
Generalizing input-driven languages: theoretical and practical benefits

Dino Mandriolia, Matteo Pradellaa,b

aDEIB, Politecnico di Milano, P.zza L. da Vinci 32, 20133 Milano, Italy.
Email: {dino.mandrioli, matteo.pradella}@polimi.it

bIEIIT, Consiglio Nazionale delle Ricerche, via Ponzio 34/5, 20133 Milano, Italy

Abstract

Regular languages (RL) are the simplest family in Chomsky’s hierarchy. Thanks to their simplicity they enjoy various nice algebraic
and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are
decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time.

Context-free languages (CFL) are another major family well-suited to formalize programming, natural, and many other classes
of languages; their increased generative power w.r.t. RL, however, causes the loss of several closure properties and of the decidabil-
ity of important problems; furthermore they need complex parsing algorithms. Thus, various subclasses thereof have been defined
with different goals, spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic veri-
fication techniques.

Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible in the sentences, ex-
hibit many of the algebraic and logic properties of RL, whereas deterministic CFL have been thoroughly exploited in compiler
construction and other application fields.

After surveying and comparing the main properties of those various language families, we go back to operator precedence
languages (OPL), an old family through which R. Floyd pioneered deterministic parsing, and we show that they offer unexpected
properties in two fields so far investigated in totally independent ways: they enable parsing parallelization in a more effective way
than traditional sequential parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive
language families.

Keywords: regular languages, context-free languages, input-driven languages, visibly pushdown languages, operator-precedence
languages, monadic second order logic, closure properties, decidability and automatic verification

Preprint submitted to Elsevier December 5, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/154336185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 3

2 Regular Languages 4
2.1 Logic characterization . 5

3 Context-free Languages 7
3.1 Parsing context-free languages . 10

3.1.1 Parsing context-free languages deterministically . 11
3.2 Logic characterization of context-free languages . 13

4 Structured context-free languages 14
4.1 Parenthesis grammars and languages . 14
4.2 Input-driven or visibly pushdown languages . 16

4.2.1 The logic characterization of visibly pushdown languages . 17
4.3 Other structured context-free languages . 18

4.3.1 Balanced grammars . 18
4.3.2 Height-deterministic languages . 18

5 Operator precedence languages 20
5.1 Algebraic and logic properties of operator precedence languages . 22

5.1.1 Operator precedence automata . 23
5.1.2 Operator precedence vs other structured languages . 26
5.1.3 Closure and decidability properties . 27
5.1.4 Logic characterization . 28

5.2 Local parsability for parallel parsers . 31

6 Concluding remarks 32

2

1. Introduction

Regular (RL) and context-free languages (CFL) are by far
the most widely studied families of formal languages in the rich
literature of the field. In Chomsky’s hierarchy, they are, respec-
tively, in positions 2 and 3, 0 and 1 being recursively enumer-
able and context-sensitive languages.

Thanks to their simplicity, RL enjoy practically all posi-
tive properties that have been defined and studied for formal
language families: they are closed under most algebraic op-
erations, and most of their properties of interest (emptiness,
finiteness, containment) are decidable. Thus, they found fun-
damental applications in many fields of computer and system
science: HW circuit design and minimization, specification and
design languages (equipped with powerful supporting tools),
automatic verification of SW properties, etc. One of their most
relevant applications is now model-checking which exploits the
decidability of the containment problem and important charac-
terizations in terms of mathematical logics [1, 2].

On the other hand, the typical linear structure of RL sen-
tences makes them unsuitable or only partially suitable for ap-
plication in fields where the data structure is more complex,
e.g., is tree-like. For instance, in the field of compilation they
are well-suited to drive lexical analysis but not to manage the
typical nesting of programming and natural language features.
The classical language family adopted for this type of model-
ing and analysis is the context-free one. The increased expres-
sive power of CFL allows to formalize many syntactic aspects
of programming, natural, and various other categories of lan-
guages. Suitable algorithms have been developed on their basis
to parse their sentences, i.e., to build the structure of sentences
as syntax-trees.

General CFL, however, lose various of the nice mathemati-
cal properties of RL: they are closed only under some of the al-
gebraic operations, and several decision problems, typically the
inclusion problem, are undecidable; thus, the automatic analy-
sis and synthesis techniques enabled for RL are hardly gener-
alized to CFL. Furthermore, parsing CFL may become consid-
erably less efficient than recognizing RL: the present most effi-
cient parsing algorithms of practical use for general CFL have
an O(n3) time complexity.

The fundamental subclass of deterministic CFL (DCFL) has
been introduced, and applied to the formalization of program-
ming language syntax, to exploit the fact that in this case pars-
ing is in O(n). DCFL, however, do not enjoy enough algebraic
and logic properties to extend to this class the successful appli-
cations developed for RL: e.g., although their equivalence is de-
cidable, containment is not; they are closed under complement
but not under union, intersection, concatenation and Kleene ∗.

From this point of view, structured CFL are somewhat in
between RL and general CFL. Intuitively, by structured CFL
we mean languages where the structure of the syntax-tree as-
sociated with a given sentence is immediately apparent in the
sentence. Parenthesis languages (PL) introduced in a pioneer-
ing paper by McNaughton [3] are the first historical example
of such languages. McNaughton showed that they enjoy clo-
sure under Boolean operations (which, together with the de-

cidability of the emptiness problem, implies decidability of the
containment problem) and their generating grammars can be
minimized in a similar way as finite state automata (FSA) are
minimized (in fact an equivalent formalism for parenthesis lan-
guages are tree automata [4, 5]).

Starting from PL various extensions of this family have been
proposed in the literature, with the main goal of preserving most
of the nice properties of RL and PL, yet increasing their gener-
ative power; among them input-driven languages (IDL) [6, 7],
later renamed visibly pushdown languages (VPL) [8] have been
quite successful: the attribute Input-driven is explained by the
property that their recognizing pushdown automata can decide
whether to apply a push operation, or a pop one to their push-
down store or leaving it unaffected exclusively on the basis of
the current input symbol; the attribute visible, instead, refers to
the fact that their tree-like structure is immediately visible in
their sentences.

IDL, alias VPL, are closed under all traditional language
operations (and therefore enjoy the consequent decidability prop-
erties). Also, they are characterized in terms of a monadic sec-
ond order (MSO) logic by means of a natural extension of the
classic characterization for RL originally and independently de-
veloped by Büchi, Elgot, and Trakhtenbrot [9, 10, 11]. For
these reasons they are a natural candidate for extending model
checking techniques from RL. To achieve such a goal in prac-
tice, however, MSO logic is not yet tractable due to the com-
plexity of its decidability problems; thus, some research is go-
ing on to “pair” IDL with specification languages inspired by
temporal logic as it has been done for RL [12].

Structured languages do not need a real parsing, since the
syntax-tree associated with their sentences is already ”embed-
ded” therein; thus, their recognizing automata only have to de-
cide whether an input string is accepted or not, whereas full
parsers for general CFL must build the structure(s) associated
with any input string which naturally supports its semantics
(think, e.g., to the parsing of unparenthesized arithmetic ex-
pressions where the traditional precedence of multiplicative op-
erators over the additive ones is ”hidden” in the syntax of the
language.) This property, however, severely restricts their ap-
plication field as the above example of arithmetic expressions
immediately shows.

Rather recently, we resumed the study of an old class of
languages which was interrupted a long time ago, namely op-
erator precedence languages (OPL). OPL and their generating
grammars (OPG) have been introduced by Floyd [13] to build
efficient deterministic parsers; indeed they generate a large and
meaningful subclass of DCFL. We can intuitively describe OPL
as “input driven but not visible”: they can be claimed as input-
driven since the parsing actions on their words –whether to push
or pop– depend exclusively on the input alphabet and on the re-
lation defined thereon, but their structure is not visible in their
words: e.g, they can include unparenthesized expressions.

