist infinitely many vertices satisfying ϕ. Using this result,
we prove that for infinite graphs every FO∞-sentence is equivalent to a boolean
combination of formulas “occ(τ) ≥ n” and formulas “occ(τ) = ∞”, where τ
are (possibly different) tiles and n ∈ N are (possibly different) natural numbers.
This corollary will later be a cornerstone to prove that graph automata for
infinite graphs are equivalent to the existential fragment of the MSO logic for
graphs, see Theorem 6.48.

Following Bollig and Kuske, we define the logic MSO∞(DG∞t (A,B)), short
MSO∞, by the following grammar

ϕ ::= Laba(x) | Eb(x, y) | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃∞x.ϕ | ∃X.ϕ

We denote by FO∞, resp. EMSO∞, the usual first-order, resp. existential
fragment. Defining an assignment γ and an update γ[x → i] as usual, the
satisfaction relation |= is defined as before, together with (G, γ) |= ∃∞x.ϕ iff
(G, γ[x→ v]) |= ϕ for infinitely many v ∈ V .

Using an extended Ehrenfeucht-Fräıssé game [Fra54, Ehr61], Bollig and
Kuske succeeded in proving a Hanf-like result for these structures. Intuitively,
Hanf’s classical result applied to graphs says that for a given k ∈ N and a
fixed maximal degree, there exist a sufficiently large radius r and a threshold h
such that two graphs which cannot be distinguished by counting occurrences of
r-tiles up to h, are also indistinguishable by any FO∞-formula up to quantifier
depth k.

Note that this result also can be formulated for relational structures by
considering tiles of the Gaifman graph (that is, the graph that connects all
pairs of vertices which are together in one relation). For a more detailed
look, we have to assume the reader to be familiar with rudiments of classical
model theory. For details see e.g. [Lib04] or [Tho97]. We denote by FO[k],
resp. FO∞[k], the set of first-order formulas of quantifier rank at most k. We
write A ≡k B if the duplicator in an EF-Game can force the play started

22 CHAPTER 2. FOUNDATIONS

in (A,B, k) into a winning position. Bollig and Kuske [BK07] introduce an
extended EF-game where spoiler can also choose to play on infinite subsets.
We write A ≡∞k B if duplicator wins such an extended EF-game starting in
(A,B, k).

Theorem 2.4. Let A, B be σ-structures and k ∈ N.

1. Ehrenfeucht-Fräıssé: Then A and B agree on FO[k] if and only if A ≡k B.

2. Bollig-Kuske: Then A and B agree on FO∞[k] if and only if A ≡∞k B.

Furthermore, given r, h ∈ N and two σ-structures A, B, we write A�r,h B
if for any r-tile, the number of occurrences of this tile in A and B is equal or
both numbers are greater than or equal to h (cf. threshold equivalence [Tho97]).
We write A�∞r,h B for the respective notion where we also distinguish between
“more than t” and “infinitely many”. Then one formulation of Hanf’s theorem
and its extension including counting to infinity is the following.

Theorem 2.5. 1. Hanf: For any k, t ∈ N, there exist r, h ∈ N such that
for all σ-structures A and B of degree at most t, it holds that A�r,h B
implies A ≡k B.

2. Bollig-Kuske: For any k, t ∈ N, there exist r, h ∈ N such that for all
σ-structures A and B of degree at most t, it holds that A�∞r,h B implies
A ≡∞k B.

We apply the second result, which was originally developed in a differ-
ent context, namely Muller message-passing automata, to DGt(A,B) and
DG∞t (A,B) to get the following corollary.

A boolean combination of formulas of the form “occ(τ) ≥ n”, where n are
natural numbers and τ are tiles, is called an occurrence constraint. We say G
satisfies occ(τ) ≥ n if there exist at least n distinct vertices v ∈ V such that
sphr(G, v) is isomorphic to τ . The semantics of “G satisfies Occ” are then
defined in the usual way.

Note that neither of the following results is true for graphs of unbounded
degree. Although, the first part of the following result was already stated by
Thomas in [Tho91], we also reproduce a proof for the finite case which is then
extendable to the infinite setting.

Corollary 2.6. 1. Thomas: In the class DGt(A,B), every FO-sentence ϕ
is equivalent to an occurrence constraint.

2. In the class DG∞t (A,B), every FO∞-sentence ϕ is equivalent to an
extended occurrence constraint.

Proof. 1. Let ϕ be an FO-formula with quantifier depth k. Let r, h be the
sufficiently large values of Theorem 2.5 and let G ∈ DGt(A,B). We denote by

2.4. HANF’S THEOREM AND ADDING AN INFINITY OPERATOR 23

[G]occ, resp. [G]FO, the equivalence classes of G with respect to �r,h, resp. ≡k.
Then Theorem 2.5 states that [G]occ ⊆ [G]FO. Therefore, we get

[G]FO ⊆
⋃

H∈[G]FO

[H]occ ⊆
⋃

H∈[G]FO

[H]FO = [G]FO . (2.1)

Furthermore, we denote by Occr,h the finite set of all logical non-equivalent
occurrence constraints (with radius r and up to the threshold h). For a graph
G, we define an occurrence constraint occG ∈ Occr,h, as follows

occG =
∧

occ∈Occr,h
G|=occ

occ∧
∧

occ∈Occr,h
G 6|=occ

¬ occ .

Then H |= occG iff G�r,h H iff H ∈ [G]occ. Thus,

L(occG) = [G]occ . (2.2)

Now, we get the following

L(ϕ) =
⋃

G∈L(ϕ)

[G]FO
(2.1)
=

⋃
G∈L(ϕ)

⋃
H∈[G]FO

[H]occ .

As there are only finitely many classes equivalence [H]occ, there exists an n ∈ N
and H1, ...,Hn ∈ DGt(A,B) such that

L(ϕ) = [H1]occ ⊍ ... ⊍ [Hn]occ

(2.2)
= L(occH1) ⊍ ... ⊍ L(occHn)

= L(occH1 ∨... ∨ occHn) .

Thus, occH1 ∨... ∨ occHn is an occurrence constraint equivalent to ϕ.
2. Using respective notations, the second statement of Theorem 2.5 states

[G]∞occ ⊆ [G]∞FO. Therefore, the respective statement of formula 2.1 holds, which
shows

[G]∞FO =
⋃

H∈[G]∞FO

[H]occ .

Furthermore, FO∞[k] and Occ∞r,h are still finite (up to logical non-equivalence)
and therefore also the other respective statements of part 1 still hold. Thus,
the statement is proven analogously to 1.

For pointed graphs of pDG∞t (A,B), we have to add a predicate root to the
MSO logic describing the root of a graph. Apart from this, the proof stays the
same for pointed infinite graphs.

24 CHAPTER 2. FOUNDATIONS

Chapter 3

Quantitative Aspects

Weights are used to model quantitative aspects of systems. Classical systems
either say yes or no, which can be seen as 1 or 0. Weighted systems can count
higher than 1 or rate between 0 and 1. e.g. a classical system may say whether
a pattern occurs in a string or not, while a weighted system can also say how
often it occurs.

In this chapter, we introduce the weight structures that will be used in this
thesis, namely semirings, valuation monoids, and product valuation monoids.
We introduce general weighted MSO logics over these weight structures for
relational structures, in particular for graphs. We introduce fragments of these
logics used later and prove our first main result. This result is a transforma-
tion theorem showing how to, under appropriate assumptions on our weight
structure, transform formulas into equivalent but restricted formulas.

3.1 Semirings

A semiring is a tuple K = (K,+, ·, 0, 1) such that (K,+, 0) is a commutative
monoid, (K, ·, 1) is a monoid, and we have (x+ y) · z = x · z+ y · z, x · (y+ z) =
x · y + x · z, and 0 · x = x · 0 = 0 for all x, y, z ∈ K. K is called commutative if
(K, ·, 1) is commutative.

Important examples of commutative semirings cover the Boolean semiring
B = ({0, 1},∨,∧, 0, 1), the semiring of the natural numbers N = (N,+, ·, 0, 1),
and the tropical semirings Rmax = (R ∪ {−∞},max,+,−∞, 0) and Rmin =
(R ∪ {∞},min,+,∞, 0). Non-commutative semirings are given, e.g., by n× n-
matrices over semirings K with matrix addition and multiplication as usual
(n ≥ 2), or the semiring (P(Σ∗),∪, ·, ∅, {ε}) of languages over Σ.

We say K is idempotent if the addition is idempotent, i.e. x + x = x
for all x ∈ K. The semirings B, Rmax, and Rmin are idempotent. For a
general introduction into the theory of semirings and extensive examples, see
[DKV09, Gol99].

25

26 CHAPTER 3. QUANTITATIVE ASPECTS

3.2 Valuation Monoids

In the following, we introduce a weight structure, called valuation monoid
which, besides covering all commutative semirings, is able to model aspects
like average, discounting, and long-time behaviors of automata. Originally,
valuation monoids were introduced by Droste and Meinecke in [DM12] over
words to formalize automata models investigated by Chatterjee, Doyen, and
Henzinger [CDH08, CDH09]. Subsequently, valuation monoids were extended
to, e.g., trees in [DGMM11] and to pictures in [BD15]. They also found
application for timed automata [DP14a]. In the context of trees, another
natural structure to generalize the semiring operations are multi-operator
monoids. They were studied, e.g., in [FSV12] and shown to be closely related
to tree-valuation monoids in [TO15] and [DGMM11]. Here, we introduce
valuation monoids for general relational structures including graphs.

We introduce D-labelings to attach to every point of the domain of a
structure a weight, as follows. Let D be a set and s a σ-structure. We call a
mapping Labs,D : V (s)→ D a labeling of s with D or D-labeling of s. Every
σ-structure together with such a labeling, (s,Labs,D), is called a D-labeled
σ-structure. We denote by CσD the class of all D-labeled σ-structures of Cσ.

To handle infinite sums occurring for infinite structures later, we introduce
complete monoids as follows. We call a monoid (D,+, 0) complete if there exist
infinitary sum operations

∑
I : DI → D for every index set1 I such that

•
∑

i∈∅ di = 0,
∑

i∈{k} di = dk,
∑

i∈{j,k} di = dj + dk for j 6= k,

•
∑

j∈J(
∑

i∈Ij di) =
∑

i∈I di if
⋃
j∈J Ij = I and Ij ∩ Ik = ∅ for j 6= k.

Note that in every complete monoid the operation + is commutative.

Definition 3.1. A Cσ-valuation monoid, short σ-valuation monoid, is a tuple
D = (D,+,Valσ, 0) consisting of a commutative monoid (D,+, 0) together
with a valuation function

Valσ : CσD → D

with Valσ(s,Labs,D) = 0 if there exists at least one v ∈ V (s) with Labs,D(v) = 0.
If Cσ contains structures with an infinite domain, we additionally require
(D,+, 0) to be complete.

We say D is idempotent if the addition is idempotent, i.e., d+ d = d for all
d ∈ D.

As already noted by [DM12], in the case of finite words every semiring
(K,+, ·, 0) can be seen as a valuation monoid (K,+,

∏
, 0). For infinite words,

the same is true for semirings which feature infinitary sum operations and
countably infinite products satisfying natural axioms for these operations. Such
semirings are called totally complete semirings [ÉK09].

1Note that these index sets may be uncountably infinite.

3.2. VALUATION MONOIDS 27

However, to embed an arbitrary semiring into a valuation monoid over other
finite structures is only possible for structures with a defined order on their
domain. Since in general our graphs have no predefined order, we additionally
have to require the semiring to be commutative to embed it into a valuation
monoid.

Additionally, and greatly motivated by them, valuation monoids cover
structures using computations like average or discounting, as demonstrated by
the following examples.

Example 3.1. Consider the class of finite graphs over their respective signature
σ as in Section 2.2. Let D = R ∪ {−∞} and let (G,LabG,D) be a graph of
DGt(A,B) together with a D-labeling. We denote by |V | the number of vertices
of G. Then, we define D1 = (R ∪ {−∞}, sup, avg,−∞) where

avg(G,LabG,D) =
1

|V |
∑
v∈V

LabG,D(v) .

Now, let (G, u,LabG,D) be a pointed graph of pDGt(A,B) together with a
D-labeling. We let

reach(G, u) = max{dist(u, v) | v ∈ V,dist(u, v) <∞} .

Then, for 0 < λ < 1, we define D2 = (R ∪ {−∞}, sup,discλ,−∞), where

discλ(G, u,LabG,D) =

reach(G,u)∑
r=0

∑
dist(u,v)=r

λr LabG,D(v) .

Then D1 and D2 are two valuation monoids. �

Valuation monoids will later be used to define the behaviors of weighted
automata. A weighted graph automaton will attach to every transition, and
therefore to every vertex, a weight. Since every finite weighted automaton only
uses finitely many different weights, the input on the valuation function will
be a finite subset of D 2. Therefore, by abuse of notation, the D-labeling can
also be substituted by the vertex-labeling of the graph. The same holds true
for weighted automata over special classes of graphs like words.

In the following, we fix a signature σ and may omit it if the context is clear.
Furthermore, D will always refer to a σ-valuation monoid.

In contrast to classical semirings, a valuation monoid features no second
binary operation. In the case that our underlying structure provides such an
additional binary operation, usually a multiplication, we can naturally extend
the definition of a valuation monoid to a product valuation monoid as follows.

2Since the graph can be arbitrarily large, the output of Val remains unbounded.

28 CHAPTER 3. QUANTITATIVE ASPECTS

Definition 3.2. A product σ-valuation monoid (short pv-monoid) is a tuple
PD = (D,+,Valσ, �, 0, 1) consisting of a σ-valuation monoid (D,+,Val, 0)
together with a constant 1 and an operation � : D2 → D satisfying 0 � d =
d�0 = 0, 1�d = d�1 = d for all d ∈ D, and Valσ(s,Labs,D) = 1 if Labs,D(v) = 1
for all v ∈ V (s).

As above, over finite structures, every commutative semiring (K,+, ·, 0, 1)
can be seen as a product valuation monoid (K,+,

∏
, ·, 0, 1). Over infinite

structure, the same holds for totally complete semirings.

In the following, PD will always refer to a product σ-valuation monoid.

In comparison to a semiring, a product valuation monoid features much
fewer axioms like associativity of the product or distributivity between its
operations. Depending on the context and to compare pv-monoids to semirings,
it is helpful to reintroduce some of these axioms. Later, we will see that the
more we know about our valuation monoids, the stronger the characterization
results are that we can formulate. This means that our results will cover the
classical case of semirings, but we will also prove results for the most general
case of a valuation monoid.

Furthermore, we want to stress that our motivating examples covering
average and discounting fall under the majority of the following assumptions,
cf. 3.2. With this motivation in mind, and inspired from [DM12] and [DD17],
we define the following properties for a product valuation monoid PD.

We call PD associative resp. commutative if � is associative resp. commuta-
tive.

We call PD left-+-distributive if for all d ∈ D, for any index set I, (di)i∈I ∈
DI such that

∑
i∈I di ∈ D and

∑
i∈I(d � di) ∈ D, it holds that

d �
∑
i∈I

di =
∑
i∈I

(d � di) .

Then, right-+-distributivity is defined analogously. We call PD +-distributive
if PD is left- and right-+-distributive.

We call PD left-Val-distributive if for all d ∈ D and all D-labeled σ-
structures (s,Labs,D), we have

d �Val(s,Labs,D) = Val(s,Lab′s,D) , where

Lab′s,D(v) = d � Labs,D(v) for all v ∈ V (s) .

We say Cσ has minimal points if there exists a well-defined function3 f that
assigns to every σ-structure s = (V (s), (Rs)R∈σ) of Cσ an element u ∈ V (s).
In other words, we require the existence of a unique distinguished root for all

3As we distinguish σ-structures only up to isomorphism, the function f has to satisfy
that for every two σ-structures s, s′, and every isomorphism ϕ : V (s) → V (s′), it holds that
ϕ(f(s)) = f(s′).

3.3. WEIGHTED LOGICS 29

structures of our class. In the context of graphs, we referred to this as pointed
graphs. In particular, all examples of Section 2.2 except unpointed graphs have
minimal points.

If Cσ has minimal points, we call PD left-multiplicative if for all d ∈ D
and all D-labeled σ-structures (s,Labs,D) with minimal point u ∈ V (s), the
following holds

d �Val(s,Labs,D) = Val(s,Lab′s,D) , where

Lab′s,D(v) =

{
d � Labs,D(v) , if v = u
Labs,D(v) , otherwise

for all v ∈ V .

We call PD conditionally commutative if the following holds. For all D-
labeled σ-structures (s,Labs,D) and (s,Lab′s,D) with Labs,D(w) � Lab′s,D(w) =
Lab′s,D(w) � Labs,D(w) for all w ∈ V (s), we have

Val(s,Labs,D) �Val(s,Lab′s,D) = Val(s,Lab′′s,D) , where

Lab′′s,D(v) = Labs,D(v) � Lab′s,D(v) for all v ∈ V (s) .

We call PD left-distributive if PD is left-+-distributive and, additionally, left-
Val-distributive or left-multiplicative (assuming we have minimal points). If PD
is +-distributive and associative, then (D,+, �, 0, 1) is a complete semiring and
we call (D,+,Val, �, 0, 1) a σ-valuation semiring. A cc-σ-valuation semiring is
a σ-valuation semiring which is conditionally commutative and left-distributive.

Example 3.2. Similarly to [DM12], we can add a classical addition to the
valuation monoids of Example 3.1 to obtain product valuation monoids as
follows. We use labeled graphs and the operations avg() and discλ() as in Exam-
ple 3.1. Then PD1 = (R ∪ {−∞}, sup, avg,+,−∞, 0) is a left-Val-distributive
cc-valuation semiring over finite graphs.

Furthermore, PD2 = (R∪{−∞}, sup,discλ,+,−∞, 0) is a left-multiplicative
cc-valuation semiring over pointed finite graphs. �

3.3 Weighted Logics

In this section, we introduce the weighted MSO logic and its different forms
which will be used in this dissertation. Originally, this logic was introduced
for words by Droste and Gastin [DG07] as a standalone generalization of the
classical MSO logic. Here, we incorporate the distinction into an unweighted
and a weighted part of this logic by Bollig and Gastin [BG09]. This distinction
makes weighted MSO a natural extension of any classical MSO-logic. We
define weighted MSO for general relational structures and over different weight
structures. Then, we will derive its variants for nested words, precedence words,
and graphs in the later chapters from this general definition.

30 CHAPTER 3. QUANTITATIVE ASPECTS

We start with a version of this weighted logic, first studied in [GM15] that
utilizes an ‘if..then..else’-operator, β?ϕ1 : ϕ2, instead of a weighted product.
The two advantages of this version are that it is directly applicable to valuation
monoids and needs less restrictions in the later Büchi-like characterization of
automata.

Definition 3.3. Given a signature σ and a σ-valuation monoid D, we define
the weighted logic MSO(D, σ), short MSO(D), as

β ::= R(x1, ..., xrk(R)) | x = y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β
ϕ ::= d | ϕ⊕ ϕ | β?ϕ : ϕ |

⊕
x ϕ |

⊕
X ϕ | Valx ϕ

where R ∈ σ, d ∈ D; x, xi, y are first order variables; and X is a second order
variable.

If our underlying structure provides a second operation, e.g. a multiplication
as in the case of semirings or product valuation monoid, we replace ‘β?ϕ : ϕ’ in
the second line with the weighted formula ϕ⊗ ϕ which is evaluated using this
product. If in this case, the multiplication also provides a neutral element 1,
this allows to evaluate an unweighted formula β also as a weighted formula, by
assigning the weight 1 if β holds and 0 otherwise. This leads to the following
definition.

Definition 3.4. Given a signature σ and a product σ-valuation monoid PD,
we define the weighted MSO-logic MSO(PD, σ), short MSO(PD) as

β ::= R(x1, ..., xrk(R)) | x = y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β
ϕ ::= β | d | ϕ⊕ ϕ | ϕ⊗ ϕ |

⊕
x ϕ |

⊕
X ϕ | Valx ϕ

where R ∈ σ, d ∈ D; x, xi, y are first order variables; and X is a second order
variable.

Formulas of the fragment β are exactly the unweighted formulas of MSO(σ).
Interpreted as formula of MSO(PD, σ), we call β a boolean formula. If β does
not contain ∃X it is called FO-boolean formula. The formulas ϕ are called
weighted formulas. For boolean formulas β, we use common abbreviations for
∧, ∀x.β, ∀X.β, →, and ↔. In the special case that PD is a semiring, Valx is
usually denoted by

∏
x. Note that in [DG07], the weighted connectors were

also denoted by ∨, ∧, ∃x, ∃X, and ∀x. We employ this symbolic change to
stress the quantitative evaluation of formulas.

Let s be a σ-structure and ϕ ∈ MSO(D) or ϕ ∈ MSO(PD). As in Section
2.3, let V be a finite set of variables containing free(ϕ). We denote by Γ(V,s) the
set of all (V, s)-assignments. Then the semantics of ϕ is defined as a function
JϕKV : Cσ × Γ(V,s) → D inductively as seen in Figure 3.1.

3.4. TRANSFORMATION THEOREM 31

JdKV(s, γ) = d for all d ∈ D
Jϕ⊕ ψKV(s, γ) = JϕKV(s, γ) + JψKV(s, γ)

Jβ?ϕ : ψKV(s, γ) =

{
JϕKV(s, γ) , if (s, γ) |= β

JψKV(s, γ) , otherwise

JβKV(s, γ) =

{
1 , if (s, γ) |= β

0 , otherwise

Jϕ⊗ ψKV(s, γ) = JϕKV(s, γ) � JψKV(s, γ)

J
⊕

x ϕKV(s, γ) =
∑

i∈V (s)

JϕKV∪{x}(s, γ[x→ i])

J
⊕

X ϕKV(s, γ) =
∑

I⊆V (s)

JϕKV∪{X}(s, γ[X → I])

JValx ϕKV(s, γ) = Val(s,Labs,D) , where

Labs,D(v) = JϕKV∪{x}(s, γ[x→ v]) for all v ∈ V (s)

Figure 3.1: Semantics of MSO(D) and MSO(PD).

In particular, we have Jβ?ϕ : ψKV = J(β ⊗ ϕ) ⊕ (¬β ⊗ ψ)KV . Therefore,
given a product valuation monoid PD with an underlying valuation monoid D,
we can consider MSO(D) as a restriction of MSO(PD).

We write JϕK for JϕKfree(ϕ). The following lemma shows that for each finite
set of variables containing free(ϕ) the semantics JϕKV are consistent with each
other (cf. [DG07]).

Lemma 3.5. Let ϕ ∈ MSO(D) or ϕ ∈ MSO(PD) and V be a finite set
of variables with V ⊇ free(ϕ). Then JϕKV(s, γ) = JϕK(s, γ�free(ϕ)) for each
(s, γ) ∈ Cσ × Γ(V,s)

Proof. The statement is proved by a standard induction on the structure of ϕ
analogously to Proposition 3.3 of [DG07].

3.4 Transformation Theorem

In the original proofs of Droste and Gastin of a Büchi theorem for weighted
logics and weighted automata, the distributivity and commutativity of the
semiring is crucial. In general, product valuation monoids do not enjoy these
properties, which makes it very hard to model the general weighted product of
the logic with an automaton. Apart from forgoing the product completely (like
done with MSO(D) for valuation monoids), there are two possibilities to handle
this difficulty. The first one is to restrict the use of the weighted product to
only occur under specific circumstances. The second approach is to make some
additional assumptions on the product valuation monoid to re-inject some form

32 CHAPTER 3. QUANTITATIVE ASPECTS

of (left)-distributivity. For the second approach, we refer to the properties of
product valuation monoids introduced in Section 3.2.

While it may not be surprising that these two approaches work on their own,
in the following, we also study combinations of them. That is, we show that if
our product valuation monoid enjoys, compared to a semiring, weaker forms
of compatibility between its operations, then we only need a weak restriction
of the weighted product of the logic. This is, e.g., the case for the product
valuation monoids featuring average and discounting. More detailed, in the
following, we prove a direct Transformation Theorem (Theorem 3.6), which,
according to the assumptions on the product valuation monoid, transforms a
formula into a restricted but semantically equivalent formula.

Our main application of this theorem can later be found in the connection
between weighted automata and weighted logics, where it is used to answer the
following question: Given a product valuation monoid with certain properties,
how expressive can we make a logic such that it is still expressively equivalent
to a weighted automata model over this product valuation monoid? In other
words: Depending on the weight structure, how expressive are our weighted
automata?

The formulation of the different properties for product valuation monoids
and the specific fragments of the weighted logic is strongly inspired from [DM12].
Note however that here, we formulate the whole theory for relational structures,
in particular for graphs and all its subclasses. Furthermore, Theorem 3.6
provides a direct transformation on the level of the weighted formulas, which
is new even in the word case, since previous results were shown by multiple
translations between weighted automata and weighted logic. A special case of
the results in this section for nested words was published in [DD17].

In the following, we introduce the different restrictions on formulas of
MSO(PD). We call a formula ϕ ∈ MSO(PD) almost FO-boolean if it is built
up inductively from the following grammar

ϕ ::= d | β | ϕ⊕ ϕ | ϕ⊗ ϕ

where d ∈ D and β is an unweighted FO-formula.

Let ϕ ∈ MSO(PD) and let const(ϕ) be the set of all elements of D occurring
in ϕ. We say two subsets A,B ⊆ D commute, if a ⊗ b = b ⊗ a for all a ∈ A
and for all b ∈ B. Then, we call ϕ

1. strongly-⊗-restricted if for all its subformulas ψ ⊗ θ,

• ψ and θ are almost FO-boolean,

• ψ is an FO-boolean formula, or

• θ is an FO-boolean formula.

2. ⊗-restricted if for all its subformulas ψ ⊗ θ,

3.4. TRANSFORMATION THEOREM 33

• ψ is almost FO-boolean, or

• θ is an FO-boolean formula.

3. weakly-⊗-restricted if for all its subformulas ψ ⊗ θ,

• ψ is almost FO-boolean, or

• const(ψ) and const(θ) commute.

4. Val-restricted if for all its subformulas Valx ψ, ψ is almost FO-boolean.

Then, we call ϕ restricted (resp. strongly- or weakly-restricted) if ϕ is
Val-restricted, all its unweighted subformulas β are EMSO-formula, and ϕ
is ⊗-restricted (resp. strongly-⊗- or weakly-⊗-restricted). If additionally all
unweighted subformulas β are FO-formulas, we call ϕ FO-restricted (resp.
strongly-FO- or weakly-FO-restricted).

Since every strongly-⊗-restricted formula is also ⊗-restricted and every
⊗-restricted formula is also weakly-⊗-restricted, this defines three consecutive
fragments of MSO(PD) with increasing expressive power. Next, we show that
under specific assumptions on our product valuation monoid (cf. Section 3.2),
the different fragments collapse. These transformations give a strong correlation
between the assumptions on our valuation monoid and the expressive power of
the weighted logic.

Theorem 3.6. (a) Let PD be left-distributive. Then we can transform every
⊗-restricted formula ϕ ∈ MSO(PD) into a strongly-⊗-restricted formula
ϕ′ ∈ MSO(PD) with the same semantics.

(b) Let PD be a cc-σ-valuation semiring. Then we can transform every
weakly-⊗-restricted formula ϕ ∈ MSO(PD) into a strongly-⊗-restricted
formula ϕ′ ∈ MSO(PD) with the same semantics.

(c) If ϕ is Val-restricted in (a) or (b), we can construct ϕ′ also Val-restricted.
Also, if in ϕ all unweighted subformulas β are EMSO (resp. FO)-formula,
then the same is true for ϕ′.

If PD is a cc-ω-valuation semiring, clearly almost FO-boolean formulas can
be written as disjunctions of conjunctions of boolean formulas or constants
from PD. Therefore, the proof of Theorem 3.6 (b) shows the following corollary,
which is a direct conversion on the level of formulas and also applicable to
commutative semirings.

Corollary 3.7. Let PD be a commutative cc-valuation semiring. Then for any
formula ϕ ∈ MSO(PD), there exists a formula ϕ′ ∈ MSO(PD) with Jϕ′K = JϕK
such that for all subformulas of the form ψ ⊗ θ, each of ψ and θ is FO boolean
or a constant.

The proof of Theorem 3.6 consists of multiple steps. Its structure is the
following.

34 CHAPTER 3. QUANTITATIVE ASPECTS

First, we show that for a cc-valuation semiring, the commutativity on the
level of a set A ⊆ D lifts to the set of all values computable by A, 0, and
1 together with finite and infinite sums and applications of the operations �
and Val. Then, we use an induction on the structure of ϕ and make a case
distinction depending on our restrictions. The main idea is found in Lemma
3.10, where we show that every weighted product ⊗ (in previous works the
weighted conjunction) can be ‘pulled inwards’ by our assumptions on the
valuation monoid.

Both results together show that we can transform any formula ϕ into an
equivalent formula ϕ′ in which conjunctions only appear between unweighted
FO-formulas and constants. Then ϕ′ is strongly-⊗-restricted. For (c), we can
show that these transformations can be done without increasing the number
of quantifiers or the quantifier depth, in particular the Val-quantifier. Thus,
these transformations conserve the Val-restriction, EMSO-, and FO-restriction
of the formula.

In the following, we give the detailed proof. We start with some intermediate
results. Let PD be a cc-σ-valuation semiring, A ⊆ D a subset, and s =
(V (s), (Rs)R∈σ) a σ-structure of Cσ. We abbreviate with Val �s the restriction
of Val to all D-labeled structures which consist of s together with an arbitrary
D-labeling. Then, we define Acl(s), the closure of A with respect to s, as the
smallest subset of D which contains A, the constants 0, 1, and is closed under
finite and infinite sums4 and application of the operations � and Val �s.

Lemma 3.8. Let PD be a cc-σ-valuation semiring, s = (V (s), (Rs)R∈σ) a
σ-structure, and A,B ⊆ D two subsets such that A and B commute. Then
Acl(s) and Bcl(s) also commute.

Proof. Following the definition of Acl(s) (resp. Bcl(s)), we have to check the
following three statements.

Firstly, finite (resp. infinite) sums and finite products of elements of A
commute with finite and infinite sums and finite products of elements of B.
Indeed, this follows directly from the +-distributivity and associativity of PD.

Secondly, we show that if b = Val(s,Labs,D) and a ∈ A commutes with
Labs,D(v) for all v ∈ V (s), then a and b commute. Indeed, if PD is left-Val-
distributive, we have

a = a � 1 = a �Val(s,Lab1
s,D) = Val(s,Lab′s,D) ,

where Lab1
s,D(v) = 1 for all v ∈ V (s) and Lab′s,D(v) = a for all v ∈ V (s).

Note that we refer to different D-labeling of s but the structure s stays fixed.
Hence, using that PD is conditionally commutative and denoting Lab′′s,D as the
D-labeling of s with Lab′′s,D(v) = a�Labs,D(v) = Labs,D(v)�a for all v ∈ V (s),

4Infinite sums are only included for structures with a possibly infinite domain

3.4. TRANSFORMATION THEOREM 35

we get

a � b = Val(s,Lab′s,D) �Val(s,Labs,D)

= Val(s,Lab′′s,D)

= Val(s,Labs,D) �Val(s,Lab′s,D)

= b � a .

If Cσ has minimal points, s is pointed with u ∈ V (s), and PD is left-
multiplicative, we have

a = a �Val(s,Lab1
s,D) = Val(s,Lab′′′s,D) ,

where Lab′′′s,D(u) = a and Lab′′′s,D(v) = 1 for all v ∈ V (s) \ u. Hence, using that
PD is conditionally commutative and denoting Lab′′′′s,D as the D-labeling of s
with Lab′′′′s,D(u) = a�Labs,D(u) = Labs,D(u)�a and Lab′′′′s,D(v) = 1�Labs,D(v) =
Labs,D(v) = Labs,D(v) � 1 for all v ∈ V (s) \ u, we get

a � b = Val(s,Lab′′′s,D) �Val(s,Labs,D)

= Val(s,Lab′′′′s,D)

= Val(s,Labs,D) �Val(s,Lab′′′s,D)

= b � a .

Finally, let a = Val(s,Labas,D), b = Val(s,Labbs,D), and Labas,D(v) com-

mute with Labbs,D(v′) for all v, v′ ∈ V (s). We use that PD is conditionally

commutative, and denoting Lababs,D as the D-labeling of s with Lababs,D(v) =

Labas,D(v) � Labbs,D(v) = Labbs,D(v) � Labas,D(v) for all v ∈ V (s), we get

a � b = Val(s,Labas,D) �Val(s,Labbs,D)

= Val(s,Lababs,D)

= Val(s,Labbs,D) �Val(s,Labas,D)

= b � a .

Now, the result follows by a straightforward induction.

Lemma 3.9. Let PD be a cc-σ-valuation semiring and let ψ and θ be formulas
of MSO(PD) . Let const(ψ) and const(θ) commute. Then

Jψ ⊗ θK = Jθ ⊗ ψK .

Proof. Let A = const(ψ), B = const(θ), V = free(ψ) ∪ free(θ), and (s, γ) ∈
Cσ × Γ(V,s). By induction on the structure of ψ (resp. θ), we obtain that all

36 CHAPTER 3. QUANTITATIVE ASPECTS

values of JψK (resp. JθK) belong to Acl(s) (resp. Bcl(s)). By Lemma 3.8, Acl(s)

and Bcl(s) commute. Thus, we get

Jψ ⊗ θKV(s, γ) = JψKV(s, γ) � JθKV(s, γ)

= JθKV(s, γ) � JψKV(s, γ)

= Jθ ⊗ ψKV(s, γ) .

The following result resembles similar results of classical logic in a quan-
titative setting. Note, however, that our present quantitative setting is very
general, as it contains semirings as well as average or discounted computations.
Also, observe the difference between (b) and (c), where we use the formula

min(x)→ ψ = ¬min(x)⊕ (min(x)⊗ ψ) .

If ψ is almost FO-boolean, then min(x)→ ψ is also almost FO-boolean. Clearly,
statements dual to the following hold also if PD satisfies the appropriate versions
of distributivity on the right.

Lemma 3.10. Let ψ, ψ1, θ1, θ2 be formulas of MSO(PD).

(a) Let PD be left-+-distributive. Then

Jψ ⊗ (θ1 ⊕ θ2)K = J(ψ ⊗ θ1)⊕ (ψ ⊗ θ2)K .

Let ψ contain no x. Then

Jψ ⊗
⊕

x θ1K = J
⊕

x(ψ ⊗ θ1)K
Jψ ⊗

⊕
X θ1K = J

⊕
X(ψ ⊗ θ1)K .

(b) Let PD be left-Val-distributive, and let ψ contain no x. Then

Jψ ⊗Valx θ1K = JValx(ψ ⊗ θ1)K .

(c) Let Cσ have minimal points, PD be left-multiplicative, and let ψ contain
no x. Then

Jψ ⊗Valx θ1K = JValx((min(x)→ ψ)⊗ θ1)K .

(d) Let PD be a cc-σ-valuation semiring, and let const(ψ1) and const(θ1)
commute. Then

JValx ψ1 ⊗Valx θ1K = JValx(ψ1 ⊗ θ1)K .

3.4. TRANSFORMATION THEOREM 37

Proof. (a) For the first part, we put V = free(ψ) ∪ free(θ1) ∪ free(θ2). Since
PD is left-+-distributive, we get by Lemma 3.5:

Jψ ⊗ (θ1 ⊕ θ2)KV = JψKV � (Jθ1KV + Jθ2KV)

= JψKV � Jθ1KV + JψKV � Jθ2KV
= Jψ ⊗ θ1KV + Jψ ⊗ θ2KV
= J(ψ ⊗ θ1)⊕ (ψ ⊗ θ2)KV .

For the second part, we put V = free(ψ) ∪ free(
⊕

x θ) and use Lemma 3.5. We
use the assumption that PD is left-+-distributive at equation * to get for each
(s, γ) ∈ Cσ × Γ(V,s)

Jψ ⊗
⊕

x θ1KV(s, γ) = JψKV(s, γ) �
∑

v∈V (s)

(Jθ1KV∪{x}(s, γ[x→ v]))

∗
=

∑
v∈V (s)

(JψKV(s, γ) � Jθ1KV∪{x}(s, γ[x→ v]))

=
∑

v∈V (s)

(JψKV∪{x}(s, γ[x→ v]) � Jθ1KV∪{x}(s, γ[x→ v]))

=
∑

v∈V (s)

(Jψ ⊗ θ1KV∪{x}(s, γ[x→ v]))

= J
⊕

x(ψ ⊗ θ1)KV(s, γ) .

The statement for the
⊕

X -quantifier can be shown analogously.

(b) We put V = free(ψ) ∪ free(Valx θ1). Let (s, γ) ∈ Cσ × Γ(V,s). To refer
to different D-labelings of s, we define for v ∈ V (s)

Labθ1s,D(v) = Jθ1KV∪{x}(s, γ[x→ v]) ,

Labψ ld θ1
s,D (v) = JψKV(s, γ) � Labθ1s,D(v) ,

Labψ⊗θ1s,D (v) = Jψ ⊗ θ1KV∪{x}(s, γ[x→ v]) .

It follows that for all v ∈ V (s)

Labψ ld θ1
s,D (v) = JψKV(s, γ) � Labθ1s,D(v)

= JψKV(s, γ) � Jθ1KV∪{x}(s, γ[x→ v])

= JψKV∪{x}(s, γ[x→ v]) � Jθ1KV∪{x}(s, γ[x→ v])

= Jψ ⊗ θ1KV∪{x}(s, γ[x→ v])

= Labψ⊗θ1s,D (v) .

Using this equation at ** and the assumption that PD is left-Val-distributive

38 CHAPTER 3. QUANTITATIVE ASPECTS

at equation *, we get

Jψ ⊗Valx θ1KV(s, γ) = JψKV(s, γ) �Val(s,Labθ1s,D)

∗
= Val(s,Labψ ld θ1

s,D)

∗∗
= Val(s,Labψ⊗θ1s,D)

= JValx(ψ ⊗ θ1)KV(s, γ) .

(c) Let s ∈ Cσ with minimal point u ∈ V (s). Let W ⊇ free(ψ) ∪ {x} and
let γ′ be a (W, s)-assignment. We note that

Jmin(x)→ ψKW(s, γ′)

= J¬min(x)⊕ (min(x)⊗ ψ)KW(s, γ′)

= J¬min(x)KW(s, γ′) + (Jmin(x)KW(s, γ′) � JψKW(s, γ′))

=

{
0 + 1 � JψKW(s, γ′) , if min(γ′(x)) holds
1 + 0 � JψKW(s, γ′) , otherwise

=

{
JψKW(s, γ′) , if γ′(x) = u
1 , otherwise .

We put V = free(ψ) ∪ free(Valx θ1) and let γ be a (V, s)-assignment. Again, to
refer to different D-labelings of s, we define for v ∈ V (s)

Labθ1s,D(v) = Jθ1KV∪{x}(s, γ[x→ v]) ,

Labψ lm θ1
s,D (v) =

{
JψKV(s, γ) � Labθ1s,D(v) , if v = u

Labθ1s,D(v) , otherwise
,

Lab
(min(x)→ψ)⊗θ1
s,D = J(min(x)→ ψ)⊗ θ1KV∪{x}(s, γ[x→ v]) .

It follows that for all v ∈ V (s)

Labψ lm θ1
s,D (v) =

{
JψKV(s, γ) � Labθ1s,D(v) , if v = u

Labθ1s,D(v) , otherwise

=

{
Jψ ⊗ θ1KV∪{x}(s, γ[x→ v]) , if v = u

Jθ1KV∪{x}(s, γ[x→ v]) , otherwise

=

{
Jψ ⊗ θ1KV∪{x}(s, γ[x→ v]) , if γ(x) = u

Jθ1KV∪{x}(s, γ[x→ v]) , otherwise

= J(min(x)→ ψ)⊗ θ1KV∪{x}(s, γ[x→ v])

= Lab
(min(x)→ψ)⊗θ1
s,D (v) .

Using this equation at ** and the assumption that PD is left-multiplicative at

3.4. TRANSFORMATION THEOREM 39

equation *, we get

Jψ ⊗Valx θ1KV(s, γ) = JψKV(s, γ) �Val(s,Labθ1s,D)

∗
= Val(s,Labψ lm θ1

s,D)

∗∗
= Val(s,Lab

(min(x)→ψ)⊗θ1
s,D)

= JValx((min(x)→ ψ)⊗ θ1)KV(s, γ) .

(d) Since const(ψ1) and const(θ1) commute, Lemma 3.8 implies that all
values occurring at the evaluation of Jψ1K and Jθ1K commute too, which allows
us to use the conditional commutativity of PD. We put V = free(Valx ψ1) ∪
free(Valx θ1) and let (s, γ) ∈ Cσ×Γ(V,s). Again, to refer to different D-labelings
of s, we set for v ∈ V (s)

Labψ1

s,D(v) = Jψ1KV∪{x}(s, γ[x→ v]) ,

Labθ1s,D(v) = Jθ1KV∪{x}(s, γ[x→ v]) ,

Labψ cc θ1
s,D (v) = Labψ1

s,D(v) � Labθ1s,D(v)

= Jψ1KV∪{x}(s, γ[x→ v]) � Jθ1KV∪{x}(s, γ[x→ v])

= Jψ1 ⊗ θ1KV∪{x}(s, γ[x→ v])

= Labψ1⊗θ1
s,D (v) .

Using this equation at ** and the assumption that PD is conditionally commu-
tative at equation *, we get

JValx ψ1 ⊗Valx θ1KV(s, γ) = Val(s,Labψ1

s,D) �Val(s,Labθ1s,D)

∗
= Val(s,Labψ1 cc θ1

s,D)

∗∗
= Val(s,Labψ1⊗θ1

s,D)

= JValx(ψ1 ⊗ θ1)KV(s, γ) .

We are now ready to conclude the proof of Theorem 3.6.