In the past their algebraic properties, typically closure under
Boolean operations [14], have been investigated with the main
goal of designing inference algorithms for their languages [15].
After that, their theoretical investigation has been abandoned
because of the advent of more powerful grammars, mainly LR

3

ones [16, 17], that generate all DCFL (although some determin-
istic parsers based on OPL’s simple syntax have been continu-
ously implemented at least for suitable subsets of programming
languages [18]).

The renewed interest in OPG and OPL has been ignited by
two seemingly unrelated remarks: on the one hand we real-
ized that they are a proper superclass of IDL and that all results
that have been obtained for them (closures, decidability, logi-
cal characterization) extend naturally, but not trivially, to OPL;
on the other hand new motivation for their investigation comes
from their distinguishing property of local parsability: with this
term we mean that their deterministic parsing can be started and
led to completion from any position of the input string unlike
what happens with general deterministic pushdown automata,
which must necessarily operate strictly left-to-right from the
beginning of the input. This property has a strong practical
impact since it allows for exploiting modern parallel architec-
tures to obtain a natural speed up in the processing of large
tree-structured data. An automatic tool that generates parallel
parsers for these grammars has already been produced and is
freely available. The same local parsability property can also
be exploited to incrementally analyze large structures without
being compelled to reparse them from scratch after any modifi-
cation thereof.

This renewed interest in OPL has also led to extend their
study to ω-languages, i.e., those consisting of infinite strings:
in this case too the investigation produced results that perfectly
parallel the extension of other families, noticeably RL and IDL,
from the finite string versions to the infinite ones.

In this paper we follow the above “story” since its beginning
to these days and, for the first time, we join within the study of
one single language family two different application domains,
namely parallel parsing on the one side, and algebraic and logic
characterization finalized to automatic verification on the other
side. To the best of our knowledge, OPL is the largest family
that enjoys all of such properties.

The paper is structured as follows: initially we resume the
two main families of formal languages. Section 2 briefly sum-
marizes the main features of RL and focuses more deeply on
their logic characterization which is probably less known to the
wider computer science audience and is crucial for some fun-
damental results of this paper. Similarly, Section 3 introduces
CFL by putting the accent on the problems of their parsing,
whether deterministic or not, and their logic characterization.
Then, two sections are devoted to different subclasses of CFL
that allowed to obtain important properties otherwise lacking in
the larger original family: precisely, Section 4 deals with struc-
tured CFL, i.e., those languages whose tree-shaped structure is
in some way immediately apparent from their sentences with
no need to parse them; it shows that for such subclasses of CFL
important properties of RL, otherwise lacking in the larger orig-
inal family, still hold. Finally, Section 5 “puts everything to-
gether” by showing that OPL on the one hand are significantly
more expressive than traditional structured languages, but en-
joy the same important properties as regular and structured CFL
and, on the other hand, enable exploiting parallelism in parsing
much more naturally and efficiently than for general determin-

istic CFL.
Since all results presented in this paper have already ap-

peared in the literature, we based our presentation more on in-
tuitive explanation and simple examples than on detailed tech-
nical constructions and proofs, to which appropriate references
are supplied for the interested reader.

We assume some familiarity with the basics of formal lan-
guage theory, i.e., regular and CFL, their generating grammars
and recognizing automata and their main algebraic properties,
which are available in many textbooks such as [17, 19]. How-
ever, since the adopted mathematical notation is not always
standard in the literature, we report in Table 1 the notation
adopted in the paper. An earlier version of this paper, with more
details and introductory material about basic formal language
theory is available in [20].

The following naming conventions are adopted for letters
and strings, unless otherwise specified: lowercase Latin let-
ters at the beginning of the alphabet a, b, . . . denote terminal
characters; uppercase Latin letters A, B, . . . denote nontermi-
nal characters; lowercase Latin letters at the end of the alpha-
bet x, y, z . . . denote terminal strings; lowercase Greek letters
α, . . . , ω denote strings over V .

For convenience we do not add a final ‘s’ to acronyms when
used as plurals so that, e.g., CFL denotes indifferently a single
language, the language family and all languages in the family.

2. Regular Languages

The family of regular languages (RL) is one of the most im-
portant families in computer science. In the traditional Chom-
sky’s hierarchy it is the least powerful language family. Its im-
portance stems from both its simplicity and its rich set of prop-
erties.

RL is a very robust family: it enjoys many closure proper-
ties and practically all interesting decision problems are decid-
able for RL. It is defined through several different devices, both
operational and descriptive. Among them we mention Finite
State Automata (FSA), which are used for various applications,
not only in computer science, Regular Grammars, Regular Ex-
pressions, often used in computing for describing the lexical el-
ements of programming languages and in many programming
environments for managing program sources, and various logic
classifications that support automatic verification of their prop-
erties.

Next, we summarize the main and well-known algebraic
and decidability properties of RL; subsequently, in Subsection
2.1, we introduce the characterization of RL in terms of an
MSO logic, which will be later extended to larger and larger
language families.

• RL are a Boolean algebra with top element Σ∗ and bottom
element the empty language ∅,

• RL are also closed w.r.t. concatenation, Kleene ∗, string
homomorphism, and inverse string homomorphism.

4

Table 1: Adopted notation for typical formal language theory symbols.

Entity Notation
Empty string ε

Access to characters x = x(1)x(2) . . . x(|x|)
Grammar (Vn,Σ, P, S), where VN is the non-

terminal alphabet, Σ the terminal alpha-
bet, P the productions, and S the axiom.
V denotes Vn ∪ Σ

Finite State Automaton
(FSA)

(Q, δ,Σ, I, F), where Q is the set of
states, δ the transition relation (or func-
tion in case of deterministic automata),
I and F the sets of initial and final
states, resp.

Pushdown Automaton
(PDA)

(Q, δ,Σ, I, F, Γ, Z0), where Γ is the stack
alphabet, and Z0 is the initial stack sym-
bol; the other symbols are the same as
for FSA

Stack When writing stack contents, we as-
sume that the stack grows leftwards,
e.g. in Aα, the symbol A is at the top.

Grammar production or
grammar rule

α → β | γ; α is the left hand side (lhs)
of the production, β and γ two alterna-
tive right hand sides (rhs), the ’|’ sym-
bol separates alternative rhs to shorten
the notation. In CFG α is a single non-
terminal character

Grammar derivation
and logic implication

⇒, overloaded symbol

Automaton transi-
tion relation between
configurations c1 and
c2

c1 p−− c2

• Nondeterminism does not affect the recognition power of
FSA, i.e., given a nondeterministic FSA an equivalent de-
terministic one can effectively be built.

• FSA are minimizable, i.e. given a FSA, there is an algo-
rithm to build an equivalent automaton with the minimum
possible number of states.

• Thanks to the Pumping Lemma many properties of RL
are decidable; noticeably, emptiness, infiniteness, and,
thanks to the Boolean closures, containment.

• The same Pumping Lemma can be used to prove the lim-
its of the power of FSA, e.g., that the CFL {anbn} is not
regular.

2.1. Logic characterization

From the very beginning of formal language and automata
theory the investigation of the relations between defining a lan-
guage through some kind of abstract machine and through a
logic formalism has produced challenging theoretical problems
and important applications in system design and verification.
A well-known example of such an application is the classical
Hoare’s method to prove the correctness of a Pascal-like pro-
gram w.r.t. a specification stated as a pair of pre- and post-
conditions expressed through a first-order theory [21].

Such a verification problem is undecidable if the involved
formalisms have the computational power of Turing machines
but may become decidable for less powerful formalisms as in
the important case of RL. Originally, Büchi, Elgot, and Trakht-
enbrot [9, 10, 11] independently developed an MSO logic defin-
ing exactly the RL family, so that the decidability properties of
this class of languages could be exploited to achieve automatic
verification; later on, in fact a major breakthrough in this field
has been obtained thanks to advent of model checking.

Let us define a countable infinite set of first-order variables
x, y, . . . and a countable infinite set of monadic second-order
(set) variables X,Y, In the following we adopt the conven-
tion to denote first and second-order variables in boldface italic
font.

The basic elements of the logic defined by Büchi and the
others are summarized here:

• First-order variables, denoted as lowercase letters at the
end of the alphabet, x, y, . . . are interpreted over the natu-
ral numbers N (these variables are written in boldface to
avoid confusion with strings);

• Second-order variables, denoted as uppercase letters at
the end of the alphabet, written in boldface, X, Y, . . . are
interpreted over sets of natural numbers;

• For a given input alphabet Σ, the monadic predicate a(·)
is defined for each a ∈ Σ: a(x) evaluates to true in a string
iff the character at position x is a;

• The successor predicate is denoted by succ, i.e. succ(x, y)
means that y = x + 1.

5

• Let V1 be a set of first-order variables, and V2 be a set
of second-order (or set) variables. The MSO (monadic
second-order logic) is defined by the following syntax:

φ := a(x) | x ∈ X | succ(x, y) | ¬φ | φ∨φ | ∃x(φ) | ∃X(φ).

where a ∈ Σ, x, y ∈ V1, and X ∈ V2.

• The usual predefined abbreviations are introduced to de-
note the remaining propositional connectives, universal
quantifiers, arithmetic relations (=,,, <, >), sums and sub-
tractions between first order variables and numeric con-
stants. E.g. x = y and x < y are abbreviations for
∀X(x ∈ X ⇐⇒ y ∈ X) and

∀X
(

∃w(succ(x,w) ∧ w ∈ X)∧
∀z(z ∈ X ⇒ ∃v(succ(z, v) ∧ v ∈ X)) ⇒ y ∈ X

)
, re-

spectively;
x = z − 2 stands for ∃y(succ(z, y) ∧ succ(y, x));
the symbol ∄ abbreviates ¬∃.

• An MSO formula is interpreted over a string w ∈ Σ+,1

with respect to assignments ν1 : V1 → {1, . . . |w|} and
ν2 : V2 → P({1, . . . |w|}), in the following way.

– w, ν1, ν2 |= c(x) iff w = w1cw2 and |w1| + 1 = ν1(x).
– w, ν1, ν2 |= x ∈ X iff ν1(x) ∈ ν2(X).
– w, ν1, ν2 |= x ≤ y iff ν1(x) ≤ ν1(y).
– w, ν1, ν2 |= ¬φ iff w, ν1, ν2 ̸|= φ.
– w, ν1, ν2 |= φ1 ∨ φ2 iff w, ν1, ν2 |= φ1 or w, ν1, ν2 |=
φ2.

– w, ν1, ν2 |= ∃x.φ iff w, ν′1, ν2 |= φ, for some ν′1 with
ν′1(y) = ν1(y) for all y ∈ V1 \ {x}.

– w, ν1, ν2 |= ∃X.φ iff w, ν1, ν
′
2 |= φ, for some ν′2 with

ν′2(Y) = ν2(Y) for all Y ∈ V2 \ {X}.

To improve readability, we will drop ν1, ν2 from the no-
tation whenever there is no risk of ambiguity.

• A sentence is a closed formula of the MSO logic. For a
given sentence φ, the language L(φ) is defined as

L(φ) = {w ∈ Σ+ | w |= φ}.

For instance formula ∀x, y(a(x)∧succ(x, y)⇒ b(y)) defines
the language of strings where every occurrence of character a
is immediately followed by an occurrence of b.

The original seminal result by Büchi and the others is syn-
thesized by the following theorem.

Theorem 2.1. A language L is regular iff there exists a sen-
tence φ in the above MSO logic such that L = L(φ).

The proof of the theorem is constructive, i.e., it provides an
algorithmic procedure that, for a given FSA builds an equiva-
lent sentence in the logic, and conversely; next we offer an in-
tuitive explanation of the construction, referring the reader to,
e.g., [22] for a complete and detailed proof.

1When specifying languages by means of logic formulas, the empty string
must be excluded because formulas refer to string positions.

From FSA to MSO logic
The key idea of the construction consists in representing

each state q of the automaton as a second order variable Xq,
which is the set of all string’s positions where the machine is in
state q. Without loss of generality we assume the automaton to
be deterministic, and that Q = {0, 1, . . . ,m}, with 0 initial, for
some m. Then we encode the definition of the FSA recognizing
L as the conjunction of several clauses each one representing a
part of the FSA definition:

• The transition δ(qi, a) = q j is formalized by ∀x, y(x ∈
Xi ∧ a(x) ∧ succ(x, y)⇒ y ∈ X j).

• The fact that the machine starts in state 0 is represented
as ∃z(∄x(succ(x, z)) ∧ z ∈ X0).

• Since the automaton is deterministic, for each pair of dis-
tinct second order variables Xi and X j we need the sub-
formula ∄y(y ∈ Xi ∧ y ∈ X j).

• Acceptance by the automanton, i.e. δ(qi, a) ∈ F, is for-
malized by: ∃y(∄x(succ(y, x)) ∧ y ∈ Xi ∧ a(y)).

• Finally the whole language L is the set of strings that sat-
isfy the global sentence ∃X0, X1, . . . Xm(φ), where φ is
the conjunction of all the above clauses.

At this point it is not difficult to show that the set of strings
satisfying the above global formula is exactly L.

From MSO logic to FSA
The construction in the opposite sense has been proposed in

various versions in the literature. Here we summarize its main
steps along the lines of [22]. First, the MSO sentence is trans-
lated into a standard form using only second-order variables,
the ⊆ predicate, and variables Wa, for each a ∈ Σ, denoting the
set of all the positions of the word containing the character a.
Moreover, we use Succ, which has the same meaning of succ,
but, syntactically, has second order variable arguments that are
singletons. This simpler, equivalent logic, is defined by the fol-
lowing syntax:

φ := X ⊆Wa | X ⊆ Y | Succ(X,Y) | ¬φ | φ ∨ φ | ∃X(φ).

As before, we also use the standard abbreviations for, e.g. ∧, ∀,
=. To translate first order variables to second order variables we
need to state that a (second order) variable is a singleton. Hence
we introduce the abbreviation: Sing(X) for ∃Y(Y ⊆ X ∧ Y ,
X ∧ ∄Z(Z ⊆ X ∧ Z , Y ∧ Z , X)). Then, Succ(X,Y) is
implicitly conjuncted with Sing(X) ∧ Sing(Y) and is therefore
false whenever X or Y are not singletons.

The following step entails the inductive construction of the
equivalent automaton. This is built by associating a single au-
tomaton to each elementary subformula and by composing them
according to the structure of the global formula. This inductive
approach requires to use open formulas. Hence, we are going
to consider words on the alphabet Σ × {0, 1}k, so that X1, X2,
. . . Xk are the free variables used in the formula; 1 in the, say,
j-th component means that the considered position belongs to
X j, 0 vice versa. For instance, if w = (a, 0, 1)(a, 0, 0)(b, 1, 0),
then w |= X2 ⊆Wa, w |= X1 ⊆Wb, with X1 and X2 singletons.

6

Formula transformation
1. First order variables are translated in the following way:
∃x(φ(x)) becomes ∃X(Sing(X) ∧ φ′(X)), where φ′ is the
translation of φ, and X is a fresh variable.