Proof of Theorem 3.6. We show the statements (a) and (b) by induction on
the length of the formula ϕ and check the cases where ϕ is Val-restricted within
(a) and (b). The base case for almost FO-boolean formulas is trivial. For the
induction step, we have to check only the weighted product. Therefore, we
may assume that ϕ = ψ ⊗ θ and both ψ and θ are strongly-⊗-restricted (and
resp. Val-restricted). If θ is FO-boolean, we can put ϕ′ = ϕ.

(a) We assume that ψ is almost FO-boolean. By an analysis of the structure
of θ, we will construct a strongly-⊗-restricted formula ϕ′ with Jϕ′K = Jψ⊗ θK =
JϕK.

Case 1: If θ is almost FO-boolean, then so is ϕ, hence ϕ′ = ϕ is strongly-
⊗-restricted (and resp. Val-restricted).

40 CHAPTER 3. QUANTITATIVE ASPECTS

Case 2: Assume θ = θ1 ⊗ θ2 and θ is not almost FO-boolean. Since θ
is strongly-⊗-restricted θ1 or θ2 is FO-boolean. We may assume θ1 to be
FO-boolean. We put V = free(ψ) ∪ free(θ1) ∪ free(θ2). Now, we apply the
induction hypothesis to ψ ⊗ θ2 to obtain a strongly-⊗-restricted formula ϕ1

with Jϕ1K = Jψ ⊗ θ2K. Then ϕ′ = θ1 ⊗ ϕ1 is strongly-⊗-restricted and for each
(s, γ) ∈ Cσ × Γ(V,s) we have

JϕK(s, γ) = Jψ ⊗ (θ1 ⊗ θ2)KV(s, γ)

=

{
Jψ ⊗ θ2KV(s, γ) , if Jθ1KV(s, γ) = 1
0 , otherwise

= Jθ1 ⊗ ϕ1KV(s, γ) = Jϕ′KV(s, γ) .

Case 3: Assume θ = θ1 ⊕ θ2. We put V = free(ψ)∪ free(θ1)∪ free(θ2) and
apply Lemma 3.10 (a):

JϕK = Jψ ⊗ (θ1 ⊕ θ2)KV
= Jψ ⊗ θ1KV + Jψ ⊗ θ2KV .

Since ψ is almost FO-boolean, we can apply the induction hypothesis to ψ⊗ θ1

and ψ ⊗ θ2. Hence, there are strongly-⊗-restricted (and resp. Val-restricted)
formulas ϕ1 and ϕ2 such that Jϕ1K = Jψ ⊗ θ1K and Jϕ2K = Jψ ⊗ θ2K. Then
ϕ1 ⊕ ϕ2 is strongly-⊗-restricted (and resp. Val-restricted) and Jϕ1 ⊕ ϕ2KV =
Jϕ1KV + Jϕ2KV = JϕK.

Case 4: Assume θ =
⊕

x θ1 and ψ contains no x. We apply Lemma 3.10
(a):

JϕK = Jψ ⊗
⊕

x θ1K
= J
⊕

x(ψ ⊗ θ1)K .

We apply the induction hypothesis to ψ ⊗ θ1 to obtain a strongly-⊗-restricted
formula ϕ1 such that Jϕ1K = Jψ ⊗ θ1K. Then

⊕
x ϕ1 is strongly-⊗-restricted

and J
⊕

x ϕ1K = JϕK.
Case 4’: Assume θ =

⊕
x θ1 and ψ contains x. Let z be a variable not

occurring in ψ. We rename the variable x to z at every occurrence in
⊕

x θ1

to get θ′ =
⊕

z θ
′
1 with JθK = Jθ′K. Since ψ does not contain z, we can apply

Case 4 to ψ ⊗ θ′.
Case 5: Assume θ =

⊕
X θ1. This is done analogously to Cases 4 and 4’.

Case 6: Assume θ = Valx θ1. By renaming analogously to Case 4’, we may
assume that ψ does not contain x.

First, let PD be left-Val-distributive. Applying Lemma 3.10 (b), we get

JϕK = Jψ ⊗Valx θ1K
= JValx(ψ ⊗ θ1)K .

3.4. TRANSFORMATION THEOREM 41

We apply the induction hypothesis to ψ ⊗ θ1 to obtain a strongly-⊗-restricted
formula ϕ1 such that Jϕ1K = Jψ ⊗ θ1K. Then Valx ϕ1 is strongly-⊗-restricted
and JValx ϕ1K = JϕK. If ϕ is Val-restricted, θ1 is almost FO-boolean. In this
case, we can put directly ϕ′ = Valx(ψ ⊗ θ1). Then ϕ′ is strongly-⊗-restricted
and Val-restricted because ψ and θ1 are almost FO-boolean formulas.

Now, let PD be left-multiplicative. Applying Lemma 3.10 (c) and using
that the formula min(x) is FO-boolean, we get

JϕK = Jψ ⊗Valx θ1K
= JValx((min(x)→ ψ)⊗ θ1)K
= JValx((¬min(x)⊗ θ1)⊕ (min(x)⊗ ψ ⊗ θ1))K .

We apply the induction hypothesis to ψ ⊗ θ1 to obtain a strongly-⊗-restricted
formula ϕ1 such that Jϕ1K = Jψ ⊗ θ1K. Then ϕ′ = Valx((¬min(x) ⊗ θ1) ⊕
(min(x)⊗ϕ1)) is strongly-⊗-restricted since min(x) is FO-boolean. Furthermore,
JϕK = Jϕ′K.

If ϕ is Val-restricted, we can put directly ϕ′ = Valx((min(x) → ψ) ⊗ θ1).
Then ϕ′ is strongly-⊗-restricted and Val-restricted because min(x)→ ψ and
θ1 are almost FO-boolean formulas.

(b) Again, we may assume that ϕ = ψ ⊗ θ where ψ and θ are strongly-⊗-
restricted (and resp. Val-restricted). In case ψ is almost FO-boolean, we can
apply the argument of part (a) to obtain the claim. Therefore, we may assume
that ψ is not almost FO-boolean and that const(ψ) and const(θ) commute. If
θ is almost FO-boolean, by Lemma 3.9 we have Jψ ⊗ θK = Jθ⊗ ψK, and we can
apply part (a). Therefore, let now θ be not almost FO-boolean. In case that
θ is a disjunction or a

⊕
-quantification, we can proceed as in Case 3, Case

4 resp. Case 5 of part (a). If θ is a conjunction, we can proceed as in Case
2. If ψ is a disjunction, a

⊕
-quantification or a conjunction, we observe that

Jψ ⊗ θK = Jθ ⊗ ψK and apply the previous cases.
It remains to consider that both ψ and θ are Val-quantifications that is

ψ = Valx ψ1 and θ = Valy θ1. Choose a variable z not occurring in ψ or θ. We
rename all occurrences of x in ψ and of y in θ by z, i.e., we consider ψ′ = Valz ψ

′
1

and θ′ = Valz θ
′
1 where Jψ′1K = Jψ1K and Jθ′1K = Jθ1K. So JϕK = Jψ′ ⊗ θ′K. Since

ψ1 and ψ′1 resp. θ1 and θ′1 contain the same constants, const(ψ′1) and const(θ′1)
commute. Applying Lemma 3.10 (d) we get

JϕK = JValz ψ
′
1 ⊗Valz θ

′
1K

= JValz(ψ
′
1 ⊗ θ′1)K .

Hence, we can apply the induction hypothesis to ψ′1 ⊗ θ′1 to obtain a strongly-
⊗-restricted formula ϕ1 such that Jϕ1K = Jψ′1 ⊗ θ′1K. Then Valz ϕ1 is strongly-
⊗-restricted and JValz ϕ1K = JϕK.

If ϕ is Val-restricted, we can put directly ϕ′ = Valz(ψ
′
1 ⊗ θ′1). Then ϕ′

is strongly-⊗-restricted and Val-restricted because ψ′1 and θ′1 are almost FO-
boolean formulas.

42 CHAPTER 3. QUANTITATIVE ASPECTS

Chapter 4

Weighted Automata for
Infinite Nested Words

Nested words, introduced by Alur and Madhusudan [AM09], capture models
with both a natural sequence of positions and a hierarchical nesting of these
positions. Prominent examples include XML documents and executions of
recursively structured programs. Automata on nested words, logical specifi-
cations, and corresponding languages of nested words have been intensively
studied, see [AAB+08, AM09, LMS04].

In this chapter, we will investigate quantitative nested word automata
and suitable quantitative MSO logics. We will concentrate on infinite nested
words, although our results also hold for finite nested words. We employ
the stair Muller nested word automata of [AM09, LMS04] since these can be
determinized without losing expressive power. As weight structures, we use
valuation monoids and product valuation monoids (cf. Section 3.2 and [DM12]).
These include infinite products as in totally complete semirings [DR06], but
also computations of long-time averages or discountings of weights. As example
for such a setting, we give the calculation of the long-time ratio of bracket-free
positions in prefixes of an infinite nested word. We employ our Transformation
Theorem 3.6 to show that under suitable assumptions on the product valuation
monoid PD, two resp. three versions of our weighted MSO logic have the same
expressive power. In particular, if PD is commutative, then any weighted
MSO-formula is equivalent to one in which conjunctions occur only between
‘classical’ boolean formulas and constants.

Furthermore, we show under suitable assumptions on the valuation monoid
that our weighted MSO logics have the same expressive power as weighted
nested word automata. These assumptions on the valuation monoid are satisfied
by long-time average resp. discounted computations of weights; therefore our
results apply to these settings. All our constructions of automata from formulas
and vice versa are effective.

The results of this section were published in [DD17] and in an extended

43

44 CHAPTER 4. WEIGHTED AUTOMATA FOR NESTED ω-WORDS

abstract of this paper in [DD14]. One case of the theorem connecting weighted
nested word automata and weighted MSO logics was part of [Düc13].

4.1 Infinite Nested Words

In this section, we describe classical unweighted automata and logics on infinite
nested words (nested ω-words). As introduced in Section 2.2, a nested word
(w, ν) is a word together with a non-crossing matching relation. We start with
an automata model reading infinite nested words [AM09] with the appropriate
acceptance condition to be determinizable [LMS04] and slightly adjusted to fit
our notations.

Definition 4.1. A deterministic stair Muller nested word automaton (sM-
NWA) over Σ is a quadruple A = (Q, q0, δ,F), where δ = (δcall, δint, δret),
consisting of:

• a finite set of states Q,

• an initial state q0 ∈ Q,

• a set F ⊆ 2Q of accepting sets of states,

• the transition functions δcall, δint : Q× Σ→ Q,

• the transition function δret : Q×Q× Σ→ Q.

A run r of the sMNWA A on the nested ω-word nw = (a1a2..., ν) is an
infinite sequence of states r = (q0, q1, ...) where qi ∈ Q for each i ∈ N and q0 is
the initial state of A such that for each i ∈ N+ the following holds:

δcall(qi−1, ai) = qi , if ν(i, j) for some j > i
δint(qi−1, ai) = qi , if i is an internal
δret(qi−1, qj−1, ai) = qi , if ν(j, i) for some 1 ≤ j < i
δret(qi−1, q0, ai) = qi , if ν(−∞, i) .

We call i ∈ N a top-level position if there exist no positions j, k ∈ N with
j < i < k and ν(j, k). We define

Qt∞(r) = {q ∈ Q | q = qi for infinitely many top-level positions i} .

A run r of an sMNWA is accepted if Qt∞(r) ∈ F. An sMNWA A accepts the
nested ω-word nw if there is an accepted run of A on nw . We call L(A) the set
of all accepted nested ω-words of A. We call a language L of nested ω-words
regular if there is an sMNWA A with L(A) = L.

Alur and Madhusudan considered in [AM09] nondeterministic Büchi NWA
and nondeterministic Muller NWA. They showed that the deterministic versions
of these automata have strictly less expressive power than the nondeterministic
automata. However, referring to Löding, Madhusudan, and Serre [LMS04], Alur

4.2. WEIGHTED STAIR MULLER NESTED WORD AUTOMATA 45

and Madhusudan stated that deterministic stair Muller NWA have the same
expressive power as their nondeterministic versions as well as nondeterministic
Büchi NWA. Moreover, they proved that the class of regular languages of
nested ω-words is closed under union, intersection, and complement [AM09].

Definition 4.2. The monadic second order logic for infinite nested words,
MSO(NW(Σ)), contains exactly all formulas ϕ which are given by the following
syntax:

ϕ ::= Laba(x) | call(x) | ret(x) |x ≤ y | ν(x, y) |x ∈ X | ¬ϕ |ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ Σ, x, y are first order variables, and X is a second order variable.

The semantics of these formulas is given in a natural way, cf. [AM09]. The
predicates call(x) and ret(x) are true if x is a call or return position, respectively.
They are used to, in contrast to ν(x, y), additionally refer to pending calls or
pending returns. If ϕ is sentence, then L(ϕ) = {nw ∈ NWω(Σ) | nw |= ϕ} is
the language defined by ϕ.

Theorem 4.3 (Alur, Madhusudan [AM09]). Let L be a language of nested
ω-words over Σ. Then L is regular if and only if L is definable by some
MSO(NW(Σ))-sentence ϕ.

4.2 Weighted Stair Muller Nested Word
Automata

In this section, we introduce weighted versions of stair Muller nested word
automata. As weight structures, we employ valuation monoids together with
their properties, as introduced in Section 3.2, for infinite nested words (see also
[DM12] for valuation monoids over words). We let Dω comprise all infinite
sequences of elements of D and recall the important definitions.

Definition 4.4. An ω-valuation monoid D = (D,+,Valω, 0) is a complete
monoid (D,+, 0) equipped with an ω-valuation function Valω : Dω → D with
Valω((di)i∈N) = 0 if di = 0 for some i ∈ N.

A product ω-valuation monoid PD = (D,+,Valω, �, 0, 1) (short ω-pv-
monoid) is an ω-valuation monoid (D,+,Valω, 0) with a constant 1 ∈ D
and an operation � : D2 → D satisfying Valω(1ω) = 1, 0 � d = d � 0 = 0, and
1 � d = d � 1 = d for all d ∈ D.

Following [DM12], we give an example by adapting the product valuation
monoids incorporating average and discounting to ω-words or nested ω-words
as follows.

46 CHAPTER 4. WEIGHTED AUTOMATA FOR NESTED ω-WORDS

Example 4.1. We set R̄ = R ∪ {−∞,∞} and −∞+∞ = −∞. We let

PD1 = (D1,+,Valω, �, 0, 1) = (R̄, sup, lim avg,+,−∞, 0),

where lim avg((di)i∈N) = lim inf
n→∞

1

n

n∑
i=1

di .

Let 0 < λ < 1 and R̄+ = {x ∈ R̄ | x ≥ 0} ∪ {−∞}. We put

PD2 = (D2,+,Valω, �, 0, 1) = (R̄+, sup,discλ,+,−∞, 0),

where discλ((di)i∈N) = lim
n→∞

n∑
i=1

λi−1di .

Then PD1 is a left-+-distributive and left-Valω-distributive ω-pv-monoid but
not conditionally commutative. Furthermore, PD2 is a left-multiplicative
cc-ω-valuation semiring. �

Definition 4.5. A weighted stair Muller nested word automaton (wsMNWA)
A = (Q, I, δ,F), where δ = (δcall, δint, δret), over the alphabet Σ and the ω-
valuation monoid (D,+,Valω, 0) consists of:

• a finite set of states Q,

• a set I ⊆ Q of initial states,

• a set F ⊆ 2Q of accepting sets of states,

• the weight functions δcall, δint : Q× Σ×Q→ D,

• the weight function δret : Q×Q× Σ×Q→ D.

A run r of the wsMNWA A on the nested ω-word nw = (a1a2..., ν) is
an infinite sequence of states r = (q0, q1, ...). We denote by wtA(r,nw , i) the
weight of the transition of r used at position i ∈ N+, defined as follows

wtA(r,nw , i) =

δcall(qi−1, ai, qi) , if ν(i, j) for some j > i
δint(qi−1,ai, qi) , if i is an internal
δret(qi−1, qj−1, ai, qi) , if ν(j, i) for some 1 ≤ j < i
δret(qi−1, q0, ai, qi) , if ν(−∞, i) .

(4.1)

Then, we define the weight wtA(r,nw) of r on nw by letting

wtA(r,nw) = Valω((wtA(r,nw , i))i∈N+) .

We define top-level positions and the set Qt∞(r) as before. A run r is accepted if
q0 ∈ I and Qt∞(r) ∈ F. We denote by acc(A) the set of all accepted runs in A.

4.2. WEIGHTED STAIR MULLER NESTED WORD AUTOMATA 47

We define the behavior of the automaton A as the function JAK : NWω(Σ)→ D
given by (where as usual, empty sums are defined to be 0)

JAK(nw) =
∑

r∈acc(A)

wtA(r,nw)

=
∑

r∈acc(A)

Valω((wtA(r,nw , i))i∈N+) .

We call every function S : NWω(Σ) → D a nested ω-word series (short:
series). We say that a wsMNWA A recognizes or accepts a series S if JAK = S.
We call a series S regular if there exists an automaton A accepting it.

Example 4.2. Within the following example, we call a position i of a nested
ω-word nw = (w, ν) bracket-free if there are no positions j, k ∈ (N+∪{−∞,∞})
with j < i < k and ν(j, k). This requirement for i is stronger than being a
top-level position because j and k can be −∞ or∞, thus also preventing i from
being in the scope of pending calls and pending returns. Only for well-matched
nested ω-words, i.e., nested ω-words without pending edges, the two properties
coincide.

We consider the series S assigning to every nested ω-word nw the greatest
accumulation point of the ratio of bracket-free positions in finite prefixes of nw .
To model S, we use the ω-valuation monoid D = (R̄, sup, lim avg,−∞). If we
want to analyze this property for well-matched nested ω-words only, then the
automaton A1 given in Figure 4.1 recognizes S. We denote the call transitions
with 〈Σ and the return transitions with Σ〉/q, where q has to be the state
where the last open call was encountered. The weights 0 and 1 are given in
brackets.

The automaton A1 starts in q0 and the first position is always a top-level
position. In a well-matched nested ω-word, every call of the form 〈Σ that is
read in q0 is eventually answered by a return of the form Σ〉/q0. It follows
that we visit q0 infinitely often at a top-level position. Then, by the definition
of top-level positions, the internal transitions in q0 and both the calls going
from q0 to q1 and the returns going from q1 to q0 are top-level positions (and
thus bracket-free). That is why we give these transitions the weight 1. All
other transitions are not top-level and get the weight 0. Furthermore, if we
eventually read no more calls, then q1 is only visited finitely often, otherwise q1

is also visited infinitely often at top-level positions (which are exactly the call
positions going from q0 to q1). Therefore, the set of accepting sets of states of
A1 has to be F1 = {{q0}, {q0, q1}}.

In the general case, including pending edges, the automaton A2 given in
Figure 4.2 recognizes S. It works in part as the automaton A1 but has to
handle pending calls and pending returns as follows: Let nw be a nested ω-
word. As before, A2 is in q0 whenever the previous and the next transition are
bracket-free, that is, there are no calls open and in the remainder of nw there

48 CHAPTER 4. WEIGHTED AUTOMATA FOR NESTED ω-WORDS

q0 q1

Σ(1) Σ(0), 〈Σ(0),Σ〉/q1(0)

〈Σ(1)

Σ〉/q0(1)

Figure 4.1: The wsMNWA A1 of Example 4.2 for well-matched nested ω-words
with F1 = {{q0}, {q0, q1}}.

qp q0q2 q1

Σ(1) Σ(0), 〈Σ(0),Σ〉/q1(0)Σ(0),Σ〉/qp(0)

Σ〉/qp(1) 〈Σ(1)

Σ〉/q0(1)

Σ(0), 〈Σ(0),Σ〉/q2(0)

〈Σ(0)

Σ〉/qp(0)

Figure 4.2: The wsMNWA A2 of Example 4.2 also reading nested
ω-words with pending edges. The accepting set is given by F2 =
{{qp}, {q2, qp}, {q0, q1}, {q0}, {q1}}.

are no pending returns. Also as before, the automaton is in q1 whenever there
are calls open and no pending returns left. The automaton is in qp whenever
there are no calls open but there are pending returns left. And finally, A2 is in
q2 whenever there are calls open and pending returns left.

At the start and whenever reading a pending return of nw , A2 guesses
whether there is another pending return left in the remainder of nw . If yes,
it stays in qp. If not, it goes to q0. The correctness of this guess is ensured
by the fact that the automaton cannot read pending returns in q0 and the
following observation. If A2 stays in qp, although there are no pending returns
left, then this run will never reach q0 and thus the weight of this run is 0, which
is smaller than or equal to the weight of the run where we switched to q0 at
the last pending return.

If nw has infinitely many pending returns, then the automaton needs to
have an accepting run (with weight 0) that never reaches q0, thus, we add {qp}
and {q2, qp} to F2. Note that in this case, nw can have no pending calls.

If nw has finitely many pending returns and at least a pending call, then
A2 will stay forever in q1 after reading the first pending call, thus, we also
add {q1} to F2. As this run yields the weight 0, due to the lim avg, we could
similarly add {q2} to F2. �

4.3. REGULARITY OF VALUATION MONOIDS 49

4.3 Regularity of Valuation Monoids

Valuation monoids are a very general structure. In the following, we study a
natural condition on the valuation function, called regularity, that will ensure
some basic compatibility of the weighted logic and weighted automata over
valuation monoids. Intuitively, an ω-valuation monoid D is called regular if all
constant series of D are regular.

The principal notion of regularity of a weight structure can also be applied
to other relational structures. Especially in the context of graphs, this opens
some interesting questions even for semirings, see Section 6.2.4 for a related
discussion.

Definition 4.6. An ω-valuation monoid D is called wsMNWA-regular, short
regular, if for any non-empty alphabet Σ, we have: For each d ∈ D, there
exists a wsMNWA Ad with JAdK(nw) = d for all nested ω-words nw over Σ.
An ω-pv-monoid PD is called regular if its underlying ω-valuation monoid is
regular.

For example, the ω-pv-monoids of Example 4.1 incorporating computation
of average and discounting are regular, which is shown as follows.

Analogously to Droste and Meinecke [DM12], we can prove that every
left-distributive ω-pv-monoid (cf. Section 3.2) is regular. Indeed, if PD is left-
Val-distributive, then for every d, we can construct a deterministic automaton
Ad assigning the weight d at every position for every word. Hence, JAdK =
Valω(d, d, ...) = d �Valω(1, 1...) = d � 1 = d, using the axioms of the pv-monoid.
If PD is left-multiplicative (note that nested words can be pointed with their
first symbol being the root), then for every d, we can construct a deterministic
automaton Ad assigning the weight d at the first position and 1 at every
following position for every word. Therefore, we get JAdK = Valω(d, 1, 1, ...) =
d �Valω(1, 1, ...) = d � 1 = d.

Another general property yielding regularity is the following. We call PD
ω-regular if for all d ∈ D, there exists an ultimately periodic sequence (di)i∈N
such that d = Valω((di)i∈N).

Proposition 4.7. Every ω-regular product ω-valuation monoid PD is regular.

Proof. For all d, we can construct an automaton Ad simulating the encountered
weights of the sequence (di)i∈N for every nested ω-word. The periodicity of
this sequence ensures that we only need a finite number of states.

In the following, we study closure properties of (nested ω-word-) series.
As usual, we extend the operation + and � to series S, T : NWω(Σ)→ D by
means of pointwise definitions as follows:

(S ? T)(nw) = S(nw) ? T (nw) for each nw ∈ NWω(Σ), ? ∈ {+, �} .

50 CHAPTER 4. WEIGHTED AUTOMATA FOR NESTED ω-WORDS

Proposition 4.8. The sum of two regular series over NWω(Σ) is again regular.

Proof. We use a standard disjoint union of two wsMNWA accepting the given
series to obtain a wsMNWA for the sum.

Now, we introduce a very special class of series, the regular step function,
which will play a critical role in our following proofs. Regular step function
are series that only assume finitely many different values.

Let PD be an ω-pv-monoid. We let d ∈ D also denote the constant series
with value d, i.e., JdK(nw) = d for each nw ∈ NWω(Σ). For L ⊆ NWω(Σ), we
define the characteristic series 1L : NWω(Σ) → D by letting 1L(nw) = 1 if
nw ∈ L, and 1L(nw) = 0 otherwise. We call a series S a regular step function
if

S =

k∑
i=1

di � 1Li , (4.2)

where Li are regular languages of nested ω-words forming a partition of
NWω(Σ) and di ∈ D for each i ∈ {1, ..., k}; so S(nw) = di iff nw ∈ Li, for each
i ∈ {1, ..., k}.

In the following, we define automata constructions, which will be used in
the proofs of this section. Let the following wsMNWA operate over Σ and an
ω-pv-monoid PD.

Definition 4.9. (a) Let A = (Q, q0, δ,F) with δ = (δcall, δint, δret) be a de-
terministic sMNWA. We define the wsMNWA A1 = (Q, {q0}, δ1,F) with
δ1 = (δ1call, δ

1

int, δ
1

ret) as follows

δ1call(q1, a, q2) =

{
1 , if δcall(q1, a) = q2

0 , otherwise ,

δ1int(q1, a, q2) =

{
1 , if δint(q1, a) = q2

0 , otherwise ,

δ1ret(q1, q2, a, q3) =

{
1 , if δret(q1, q2, a) = q3

0 , otherwise .

(b) Let A = (QA, IA, δ
A,FA) and B = (QB, IB, δ

B,FB) be two wsMNWA. We
define the product automaton P of A and B as P = (QA×QB, IA×IB, δ,F)
where δ = (δcall, δint, δret) and set

δcall((q1, p1), a, (q2, p2)) = δAcall(q1, a, q2) � δBcall(p1, a, p2) ,

δint((q1, p1), a, (q2, p2)) = δAint(q1, a, q2) � δBint(p1, a, p2) ,

δret((q1, p1), (q2, p2), a, (q3, p3)) = δAret(q1, q2, a, q3) � δBret(p1, p2, a, p3) .

Using the projections πQA : QA ×QB → QA and πQB : QA ×QB → QB
of QA ×QB on QA and QB, respectively, we construct F as follows:

F = {F | πQA(F) ∈ FA and πQB(F) ∈ FB} .

4.3. REGULARITY OF VALUATION MONOIDS 51

Remark 1. (a) Since A is deterministic, we get for all nw ∈ NWω(Σ):

JA1K(nw) =

{
1 , if nw ∈ L(A)
0 , otherwise

}
= 1L(A)(nw) .

(b) The combination of the acceptance conditions (see [DR06] and [DM12])
is equivalent to forcing for all k ≥ 0, qi ∈ QA, pi ∈ QB:

{(q1, p1), ..., (qk, pk)} ∈ F⇔ {q1, ..., qk} ∈ FA and {p1, ..., pk} ∈ FB .

Note that in the sets {q1, ..., qk}, resp. {p1, ..., pk}, some of the elements
may be equal, hence these sets could have smaller size than k.

Proposition 4.10. Let PD be a regular ω-pv-monoid. Then each regular step
function S : NWω(Σ)→ D is regular. Furthermore, the set of all regular step
functions is closed under + and �.

Proof. First, let d ∈ D and L ⊆ NWω(Σ) be a regular language. We show
that d � 1L is regular. Let A = (Q, q0, δ,F) be a deterministic sMNWA with
L(A) = L. We construct the wsMNWA A1 (definition above) with JA1K =
1L(A) = 1L. Since PD is regular, there exists a wsMNWA C = (QC , IC , δC ,FC)
with JCK(nw) = d for all nw ∈ NWω(Σ). We construct the product automaton
P of A1 and C. Then A1 has at most one run on every nested ω-word.
Furthermore, a run of P is accepted iff its projections are accepted both on
A1 and on C. Therefore, the following holds

JPK(nw) =

{
d , if nw ∈ L(A)
0 , otherwise

= d � 1L(nw) .

Now, since any regular step function is a sum of series of the form d � 1L with
L regular, by the argument above and Proposition 4.8, S is regular.

For the second part, let S =
∑k

i=1 di �1Li and T =
∑`

j=1 d
′
j �1L′j be regular

step functions where (Li) and (L′j) are forming partitions. Then

S + T =
k∑
i=1

∑̀
j=1

(di + d′j) � 1Li∩L′j ,

S � T =
k∑
i=1

∑̀
j=1

(di � d′j) � 1Li∩L′j .

Since (Li ∩ L′j) is also a partition and regular nested ω-word languages are
closed under intersection, S + T and S � T are regular step functions.

52 CHAPTER 4. WEIGHTED AUTOMATA FOR NESTED ω-WORDS

Next, we show that regular series are closed under projections. Let D
be an ω-valuation monoid. Consider a mapping h : Σ → Γ between two
alphabets. We can extend h to a function h : NWω(Σ)→ NWω(Γ) as follows.
Given a nested ω-word nw = (w, ν) = (a1a2..., ν) ∈ NWω(Σ), we define
h(nw) = h((a1a2..., ν)) = (h(a1)h(a2)..., ν) . Let S : NWω(Σ)→ D be a series.
Then we define h(S) : NWω(Γ)→ D for each nv ∈ NWω(Γ) by

h(S)(nv) =
∑

(S(nw) | nw ∈ NWω(Σ), h(nw) = nv) .

Proposition 4.11. Let D be an ω-valuation monoid, S : NWω(Σ) → D
regular, and h : Σ→ Γ. Then h(S) : NWω(Γ)→ D is regular.

Proof. We follow an idea of [DV12]. Let A = (Q, I, δ,F) be a wsMNWA over
D and Σ with JAK = S and δ = (δcall, δint, δret). We construct the wsMNWA
A′ = (Q′, I ′, δ′,F′) over D and Γ as follows:

• Q′ = Q× Σ, I ′ = I × {a0} for some fixed a0 ∈ Σ,

• for all k ∈ N+ and for all ai ∈ Σ for i ∈ {1, ..., k}

{(q1, a1), ..., (qk, ak)} ∈ F′ ⇔ {q1, ..., qk} ∈ F ,

• δ′ = (δ′call, δ
′
int, δ

′
ret) and for every b ∈ Γ and (q, a), (q′, a′), (q′′, a′′) ∈ Q′,

we define:

δ′call((q, a), b, (q′, a′)) =

{
δcall(q, a

′, q′) , if b = h(a′)
0 , otherwise ,

δ′int((q, a), b, (q′, a′)) =

{
δint(q, a

′, q′) , if b = h(a′)
0 , otherwise ,

δ′ret((q, a), (q′, a′), b, (q′′, a′′)) =

{
δret(q, q

′, a′′, q′′) , if b = h(a′′)
0 , otherwise .

Analogously to [DM12] and [DP14b], this implies that for every run r =
(q0, q1, ...) of A on nw, there exists exactly one run r′ = ((q0, a0), (q1, a1), ...)
of A′ on nv with h(nw) = nv and wtA(r, nw)=wtA′(r

′, nv). In contrast to
[DM12] and [DP14b], we have to check the acceptance condition of stair Muller
NWA. Since h is respecting the matching relation, nv has the same top-level
positions as nw. Hence, r′ is accepted if and only if q0 ∈ I and Qt∞(r) ∈ F′,
i.e., if and only if r is accepted. This yields JA′K(nv) = h(JAK)(nv). Therefore,
h(S) = h(JAK) = JA′K is regular.

4.4 Weighted MSO-Logic for Nested Words

In the following, we study the instance of the weighted MSO logic for product
valuation monoids of Section 3.3 for nested ω-words. In this case, the underlying
unweighted fragment is the MSO logic for nested words introduced by Alur
and Madhusudan [AM09].

4.4. WEIGHTED MSO-LOGIC FOR NESTED WORDS 53

JdKV(nw, γ) = d for all d ∈ D

JβKV(nw, γ) =

{
1 , if (nw, γ) |= β
0 , otherwise

Jϕ⊕ ψKV(nw , γ) = JϕKV(nw , γ) + JψKV(nw , γ)

Jϕ⊗ ψKV(nw , γ) = JϕKV(nw , γ) � JψKV(nw , γ)

J
⊕

x ϕKV(nw , γ) =
∑
i∈N+

(JϕKV∪{x}(nw , γ[x→ i]))

J
⊕

X ϕKV(nw , γ) =
∑
I⊆N+

(JϕKV∪{X}(nw , γ[X → I]))

JValx ϕKV(nw , γ) = Valω((JϕKV∪{x}(nw , γ[x→ i]))i∈N+)

Figure 4.3: Semantics of MSO(PD) for nested ω-words.

Definition 4.12 (Syntax). The weighted monadic second order logic for nested
ω-words MSO(PD,NW(Σ)) is given by the following syntax

β ::= Laba(x) | call(x) | ret(x) |x ≤ y | ν(x, y) |x ∈ X | ¬β |β ∨ β | ∃x.β | ∃X.β
ϕ ::= d | β | ϕ⊕ ϕ | ϕ⊗ ϕ |

⊕
x ϕ |

⊕
X ϕ | Valx ϕ

where d ∈ D, a ∈ Σ, and x, y, X are first resp. second order variables. Then,
as before, we call such ϕ weighted formulas and such β boolean formulas.

The set of all positions of nw ∈ NWω(Σ) is N+. We define valid nested
ω-words (nw, γ) over ΣV , with an assignment γ of variables V containing
free(ϕ) as in Section 2.3. Note that an encoding of a nested ω-word uses the
same matching relation ν.

Then, the semantics of ϕ (cf. Section 3.3) is a function JϕKV : NWω(ΣV)→
D defined for valid (nw , γ) inductively as in Figure 4.3. For all not valid nested
ω-words, JϕKV yields 0. For a sentence ϕ, we have JϕK : NWω(Σ)→ D.

Clearly, every boolean formula β ∈ MSO(PD,NW(Σ)) can be interpreted
as an unweighted MSO-formula ψ ∈ MSO(NW(Σ)) with JβK = 1L(ψ) since JβK
only yields the values 0 and 1.

Example 4.3. We continue Example 4.2, where we gave an automaton A2

assigning to every nested ω-word nw the greatest accumulation point of the
ratio of bracket-free positions in finite prefixes of nw . We extend the valuation
monoid D of Example 4.2 to the pv-monoid PD′ = (R̄, sup, lim avg,+,−∞, 0)

54 CHAPTER 4. WEIGHTED AUTOMATA FOR NESTED ω-WORDS

and define the following boolean formulas

pcall(x) = call(x) ∧ ∀w.¬ν(x,w),

pret(x) = ret(x) ∧ ∀u.¬ν(u, x),

x < y < z = ¬(y ≤ x) ∧ ¬(z ≤ y),

toplevel(y) = ∀x∀z.¬(x < y < z ∧ ν(x, z)) .

Then we can characterize all bracket-free positions with the boolean formula

bfree(y) = toplevel(y) ∧ ∀x(¬(x < y ∧ pcall(x)) ∧ ¬(y < x ∧ pret(x))) .

Finally, we define (using 0, 1 ∈ R̄)

ϕ = Valy((bfree(y)⊗ 1)⊕ 0) .

We can conclude that for all nested ω-words nw , JϕK(nw) describes the greatest
accumulation point of the ratio of bracket-free positions in finite prefixes of
nw , thus JA2K = JϕK. Note that the automaton yields runs over the weights 0
and 1, but the corresponding neutral elements of PD′ are −∞ and 0 making
the conversion using the real values 0 and 1 necessary. �

Given ϕ ∈ MSO(PD,NW(Σ)) and a valid (nw , γ) ∈ NWω(ΣV), we refer
with (nw , γ�free(ϕ)) ∈ NWω(Σfree(ϕ)) to the correspondent nested ω-word where
the assignment function is restricted to free(ϕ). Analogously to [DG07] and
[DP14b], we can show by Lemma 3.5 that JϕKV(nw , γ) = JϕK(nw , γ�free(ϕ))
for each valid (nw , γ) ∈ NWω(ΣV). Furthermore, by a standard induction on
the structure of ϕ analogously to Proposition 3.3 of [DG07], we can show the
following.

Lemma 4.13. Let ϕ ∈ MSO(PD,NW(Σ)) and let V be a finite set of variables
with free(ϕ) ⊆ V. Then JϕK is regular iff JϕKV is regular.

In order to obtain a Büchi-like theorem for weighted automata, it is necessary
to restrict the weighted MSO logic (cf. [DG07]). Therefore, in the following,
we introduce and study suitable fragments of MSO(PD,NW(Σ)) following our
approach of Section 3.4. Since sMNWA can be determinized, in the following,
we do not have to restrict the unweighted fragment to first order formulas as
done in Section 3.4, but can take the full boolean fragment into account.

Definition 4.14. We call a formula ϕ almost boolean if it is built up inductively
from the following grammar

ϕ ::= d | β | ϕ⊕ ϕ | ϕ⊗ ϕ

where d ∈ D and β is a boolean formula.

4.4. WEIGHTED MSO-LOGIC FOR NESTED WORDS 55

Proposition 4.15. (a) If ϕ ∈ MSO(PD,NW(Σ)) is an almost boolean for-
mula, then JϕK is a regular step function.

(b) For every regular step function S : NWω(Σ)→ D, there exists an almost
boolean sentence ϕ with S = JϕK.

Proof. (a) We use induction on the structure of an almost boolean formula.
If ϕ = d ∈ D, then JϕK = d = d � 1NWω(Σ) is a regular step function. If
ϕ is boolean, we can interpret ϕ as unweighted formula with JϕK = 1L(ϕ).
Then L(ϕ) is a regular language by Theorem 4.3. Hence, JϕK is a regular step
function.

For the induction step, we assume that JϕK and JψK are regular step
functions. Then Jϕ⊕ψK and Jϕ⊗ψK are regular step functions by Proposition
4.10.

(b) Let S : NWω(Σ)→ D be a regular step function, so S =
∑k

i=1 di � 1Li
with di ∈ D and for each i ∈ {1, ..., k}, Li is a regular language of nested ω-
words and (Li) is a partition of NWω(Σ). By Theorem 4.3, for every language
Li, there exists an unweighted sentence ψi with L(ψi) = Li. Then there exist
weighted boolean sentences ϕi with JϕiK = 1L(ψi).

Then, ϕ =
k
⊕
i=1

(di⊗ϕi) is our required sentence because the following holds:

JϕK(nw) = J
k
⊕
i=1

(di ⊗ ϕi)K(nw)

=
k∑
i=1

(JdiK(nw) � JϕiK(nw))

=

k∑
i=1

(di � 1Li(nw)) = S(nw) .

As in Section 3.4, but using boolean formulas instead of FO-boolean
formulas, we get the following fragments.

Definition 4.16. Let ϕ ∈ MSO(PD,NW(Σ)). We denote by const(ϕ) the set
of all elements of PD occurring in ϕ. We call ϕ

1. strongly-⊗-restricted if for all subformulas ψ ⊗ θ of ϕ:

ψ and θ are almost boolean or ψ is boolean or θ is boolean.

2. ⊗-restricted if for all subformulas ψ ⊗ θ of ϕ:

ψ is almost boolean or θ is boolean.

3. commutatively-⊗-restricted if for all subformulas ψ ⊗ θ of ϕ:

ψ is almost boolean or const(ψ) and const(θ) commute.

4. Val-restricted if for all subformulas Valx ψ of ϕ, ψ is almost boolean.

56 CHAPTER 4. WEIGHTED AUTOMATA FOR NESTED ω-WORDS

We call a formula of MSO(PD,NW(Σ)) syntactically restricted if it is both
Val-restricted and strongly-⊗-restricted. Note that every subformula of a
syntactically restricted formula is syntactically restricted itself.

Now, similarly to Theorem 3.6, we get the following result, which shows
that under suitable assumptions on the ω-pv-monoid PD, particular classes of
MSO(PD,NW(Σ))-formulas have the same expressive power. Note that in the
proof of Theorem 3.6 the restriction to FO-boolean instead of boolean formulas
is not critical. A full proof of this theorem for nested words can be found in
[DD17].

Theorem 4.17. (a) Let PD be left-distributive and ϕ ∈ MSO(PD,NW(Σ))
be ⊗-restricted. Then there exists a strongly-⊗-restricted formula ϕ′ ∈
MSO(PD,NW(Σ)) with JϕK = Jϕ′K. Moreover, if ϕ is additionally Val-
restricted, then ϕ′ can be chosen to be Val-restricted.

(b) Let PD be a cc-ω-valuation semiring and let ϕ ∈ MSO(PD,NW(Σ)) be
commutatively-⊗-restricted. Then there exists a strongly-⊗-restricted
formula ϕ′ ∈ MSO(PD,NW(Σ)) with JϕK = Jϕ′K. Moreover, if ϕ is
additionally Val-restricted, then ϕ′ can be chosen to be Val-restricted.

Similarly to Corollary 3.7, we get the following corollary.

Corollary 4.18. Let PD be a commutative cc-ω-valuation semiring and ϕ ∈
MSO(PD,NW(Σ)). Then, there exists a formula ϕ′ ∈ MSO(PD,NW(Σ)) with
Jϕ′K = JϕK such that for all subformulas of the form ψ ⊗ θ, each of ψ and θ is
boolean or a constant.

Note that this also follows from a slightly modified proof of Theorem 4.23,
but the Transformation Theorem gives direct and efficient conversions of the
formulas.

4.5 Characterization of Recognizable Series

In this section, we give our main result of this chapter on the expressive
equivalence of weighted stair Muller nested word automata and our different
fragments of weighted MSO logic (Theorem 4.23). We begin with the required
closure properties.

Lemma 4.19. Let ϕ and ψ be two formulas of MSO(PD,NW(Σ)) such that
JϕK and JψK are regular. Then Jϕ⊕ ψK is regular.

Proof. We put V = free(ϕ) ∪ free(ψ). Then Jϕ⊕ ψK = JϕKV + JψKV is regular
by Proposition 4.8 and Lemma 4.13.

Lemma 4.20. Let PD be regular. Let ϕ⊗ψ be a subformula of a syntactically
restricted formula θ of MSO(PD,NW(Σ)) such that JϕK and JψK are regular.
Then Jϕ⊗ ψK is regular.

4.5. CHARACTERIZATION OF RECOGNIZABLE SERIES 57

Proof. Since θ is strongly-⊗-restricted, both ϕ and ψ are almost boolean or
one of both formulas is boolean.

Case 1: Let us assume ϕ and ψ are almost boolean. Then the formula
ϕ⊗ ψ is also almost boolean. Hence, Jϕ⊗ ψK is regular by Proposition 4.15
(a) and Proposition 4.10.

Case 2: Let ϕ be boolean. We have to construct a wsMNWA recognizing
ϕ⊗ ψ. Since ϕ is boolean, we can interpret ϕ as an unweighted MSO-formula
and by Theorem 4.3 there exists a deterministic sMNWA A = (Q, q0, δ,F) with
L(A) = L(ϕ). For this sMNWA A, we construct the wsMNWA A1 as specified
in Definition 4.9, and we obtain

JA1K = 1L(A) = 1L(ϕ) = JϕK .

Let B be a wsMNWA recognizing JψK. Note that A1 emerges from a
deterministic sMNWA and therefore itself has not more than one run for
every nested ω-word. Hence, analogously to the proof of Proposition 4.10, we
construct the product automaton of A1 and B recognizing Jϕ⊗ ψK.

Case 3: Let ψ be boolean. We can proceed analogously to Case 2. Alter-
natively, we could observe that Jϕ⊗ ψK = Jψ ⊗ ϕK since ψ is boolean and then
apply Case 2.

Lemma 4.21. Let ϕ be a formula of MSO(PD,NW(Σ)) such that JϕK is
regular. Then J

⊕
x ϕK and J

⊕
X ϕK are regular.

Proof. We follow [DP14b] and [DG07]. Let X ∈ {x,X} and V = free(
⊕
X ϕ).

We define π : NWω(ΣV∪{X}) → NWω(ΣV) by π(nw, γ) = (nw, γ�V) for any
(nw, γ) ∈ NWω(ΣV∪{X}). Then for (nw, γ) ∈ NWω(ΣV), the following holds

J
⊕

X ϕK(nw, γ) =
∑
I⊆N+

JϕKV∪{X}(nw, γ[X → I])

=
∑

(nw,γ′)∈π−1(nw,γ)

JϕKV∪{X}(nw, γ′)

= π(JϕKV∪{X})(nw, γ) .

Analogously, we show that J
⊕

x ϕK(nw, γ) = π(JϕKV∪{x})(nw, γ) holds for all
(nw, γ) ∈ NWω(ΣV). By Lemma 4.13, JϕKV∪{X} is regular because free(ϕ) ⊆
V ∪ {X}. Then J

⊕
X ϕK is regular by Proposition 4.11.

Lemma 4.22 (Closure under restricted Valx). Let ϕ be an almost boolean
formula of MSO(PD,NW(Σ)). Then JValx ϕK is regular.

Proof. We use ideas of Droste and Gastin [DG07] and the extensions in [DM12]
and [DP14b]. We define V = free(Valx ϕ) and W = free(ϕ) ∪ {x}. By Propo-
sition 4.15, JϕK is a regular step function. Write JϕK =

∑k
j=1 dj � 1Lj where

58 CHAPTER 4. WEIGHTED AUTOMATA FOR NESTED ω-WORDS

Lj is a regular language of nested ω-words for all j ∈ {1, ..., k} and (Lj) is a
partition of NWω(ΣW). By the semantics of the universal quantifier, we get

JValx ϕK(nw, γ) = Valω((JϕKW(nw, γ[x→ i]))i∈N+)

= Valω((dg(i))i∈N+),

where g(i) =

1 , if (nw, γ[x→ i]) ∈ L1

...
k , if (nw, γ[x→ i]) ∈ Lk

, for all i ∈ N+ . (4.3)

We use this property (4.3) and divide the proof into two parts: First, we
encode the information to which language (nw, γ[x→ i]) belongs in a specially
extended language L̃ and construct an MSO-formula for this language. Then
by Theorem 4.3, we get an sMNWA recognizing L̃. In the second part, we add
the weights di to this automaton and return to our original alphabet.

Part 1: We define the extended alphabet Σ̃ = Σ× {1, ..., n}, so:

NWω(Σ̃V) = {(nw, g, γ) | (nw, γ) ∈ NWω(ΣV) and g ∈ {1, ..., n}N+} .

We define the languages L̃, L̃j , L̃
′
j ⊆ NWω(Σ̃V) as follows:

L̃ =

 (nw, g, γ)

∣∣∣∣∣∣∣
(nw, γ) ∈ NWω(Σ̃V) is valid and

for all i ∈ N+, j ∈ {1, ..., k} :

g(i) = j ⇒ (nw, γ[x→ i]) ∈ Lj

 ,

L̃j =

{
(nw, g, γ)

∣∣∣∣∣ (nw, γ) ∈ NWω(Σ̃V) is valid and

for all i ∈ N+ : g(i) = j ⇒ (nw, γ[x→ i]) ∈ Lj

}
,

L̃′j = { (nw, g, γ) | for all i ∈ N+ : g(i) = j ⇒ (nw, γ[x→ i]) ∈ Lj } .

Then L̃ =
⋂k
j=1 L̃j . Hence, in order to show that L̃ is regular, it suffices to show

that each L̃j is regular. By a standard procedure, compare [DG07], we obtain a
formula ϕ̃j ∈ MSO(NW(Σ̃V)) with L(ϕ̃j) = L̃′j . Therefore, by Theorem 4.3, L̃′j
is regular. Since regular nested ω-word languages are closed under intersection,
this language intersected with all valid (nw, g, γ), L̃j = L̃′j ∩NV , is regular too.

So, L̃ is regular. Hence, there exists a deterministic sMNWA recognizing L̃.

Part 2: Let Ã = (Q, I, δ̃,F) be an sMNWA recognizing L̃. Now, we
construct the wsMNWA A = (Q, I, δ,F) over ΣV by adding to every transition
of Ã with g(i) = j the weight dj .

That is, we keep the states, initial states, and sets of accepting states, and

4.5. CHARACTERIZATION OF RECOGNIZABLE SERIES 59

for δ = (δcall, δint, δret) and all q, q′, p ∈ Q and (a, j, s) ∈ Σ̃V , we define

δcall(q, (a, s), q
′) =

{
dj , if (q, (a, j, s), q′) ∈ δ̃call

0 , otherwise ,

δint(q, (a, s), q
′) =

{
dj , if (q, (a, j, s), q′) ∈ δ̃int

0 , otherwise ,

δret(q, p, (a, s), q
′) =

{
dj , if (q, p, (a, j, s), q′) ∈ δ̃ret

0 , otherwise .

Since Ã is deterministic, for every (nw, g, γ) ∈ L̃, there exists exactly one
accepted run r̃ of Ã. On the other hand, for every (nw, g, γ) /∈ L̃, there
is no accepted run of Ã. Since (Lj) is a partition of NWω(ΣW), for every
(nw, γ) ∈ NWω(ΣV), there exists exactly one g with (nw, g, γ) ∈ L̃. Thus,
every (nw, γ) ∈ NWω(ΣV) has exactly one run r of A determined by the run r̃
of (nw, g, γ) of Ã. By definition of A and L̃, the following holds for all i ∈ N+

g(i) = j ⇒ wtA(r, (nw, γ), i) = dj ∧ (nw, γ[x→ i]) ∈ Lj .

By Formula (4.3), we obtain

JϕKW(nw, γ[x→ i]) = dj = wtA(r, (nw, γ), i) .

Hence, for the behavior of the automaton A the following holds

JAK(nw, γ) =
∑

r′∈acc(A)

wtA(r′, (nw, γ))

= Valω((wtA(r, (nw, γ), i))i∈N+)

= Valω((JϕKW(nw, γ[x→ i]))i∈N+)

= JValx ϕK(nw, γ) .

Thus, A recognizes JValx ϕK.

This provides us with the means to prove the following main theorem of
this chapter.

Theorem 4.23. Let PD be a regular ω-pv-monoid and S : NWω(Σ) → D a
series.

1. The following are equivalent:

(i) S is regular.

(ii) S = JϕK for a syntactically restricted sentence ϕ of MSO(PD,NW(Σ)).

2. Let PD be left-distributive. Then the following are equivalent:

(i) S is regular.

60 CHAPTER 4. WEIGHTED AUTOMATA FOR NESTED ω-WORDS

(ii) S = JϕK for a Val-restricted and ⊗-restricted sentence ϕ of
MSO(PD,NW(Σ)).

3. Let PD be cc-ω-valuation semiring. Then the following are equivalent:

(i) S is regular.

(ii) S = JϕK for a Val-restricted and commutatively-⊗-restricted sentence
ϕ of MSO(PD,NW(Σ)).

Proof. We prove the direction ‘(ii)⇒ (i)’ for all three statements as follows. By
Theorem 4.17, we may assume that ϕ is syntactically restricted. By induction
on the structure of ϕ, we show that JϕK is regular. If ϕ is almost boolean,
regularity of JϕK follows from Propositions 4.15 (a) and 4.10. To deal with ⊕,
⊗,
⊕

, and Valx, we apply Lemmata 4.19, 4.20, 4.21, and 4.22, respectively.
The converse ‘(i)⇒ (ii)’ for all three statements is proven by the following

construction.
Let A = (Q, I, δ,F) be the wsMNWA over PD with JAK = S. We construct

a Val-restricted and strongly-⊗-restricted MSO(PD,NW(Σ))-sentence ϕ with
JϕK = JAK. We follow the ideas of [DG07, DP14b, DR06] and simulate the
behavior of the automaton on an arbitrary nested ω-word nw step by step with
a formula to obtain JϕK(nw) = JAK(nw).

In the formula, we use the following second order variables Xcall
p,a,q, X

int
p,a,q,

and Xret
p,r,a,q, where a ∈ Σ and p, q, r ∈ Q. Let

V = {Xcall
p,a,q, X

int
p,a,q, X

ret
p,r,a,q | a ∈ Σ, p, q, r ∈ Q} .

Since Σ and Q are finite, there is an enumeration X̄ = (X1, .., Xm) of all
variables of V. We use the following classical abbreviations for unweighted
MSO-formulas:

(β ∧ ϕ) = ¬(¬β ∨ ¬ϕ) ,

(β → ϕ) = (¬β ∨ ϕ) ,

(∀x.ϕ) = ¬(∃x.¬ϕ) ,

(y = x) = (x ≤ y) ∧ (y ≤ x) ,

(y = x+ 1) = (x ≤ y) ∧ ¬(y ≤ x) ∧ ∀z.(z ≤ x ∨ y ≤ z) .

Also, we use the following shorthands for unweighted formulas of MSO(NW(Σ)):

min(x) = ∀y.(x ≤ y) ,

int(x) = ¬call(x) ∧ ¬ret(x) ,

pcall(x) = call(x) ∧ ¬∃y.ν(x, y) ,

pret(x) = ret(x) ∧ ¬∃y.ν(y, x) .

4.5. CHARACTERIZATION OF RECOGNIZABLE SERIES 61

Furthermore, we use the following almost boolean formula of MSO(PD,NW(Σ))

((x ∈ X)→ d) = (x /∈ X)⊕ ((x ∈ X)⊗ d) ,

with the semantics

J(x ∈ X)→ dK(nw, γ) = Jx /∈ X ⊕ ((x ∈ X)⊗ d)K(nw, γ)

= Jx /∈ XK(nw, γ) + (Jx ∈ XK(nw, γ) � d)

=

{
d , if γ(x) ∈ γ(X)
1 , otherwise .

(4.4)

We define the unweighted formula ψ to characterize all accepted runs

ψ = Partition(X̄) ∧ Label ∧ Init ∧ Trans1 ∧ Trans2 ∧ Final .

Here, the subformula Partition will enforce the sets X1 to Xm to be a partition
of all positions. Label controls the symbols of the run, Init the initial condition,
Trans1 and Trans2 the transitions, and Final the acceptance conditions of
the run. These formulas are similar to those of [DP14b] and included for the
convenience of the reader:

Partition((X1, ..., Xm)) = ∀x.
m∨
i=1

[
(x ∈ Xi) ∧

∧
i 6=j
¬(x ∈ Xj)

]
,

Label =
∧

p,q,r∈Q, a∈Σ

∀x.
[
(x ∈ Xcall

p,a,q → (Laba(x) ∧ call(x)))

∧ (x ∈ X int
p,a,q → (Laba(x) ∧ int(x)))

∧ (x ∈ Xret
p,r,a,q → (Laba(x) ∧ ret(x)))

]
,

Init = ∃y.
[

min(y) ∧
∨

p∈I, q∈Q
a∈Σ

(y ∈ Xcall
p,a,q ∨ y ∈ X int

p,a,q ∨ y ∈ Xret
p,p,a,q)

]
,

Trans1 = ∀x∀y.
[
y = x+ 1→

∨
p,q,r,s,t∈Q
a,b∈Σ

(x ∈ Xcall
p,a,q ∨ x ∈ X int

p,a,q ∨ x ∈ Xret
p,r,a,q)

∧ (y ∈ Xcall
q,b,t ∨ y ∈ X int

q,b,t ∨ y ∈ Xret
q,s,b,t)

]
,

Trans2 = ∀x∀y.
[
(ν(x, y)→

∨
p,q,r,s∈Q
a,b∈Σ

(x ∈ Xcall
p,a,q ∧ y ∈ Xret

r,p,b,s))

∧ (pcall(x)→
∨
p,q∈Q
a∈Σ

(x ∈ Xcall
p,a,q))

∧
(
(pret(x) ∧min(y))→

∨
p,q,r,s,t∈Q
a,b∈Σ

(x ∈ Xret
p,r,a,q

∧ (y ∈ Xcall
r,b,t ∨ y ∈ X int

r,b,t ∨ y ∈ Xret
r,s,b,t))

)]
.

62 CHAPTER 4. WEIGHTED AUTOMATA FOR NESTED ω-WORDS

A difference is found in Final , where we have to check the stair Muller accep-
tance. For this, we need to characterize top-level positions. We define

toplevel(y) = ∀u∀w[ν(u,w)→ (w ≤ y ∨ y ≤ u)] .

Using toplevel, we characterize whether a state is accepting by the formula

q ∈ Qt∞ = ∀x∃y.
(
(y > x) ∧

∨
p,r∈Q,a∈Σ

(y ∈ Xcall
p,a,q ∨ y ∈ X int

p,a,q ∨ y ∈ Xret
p,r,a,q)

∧ toplevel(y)
)
.

This formula is satisfied if for every position, there exists a greater top-level
position at which the state q is visited. Then we define

Final =
∨
F∈F

(∧
q∈F

(q ∈ Qt∞) ∧
∧
q /∈F

¬(q ∈ Qt∞)
)
.

This formula describes the stair Muller acceptance condition. For a run
ρ = (q0, q1, ...) of A on nw, we define the (V, nw)-assignment γρ by

γρ(X
call
p,a,q) = {i | i is a call and (qi−1, ai, qi) = (p, a, q)} ,

γρ(X
int
p,a,q) = {i | i is an internal and (qi−1, ai, qi) = (p, a, q)} , (4.5)

γρ(X
ret
p,r,a,q) = {i | ν(j, i) for some 1 ≤ j < i and (qi−1, qj−1, ai, qi) = (p, r, a, q)

or ν(−∞, i) and (qi−1, q0, ai, qi) = (p, r, a, q)} .

Analogously to [DP14b] and [DR06], this implies that (nw, γρ) satisfies ψ iff ρ
is an accepted run of A. Furthermore, for every (nw, γ) ∈ NWω(Σ) satisfying
ψ, there exists an accepted run ρ of A with γ = γρ.

We interpret the unweighted formula ψ as a boolean weighted formula.
Hence, JψK(nw, γ) = 1 iff γ has an accepted run of A on nw.

Now, we add weights. We define

θ = ψ ⊗Valx ⊗
p,q∈Q, a∈Σ

(
(x ∈ Xcall

p,a,q → δcall(p, a, q))

⊗ (x ∈ X int
p,a,q → δint(p, a, q))

⊗ ⊗
r∈Q

(x ∈ Xret
p,r,a,q → δret(p, r, a, q))

)
.

Since the subformulas x ∈ X()
() → δ() of θ are almost boolean, the subfor-

mula Valx .(...) of θ is Val-restricted. Furthermore, ψ is boolean and so θ is
strongly-⊗-restricted. Thus, θ is a syntactically restricted formula.

Let (nw, γρ) be as mentioned before. Since X̄ is a partition, every position
i belongs to exactly one set γρ(Xk). Then, by formula (4.4), we obtain for the

4.5. CHARACTERIZATION OF RECOGNIZABLE SERIES 63

weight δi of the corresponding transition

q
⊗

p,q∈Q,a∈Σ

(
(x ∈ Xcall

p,a,q → δcall(p, a, q))

⊗ (x ∈ X int
p,a,q → δint(p, a, q))

⊗ ⊗
r∈Q

(x ∈ Xret
p,r,a,q → δret(p, r, a, q))

)y
(nw, γρ[x→ i])

= 1 � 1 � ... � 1 � δi � 1 � ... � 1

= δi .

By the definition of the weight functions for wsMNWA (4.1) and the assignment
γρ (4.5), we obtain that δi equals wtA(ρ, nw, i) and the following holds

JθK(nw, γρ) =

{
1 �Valω((δi)i∈N+) , if ρ is an accepted run
0 , otherwise

=

{
Valω((wtA(ρ, nw, i))i∈N+) , if ρ is an accepted run
0 , otherwise .

Finally, we define

ϕ =
⊕

X1

⊕
X2
...
⊕

Xm
θ .

This implies for all nw ∈ NWω(Σ):

JϕK(nw) = J
⊕

X1

⊕
X2
...
⊕

Xm
θK(nw)

=
∑

γ: (V,nw)-assignment

JθK(nw, γ)

=
∑

ρ: run of A
JθK(nw, γρ)

=
∑

ρ∈acc(A)

Valω((wtA(r, nw, i))i∈N+)

= JAK(nw) .

Therefore, ϕ is our required sentence with JAK = JϕK.

64 CHAPTER 4. WEIGHTED AUTOMATA FOR NESTED ω-WORDS

Chapter 5

Weighted Operator
Precedence Languages

In this chapter, we study operator precedence languages and weighted exten-
sions of them. The language class of operator precedence languages (OPL),
introduced by Floyd as a proper subclass of context-free languages in his semi-
nal work [Flo63], was inspired by the precedence of multiplicative operations
over additive ones in the execution of arithmetic expressions. Floyd extended
this notion to a relation on the whole input alphabet in such a way that it
could drive a deterministic parsing algorithm that builds the syntax tree of
any word that reflects the word’s semantics.

Due to the advent of LR grammars, which unlike OPL grammars generate
all deterministic CFL, the theoretical investigation of OPL has undergone
a pause until quite recently, when it was discovered that they significantly
generalize the well-known visibly pushdown languages (VPL). In the following
renewed studies of OPL, they were shown to be closed with respect to all major
operations like Boolean operations, concatenation, Kleene*, and renaming
[CM12]. Furthermore, OPL are also characterizable, besides Floyd’s original
grammar family, in terms of an appropriate class of pushdown automata and
in terms of a MSO logic which is a fairly natural but not trivial extension of
the previous MSO logics defined to characterize regular languages and VPL
[LMPP15].

Both language classes, OPL and VPL, can be intuitively called input-
driven, i.e., when and where an automaton uses pushes and pops depends
exclusively on the input alphabet and on the additional relation defined on
the alphabet. However, one major difference of OPL in comparison to VPL is
that the structure of a word of an OPL is not visible, e.g, OPL can include
unparenthesized arithmetic expressions where the precedence of multiplicative
operators over additive ones is explicit in the syntax trees but hidden in
the word itself (see Figure 5.1 for an example). Furthermore, OPL include
deterministic CFL that are not real-time [LMPP15], in particular, a run of an

65

66 CHAPTER 5. WEIGHTED OPL

OPA is potentially longer than the input word.

All in all, OPL enjoy many of the valuable properties of regular languages
but considerably extend their applicability by breaking the barrier of visibility
and real-time push-down recognition.

As remarked earlier, in another area of research, quantitative models of
systems are also greatly in demand. The result of this is a rich collection of
weighted logics, first studied by Droste and Gastin [DG07], associated with
weighted tree automata [DV06] and weighted VPAs the automata recognizing
VPLs, also called weighted NWAs [Mat10b].

In this chapter, fitting the other approaches of this thesis, we build on
concepts from both research fields. We introduce OPL as language class
accepted by operator precedence automata (OPA). Afterwards, we extend these
automata with semiring weights to define weighted OPA and their behaviors,
weighted OPL. We show that weighted OPA are able to model system behaviors
that cannot be specified by means of less powerful weighted formalisms such
as weighted VPL. For instance, one might be interested in the behavior of
a system which handles calls and returns but is subject to some emergency
interrupts. Then it is important to evaluate how critically the occurrences of
interrupts affect the normal system behavior, e.g., by counting the number of
pending calls that have been preempted by an interrupt. As another example,
we consider a system logging all hierarchical calls and returns over words where
this structural information is hidden. Depending on changing exterior factors
like energy level, such a system could decide to log the above information in a
selective way.

Further contributions of this chapter are the following.

We prove that weighted OPL strictly include weighted VPL while enjoying
the same closure properties as them. We show that for arbitrary semirings,
there is a relevant difference in the expressive power of the model depending on
whether it permits assigning weights to pop transitions or not. For commutative
semirings, however, weights on pop transitions do not increase the expressive
power of the automata. This difference in descriptive power between weighted
OPA with arbitrary weights and without weights at pop transitions is due
to the fact that OPL may be non-real-time and therefore OPA may execute
several pop moves without advancing their reading heads.

We prove an extension of the classical result of Nivat [Niv68] to weighted
OPL. This robustness result shows that the behaviors of weighted OPA with-
out weights at pop transitions are exactly those that can be constructed
from weighted OPA with only one state, intersected with OPL, and applying
projections which preserve the structural information.

We adapt our weighted MSO logic to OPL and show that it is expressively
equivalent to weighted OPA without weights at pop transitions. As a corollary,
for commutative semirings this weighted logic is equivalent to weighted OPA
including weights at pop transitions.

5.1. OPERATOR PRECEDENCE LANGUAGES 67

S → S + T | T
T → T ×A | A

A→ a | (S)

S

S

T

A

a

+ T

T

A

a

× A

(S

S

T

A

a

+ T

A

a

)

Figure 5.1: A grammar generating arithmetic expressions (left) and an example
derivation tree (right) for a+ a× (a+ a)

The results of this chapter are were published in [DDMP17].

5.1 Operator Precedence Languages

In the following, we consider in more detail the notion of a precedence word
over (Σ,M) as introduced in Section 2.2. We are taking a look at the origins of
this structure and show how they correspond to the class of operator precedence
languages.

Operator precedence languages find their origin in Floyd’s precedence gram-
mars, which made the hidden precedences between symbols (e.g. multiplication
takes precedence over addition) occurring in a grammar explicit in parse trees
[Flo63]. From these precedences, we get an additional hierarchical structure,
which has some additional features compared to the matching relation of nested
words. In particular, we can model multiple layers of interrupts, and we can
start and end multiple hierarchical levels at the same position. Also, the
hierarchical structure is not immediately visible in the word.

For example, consider classical arithmetic expressions with two operators;
addition and multiplication. We want to model that the multiplication takes
precedence over the addition, in the sense that, during the interpretation of
the expression, multiplications must be executed before sums. Additionally,
parentheses are used to force different precedence hierarchies. Figure 5.1
presents a grammar and the derivation tree of the expression a+ a× (a+ a).

Notice that the precedence of multiplication over addition is not immediately
visible in the expression. For this reason, we say that such grammars “hide” the
structure associated with a sentence, whereas parenthesis grammars and other
input-driven ones make the structure explicit in the sentences they generate.

In this context, it is possible to derive from the grammar a precedence
relation for every pair of symbols, see e.g. [CM12] for details and Figure 5.2

68 CHAPTER 5. WEIGHTED OPL

a + × ()

a m m m
+ l m l l m
× l m m l m
(l l l l .

=

) m m m

Figure 5.2: A suitable precedence matrix M for the grammar of Figure 5.1

for an example of the precedences displayed as a matrix.

In contrast to this grammar based approach, in the following, we introduce
and work with general precedence matrices. These matrices can restrict the
set of all expressions and, more importantly, as previously, model precedences
between alphabet symbols. For example, the matrix M of Figure 5.2 has no
entry Ma,a, thus it forbids that we encounter ‘aa’ in a word. Additionally,
the entry + l x gives the product precedence over the addition. In the same
manner, every operation yields precedence to the opening parentheses and
whatever follows after it.

It follows that every word over Σ has an additional hierarchical structure
defined by the given precedence matrixM , as defined by the following definitions
from Section 2.2 (page 18) which we recall here for convenience.

An OP alphabet as a pair (Σ,M), where Σ is an alphabet and M , the
operator precedence matrix (OPM) is a |Σ ∪ {#}|2 array, where every entry is
either l (yields precedence),

.
= (equal in precedence, m (takes precedence), or

empty (no relation).

We use the symbol # to mark the beginning and the end of a word and let
always be # l a and am # for all a ∈ Σ.

Let w = (a1...an) ∈ Σ+ be a word and (Σ,M) an OP alphabet. We say
a0 = an+1 = # and define the chain relation y on the set of all positions of
#w#, inductively, as follows. Let i, j ∈ {0, 1, ..., n + 1}, i < j. Then, i y j
holds if and only if there exists a sequence of positions k1...km, m ≥ 3, such that
i = k1 < ... < km = j, ak1 l ak2

.
= ...

.
= akm−1 m akm , and either ks + 1 = ks+1

or ks y ks+1 for each s ∈ {1, ...,m− 1}.
We say w is compatible with M if for #w# we have 0 y n+1. In particular,

this forces Maiaj 6= ∅ for all i+1 = j and for all iy j. We say w is a precedence
word over M if w is not the empty word and w is compatible with M . We
denote by (Σ,M)+ the set of all precedence words over (Σ,M). For an OPM
M without empty entries, we have (Σ,M)+ = Σ+, due to # l a and am # for
all a ∈ Σ. For an example of a precedence word, see the previous Figure 2.6.

We recall the definition of operator precedence automata from [LMPP15].

5.1. OPERATOR PRECEDENCE LANGUAGES 69

Definition 5.1. A (nondeterministic) operator precedence automaton (OPA)
A over an OP alphabet (Σ,M) is a quadruple A = (Q, I, F, δ) with δ =
(δpush, δshift, δpop), consisting of

• Q, a finite set of states,

• I ⊆ Q, the set of initial states,

• F ⊆ Q, a set of final states, and

• the transition relations δshift, δpush ⊆ Q× Σ×Q, and δpop ⊆ Q×Q×Q.

Let Γ = Σ × Q. A configuration of A is a triple C = 〈Π, q, w#〉, where
Π ∈ ⊥Γ∗ represents a stack, q ∈ Q the current state, and w the remaining
input to read.

A run ofA on w = a1...an is a finite sequence of configurations C0 ` ... ` Cm
such that every transition Ci ` Ci+1 has one of the following forms, where a is
the first component of the topmost symbol of the stack Π, or # if the stack is
⊥, and b is the next symbol of the input to read:

push move : 〈Π, q, bx〉 ` 〈Π[b, q], r, x〉 if al b and (q, b, r) ∈ δpush,
shift move : 〈Π[a, p], q, bx〉 ` 〈Π[b, p], r, x〉 if a

.
= b and (q, b, r) ∈ δshift,

pop move : 〈Π[a, p], q, bx〉 ` 〈Π, r, bx〉 if am b and (q, p, r) ∈ δpop.

An accepting run of A on w is a run from 〈⊥, qI , w#〉 to 〈⊥, qF ,#〉, where
qI ∈ I and qF ∈ F . The language accepted by A, denoted L(A), consists of
all precedence words over (Σ,M)+ which have an accepting run on A. We
say that L ⊆ (Σ,M)+ is an OPL if L is accepted by an OPA over (Σ,M).
As proven by [LMPP15], the deterministic variant of an OPA, using a single
initial state instead of I and transition functions instead of relations, is equally
expressive to nondeterministic OPA.

An example of an OPA is depicted in Figure 5.3. It uses the OPM of
Figure 5.2 and accepts the same language as the grammar of Figure 5.1.

Definition 5.2 ([LMPP15]). The logic MSO(Σ,M), short MSO, is defined as

β ::= Laba(x) | x ≤ y | xy y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β

where a ∈ Σ ∪ {#}, x, y are first-order variables; and X is a second order
variable.

The relation y is defined by the chain relation introduced above. Then,
the semantics for this (unweighted) logic are defined as in Section 2.3.

Theorem 5.3 ([LMPP15]). A language L over (Σ,M) is an OPL iff it is
MSO-definable.

70 CHAPTER 5. WEIGHTED OPL

q0 q1

q2 q3

a

(

q0, q1+,×

a
(

q0, q1, q2, q3+,×

)

Figure 5.3: An automaton over the OPM of Figure 5.2 for the language of
the grammar of Figure 5.1. Shift, push, and pop transitions are denoted by
dashed, normal, and double arrows, respectively. Note that pop transitions are
not consuming a symbol, but instead check the state where the symbol on top
of the stack was pushed.

5.2 Weighted OPL and
Their Relation to Weighted VPL

In this section, we introduce a weighted extension of operator precedence
automata. We show that weighted OPL include weighted VPL and give
examples showing how these weighted automata can express behaviors which
were not expressible before. In the following, let K = (K,+, ·, 0, 1) be a
semiring (cf. Section 3.1).

Definition 5.4. A weighted OPA (wOPA) A over an OP alphabet (Σ,M) and
a semiring K is a tuple A = (Q, I, F, δ,wt), where wt = (wtpush,wtshift,wtpop),
consisting of

• an OPA A′ = (Q, I, F, δ) over (Σ,M) and

• the weight functions wtop : δop → K, op ∈ {push, shift,pop}.
We call a wOPA restricted, denoted by rwOPA, if wtpop(q, p, r) = 1 for each
(q, p, r) ∈ δpop.

A configuration of a wOPA is a tuple C = 〈Π, q, w#, k〉, where (Π, q, w#)
is a configuration of the OPA A′ and k ∈ K. A run of A is a sequence
of configurations C0 ` C1 . . . ` Cm satisfying the previous conditions and,
additionally, the weight of a configuration is updated by multiplying with the
weight of the encountered transition, as follows. As before, we let a be the first
component of the topmost symbol of the stack Π, or # if the stack is ⊥, and
let b be the next symbol of the input to read:

5.2. WEIGHTED OPL & THEIR RELATION TO WEIGHTED VPL 71

〈Π, q, bx, k〉 ` 〈Π[b, q], r, x, k · wtpush(q, b, r)〉 if al b and (q, b, r) ∈ δpush,
〈Π[a, p], q, bx, k〉 ` 〈Π[b, p], r, x, k · wtshift(q, b, r)〉 if a

.
= b and (q, b, r) ∈ δshift,

〈Π[a, p], q, bx, k〉 ` 〈Π, r, bx, k · wtpop(q, p, r)〉 if am b and (q, p, r) ∈ δpop.

We call a run ρ accepting if it goes from 〈⊥, qI , w#, 1〉 to 〈⊥, qF ,#, k〉, where
qI ∈ I and qF ∈ F . For such an accepting run, the weight of ρ is defined as
wt(ρ) = k. We denote by acc(A, w) the set of all accepting runs of A on w.

Finally, the behavior of A is a function JAK : (Σ,M)+ → K, defined as

JAK(w) =
∑

ρ∈acc(A,w)

wt(ρ) .

Every function S : (Σ,M)+ → K is called an OP-series (short: series, also
weighted language). A wOPA A recognizes or accepts a series S if JAK = S. A
series S is called regular or a wOPL if there exists an wOPA A accepting it. S
is strictly regular or an rwOPL if there exists an rwOPA A accepting it.

Example 5.1. Let us resume, in a simplified version, an example presented
in [LMPP15] (Example 8) which exploits the ability of OPA to pop many
items from the stack without advancing the input head: in this way we can
model a system that manages calls and returns in a traditional LIFO policy
but discards all pending calls if an interrupt occurs1. The weighted automaton
of Figure 5.4 attaches weights to the OPA’s transitions in such a way that the
final weight of a string is 1 only if no pending call is discarded by any interrupt.
Otherwise, the more calls are discarded, the lower the “quality” of the input
as measured by its weight.

More precisely, we define Σ = {call, ret, itr} and the precedence matrix M
as a subset of the matrix of Example 8 of [LMPP15], i.e., calll call, call

.
= ret,

callm itr, itrl itr, itrm call, and retm a for all a ∈ Σ. Then, we define Apenalty

over (Σ,M) and the semiring (Q,+, ·, 0, 1) as in Figure 5.4. We use the same
graphical notation for transitions as before and give the weights in brackets at
transitions. Then, Apenalty operates as follows.

Whenever, the automaton reads a call, it pushes ‘call’ and multiplies the
accumulated weight by 1

2 . Afterwards, if we read a return, the precedence
relation call

.
= ret ensures that the automaton executes a shift with weight 2

that replaces the ‘call’ on top of the stack with a ‘ret’. Then, M forces that
the next transition is a pop.

If, on the other hand, after reading a call, we encounter an interrupt instead
of a return, then the precedence relation call m itr forces an instant pop of this
‘call’. In this case, the automaton continues to pop everything on the stack,
until the stack is empty. Then, Apenalty can proceed with another interrupt
(which, however, would have no more significant effect) or a call as before.

1A similar motivation inspired the recent extension of VPL as colored nested words by
[AF16].

72 CHAPTER 5. WEIGHTED OPL

q0

call(1
2) ret(2)

q0(1)

itr(1)

call ret itr

call l .
= m

ret m m m
itr m l

Figure 5.4: The weighted OPA Apenalty penalizing unmatched calls together
with the given precedence matrix.

Let #pcall(w) be the number of pending calls of w, i.e., calls which are
never answered by a return. Then, it follows that the behavior of Apenalty is
JApenaltyK(w) = (1

2)#pcall(w).

The example can be easily enriched by following the path outlined in
[LMPP15]: we could add symbols specifying the serving of an interrupt,
add different types of calls and interrupts with different priorities and more
sophisticated policies (e.g., lower level interrupts disable new calls but do not
discard them, whereas higher level interrupts reset the whole system, etc.). �

Example 5.2. The wOPA of Figure 5.4 is “rooted” in a deterministic OPA;
thus the semiring of weights is exploited in a fairly trivial way since only
the · operation is used. The automaton Apolicy given in Figure 5.5, instead,
formalizes a more complex system where the penalties for unmatched calls may
change nondeterministically within intervals delimited by the special symbol
$. More precisely, the occurrences of $ mark intervals during which sequences
of calls, returns, and interrupts occur. Then, usually unmatched calls are not
penalized, but there is a special, nondeterministically chosen interval during
which they are penalized. Finally, the global weight assigned to an input
sequence is the maximum over all nondeterministic runs that are possible when
recognizing the sequence.

Here, the alphabet is Σ = {call, ret, itr, $}, and the OPM M , with a l $
and $ m a, for all a ∈ Σ is a natural extension of the OPM of Example 5.1.
As semiring, we take Rmax = (R ∪ {−∞},max,+,−∞, 0). Then, JApolicyK(w)
equals the maximal number of pending calls between two consecutive $. Again,
the automaton Apolicy can be easily modified and enriched to formalize several
variations of its policy: e.g., different policies could be associated with different
intervals, different weights could be assigned to different types of calls or
interrupts, and different policies could also be defined by choosing other
semirings. �

Note that both automata, Apenalty and Apolicy, do not use the weight
assignment for pops.

5.2. WEIGHTED OPL & THEIR RELATION TO WEIGHTED VPL 73

q0 q1 q2

$(0), itr(0), call(0)
ret(0)

q0(0)

$(0)

call(1)

ret(−1)

itr(0)

q0(0), q1(0)

$(0)

$(0), call(0)
ret(0)

itr(0)

q0(0), q1(0), q2(0)

Figure 5.5: The weighted OPA Apolicy penalizing unmatched calls nondeter-
ministically

q0 q1

call(c)
itr(i) ret(r)

q0(p)

call(ε)

call(ε)

call(ε)
itr(i) ret(ε)

q0(ε), q1(ε)

Figure 5.6: The wOPA Alog nondeterministically writing logs at different levels
of detail

Example 5.3. The next automaton Alog, depicted in Figure 5.6, chooses
non-deterministically between logging everything and logging only ‘important’
information, e.g., only interrupts (this could be a system dependent on energy,
WiFi, ...). Notice that, unlike the previous examples, in this case assigning
nontrivial weights to pop transitions is crucial.

Let Σ = {call, ret, itr}, and define M as for Apenalty. We employ the
semiring (FinΣ′ ,∪, ◦, ∅, {ε}) of all finite languages over Σ′ = {c, r, p, i}. Then,
JAlogK(w) yields all possible logs on w. �

As hinted at by our last example, the following proposition shows that in
general, wOPA are more expressive than rwOPA.

Proposition 5.5. There exists an OP alphabet (Σ,M) and a semiring K such
that there exists a weighted language S which is regular but not strictly regular.

Proof. Let Σ = {c, r}, cl c, and c
.
= r. Consider the semiring Fin{a,b} of all

finite languages over {a, b} together with union and concatenation. Let n ∈ N
and S : (Σ,M)+ → Fin{a,b} be the following series

S(w) =

{
{anban} , if w = cnr
∅ , otherwise

.

74 CHAPTER 5. WEIGHTED OPL

q0 q1

c({a})

r({b})

q1({a})

Figure 5.7: The wOPA recognizing S(cnr) = {anban} and S(w) = 0, otherwise

Then, we can define a wOPA which only reads cnr, assigns the weight {a} to
every push and pop, and the weight {b} to the one shift, and therefore accepts
S, as in Figure 5.7.

Now, we show with a pumping argument that there exists no rwOPA which
recognizes S. Assume there is an rwOPA A with JAK = S. Note that for all
n ∈ N, the structure of cnr is cl cl ...l c

.
= r. Let ρ be an accepting run of

A on cnr with wt(ρ) = {anban}. Then, the transitions of ρ consist of n pushes,
followed by a shift, followed by n pops and can be written as follows.

q0
c−→ q1

c−→ ...
c−→ qn−1

c−→ qn
r
99K qn+1

qn−1
=⇒ qn+2

qn−2
=⇒ ...

q1
=⇒ q2n

q0
=⇒ q2n+1

Both the amount of states and the amount of pairs of states are bounded. If n is
sufficiently large, there exists two pop transitions pop(q, p, r) and pop(q′, p′, r′)
in this sequence such that q = q′ and p = p′. This means that we have a
loop in the pop transitions going from state q to q′ = q. Furthermore, the
corresponding push to the first transition of this loop was invoked when the
automaton was in state p′, while the corresponding push to the last pop was
invoked in state p. Since p = p′, we also have a loop at the corresponding
pushes. Then, the run where we skip both loops in the pops and in the pushes
is an accepting run for cn−kr, for some k ∈ N \ {0}.

Since the weight of all pops is trivial, the weight of the loop of pop transitions
is ε. If the weight of the loop of push transitions is also ε, then we have an
accepting run for cn−kr of weight {anban}, a contradiction. If the weight of
the push-loop is not trivial, then by a simple case distinction it has to be either
{ai} for some i ∈ N \ {0} or it has to contain the b. In the first case, the run
without both loops has weight {an−iban} or {anban−i}, in the second case it
has weight {aj}, for some j ∈ N. All these runs are not of the form an−kban−k,
a contradiction.

We notice that using the same arguments, we can show that also no weighted
nested word automata as defined in [Mat10b, DP14b] can recognize this series.
Even stronger, we can prove that restricted weighted OPLs are a generalization
of weighted VPLs in the following sense. We shortly recall the important
definitions. Let Σ = Σcall ⊍ Σint ⊍ Σret be a visibly pushdown alphabet. A VPA
is a pushdown automaton which uses a push transition if and only if it reads a
call symbol and a pop transition if and only if it reads a return symbol.

5.2. WEIGHTED OPL & THEIR RELATION TO WEIGHTED VPL 75

Σcall Σret Σint

Σcall l .
= l

Σret m m m

Σint m m m

Figure 5.8: OPM for VPL

In [CM12], it was shown that using the complete OPM of Figure 5.8, for
every VPA, there exists an equivalent operator precedence grammar which in
turn can be transformed into an equivalent OPA.

In [Mat10b] and [DP14b], weighted nested word automata (wNWA) were
introduced. These add semiring weights at every transition again depending
on the information which symbols are calls, internals, or returns. Since every
nested word has a unique representation over a visibly pushdown alphabet Σ,
it can be interpreted as a precedence word of (Σ,M)+, where M is the OPM
of Figure 5.8. In particular, we can interpret a wVPL, i.e., the language of a
wNWA, as an OP-series (Σ,M)+ → K.

Theorem 5.6. Let K be a semiring, Σ be a visibly pushdown alphabet, and M
be the OPM of Figure 5.8. Then for every wNWA A defined as in [DP14b],
there exists an rwOPA B with JAK(w) = JBK(w) for all w ∈ (Σ,M)+.

We give an intuition for this result as follows. Note that although sharing
some similarities, pushes, shifts, and pops are not the same thing as calls,
internals, and returns. Indeed, a return of a (w)NWA reads and ‘consumes’ a
symbol, while a pop of an (rw)OPA just pops the stack and leaves the next
symbol untouched.

After studying Figure 5.8, this leads to the important observation that every
symbol of Σret and therefore every return transition of an NWA is simulated
not by a pop, but by a shift transition of an OPA followed by a pop transition
(in, both, the unweighted and weighted case).

We give a short demonstrating example: Let Σint = {a}, Σcall = {〈c},
Σret = {r〉}, w = a〈car〉. Then every run of an NWA for this word looks like

q0
a−−−−−−→ q1

〈c−→ q2
a−−−−−−→ q3

r〉−−−−−−→ q4 .