2. Subformulas having the form a(x), succ(x, y) are trans-
lated into X ⊆Wa, Succ(X,Y), respectively.

3. The other parts remain the same.

Inductive construction of the automaton
We assume for simplicity that Σ = {a, b}, and that k = 2,

i.e. two variables are used in the formula. Moreover we use the
shortcut symbol ◦ to mean all possible values.

• The formula X1 ⊆ X2 is translated into an automaton that
checks that there are 1’s for the X1 component only in
positions where there are also 1’s for the X2 component
(Figure 1 (a)).

• The formula X1 ⊆Wa is analogous: the automaton checks
that positions marked by 1 in the X1 component must
have symbol a (Figure 1 (b)).

• The formula Succ(X1, X2) considers two singletons, and
checks that the 1 for component X1 is immediately fol-
lowed by a 1 for component X2 (Figure 1 (c)).

• Formulas inductively built with ¬ and ∨ are covered by
the closure of regular languages w.r.t. complement and
union, respectively.

• For ∃, we use the closure under alphabet projection: we
start with an automaton with input alphabet, say, Σ ×
{0, 1}2, for the formula φ(X1, X2); we need to define an
automaton for the formula ∃X1(φ(X1, X2)). But in this
case the alphabet is Σ × {0, 1}, where the last component
represents the only free remaining variable, i.e. X2.
The automaton A∃ is built by starting from the one for
φ(X1, X2), and changing the transition labels from (a, 0, 0)
and (a, 1, 0) to (a, 0); (a, 0, 1) and (a, 1, 1) to (a, 1), and
those with b analogously. The main idea is that this last
automaton nondeterministically “guesses” the quantified
component (i.e. X1) when reading its input, and the re-
sulting word w ∈ (Σ×{0, 1}2)∗ is such that w |= φ(X1, X2).
Thus,A∃ recognizes ∃X1(φ(X1, X2)).

We refer the reader to the available literature for a full proof
of equivalence between the logic formula and the constructed
automaton. Here we illustrate the rationale of the above con-
struction through the following example.

Example 2.2. Consider the language L = {a, b}∗aa{a, b}∗: it
consists of the strings satisfying the formula:
φL = ∃x∃y(succ(x, y) ∧ a(x) ∧ a(y)).

As seen before, first we translate this formula into a ver-
sion using only second order variables: φ′L = ∃X,Y(Sing(X) ∧
Sing(Y) ∧ Succ(X,Y) ∧ X ⊆Wa ∧ Y ⊆Wa).

The automata for Sing(X) and Sing(Y) are depicted in Fig-
ure 2; they could also be obtained by expanding the definition
of Sing and then projecting the quantified variables.

By intersecting the automata for Sing(X), Sing(Y), Succ(X,Y)
we obtain an automaton which is identical to the one we defined
for translating formula Succ(X1, X2), where here X takes the
role of X1 and Y of X2. Combining it with those for X ⊆ Wa

and Y ⊆ Wa produces the automaton of Figure 3.
Finally, by projecting on the quantified variables X and Y

we obtain the automaton for L, given in Figure 4.

The logical characterization of a class of languages, together
with the decidability of the containment problem, is the main
door towards automatic verification techniques. Suppose that
a logic formalism L is recursively equivalent to an automaton
family A; then, one can use a formula φL of L to specify the
requirements of a given system and an abstract machineA in A
to implement the desired system: the correctness of the design
defined byA w.r.t. to the requirements stated by φL is therefore
formalized as L(A) ⊆ L(φL), i.e., all behaviors realized by the
machine are also satisfying the requirements. This is just the
case with FSA and MSO logic for RL.

Unfortunately, known theoretical lower-bounds state that
the decision of the above containment problem is PSPACE com-
plete and therefore intractable in general. The recent striking
success of model-checking [2], however, has produced many
refined results that explain how and when practical tools can
produce results of ”acceptable complexity” (the term ”accept-
able” is context-dependent since in some cases even running
times of the order of hours or weeks can be accepted). In a
nutshell, normally –and roughly– it is accepted a lower expres-
sive power of the adopted logic, typically linear temporal logic,
to achieve a complexity that is ”only exponential” in the size of
the logic formulas, whereas the worst case complexity for MSO
logic can be even a non-elementary function [23] 2. In any case,
our interest in this paper is not on the complexity issues but is
focused on the equivalence between automata recognizers and
MSO logics that leads to the decidability of the above funda-
mental containment problem.

3. Context-free Languages

Context-free languages (CFL), with their generating context-
free grammars (CFG) and recognizing pushdown automata (PD-
A), are, together with RL, the most important chapter in the
literature of formal languages. CFG have been introduced by
Noam Chomsky in the 1950s as a formalism to capture the syn-
tax of natural languages. Independently, essentially the same
formalism has been developed to formalize the syntax of the
first high level programming language, FORTRAN; in fact it is
also referred to as Backus-Naur form (BNF) honoring the chief
scientists of the team that developed FORTRAN and its first
compiler. It is certainly no surprise that the same formalism has

2There are, however, a few noticeable cases of tools that run satisfactorily
at least in some particular cases of properties expressed in MSO logic [24]

7

q0

(◦, 0, 0)

(◦, 0, 1)

(◦, 1, 1) q0

(a, 0, ◦)

(◦, 0, ◦)

(a, 1, ◦) q0 q1 q2

(◦, 0, 0)

(◦, 1, 0) (◦, 0, 1)

(◦, 0, 0)

(a) (b) (c)

Figure 1: Automata for the construction from MSO logic to FSA.

q0 q1

(◦, 0, ◦)

(◦, 1, ◦)

(◦, 0, ◦)

q′0 q′1

(◦, ◦, 0)

(◦, ◦, 1)

(◦, ◦, 0)

Figure 2: Automata for Sing(X) and Sing(Y).

q′′0 q′′1 q′′2

(a, 0, 0)

(b, 0, 0)

(a, 1, 0) (a, 0, 1)

(a, 0, 0)

(b, 0, 0)

Figure 3: Automaton for the conjunction of Sing(X), Sing(Y), Succ(X,Y), X ⊆
Wa, Y ⊆ Wa .

q′′0 q′′1 q′′2

a, b

a a

a, b

Figure 4: Automaton for L = {a, b}∗aa{a, b}∗.

Add

Add

2 + T

3 ∗ 2

+ Mult

1 ∗ 4

Figure 5: A tree structure that shows the precedence of multiplication over
addition in arithmetic expressions.

been exploited to describe the syntactic aspects of both natu-
ral and high level programming languages, since the latter ones
have exactly the purpose to make algorithm specification not
only machine executable but also similar to human description.

The distinguishing feature of both natural and programming
languages is that complex sentences can be built by combining
simpler ones in an a priori unlimited hierarchy: for instance a
conditional sentence is the composition of a clause specifying
a condition with one or two sub-sentences specifying what to
do if the condition holds, and possibly what else to do if it does
not hold. Such a typical nesting of sentences suggests a natural
representation of their structure in the form of a tree shape. The
possibility of giving a sentence a tree structure which hints at its
semantics is a sharp departure from the rigid linear structure of
regular languages. As an example, consider a simple arithmetic
expression consisting of a sequence of operands with either a +
or a ∗within any pair of them, as in 2+3∗2+1∗4. Sentences of
this type can be easily generated by, e.g., the following regular
grammar:

S → 1 | 2 | . . . 0 | 1A | 2A | . . . 0A
A→ +S | ∗S

However, if we compute the value of the above expression by
following the linear structure given to it by the grammar either
by associating the sum and the multiply operations to the left
or to the right we would obtain, respectively, 44 or 20 which
is not the way we learned to compute the value of the expres-
sion at school. On the contrary, we first compute the multiply
operations and then the sum of the three partial results, thus ob-
taining 12; this, again, suggests to associate the semantics of the
sentence –in this case the value of the expression– with a syn-
tactic structure that is more appropriately represented by a tree,
as suggested in Figure 5, than by a flat sequence of symbols.