Every run of an OPA on w (using the OPM of Figure 5.8) looks as follows

q0
a−→ q′1 ⇒ q1

〈c−→ q2
a−→ q′3 ⇒ q3

r〉
99K q′4 ⇒ q4 ,

where the return was substituted (forced by the OPM) by a shift followed by a
pop.

76 CHAPTER 5. WEIGHTED OPL

It follows that we can simulate a weighted call by a weighted push, a
weighted internal by a weighted push together with a pop and a weighted
return by a weighted shift together with a pop. Therefore, we may indeed omit
weights at pop transitions.

Proof of Theorem 5.6. Given a weighted NWA A = (Q, I, F, (δcall, δint, δret),
(wtcall,wtint,wtret)) over Σ and K, we construct an rwOPA B = (Q′, I ′, F ′,
(δpush, δshift, δpop), (wt′push,wt′shift,wt′pop)) over (Σ,M) and K. We set Q′ =
Q ∪ (Q × Q), I ′ = I, and F ′ = F . We define the relations δpush, δshift, δpop,
and the functions wt′push, wt′shift, and wt′pop as follows.

We let δpush contain all triples (q, a, r) with (q, a, r) ∈ δcall, and all triples
(q, a, (q, r)) with (q, a, r) ∈ δint. We set wt′push(q, a, r) = wtcall(q, a, r) and
wt′push(q, a, (q, r)) = wtint(q, a, r). Moreover, we let δshift contain all triples
(q, a, (p, r)) with (q, p, a, r) ∈ δret and set wt′shift(q, a, (p, r)) = wtret(q, p, a, r).
Furthermore, we let δpop contain all triples ((q, r), q, r) with (q, a, r) ∈ δint,
and all triples ((p, r), p, r) with (q, p, a, r) ∈ δret, and set wt′pop((q, r), q, r) =
wt′pop((p, r), p, r) = 1.

Then, a run analysis of A and B, following the observations above, shows
that JBK = JAK.

Together with the result that OPA are strictly more expressive than VPAs
[CM12], this yields a strict hierarchy of these three classes of weighted languages:

wVPL (rwOPL (wOPL .

Note that in the context of formal power series, wVPL strictly contain recogniz-
able power series and wOPL form a proper subset of the class of algebraic power
series, i.e., series recognized by weighted pushdown automata (see e.g. [KS86]).
The following result shows that for commutative semirings the second part
of this hierarchy collapses, i.e., rwOPA are equally expressive as wOPA (and
therefore can be seen as a kind of normal form in this case).

Theorem 5.7. Let K be a commutative semiring and (Σ,M) an OP alphabet.
Let A be a wOPA. Then, there exists an rwOPA B with JAK = JBK.

Proof. Let A = (Q, I, F, δ,wt) be a wOPA over (Σ,M) and K. Note that for
every pop transition of a wOPA, there exists exactly one push transition. We
construct an rwOPA B over the state set Q′ = Q×Q×Q and with the same
behavior as A with the following idea in mind. In the first state component B
simulates A. In the second and third state component of Q′ the automaton
B preemptively guesses the states q and r of the pop transition (q, p, r) of A
which corresponds to the next push transition following after this configuration.
This enables us to transfer the weight from the pop transition to the correct
push transition.

The detailed construction of B = (Q′, I ′, F ′, δ′,wt′) over (Σ,M) and K
is the following. If Q = ∅, then JAK ≡ 0 is trivially strictly regular. If Q

5.2. WEIGHTED OPL & THEIR RELATION TO WEIGHTED VPL 77

is nonempty, let q ∈ Q be a fixed state. Then, we set Q′ = Q × Q × Q,
I ′ = {(q1, q2, q3) | q1 ∈ I, q2, q3 ∈ Q}, F ′ = {(q1, q, q) | q1 ∈ F}, and

δ′push = {((q1, q2, q3), a, (r1, r2, r3)) | (q1, a, r1) ∈ δpush and (q2, q1, q3) ∈ δpop}
δ′shift = {((q1, q2, q3), a, (r1, q2, q3)) | (q1, a, r1) ∈ δshift}
δ′pop = {((q1, q2, q3), (p1, q1, r1), (r1, q2, q3)) | (q1, p1, r1) ∈ δpop} .

Here, every push of B controls that the previously guessed q2 and q3 can be
used by a pop transition of A going from q2 to q3 with q1 on top of the stack.
Every pop controls that the symbols on top of the stack are exactly the ones
used at this pop. Since the second and third state component are guessed
for the next push, they are passed on whenever we read a shift or pop. The
second and third component pushed at the first position of a word are guessed
by an initial state. At the last push, which therefore has no following push
and will propagate the second and third component to the end of the run, the
automaton B has to guess the distinguished state used in the final states.

Therefore, B has exactly one accepting run (of the same length) for every
accepting run of A, and vice versa. Finally, we define the transition weights as
follows.

wt′push((q1, q2, q3), a, (r1, r2, r3)) = wtpush(q1, a, r1) · wtpop(q2, q1, q3)

wt′shift((q1, q2, q3), a, (r1, r2, r3)) = wtshift(q1, a, r1)

wt′pop ≡ 1 .

Then, the runs of A simulated by B have exactly the same weights but in a
different ordering. Since K is commutative, it follows that JAK = JBK.

In the following, we study closure properties of weighted OPA and restricted
weighted OPA. As usual, we extend the operation + and · to series S, T :
(Σ,M)+ → K by means of pointwise definitions as follows:

(S + T)(w) = S(w) + T (w) for each w ∈ (Σ,M)+

(S � T)(w) = S(w) · T (w) for each w ∈ (Σ,M)+ .

Proposition 5.8. The sum of two regular (resp. strictly regular) series over
(Σ,M)+ is again regular (resp. strictly regular).

Proof. We use a standard disjoint union of two (r)wOPA accepting the given
series to obtain a (r)wOPA for the sum as follows.

Let A = (Q, I, F, δ,wt) and B = (Q′, I ′, F ′, δ′,wt′) be two wOPA over
(Σ,M) and K. We construct a wOPA C = (Q′′, I ′′, F ′′, δ′′,wt′′) over (Σ,M)
and K by defining Q′′ = Q ⊍ Q′, I ′′ = I ∪ I, F ′′ = F ∪ F ′, δ′′ = δ ∪ δ′. The
weight function is defined by

wt′′(t) =

{
wt(t) , if t ∈ δ
wt′(t) , if t ∈ δ′ .

78 CHAPTER 5. WEIGHTED OPL

Then, JCK = JAK + JBK. Furthermore, if A and B are restricted, i.e. wt ≡ 1
and wt′ ≡ 1, it follow that wt′′ ≡ 1, and therefore C is also restricted.

Given a series S : (Σ,M)+ → K and a language L ⊆ (Σ,M)+, we define
the series S ∩ L as follows

(S ∩ L)(w) =

{
S(w) , if w ∈ L
0 , otherwise

.

Proposition 5.9. Let S : (Σ,M)+ → K be a regular (resp. strictly regular)
series and L ⊆ (Σ,M)+ an OPL. Then, the series (S ∩ L) is regular (resp.
strictly regular). Furthermore, if K is commutative, then the product of two
regular (resp. strictly regular) series over (Σ,M)+ is again regular (resp. strictly
regular).

Proof. We use a product construction of automata.
Let A = (Q, I, F, δ,wt) be a wOPA over (Σ,M) and K with JAK = S and

let B = (Q′, q′0, F
′, δ′) be a deterministic OPA over (Σ,M) with L(B) = L.

We construct a wOPA C = (Q′′, I ′′, F ′′, δ′′,wt′′) over (Σ,M) and K, with
JCK = (S ∩L), as follows. We define Q′′ = Q×Q′, I ′′ = I ×{q′0}, F ′′ = F ×F ′,
and

δ′′push = {((q, q′), a, (r, r′)) | (q, a, r) ∈ δpush and δ′push(q′, a) = r′} ,
δ′′shift = {((q, q′), a, (r, r′)) | (q, a, r) ∈ δshift and δ′shift(q

′, a) = r′} ,
δ′′pop = {((q, q′), (p, p′), (r, r′)) | (q, p, r) ∈ δpop and δ′pop(q′, p′) = r′} .

Then the weights of C are defined as

wt′′push((q, q′), a, (r, r′)) = wtpush(q, a, r) ,

wt′′shift((q, q
′), a, (r, r′)) = wtshift(q, a, r) ,

wt′′pop((q, q′), (p, p′), (r, r′)) = wtpop(q, p, r) .

Note that given a word w, the automata A, B, and C have to use pushes, shifts,
and pops at the same positions. Hence, every accepting run of C on w defines
exactly one accepting run of B and exactly one accepting run of A on w with
matching weights, and vice versa. We obtain

JCK(w) =
∑

ρ∈acc(C,w)

wt(ρ)

=
∑

ρ, such that
ρ�Q∈acc(A,w)
ρ�Q′∈acc(B,w)

wt(ρ)

=

{ ∑
ρ∈acc(A,w) wt(ρ) , if the run of B on w is accepting

0 , otherwise

= (S ∩ L)(w) .

5.2. WEIGHTED OPL & THEIR RELATION TO WEIGHTED VPL 79

It follows that, JCK = S ∩ L.

For the second part of the proposition, let A = (Q, I, F, δ,wt) and B =
(Q′, I ′, F ′, δ′,wt′) be two wOPA. We construct a wOPA P as P = (Q×Q′, I ×
I ′, F × F ′, δP ,wtP) where δP = (δPpush, δ

P
shift, δ

P
pop) and set

δPpush = {((q, q′), a, (r, r′)) | (q, a, r) ∈ δpush and (q′, a, r′) ∈ δ′push} ,
δPshift = {((q, q′), a, (r, r′)) | (q, a, r) ∈ δshift and (q′, a, r′) ∈ δ′shift} ,
δPpop = {((q, q′), (p, p′), (r, r′)) | (q, p, r) ∈ δpop and (q′, p′, r′) ∈ δ′pop} ,

and

wtPpush((q, q′), a, (r, r′)) = wt′push(q, a, r) · wt′′push(q′, a, r′) ,

wtPshift((q, q
′), a, (r, r′)) = wt′shift(q, a, r) · wt′′shift(q

′, a, r′) ,

wtPpop((q, q′), (p, p′), (r, r′)) = wt′pop(q, p, r) · wt′′pop(q′, p′, r′) .

It follows that JPK = JAK� JBK. Furthermore, if A and B are restricted, then
so is P.

Next, we show that regular series are closed under projections which
preserve the OPM. For two OP alphabets (Σ,M), (Γ,M ′) and a mapping
h : Σ→ Γ, we write h : (Σ,M)→ (Γ,M ′) and say h is OPM-preserving if for
all � ∈ {l, .=,m}, we have a � b if and only if h(a) � h(b). We can extend
such an h to a function h : (Σ,M)+ → (Γ,M ′)+ as follows. Given a word w =
(a1a2...an) ∈ (Σ,M)+, we define h(w) = h(a1a2...an) = h(a1)h(a2)...h(an).
Let S : (Σ,M)+ → K be a series. Then, we define h(S) : (Γ,M ′)+ → K for
each v ∈ (Γ,M ′)+ by

h(S)(v) =
∑

w∈(Σ,M)+

h(w)=v

S(w) . (5.1)

Proposition 5.10. Let K be a semiring, S : (Σ,M)+ → K regular (resp.
strictly regular), and h : Σ→ Γ an OPM-preserving projection. Then, h(S) :
(Γ,M ′)+ → K is regular (resp. strictly regular).

Proof. We follow an idea of [DV12] and its application in [DP14b] and [DD17].
Let A = (Q, I, F, δ,wt) be a wOPA over (Σ,M) and K with JAK = S. The
main idea is to remember the last symbol read in the state to distinguish
different runs of A which would otherwise coincide in B. We construct the
wOPA B = (Q′, I ′, F ′, δ′,wt′) over (Σ,M) and K as follows. We set Q′ = Q×Σ,
I ′ = I × {a0} for some fixed a0 ∈ Σ, and F ′ = F ×Σ. We define the transition
relations δ′ = (δ′push, δ

′
shift, δ

′
pop) for every b ∈ Γ and (q, a), (q′, a′), (q′′, a′′) ∈ Q′,

80 CHAPTER 5. WEIGHTED OPL

as

δ′push = {((q, a), b, (q′, a′)) | (q, a′, q′) ∈ δpush and b = h(a′)} ,
δ′shift = {((q, a), b, (q′, a′)) | (q, a′, q′) ∈ δshift and b = h(a′)} ,
δ′pop = {((q, a), (q′, a′), (q′′, a)) | (q, q′, q′′) ∈ δpop} .

Then, the weight functions are defined by

wt′push((q, a), h(a′), (q′, a′)) = wtpush(q, a′, q′) ,

wt′shift((q, a), h(a′), (q′, a′)) = wtshift(q, a
′, q′) ,

wt′pop((q, a), (q′, a′), (q′′, a′′)) = wtpop(q, q′, q′′) .

Analogously to [DP14b] and [DD17], this implies that for every run ρ of A on
w, there exists exactly one run ρ′ of B on v with h(w) = v and wt(ρ) = wt(ρ′).
One difference to previous works is that a pop of a wOPA is not consuming
the symbol. Therefore, while processing a pop, we choose not to change the
symbol that we are currently remembering.

It follows that JA′K = h(JAK), so h(S) = JA′K is regular. Furthermore, if A
is restricted, then so is B.

5.3 A Nivat Theorem for Weighted OPL

In this section, we establish a connection between weighted OPLs and strictly
regular series. We show that strictly regular series are exactly those series
which can be derived from a restricted weighted OPA with only one state,
intersected with an unweighted OPL, and using an OPM-preserving projection
of the alphabet.

Let h : Σ′ → Σ be a map between two alphabets. Given an OP alphabet
(Σ,M), we define h−1(M) by setting h−1(M)a′b′ = Mh(a′)h(b′) for all a′, b′ ∈ Σ′.
As h is OPM-preserving, for every series S : (Σ,M)+ → K, we get a series
h(S) : (Σ′, h−1(M))+ → K, using the sum over all pre-images as in formula
(5.1).

Let N (Σ,M,K) comprise all series S : (Σ,M)+ → K for which there exist
an alphabet Σ′, a map h : Σ′ → Σ, and a one-state rwOPA B over (Σ′, h−1(M))
and K and an OPL L over (Σ′, h−1(M)) such that S = h(JBK ∩ L).

Now, we show that every strictly regular series can be decomposed into the
above introduced fragments.

Proposition 5.11. Let S : (Σ,M)+ → K be a series. If S is strictly regular,
then S is in N (Σ,M,K).

Proof. We follow some ideas of [DKar] and [DP14a].
Let A = (Q, I, F, δ,wt) be a rwOPA over (Σ,M) and K with JAK = S. We

set Σ′ = Q×Σ×Q as the extended alphabet. The intuition is that Σ′ consists

5.3. A NIVAT THEOREM FOR WEIGHTED OPL 81

of the push and the shift transitions of A. Let h be the projection of Σ′ to Σ
and let M ′ = h−1(M).

Let L ⊆ (Σ′,M ′)+ be the language consisting of all words w′ over the
extended alphabet such that h(w′) has an accepting run on A which uses at
every position the push, resp. the shift transition defined by the symbol of Σ′

at this position.
We construct the unweighted OPA A′ = (Q′, I ′, F ′, δ′) over (Σ′,M ′), ac-

cepting L, as follows. We set Q′ = Q, I ′ = I, F ′ = F , and define δ′ as
follows

δ′push = { (q, (q, a, p), p) | (q, a, p) ∈ δpush } ,

δ′shift = { (q, (q, a, p), p) | (q, a, p) ∈ δshift } ,

δ′pop = δpop .

Hence, A′ has an accepting run on a word w′ ∈ (Σ′,M ′)+ if and only if A has
an accepting run on h(w′), using the push and shift transitions defined by w′.

We construct the one-state rwOPA B = (Q′′, I ′′, F ′′, δ′′,wt′′) over (Σ′,M ′)
and K as follows. Set Q′′ = I ′′ = F ′′ = {q}, δ′′push = δ′′shift = {(q, a′, q) | a′ ∈ Σ′},
δ′′pop = {(q, q, q)}, wt′′push(q, a′, q) = wtpush(a′), wt′′shift(q, a

′, q) = wtshift(a
′), for

all a′ ∈ Σ′, and wt′′pop(q, q, q) = 1.
Let ρ be a run of w = a1...an ∈ (Σ,M)+ on A and ρ′ a run of w′ = a′1...a

′
n ∈

(Σ′,M ′)+ on B. We denote by wtA(ρ, w, i), resp. wtB(ρ′, w′, i), the weight of
the push or shift transition used by the run ρ, resp. ρ′, at position i. Since A
and B are restricted, for all their runs ρ, ρ′, we have wt(ρ) =

∏|w|
i=1 wtA(ρ, w, i),

resp. wt(ρ′) =
∏|w′|
i=1 wtB(ρ′, w′, i). Furthermore, following its definition, the

rwOPA B has exactly one run ρ for every word w′ ∈ (Σ′,M ′) and for all
h(w′) = w and for all i ∈ {1...n}, we have wtB(ρ′, w′, i) = wtA(ρ, w, i). It
follows that

h(JBK ∩ L)(w) =
∑

w′∈(Σ′,M ′)+

h(w′)=w

(JBK ∩ L)(w′)

=
∑

w′∈L(A′)
h(w′)=w

JBK(w′)

=
∑

ρ∈acc(A,w)

|w|∏
i=1

wtA(ρ, w, i)

=
∑

ρ∈acc(A,w)

wt(ρ)

= JAK(w) = S(w) .

Hence, S = h(JBK ∩ L), thus S ∈ N (Σ,M,K).

82 CHAPTER 5. WEIGHTED OPL

Using this proposition and closure properties of series, we get the following
Nivat theorem for weighted operator precedence automata.

Theorem 5.12. Let K be a semiring and S : (Σ,M)+ → K be a series. Then
S is strictly regular if and only if S ∈ N (Σ,M,K).

Proof. The “only if”-part of is immediate by Proposition 5.11.
For the converse, let Σ′ be an alphabet, h : Σ′ → Σ, L ⊆ (Σ′, h−1(M))+

be an OPL, B a one-state rwOPA, and S = h(JBK ∩ L). Then Proposition
5.9 shows that JBK ∩ L is strictly regular. Now, Proposition 5.10 yields the
result.

5.4 Weighted MSO-Logic for OPL

In the following, we study the instance of the weighted MSO logic of Section
3.3 for precedence words and operator precedence languages. Since we are only
studying these structures in the context of semirings, we only consider the
logic also featuring a product.

Definition 5.13. We define the weighted logic MSO(K, (Σ,M)), for short
MSO(K), as

β ::= Laba(x) | x ≤ y | xy y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β
ϕ ::= β | k | ϕ⊕ ϕ | ϕ⊗ ϕ |

⊕
x ϕ |

⊕
X ϕ |

∏
x ϕ

where k ∈ K; x, y are first-order variables; and X is a second order variable.

Let w ∈ (Σ,M)+ and ϕ ∈ MSO(K). We denote by [w] = {1, ..., |w|} the
set of all positions of w and define an assignment γ of variables V containing
free(ϕ), as in Section 2.3. Given the extended alphabet ΣV = Σ × {0, 1}V ,
we define its natural OPM MV such that for all (a, s), (b, t) ∈ ΣV and all
� ∈ {l, .=,m}, we have (a, s)� (b, t) if and only if a� b.

The semantics of ϕ (cf. Section 3.3) is a function JϕKV : (ΣV ,MV)+ → K
for all valid (w, γ) inductively as seen in Figure 5.9. For not valid words, we
set JϕKV to 0. For a sentence ϕ, we get JϕK : (Σ,M)+ → K.

Example 5.4. Let us go back to the automaton Apolicy over the semiring K =
(R ∪ {−∞},max,+,−∞, 0) (as depicted in Figure 5.5). The following boolean
formula β defines three subsets of positions, X0, X1, and X2, representing,
respectively, the positions where Apolicy is in the states q0, q1, or q2. Then, X0

and X2 contain the positions where unmatched calls are not penalized, and X1

the positions where they are.

β = x ∈ X0 ↔ ∃y∃z(y > x ∧ z > x ∧ y 6= z ∧ Lab$(y) ∧ Lab$(z))

∧ x ∈ X1 ↔ ∃y∃z
(
y ≤ x ≤ z ∧ y 6= z ∧ Lab$(y) ∧ Lab$(z)
∧((x 6= y ∧ x 6= z)→ ¬Lab$(x))

)
∧ x ∈ X2 ↔ ∃y∃z(y < x ∧ z < x ∧ y 6= z ∧ Lab$(y) ∧ Lab$(z))

5.4. WEIGHTED MSO-LOGIC FOR OPL 83

JβKV(w, γ) =

{
1 , if (w, γ) |= β

0 , otherwise

JkKV(w, γ) = k for all k ∈ K
Jϕ⊕ ψKV(w, γ) = JϕKV(w, γ) + JψKV(w, γ)

Jϕ⊗ ψKV(w, γ) = JϕKV(w, γ) · JψKV(w, γ)

J
⊕

x ϕKV(w, γ) =
∑
i∈|w|

JϕKV∪{x}(w, γ[x→ i])

J
⊕

X ϕKV(w, γ) =
∑
I⊆|w|

JϕKV∪{X}(w, γ[X → I])

J
∏
x ϕKV(w, γ) =

∏
i∈|w|

JϕKV∪{x}(w, γ[x→ i])

Figure 5.9: Semantics of MSO(K) for precedence words.

To simplify the weight assignment, we define the following weighted formula
for any given boolean formula β′ and any weight k (cf. Formula 4.4 on page 61)

(β′ → k) = ¬β′ ⊕ (β′ ⊗ k) .

Then, this formula yields the weight k if β holds, and the neutral element of
the product of the semiring otherwise. That is

Jβ′ → kK(w, γ) =

{
k , if (w, γ) |= β′

1K , otherwise .

Note that in this example, 1K equals the real weight 0.

Then, the weight assignment is formalized by ϕ0,2 and ϕ1 as follows. The
formula ϕ0,2 assigns the real weight 0 to calls, returns, and interrupts whenever
the position is in X0 or X2 as follows

ϕ0,2 =
(
(x ∈ X0 ∨ x ∈ X2) ∧ (Labcall(x) ∨ Labret(x) ∨ Labitr(x))

)
→ 0 .

The formula ϕ1 assigns the real weights 1,−1, 0 to calls, returns, and interrupts,
respectively, whenever the position is in X1 as follows

ϕ1 = ((x ∈ X1 ∧ Labcall(x))→ 1)

⊗ ((x ∈ X1 ∧ Labret(x))→ −1)

⊗ ((x ∈ X1 ∧ Labitr(x))→ 0)

⊗ (Lab$(x)→ 0) .

Note that here ⊗ equals the addition which ignores all assigned weights 0.
Then, the formula ψ =

∏
x(β ⊗ ϕ0,2 ⊗ ϕ1) ensures that β holds at every

84 CHAPTER 5. WEIGHTED OPL

position and defines the weight assigned by Apolicy to an input string through a
single nondeterministic run. Finally, the formula χ =

⊕
X0

⊕
X1

⊕
X2
ψ defines

the global weight of every string in an equivalent way as the one defined by
Apolicy. �

As before, by Lemma 3.5, we know that JϕKV(w, γ) = JϕK(w, γ�free(ϕ)) for
each valid (w, γ) ∈ (ΣV ,M)+ and by a standard induction on the structure of
ϕ we get following.

Lemma 5.14. Let ϕ ∈ MSO(K) and let V be a finite set of variables with
free(ϕ) ⊆ V. Then, JϕK is regular (resp. strictly regular) iff JϕKV is regular
(resp. strictly regular).

As shown by [DG07] in the case of words, the full weighted logic is strictly
more powerful than weighted automata. A similar example also applies here.
Therefore, in the following, we restrict our logic in an appropriate way as in
Section 4.4. The main idea for this is to allow only functions with finitely many
different values (step functions) after a product quantification. Furthermore, in
the non-commutative case, we either also restrict the application of ⊗ to step
functions or we enforce all occurring weights (constants) of ϕ⊗ θ to commute.

As in Definition 4.14, we call a weighted formula almost boolean if it contains
no weighted quantification. Adapting ideas and definitions from Section 4.4,
the following propositions show that almost boolean formulas precisely describe
a certain form of rwOPA’s behaviors, which we call OPL step functions.

Definition 5.15. For k ∈ K and a language L ⊆ (Σ,M)+, we define 1L :
(Σ,M)+ → K, the characteristic series of L, i.e. 1L(w) = 1 if w ∈ L, and
1L(w) = 0 otherwise. We denote by k1L : (Σ,M)+ → K the characteristic
series of L multiplied by k, i.e. k1L(w) = k if w ∈ L, and k1L(w) = 0 otherwise.

A series S is called an OPL step function, if it has a representation

S =

n∑
i=1

ki1Li ,

where Li are OPL forming a partition of (Σ,M)+ and ki ∈ K for each i ∈
{1, ..., n}; so JϕK(w) = ki iff w ∈ Li, for each i ∈ {1, ..., n}.

Lemma 5.16. The set of all OPL step functions is closed under + and �.

Proof. Let S =
∑k

i=1 ki1Li and S′ =
∑`

j=1 k
′
j1L′j

be OPL step functions. Then

the following holds

S + S′ =
k∑
i=1

∑̀
j=1

(di + d′j)1Li∩L′j ,

S � S′ =
k∑
i=1

∑̀
j=1

(di · d′j)1Li∩L′j .

5.4. WEIGHTED MSO-LOGIC FOR OPL 85

Since (Li ∩ L′j) are also OPL and form a partition of (Σ,M)+, it follows that
S + S′ and S � S′ are also OPL step functions.

Proposition 5.17. (a) For every almost boolean formula ϕ, JϕK is an OPL
step function.

(b) If S is an OPL step function, then there exists an almost boolean formula
ϕ such that S = JϕK.

Proof. (a) We show the first statement by structural induction on ϕ. If ϕ is
boolean, then JϕK = 1L(ϕ), were L(ϕ) and L(¬ϕ) are OPL due to Theorem 5.3.
Therefore, JϕK = 1K1L(ϕ) +0K1L(¬ϕ) is an OPL step function. If ϕ = k, k ∈ K,
then JkK = k1(Σ,M)+ is an OPL step function. Let V = free(ϕ1) ∪ free(ϕ2). By
lifting Lemma 5.14 to OPL step functions as in [DP14a] and by Lemma 5.16,
we see that Jϕ1⊕ϕ2K = Jϕ1KV + Jϕ2KV and Jϕ1⊗ϕ2K = Jϕ1KV � Jϕ2KV are also
OPL step functions.

(b) Given an OPL step function JϕK =
∑n

i=1 ki1Li , we use Theorem 5.3
to get ϕi with JϕiK = 1Li . Then, the second statement follows from setting

ϕ =
n
⊕
i=1

(ki ⊗ ϕi) and the fact that the OPL (Li)1≤i≤n form a partition of

(Σ,M)+.

Proposition 5.18. Let S be an OPL step function. Then S is strictly regular.

Proof. Let n ∈ N, (Li)1≤i≤n be OPL forming a partition of (Σ,M)+ and ki ∈ K
for each i ∈ {1, ..., n} such that

S =
n∑
i=1

ki1Li .

It is easy to construct a rwOPA with two states recognizing the constant series
JkiK which assigns the weight ki to every word. Hence, ki1Li = JkiK ∩ Li is
strictly regular by Proposition 5.9. Therefore, by Proposition 5.8, S is strictly
regular.

Definition 5.19. Let ϕ ∈ MSO(K). We denote by const(ϕ) all weights of K
occurring in ϕ and we call ϕ ⊗-restricted if for all subformulas ψ ⊗ θ of ϕ, the
formula ψ is almost boolean or const(ψ) and const(θ) commute elementwise.
We call ϕ

∏
-restricted if for all subformulas

∏
x ψ of ϕ, ψ is almost boolean.

We call ϕ restricted if it is both ⊗- and
∏

-restricted.

In Example 5.4, the formula β is boolean, the formulas φ are almost boolean,
and ψ and χ are restricted. Notice that ψ and χ would be restricted even if K
were not commutative.

The following proposition will find usage in Section 5.5.

Proposition 5.20. Let S : (Σ,M)+ → K be a regular (resp. strictly regular)
series and k ∈ K. Then JkK� S is regular (resp. strictly regular).

86 CHAPTER 5. WEIGHTED OPL

Proof. Let A = (Q, I, F, δ,wt) be a wOPA such that JAK = S. Then we
construct a wOPA B = (Q′, I ′, F, δ′,wt′) as follows.

We set Q ⊍ I ′ and I ′ = {q′I | qI ∈ I}. The new transition relations δ′ and
weight functions wt′ consist of all transitions of A with their respective weights
and the following additional transitions: For every push transition (qI , a, q)
of δpush, we add a push transition (q′I , a, q) to δ′push with wt′push(q′I , a, q) =
k · wtpush(qI , a, q).

Note that, as for OPA, every run of a wOPA has to start with a push
transition. Therefore, B starts in a state q′I ∈ I, uses one of the added
transitions, and afterwards exactly simulates the automaton A. Together with
the weight assignment, this ensures that B uses the same weights as A except
at the very first transition of every run which is multiplied by k from the left.
It follows that JBK = JkK� S. In particular, we did not change the weight of
any pop transition, thus if A is restricted, so is B.

5.5 Characterization of Weighted OPL

In this section, we show the expressive equivalence of weighted operator prece-
dence automata and the introduced weighted MSO logic. We follow the
approach of Section 4.5. Note, however, that here we have to distinguish
between regular and strictly regular series and the translation from automata
to formula (Proposition 5.25) is more sophisticated.

Lemma 5.21 (Closure under weighted disjunction). Let ϕ and ψ be two
formulas of MSO(K) such that JϕK and JψK are regular (resp. strictly regular).
Then, Jϕ⊕ ψK is regular (resp. strictly regular).

Proof. We put V = free(ϕ) ∪ free(ψ). Then, Jϕ⊕ ψK = JϕKV + JψKV is regular
(resp. strictly regular) by Lemma 5.14 and Proposition 5.8.

Proposition 5.22 (Closure under restricted weighted conjunction). Let ψ⊗ θ
be a subformula of a ⊗-restricted formula ϕ of MSO(K) such that JψK and
JθK are regular (resp. strictly regular). Then, Jψ ⊗ θK is regular (resp. strictly
regular).

Proof. Since ϕ is ⊗-restricted, the formula ψ is almost boolean or the constants
of ψ and θ commute.

Case 1: Let us assume ψ is almost boolean. Then, we can write JψK as
OPL step function, i.e., JψK =

∑n
i=1 ki1Li , where Li are OPL. So, the series

Jψ⊗ θK equals a sum of series of the form (Jki⊗ θK∩Li). Then, by Proposition
5.20, Jki⊗θK is a regular (resp. strictly regular) series. Therefore, (Jki⊗θK∩Li)
is regular (resp. strictly regular) by Proposition 5.9. Hence, Jψ⊗ θK is (strictly)
regular by Proposition 5.8.

Case 2: Let us assume that the constants of ψ and θ commute. Then, the
second part of Proposition 5.9 yields the claim.

5.5. CHARACTERIZATION OF WEIGHTED OPL 87

Lemma 5.23 (Closure under
∑

x,
∑

X). Let ϕ be a formula of MSO(K)
such that JϕK is regular (resp. strictly regular). Then, J

∑
x ϕK and J

∑
X ϕK are

regular (resp. strictly regular).

Proof. This is a proven by Lemma 5.14 and Proposition 5.10 analogously to
Lemma 4.21 (cf. also [DG07]).

Proposition 5.24 (Closure under restricted
∏
x). Let ϕ be an almost boolean

formula of MSO(K). Then, J
∏
x ϕK is strictly regular.

Proof. We use ideas of [DG07] and the extensions in [DP14b]. The proof
follows the structure of Lemma 4.22 with the following intuition.

In the first part, we write JϕK as OPL step function and encode the
information to which language (w, γ[x→ i]) belongs in a specially extended
language L̃. Then we construct an MSO-formula for this language. Therefore,
by Theorem 5.3, we get a deterministic OPA recognizing L̃. In the second part,
we add the weights ki to this automaton and return to our original alphabet.
Note that in the second part, we only have to add weights to pushes and shifts,
thus making sure that J

∏
x ϕK is not only regular, but strictly regular.

More detailed, let ϕ ∈ MSO(K, (Σ,M)). We define V = free(
∏
x.ϕ)

and W = free(ϕ) ∪ {x}. We consider the extended alphabets ΣV and ΣW
together with their natural OPMs MV and MW . By Proposition 5.17 and
lifting Lemma 5.14 to OPL step functions, JϕK is an OPL step function. Let
JϕK =

∑m
j=1 kj1Lj where Lj is an OPL over (ΣW ,MW) for all j ∈ {1, ...,m}

and (Lj) is a partition of (ΣW ,MW)+. By the semantics of the product
quantifier, we get for (w, γ) ∈ (ΣV ,MV)+

J
∏
xϕK(w, γ) =

∏
i∈[w]

(JϕKW(w, γ[x→ i]))

=
∏
i∈[w]

(kg(i)),

where g(i) =

1 , if (w, γ[x→ i]) ∈ L1

...
m , if (w, γ[x→ i]) ∈ Lm

, for all i ∈ [w] . (5.2)

Now, in the first part, we encode the information to which language (w, γ[x→ i])
belongs in a specially extended language L̃ and construct an MSO-formula for
this language. We define the extended alphabet Σ̃ = Σ× {1, ..., n}, together
with its natural OPM M̃ which only refers to Σ, so:

(Σ̃V , M̃V)+ = {(w, g, γ) | (w, γ) ∈ (ΣV ,MV) and g ∈ {1, ...,m}[w]} .

88 CHAPTER 5. WEIGHTED OPL

We define the languages L̃, L̃j , L̃
′
j ⊆ (Σ̃V , M̃V)+ as follows:

L̃ =

 (w, g, γ)

∣∣∣∣∣∣∣
(w, γ) ∈ (Σ̃V , M̃V)+ is valid and

for all i ∈ [w], j ∈ {1, ...,m} :

g(i) = j ⇒ (w, γ[x→ i]) ∈ Lj

 ,

L̃j =

{
(w, g, γ)

∣∣∣∣∣ (w, γ) ∈ (Σ̃V , M̃V)+ is valid and

for all i ∈ [w] : g(i) = j ⇒ (w, γ[x→ i]) ∈ Lj

}
,

L̃′j = { (w, g, γ) | for all i ∈ [w] : g(i) = j ⇒ (w, γ[x→ i]) ∈ Lj } .

Then, L̃ =
⋂m
j=1 L̃j . Hence, in order to show that L̃ is an OPL, it suffices to

show that each L̃j is an OPL. By a standard procedure, compare [DG07], we
obtain a formula ϕ̃j ∈ MSO(Σ̃V , M̃V) with L(ϕ̃j) = L̃′j . Therefore, by Theorem

5.3, L̃′j is an OPL. It is straightforward to define an OPA accepting ÑV , the

language of all valid words. By closure under intersection, L̃j = L̃′j ∩ ÑV is also

an OPL and so is L̃. Hence, there exists a deterministic OPA Ã = (Q, q0, F, δ̃)
recognizing L̃.

In the second part, we add weights to Ã as follows. We construct the
rwOPA A = (Q, I, F, δ,wt) over (ΣV ,MV) and K by adding to every push and
shift transition of Ã with g(i) = j the weight kj .

That is, we keep the states, the initial state, and the accepting states, and
for δ = (δpush, δshift, δpop) and all q, q′, p ∈ Q and (a, j, s) ∈ Σ̃V , we set

δpush = {(q, (a, s), q′) | (q, (a, j, s), q′) ∈ δ̃push} ,
δshift = {(q, (a, s), q′) | (q, (a, j, s), q′) ∈ δ̃shift} ,
δpop = δ̃pop ,

wtpush(q, (a, s), q′) =

{
kj , if (q, (a, j, s), q′) ∈ δ̃push

0 , otherwise
,

wtshift(q, (a, s), q
′) =

{
kj , if (q, (a, j, s), q′) ∈ δ̃shift

0 , otherwise
,

wtpop(q, p, q′) = 1 .

Since Ã is deterministic, for every (w, g, γ) ∈ L̃, there exists exactly one
accepted run r̃ of Ã. On the other hand, for every (w, g, γ) /∈ L̃, there is
no accepted run of Ã. Since (Lj) is a partition of (ΣW ,MW)+, for every
(w, γ) ∈ (ΣV ,MV), there exists exactly one g with (w, g, γ) ∈ L̃. Thus, every
(w, γ) ∈ (ΣV ,MV) has exactly one run r of A determined by the run r̃ of
(w, g, γ) of Ã. We denote by wtA(r, (w, γ), i) the weight used by the run r on
(w, γ) over A at position i, which is always the weight of the push or shift
transition used at this position. Then by definition of A and L̃, the following
holds for all i ∈ [w]

g(i) = j ⇒ wtA(r, (w, γ), i) = kj ∧ (w, γ[x→ i]) ∈ Lj .

5.5. CHARACTERIZATION OF WEIGHTED OPL 89

By formula (5.2), we obtain

JϕKW(w, γ[x→ i]) = kj = wtA(r, (w, γ), i) .

Hence, for the behavior of the automaton A the following holds

JAK(w, γ) =
∑

r′∈acc(A,w)

wt(r′)

=

|w|∏
i=1

wtA(r, (w, γ), i)

=

|w|∏
i=1

JϕKW(w, γ[x→ i])

= J
∏
x ϕK(w, γ) .

Thus, A recognizes J
∏
x ϕK.

The following proposition is a summary of the previous results.

Proposition 5.25. For every restricted MSO(K)-sentence ϕ, there exists an
rwOPA A with JAK = JϕK.

Proof. We use structural induction on ϕ. If ϕ is an almost boolean formula,
then by Proposition 5.17, JϕK is an OPL step function. By Proposition 5.18,
every OPL step function is strictly regular.

Closure under ⊕ is dealt with by Lemma 5.21, closure under ⊗ by Proposi-
tion 5.22. The sum quantifications

∑
x and

∑
X are dealt with by Lemma 5.23.

Since ϕ is restricted, we know that for every subformula
∏
x ψ, the formula ψ

is an almost boolean formula. Therefore, we can apply Proposition 5.24 to
maintain recognizability of our formula in this case.

The next proposition shows that the converse also holds.

Proposition 5.26. For every rwOPA A, there exists a restricted MSO(K)-
sentence ϕ with JAK = JϕK. If K is commutative, then for every wOPA A,
there exists a restricted MSO(K)-sentence ϕ with JAK = JϕK.

Proof. The rationale adopted to build formula ϕ fromA integrates the approach
followed in [DG07, DP14b] with the one of [LMPP15]. On the one hand we
need second order variables suitable to “carry” weights; on the other hand,
unlike previous non-OP cases which are managed through real-time automata,
an OPA can perform several transitions while remaining in the same position.
Thus, we introduce the following second order variables: Xpush

p,a,q represents the
set of positions where A performs a push move from state p, reading symbol a
and reaching state q; Xshift

p,a,q has the same meaning as Xpush
p,a,q for a shift operation;

90 CHAPTER 5. WEIGHTED OPL

◦ Xpop
3,1,3

◦ Xpop
3,1,3

◦ Xpop
3,0,3

◦ Xpop
3,3,3

◦ Xpop
1,0,1 ◦ Xpop

1,0,1 ◦ Xpop
3,2,3 ◦ Xpop

3,2,3

Xpush
0,n,1 Xpush

1,+,0 Xpush
0,n,1 Xpush

1,×,0 Xpush
0,(,2 Xpush

2,n,3 Xpush
3,+,2 Xpush

2,n,3 Xshift
3,),3

n + n × (n + n)

0 1 2 3 4 5 6 7 8 9 10

Figure 5.10: The string n+n×(n+n) with the second order variables evidenced
for the automaton of Figure 5.3. The symbol ◦ marks the positions of the
symbols that precede the push corresponding to the connected pop transition.

Xpop
p,q,r represents the set of positions of the symbol that is on top of the stack

when A performs a pop transition from state p, with q on top of the stack,
reaching r.

Let V consist of all Xpush
p,a,q , Xshift

p,a,q, and Xpop
p,q,r such that a ∈ Σ, p, q, r ∈ Q

and (p, a, q) ∈ δpush resp. δshift, resp. (p, q, r) ∈ δpop. Since Σ and Q are finite,
there is an enumeration X̄ = (X1, .., Xm) of all variables of V. We denote by
X̄push, X̄shift, and X̄pop enumerations over only the respective set of second
order variables.

We use the following usual abbreviations for unweighted formulas of MSO:

(β ∧ ϕ) = ¬(¬β ∨ ¬ϕ) ,

(β → ϕ) = (¬β ∨ ϕ) ,

(β ↔ ϕ) = (β → ϕ) ∧ (ϕ→ β) ,

(∀x.ϕ) = ¬(∃x.¬ϕ) ,

(y = x) = (x ≤ y) ∧ (y ≤ x) ,

(y = x+ 1) = (x ≤ y) ∧ ¬(y ≤ x) ∧ ∀z.(z ≤ x ∨ y ≤ z) ,

min(x) = ∀y.(x ≤ y) ,

max(x) = ∀y.(y ≤ x) .

Also, we use the shortcuts Tree(x, z, v, y), Nexti(x, y), Succq(x, y), Qi(x, y), and
Treep,q(x, z, v, y), which were originally defined in [LMPP15] and are reported
and adapted here for the reader’s convenience.

The main idea behind the formula Tree(x, z, v, y) is the following. Given
x y y, we have a sequence of positions x = k1 < ... < km = y, as defined
in Section 2.2 (page 18). Then, we encode in z and v two other important

5.5. CHARACTERIZATION OF WEIGHTED OPL 91

positions for this sequence: The position z should be the successor of x in this
sequence, that is, the position where we execute the push resulting from xl z.
The position v should be the predecessor of y in this sequence, that is, the
position we mark with the respective Xpop resulting from v m y.

For instance, with reference to Figure 5.10, Tree(5, 7, 7, 9) and Tree(4, 5, 9, 10)
hold.

x ◦ y :=
∨

a,b∈Σ,Ma,b=◦
Laba(x) ∧ Labb(y), for ◦ ∈ {l, .=,m} ,

Tree(x, z, v, y) := xy y ∧

 (x+ 1 = z ∨ xy z) ∧ ¬∃t(z < t < y ∧ xy t)
∧

(v + 1 = y ∨ v y y) ∧ ¬∃t(x < t < v ∧ ty y)

Furthermore, Succq(x, y) holds for two successive positions where the OPA
reaches state q through a push or shift at position y, while Nextq(x, y) holds
when a pop move reaches state q while completing a chain xy y.

Succq(x, y) := (x+ 1 = y) ∧
∨

p∈Q,a∈Σ

(x ∈ Xpush
p,a,q ∨ x ∈ Xshift

p,a,q ∨min(x)) ,

Nextr(x, y) := ∃z∃v.

Tree(x, z, v, y) ∧
∨
p,q∈Q

v ∈ Xpop
p,q,r

 ,

Qi(x, y) := Succi(x, y) ∨Nexti(x, y) .

Finally,

Treei,j(x, z, v, y) := Tree(x, z, v, y) ∧Qi(v, y) ∧Qj(x, z)

refines the predicate Tree by making explicit that i and j are, respectively, the
current state and the state on top of the stack when the pop move is executed.

We now define the unweighted formula ψ to characterize all accepted runs

ψ = Partition(X̄push, X̄shift) ∧Unique(X̄pop) ∧ InitFinal

∧ Transpush ∧ Transshift ∧ Transpop .

Here, the subformula Partition will enforce the push and shift sets to be
(together) a partition of all positions, while the formula Unique will make sure
that we mark every position with at most one Xpop. InitFinal controls the

92 CHAPTER 5. WEIGHTED OPL

initial and the acceptance condition.

Partition(X1, ..., Xn) = ∀x.
n∨
i=1

[
(x ∈ Xi) ∧

∧
i 6=j
¬(x ∈ Xj)

]
,

Unique(Xpop
1 , .., Xpop

n) = ∀x.
∧
i 6=j
¬(x ∈ Xpop

i ∧ x ∈ Xpop
j) ,

InitFinal = ∃x∃y∃x′∃y′.
[

min(x) ∧max(y) ∧ x+ 1 = x′ ∧ y′ + 1 = y

∧
∨

i∈I, q∈Q
a∈Σ

x′ ∈ Xpush
i,a,q

∧
∨

f∈F, q∈Q
a∈Σ

(y′ ∈ Xpush
q,a,f ∨ y

′ ∈ Xshift
q,a,f)

∧
∨
f∈F

(Nextf (x, y) ∧
∧
j 6=f
¬Nextj(x, y))

]
.

The formulas Transpush Transshift Transpop control the respective transi-
tions of the run according to their labels as follows.

Transpush = ∀x.
∧

p,q∈Q,a∈Σ

(
x ∈ Xpush

p,a,q →
[

Laba(x) ∧ ∃z.(z l x ∧Qp(z, x))
])

,

Transshift = ∀x.
∧

p,q∈Q,a∈Σ

(
x ∈ Xshift

p,a,q →
[

Laba(x) ∧ ∃z.(z .
= x ∧Qp(z, x))

])
,

Transpop = ∀v.
∧
p,q∈Q

([∨
r∈Q

v ∈ Xpop
p,q,r

]
↔
[
∃x∃y∃z.(Treep,q(x, z, v, y))

])
.

Note that these formulas, compared to [LMPP15], had to be adapted to fit our
new second order variables. These new variables are crucial for the following
assignment of weights. Also notice that in the transition formulas, the partition
(resp. uniqueness) axioms guarantee that in every run the left side of the
implication (resp. equivalence) is satisfied for only one triple (p, a, q), resp.
(p, q, r).

Thus, with arguments similar to [LMPP15] it can be shown that the
sentences satisfying ψ are exactly those recognized by the unweighted OPA
subjacent to A.

For an unweighted formula β and two weights k1 and k2, we define the
following shortcut for an almost boolean weighted formula:

β ? k1 : k2 = (β ⊗ k1)⊕ (¬β ⊗ k2) .

5.5. CHARACTERIZATION OF WEIGHTED OPL 93

Now, we add weights to ψ by defining the following restricted weighted formula

θ = ψ ⊗
∏
x ⊗
p,q∈Q

(
⊗
a∈Σ

(x ∈ Xpush
p,a,q ? wtpush(p, a, q) : 1)

⊗ ⊗
a∈Σ

(x ∈ Xshift
p,a,q ? wtshift(p, a, q) : 1)

⊗ ⊗
r∈Q

(x ∈ Xpop
p,q,r ? wtpop(p, q, r) : 1)

)
.

Here, the second part of θ multiplies up all weights of the encountered tran-
sitions. This is the crucial part where we either need that K is commutative
or all pop weights are trivial because the product quantifier of θ assigns the
pop weight at a different position than the occurrence of the respective pop
transition in the automaton. Using only one product quantifier (weighted
universal quantifier) this is unavoidable, since the number of pops at a given
position is only bounded by the word length.

Since the subformulas, x ∈ X
()
()? wt() : 1, of θ are almost boolean, the

subformula
∏
x(...) of θ is

∏
-restricted. Furthermore, ψ is boolean and so θ is

⊗-restricted. Thus, θ is a restricted formula.
Finally, we define

ϕ =
⊕

X1

⊕
X2
...
⊕

Xm
θ .

This implies JϕK(w) = JAK(w), for all w ∈ (Σ,M)+. Therefore, ϕ is our
required sentence with JAK = JϕK.

The following theorem summarizes the main results of this section.

Theorem 5.27. Let K be a semiring and S : (Σ,M)+ → K a series.

1. The following are equivalent:

(i) S = JAK for some rwOPA.

(ii) S = JϕK for some restricted sentence ϕ of MSO(K).

2. Let K be commutative. Then, the following are equivalent:

(i) S = JAK for some wOPA.

(ii) S = JϕK for some restricted sentence ϕ of MSO(K).

This theorem is a further step in the path of generalizing a series of results
beyond the barrier of regular and structured CFLs of which VPL certainly
obtained much attention. OPLs further generalize this language class not only
in terms of strict inclusion, but mainly because they are not visible, in the
sense explained in the introduction, nor are they necessarily real-time: this
allows them to cover important examples that could not be adequately modeled
through more restricted classes.

94 CHAPTER 5. WEIGHTED OPL

Theorem 4.23 also shows that the typical logical characterization of weighted
languages does not generalize in the same way to the whole class wOPL since
we either need the extra hypothesis that K is commutative or we have to
restrict the usage of weights at pop-transitions. This is due to the fact that
pop transitions are applied in the reverse order than that of positions to which
they refer (position v in formula Transpop). Notice, however, that also rwOPL
do not forbid unbounded pop sequences and they too include languages that
are neither real-time nor visible.

Chapter 6

Graph Automata

The theorem of Büchi, Elgot, and Trakhtenbrot [Büc60, Elg61, Tra61] states
the equivalence of languages of words recognizable by a finite state machine
and languages definable in monadic second order theory. As noted previously,
this result had a huge positive impact in formal language theory and found
many extensions to different structures; a general result for finite graphs was
given by Thomas [Tho91]. Similarly, the weighted extension of Büchi’s theorem
by Droste and Gastin found many extensions (see e.g. [DV06, Mei06, Fic11,
Mat10b]).

However, a general result for weighted automata and weighted logics cov-
ering graphs and therefore linking the previous results remained, up to now,
open. Furthermore, it has remained an open question whether it is possible to
get such a result even in the unweighted case for infinite graphs. In particular,
different research groups tried unsuccessfully to prove this equivalence in the
case of infinite pictures.

In this chapter, we solve the first question and give a promising approach
to the second one. The detailed contributions of this chapter are the following.

• We establish a model of weighted automata on graphs, which extends both
Thomas’ graph acceptors [Tho96] and the previous weighted automata
models for words, trees, pictures, and others. We show that this enables
us to model new quantitative properties of graphs which could not be
expressed by the previous models.

• To show the robustness of our model, we extend a classical result of
Nivat [Niv68] to weighted automata on graphs, showing that their be-
haviors are exactly those which can be constructed from very particular
weighted graph automata and recognizable graph languages, together
with operations like morphisms and intersections.

• We derive a Büchi-type equivalence result for the expressive power of
weighted automata and a suitable weighted logic on graphs. We obtain
corresponding equivalence results for structures like words, trees, pictures,

95

96 CHAPTER 6. GRAPH AUTOMATA

and nested words as a consequence.

• We introduce graph acceptors operating on infinite graphs which are able
to distinguish between finitely and infinitely many occurrences of patterns.
We show a Büchi-like equivalence between these graph acceptors and an
extended EMSO-logic for infinite graphs.

• We extend the Büchi characterization of weighted automata to infinite
graphs.

• We study both semirings and valuation monoids as weight structure and
apply the Transformation Theorem of Section 3.4 to graphs. This gives
us the means to sharpen both Büchi-type equivalences according to the
strength of assumptions on the weight structure.

We note that for graph walking automata, an interesting approach connecting
pebble navigating weighted automata and weighted first-order logic was given
in [BGMZ14, Mon13]. The present automata model is different, using tiles of
graphs.

We consider directed graphs with bounded vertex degree as defined in
Section 2.2. In contrast to special classes of graphs like words, trees, or
pictures, these graphs are very general structures. For example, they do not
have to admit an order on their vertices, can be disconnected, and can contain
cycles. Thus, in comparison to previous cases, the following difficulties arise in
our proofs.

The crucial difference to previous approaches is that a graph automaton
has a global acceptance condition in form of a check of occurrence numbers
of the tiles that appear in a run of the automaton on a graph. We need
this condition to connect logic and automata. Furthermore, since we are
dealing with graphs, the underlying unweighted automata model cannot be
determinized. Accordingly, the unweighted logic subfragment covers only
existential MSO. Also, the closure under weighted universal quantifications
requires new methods; here we employ a theorem of Thomas [Tho96] whose
proof in turn relied on Hanf’s theorem [Han65].

Notably, these two results cannot be applied to infinite graph acceptors
which contain an acceptance condition that is able to distinguish between
finitely and infinitely many occurrences of states. Instead, we apply proof ideas
from Thomas [Tho96] and Bollig and Kuske [BK07] and our result from Section
2.4 to show that graph acceptors and an EMSO-logic with an additional infinity
operator for infinite graphs are equally expressive. To enhance readability, we
first develop our weighted results in the finite case, designed in an adaptable
way, thereby facilitating the later extensions to infinite graphs.

The majority of the results of this chapter was published in [DD15] and
[Düc16]. Additionally, in Section 6.2.4, we show the following new result. We
prove that weighted graph automata cannot recognize the constant series of
rational non-integer numbers. On the other hand, if given a natural number or

6.1. THOMAS’ GRAPH ACCEPTORS 97

an integer n, we can construct a weighted graph automaton which yields n for
every input graph. This shows that while the natural numbers N are what we
call a regular weight structure, the rational numbers Q are not. The distinction
between regular and non-regular weight structures influences the applicability
of our characterization result.

6.1 Thomas’ Graph Acceptors

In this section, we restate the definitions of a graph acceptor as introduced by
Thomas in [Tho91] and [Tho96]. We recapitulate the main result of [Tho96]
which connects these graph acceptors to the existential fragment of classical
MSO logic on graphs.

Definition 6.1. A graph acceptor (GA) A over the alphabets A and B is
defined as a quadruple A = (Q,∆,Occ, r) where

• Q is a finite set of states,

• r ∈ N, the tile-size,

• ∆ is a finite set of pairwise non-isomorphic r-tiles1 over A×Q and B,

• Occ, the occurrence constraint, is a boolean combination of formulas
“occ(τ) ≥ n”, where n ∈ N and τ ∈ ∆.

Given a graph G of DGt(A,B) with a vertex set V , we call a mapping
ρ : V → Q a run (or tiling) of A on G if for every v ∈ V , sphr(Gρ, v) is
isomorphic to a tile in ∆. For every graph G and every run ρ, we consider the
graph Gρ ∈ DGt(A×Q,B), which consists of the same vertices and edges as
G and is additionally labeled with ρ(v) at every vertex v.

As before, we say Gρ satisfies occ(τ) ≥ n if there exist at least n distinct
vertices v ∈ V such that sphr(Gρ, v) is isomorphic to τ . The semantics of “Gρ
satisfies Occ” are then defined in the usual way.

We call a run ρ accepting if Gρ satisfies the constraint Occ. We say that A
accepts the graph G ∈ DGt(A,B) if there exists an accepting run ρ of A on G.
We define L(A) = {G ∈ DGt(A,B) | A accepts G}, the language accepted by
A. We call a language L ⊆ DGt(A,B) recognizable if L = L(A) for some GA
A. Since every accepting run applies to every vertex of the graph G a unique
tile, we may also say that A tiles the graph G using specific tiles of ∆. An
example of a graph G together with a run ρ is given in Figure 6.1.

Similarly, we also define acceptance of graph acceptors for languages of
pointed graphs L ⊆ pDGt(A,B). In this case the definitions above are exactly
the same but we use pointed tiles instead of tiles, as defined in Section 2.2. In
addition to the center which every tile has, a pointed tile has a second pointing

1For the definition of r-tiles, refer to page 14.

98 CHAPTER 6. GRAPH AUTOMATA

a, q1 a, q2 a, q1

b, q1

a, q1 a, q2 a, q1

b, q2

a, q1

a, q2

Figure 6.1: A graph Gρ of DG3({a, b} × {q1, q2}, {1}) together with its 1-
sphere around the serrated vertex. The edge labels were omitted. Given an
automaton with tile-size 1, the marked sphere has to be part of the tile-set
∆ of the automaton recognizing this graph. Note that the tiles necessarily
‘overlap’, because the sphere around every vertex of G has to be part of ∆.

which is either empty or marks a vertex in the pointed tile that is the root u
of the whole pointed graph (G, u).

Note that Thomas (cf. [Tho91, Tho96]) uses non-pointed graphs. As the
definition of a graph acceptor can be applied to both contexts, the pointing of
a graph and therefore of its tiles can be seen as optional additional information
to distinguish tiles from each other.

The following main result of Thomas [Tho96] states that graph acceptors
exactly describe all graph languages definable by an existential MSO sentence
as introduced in Section 2.3.

Theorem 6.2 ([Tho96]). Let L ⊆ DGt(A,B) be a set of graphs. Then:

1. L is recognizable by a one-state GA iff L is definable by an FO-sentence.

2. L is recognizable iff L is definable by an EMSO-sentence.

This result is easily adaptable to languages of pointed graphs. In this case,
the MSO logic additionally contains the formula root(x) denoting that x is the
root of a pointed graph (G, u).

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 99

6.2 Weighted Graph Automata (WGA)

In this section, we introduce and investigate a quantitative version of graph
automata. We follow the approach of [DD15] for finite graphs, but use the
more general structure of (graph-) valuation monoids instead of commutative
semirings (see [Düc16] and Section 3.2). We give multiple examples of this new
model, incorporating both semirings and valuation monoids.

Furthermore, we give a Nivat-like and a Büchi-like characterization of
weighted graph automata. The latter is the first result characterizing general
weighted languages of graphs by a weighted MSO logic and linking previous
results for special classes of graphs. Additionally, we study the regularity of
weight structures for graphs in Section 6.2.4.

To avoid repetition, we concentrate on graphs of DGt(A,B), which are not
necessarily pointed. However, we can always go from non-pointed graphs to
pointed graphs of pDGt(A,B) by going from tiles to pointed tiles (cf. Section
2.2). The root of a graph is helpful for some examples (especially for infinite
graphs) and for the application of the Transformation Theorem for weighted
logics over left-multiplicative valuation monoids.

6.2.1 Introduction and Properties of WGA

In the following, we give the definition of a weighted graph automaton, we
illustrate this new model with several examples, and we study first properties
of weighted graph automata. By abuse of notation, we also consider graphs
DGt(M,B) over an infinite set M . Note that we use this notation only in our
weight assignments of the weighted automaton and never as part of the input
or within a tile. Note that as a special case of valuation monoids, the following
theory is also applicable to commutative semirings.

Definition 6.3. A weighted graph automaton (wGA) over the alphabets A
and B, and the valuation monoid D is a tuple A = (Q,∆,wt,Occ, r) where

• A′ = (Q,∆,Occ, r) is a graph acceptor over the alphabets A and B,

• wt : ∆→ D is the weight function assigning to every tile of ∆ a value of
D.

An run ρ : V → Q of A on G and an accepting run are defined as an
(accepting) run of A′ on G. As in the unweighted case, G can be either
unpointed or pointed.

For every vertex v of G, a run ρ uniquely defines sphr(Gρ, v), which is an
r-tile of ∆ around v. Let GDρ be the unique graph over DGt(D,B) resulting
from the graph G where for all vertices v, LabGDρ (v) = wt(sphr(Gρ, v)). In

other words, GDρ is the graph G, where every vertex is labeled with the weight
of the tile the run ρ defines around this vertex.

100 CHAPTER 6. GRAPH AUTOMATA

We denote by accA(G) the set of all accepting runs of A on G. Then the
behavior JAK : DGt(A,B)→ D of a wGA A is defined, for each G ∈ DGt(A,B),
as

JAK(G) =
∑

ρ∈accA(G)

Val(GDρ) .

We call any function S : DGt(A,B) → D a series. Then S is recognizable if
S = JAK for some wGA A. By the usual identification of languages with their
characteristic functions, we see that graph acceptors are expressively equivalent
to wGA over the Boolean semiring B. In the special case that D is a semiring,
we get

JAK(G) =
∑

ρ∈accA(G)

∏
v∈V

wt(sphr(Gρ, v)) .

Compared to classical weighted automata over words, wt(sphr(Gρ, v)) takes
the place of a transition weight.

The following property of a weight structure is directly connected to this
automata model and will prove very important in the later parts of this section.

Definition 6.4. A valuation monoid D is called wGA-regular, short regular, if
all constant series of D are recognizable. An pv-monoid PD is called regular if
its underlying valuation monoid is regular.

For example, the valuation monoid D1 = (R ∪ {−∞}, sup, avg,−∞) is
regular. This can be seen by building a one-state wGA Ad which assigns to
every tile the value d. Then JAdK(G) = d for every graph G. The valuation
monoid D2 = (R ∪ {−∞}, sup,discλ,−∞) is regular over pointed graphs. In
this case, we need to assign the weight d to exactly the tile at the root of the
graph and the weight 0 elsewhere.

We will discuss sufficient conditions for regularity of valuation monoids in
Section 6.2.4. In the following, we give several examples of weighted graph
automata.

Example 6.1. Weighted graph automata operate over the general class of
t-bounded graphs, in particular, disconnected graphs. Therefore, the number
of connected components of a graph is an interesting property. The following
wGA describes this property by counting the number of connected components
as exponent of 2.

We define the wGA A = (Q,∆,wt,Occ, r) over arbitrary alphabets A and
B, and the semiring K = (N,+, ·, 0, 1). We set r = 1, Occ = true, wt ≡ 1, and
Q = {q1, q2}. The set of tiles is defined as ∆ = ∆1 ∪∆2, where

∆1 = {τ | every vertex of τ is labeled with some (a, q1), a ∈ A} ,
∆2 = {τ | every vertex of τ is labeled with some (a, q2), a ∈ A} .

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 101

Note that we can use different alphabet symbols for vertices of a tile, but our
tiles allow no mix of q1 and q2. Furthermore, the tile size is 1, thus, whenever
the automaton labels one vertex with q1 (resp. q2), it has to label all directly
connected vertices also with q1 (resp. q2). Since every 1-sphere of the labeled
graph has to be part of ∆, it follows that every connected component of a
given graph G is tiled either completely with q1 or completely with q2.

Consequently, for every connected component, we have two independent
choices in an accepting run. Since wt ≡ 1, JAK(G) equals the number of runs,
thus

JAK(G) = 2m(G) ,

where m(G) is the number of connected components of G. �

Example 6.2. The following weighted graph automaton uses the weights of
a semiring K to attach to every vertex its degree. To simplify the example,
the wGA does not distinguish between in- and out-going edges or edges with
different labels (this would also be possible). Then we can use different semirings
to assign to every graph G ∈ DGt(A,B) its maximal or minimal degree or the
sum of all degrees. Since the latter would always yield two times the number
of edges, we give another wGA which works likewise, but takes only vertices
labeled with a ∈ A into account.

We define the wGAs Ai = (Q,∆,wti,Occ, r), i ∈ {1, 2} over arbitrary
alphabets A and B, and the semiring K. We set r = 1, Occ = true, Q = {q0},
and ∆ = {τ | τ is a 1-tile}. Let τ = (H, v) be a 1-tile around the center v.
The weight functions wt1 and wt2 are defined as

wt1(τ) = wt1(H, v) = |vertices(H)| − 1 = degree(v) ,

wt2(τ) =

{
wt1(τ) , if v is labeled with (a, q0)
1K , otherwise

.

Now, JAiK(G) =
∑

ρ acc. run

∏
v∈V wti(sphrAi(Gρ, v)), i ∈ {1, 2}, and since we

have only one state, every graph has exactly one accepting run, so

JA1K(G) =
∏
v∈V

degree(v) ,

JA2K(G) =
∏
v∈V,

v labeled with (a,q0)

degree(v) ,

where the product depends on the semiring. If, for example, we set K =
(N ∪ {−∞},max,+,−∞, 0), we get the sum of all degrees, resp. the sum of
all degrees at a vertex labeled with a ∈ A. If, on the other hand, we use the
max-min semiring Rmax,min = (R+ ∪ {∞},max,min, 0,∞), we get the minimal
degree of all vertices (of all vertices labeled with a, respectively). �

102 CHAPTER 6. GRAPH AUTOMATA

Example 6.3. Let A = {a, b} and B = {x}. We are interested in the
proportion of nodes labeled with a and without outgoing edges. For instance,
in a tree this would refer to all leafs labeled with a. For a given graph G, we
can compute this value with the following wGA over the valuation monoid
D1 = (R ∪ {−∞}, sup, avg,−∞).

Set A = (Q,∆,wt,Occ, r), with Q = {q}, r = 1, ∆ = {τ | τ is a 1-tile},
and Occ = true. Furthermore, we define wt(τ) = 1 if the center v of τ is
labeled with (a, q) and there is no vertex w of τ s.t. Ex(v, w), and wt(τ) = 0,
otherwise. Then JAK(G) is the desired proportion. Note that using more states
and bigger tile radii, we can easily modify this example to compute the ratio
of more complex patterns. It is also possible to compute graph wide values
like the average degree of a graph or the average of the number of neighbors
labeled with b of all vertices. �

Example 6.4. Let us assume our graph represents a social network. Now, we
are interested in the affinity of a person to a certain characteristic (a hobby,
a political tendency, an attribute, etc.) be it to use this information in a
matching process or for personalized advertising.

We assume that this affinity is not only related to the person itself, but
also takes the social environment of the person into account. Here, in the first
step, we assume a radius of 1 (which are all direct friends) and we assume
that for every friend the affinity increases linearly. E.g., I am more inclined
to watch soccer if I play soccer myself or I have close friends who play soccer.
In the second step, to take a bigger social environment into account, we use
a discount function to sum up over all the assigned values discounted by the
distance to the person we are interested in.

Now, let D2 = (R ∪ {−∞}, sup, discλ,−∞). We define the wGA A =
(q, {τ | τ is a 1-tile},wt, true, 1) over A = {a, b}, B = {x}, and D2, with
wt(τ) = #a(τ), where #a(τ) is the number of vertices of τ labeled with
a. Then depending on λ, A computes for a given pointed graph (G, u) the
affinity of u to the characteristic a. Note that again A could make use of more
sophisticated weight assignments. �

In the following, we show that it is possible to increase the size of the tiles
without losing definability by Occ or recognizability in our automaton. To
count occurrences of smaller tiles within bigger tiles or, more generally, about
occurrences of tiles with a certain pattern, we introduce the following notation.
Let τ∗ be a finite set of tiles enumerated by (τ1, ..., τm). For N ∈ N, we define
the formula(∑

τ∈τ∗
occ(τ)

)
≥ N as

∨
∑m
i=1 ni=N

ni∈{0,...,N}

∧
i=1,...,m

occ(τi) ≥ ni . (6.1)

We can interpret τ∗ as a set of tiles matching a certain pattern. Then this

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 103

formula is true if the occurrence number of all tiles matching this pattern is at
least N .

Lemma 6.5. Let A and B be two alphabets and s ∈ N. Let Occ be a boolean
combination of formulas“occ(τ) ≥ n” where τ are s-tiles over A and B and
n ∈ N.

Then for all r ≥ s, there exists a boolean combination Occ′ of formulas
“occ(τ ′) ≥ m” where τ ′ are r-tiles over A and B and m ∈ N, such that for all
G ∈ DGt(A,B), G satisfies Occ if and only if G satisfies Occ′.

Proof. Let r ≥ s. Let ϕ = occ(τ) ≥ N occur in of Occ. We denote by τ∗ the
set of all r-tiles (H, v) where sphs(H, v) is isomorphic to τ . Since A and B are
finite and the tiles are of bounded degree, τ∗ is finite and can be enumerated
by (τ1, ..., τm). We rewrite ϕ using these r-tiles and the formula (6.1):

ϕ =
(∑
τ∈τ∗

occ(τ)
)
≥ N .

Following the arguments above, this formula is true if the occurrence number of
all tiles matching τ∗ (i.e. all r-tiles that match τ if restricted to their s-sphere)
is at least N , which is precisely ϕ. We apply this method to all (atomic) parts
of Occ, and our claim follows.

Lemma 6.6. Let S : DGt(A,B) → D be a series recognizable by a wGA A
with tile-size s. Then for all r ≥ s, S is recognizable by a wGA B with tile-size
r.

Proof. Let A = (Q,∆A,wtA,OccA, s) be a wGA with JAK = S. We construct
the wGA B = (Q,∆B,wtB,OccB, r). We use Lemma 6.5 to rewrite OccA into
OccB. We set ∆B = {(H, v) | sphs(H, v) ∈ ∆A}. For (H, v) ∈ ∆B, we define
wtB(H, v) = wtA(sphs(H, v)).

Let G ∈ DGt(A,B). Hence, B mimics A exactly regarding the s-spheres,
and has no additional restrictions on the vertices with distance greater than s
within an r-sphere. Therefore, ρ : V → Q is an accepting run of A on G if and
only if ρ is an accepting run of B on G. Every run uses the same weights on
both automata. Thus, JAK(G) = JBK(G).

Example 6.5. We continue Example 6.2, and using formula (6.1), we construct
an alternative wGA A3 = (Q3,∆3,wt3,Occ3, r), as follows. We set r = 1,
Q3 = {q0, q1}, and ∆3 = {τ | τ is a 1-tile}. We denote by τ∗ all tiles τ which
are labeled at the center with (a, q1) for some a ∈ A, and define

wt3(τ) =

{
wt1(τ) , if τ ∈ τ∗
1K , otherwise

,

Occ3 =
(∑
τ∈τ∗

occ(τ)
)
≥ 1 ∧ ¬

((∑
τ∈τ∗

occ(τ)
)
≥ 2
)
.

104 CHAPTER 6. GRAPH AUTOMATA

This ensures that we use the state q1 at exactly one position. Therefore, for
every vertex, we get exactly one accepting run. Moreover, every accepting run
has exactly the weight 1K · ...1K · wt1(τ) · 1K · ...1K = wt1(τ) where wt1(τ) is
the degree of the vertex marked with q1. It follows that

JA3K(G) =
∑
v∈V

degree(v),

and we are again free to choose a semiring with the desired summation. For
example, the tropical semirings now yield the maximal (resp. minimal) degree
of all vertices, and the semiring of the natural numbers yields the sum. Again,
this approach is modifiable by taking only special vertices or special edges into
account. �

Example 6.6. The following weighted graph automaton computes the weighted
diameter (i.e. the maximal distance between two vertices) of edge-weighted
graphs up to a threshold N ∈ N. Let B = {1, ..., N} be the edge labels, which
describe the length of an edge. Note that, here, we sum over the length of the
edge when computing shortest paths between vertices. It is also possible to set
B = {1} to get the classical notion of the diameter of a graph.

Here, for the sake of convenience, we restrict ourselves to undirected graphs,
i.e., (v, w) ∈ Ei ⇔ (w, v) ∈ Ei. Similarly, we ignore the vertex labels and set
A = {a}, although, it would also be possible to take directions and vertex
labels into account.

We define the wGA A = (Q,∆,wt,Occ, r) over A, B, and the tropi-
cal semiring Rmax = (R ∪ {−∞},max,+,−∞, 0) as follows. We set Q =
{0, ..., N} × {0, 1}, and r = 1.

Let τ = (H, v) be a 1-tile. We refer with Labc
Q(τ) to the first component of

the state used at the center of the tile τ . We refer with LabEiQ (τ, w) to the first
component of the state at a vertex w which is connected to the center of the tile
τ by an edge labeled with i, i.e. (v, w) ∈ Ei. For x, y ∈ Z with x ≤ y, y ≥ 0, and
x ≤ N , we define [x, y] = {x, ..., y} and [x, y]0N = {max(0, x), ...,min(y,N)}.

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 105

Then we define the set of tiles as

∆ = ∆0 ∪∆N ∪
n−1⋃
k=1

∆k ,

∆0 =

{
τ = (H, v)

∣∣∣∣∣ Labc
Q(τ) = 0

∧ LabEiQ (τ, w) ∈ [1, i], for all (v, w) ∈ Ei

}
,

∆N =

{
τ = (H, v)

∣∣∣∣∣ Labc
Q(τ) = N

∧ LabEiQ (τ, w) ∈ [N − i,N], for all (v, w) ∈ Ei

}
,

∆k =

 τ = (H, v)

∣∣∣∣∣∣∣∣
Labc

Q(τ) = k

∧ LabEiQ (τ, w) ∈ [k − i, k + i]0N , for all (v, w) ∈ Ei
∧ LabEiQ (τ, w) = k − i, for at least one (v, w) ∈ Ei

 .

We refer with Labc2
Q (τ) to the second component of the state used at the center

of the tile τ , and we define the weight function as

wt(τ) =

{
Labc

Q(τ) , if Labc2
Q (τ) = 1

0 , otherwise
.

Finally, we define the occurrence constraint as

Occ =
(∑

Labc
Q(τ)=0

occ(τ)
)
≥ 1 ∧ ¬

((∑
Labc

Q(τ)=0

occ(τ)
)
≥ 2
)

∧
(∑

Labc2
Q (τ)=1

occ(τ)
)
≥ 1 ∧ ¬

((∑
Labc2

Q (τ)=1

occ(τ)
)
≥ 2
)
.

This ensures that we have exactly one vertex y labeled with the state 0 in the
first component and exactly one vertex z labeled with the state 1 in the second
component.

Furthermore, every first component of a state we assign to a vertex has to
be equal to the distance of this vertex to y up to the threshold N , which can
be proved by induction.

For example, the following tiles would be part of the wGA for N = 20 and
t ≥ 4 (we are omitting the a here):

0, 0

5, 0

2, 0

5

3
, 5, 00, 0

2, 0

8, 1

4, 0

5

3
7

4

, 20, 0

20, 0

20, 0

20, 0

1
3

7

.

106 CHAPTER 6. GRAPH AUTOMATA

Then every accepting run has the weight of the vertex z, i.e., the distance of
this vertex to the state y up to the threshold N . Thus,

JAK(G) = max
ρ acc. run

wtA,G(ρ)

= max
y,z∈V

distN (y, z) ,

which is our desired property. Note again that, here, the distance sums over
the edge-labels, whereas setting B = {1} yields the unweighted setting and the
geodesic distance to y up to the threshold N . �

We extend the operation + of our valuation monoid to series by means of
point-wise definition, i.e.,

(S + T)(G) = S(G) + T (G) for each G ∈ DGt(A,B) .

In the case of a semiring, we apply the same to the product, i.e.,

(S � T)(G) = S(G) · T (G) for each G ∈ DGt(A,B) .

Proposition 6.7. The class of recognizable series is closed under +.

Proof. Let A = (QA,∆A,wtA,OccA, rA) and B = (QB,∆B,wtB,OccB, rB) be
weighted graph automata over the valuation monoid D and the alphabets A
and B with JAK = S1, JBK = S2, and QA ∩QB = ∅. Using Lemma 6.6, we can
assume that both automata have the same tile-radius r.

We construct the wGA C = (QC ,∆C ,wtC ,OccC , r) with JCK = S1 + S2, as
follows. We define QC = QA ⊍ QB and ∆C = ∆A ⊍∆B. Now, the idea is to
enforce C to tile a graph G either completely with tiles from A or completely
with tiles from B. If restricted to r > 1 and connected graphs, this follows
directly from the choice of ∆C (which allows no ”mix-tiles”). In the general
case, we define OccC in the following way to ensure this property:

OccC = (OccA ∧
∧
τ∈∆B

occ(τ) = 0) ∨ (OccB ∧
∧

τ∈∆A

occ(τ) = 0) .

For τ ∈ ∆C , we set wtC(τ) =

{
wtA(τ) , if τ ∈ ∆A
wtB(τ) , if τ ∈ ∆B

. Then every accepting

run of C is exactly one accepting run in either A or B, and vice versa. This run
uses the respective weights, thus JCK(G) = JAK(G)+JBK(G) = (S1+S2)(G).

Proposition 6.8. Let D = K be a commutative semiring. Then, the class of
recognizable series is closed under � .

Proof. Let A = (QA,∆A,wtA,OccA, r) be a wGA recognizing a series S1 :
DGt(A,B) → D and let B = (QB,∆B,wtB,OccB, r) be a wGA recognizing

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 107

S2 : DGt(A,B)→ D. Using Lemma 6.6, we can assume that both automata
have the same tile-radius r.

With a product construction, we construct a wGA C = (QC ,∆C ,wtC ,OccC , r)
with JCK = S1 � S2, as follows. We define QC = QA × QB. If τ is a tile
over A × QC, we denote by τ|A×QA the same tile over A × QA where we
forget the labels QB. Similarly, we define τ|A×QB . We let ∆C consist of all
tiles τ such that τ|A×QA ∈ ∆A and τ|A×QB ∈ ∆B. For τ ∈ ∆C, we put

wtC(τ) = wtA(τ|A×QA) · wtB(τ|A×QB). Let τA ∈ ∆A. We define τB∗A as the
set of all tiles τ over A × QC with τ|A×QA = τA. We use formula (6.1) to
define Occ′A as the formula OccA where we substitute every incidence of
occ(τA) ≥ n with (

∑
τ ′∈τB∗A

occ(τ ′)) ≥ n. Analogously, we define Occ′B. We set

OccC = Occ′A ∧Occ′B.

Hence, for every graph G, every accepting run ρ of C on G defines exactly
one accepting run ρ|QA of A and exactly one accepting run ρ|QB of B on G
(restricted to the respective state-labels), matching the respective occurrence
constraints and weights. Using distributivity of our semiring, we get

JCK(G) =
∑

ρ acc. run of C on G

∏
v∈V

wtC,G,ρ(v)

=
∑

ρ:V→QC , such that
ρ|QA acc. run of A on G

ρ|QB acc. run of B on G

∏
v∈V

wtA,G,ρ|QA (v) · wtB,G,ρ|QB (v)

=
∑
ρ|QA

∏
v∈V

wtA,G,ρ|QA (v) ·
∑
ρ|QB

∏
v∈V

wtB,G,ρ|QB (v)

= JAK(G) · JBK(G) .

Hence, JCK = JAK� JBK = S1 � S2 .

Note that in the proof above, the distributivity is crucial. For valuation
monoids, which in general are not distributive, we later will need the following.
Let S : DGt(A,B) → D and L ⊆ DGt(A,B). We define the restriction
S ∩ L : DGt(A,B)→ D by

(S ∩ L)(G) =

{
S(G) , if G ∈ L
0 , otherwise

.

Proposition 6.9. Let S : DGt(A,B) → D be a recognizable series and L ⊆
DGt(A,B) be a recognizable language. Then the following holds

1. If L is recognizable by a one-state GA, then S ∩ L is recognizable.

2. If D is idempotent, then S ∩ L is recognizable.

Proof. We use product constructions of automata.

108 CHAPTER 6. GRAPH AUTOMATA

Let A = (QA,∆A,wtA,OccA, r) be the wGA recognizing S : DGt(A,B)→
D and let B = (QB,∆B,OccB, r) be the GA recognizing L ⊆ DGt(A,B). We
construct a wGA C = (QC ,∆C ,wtC ,OccC , r) with JCK = S ∩ L as follows. We
set QC = QA ×QB. We define ∆C and OccC as in the proof of Proposition 6.8.

As previously, for a tile τ over A × QC, we denote by τ|A×QA the tile
over A × QA where we forget the labels QB. Then, for τ ∈ ∆C, we set
wtC(τ) = wtA(τ|A×QA).

Hence, as before, for every graph G, every accepting run ρ of C on G defines
exactly one accepting run ρ|QA of A and exactly one accepting run ρ|QB of B
on G. Conversely, if B has no accepting run on G, JCK(G) will yield 0.

Furthermore, in the first case, we can construct B with one state, thus B
has at most one accepting run on every graph. In the second case, B could
have multiple accepting runs on a graph, but using the idempotence of D, we
only need to regard one accepting run. In both cases, we obtain

JCK(G) =
∑

ρ∈accC(G)

Val(GC,ρ)

=
∑

ρ:V→QC , such that
ρ|QA acc. run of A on G

ρ|QB acc. run of B on G

Val(GC,ρ)

=

{ ∑
ρ∈accA(G) Val(GA,ρ) , if B has an accepting run on G

0 , otherwise

= (S ∩ L)(G) .

Hence, JCK = S ∩ L .

In the following, we show that recognizable series are closed under projection.
Let h : A′ → A be a mapping between two alphabets. Then h defines naturally a
relabeling of graphs from DGt(A

′, B) into graphs from DGt(A,B), also denoted
by h. Let S : DGt(A

′, B)→ D be a series. We define h(S) : DGt(A,B)→ D
by

h(S)(G) =
∑

G′∈DGt(A′,B)
h(G′)=G

S(G′) . (6.2)

Proposition 6.10. Let S : DGt(A
′, B) → D be a recognizable series and

h : A′ → A. Then h(S) : DGt(A,B)→ D is recognizable.

Proof. We use ideas of [DV12] in a modified form.
Let A = (QA,∆A,wtA,OccA, r) be a weighted graph automaton over A′

and B with JAK = S. We construct the wGA B = (QB,∆B,wtB,OccB, r) over
A and B with JBK = h(S), as follows. Since h could map two symbols of A′

to the same symbol of A, we have to keep track of the original labeling of our

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 109

graphs. Therefore, we set QB = A′×QA. We define ∆B as the set of all tiles τ
over A×A′ ×QA and B such that every vertex of τ has the form (h(a′), a′, q)
with a′ ∈ A′, q ∈ Q, and the respective tile where we forget the first label A,
i.e., τ|A′×QA , is in ∆A. For τ ∈ ∆B, we define wtB(τ) = wtA(τ|A′×QA).

Let τA ∈ ∆A. We define τ ′A ∈ ∆B as the respective tile where we substitute
every vertex (a′, q) with the vertex (h(a′), a′, q). We define OccB as OccA
where we substitute every incidence of occ(τA) ≥ n with occ(τ ′A) ≥ n. We
note that we could also (analogously to the proof of Proposition 6.8) use a
sum over the occurrences of all tiles matching the pattern described by τA, but
following the definition of ∆B, these are exactly the tiles with vertices of the
form (h(a′), a′, q).

Now, every run of the wGA B on a graph G ∈ DGt(A,B) tiles the graph
such that every vertex of G is labeled with (a, a′, q) such that a′ is an element of
the preimage of a under h. Such a run is accepting if and only if the respective
run of A on G′ (where G′ is the preimage of G under h, defined by the elements
a′ ∈ A of the tiles) is accepting. It follows that every accepting run of B on G
defines exactly an accepting run of A on a preimage of G under h, and vice
versa. Together with the weights of the tiles matching each other, we obtain

JBK(G) =
∑

ρ∈accB(G)

Val(GB,ρ)

=
∑

G′∈DGt(A′,B)
h(G′)=G

∑
ρ∈accA(G′)

Val(G′A,ρ)

=
∑

G′∈DGt(A′,B)
h(G′)=G

JAK(G′)

= h(JAK)(G) = h(S)(G) .

Hence, JBK = h(S).

6.2.2 Robustness of WGA: A Nivat Theorem

In this section, we establish a connection between unweighted recognizable lan-
guages and recognizable graph series over semirings. Note that a corresponding
result for weighted automata on words (cf. [DKar]) makes crucial use of the
possible determinization of every unweighted word automaton. Unfortunately,
graph acceptors are not determinizable [Tho91]. To deal with this problem,
we require either the underlying semiring to be idempotent or the considered
languages to be recognizable by a one-state graph acceptor. For a similar
distinction, see [DP14a].

In this section, let D = K = (K,+, ·, 0, 1) be a semiring. As noted before, for
every map h : A′ → A, we get a homomorphism h : DGt(A

′, B)→ DGt(A,B).

110 CHAPTER 6. GRAPH AUTOMATA

For a series S : DGt(A
′, B) → K, we get h(S) : DGt(A,B) → K, using the

sum over all pre-images as in formula (6.2).
Let S : DGt(A

′, B) → K and L ⊆ DGt(A
′, B). As before, we consider

S∩L : DGt(A,B)→ K by letting (S∩L)(G) = S(G) if G ∈ L and (S∩L)(G) =
0, otherwise.