The following example illustrates how CFG associate to the

8

S

E

E

E

2

+ T

T

3

∗ F

2

+ T

T

1

∗ F

4

Figure 6: A syntax-tree produced by grammar GAE1.

strings they generate a tree-like structure, which, for this reason,
is named syntax-tree of the sentence.

Example 3.1. The following CF grammar GAE1 generates the
same numerical arithmetic expressions as those generated by
the above regular grammar but assigns them the appropriate
structure exemplified in Figure 5 3.

Notice that in the following, for the sake of simplicity, in
arithmetic expressions we will make use of a unique terminal
symbol e to denote any numerical value.

GAE1 : S → E | T | F
E → E + T | T ∗ F | e
T → T ∗ F | e
F → e

It is an easy exercise augmenting the above grammar to let
it generate more general arithmetic expressions including more
arithmetic operators, parenthesized sub-expressions, symbolic
operands besides numerical ones, etc.

Consider now the following slight modification GAE2 of
GAE1:

GAE2 : S → E | T | F
E → E ∗ T | T + F | e
T → T + F | e
F → e

GAE1 and GAE2 are equivalent in that they generate the
same language; however, GAE2 assigns to the string 2 + 3 ∗
2 + 1 ∗ 4 the tree represented in Figure 7: if we executed the
operations of the string in the order suggested by the tree –first
the lower ones so that their result is used as an operand for the
higher ones– then we would obtain the value 60 which is not
the “right one” 12.

Last, the grammar:

GAEamb : S → S ∗ S | S + S | e

is equivalent to GAE2 and GAE1 as well, but it can generate the
same string with different syntax-trees including, in the case of

3More precisely, the complete syntax tree associated with the sentence of
Figure 5 is the one depicted in Figure 6.

S

E

E

E

T

2

+ F

3

∗ T

T

2

+ F

1

∗ T

4

Figure 7: A tree that reverts the traditional precedence between arithmetic op-
erators.

string 2+3∗2+1∗4, those of Figures 6 and 7, up to a renaming
of the non-terminals. In such a case we say that the grammar
is ambiguous.

The above examples, inspired by the intuition of arithmetic
expressions, further emphasize the strong connection between
the structure given to a sentence by the syntax-tree and the se-
mantics of the sentence: as it is the case with natural languages
too, an ambiguous sentence may exhibit different meanings.

The examples also show that, whereas a sentence of a reg-
ular language has a fixed –either right or left-linear– structure,
CFL sentences have a tree structure which in general, is not
immediately “visible” by looking at the sentence, which is the
frontier of its associated tree. As a consequence, in the case of
CFL, analyzing a sentence is often not only a matter of decid-
ing whether it belongs to a given language, but in many cases
it is also necessary to build the syntax-tree(s) associated with
it: its structure often drives the evaluation of its semantics as
intuitively shown in the examples of arithmetic expressions and
systematically applied in all major applications of CFL, includ-
ing designing their compilers. The activity of jointly accepting
or rejecting a sentence and, in case of acceptance, building its
associated syntax-tree(s) is usually called parsing.

Next, we summarize the major and well-known properties
of CFL and compare them with the RL ones, when appropriate;
subsequently, in two separate subsections, we face two major
problems for this class of languages, namely, parsing and logic
characterization.

• All major families of formal languages are associated
with corresponding families of generating grammars and
recognizing automata. CFL are generated by CFG and
recognized by pushdown automata (PDA) for which we
adopt the notation given in Table 1. Furthermore the
equivalence between CFG and PDA is recursive.

• CFL strictly include RL and enjoy a pumping lemma which
naturally extends the homonymous lemma for RL.

• Unlike RL, nondeterministic PDA have a greater recogni-
tion power than their deterministic counterpart (DPDA);
thus, since CFL are the class of languages recognized
by general PDA, the class of deterministic CFL (DCFL),
i.e., that recognized by DPDA, is strictly included in CFL
(and strictly includes RL).

9

• CFL are closed under union, concatenation, Kleene*, ho-
momorphism, inverse homomorphism, but not under com-
plement and intersection. DCFL are closed under com-
plement but not under union, intersection, concatenation,
Kleene*, homomorphism, inverse homomorphism.

• Emptiness and infiniteness are decidable for CFL (thanks
to the pumping lemma). Containment is undecidable for
DCFL, but equivalence is decidable for DCFL and unde-
cidable for CFL.

3.1. Parsing context-free languages

PDA are recursively equivalent to CFG; they, however, sim-
ply decide whether or not a string belongs to their language: if
instead we want to build the syntax-tree(s) associated with input
string –if accepted– we need an abstract machine provided with
an output mechanism. The traditional way to obtain this goal is
augmenting the recognizing automata with an output alphabet
and extending the domain of the transition relation accordingly:
formally, whereas δ ⊆F Q × Γ × (Σ ∪ {ε}) × Q × Γ∗ for a PDA,
in a pushdown transducer (PDT): δ ⊆F Q × Γ× (Σ∪ {ε})×Q ×
Γ∗ × O∗ where O is the new output alphabet. Thus, at every
move the PDT outputs a string in O∗ which is concatenated to
the one produced so far. The rest of PDT behavior, including
acceptance, is the same as the underlying PDA.

We illustrate how PDT can produce a (suitable representa-
tion of) CFG syntax-trees through the following example.

Example 3.2. Let’s go back to grammar GAE1 and number its
productions consecutively; e.g.
S → E | T | F are #1, #2, #3,
E → E + T | T ∗ F | e are #4, #5, #6
respectively, etc.

Consider the following PDAA:
Q = {q0, q1, qF}, Γ = {E,T, F,+, ∗, e,Z0},
δ = {(q0,Z0, ε, q1, EZ0), (q0,Z0, ε, q1,TZ0), (q0,Z0, ε, q1, FZ0)}∪
{(q1, E, ε, q1, E + T), (q1, E, ε, q1,T ∗ F), (q1, E, ε, q1, e)}∪
{(q1, T, ε, q1,T ∗ F), (q1,T, ε, q1, e)} ∪ {(q1, F, ε, q1, e)}∪
{(q1,+,+, q1, ε), (q1, ∗, ∗, q1, ε), (q1, e, e, q1, ε)}∪
{(q1,Z0, ε, qF , ε)}.

It is easy to infer how it has been derived from GAE1: at any
step of its behavior, if the top of the stack stores a nonterminal it
is nondeterministically replaced by the corresponding rhs of a
production of which it is the lhs, in such a way that the leftmost
character of the rhs is put on top of the stack; if the top of the
stack stores a terminal it is compared with the current input
symbol and, if they match the stack is popped and the reading
head advances. q0 is used only for the initial move and qF only
for final acceptance.

Consider now the PDT T obtained from A by adding the
output alphabet {1, 2, ..., 9}, i.e., the set of labels of GAE1 pro-
ductions and by enriching each element of δ whose symbol on
top of the stack is a nonterminal with the label of the corre-
sponding GAE1’s production; δ’s elements whose symbol on
top of the stack is a terminal do not output anything: e.g.,
(q1,T, ε, q1,T∗F) becomes (q1,T, ε, q1,T∗F, 7), (q1,T, ε, q1,T∗

F) becomes (q1,T, ε, q1,T ∗ F, 6), (q1, ∗, ∗, q1, ε) becomes
(q1, ∗, ∗, q1, ε, ε), etc.