Let g : A′ → K be a map. Let G ∈ DGt(A
′, B) and let LabG(v) ∈ A′ be

the label of a vertex v of G. We define the map prod ◦ g : DGt(A
′, B)→ K by

(prod ◦ g)(G) =
∏
v∈V g(LabG(v)). So, prod ◦ g : DGt(A

′, B) → K is a very
particular series obtained by assigning, for a graph G ∈ DGt(A

′, B), to each
vertex a weight (depending only on its label) and then multiplying all these
weights.

Let Nt(A,B,K) comprise all series S : DGt(A,B) → K for which there
exist an alphabet A′, a map g : A′ → K, a map h : A′ → A, and a recognizable
language L ⊆ DGt(A

′, B) such that S = h((prod ◦ g) ∩ L). We denote by
N one
t (A,B,K) the set of series defined similarly but with a language L which

is recognizable by a one-state GA. Trivially, N one
t (A,B,K) ⊆ Nt(A,B,K).

Proposition 6.11. Let S : DGt(A,B)→ K be a series. If S is recognizable,
then S is in N one

t (A,B,K).

Proof. We follow some ideas of [DKar] and [DP14a]. However, our proof has
two major differences to these approaches. Firstly, we reduce the blowup of
the alphabet A′ as follows. In the previous works, the extended alphabet was
set to all possible edges (which would translate in our context to all possible
tiles) together with all possible weights. Here, we only add one state and one
weight at every vertex of our graphs. In the case of an idempotent semiring,
we could further reduce this blowup to only adding possible weights. Secondly,
in contrast to the previous approaches, we have to deal with the occurrence
constraint of our weighted graph automata, using formula (6.1).

Let A = (Q,∆,wt,Occ, r) be a wGA over A, B, and K with JAK = S. We
denote by WT the set of all weights used by A, i.e. WT = wt(∆) ⊆ K.

We set A′ = A×Q×WT as the extended alphabet. Let h be the projection
of A′ to A, let g be the projection of A′ to WT , and let f be the projection of
A′ to A×Q.

Let L ⊆ DGt(A
′, B) be the language consisting of all graphs G′ over the

extended alphabet such that assigning to every vertex v′ of G′ the second
component of f(v′) defines an accepting run of A on h(G′) and the added
weights are consistent with the weight function wt of A. We construct the
(unweighted) graph acceptor A′ = (Q′,∆′,Occ′, r) over A′ and B, accepting L,
as follows. We set Q′ = {q0}. Let τ ′ be a tile over A′ ×Q′ and B. Since Q′

consists of only one state, we omit Q′ in the following and consider every τ ′ as
a tile over A′ and B. We define Labc

WT (τ ′) = Labc(g(τ ′)) as the WT -label at
the center of τ ′, and define the set of tiles of A′ as

∆′ = {τ ′ | f(τ ′) ∈ ∆ ∧ Labc
WT (τ ′) = wt(f(τ ′))} .

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 111

We build up the occurrence constraint Occ′ inductively in the same way as Occ,
where for every tile τ of ∆ every atomic incidence of occ(τ) ≥ n is replaced by(∑

f(τ ′)=τ occ(τ ′)
)
≥ n, see formula (6.1).

Hence, A′ has an accepting run on a graph G′ ∈ DGt(A,B) if and only if
f(G′) defines an accepting run of A on h(G′), using the corresponding weights
g(G′) at the center of the tiles. Therefore,

h((prod ◦ g) ∩ L)(G) =
∑

G′∈DGt(A′,B)
h(G′)=G

((prod ◦ g) ∩ L)(G′)

=
∑

G′∈L(A′)
h(G′)=G

prod(g(G′))

=
∑

f(G′) acc. run of A on h(G′)
h(G′)=G

∏
v∈V

Labc
WT (sphr(f(G′), v))

=
∑

ρ acc. run of A on G

∏
v∈V

wtA,G,ρ(v)

= JAK(G) = S(G) .

Hence, S = h((prod ◦ g) ∩ L), thus S ∈ N one
t (A,B,K).

Using this proposition and closure properties of series, we get the following
Nivat theorem for weighted graph automata.

Theorem 6.12. Let K be a commutative semiring and S : DGt(A,B) → K
be a series. Then S is recognizable if and only if S ∈ N one

t (A,B,K). If K is
idempotent, then S is recognizable if and only if S ∈ Nt(A,B,K).

Proof. The “only if”-part of both statements is immediate by Proposition 6.11.

For the converse, let A′ be an alphabet, g : A′ → K, h : A′ → A, L ⊆
DGt(A

′, B) be a recognizable language, and S = h((prod ◦ g) ∩ L).

In the first case, S ∈ N one
t (A,B,K), we can assume that L ⊆ DGt(A

′, B) is
recognizable by a one-state GA A. Then we construct a wGA B which uses the
same states and tiles as A and assigns to every tile of A weight 1. Since every
one-state GA has for every graph G at most one accepting run, the behavior
of B is JBK = 1L(A) = 1L.

In the second case, K is idempotent and L is recognizable by a general
GA. Then we construct the wGA B in a similar way, but now, B could have
multiple runs for an input graph G. However, the idempotence of K again
ensures that JBK = 1L.

It is easy to construct a wGA C which simulates prod◦g. Then Proposition
6.9 shows that (prod ◦ g) ∩ L is recognizable. Now, Proposition 6.10 yields the
result.

112 CHAPTER 6. GRAPH AUTOMATA

The following examples show that in the general setting there exist series
in Nt(A,B,K) which are not recognizable. For this purpose, we say that a GA
A is unambiguous if for every graph G, A has at most one accepting run on
G. We call a graph language L unambiguously recognizable if there exists an
unambiguous GA accepting L.

Example 6.7. Let L be the class of all graphs of DGt(A,B) which are not
connected. Then we claim that L is recognizable but not unambiguously
recognizable. For the first claim, it suffices to construct a GA A using the
idea of Example 6.1. That is, we define A with tile size 1, consisting of two
states q1 and q2, consisting of all tiles which are completely labeled with q1 or
completely labeled with q2, and with an occurrence constraint checking that
both q1 and q2 are occurring.

For the second claim, we assume there exists an unambiguous GA A
accepting L. Let a ∈ A. Let r be the tile size of A. Consider a graph G
consisting of two unconnected and isomorphic circles of length 2r + 2 labeled
with a at every vertex. We refer with v1, ..., v2r+2 to the vertices of the first
circle and with w1, ..., w2r+2 to the vertices of the second circle. Then, by
assumption, A has exactly one accepting run ρ on G. If both circles are not
labeled identical by ρ, i.e. if not ρ(vi) = ρ(wi) for all i = 1, ..., 2r + 2, then we
would get a different accepting run of G by interchanging the complete labeling
of the two circles (this is possible because both circles are identical, therefore
both runs would use the same tiles overall), which would be a contradiction
to our assumption. Therefore, let qi = ρ(vi) = ρ(wi). Hence, Gρ consists of
two circles labeled with (a, q1), (a, q2), ..., (a, q2r+2). Then, we claim that the
connected circle consisting of v1, ..., v2r+2, w1, ..., w2r+2 is also accepted by A.
Indeed, setting again qi = ρ′(vi) = ρ′(wi), we get an accepting run ρ′ which uses
the exact same tiles as the two unconnected circles. Therefore, our assumption
that L is unambiguously recognizable was wrong. �

Example 6.8. We follow ideas of [DP14a] to construct a series in Nt(A,B,K)
that is not recognizable, as follows. We set K = (N,+, ·, 0, 1) and A′ = A.
Letting h be the identity-function and g ≡ 1 be the constant function to 1, we
get h((prod ◦ g) ∩ L) = 1L. Therefore, it suffices to show that there exists a
recognizable language L such that 1L is not recognizable by a wGA over N.

Let L be a recognizable but not unambiguously recognizable language. We
claim 1L is not recognizable by a wGA over A, B, and N. Indeed, assume 1L is
recognizable by a wGA A. Hence, JAK(G) =

∑
acc. run ρ

∏
v∈V wtA,G,ρ(v) = 1L.

Since we can only use weights of N, this cannot be true if there exists either
an accepting run with weight greater than 1 or more than one accepting run
with weight 1. Essentially, we only need the weights 0 and 1, and A can be
transformed into an unweighted GA A which either has no accepting runs or
exactly one accepting run (with weight 1). But then A′ is an unambiguous
automaton accepting L – which is a contradiction.

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 113

The existence of a recognizable but not unambiguously recognizable lan-
guage is proven in Example 6.7. There also exist examples of recognizable but
not unambiguously recognizable languages of connected graphs. For exam-
ple, over the class of pictures the existence of such a language was shown in
[AGMR06], however, there the proof is more complex. �

In the Examples 6.7 and 6.8, we proved the following.

Proposition 6.13. 1. The class of unambiguously recognizable languages
is a proper subclass of all recognizable languages.

2. There exists a non idempotent semiring K and a recognizable language L
such that 1L is not recognizable by a wGA over K.

6.2.3 Characterization of WGA: A Büchi-Theorem

In the following, we introduce a weighted MSO-logic for graphs as a special
case of the weighted logic on relational structures in Section 3.3. Utilizing the
previous closure results, we will then show that every sentence of this logic
can be simulated by a weighted graph automaton. Finally, also showing the
converse, we get our main result of this chapter, a Büchi-like characterization
of weighted graph automata. As starting point, we give the syntax of MSO(D)
for graphs utilizing the ‘if..then..else’-operator β?ϕ1 : ϕ2.

Definition 6.14. We define the logic MSO(D,DGt(A,B)), short MSO(D), as

β ::= Laba(x) | Eb(x, y) | x = y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β
ϕ ::= d | ϕ⊕ ϕ | β?ϕ : ϕ |

⊕
x ϕ |

⊕
X ϕ | Valx ϕ

where d ∈ D; x, y are first-order variables; and X is a second order variable.

In the special case of a semiring or more generally, a product valuation
monoid, we define MSO(PD) for graphs as follows, cf. Section 3.3.

Definition 6.15. Given a product valuation monoid PD, we define the weighted
logic MSO(PD,DGt(A,B)), short MSO(PD), as

β :: = Laba(x) | Eb(x, y) | x = y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β
ϕ :: = β | d | ϕ⊕ ϕ | ϕ⊗ ϕ |

⊕
x ϕ |

⊕
X ϕ | Valx ϕ

where d ∈ D; x, y are first-order variables; and X is a second order variable. If
PD is a semiring, Val can be written as

∏
x ϕ.

As noted in Section 3.3, the semantics following below will yield that β?ϕ : ψ
is expressible by (β ⊗ ϕ)⊕ (¬β ⊗ ψ). Thus, given a product valuation monoid
PD with the underlying valuation monoid D, we can consider every MSO(D)-
sentence also as an MSO(PD)-sentence. Later, we will see that MSO(D) is

114 CHAPTER 6. GRAPH AUTOMATA

sufficient to characterize runs of weighted graph automata. However, the second
approach enriches the structure by the product and gives a direct connection
to previous works [DG07, DM12, DD15].

We define valid graphs (G, γ) ∈ DGt(AV , B), with an assignment γ of
variables V containing free(ϕ) as in Section 2.3. Whether a graph is valid can
be checked in Occ by a formula checking for every FO-variable x that the sum
of all occurrences of tiles labeled with x = 1 at their center is 1. Therefore,
being valid is a graph property which can be checked by a graph acceptor.

We define the semantics of ϕ ∈ MSO(D), resp. ϕ ∈ MSO(PD) (cf. Section
3.3), as a function JϕKV : DGt(AV , B)→ D for all valid (G, γ) inductively as
seen in Figure 6.2. For not valid graphs G′, we set JϕKV(G′) = 0. Note that

JdKV(G, γ) = d for all d ∈ D
Jϕ⊕ ψKV(G, γ) = JϕKV(G, γ) + JψKV(G, γ)

Jβ?ϕ : ψKV(G, γ) =

{
JϕKV(G, γ) , if (G, γ) |= β

JψKV(G, γ) , otherwise

JβKV(G, γ) =

{
1 , if (G, γ) |= β

0 , otherwise

Jϕ⊗ ψKV(G, γ) = JϕKV(G, γ) � JψKV(G, γ)

J
⊕

x ϕKV(G, γ) =
∑
v∈V

JϕKV∪{x}(G, γ[x→ v])

J
⊕

X ϕKV(G, γ) =
∑
I⊆V

JϕKV∪{X}(G, γ[X → I])

JValx ϕKV(G, γ) = Val((G, γ)ϕ), where (G, γ)ϕ is the graph (G, γ) s.t.

every vertex v is labeled with JϕKV∪{x}(G, γ[x→ v])

Figure 6.2: Semantics of MSO(D) and MSO(PD) for graphs.

for the Boolean semiring B, the unweighted MSO is expressively equivalent to
MSO(B).

By Lemma 3.5, we have that JϕKV(G, γ) = JϕK(G, γ�free(ϕ)) for each
(G, γ) ∈ DGt(AV , B). Then, the following lemma shows that a series remains
recognizable if we add (superfluous) variables.

Lemma 6.16. Let ϕ ∈ MSO(D) or ϕ ∈ MSO(PD) and V be a finite set of
variables with V ⊇ free(ϕ). If JϕK is recognizable, then JϕKV is recognizable.

Proof. This is proved analogously to Proposition 3.3 of [DG07] as follows.
Let JϕK be recognizable by a wGA A over Afree(ϕ). Then we can construct a
wGA A′ over AV , which ignores the superfluous variables using formula (6.1).
Furthermore, in the occurrence constraint A′ can check that we only read valid
graphs. Then JA′K = JϕKV .

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 115

We note that, in contrast to all previous papers of the literature on weighted
logic, in general, the converse of Lemma 6.16 is not true as shown by the
subsequent example together with results from Section 6.2.4. If we restrict
ourselves to pointed graphs or to an idempotent valuation monoid, we can show
that JϕK is recognizable if and only if JϕKV is recognizable. However, in the
following proofs of this chapter, we do not need the converse of the implication
of Lemma 6.16.

Example 6.9. We provide a counterexample for the converse of Lemma 6.16,
as follows.

Let A and B be two arbitrary alphabets and let D be the rational numbers
D = (Q,+, ·, 0, 1). We set ϕ = 1

2 and V = {x}. Then free(ϕ) = ∅ and
JϕK(G) = JϕKV(G, γ) = 1

2 for each G ∈ DGt(A,B) and for each valid (G, γ) ∈
DGt(AV , B).

We construct the wGA A = ({q0},∆,wt,Occ, 0) over AV , B, and D with
JAK = JϕKV , as follows. We set ∆ = {τ | τ is a 0-tile}. We denote by τ∗ all
tiles τ which are labeled at the center with (a, 1, q0) for some a ∈ A, and define

Occ =
(∑
τ∈τ∗

occ(τ)
)
≥ 1 ∧ ¬

((∑
τ∈τ∗

occ(τ)
)
≥ 2
)
.

We define wt(τ) = 1
2 if τ ∈ τ∗, and wt(τ) = 1, otherwise. Hence, JAK(G, γ) = 1

2
for each valid (G, γ) ∈ DGt(AV , B), and JAK(G, γ) = 0, otherwise. Thus,
JAK = JϕKV .

It remains to show that JϕK is not recognizable. This follows from the fact
that Q is not regular, which is proven in the following Section 6.2.42. �

Now, we show that recognizable series are closed under
⊕

x- and
⊕

X -
quantification (in previous papers called the weighted existential quantification).

Lemma 6.17. Let JϕK be recognizable. Then J
⊕

x ϕK and J
⊕

X ϕK are recog-
nizable by a wGA.

Proof. This is a direct application of Proposition 6.10, cf. [DG07] and proven
analogously to Lemma 4.21 as follows.

Let V = free(
⊕

X ϕ). We define π : DGt(AV∪{X}, B) → DGt(AV , B) by
π(G, γ) = (G, γ�V) for any (G, γ) ∈ DGt(AV∪{X}, B). Then for (G, γ) ∈
DGt(AV , B), the following holds

J
⊕

X ϕK(G, γ) =
∑
I⊆V

JϕKV∪{X}(G, γ[X → I])

=
∑

(G,γ′)∈DGt(AV∪{X},B)

π(G,γ′)=(G,γ)

JϕKV∪{X}(G, γ′)

= π(JϕKV∪{X})(G, γ) .

2as this combinatorial proof stands a bit apart from the other results of this section, or in
other words, the section “is too narrow to contain” the full proof.

116 CHAPTER 6. GRAPH AUTOMATA

By Lemma 6.16, JϕKV∪{X} is recognizable because free(ϕ) ⊆ V ∪ {X}. Then
J
⊕

X ϕK is recognizable by Proposition 6.10. The operator
⊕

x is dealt with
analogously.

The interesting case is the Valx-quantification (which was in previous works
called the weighted universal quantification [DG07]). Similarly to [DG07], our
unrestricted logic is strictly more powerful than our automata model. Therefore,
inspired by Gastin and Monmege [GM15], we introduce the following fragment.

We call a formula ϕ ∈ MSO(D) almost FO-boolean if ϕ is built up inductively
from the grammar

ϕ ::= d | β?d : ϕ

where d ∈ D and β is an unweighted FO-formula. For product valuation
monoids, we define all almost FO-boolean formulas ϕ ∈ MSO(PD), as in
Section 3.3 (cf. also [DG07] and [DM12]), to be built up inductively from the
following grammar

ϕ ::= d | β | ϕ⊕ ϕ | ϕ⊗ ϕ

where d ∈ D and β is an unweighted FO-formula.
In the following, using techniques inspired by [DM12], [GM15], and Section

4.4, we show that both fragments of almost FO-boolean formulas are equivalent
to all formulas ϕ such that JϕK is an FO-step function, i.e., it takes only finitely
many values and for each value its preimage is FO-definable. This also explains
why we overload the notion of ‘almost FO-boolean formulas’.

More precisely, denoting the constant series d(G) = d for all G ∈ DGt(A,B)
also with d, we call a series S an FO-step function if

S =
k∑
i=1

di ∩ Li ,

where k ∈ N, di ∈ D, Li are languages definable by an unweighted FO-formula,
and (Li)i=1...k form a partition of DGt(A,B); so S(G) = di iff G ∈ Li, for
each i ∈ {1, ..., k}. In the following, we write S =

∑k
i=1 di1Li for such a given

FO-step function.
Since every FO-definable language is definable by a one-state GA (Theorem

6.2), which intersected with recognizable series yield recognizable series (Propo-
sition 6.9), which are closed under sum (Lemma 5.21), we get the following
intermediate result.

Corollary 6.18. Let D be a regular valuation monoid. Then every FO-step
function is recognizable by a wGA.

Lemma 6.19. 1. Let ϕ ∈ MSO(D) be an almost FO-boolean formula, then
JϕK is an FO-step function.

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 117

2. Let ϕ ∈ MSO(PD) be an almost FO-boolean formula, then JϕK is an
FO-step function.

3. For every FO-step function S : DGt(A,B)→ D, there exist almost FO-
boolean sentences ϕ1 ∈ MSO(D) and ϕ2 ∈ MSO(PD) with S = Jϕ1K =
Jϕ2K.

Proof. 1. We use induction on the structure of an almost FO-boolean formula.
If ϕ = d ∈ D, then JϕK = d = d ∩ DGt(A,B) is an FO-step function. If ϕ is
FO-boolean, we can interpret ϕ as unweighted formula with JϕK = 1L(ϕ). Then
L(ϕ) is a recognizable language by Theorem 6.2. Hence, JϕK is an FO-step
function. If ϕ = β?d : θ and JθK =

∑k
i=1 di1Li is an FO-step function, then

JϕK = d∩L(β)+θ∩L(¬β) = d1L(β) +
∑k

i=1 di1Li∩L(¬β) is an FO-step function.

For 2., we have to additionally show closure under ⊗ and ⊕ as follows. We
assume that JϕK =

∑k
i=1 di1Li and JψK =

∑`
j=1 d

′
j1L′j

are FO-step functions.

Then Jϕ⊕ ψK and Jψ ⊗ ϕK are FO-step functions since we have

JϕK + JψK =
k∑
i=1

∑̀
j=1

(di + d′j)1Li∩L′j ,

JϕK � JψK =
k∑
i=1

∑̀
j=1

(di � d′j)1Li∩L′j ,

where (Li ∩ L′j) are also FO-definable and form a partition of DGt(A,B).

3. Let S : DGt(A,B)→ D be an FO-step function, so S =
∑k

i=1 di1Li with
di ∈ D, (Li) form a partition of DGt(A,B), and for each i ∈ {1, ..., k}, let βi
be an FO-sentence such that L(βi) = Li. Then, the weighted semantics of βi
yield JβiK = 1Li . Hence, the almost FO-boolean sentence ϕ ∈ MSO(D) defined
as

ϕ1 = β1?d1 : (β2?d2 : ... : (βk?dk : 0)...)

satisfies Jϕ1K = S, since (Li) form a partition.

For MSO(PD), we set

ϕ2 =
k⊕
i=1

(di ⊗ βi)

which evaluates to
∑k

i=1(di � 1Li). Since for all i, di � 1Li = di ∩ Li, we get
Jϕ2K = S.

Proposition 6.20. Let ϕ ∈ MSO(D) or ϕ ∈ MSO(PD) be an almost FO-
boolean formula. Then JValx ϕK is recognizable.

Proof. We use ideas of [DG07] and the proofs of Lemma 4.22 and Proposition
5.24. However, we have to adapt to the fact that graph acceptors are not

118 CHAPTER 6. GRAPH AUTOMATA

determinizable, and we have to take special care of the occurrence constraint
of the graph acceptors.

The main structure of the proof is the following: Since ϕ is almost FO-
boolean, we can apply Lemma 6.19 to write it as FO-step function JϕK =∑m

i=1 di1Li , where the Li form a partition of all graphs. Then, we can encode
the information in which language Li a given graph falls into an FO-formula
L̃. Using Theorem 6.2 yields a one-state GA Ã with L(Ã) = L̃. We ‘copy’
this graph acceptor m-times and add weights to every tile depending on the
state-label at its center, resulting in a wGA A. Then, we can show that
JAK = JValx ϕK.

More detailed, let V = free(Valx ϕ) and W = V ∪ {x}. By Lemma 6.16 and
Lemma 6.19, we have that JϕK =

∑m
i=1 di1Li , with FO-definable languages Li

forming a partition of DGt(AW , B). Thus, there exist FO-formulas ϕj with
L(ϕj) = Lj for every j ∈ {1, ...,m}.

We use a modified form of the encoding of [DG07]: We set ÃV = AV ×
{1, ...,m}. We write graphs over ÃV and B as (G, g, γ) where γ is an assignment
of free variables of Valx ϕ and g : V → {1, ...,m}, where V is set of vertices of
(G, g, γ). We define L̃ as the language of all valid (G, g, γ) with the following
property. For all v ∈ V, j ∈ {1, ...m}, and g(v) = j, we have (G, γ[x→ v] ∈ Lj .

Using the FO-formulas ϕj , it can be proved analogously to [DG07] and
[Fic11] that L̃ is FO-definable. By Theorem 6.2, there exists a one-state graph
acceptor Ã = ({q0}, ∆̃, Õcc, r) over ÃV and B with L(Ã) = L̃.

Now, we define the wGA A = (Q,∆,wt,Occ, r) over AV and B with
JAK = JValx ϕK, as follows. We set Q = {q1, ..., qm}. Then every tile τ̃
of Ã is in DGt(AV × {1, ...,m} × {q0}, B)), and every tile τ of A will be in
DGt(AV×{q1, ..., qm}, B)). It is easy to see that there exists a natural bijection
h between these two sets. We define ∆ = h(∆̃) and Occ = h(Õcc), where h(Õcc)
is built up inductively in the same way as Õcc, and every atomic incidence of
occ(τ̃) ≥ n is replaced by occ(h(τ̃)) ≥ n. If τ ∈ ∆ is a tile around v where v is
labeled with qj at the second component, we define the weight assignment of τ
as wt(τ) = dj .

Note that for every valid graph (G, γ), there exists exactly one graph
(G, g, γ) ∈ L̃, due to (Li) forming a partition. Therefore, A has at most one
accepting run for every graph (G, γ). Furthermore, the run of Ã on (G, g, γ) is
accepting if and only if it satisfies the occurrence constraints of Ã if and only
if the respective run of A on (G, γ) satisfies the occurrence constraints of A.

Let (G, γ) be a graph with an accepting run ρ : V → Q on A. Recall that
(G, γ)Dρ denotes the graph (G, γ) labeled with the weights of the tiles defined
by the run ρ. Following the definition of A and the arguments above, we get
the following observation. For v ∈ V , the weight of (G, γ)Dρ at v is dj iff v is
labeled with qj by the run ρ of A iff v is labeled with j by the respective run

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 119

of Ã iff g(v) = j iff (G, γ[x→ v]) ∈ Lj . Note that

JϕKW(G, γ[x→ v]) =

d1 , if (G, γ[x→ v]) ∈ L1

...
dm , if (G, γ[x→ v]) ∈ Lm

.

Now, consider the graph (G, γ)ϕ where we label every vertex v of (G, γ) with
JϕKW(G, γ[x→ v]) (cf. semantics in Figure 6.2). Then the observation above
and the representation of JϕKW give us (G, γ)ϕ = (G, γ)Dρ . Finally, we obtain
the following

JAK(G, γ) =
∑

ρ∈accA(G,γ)

Val((G, γ)Dρ)

= Val((G, γ)Dρ)

= Val((G, γ)ϕ)

= JValx ϕK(G, γ) .

Thus, JAK = JValx ϕK.

Let ϕ ∈ MSO(D). As in Section 3.4, we call ϕ FO-restricted if all unweighted
subformulas β are FO-formulas and for all subformulas Valx ψ of ϕ, ψ is almost
FO-boolean.

These restrictions are motivated in [DG07] (restriction of Valx ψ) and
[Fic11] (restriction to FO) where it is shown that the unrestricted versions of
the logic are strictly more powerful than weighted automata on words, resp.
pictures. For graphs this is also true, even for the Boolean semiring. The
following example shows that we cannot relax our logic-restriction to include
recognizable step functions instead of FO-step functions. For pictures such an
example can be found in [Fic11] (Example 6.5). Both examples use that the
underlying EMSO-logics are not closed under negation, respectively under the
∀x operator.

Example 6.10. We consider the Boolean semiring B = ({0, 1},∨,∧, 0, 1) as
a product valuation monoid. Then Valx coincides with ∀x. Furthermore, a
series S is a recognizable step function if and only if S is recognizable if and
only if the support of S is a recognizable language (cf. [DG07]). It is known
that, in general, the application of universal quantification to a recognizable
language does not yield a recognizable language. Take for example the formula
ϕ = reach(x, y) describing that y can be reached by x. This can be checked
by an EMSO-formula [AF90]. Then the formula ∀x∀y.reach(x, y) describes
exactly whether a graph is connected, which is no EMSO-property. Therefore,
JϕK = 1L(ϕ) is recognizable, but JValx Valy ϕK is not recognizable. �

We summarize our results into the following proposition.

120 CHAPTER 6. GRAPH AUTOMATA

Proposition 6.21. If D is regular, then for every FO-restricted MSO(D)-
sentence ϕ, there exists a wGA A with JAK = JϕK.

Proof. We use structural induction on ϕ. For ϕ = d, we use regularity of D.

Closure under ⊕ is dealt with by Proposition 6.7 and Lemma 6.16. A
new case concerns the ‘if..then..else’-operator as follows. Let β?ϕ1 : ϕ2 be a
subformula of ϕ. Since β is an FO-formula, the languages L(β) and L(¬β)
are recognizable by a one-state GA. Furthermore, it holds that Jβ?ϕ1 : ϕ2K =
Jϕ1K ∩ L(β) + Jϕ2K ∩ L(¬β). Then Proposition 6.9, together with Proposition
6.7 and Lemma 6.16 yields that Jβ?ϕ1 : ϕ2K is recognizable. Existential
quantifications are dealt with by Lemma 6.17. Since ϕ is restricted, we
know that for every subformula Valx ψ, the formula ψ is an almost FO-boolean
formula. Therefore, we can apply Lemma 6.19 and Proposition 6.20 to maintain
recognizability of our formula.

For a formula ϕ ∈ PD over a product valuation monoid, we additionally
have to restrict the usage of the ⊗-operator. We introduce restricted (resp.
weakly- and strongly-restricted) and FO-restricted (resp. weakly-FO- and
strongly-FO-restricted) formulas as in Section 3.4. In contrast to FO-restricted
formulas, a restricted formula also allows EMSO-definable formulas in the
unweighted fragment. Then we can, similarly to Proposition 6.21, summarize
our previous results.

Proposition 6.22. 1. If PD is regular, then for every strongly-FO-restricted
MSO(PD)-sentence ϕ, there exists a wGA A with JAK = JϕK.

2. If PD is idempotent and regular, then for every strongly-restricted MSO(PD)-
sentence ϕ, there exists a wGA A with JAK = JϕK.

Proof. We show both statements simultaneously and use structural induction
on ϕ. Then, additionally to the proof of Proposition 6.21, we have to show the
following.

If ϕ = β, for an unweighted formula β, then in the first case, β is an
FO-formula and we can apply Theorem 6.2 to get a one-state GA A with
L(A) = L(β). In the second case, β is an EMSO-formula and we can apply
Theorem 6.2 to get a GA A with L(A) = L(β). In both cases, we transform A
into a wGA A′, using the constant function wt ≡ 1. Using that every one-state
graph acceptor has at most on run in the first case and the idempotence of D
in the second case, both cases result in JA′K = 1L(A) = JϕK.

If ϕ = ψ ⊗ θ, then ψ and θ are almost FO-boolean or one of the two is
definable by an unweighted FO-formula, because ϕ is strongly-⊗ restricted.
If ψ and θ are almost FO-boolean, ϕ is almost FO-boolean and therefore
recognizable by Corollary 6.18. If ψ or θ is definable by an unweighted FO-
formula, we apply Proposition 6.9 to get that ϕ is recognizable.

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 121

Now, we show that every weighted graph automaton can be simulated by
an FO-restricted MSO(D)-sentence.

Proposition 6.23. Let PD be a product valuation monoid and D its underlying
valuation monoid. Then, for every wGA A over D, there exists an FO-restricted
MSO(D)-sentence ϕ and an FO-restricted MSO(PD)-sentence ϕ′ with JAK =
JϕK = Jϕ′K.

Proof. Let A = (Q,∆,wt,Occ, r) be a weighted graph automaton over A, B,
and D. We define the set variables X̄ = {Xτ | τ ∈ ∆}. This is a finite set and
can be enumerated by (Xτ1 , ..., Xτm).

As in the classical unweighted case, it is possible to write down a formula
ϕ′ = ∃Xτ1 ...∃Xτm .β(X̄), where β(X̄) is an FO-formula describing the accepting
runs of A without regard to the weights. Then, for a run ρ : V → Q, we define
the (X̄,G)-assignment γρ by

γρ(Xτ) = {v | sphr(Gρ, v) is isomorphic to τ} , τ ∈ ∆ .

Hence, (G, γρ) |= β if and only if X̄ defines an accepting run ρ of A on G.
Furthermore, for every (G, γ) satisfying β, there exists an accepting run ρ of
A on G with γ = γρ.

We use nested ‘if..then..else’-operators to define the weight used at a position
described by the variable x as follows.

wt(x, X̄) = x ∈ Xτ1? wt(τ1) : (x ∈ Xτ2? wt(τ2) : (... : (x ∈ Xτm? wt(τm) : 0)...)

Adding these weights to β, we define the weighted formula

θ(X̄) = β(X̄)? Valx wt(x, X̄) : 0 .

Finally, we define

ϕ =
⊕

X1
...
⊕

Xm
θ(X1, ..., Xm) .

Now, JϕK(G, γ) sums over all possible assignments of X̄ and checks whether
they encode an accepting run of A on G. If that is the case, it assigns to
every tile τ the corresponding weight wt(τ). Then, Valx, is the valuation of all
weights of this particular run. For assignments not encoding an accepting run,
the weight 0 is applied. We get

JϕK(G) =
∑

(X̄,G) assignment γ

JθK(G, γ)

=
∑

ρ∈accA(G)

JθK(G, γρ)

=
∑

ρ∈accA(G)

Val(GA,ρ)

= JAK(G) .

122 CHAPTER 6. GRAPH AUTOMATA

The formula wt(x, X̄) is almost FO-boolean, and ϕ does not use the ∃X
operator. Therefore, θ and ϕ are FO-restricted. This concludes the proof for
ϕ ∈ MSO(D).

The construction of ϕ′ ∈ MSO(PD) is nearly analogously. Since it holds
that Jβ?ϕ : ψK = J(β ⊗ ϕ) ⊕ (¬β ⊗ ψ)K, and this formula applied to wt and
θ yields an FO-boolean formula, we could simply rewrite the ‘if..then..else’-
operator. However, we can also (shorter and in line with the usual approach
of previous works, cf. [DG07] with symbolic changes) use the following weight
assignment

wt(x) = ⊕
Xτ∈X̄

(x ∈ Xτ ⊗ wt(τ)) .

Together with
θ(X̄) = β(X̄)⊗Valx wt(x)

and

ϕ′ =
⊕

X1
...
⊕

Xm
θ(X1, ..., Xm) ,

this yields Jϕ′K = JAK.

Joining Proposition 6.23 and Proposition 6.21, this gives the first main
result of this section, a Büchi-like connection between the introduced weighted
graph automata and the restricted weighted logic.

Theorem 6.24. Let D = (D,+,Val, 0) be a regular valuation monoid and let
S : DGt(A,B)→ D be a series. Then the following are equivalent:

1. S is recognizable by a wGA over D.

2. S is definable by an FO-restricted MSO(D)-sentence.

Examples of regular valuation monoids are the introduced examples using
average or discounting. In the following Section 6.2.4, we will show the
following sufficient conditions for regularity. All idempotent semirings are
regular. Furthermore, over pointed graphs all commutative semirings and all
left-distributive pv-monoids are regular. In the case of unpointed graphs, the
semiring of the natural numbers N is regular, while the rational numbers Q
are not regular.

To take the product of a product valuation monoid, in particular a semiring,
in account, we can apply the Transformation Theorem 3.6 to graphs and we get
the following result taking special care of the interaction between assumptions
on our product valuation monoid and necessary restrictions of the weighted
logic. The detailed notions of a left-distributive pv-monoid and a cc-valuation
semiring are the same as introduced in Section 3.2.

Theorem 6.25. Let PD = (D,+,Val, �, 0, 1) be a product valuation monoid
and let S : DGt(A,B)→ D be a series.

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 123

1. Let PD be regular. Then S is recognizable by a wGA iff S is definable by
a strongly-FO-restricted MSO(PD)-sentence.

2. Let PD be left-distributive. Then S is recognizable by a wGA iff S is
definable by a FO-restricted MSO(PD)-sentence.

3. Let PD be a cc-valuation-semiring. Then S is recognizable by a wGA iff
S is definable by a weakly-FO-restricted MSO(PD)-sentence.

4. If PD is also idempotent, then the statements of 1. (resp. 2., and 3.) are
equivalent to

• S is definable by a weakly-restricted (resp. restricted or strongly-
restricted) MSO(PD)-sentence.

Note that every cc-valuation semiring is left-distributive and therefore
regular as seen in the following chapter. This covers for example PD1 =
(R ∪ {−∞}, sup, avg,+,−∞, 0) and PD2 = (R ∪ {−∞}, sup, discλ,+,−∞, 0).

6.2.4 A Deeper Look at Regularity of Weight Structures

We defined weighted graph automata over valuation monoids, a very general
weight structure. While we are motivated by semirings and examples like
average and discounting, in general valuation monoids can also be monoids
with less structural information. As usual, this power comes at a price. In
Sections 3.3 and 3.4, we have already seen that the expressibility of a weighted
MSO-formula is directly connected to how much we know about the valuation
monoid, see Theorem 3.6.

Another crucial consideration we have seen in Example 6.9 and in the
Büchi-characterization is the following. One of the basic formulas we want
to be able to express with the weighted logic (and which is therefore part of
its syntax) is just a weight d. This formula expresses that every considered
relational structure is evaluated to the weight d. Therefore, for an equivalence
between logic and automata, we have to ensure that for every weight d there
exists a graph automaton which assigns the value d to every graph. As before,
we call a valuation monoid D regular, if it satisfies this requirement, i.e., for
every d ∈ D, the constant series assigning d to every graph is regular. In
the following section, we study conditions which ensure regularity of general
valuation monoids.

If we consider words, then every semiring is trivially regular, as we can give
the first transition the desired weight d and all other transitions the weight
1. In fact, as we will see now, this is true for all pointed structures operating
over commutative semirings. As before, the commutativity ensures that the
behavior of an automaton is not dependent on any order on the vertices.

Lemma 6.26. Let K be a commutative semiring. If K is idempotent, then K
is regular. If C is a class of pointed graphs, then K is regular.

124 CHAPTER 6. GRAPH AUTOMATA

Proof. First, let K be idempotent, i.e. k + k = k for all k ∈ K. Given k ∈ K,
we construct the wGA Ak = (Q,∆,wt,Occ, 0) as follows. We set Q = {q0, q1}.
We let ∆ consist of all 0-tiles, i.e., ∆ consists of all tiles with one vertex. We
define ∆q1 as the set of all 0-tiles labeled with q1 at their vertex. We define

wt(τ) =

{
k , if τ ∈ ∆q1

1 , otherwise
, for τ ∈ ∆ , and

Occ =
(∑
τ∈∆q1

occ(τ)
)
≥ 1 ∧ ¬

((∑
τ∈∆q1

occ(τ)
)
≥ 2
)
.

This ensures that for every graph, every accepting run uses the state q1 exactly
once, and assigns the weight k to the tile using q1. Then every accepting run
of Ak has the weight 1 · ... · 1 · k · 1 · · 1 = k, and using the idempotence of
K, we get JAkK(G) = k + ... + k = k. Note that we have as many accepting
runs as vertices because we can apply the tile with the state q1 at every vertex,
thus the use of idempotence is crucial.

For the second part, let C be a class of pointed graphs over A′ = A×{0, 1}
and B, where the second component refers to the pointing, i.e., for every graph
there exists exactly one vertex labeled with 1 at the second component.

Given k ∈ K, we construct the wGA Ak = ({q0},∆,wt, true, 0) as follows.
As above, we allow every possible tile in ∆. All tiles consisting of a vertex
labeled with (a, 1, q0) for some a ∈ A are assigned the weight k and all other
tiles weight 1. Then JAkK(G) = k for all pointed graphs G. Note that the
pointing ensures that we use the weight k exactly once.

In the case of product valuation monoids, we get the following result,
which shows that over pointed graphs every left-distributive pv-monoid is
regular, generalizing the corresponding result for words [DM12] and nested
words (cf. Section 4.3).

Lemma 6.27. Every left-Val-distributive product valuation monoid PD is
regular over graphs. Every left-multiplicative product valuation monoid PD is
regular over pointed graphs.

Proof. Let PD be left-Val-distributive and d ∈ D. We construct the wGA
Ad = ({q0},∆,wt, true, 0) as follows. We allow every possible tile of size 0 in ∆
and assign the weight d to all tiles. Then, for any graph G, JAdK(G) = Val(Gd),
were Gd is the same graph consisting of only vertices labeled with d. Let G1 be
the graph with the same structure as G but consisting of only vertices labeled
with 1. Since PD is left-Val-distributive, we have Val(Gd) = d � Val(G1) =
d � 1 = d, where the last two equalities are axioms of the pv-monoid. Thus,
JAdK(G) = d for every graph G.

Now, let PD be left-multiplicative and d ∈ D. We construct the wGA
Ad = ({q0},∆,wt, true, 0) as follows. All pointed tiles consisting of a vertex
which is marked as root of the graph are assigned the weight d and all other

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 125

tiles (i.e. all tiles where the root is empty) the weight 1. Then, for any given
graph G, we have JAdK(G) = Val(Groot(d)) were Groot(d) is the same graph
where the root is labeled with d and all other vertices are labeled with 1. Since
PD is left-multiplicative, we get Val(Groot(d)) = d �Val(G1) = d � 1 = d. Thus,
JAdK(G) = d for every pointed graph G.

In the case of non-pointed graphs the situation is more complex. In fact,
even for well understood weight structures like the natural numbers N or the
rational numbers Q, the question, whether there is an automaton which assign
to every graph the value 2 or respectively the value 0.5, is not trivial. In the
following, we show that N is regular, thus the question for the value 2 can be
answered with ‘yes’. Furthermore, we prove that the same question for the
value 0.5 can be answered with ‘no’, thus showing that Q is not regular.

In the following, given a ∈ A, we also write a for the 0-tile consisting of only
the vertex a. Furthermore, consider a wGA A over a commutative semiring,
such that A is not restricted by the alphabet, the tiles, or the occurrence
constraint. Then, the following lemma gives a formula to calculate the behavior
of A.

Lemma 6.28. Let A = (Q,∆,wt,Occ, r) be a wGA over a commutative
semiring K with |Q| = m, r = 0, ∆ consists of all 0-tiles, Occ = true, and wt
is only depending on the state, i.e. wt(a, qi) = ki ∈ K for all a ∈ A and qi ∈ Q.
Then for all graphs G with at least one vertex, we get

JAK(G) =
(m∑
i=1

ki
)|VG| ,

where |VG| is the number of vertices of G.

Proof. We prove this formula by induction over the number of vertices of G.
If G has exactly one vertex, then A has exactly m accepting runs on G using
the states q1 to qm at this vertex. These runs have the respective weights k1

to km, thus JAK(G) =
∑m

i=1 ki.

Now consider a graph G with n vertices and let v be one of the vertices.
Let G′ be the graph G without the vertex v and its edges. By the induction
hypothesis, JAK(G′) = (

∑m
i=1 ki)

n−1. Since A has no restricting rules, we can
write the behavior of A as

JAK(G) =
∑

i1,..,in∈{1,..,m}

n∏
j=1

kij .