If T receives the input string e + e ∗ e, it goes through the
following sequence of configuration transitions

(e + e ∗ e, q0,Z0) p−− (e + e ∗ e, q1, EZ0, 1) p−− (e + e ∗
e, q1, E + TZ0, 14) p−− (e + e ∗ e, q1, e + TZ0, 146) p−− (+e ∗
e, q1,+TZ0, 146) p−− (e ∗ e, q1, TZ0, 146) p−− (e ∗ e, q1,T ∗
FZ0, 1467) p−− (e ∗ e, q1, e ∗ FZ0, 14678) p−− (∗e, q1, ∗FZ0) p−−
(e, q1, FZ0, 14678) p−− (e, q1, eZ0, 146789) p−− (ε, q1,Z0) p−−
(ε, qF , ε, 146789). Therefore it accepts the string and produces
the corresponding output 146789. Notice however, that T –
and the underlying A– are nondeterministic; thus, there are
also several sequences of transitions beginning with the same
c0 that do not accept the input.

It is immediate to conclude, from the above example, that
the language accepted by T is exactly L(GAE1). Notice also
that, if we modify the syntax-tree of GAE1 corresponding to the
derivation of the string e+ e∗ e by replacing each internal node
with the label of the production that rewrites it, the output pro-
duced by T is exactly the result of a post-order, leftmost visit of
the tree (where the leaves have been erased.) Such a classic lin-
earization of the tree is in natural one-to-one correspondence
with the grammar’s leftmost derivation of the frontier of the
tree; a leftmost (resp. rightmost) derivation of a CFG grammar
is such that, at every step the leftmost (resp. rightmost) nonter-
minal character is the lhs of the applied rule. It is immediate to
verify that for every derivation of a CFG there are an equiva-
lent leftmost and an equivalent rightmost one, i.e., derivations
that produce the same terminal string.4

We can therefore conclude that our PDA A and PDT T ,
which have been algorithmically derived from GAE1, are, re-
spectively, a –nondeterministic– recognizer and a –nondeter-
ministic– parser for L(GAE1).

The fact that the obtained recognizer/parser is nondetermin-
istic deserves special attention. It is well-known that L(GAE1)
is deterministic, despite the fact theA is not; on the other hand,
unlike RL, DCFL are a strict subset of CFL. Thus, if we want
to recognize or parse a generic CFL, in principle we must sim-
ulate all possible computations of a nondeterministic PDA (or
PDT); this approach clearly raises a critical complexity issue.

For instance, consider the analysis of any string in Σ∗ by the
–necessarily nondeterministic– PDA accepting L = {wwR | w ∈
{a, b}∗}: in the worst case at each move the automaton “splits”
its computation in two branches by guessing whether it reached
the middle of the input sentence or not; in the first case the
computation proceeds deterministically to verify that from that
point on the input is the mirror image of what has been read so
far, whereas the other branch of the computation proceeds still
waiting for the middle of the string and splitting again and again
at each step. Thus, the total number of different computations
equals the length of the input string, say n, and each of them
has in turn an O(n) length; therefore, simulating the behavior of
such a nondeterministic machine by means of a deterministic

4This property does not hold for more general classes of grammars.

10

algorithm to check whether at least one of its possible compu-
tations accepts the input has an O(n2) total complexity.

The above example can be generalized 5 in the following
way: on the one hand we have

Statement 1. Every CFL can be recognized in real-time, i.e. in
a number of moves equal to the length of the input sentence, by
a, possibly nondeterministic, PDA.

One way to prove the statement is articulated in two steps:
1) First, an original CFG generating L is transformed into the
Greibach normal form (GNF):

Definition 3.3. A CFG is in Greibach normal form [17] iff the
rhs of all its productions belongs to ΣV∗N .

The procedure given in [25] to transform any CF grammar into
the normal form essentially is based on transforming any left
recursion, i.e. a derivation such as A

∗⇒ Aα into an equivalent
right one B

∗⇒ αB.
2) Starting from a grammar in GNF the procedure to build an
equivalent PDA therefrom can be “optimized” by:

• restricting Γ to VN only;

• when a symbol A is on top of the stack, a single move
reads the next input symbol, say a, and –nondeterminis-
tically– replaces A in the stack with the suffix α of the rhs
of a production A → aα, if any (otherwise the string is
rejected).

Notice that such an automaton is real-time since there are no
more ε-moves but, of course, it may still be nondeterministic.
If the grammar in GNF is such that there are no two distinct
productions of the type A → aα, A → aβ, then the automaton
built in this way is a real-time DPDA that –enriched as a DPDT–
is able to build leftmost derivations of the grammar.

On the other hand, Statement 1 leaves us with the natural
question: “provided that purely nondeterministic machines are
not physically available and at most can be approximated by
parallel machines which however cannot exhibit an unbounded
parallelism, how can we come up with some deterministic pars-
ing algorithm for general CFL and which complexity can ex-
hibit such an algorithm?”. In general it is well-known that
simulating a nondetermistic device with complexity6 f (n) by
means of a deterministic algorithm may expose to the risk of
even an exponential complexity O(2 f (n)). For this reason on the
one hand many applications, e.g., compiler construction, have
restricted their interest to the subfamily of DCFL; on the other
hand intense research has been devoted to design efficient deter-
ministic parsing algorithms for general CFL by departing from
the approach of simulating PDA. The case of parsing DCFL

5We warn the reader that this generalization does not include the complexity
bound O(n2) which refers only to the specific example, as it will be shown next.

6As usual we assume as the complexity of a nondeterministic machine the
length of the shortest computation that accepts the input or of the longest one if
the string is rejected.

will be examined in Section 3.1.1; parsing general CFL, in-
stead, is of minor interest in this paper, thus we simply mention
the two most famous and efficient of such algorithms, namely
the one due to Cocke, Kasami, and Younger, usually referred
to as CKY and described, e.g., in [17], and the one by Earley
reported in [19]; they both have an O(n3) time complexity.7

To summarize, CFL are considerably more general than RL
but they require parsing algorithms to assign a given sentence
an appropriate (tree-shaped and usually not immediately vis-
ible) structure, and they lose several closure and decidability
properties typical of the simpler RL. Not surprisingly, there-
fore, much, largely unrelated, research has been devoted to face
both such challenges; in both cases major successes have been
obtained by introducing suitable subclasses of the general lan-
guage family: on the one hand parsing can be accomplished
for DCFL much more efficiently than for nondeterministic ones
(furthermore in many cases, such as e.g, for programming lan-
guages, nondeterminism and even ambiguity are features that
are better to avoid than to pursue); on the other hand various
subclasses of CFL have been defined that retain some or most
of the properties of RL yet increasing their generative power. In
the next subsection we summarize the major results obtained for
parsing DCFL; in Section 4 instead we will introduce several
different subclasses of CFL –typically structured ones– aimed
at preserving important closure and decidability properties. So
far the two goals have been pursued within different research
areas and by means of different subfamilies of CFL. As antici-
pated in the introduction, however, we will see in Section 5 that
one of such families allows for major improvements on both
sides.

3.1.1. Parsing context-free languages deterministically
We have seen that, whereas any CFL can be recognized by a

nondeterministic PDA –and parsed by a nondeterministic PDT–
that operates in real-time, the best deterministic algorithms to
parse general CFL, such as CKY and Early’s ones have a O(n3)
complexity, which is considered not acceptable in many fields
such as programming language compilation.

For this and other reasons many application fields restrict
their attention to DCFL; DPDA can be easily built, with no loss
of generality, in such a way that they can operate in linear time,
whether as pure recognizers or as parsers and language trans-
lators: it is sufficient, for any DPDA, to effectively transform
it into an equivalent loop-free one, i.e. an automaton that does
not perform more than a constant number, say k, of ε-moves
before reading a character from the input or popping some ele-
ment from the stack (see, e.g., [17]). In such a way the whole
input x is analyzed in at most h · |x| moves, where h is a con-
stant depending on k and the maximum length of the string that
the automaton can push on the stack in a single move (both k
and h can be effectively computed by the transformation into
the loop-free form).

7We also mention (from [17]) that in the literature there exists a variation of
the CKY algorithm due to Valiant that is completely based on matrix multipli-
cation and therefore has the same asymptotic complexity of this basic problem,
at the present state of the art O(n2.37).

11

In general, however, it is not possible to obtain a DPDA that
recognizes its language in real-time. Consider, for instance, the
language L = {ambncndm | m, n ≥ 1} ∪ {amb+edm | m ≥ 1}:
intuitively, a DPDA recognizing L must first push the as onto
the stack; then, it must also store on the stack the subsequent
bs since it must be ready to compare their number with the fol-
lowing cs, if any; after reading the bs, however, if it reads the
e it must necessarily pop all bs by means of n ε-moves before
starting the comparison between the as and the ds.

Given that, in general, it is undecidable to state whether a
CFL is deterministic or not [26], the problem of automatically
building a deterministic automaton, if any, from a given CFG is
not trivial and deserved much research. In this section we will
briefly recall two major approaches to the problem of determin-
istic parsing. We do not go deep into their technicalities, how-
ever, because the families of languages they can analyze are not
of much interest from the point of view of algebraic and logical
characterizations. It is Section 5, instead, where we introduce a
class of languages that allows for highly efficient deterministic
parsing and exhibits practically all desirable algebraic and logic
properties.

Top-down deterministic parsing
We have seen that any the CFG can be effectively trans-

formed in GNF and observed that, if in such grammars there are
no two distinct productions of the type A → aα, A → aβ, then
the automaton built therefrom is deterministic. The above par-
ticular case has been generalized leading to the definition of LL
grammars, so called because they allow to build deterministic
parsers that scan the input left-to-right and produce the leftmost
derivation thereof. Intuitively, an LL(k) grammar is such that,
for any leftmost derivation

S #k ∗⇒ xAα#k

it is possible to decide deterministically which production to
apply to rewrite nonterminal A by “looking ahead” at most k
terminal characters of the input string that follows x.8 Nor-
mally, the practical application of LL parsing is restricted to the
case k = 1 to avoid memorizing and searching too large tables.
In general this choice allows to cover a large portion of pro-
gramming language syntax even if it is well-known that not all
DCFL can be generated by LL grammars. For instance no LL
grammar can generate the deterministic language {anbn | n ≥
1} ∪ {ancn | n ≥ 1} since the decision on whether to join the
a’s with the b’s or with the c’s clearly requires an unbounded
look-ahead.

Example 3.4. The following grammar is a simple transforma-
tion of GAE1 in LL form; notice that the original left recursion
E ⇒ E + T has been replaced by a right one E

∗⇒ T + E and

8 The “tail” of k # characters is a simple trick to allow for the look ahead
when the reading head of the automaton is close to the end of the input.

similarly for nonterminal T .

GAELL : S → E#
E → T E′

E′ → +E | ε
T → FT ′

T ′ → ∗T | ε
F → e.

For instance, consider a PDA AL derived form GAELL in
the same way as the automaton A was derived from GAE1 in
Example 3.2, and examine how it analyzes the string e ∗ e + e:
after pushing deterministically onto the stack the nonterminal
string FT ′E′, with F on the top, AL deterministically reads e
and pops F since there is only one production in GAELL rewrit-
ing F. At this point it must choose whether to replace T ′ with
∗T or simply erase it: by looking-ahead one more character,
it finds a ∗ and therefore chooses the first option (otherwise it
would have found either a + or the #). Then, the analysis pro-
ceeds similarly.

Bottom-up deterministic parsing
So far the PDA that we used to recognize or parse CFL op-

erate in a top-down manner by trying to build leftmost deriva-
tion(s) that produce the input string starting from grammar’s ax-
iom. Trees can be traversed also in a bottom-up way, however;
a typical way of doing so is visiting them in leftmost post-order,
i.e. scanning their frontier left-to right and, as soon as a string
of children is identified, writing them followed by their father,
then proceeding recursively until the root is reached. For in-
stance such a visit of the syntax-tree by which GAE1 generates
the string e + e ∗ e is eE + eT ∗ eFT ES which is the reverse
of the rightmost derivation S ⇒ E ⇒ E + T ⇒ E + T ∗ F ⇒
E + T ∗ e⇒ E + e ∗ e⇒ e + e ∗ e.

Although PDA are normally introduced in the literature in
such a way that they are naturally oriented towards building
leftmost derivations, it is not difficult to adapt their formaliza-
tion in such a way that they model a bottom-up string analysis:
the automaton starts reading the input left-to-right and pushes
the read character on top of the stack; as soon as –by means of
its finite memory control device– it realizes that a whole rhs is
on top of the stack it replaces it by the corresponding lhs. If
the automaton must also produce a parse of the input, it is suffi-
cient to let it output, e.g., the label of the used production at the
moment when the rhs is replaced by the corresponding lhs. For
instance, in the case of the above string e+e∗e its output would
be 689741. A formal definition of PDA operating in the above
way is given, e.g., in [27] and reported in Section 4.3.2. This
type of operating by a PDA is called shift-reduce parsing since
it consists in shifting characters from the input to the stack and
reducing them from a rhs to the corresponding lhs.

Not surprisingly, the “normal” behavior of such a bottom-
up parser is, once again, nondeterministic: in our example once
the rhs e is identified, the automaton must apply a reduction
either to F or to T or to E. Even more critical is the choice
that the automaton must take after having read the substring
e + e and having (if it did the correct reductions) E + T on top

12

of the stack: in this case the string could be the rhs of the rule
E → E+T , and in that case the automaton should reduce it to E
but the T on the top could also be the beginning of another rhs,
i.e., T ∗ F, and in such a case the automaton should go further
by shifting more characters before doing any reduction; this is
just the opposite situation of what happens with IDL (discussed
in Subsection 4.2), where the current input symbol allows the
machine to decide whether to apply a reduction or to further
shift characters from the input.

“Determinizing” bottom-up parsers has been an intense re-
search activity during the 1960’s, as well as for their top-down
counterpart: in most cases the main approach to solve the prob-
lem is the same as in the case of top-down parsing, namely
”looking ahead” to some more characters –usually one–. In
Section 5 we thoroughly examine one of the earliest practical
deterministic bottom-up parsers and the class of languages they
can recognize, namely Floyd’s operator precedence languages.
The study of these languages, however, has been abandoned
after a while due to advent of a more powerful class of gram-
mars –the LR ones, defined and investigated by Knuth [16],
whose parsers proceed Left-to-right as well as the LL ones but
produce (the reverse of) Rightmost derivations. LR grammars
in fact, unlike LL and operator precedence ones, generate all
DCFL.

3.2. Logic characterization of context-free languages

The lack of the basic closure properties also hampers a natu-
ral extension of the logic characterization of RL to CFL: in par-
ticular the classic inductive construction outlined in Section 2.1
strongly hinges on the correspondence between logical connec-
tives and Boolean operations on sub-languages. Furthermore,
the linear structure of RL allows any move of a FSA to depend
only on the current state which is associated with a position x
of the input string and on the input symbol located at position
x + 1; the typical nested structure of CFL sentences, instead,
imposes that the move of the PDA may depend on information
stored in the stack, which in turn may depend on information
read from the input much earlier than the current move.

Despite these difficulties some interesting results concern-
ing a logic characterization of CFL have been obtained. In par-
ticular it is worth mentioning the characterization proposed in
[28]. The key idea is to enrich the syntax of the second order
logic with a matching relation symbol M which takes as argu-
ments two string position symbols x and y: a matching relation
interpreting M must satisfy the following axioms:

• M(x, y)⇒ x < y: y always follows x;

• M(x, y) ⇒ ∄z(z , x ∧ z , y ∧ (M(x, z) ∨ M(z, y) ∨
M(z, x) ∨ M(y, z))): M is one-to-one;

• ∀x, y, z,w((M(x, y)∧M(z,w)∧x < z < y)⇒ x < w < y):
M is nested, i.e., if we represent graphically M(x, y) as an
edge from x to y such edges cannot cross.