Using the distributivity of K at * and the induction hypothesis at **, it follows

126 CHAPTER 6. GRAPH AUTOMATA

that

JAK(G) =
∑

i1,..,in∈{1,..,m}

n∏
j=1

kij

∗
=
(m∑
i=1

ki
)(∑

i1,..,in−1∈{1,..,m}

n−1∏
j=1

kij
)

∗∗
=
(m∑
i=1

ki
)(m∑

i=1

ki
)n−1

=
(m∑
i=1

ki
)n

.

Theorem 6.29. N is regular over graphs.

Proof. We construct A with JAK(G) = 1 for all graphs G as follows. Set
Q = {q1}, r = 0, wt ≡ 1, Occ = true, and ∆ consists of all 0-tiles. Then every
graph G has exactly one run over A with weight 1, so JAK ≡ 1.

Let k ∈ N. Then, the constant series k equals the disjoint sum of k-many
automata A recognizing 1. By Proposition 6.7, this sum is also recognizable.
Additionally, we give a direct construction of Ak with JAkK(G) = k for all
graphs G, as follows. Set Q = {q1, ..., qk}, r = 0, wt ≡ 1, ∆ consist of all 0-tiles,
and

Occ =
k∨

i=1

∧
τ∈∆,

τ contains no qi

¬ occ(τ) ≥ 0 .

Then, every run of Ak uses exactly one state, thus every graph has exactly k
different runs and every run has weight 1. Thus, JAkK ≡ k.

Theorem 6.30. Z is regular over graphs.

Proof. In Theorem 6.29, we have shown that the natural numbers are regular.
Let k ∈ N. By Proposition 6.7 and −k = (−1) + (−1) + ...+ (−1), it remains
to show that there exists an automaton A with JAK(G) = −1 for all graphs G.
We construct A as follows.

Set Q = {q1, q2}, r = 0, wt(a, q1) = 1 and wt(a, q2) = −1 for all a ∈ A. Let
∆ consist of all 0-tiles, and let ∆q2 be the set of all tiles which are labeled with
state q1 at their only vertex. Then, using formula (6.1), we set

Occ =
(∑
τ∈∆q2

occ(τ)
)
≥ 1 .

This enforces every run to use q1 at least once. To calculate JAK, we consider
A′ which is the same automaton as A but without any occurrence constraint

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 127

(Occ′ = true). By Lemma 6.28,

JA′K(G) = (1 + (−1))|VG| = 0 .

The occurrence constraint Occ disallows exactly the one run which applies q2

to every vertex. This run has weight 1. Thus,

JAK(G) = JA′K(G)− 1 = −1 .

Note that the monoid (Z,+) is not generated by 1. Therefore, Theorem
6.30 shows that there exists a regular semiring which is neither idempotent
nor generated by only one element and addition.

In the following, we show that not all commutative semirings are regular.
We prove that we cannot recognize the constant series of rational non-integer
numbers, e.g. 0.5, in the ring of the rational numbers Q. The proof consists
of multiple steps and auxiliary results and uses analysis and combinatorics.
If we disallow negative weights as in Q+, we can shorten it significantly. We
use disconnected graphs to avoid extensive case distinctions. We strongly
conjecture that the theorem also holds if we restrict the family of graphs to
connected graphs. In this case, the main adaption to the proof would be
considering big enough circles Cn as graphs instead of the graph family Gn
used in the following.

Theorem 6.31. (a) Q+ is not regular over graphs.

(b) Q is not regular over graphs.

The simplified main idea of the proof is the following. Let a ∈ A. Let
Gn be the graph consisting of n disconnected nodes labeled with a. We
prove that for every automaton A, limn→∞JAK(Gn) 6= 0.5. Every graph Gn
is highly symmetric, so given an accepted run with a certain distribution of
states, we can count how many distinct runs there are with this distribution of
states. Multiplying with the respective weights of these runs, we show that for
increasing n the limit of the number of runs times the weight of the run has
to be 0, 1, or tends to infinity. Since the behavior of every wGA is the sum
over the possible runs, and therefore the sum over all possible distributions of
states, the value JAK(Gn) tends to a natural number or to infinity.

We give an example as follows. Assume we have an wGA A with JAK(Gn) =
0.5 for all n. If A has only one state q with wt(a, q) = k, then JAK(Gn) =
kn 9n 0.5. So, A has to have at least two different states. Also, for any Gn, A
has at least one run with weight < 1. Furthermore, since n can be arbitrarily
big, A has to have tiles which can be used arbitrarily often. If one of these
tiles has weight greater than or equal to 1, we can construct n (symmetrical
but distinct) runs of A with a fixed weight. Therefore, JAK gets arbitrarily
large, a contradiction. If the sum of tiles occurring potentially arbitrarily often

128 CHAPTER 6. GRAPH AUTOMATA

have weight less than 1, then JAK(Gn) converges to 0 since the weight of these
runs decreases faster than the number of possible runs increases.

In the following, taking possible occurrence-constraints of A into account,
we make this precise. To enhance readability of the proof, we transfer some
auxiliary results to the back.

Proof of Theorem 6.31. We show that for all p ∈ Q, p /∈ N, there exists no
weighted graph automaton which evaluates every graph to p. Note that showing
this for, e.g., p = 0.5 would suffice.

As before, let a ∈ A and let (Gn)n∈N be the family of graphs consisting
of n nodes labeled with a and without any edges. Assume JAK(Gn) = p and
let A have m states, q1, ..., qm. Since Gn has no edges, A can use only 0-tiles
in ∆, which are tiles consisting of only one node labeled with a and qi. Let
x1, ..., xm be the weights of the respective tiles. We may omit the label a of
the tiles in the following.

Let Occ be the occurrence constraint of A, a boolean formula over a finite
set of atomic formulas occ(τ) ≥ k, with τ ∈ ∆ and k ∈ N. We define

occ(τ) = k as occ(τ) ≥ k ∧ ¬ occ(τ) ≥ k + 1.

We transform Occ into a formula Occ′ without negated ‘≥’ by replacing

¬(occ(τ) ≥ k) with occ(τ) = 0 ∨ occ(τ) = 1 ∨ ... ∨ occ(τ) = k − 1 .

Then Occ′ consists only of formulas occ(τ) = k and occ(τ) ≥ k together with
disjunctions and conjunctions. Hence, we can transform Occ′ into its canonical
disjunctive normal form (CDNF), consisting of disjunctions of product terms,
i.e., minimal and complete conjunctions. In this form, every graph satisfying
Occ satisfies exactly one product term. Therefore, using fixed ci, i = 1, ...,m,
every product term can be written as

(
∧

i=1,...,m′

(occ(a, qi) ≥ ci) ∧
∧

i=m′+1,...,m

(occ(a, qi) = ci)) ,

where m′ is between 1 and m. It follows that the behavior of A can be written
as JAK = JA1K + ... + JA`K, where ` is the number of product terms and Ai is
the automaton where we replaced Occ by the i-th product term of Occ′.

Now, we distinguish between Q+ and Q.
(a) If we encounter no negative weights, it is possible to show that

lim
n→∞

JAiK(Gn) ∈ {0, 1,∞} ,

as follows. Let n′ = n− (cm′+1 + ...+ cm). In Lemma 6.34, we show that by
counting possible runs together with their respective weights, we get

JAiK(Gn) =
n(n− 1)...(n′ + 1)

cm′+1!...cm!

(m∏
i=m′+1

xcii
) ∑

k1,...,km′∈N
k1+...+km′=n

′

∀i≤m′:ki≥ci

n′!

k1!...km′ !

m′∏
i=1

xkii .

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 129

While this formula looks rather nasty, we are only interested in its asymptotic
behavior. Since the ci are constant, the term

n(n− 1)...(n′ + 1)

cm′+1!...cm!

(m∏
i=m′+1

xcii
)

is polynomial in n. Furthermore, Lemma 6.35 shows that the second part of
this formula ∑

k1+...+km′=n
′

∀i≤m′:ki≥ci

n′!

k1!...km′ !

m′∏
i=1

xkii

is asymptotically equal to (x1 + ...+ xm′)
n′ . Therefore, if x1 + ...+ xm′ > 1,

then JAiK(Gn) gets arbitrarily large, a contradiction. If x1 + ...+ xm′ = 1 and
m = m′, then the polynomial term disappears and JAiK(Gn) equals 1, c.f. also
Lemma 6.28. If x1 + ... + xm′ = 1 and m > m′, then again JAiK(Gn) gets
arbitrarily large due the polynomial part which is positive because of xi > 0.
If x1 + ...+ xm′ < 1 then

(x1 + ...+ xm′)
n′ =

(x1 + ...+ xm′)
n

(x1 + ...+ xm′)
cm′+1+...+cm

is exponential in n and therefore tends stronger to 0 than any polynomial. So,
limn→∞JAiK(Gn) = 0.

From this case distinction, it follows that limn→∞JAiK(Gn) ∈ {0, 1,∞}.
Therefore, the behavior of A can only be constant if it is an integer-value,
which concludes our proof.

(b) We show by Lemma 6.34 together with Proposition 6.36 that we can
describe the behavior of every Ai, and therefore also the behavior of A, as a
finite sum d1q

n
1 + ...+ dtq

n
t , where qi ∈ Q, t ∈ N, and all di have a very special

form. In the following, we show that we can force all these di to be integers.
We make n large enough such that it is a multiple of all combinations of

possible appearing constants, as follows. Since every xi is a rational number,
it can be written as

xi =
xD
i

xN
i

, xD
i ∈ Z, xN

i ∈ N .

Furthermore, since we have only finitely many xi, we can build the least
common denominator lcd of all x1, ..., xm and write

xi =
xM
i

lcd
, xM

i ∈ Z .

We set c =
∑m

i=1 ci and define the sequence (nk)k∈N by

nk = k ·
(
(
m∏
i=0

ci!) · (
m∏
i=0

xN
i)c · ((

m∑
i=0

|xM
i |)!)c

)2
.

130 CHAPTER 6. GRAPH AUTOMATA

In the following, we only consider graphs Gnk . Clearly, if A is constant on all
graphs, it also has to be constant on all graphs of the sequence Gnk . Then in
Lemma 6.34 and Proposition 6.36, we (possibly in both cases) extract constants
from the sum of the following form:

±
n(n− 1)...(n− cj1 − ...− cjm′ + 1)

cj1 !...cjm′ !
(
∏
i∈J

xcii)
(∑
i/∈J

xi
)−(

∑
i∈J ci) ,

for some index set J = {j1, ..., jm′} ⊆ {1, ...,m}, m′ ≤ m. If in these cases
m′ = m, resp. J = ∅, then this factor equals 1. Otherwise, for n = nk,
the factors at least contain nk. All nk are by construction a multiple of
the first denominator, the denominators possibly appearing in xcii , and the

denominators possibly appearing in
(∑

i/∈J xi
)−(

∑
i∈J ci). It follows that for all

nk, all appearing di are integers. Therefore, by Lemma 6.37, limk→∞JAK(Gnk)
can only be constant if it equals an integer, which yields the result.

In the following, we prove the auxiliary results that are used in the proof
of Theorem 6.31. We employ the multinomial coefficient, which describes how
many possibilities there are to distribute n distinguishable balls into m boxes
when there have to be k1 balls in box 1, k2 balls in box 2, and so on. In our
context, the balls are the nodes of Gn and the boxes are the states.

Definition 6.32. The multinomial coefficient
(

n
k1,...,km

)
is defined as

(
n

k1, ..., km

)
=

n!

k1!k2!...km!
.

Theorem 6.33 (Multinomial theorem). Let m ∈ N+, n ∈ N, and x1, ..., xm ∈
R. Then

(x1 + ...+ xm)n =
∑

k1,...,km∈N
k1+...+km=n

(
n

k1, ..., km

) m∏
i=1

xkii .

The following lemma describes the behavior of a very particular weighted
graph automaton.

Lemma 6.34. Let a ∈ A and m,m′ ∈ N. Let A = (Q,∆,wt,Occ, r) be a wGA
over Q or Q+ with Q = {q1, ..., qm}, r = 0, ∆ = {a} ×Q, wt(a, qi) = xi, for
i = 1, ...,m, and

Occ := (
∧

i=1,...,m′

(occ(a, qi) ≥ ci) ∧
∧

i=m′+1,...,m

(occ(a, qi) = ci)) .

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 131

Let Gn be a graph with n vertices labeled with a and without edges. Let
n′ = n− (cm′+1 + ...+ cm). Then

JAK(Gn) =
n(n− 1)...(n′ + 1)

cm′+1!...cm!

(m∏
i=m′+1

xcii
) ∑

k1,...,km′∈N
k1+...+km′=n

′

∀i≤m′:ki≥ci

n′!

k1!...km′ !

m′∏
i=1

xkii .

Proof. Let i in the following always refer to a number between 1 and m. Let
ki be the number of states qi used in a run of A over Gn. Then, the value
JAiK(Gn) is the sum over the weight of all runs satisfying Occ, which are
exactly all runs such that k1 + ...+ km = n, ki = ci for all i ≤ m′, and ki ≥ ci
for all i > m′. Using combinatorics, we know that for such given k1, ..., km, the
multinomial coefficient

(
n

k1,...,km

)
describes the number of possible distributions

of n nodes into states and therefore the number of possible runs. Furthermore,
the weight of every run using these states is

∏m
i=1 x

ki
i . It follows that

JAK(Gn) =
∑

k1,...,km∈N
k1+...+km=n
∀i≤m′:ki≥ci
∀i>m′:ki=ci

(
n

k1, ..., km

) m∏
i=1

xkii .

Using n′ = n − (cm′+1 + ... + cm) and extracting the constants ki = ci from
the following sum, we get

JAK(Gn) =
∑

k1,...,km∈N
k1+...+km=n
∀i≤m′:ki≥ci
∀i>m′:ki=ci

(
n

k1, ..., km

) m∏
i=1

xkii

=
∑

k,...,km′∈N
k1+...+km′=n

′

∀i≤m′:ki≥ci

n!

k1!...km′ !cm′+1!...cm!

m′∏
i=1

xkii

m∏
i=m′+1

xcii

=
n(n− 1)...(n′ + 1)

cm′+1!...cm!

(m∏
i=m′+1

xcii
) ∑

k1,...,km′∈N
k1+...+km′=n

′

∀i≤m′:ki≥ci

n′!

k1!...km′ !

m′∏
i=1

xkii

Now, we show that the asymptotic behavior of the multinomial formula
stays the same if we exclude combinations were some of the exponents have to
be above certain (fixed) thresholds.

132 CHAPTER 6. GRAPH AUTOMATA

Lemma 6.35. Let m ∈ N, x1, ..., xm ∈ Q+, and c1, ..., cm ∈ N. Then for
n→∞, we have asymptotically

∑
k1,...,km∈N
k1+...+km=n
∀i≤m:ki≥ci

(
n

k1, ..., km

) m∏
i=1

xkii ∼ (x1 + ...+ xm)n .

Proof. By Theorem 6.33, the left hand side is smaller than the right hand side.

For the converse, We make a case distinction regarding x1 + ... + xm as
follows.

If x1 + ... + xm < 1, then the right hand side converges to 0. Since we
encounter only positive values, and the left hand side is smaller than the right
hand side, both sides have to converge against 0.

If x1 + ...+ xm = 1, then xi ≤ 1 for all i. Moreover, by Theorem 6.33, we
have

∑
k1,...,km∈N
k1+...+km=n
∀i≤m:ki≥ci

(
n

k1, ..., km

) m∏
i=1

xkii = 1−
∑

k1,...,km∈N
k1+...+km=n
∃i≤m:ki<ci

(
n

k1, ..., km

) m∏
i=1

xkii .

Let c = maxi ci and x = mini xi. Then we have

∑
k1,...,km∈N
k1+...+km=n
∃i≤m:ki<ci

(
n

k1, ..., km

) m∏
i=1

xkii

≤
m∑
`=1

∑
k1,...,km∈N
k1+...+km=n

k`<c`

(
n

k1, ..., km

) m∏
i=1

xkii

=
m∑
`=1

c`−1∑
j=0

∑
k1,...,km∈N
k1+...+km=n

kj=cj

n!

k1!...km!

m∏
i=1

xkii

=

m∑
`=1

c`−1∑
j=0

n!xj
(n− cj)!cj !

∑
ki∈N∑
i6=j ki=n

i∈{1,...,m}\{j}

n!

k1!...km!

∏
i∈{1,...,m}\{j}

xkii

Thm.6.33
=

m∑
`=1

c`−1∑
j=0

n!xj
(n− cj)!cj !

(∑
i∈{1,...,m}\{j}

xi
)n

≤ mcnc(1− x)n ,

6.2. WEIGHTED GRAPH AUTOMATA (WGA) 133

this converges against 0 for n→∞. Therefore, both sides converge against 1,
which shows the claim.

Finally, let x1 + ...+ xm > 1. Then for all k, c ∈ N with 0 ≤ (k + c) ≤ n, it
holds that

n!

(k + c)!
= (k + c) · ... · n ≥ k · ... · (n− c) =

(n− c)!
k!

. (6.3)

Set c =
∑m

i=1 ci and let n > c. Using an index shift li = ki − ci, and using
Formula 6.3 at equation * for every ki and ci once, and Theorem 6.33 at
equation **, we get

∑
k1,...,km∈N
k1+...+km=n
∀i≤m:ki≥ci

(
n

k1, ..., km

) m∏
i=1

xkii

=
∑

l1,...,lm∈N
l1+...+lm=n−c

n!

(l1 + c1)!, ..., (lm + cm)!

m∏
i=1

xli+cii

∗
≥

∑
l1,...,lm∈N

l1+...+lm=n−c

(n− c)!
l1!, ..., lm!

m∏
i=1

xli+cii

∗∗
=
(m∏
i=1

xcii
)
(x1 + ...+ xm)n−c ,

which goes exponentially fast to infinity, as does the right hand side of Lemma
6.35. This concludes the case distinction and the proof.

Proposition 6.36. Let n,m, ci ∈ N and xi ∈ Q, i = 1, ...,m. Then,

∑
k1,...,km∈N
k1+...+km=n
∀i≤m:ki≥ci

n!

k1!...km!

m∏
i=1

xkii

can be written as a finite sum d1q
n
1 + ...+dtq

n
t , t ∈ N, such that every dj , qj ∈ Q

and every dj is of the form

±
n(n− 1)...(n− cj1 − ...− cjm′ + 1)

cj1 !...cjm′ !
(
∏
i∈J

xcii)
(∑
i/∈J

xi
)−(

∑
i∈J ci)

for some index set J = {j1, ..., jm′} ⊆ {1, ...,m}, m′ ≤ m.

134 CHAPTER 6. GRAPH AUTOMATA

Proof. Using the shortcut X for n!
k1!...km!

∏m
i=1 x

ki
i , and omitting k1, ..., km ∈ N,

we break down the sum as follows∑
k1+...+km=n
∀i≤m:ki≥ci

X =
∑

k1+...+km=n

X −
∑

k1+...+km=n
∃i≤m:ki<ci

X

Thm.6.33
= (x1 + ...xm)n −

∑
k1+...+km=n
∃i≤m:ki<ci

X .

By the inclusion-exclusion principle, we can rewrite the second part as∑
k1+...+km=n
∃i≤m:ki<ci

X =
∑

k1+...+km=n
k1<c1

X + ...+
∑

k1+...+km=n
km<cm

X −
∑

k1+...+km=n
k1<c1
k2<c1

X − ...+ ...

=
∑

J⊆{1,...,m}

(−1)|J |+1
∑

k1+...+km=n
∀i∈J :ki<ci

X .

Then the first sum is finite and given J ⊆ {1, ...,m}, one summand of it can
be written as

±
∑

k1+...+km=n
∀i∈J :ki<ci

X = ±
∑
i∈J

∑
c′i∈{0,...,ci−1}

∑
k1+...+km=n
∀i∈J :ki=c

′
i

X .

Again, the first two sums are finite. Let m′ = |J |, and write J as J =
{j1, ..., jm′}. We set n′ = n−

∑
i∈J ci and extract the constants as in Lemma

6.34. Then the remaining ki, i /∈ J , are not bound anymore and we can
apply Theorem 6.33 to the index set {i | 1 ≤ i ≤ m, i /∈ J} together with n′.
Therefore, every summand of the inner sum can be written as

±
∑

k1+...+km=n
∀i∈J :ki=ci

X

±
∑

k1+...+km=n
∀i∈J :ki=ci

n!

k1!...km!

m∏
i=1

xkii

Thm.6.33
= ± n(n− 1)...(n′ + 1)

cj1 !...cjm′ !

(∏
i∈J

xcii
)(∑

i/∈J

xi
)n′

= ± n(n− 1)...(n′ + 1)

cj1 !...cjm′ !

(∏
i∈J

xcii
)(∑

i/∈J

xi
)−(

∑
i∈J ci)

(∑
i/∈J

xi
)n

.

Since
∑

i/∈J xi ∈ Q, this concludes our proof.

6.3. WORDS AND OTHER SPECIAL CASES 135

Lemma 6.37. Let m ∈ N and d1, ..., dm ∈ Q \ {0}. Let q1,...,qm be pairwise
distinct rational numbers. Then, limn→∞ d1q

n
1 + ... + dmq

n
m either does not

converge or converges towards 0 or d1 or ... or dm.

Proof. If there exists a qi > 0 such that |qi| ≥ |qj | for all j, then limn d1q
n
1 +

...+dmq
n
m = diq

n
i , which either diverges for qi > 1, converges to di for qi = 1 or

converges to 0 for qi < 1. Otherwise, there exists a qi < 0 such that |qi| ≥ |qj |
for all j. In this case, the partial limits alternate and therefore the limit does
not exist.

With this, the proof of Theorem 6.31 is complete.

6.3 Words and other Special Cases

In this section, using ideas from Thomas [Tho96], we show that existing
quantitative automata models over over finite words [DG07], trees [DV06],
pictures [Fic11], and nested words [Mat10b] can be seen as special instances of
weighted graph automata operating on finite graphs. Furthermore, we show
that over these special structures, weighted graph automata can be reduced
to the known automata models operating on the respective structure. Hence,
we get previous equivalence results connecting weighted logic and weighted
automata over these structures as a consequence of Theorem 6.24 (in a slightly
modified version). In the following, to simplify the transition to the automata
models from the literature, we only consider weighted automata and logics
over a commutative semiring K instead of a valuation monoid.

We use the representation of words (trees, pictures, respectively) as re-
lational structures and therefore as certain graphs as introduced in Section
2.2. As already stated in [Tho96], two significant differences to the previous
models are the occurrence constraint and the possibly bigger tile-size. As a first
step, following [Tho96], we give a sufficient condition to drop the occurrence
constraint.

6.3.1 Reduction to WGA without Occurrence Constraint

In the following, we study a sufficient condition on graphs to reduce the
occurrence constraint of a weighted graph automaton to the trivial constraint.

This gives us the following lemma which is a weighted version of Proposition
5.3 of [Tho96]. There, Thomas proved that we do not need the occurrence
constraint in the case that our graphs are acyclic and have indexed out-edges
and a co-root. In this context, a graph G has indexed out-edges if every
vertex of G has one fixed outgoing edge which is uniquely determined by the
edge-labeling. We say a graph G has a co-root if it has a vertex which can be
reached from all other vertices of G.

136 CHAPTER 6. GRAPH AUTOMATA

The essential idea is that under these conditions, we can propagate which
types of r-spheres we are encountering and collect and check this information
at the co-root. The same holds for acyclic graphs with indexed in-edges and a
root.

However, we can reformulate this idea in a slightly more general version as
follows. For the idea above, we do not need our graphs to be strictly acyclic.
It suffices that we encounter no cycles whenever we propagate the information
along our designed out-edges. Furthermore, the out-indices can be modeled as
a special edge-labeling E (which is given implicitly in the formulation above).

Making these out-indices explicit, we call a class of graphs C ⊆ DGt(A,B)
partial sortable if there exists an element b0 ∈ B such that for every graph
G = (V, (Laba)a∈A, (Eb)b∈B) of C, the subgraph G′ = (V, (Laba)a∈A, Eb0) is
acyclic, connected, and every vertex of G′ has at most one outgoing edge (and
thus G′ necessarily has a co-root).

Note that whenever G has a co-root, then we can find a selection of edges
E such that G′ = (V, (Laba)a∈A, E) is acyclic, connected, and every vertex of
G′ has at most one outgoing edge. In this sense, the only essential requirement
to drop the occurrence constraint is having a co-root or, applying the same
arguments on incoming edges, having a root. However, finding such a selection
of E may be harder than taking one special label b0 and could be dependent
on the representation of the graph itself.

Therefore, in the following quantitative version of Thomas’ [Tho96] Propo-
sition 5.3., we only consider the above defined partial sortable graphs. We
say that a wGA A = (Q,∆,wt,Occ, r) is without occurrence constraints, if its
occurrence constraint is always true, that is Occ = true.

Lemma 6.38. Let C be a partial sortable class of graphs. Let S : C → K be
a series and A a wGA with tile-size r ≥ 1 with JAK = S. Then there exists a
wGA B with the same tile-size as A and without occurrence constraints such
that JBK = S.

Note that if A has tile-size 0, then using Lemma 6.6 yields a wGA A′ with
tile size 1 and JA′K = JAK. Hence, B can be constructed with tile-size 1 and
without occurrence constraints.

Proof. We follow the construction of Thomas [Tho96] and add weights at the
corresponding tiles. Let E = Eb0 be the set of edges describing the partial
order of a graph of C. In the following, we only talk about edges of this set
E. Let A = (Q,∆,wt,Occ, r) be a wGA with ∆ = {τ1, ..., τk}. Let m be the
biggest natural number that occurs in Occ as occ(τi) ≥ m.

We construct B = (QB,∆B,wtB, true, r) with the following idea. We set
QB = Q× {0, ...,m}k. Then, for every tile τ in ∆, we put the same tile in ∆B
and at every vertex we add the information of how often all tiles occurred so
far. Locally, this information is checked at the center of every tile by summing

6.3. WORDS AND OTHER SPECIAL CASES 137

up the entries over all incoming edges and adding 1 for the type of the current
tile in the specific entry. Additionally, if the center of a tile has no outgoing
edges, we check that the accumulated number of tiles satisfies the occurrence
constraint of A.

Since every vertex has only one outgoing edge, we do not duplicate our
counts. Furthermore, since G is acyclic, we eventually reach a vertex with no
outgoing edge. Note that the co-root is not given explicitly, but it is the unique
vertex without outgoing edges. Also, for the sake of convenience, we keep track
of all tiles of ∆, instead of only keeping track of the tiles appearing in Occ.

More precisely, for a tile τ of QB around the center v, we refer with τ|Q to
the same tile where we forget about the additional labels. For a vertex w of
τ , we refer with wi to its i-th component of {0, ...,m}k. We say (w1, ..., wk)
satisfies occ(τi) ≥ n if occ(wi) ≥ n. Then, we set wtB(τ) = wt(τ|Q) and define
∆B as

∆B =

τ = (G, v)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τ|Q ∈ ∆ and

vi =
∑

{w|E(w,v)}

wi , for all i with τi 6= τ , and

vi =
∑

{w|E(w,v)}

wi + 1 , for i with τi = τ , and

(v1, ..., vk) satisfies Occ if @ vertex z with E(v, z)

.

Following the argumentation above, we can show that JBK = JAK.

Note that words, trees, traces, pictures, and nested words can be seen as
partial sortable graph classes3.

6.3.2 Words, Trees, and Pictures

Definition 6.39. A weighted finite automaton (wFA) A = (Q, I, F, δ, µ) con-
sists of a finite set of states Q, a set of initial states I ⊆ Q, a set of final states
F ⊆ Q, a set of transitions δ ⊆ Q×A×Q, and a weight function µ : δ → K.
We define an accepting run, the language of A, and recognizable word series as
usual (cf. [DG07, DKV09, Sch61]).

To show the equivalence of graph acceptors and word automata over words
in the unweighted case, Thomas [Tho91] proceeds using a translation of both
models to logics. Here, we give a direct construction of the respective models,
resulting in an alternative proof for the Büchi-theorem for words.

We show the following two results explicitly for words. This already will
give the essential ideas to adapt the proofs to trees and pictures. Afterwards,

3As already noted in [Tho96], for pictures this would require a slight relabeling of the
edges in the last column of a picture.

138 CHAPTER 6. GRAPH AUTOMATA

since nested words are less known and the respective proofs for them are more
complex, we develop the results in detail also for nested words.

Lemma 6.40. Let S : A∗ → K be a word series and A a weighted finite
automaton with JAK = S. Then there exists a weighted graph automaton B
such that JBK(w) = S(w) for all words w over A.

Proof. Given a weighted finite automaton A = (Q, I, F, δ, µ), we define the
wGA B = (Q,∆,wt, true, 1) as follows. In the following, for convenience, we
denote the r-tiles over A×Q by (a−rq−r, ..., a−1q−1, a0q0 , a1q1, ..., arqr) where
a0q0 is the center and ai ∈ A, qi ∈ Q. Similarly, we denote smaller tiles.

For every transition (q1, a, q2) ∈ δ of A, we add all tiles of the form
(a∗q1, aq2 , a∗q∗) to the set of tiles ∆ of B, where a∗, a∗ ∈ A can be any
symbols and q∗ ∈ Q any state. We set wt(a∗q1, aq2 , a∗q∗) = µ(q1, a, q2) for all
a∗, a∗ ∈ A and q∗ ∈ Q.

Note that a run of a wGA assigns states to every position of a word (seen
as a graph), while a run (q0, ..., q|w|) of a classical wFA consists of one more
state than the length of word. This is solved by ‘shifting’ our assignment half a
position to the right and encoding the information of the initial state into the
tiles with no predecessor4. Then, for each (qI , a, q1) ∈ δ with qI ∈ I, we add
all tiles (aq1 , a∗q∗) to ∆. Similarly, for each (q1, a, qF) ∈ δ with qF ∈ F , we
add all tiles (a∗q1, aqF) to ∆. We set wt(aq1 , a∗q∗) =

∑
qI∈I µ(qI , a, q1) and

wt(a∗q1, aqF) = µ(q1, a, qF) for all a∗ ∈ A, q∗ ∈ Q. Then it is straightforward
to show that JAK = JBK.

We have thus shown that a word series recognizable by a wFA is also
recognizable by a wGA. Using a similar construction, we can show that the
same is true for trees, and pictures, and their respective automata models.
Now, we turn to the converse, which is the more difficult, because we have
to reduce the possible larger tile-size. Using Lemma 6.38, we can assume the
wGA to have no occurrence constraint.

Lemma 6.41. Let S : A∗ → K be a word series and A be a weighted graph
automaton without occurrence constraints and JAK(w) = S(w) for all words w
over A. Then there exists a weighted finite automaton B such that JBK = S.

Proof. Let S : A∗ → K be a word series and A = (QA,∆,wt, true, r) a wGA
with JAK = S. We construct the wFA B = (QB, I, F, δ, µ), as follows.

Let I0 be a new symbol. We set QB = ∆ ∪ {I0} and I = {I0}. The main
idea is to encode every accepting run of A on a word w as exactly one accepting
run of B, which uses the state τ if and only if the run of A applies τ at this
position. Since B only ‘sees’ the symbol at the actual position, it guesses the

4Similarly, we could shift the assignment half a position to the left and encode the
information of the final state into tiles with no successor.

6.3. WORDS AND OTHER SPECIAL CASES 139

next r labels and states (and if necessary the word length for small words) and
checks this guess at the respective position later on.

We set F = {τ ∈ ∆ | τ = (a−kq−k, ..., a−1q−1, a0q0) for some 0 ≤ k ≤
r, ai ∈ A, qi ∈ Q}.

Furthermore, we define δ = δI0 ∪ δI ∪ δF ∪ δs ∪ δm as follows. We use the
transitions δI0 to initially guess the first r labels and states. For words smaller
than r, we have to guess the whole run. The transitions of δI , resp. δF , take
care of the r-tiles which are used at the beginning (up to the first r positions),
resp. at the end (up to the last r positions), of a word of length ≥ r. At the
beginning, resp. the end of word, the number of vertices in the tile increases,
resp. decreases, by 1 with every transition. The next type of transitions δs

takes care of r-tiles which are used at the middle of words of length ≤ 2r. The
last and main type of transitions δm uses tiles where the number of vertices
left and right of the center is r. These transitions are used at the middle of
words of length > 2r + 1. The detailed definitions of these transitions are the
following.

δI0 =
{

(I0, a, τ)
∣∣ τ = (aq0 , a1q1, ..., akqk) for some 0 ≤ k ≤ r, τ ∈ ∆

}
,

δI =

 (τ1, a, τ2)

∣∣∣∣∣∣∣
τ1 = (a−kq−k, ..., a−1q−1, a0q0 , a1q1, ..., arqr) and

τ2 = (a−kq−k, ..., a0q0, a1q1 , a2q2, ..., ar+1qr+1)

for some 0 ≤ k ≤ r, a1 = a, τi ∈ ∆

 ,

δF =

 (τ1, a, τ2)

∣∣∣∣∣∣∣
τ1 = (a−rq−r, ..., a−1q−1, a0q0 , a1q1, ..., akqk) and

τ2 = (a−r+1q−r+1, ..., a0q0, a1q1 , ..., akqk)

for some 0 ≤ k ≤ r, a1 = a, τi ∈ ∆

 ,

δs =

 (τ1, a, τ2)

∣∣∣∣∣∣∣
τ1 = (a−kq−k, ..., a−1q−1, a0q0 , a1q1, ..., a`q`) and

τ2 = (a−kq−k, ..., a0q0, a1q1 , a2q2, ..., a`q`)

for some 0 ≤ ` ≤ r, 0 ≤ k < r, a1 = a, τi ∈ ∆

 ,

δm =

 (τ1, a, τ2)

∣∣∣∣∣∣∣
τ1 = (a−rq−r, ..., a−1q−1, a0q0 , a1q1, ..., arqr) and

τ2 = (a−r+1q−r+1, ..., a0q0, a1q1 , ..., ar+1qr+1)

with a1 = a, τi ∈ ∆

 .

Note that every tile τ2 matches the previous tile τ1 at every position except for
positions with distance r to one of the centers. Furthermore, we force the symbol
a ∈ A that is read by a transition to be at the center of the next tile. Finally, we
define the weight of all transitions by µ(δ) = µ(I0, a, τ2) = µ(τ1, a, τ2) = wt(τ2).

We claim that JAK(w) = JBK(w) = S(w) for all words over A. It is easy to
see that every accepting run of A on a word w describes an accepting run of
B on w if B correctly guesses the next r labels and states (or the end of the
word, if the remainder of the word is shorter than r) used by the accepted run

140 CHAPTER 6. GRAPH AUTOMATA

or tiling of A. Moreover, every run attained in this manner yields the correct
weight since B uses exactly the same weights as A for every position of the
word.

The nontrivial part is to see that this is the only possibility to get an
accepting run of B. Or equivalently that every accepting run of B yields an
accepting run of A. Let w be a word, let |w| denote the length of w, and let
ρ = (I0, τ1, ..., τ|w|) be an accepting run of B on w. Then at every position of
the run, B guesses how many positions ` of the word are remaining, up to the
threshold r ≥ `, and which symbols are at these positions. The number ` is
encoded as number of vertices right of the center of the state τ2.

The construction ensures the correctness of the symbols guessed (as long as
we read the next ` transitions) because in every step a position with distance
k ≤ ` is brought one position nearer to the center, and therefore compared to
the center after at most ` steps.

The correct guessing of the positions remaining is implicit: Assume that at
some position B guesses the wrong number of positions remaining. If B guesses
more positions than there are remaining, we cannot reduce the number of
vertices right of the center of the next states to zero because at every position
we can reduce that number only by one, and therefore we will not reach a final
state.

If B guesses less positions than there are remaining, say ` < r, we subse-
quently can only apply transitions of δF or δs. Therefore, at every transition,
we reduce the number of vertices right of the center of the next state strictly
by one. After ` steps, we cannot apply any more transitions because in B there
exists no transition whose number of vertices right of the center of the next
state is zero.

These guesses ensure that the state at every position x ∈ {1, ..., |w|} mirrors
the r-sphere around x, hence every accepting run (I0, τ1, ..., τ|w|) of B yields an
accepting run of A. Again, the weights used by both automata in this case are
the same and the claim follows.

Together with Lemma 6.38, it follows that if a word series is recognizable by
a weighted graph automaton, then it is also recognizable by a weighted finite
automaton. Again, a similar construction can be applied to trees, and pictures,
and their respective automata models defining recognizable series (cf. [DV06],
[Fic11]). Note that this is possible because we know the ‘structure’ of these
specific graph classes, which allows an automaton with tile-size 1 to guess all
labels and states in an r-tile around a position, as done in Lemma 6.41 for
words. Thus, we can reduce the tile-size of a weighted graph automaton over
these specific graphs from r to 1.

In general, a reduction to 1-tiles is not possible: For example, as already
noted by Thomas [Tho96] in the unweighted setting, the language of all grids
in the class of all graphs is recognizable by a GA with tile-size 2, but is

6.3. WORDS AND OTHER SPECIAL CASES 141

not recognizable by a GA with tile-size 1. A short argument for this is the
following. Suppose we have a GA A with tile-size 1 recognizing all pictures.
Then there exists a picture big enough such that we have to use the same tile
at two different positions. Hence, we can swap the outgoing edges of these two
positions in our picture. We get a graph which is still accepted by A (using the
exact same tiles as before) but no picture anymore, a contradiction. Already
in the unweighted setting, it is stated by Thomas [Tho96] as an open question
to precisely describe the class of graphs where the use of 1-tiles suffices.

Using the results above together with Theorem 6.24, we get the following
corollary. For the detailed definition of weighted tree automata (wTA) and
logic, see [DV06] (pp. 231, 234). For weighted picture automata (wPA), see
[Fic11] (Sections 3 and 4).

Corollary 6.42. Let K be a commutative semiring and S : A∗ → K be a word
series. Then the following are equivalent:

1. S is recognizable by a wGA.

2. S is recognizable by a wGA with tile-size one and without occurrence
constraint.

3. S is recognizable by a wFA.

4. S is definable by an FO-restricted MSO(K)-sentence.

If we replace “word” by “tree” or “picture” and S : A∗ → K by S : TA → K
or S : A∗∗ → K, respectively, a similar result holds for weighted tree automata
(wTA) and weighted picture automata (wPA), and their respective logics.

Note that our implication (4)⇒ (3) is a slightly weaker version of the result
in [DG07] since in our logic, we can apply Valx-quantification only to almost
FO-boolean formulas, whereas in [DG07, DG09], we can use almost boolean
formulas. As shown before, this difference originates from the fact that for
words, EMSO equals MSO, which is neither true for pictures nor for graphs.
In this sense, our result captures the ‘biggest logic possible’, if we want to
include pictures.

6.3.3 Nested Words

In the following, we apply Theorem 6.24 to the previously studied structure of
nested words. In contrast to Chapter 4, we focus on finite nested words which
are well-matched (i.e. they have no pending calls or pending returns). We
give a direct transformation of weighted graph automata to weighted nested
word automata, which shows that the characterization of weighted regular
languages of nested words in the form of a weighted MSO-logic shown in
[Mat10b, DP14b] is also a consequence of Theorem 6.24. Following Section 2.2
and our definition of graphs as relational structures, we introduce the class
of nested words NW(A) ⊆ DG3(A,B) where B = {lin, hier}, as follows. We

142 CHAPTER 6. GRAPH AUTOMATA

refer with s = Elin to the linear edges and with ν = Ehier to the hierarchical
edges. Then, a nested word is a graph nw = (V, (Laba)a∈A, s, ν) such that
V = {1, ..., `}, s is the known successor relation, and ν is the nesting relation
satisfying for all i, j ∈ V :

1. (i, j) ∈ ν ⇒ i < j,

2. 1 ≤ i ≤ `⇒ |{j | (i, j) ∈ ν}| ≤ 1 ∧ |{i | (i, j) ∈ ν}| ≤ 1, and

3. (i, j) ∈ ν ∧ (i′, j′) ∈ ν ∧ i < i′ ⇒ j < i′ ∨ j > j′ (nesting edges do not
cross).

In short, we refer to a nested word as nw = (w, ν), where w ∈ A+ and ν is the
nesting relation.

Note that NW(A) as a subclass of DGt(A,B) is not recognizable by a
GA. Similarly, it cannot be checked by an EMSO sentence whether a relation
is a nesting relation. In contrast, the complement DGt(A,B) \ NW(A) is
recognizable by a GA.

Definition 6.43 ([AM09], [DD14], [Mat10b]). A weighted nested word au-
tomaton (wNWA) over the alphabet A and the semiring K is a quadruple
A = (Q, I, δ, F), where δ = (δcall, δint, δret), consisting of:

• a finite set of states Q,

• a set of initial states I ⊆ Q,

• a set of final states F ⊆ Q,

• the weight functions δcall, δint : Q×A×Q→ K,

• the weight function δret : Q×Q×A×Q→ K.

An accepting run ρ of the wNWA A on the nested word nw = (a1a2...a`, ν)
is a sequence of states ρ = (q0, q1, ..., q`) where qi ∈ Q for each i ∈ {0, ..., `}, q0

is the initial state of A, and q` ∈ F . We denote by wtA(ρ,nw , i) the weight of
the transition of ρ used at position i ∈ N+, defined as follows

wtA(ρ,nw , i) =

δcall(qi−1, ai, qi) , if ν(i, j) for some j > i
δint(qi−1,ai, qi) , if i is an internal
δret(qi−1, qj−1, ai, qi) , if ν(j, i) for some 1 ≤ j < i .

We define the behavior of the automaton A as the function JAK : NW(A)→ K
given by (where as usual, empty sums are defined to be 0)

JAK(nw) =
∑

ρ acc. run of A on nw

∏
1≤i≤`

wtA(r,nw , i) .

We call every function S : NW(A)→ K a nested word series. We say that
a wNWA A recognizes a series S if JAK = S. We call a series S recognizable
(by a wNWA) if there exists a wNWA A accepting it.

6.3. WORDS AND OTHER SPECIAL CASES 143

Now, we show that within the special class of nested words, the use of
weighted graph automata with tiles of size 1 and without occurrence constraints
is sufficient. Consequently, we can show the equivalence of wNWA and wGA
on the class of nested words and get a Büchi-like result for wNWA and a
respective weighted logic, cf. [Mat10b].

As noted before, nested words are a partial sortable class of graphs where
the classical edges defined by the successor relation give an ordering and a root.
Therefore, we can use Lemma 6.38 to omit the occurrence constraint. The next
statement gives the reduction to 1-tiles (compare ideas with Lemma 6.41).

Lemma 6.44. Let S : NW(A)→ K be a nested word series and A be a wGA
without occurrence constraint and JAK = S. Then there exists a wGA B with
tile size 1 and without occurrence constraint such that JBK = S.

Proof. Let A = (Q,∆,wt, true, r) be a wGA with JAK = S. We construct the
wGA B = (QB,∆B,wtB, true, 1) as follows.

We set QB = ∆. We let A′ = QB × A = ∆ × A be the extended tile-
alphabet, and refer with Lab∆(w) ∈ ∆ and LabA(w) ∈ A to the respective
labels of a vertex w of a tile over A′ and B = {lin, hier}. We set wtB(H, v) =
wt(Lab∆(v)).

To define ∆B, which is a set of 1-tiles over A′ and B, the main idea is
the following: In every smaller tile the automaton makes a ‘guess’ on how
the bigger tiles look like. Then, the following consistency property makes
sure that this guess cannot be changed except at the border of the r-spheres.
Subsequently, this guess is checked stepwise at the next r positions.

To make this precise, we need the following notions. Let τ = (H, v) =
(V, (Laba)a∈A′ , s, ν, v) be a 1-tile over A′ and B around the center v ∈ V , and let
w ∈ V . Let (τv, av), (τw, aw) ∈ ∆×A such that (τv, av) = (Lab∆(v),LabA(v))
and (τw, aw) = (Lab∆(w),LabA(w)). Let (Gv, cv) = τv and (Gw, cw) = τw be
these two tiles of ∆, together with their respective centers. Then, we denote
by Labc

A(τv) the A-label at the center of τv. Further, for a vertex x of τv,
we denote by sphrcv(τv, x) the r-sphere of τv around x that is pointed with cv
instead of x. Finally, we say τ is consistent in itself if for all v, it holds that

Labc
A(τv) = av ,

and for all v, w with (v, w) ∈ E, E ∈ {s, ν}, there exists a vertex x of τv and a
vertex y of τw with (cv, x) ∈ E and (y, cw) ∈ E such that

sphrcv(τv, x) is isomorphic to sphr(τw, y) .

Then we define ∆B as the set of all 1-tiles over A′ and B which are consistent
in itself. Using similar arguments to the proof of Lemma 6.41, it follows that
every accepting run of A on a graph G gives an accepting run of B on G with
the same weights, and vice versa. It follows that JAK = JBK.

144 CHAPTER 6. GRAPH AUTOMATA

Lemma 6.45. Let S : NW(A) → K be a nested word series and B a wGA
with tile size 1, without occurrence constraint, and JBK(nw) = S(nw) for all
nw ∈ NW(A). Then there exists a wNWA C with JCK = S.

Proof. Using ideas of Lemma 6.41 and Lemma 6.44, this is a straightforward
construction. Therefore, we only sketch the proof as follows. As before, we use
the tiles of B as states of C. The distinction between calls, internals, and returns
is handled by checking whether the center of a tile has an outgoing hierarchical
edge, no hierarchical edges, or an incoming hierarchical edge, respectively.
Consider a position x of a nested word nw. Since the wGA has tile-size 1, the
wNWA C only has to guess the label and the state at the position x + 1. If
the current position is a call, then C also guesses the label and the state at the
position y with ν(x, y). This hierarchical guess is later controlled by the tile of
the transition used at the position y. As before, the initial (resp. final) states
are characterized by tiles without incoming (resp. outgoing) linear edges at the
center.

It follows that by guessing correctly, C can assure that for every accepting
run of B on a nested word nw there exists an accepting run of C on nw with
the same weights as B. Conversely, as in Lemma 6.41, we see that C can never
guess wrong, i.e., for every accepting run of C there exists an accepting run
of B with the same weight. Note that this is only true because we know that
nesting edges do not cross. Therefore, whenever we encounter a return, i.e, an
incoming hierarchical edge, we know that this hierarchical edge comes from
the latest open call.

Applying the definition for a weighted MSO logic as in Section 3.3 to nested
words and a semiring yields the weighted logic MSO(K,NW(A)) (cf. also
Section 4.4 and [Mat10b]). Then as a consequence of Lemma 6.44, Lemma
6.45, and our main Theorem 6.24, we get the following result.

Corollary 6.46. Let K be a commutative semiring and S : NW(A)→ K be a
nested word series. Then the following are equivalent:

1. S is recognizable by a wGA.

2. S is recognizable by a wGA with tile-size one and without occurrence
constraint.

3. S is recognizable by a wNWA.

4. S is definable by an FO-restricted MSO(K,NW(A))-sentence.

5. S is definable by an FO-restricted MSO(K)-sentence.

6.4 Automata and Logics on Infinite Graphs

In this chapter, we show how to extend our results in both the unweighted and
the weighted setting to infinite graphs. We benefit from the flexible presentation

6.4. AUTOMATA AND LOGICS ON INFINITE GRAPHS 145

of our previous results, which allows us to adapt them by concentrating only
on the crucial differences to the finite case. Note that both the infinite graph
acceptors and the weighted infinite graph automata are finite models which
operate on infinite graphs.

6.4.1 Graph Acceptors for Infinite Graphs

In the following, we extend Theorem 6.2 to the infinite setting, thus showing
a Büchi-like result for infinite graphs. We introduce infinite graph acceptors
with an extended acceptance condition and an EMSO∞ logic as introduced
and studied in Section 2.4. This logic extends classical MSO by a first-
order quantification ∃∞x.ϕ expressing that there exist infinitely many vertices
satisfying ϕ.

Using the previous occurrence constraint as an acceptance condition,
Thomas’ graph acceptors of Section 6.1 could also be interpreted as a model
for infinite graphs. However, every occurrence constraint only checks for oc-
currences up to a certain threshold, i.e., it cannot express that a tile occurs
infinitely often. Therefore, graph acceptors cannot distinguish between finitely
and infinitely many occurrences of a state, which is a very important asset for
models operating on infinite structures. This motivates the following definition.

Definition 6.47. An infinite graph acceptor (GA∞) A over the alphabets A
and B is defined as a quadruple A = (Q,∆,Occ, r) where

• Q, ∆, r are defined as before, and

• Occ, the extended occurrence constraint, is a boolean combination of
formulas “occ(τ) ≥ n” and “occ(τ) =∞”, where n ∈ N and τ ∈ ∆.

The notions of an accepting run ρ of A on G ∈ DG∞t (A,B) and a recogniz-
able language L = L(A) ⊆ DG∞t (A,B) are defined as before. The additional
check “occ(τ) =∞” in particular can ask whether some state occurs infinitely
often. Therefore, together with boolean combinations of these statements, we
can encode classical Büchi and Muller acceptance conditions into the extended
occurrence constraint.

As in Section 2.4 and in [BK07], we introduce MSO∞(DG∞t (A,B)), short
MSO∞, by the following grammar

ϕ ::= Laba(x) | Eb(x, y) | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃∞x.ϕ | ∃X.ϕ

The semantics and the fragments FO∞ and EMSO∞ of this logic are defined
as previously. In Section 2.4, by employing result from [BK07] and [Tho91],
we have proven Corollary 2.6 stating the following: For every FO∞-sentence
ϕ, there exists an extended occurrence constraint Occ such that for all G ∈
DG∞t (A,B) it holds that G |= ϕ if and only if G |= Occ . This result provides
us with the means to prove our first main theorem of this section.

146 CHAPTER 6. GRAPH AUTOMATA

Theorem 6.48. Let L ⊆ DG∞t (A,B) be a set of infinite graphs. Then:

1. L is recognizable by a one-state GA∞ iff L is definable by an FO∞-
sentence.

2. L is recognizable iff L is definable by an EMSO∞-sentence.

Proof. The first statement is proven as follows. Given a one-state GA∞

A = ({q},∆,Occ, r), we get an equivalent GA∞ A′ = ({q},∆′,Occ′, r), with
∆′ = {τ | τ is an r-tile} and Occ′ = Occ∧

∧
τ /∈∆ occ(τ) = 0. Furthermore,

Occ′ can be expressed by an equivalent FO∞-formula ϕ. Then a graph G ∈
DG∞t (A,B) is in L(A′) if and only if G satisfies Occ′ if and only if G satisfies
ϕ.

For the converse, given an FO∞-sentence ϕ, we apply Corollary 2.6 (2.),
to get an equivalent extended occurrence constraint Occ over tiles of radius r.
Then A = ({q},∆,Occ, r), with ∆ = {τ | τ is an r-tile}, satisfies L(A) = L(ϕ).

The second statement is proven as follows. Given a graph automaton A
with m states and an FO-formula ψ that describes the occurrence constraint of
A, we can construct an EMSO-sentence ∃X1...∃Xm.ψ

′ that guesses the state
used at every vertex, and ψ′ = ψ ∧ θ, such that θ ensures that the sphere
around every vertex is isomorphic to a tile of A. For the converse, given an
EMSO-sentence ∃X1...∃Xm.ψ, we define A = ({0, 1}{1,...,m},∆,Occ, r), with
∆ = {τ | τ is an r-tile}, where the states of A encode all possible assignments
of X1...Xm, and Occ describes ψ.

6.4.2 A Büchi Result for WGA on Infinite Graphs

In the following, we extend our results in the weighted setting to infinite graphs.
We utilize the∞-(graph)-valuation monoids of Section 3.2 to introduce a model
of weighted graph automata which is operating on infinite graphs. We recall
how to modify our valuation function to read infinite graphs as follows.

Definition 6.49. An ∞-(graph)-valuation monoid (D,+,Val∞, 0) consists of
a complete monoid (D,+, 0) together with an ∞-valuation function Val∞ :
DG∞t (D,B) → D with Val∞(G) = 0 if at least one vertex v of G is labeled
with 0.

A product∞-valuation monoid (∞-pv-monoid) PD = (D,+,Val∞, �, 0, 1) is
an∞-valuation monoid (D,+,Val∞, 0) with a constant 1 ∈ D and an operation
� : D2 → D satisfying 0 � d = d � 0 = 0 and 1 � d = d � 1 = d for all d ∈ D.

For ∞-pv-monoids, we define the respective notion of a left-distributive
pv-monoid and a cc-∞-valuation semiring as in Chapter 3.2. Note that the
distributivity of � over + now also includes infinite sums.

Example 6.11. Let R̄ = R ∪ {−∞,∞} and −∞ +∞ = −∞. Let (G, u)
be a pointed graph labeled with values of R̄. We denote by | sphr(G, u)| the

6.4. AUTOMATA AND LOGICS ON INFINITE GRAPHS 147

number of vertices in the r-sphere of G around u. Then we define PD1 =
(R̄, sup, lim avg,+,−∞, 0) with

lim avg(G, u) = lim inf
r→∞

1

| sphr(G, u)|
∑

dist(v,u)≤r

LabG(v) .

Now, let R̄+ = {x ∈ R | x ≥ 0} ∪ {∞,−∞} and −∞+∞ = −∞. Let (G, u)
be a pointed graph labeled with values of R̄+. Let t > 1 be the maximal degree
of our graphs and 0 < λ < 1

t−1 . We define PD2 = (R̄+, sup, disc∞λ ,+,−∞, 0),
with

disc∞λ (G, u) = lim
n→∞

n∑
r=0

∑
dist(v,u)=r

λr LabG(v) .

Then PD1 is a left-+-distributive and left-Valω-distributive ω-valuation monoid.
Furthermore, PD2 is a left-multiplicative cc-∞-valuation semiring. �

Definition 6.50. A weighted infinite graph automaton (wGA∞) over A, B,
and D is a tuple A = (Q,∆,wt,Occ, r) where

• A′ = (Q,∆,Occ, r) is an infinite graph acceptor over A and B,

• wt : ∆→ D is the weight function assigning to every tile of ∆ a value of
D.

We transfer the previous notions of accepting run and recognizable series.

Furthermore, the weighted MSO-logic for infinite graphs and its fragments
are defined as extensions of MSO∞ as in the finite case in Section 6.2.3 (using
Val∞ instead of Val) and denoted by MSO∞(D), resp. MSO∞(PD). The
significant difference is again that we have the additional operator ∃∞x in our
underlying unweighted fragment.

Using Theorem 3.6 and adapting our previous results to the infinite setting,
we get our second main result of this section.

Theorem 6.51. Let D = (D,+,Val, 0) be a regular ∞-valuation monoid and
let S : DG∞t (A,B)→ D be a series. Then

1. S is recognizable iff S is definable by an FO-restricted MSO∞(D)-sentence.

Let PD be an ∞-pv-monoid and let S : DG∞t (A,B)→ D be a series.

2. Let PD be regular. Then S is recognizable iff S is definable by a strongly-
FO-restricted MSO∞(PD)-sentence.

3. Let PD be left-distributive. Then S is recognizable iff S is definable by a
FO-restricted MSO∞(PD)-sentence.

4. Let PD be a cc-valuation-semiring. Then S is recognizable iff S is definable
by a weakly-FO-restricted MSO∞(PD)-sentence.

148 CHAPTER 6. GRAPH AUTOMATA

Proof. As we are mainly following the proof of Theorem 6.25, we only note
the differences to before.

To increase the tile-radius within the occurrence constraint, we now also
have to rewrite “occ(τ) =∞”. This is done by the following formula, where
τ∗ = (τ1, ..., τm) (cf. Formula 6.1)(∑

τ∈τ∗
occ(τ)

)
=∞ is defined as a shorthand for

∨
i=1,...,m

occ(τi) =∞ .

Closure under +, projections, and intersection with FO-definable languages
are proven as before. From these results the closure under ⊕, β?ϕ1 : ϕ2, resp.
⊗, and under the quantifications

⊕
x and

⊕
X of our logics follows.

A notable difference is found in the closure under Valx ϕ (in previous papers,
e.g. [DG07], the weighted universal quantification). As in the finite case, we
set W = free(Valx ϕ)∪ {x} and require ϕ to be an almost FO-boolean formula,
thus JϕK is an FO∞-step function, i.e., JϕK =

∑m
i=1 di1Li =

∑m
i=1 di∩Li, where

Li are FO∞-definable languages forming a partition of DG∞t (AW , B). Since
we have to deal with the additional quantifier ∃∞x, we cannot apply Theorem
6.2. However, Theorem 6.48 gives us the one-state infinite graph acceptors Ai
recognizing Li. Then the encodings and automata constructions of Proposition
6.20 give us a wGA∞ A with JAK = JValx ϕK. Together with the other closure
properties, this shows that a restricted formula yields a recognizable series.

For the converse, we construct a sentence as in the proof of Proposition 6.23,
where we encode the extended occurrence constraint into the FO∞-formula
describing all accepting runs.

The statements 2 to 4 follow from the respective version of Theorem 3.6.

Note that while FO∞ differs from FO, the proof of Theorem 3.6 never takes
the particular first order operators into account. So, this theorem stays true
even if we extend the underlying unweighted logic of MSO(PD) from MSO
to MSO∞. Then, FO-boolean formulas are still defined as MSO∞-formulas
without second order existential quantification. Thus, they contain the new
operator ∃∞x.ϕ.

Chapter 7

Conclusion

We introduced weighted automata models for infinite nested words, operator
precedence languages and rank-bounded graphs. As weight structures, we
employed semirings and valuation monoids, a general structure which can
model non-semiring operations like average or discounting [DM12]. We showed
various closure properties for the resulting weighted languages and showed
the following two major connections to previously studied weighted languages:
Firstly, weighted operator precedence languages strictly include weighted visibly
pushdown languages, also called weighted languages of nested words. Secondly,
our weighted graph automata are able to simulate several weighted automata
models for finite structures like words, trees, pictures, and nested words.

Furthermore, we introduced suitable weighted MSO logics for all of these
structures either using weights of a semiring or a valuation monoid (cf. [DG07]
for a semiring-weighted MSO for words). We could show that under suitable
assumptions on the valuation monoids, two, resp. three, fragments of the
weighted logic have the same expressive power with efficient conversions into
the smallest fragment, which gives a kind of normal form for weighted formulas,
in particular in the case of semirings. We explicitly employed these results
for nested words and graphs, but they can also be applied to other discrete
structures like trees and pictures. In our main results, we showed that the
weighted automata and their respective weighted MSO logic have the same
expressive power.

As in [AM09], we considered nested words possibly containing pending
edges. We remark that our results similarly can be developed for finite nested
words, which would give us results of [Mat10b] and [DP14b] as special cases.
There exist different techniques to transform finite nested words into hedges,
unranked trees, or binary trees, and vice versa. This provides the possibility
to regard nested words as a special form of trees and nested word automata
as special form of tree automata, cf. [AAB+08, AM09]. A generalization of
Büchi’s theorem to trees and infinite trees was done in [Don70, Rab69, TW68].
Recently, the connection between weighted tree automata and weighted logics

149

150 CHAPTER 7. CONCLUSION

has also found much interest, cf. [DGMM11, DV06, DV11]. However, the
results in the quantitative case using valuation monoids cover only finite trees
and cannot be used to draw conclusions for infinite nested words. Moreover, it
is not clear how to translate infinite trees into infinite nested words. Another
interesting research path would be to investigate decision problems for weighted
nested word automata. This was done, for example, for automata on words
and with average or discounted computations of weights in [CDH08, CDH09].

For operator precedence languages, we considered commutative and general
semirings. In a Nivat-like result, we showed that the behavior of a wOPA can
be described as homomorphic image of the behavior of a particularly simple
wOPA together with an unweighted OPA. We showed that weighted operator
precedence automata (wOPA) without pop weights and a restricted weighted
MSO logic have the same expressive power. If the semiring is commutative,
this result also applies to wOPA with arbitrary pop weights. This raises the
problem to find, for arbitrary semirings and for wOPA with pop weights, both
an expressively equivalent weighted MSO logic and a Nivat-like result. In
[DV06], very similar problems occurred for weighted automata on unranked
trees and weighted MSO logic. Very recently, in [DHV15], an equivalence result
for a restricted weighted MSO logic could be derived with another definition of
the behavior of weighted unranked tree automata. Thus, the following question
arises: Is there another definition of the behavior of wOPA (with pop weights)
which makes them expressively equivalent to our restricted weighted MSO
logic?

In [LMPP15], operator precedence languages of infinite words were investi-
gated and shown to be of practically relevance. Hence, it would be interesting
to develop wOPA operating on infinite words. Another interesting question is
how to extend our results from semirings to valuation monoids. Since already in
the case of semirings, we have seen that there is a significant difference regard-
ing the logical characterization between commutative and non-commutative
semirings, this promises to be an intriguing challenge. As valuation monoids
are especially useful to model long-term behaviors, they may also prove suitable
for investigating infinite precedence words.

In the central chapter of this thesis, we introduced a weighted generalization
of Thomas’ graph acceptors [Tho91, Tho96] and a suitable weighted logic on
graphs. We showed that weighted word, tree, picture, or nested word automata
are special instances of these general weighted graph automata. Additionally,
we gave several examples that our weighted graph automata can recognize
particular quantitative properties of graphs which were not covered by previous
automata models. Using valuation monoids, we proved a Nivat-like and a
Büchi-like characterization of the expressive power of weighted graph automata.
This gives us results of [DG07], [DV06], [Fic11], and [Mat10b] as corollaries
(under appropriate restrictions to the respective logic). Although not considered
explicitly, we conjecture that similar equivalence results also hold for other

151

finite structures like traces [Mei06], texts [Mat10a], and distributed systems
[BM07] and their respective automata models. Similarly, we conjecture that
the respective models using valuation monoids are special instances of weighted
graph automata, which would give us results of [DM12, DGMM11, BD15]
as corollaries. Further research could investigate applications of weighted
graph algorithms in order to develop decision procedures for weighted graph
automata.

Finally, we showed how to extend these results to infinite graphs. Utilizing
results by Hanf [Han65], Thomas [Tho91], and Bollig and Kuske [BK07], we
proved a Büchi-like theorem for infinite graphs. We gave new examples for
this model, employing average and discounting. Among others, infinite graphs
cover infinite words [DR06], infinite trees [Rah07], and infinite traces [DG00].
It would be interesting how to incorporate previous models for these infinite
structures with weighted graph automata operating on infinite graphs.

152 CHAPTER 7. CONCLUSION

Chapter 8

Acknowledgments

I want to thank Manfred Droste for supervising this thesis, especially for his
continuous supply of research ideas and his support in finding solutions to
arising problems. Also, I want to thank Heiko Vogler for his support as the
second supervisor of this thesis.

I thank Tobias Weihrauch, Erik Paul, and Andreas Maletti for many helpful
scientific discussions and occasionally helping me to put my thoughts in order.
Also, I would like to thank Wolfgang Thomas, Paul Gastin, Nicole Schweikhardt,
Dietrich Kuske, and Benjamin Monmege for enlightening scientific discussions
on specific topics of this thesis.

Furthermore, I am grateful for the financial support of the Deutsche For-
schungsgemeinschaft (DFG) through the project DR 202/11-1 and even more
importantly, through the Graduiertenkolleg QuantLA. Also, I would like to
thank all my colleagues at the University of Leipzig, and all students and
associates of QuantLA for providing a very fruitful research environment.

Last but not least, I am deeply indebted to my family for their moral
support throughout my whole studies and the work on this thesis.

153

154 CHAPTER 8. ACKNOWLEDGMENTS

Bibliography

[AAB+08] Rajeev Alur, Marcelo Arenas, Pablo Barceló, Kousha Etessami,
Neil Immerman, and Leonid Libkin. First-order and temporal
logics for nested words. Logical Methods in Computer Science,
4(4):1–44, 2008.

[AF90] Miklós Ajtai and Ronald Fagin. Reachability is harder for directed
than for undirected finite graphs. J. Symb. Log., 55(1):113–150,
1990.

[AF16] Rajeev Alur and Dana Fisman. Colored nested words. In Dediu
et al. [DJMT16], pages 143–155.

[AGMR06] Marcella Anselmo, Dora Giammarresi, Maria Madonia, and Anto-
nio Restivo. Unambiguous recognizable two-dimensional languages.
ITA, 40(2):277–293, 2006.

[AM09] Rajeev Alur and Parthasarathy Madhusudan. Adding nesting
structure to words. J. ACM, 56(3):16:1–16:43, 2009.

[BD15] Parvaneh Babari and Manfred Droste. A Nivat theorem for
weighted picture automata and weighted MSO logic. In Adrian-
Horia Dediu, Enrico Formenti, Carlos Mart́ın-Vide, and Bianca
Truthe, editors, Language and Automata Theory and Applications,
LATA 2015, volume 8977 of LNCS, pages 703–715. Springer, 2015.

[BG09] Benedikt Bollig and Paul Gastin. Weighted versus probabilistic
logics. In Volker Diekert and Dirk Nowotka, editors, Developments
in Language Theory, DLT 2009, volume 5583 of LNCS, pages
18–38. Springer, 2009.

[BGMZ14] Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc
Zeitoun. Pebble weighted automata and weighted logics. ACM
Trans. Comput. Log., 15(2):15, 2014.

[BK07] Benedikt Bollig and Dietrich Kuske. Muller message-passing au-
tomata and logics. In Remco Loos, Szilárd Zsolt Fazekas, and

155

156 BIBLIOGRAPHY

Carlos Mart́ın-Vide, editors, Language and Automata Theory and
Applications, LATA 2007, volume Report 35/07, pages 163–174.
Research Group on Mathematical Linguistics, Universitat Rovira
i Virgili, Tarragona, 2007.

[BM07] Benedikt Bollig and Ingmar Meinecke. Weighted distributed sys-
tems and their logics. In Logical Foundations of Computer Science,
volume 4514 of LNCS, pages 54–68. Springer, 2007.

[BR88] Jean Berstel and Christophe Reutenauer. Rational Series and
Their Languages, volume 12 of EATCS Monographs in Theoretical
Computer Science. Springer, 1988.

[Büc60] J. Richard Büchi. Weak second-order arithmetic and finite au-
tomata. Z. Math. Logik und Grundlagen Math., 6:66–92, 1960.

[CDH08] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger.
Quantitative languages. In Michael Kaminski and Simone Martini,
editors, Computer Science Logic, volume 5213 of LNCS, pages
385–400. Springer, 2008.

[CDH09] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger.
Expressiveness and closure properties for quantitative languages.
In Symposium on Logic in Computer Science, pages 199–208. IEEE
Computer Society, 2009.

[Cho56] Noam Chomsky. Three models for the description of language.
IRE Trans. Information Theory, 2(3):113–124, 1956.

[CM12] Stefano Crespi Reghizzi and Dino Mandrioli. Operator prece-
dence and the visibly pushdown property. J. Comput. Syst. Sci.,
78(6):1837–1867, 2012.

[CMM78] Stefano Crespi Reghizzi, Dino Mandrioli, and David F. Martin.
Algebraic properties of operator precedence languages. Information
and Control, 37(2):115–133, 1978.

[DD14] Manfred Droste and Stefan Dück. Weighted automata and logics
for infinite nested words. In Adrian Horia Dediu, Carlos Mart́ın-
Vide, José Luis Sierra-Rodŕıguez, and Bianca Truthe, editors,
Language and Automata Theory and Applications, LATA 2014,
volume 8370 of LNCS, pages 323–334. Springer, 2014.

[DD15] Manfred Droste and Stefan Dück. Weighted automata and logics
on graphs. In Giuseppe F. Italiano, Giovanni Pighizzini, and
Donald Sannella, editors, Mathematical Foundations of Computer
Science, MFCS 2015, Part I, volume 9234 of LNCS, pages 192–204.
Springer, 2015.

BIBLIOGRAPHY 157

[DD17] Manfred Droste and Stefan Dück. Weighted automata and logics
for infinite nested words. Inf. Comput., 253:448–466, 2017.

[DDMP17] Manfred Droste, Stefan Dück, Dino Mandrioli, and Matteo
Pradella. Weighted operator precedence languages. In Kim G.
Larsen, Hans L. Bodlaender, and Jean-François Raskin, editors,
Mathematical Foundations of Computer Science, MFCS 2015,
volume 83 of LIPIcs, pages 31:1–31:15. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017.

[DG00] Volker Diekert and Paul Gastin. LTL is expressively complete
for Mazurkiewicz traces. In Ugo Montanari, José D. P. Rolim,
and Emo Welzl, editors, International Colloquium on Automata,
Languages, and Programming, ICALP 2000, volume 1853 of LNCS,
pages 211–222. Springer, 2000.

[DG07] Manfred Droste and Paul Gastin. Weighted automata and weighted
logics. Theor. Comput. Sci., 380(1-2):69–86, 2007. extended
abstract in ICALP 2005.

[DG09] Manfred Droste and Paul Gastin. Weighted automata and weighted
logics. In Droste et al. [DKV09], chapter 5, pages 175–211.

[DGMM11] Manfred Droste, Doreen Götze, Steffen Märcker, and Ingmar Mei-
necke. Weighted tree automata over valuation monoids and their
characterization by weighted logics. In Werner Kuich and George
Rahonis, editors, Algebraic Foundations in Computer Science,
volume 7020 of LNCS, pages 30–55. Springer, 2011.

[DHV15] Manfred Droste, Doreen Heusel, and Heiko Vogler. Weighted
unranked tree automata over tree valuation monoids and their
characterization by weighted logics. In Andreas Maletti, editor,
Conference Algebraic Informatics, CAI 2015, volume 9270 of LNCS,
pages 90–102. Springer, 2015.

[DJMT16] Adrian Horia Dediu, Jan Janousek, Carlos Mart́ın-Vide, and
Bianca Truthe, editors. Language and Automata Theory and
Applications, LATA 2016, volume 9618 of LNCS. Springer, 2016.

[DKar] Manfred Droste and Dietrich Kuske. Weighted automata. In
Jean-Eric Pin, editor, Handbook: “Automata: from Mathematics
to Applications”. Europ. Mathematical Soc., to appear.

[DKV09] Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Hand-
book of Weighted Automata. EATCS Monographs in Theoretical
Computer Science. Springer, 2009.

158 BIBLIOGRAPHY

[DM12] Manfred Droste and Ingmar Meinecke. Weighted automata and
weighted MSO logics for average and long-time behaviors. Inf.
Comput., 220:44–59, 2012.

[Don70] John Doner. Tree acceptors and some of their applications. J.
Comput. Syst. Sci., 4(5):406–451, 1970.

[DP14a] Manfred Droste and Vitaly Perevoshchikov. A Nivat theorem
for weighted timed automata and weighted relative distance logic.
In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias
Koutsoupias, editors, International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2014, Part II, volume 8573 of
LNCS, pages 171–182. Springer, 2014.

[DP14b] Manfred Droste and Bundit Pibaljommee. Weighted nested word
automata and logics over strong bimonoids. Int. J. Found. Comput.
Sci., 25(5):641–666, 2014.

[DR95] Volker Diekert and Grzegorz Rozenberg, editors. The Book of
Traces. World Scientific, 1995.

[DR06] Manfred Droste and George Rahonis. Weighted automata and
weighted logics on infinite words. In Oscar H. Ibarra and Zhe Dang,
editors, Developments in Language Theory, DLT 2006, volume
4036 of LNCS, pages 49–58. Springer, 2006.

[Düc13] Stefan Dück. Gewichtete Automaten und Logik für unendliche
geschachtelte Wörter. Diplomarbeit, Universität Leipzig, 2013.

[Düc16] Stefan Dück. Weighted automata and logics on infinite graphs. In
Srecko Brlek and Christophe Reutenauer, editors, Developments
in Language Theory, DLT 2016, volume 9840 of LNCS, pages
151–163. Springer, 2016.

[DV06] Manfred Droste and Heiko Vogler. Weighted tree automata and
weighted logics. Theor. Comput. Sci., 366(3):228–247, 2006.

[DV11] Manfred Droste and Heiko Vogler. Weighted logics for unranked
tree automata. Theory Comput. Syst., 48(1):23–47, 2011.

[DV12] Manfred Droste and Heiko Vogler. Weighted automata and multi-
valued logics over arbitrary bounded lattices. Theor. Comput. Sci.,
418:14–36, 2012.

[Ehr61] Andrzej Ehrenfeucht. An application of games to the completeness
problem for formalized theories. Fund. Math., 49:129–141, 1961.

BIBLIOGRAPHY 159

[Eil74] Samuel Eilenberg. Automata, Languages, and Machines, volume
59-A of Pure and Applied Mathematics. Academic Press, 1974.

[ÉK09] Zoltán Ésik and Werner Kuich. Finite automata. In Droste et al.
[DKV09], pages 69–104.

[Elg61] Calvin C. Elgot. Decision problems of finite automata design and
related arithmetics. Trans. Am. Math. Soc., 98(1):21–52, 1961.

[Fic11] Ina Fichtner. Weighted picture automata and weighted logics.
Theory Comput. Syst., 48(1):48–78, 2011.

[Flo63] Robert W. Floyd. Syntactic analysis and operator precedence. J.
ACM, 10(3):316–333, 1963.

[Fra54] Roland Fräıssé. Sur quelques classifications des systèmes de rela-
tions. Publications Scientifiques de l’Université d’Alger, series A
1:35–182, 1954.

[FSV12] Zoltán Fülöp, Torsten Stüber, and Heiko Vogler. A Büchi-like
theorem for weighted tree automata over multioperator monoids.
Theory Comput. Syst., 50(2):241–278, 2012.

[GM15] Paul Gastin and Benjamin Monmege. A unifying survey on
weighted logics and weighted automata. Soft Comput., 2015. To
appear.

[Gol99] Jonathan S. Golan. Semirings and their Applications. Kluwer
Academic Publishers, 1999.

[GRST96] Dora Giammarresi, Antonio Restivo, Sebastian Seibert, and Wolf-
gang Thomas. Monadic second-order logic over rectangular pic-
tures and recognizability by tiling systems. Inf. Comput., 125(1):32–
45, 1996.

[Han65] William Hanf. Model-theoretic methods in the study of elementary
logic. In Addison, Henkin, and Tarski, editors, The Theory of
Models, pages 132–145. North-Holland, 1965.

[HtP97] Hendrik Jan Hoogeboom and Paulien ten Pas. Monadic second-
order definable text languages. Theory Comput. Syst., 30(4):335–
354, 1997.

[KS86] Werner Kuich and Arto Salomaa. Semirings, Automata, Languages,
volume 6 of EATCS Monographs in Theoretical Computer Science.
Springer, 1986.

160 BIBLIOGRAPHY

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, 2004.

[LMPP15] Violetta Lonati, Dino Mandrioli, Federica Panella, and Mat-
teo Pradella. Operator precedence languages: Their automata-
theoretic and logic characterization. SIAM J. Comput., 44(4):1026–
1088, 2015.

[LMS04] Christof Löding, Parthasarathy Madhusudan, and Olivier Serre.
Visibly pushdown games. In Kamal Lodaya and Meena Mahajan,
editors, Foundations of Software Technology and Theoretical Com-
puter Science, volume 3328 of LNCS, pages 408–420. Springer,
2004.

[LST94] Clemens Lautemann, Thomas Schwentick, and Denis Thérien.
Logics for context-free languages. In Leszek Pacholski and Jerzy
Tiuryn, editors, Computer Science Logic, Selected Papers, volume
933 of LNCS, pages 205–216. Springer, 1994.

[Mat09] Christian Mathissen. Weighted Automata and Weighted Logics
over Tree-like Structures. PhD thesis, Universität Leipzig, 2009.

[Mat10a] Christian Mathissen. Definable transductions and weighted logics
for texts. Theory Comput. Sci., 411(3):631–659, 2010.

[Mat10b] Christian Mathissen. Weighted logics for nested words and alge-
braic formal power series. Logical Methods in Computer Science,
6(1), 2010. Selected papers of ICALP 2008.

[Meh80] Kurt Mehlhorn. Pebbling mountain ranges and its application of
DCFL-recognition. In Automata, Languages and Programming,
ICALP 1980, volume 85 of LNCS, pages 422–435, 1980.

[Mei06] Ingmar Meinecke. Weighted logics for traces. In International
Computer Science Symposium in Russia, volume 3967 of LNCS,
pages 235–246. Springer, 2006.

[Moh03] Mehryar Mohri. Edit-distance of weighted automata: General
definitions and algorithms. Int. J. Found. Comput. Sci., 14(6):957–
982, 2003.

[Mon13] Benjamin Monmege. Specification and Verification of Quantitative
Properties: Expressions, Logics, and Automata. Thèse de doctorat,
ENS Cachan, France, 2013.

[Niv68] Maurice Nivat. Transductions des langages de Chomsky. Ann. de
l’Inst. Fourier, 18:339–455, 1968.

BIBLIOGRAPHY 161

[Rab69] Michael O. Rabin. Decidability of second order theories and
automata on infinite trees. Trans. Am. Math. Soc., 141:1–35,
1969.

[Rah07] George Rahonis. Weighted Muller tree automata and weighted
logics. J. Autom. Lang. Comb., 12(4):455–483, 2007.

[Sch61] Marcel Paul Schützenberger. On the definition of a family of
automata. Inf. Control, 4(2-3):245–270, 1961.

[SS78] Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of
Formal Power Series. Texts and Monographs in Computer Science.
Springer, 1978.

[Tho90] Wolfgang Thomas. On logical definability of trace languages.
In Volker Diekert, editor, Proc. workshop ASMICS 1989, pages
172–182. Technical University of Munich, 1990.

[Tho91] Wolfgang Thomas. On logics, tilings, and automata. In Interna-
tional Colloquium on Automata, Languages, and Programming,
ICALP 1991, volume 510 of LNCS, pages 441–454. Springer, 1991.

[Tho96] Wolfgang Thomas. Elements of an automata theory over partial
orders. In Proc. DIMACS Workshop POMIV ’96, pages 25–40,
New York, NY, USA, 1996. AMS Press, Inc.

[Tho97] Wolfgang Thomas. Languages, automata, and logic. In Grze-
gorz Rozenberg and Arto Salomaa, editors, Handbook of Formal
Languages, Vol. 3, pages 389–455. Springer, 1997.

[TO15] Markus Teichmann and Johannes Osterholzer. A link between
multioperator and tree valuation automata and logics. Theor.
Comput. Sci., 594:106–119, 2015.

[Tra61] Boris A. Trakhtenbrot. Finite automata and logic of monadic
predicates (in Russian). Doklady Akademii Nauk SSR, 140:326–
329, 1961.

[TW68] James W. Thatcher and Jesse B. Wright. Generalized finite au-
tomata theory with an application to a decision problem of second-
order logic. Math. Syst. Theory, 2(1):57–81, 1968.

[vBV83] Burchard von Braunmühl and Rutger Verbeek. Input-driven
languages are recognized in log n space. In Proceedings of the
Symposium on Fundamentals of Computation Theory, volume 158
of LNCS, pages 40–51. Springer, 1983.

162 BIBLIOGRAPHY

[VDH16] Heiko Vogler, Manfred Droste, and Luisa Herrmann. A
weighted MSO logic with storage behaviour and its Büchi-Elgot-
Trakhtenbrot theorem. In Dediu et al. [DJMT16], pages 127–139.

Dissertationsbezogene
bibliographische Daten

Aktualisierung zum 12.06.2017

Begutachtete Veröffentlichungen

• M. Droste, S. Dück, D. Mandrioli, and M. Pradella: Weighted operator
precedence languages, in: Mathematical Foundations of Computer Science
(MFCS 2017), Leibniz International Proceedings in Informatics, to appear.

• M. Droste, S. Dück: Weighted automata and logics for infinite nested
words, Information and Computation, Special Issue of LATA 2014, vol.
253, Part 3, pp. 448–466, 2017.

• S. Dück: Weighted automata and logics on infinite graphs, in: 20th
International Conference on Developments in Language Theory (DLT),
Lecture Notes in Computer Science, vol. 9840, pp. 151-163, Springer,
2016.

• M. Droste, S. Dück: Weighted automata and logics on graphs, in: Math-
ematical Foundations of Computer Science (MFCS 2015), Lecture Notes
in Computer Science, vol. 9234, pp. 192-204, Springer, 2015.

• M. Droste, S. Dück: Weighted automata and logics for infinite nested
words, in: Language and Automata Theory and Applications (LATA
2014), Lecture Notes in Computer Science, vol. 8370, pp. 323-334,
Springer, 2014.

163

Wissenschaftlicher Werdegang

seit 04/2017 Wissenschaftlicher Mitarbeiter
Abteilung: Automaten und Sprachen, Institut für Informatik,
Universität Leipzig, DFG Graduiertenkolleg Quantla

seit 10/2014 Promotionsstudent des DFG Graduiertenkollegs Quantitative Log-
ics and Automata (QuantLA)

seit 08/2013 Promotionsstudium der Informatik an der Universität Leipzig

10/2013 - 10/2014 Assoziierter Promotionsstudent des DFG Graduiertenkollegs Quan-
titative Logics and Automata (QuantLA)

08/2013 - 10/2014 Wissenschaftlicher Mitarbeiter
Abteilung: Automaten und Sprachen, Institut für Informatik,
Universität Leipzig, DFG-Projekt DR 202/11-1

10/2008 - 08/2013 Studium der Mathematik an der Universität Leipzig
Abschluss: Diplom-Mathematiker
Titel der Abschlussarbeit: Gewichtete Automaten und Logik für
unendliche geschachtelte Wörter
Betreuer: Prof. Dr. Manfred Droste
Abschlussnote: mit Auszeichnung (1,0)

09/1999 - 07/2007 Wilhelm-Ostwald-Gymnasium, Leipzig
Abschluss: Abitur (Abschlussnote 1,1)

165

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne un-
zulässige fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die
angeführten Quellen und Hilfsmittel benutzt und sämtliche Textstellen, die
wörtlich oder sinngemäß aus veröffentlichten oder unveröffentlichten Schriften
entnommen wurden, und alle Angaben, die auf mündlichen Auskünften beruhen,
als solche kenntlich gemacht. Ebenfalls sind alle von anderen Personen bereit-
gestellten Materialen oder erbrachten Dienstleistungen als solche gekennzeich-
net.

Leipzig, den 14. Dezember 2017

Stefan Dück

167

	Introduction
	Foundations
	Finite Word Automata and Büchi's Theorem
	Relational Structures and Graphs
	MSO Logic on Relational Structures
	Hanf's Theorem and Adding An Infinity Operator

	Quantitative Aspects
	Semirings
	Valuation Monoids
	Weighted Logics
	Transformation Theorem

	Weighted Automata for Infinite Nested Words
	Infinite Nested Words
	Weighted Stair Muller Nested Word Automata
	Regularity of Valuation Monoids
	Weighted MSO-Logic for Nested Words
	Characterization of Recognizable Series

	Weighted Operator Precedence Languages
	Operator Precedence Languages
	Weighted OPL and Their Relation to Weighted VPL
	A Nivat Theorem for Weighted OPL
	Weighted MSO-Logic for OPL
	Characterization of Weighted OPL

	Graph Automata
	Thomas' Graph Acceptors
	Weighted Graph Automata (WGA)
	Introduction and Properties of WGA
	Robustness of WGA: A Nivat Theorem
	Characterization of WGA: A Büchi-Theorem
	A Deeper Look at Regularity of Weight Structures

	Words and other Special Cases
	Reduction to WGA without Occurrence Constraint
	Words, Trees, and Pictures
	Nested Words

	Automata and Logics on Infinite Graphs
	Graph Acceptors for Infinite Graphs
	A Büchi Result for WGA on Infinite Graphs

	Conclusion
	Acknowledgments
	Bibliography