The matching relation is then used to represent the tree struc-
ture(s) associated with a CFL sentence: for instance consider

a a a a b b b b

Figure 8: Two matching relations for aaaabbbb, one is depicted above and the
other below the string.

the (ambiguous) grammar Gamb

Gamb : S → A1 | A2
A1 → aaA1bb | aabb
A2 → aA3b
A3 → aA2b | ab

Gamb induces a natural matching relation between the posi-
tions of characters in its strings. For instance Figure 8 shows
the two relations associated with the string aaaabbbb.

More generally we could state that for a grammar G and
a sentence x = a1a2...an ∈ L(G) with ∀k, ak ∈ Σ, (i, j) ∈ M,
when M is interpreted on x, iff S

∗⇒G a1a2...ai−1Aa j+1...an
∗⇒G

a1a2...an. It is immediate to verify, however, that such a defi-
nition in general does not guarantee the above axioms for the
matching relation: think e.g., to the previous grammar GAE1
which generates arithmetic expressions. For this reason [28]
adopts the double Greibach normal form (DGNF) which is an
effective but non-trivial transformation of a generic CFG into an
equivalent one where the first and last characters of any produc-
tion are terminal.9 It is now immediate to verify that a grammar
in DGNF does produce a matching relation on its strings that
satisfies all of its axioms.

Thanks to the new relation and the corresponding symbol
[28] defines a second order logic CFL that characterizes CFL:
the sentences of CFL are first-order formulas prefixed by a sin-
gle existential quantifier applied to the second order variable
M representing the matching relation. Thus, intuitively, a CFL
sentence such as ∃M(ϕ) where M occurs free in ϕ and ϕ has no
free occurrences of first-order variables is satisfied iff there is a
structure defined by a suitable matching relation such that the
positions that satisfy the occurrences of M in ϕ also satisfy the
whole ϕ. For instance the sentence

∃M, z

∄x(succ(z, x)) ∧ M(0, z)∧
∀x, y(M(x, y)⇒ a(x) ∧ b(y))∧

∃y∀x
(

(0 ≤ x < y⇒ a(x))∧
(x ≥ y ≥ z⇒ b(x))

)
∧

∀x, y
(
M(x, y)⇒ (x > 0⇒ M(x − 1, y + 1))∧

(x < y − 2⇒ M(x + 1, y − 1)))

)
∨

∀x, y

M(x, y)⇒

(x > 1⇒ M(x − 2, y + 2)∧
¬M(x − 1, y + 1))∧

(x < y − 4⇒ M(x + 2, y − 2)∧
¬M(x + 1, y − 1))

9To be more precise, the normal form introduced in [28] is further special-

ized, but for our introductory purposes it is sufficient to consider any DGNF.
Notice also that the term DGNF is clearly a “symmetric variant” of the original
GNF (see Subsection 3.1) but is not due to the same author and serves different
purposes.

13

is satisfied by all and only the strings of L(Gamb) with both the
M relations depicted in Figure 8.

After having defined the above logic, [28] proved its equiva-
lence with CFL in a fairly natural way but with a few non-trivial
technicalities: with an oversimplification, from a given CFG
in DGNF a corresponding logic formula is built inductively in
such a way that M(x, y) holds between the positions of leftmost
and rightmost leaves of any subtree of a grammar’s syntax-tree;
conversely, from a given logic formula a tree-language, i.e., a
set of trees, is built such that the frontiers of its trees are the
sentences of a CFL. However, as the authors themselves admit,
this result has a minor potential for practical applications due to
the lack of closure under complementation. The need to resort
to the DGNF puts severe constraints on the structures that can
be associated with the strings, a priori excluding, e.g., linear
structures typical of RL; nonetheless the introduction of the M
relation opened the way for further important developments as
we will show in the next sections.

4. Structured context-free languages

RL sentences have a fixed, right or left, linear structure;
CFL sentences have a more general tree-structure, of which the
linear one is a particular case, which normally is not immedi-
ately visible in the sentence and, in case of ambiguity, it may
even happen that the same sentence has several structures. R.
McNaughton, in his seminal paper [3], was probably the first
one to have the intuition that, if we “embed the sentence struc-
ture in the sentence itself” in some sense making it visible from
the frontier of the syntax-tree (as it happens implicitly with RL
since their structure is fixed a priori), then many important prop-
erties of RL still hold for such special class of CFL.

Informally, we name such CFL structured or visible struc-
ture CFL. The first formal definition of this class given by Mc-
Naughton is that of parenthesis languages, where each subtree
of the syntax-tree has a frontier embraced by a pair of parenthe-
ses; perhaps the most widely known case of such a language,
at least in the field of programming languages is the case of
LISP. Subsequently several other equivalent or similar defini-
tions of structured languages, have been proposed in the liter-
ature; not surprisingly, an important role in this field is played
by tree-languages and their related recognizing machines, tree-
automata. Next we browse through a selection of such language
families and their properties, starting from the seminal one by
McNaughton.

4.1. Parenthesis grammars and languages

Definition 4.1. For a given terminal alphabet Σ let [,] be two
symbols < Σ. A parenthesis grammar (PG) with alphabet Σ ∪
{[,]} is a CFG whose productions are of the type A→ [α], with
α ∈ V∗.

It is immediate to build a parenthesis grammar naturally asso-
ciated with any CFG: for instance the following PG is derived

from the GAE1 of Example 3.1:

GAE[] : S → [E] | [T] | [F]
E → [E + T] | [T ∗ F] | [e]
T → [T ∗ F] | [e]
F → [e]

It is also immediate to realize that, whereas GAE1 does not
make immediately visible in the sentence e + e ∗ e that e ∗ e
is the frontier of a subtree of the whole syntax-tree, GAE[] gen-
erates [[[e]+[[e]∗[e]]]] (but not [[[[e]+[e]]∗[e]]]), thus making
the structure of the syntax-tree immediately visible in its paren-
thesized frontier.

Sometimes it is convenient, when building a PG from a
normal one, to omit parentheses in the rhs of renaming rules,
i.e., rules whose rhs reduces to a single nonterminal, since such
rules clearly do not significantly affect the shape of the syntax-
tree. In the above example such a convention would avoid the
useless outermost pair of parentheses.

Historically, PL are the first subfamily of CFL that enjoys
major properties typical of RL. In particular, in this paper we
are interested in their closure under Boolean operations, which
has several major benefits, including the decidability of the con-
tainment problem. The key milestones that allowed McNaugh-
ton to prove this closure are:

• The possibility to apply all operations within a structure
universe, i.e., to a universe of syntax-trees rather than to
the “flat” Σ∗; a natural way to define such a universe is
based on the notion of stencil defined as follows.

Definition 4.2. A stencil of a terminal alphabet Σ is a
string in (Σ ∪ {N})∗. For any given CFG G –not nec-
essarily PG 10 – a stencil grammar GS is naturally de-
rived therefrom by projecting any nonterminal of G into
the unique nonterminal N, possibly erasing duplicated
productions.

Let us now consider the stencils of PG.

Definition 4.3. For any PG G the structure universe of G
is the –parenthesis– language L(GS). For any set of PG,
PG, its structure universe is the union of the structure
universes of its members.

Clearly L(G′) ⊆ L(GS) for any G′ such that G′S = GS .
For instance the structure universe of the parenthesized
versions of the above grammars GAE1 and GAE2 is the
language of the parenthesized version of GAEamb which
is also the stencil grammar of both of them, up to a re-
naming of nonterminal S to N.

• The possibility of building a normal form of any paren-
thesis grammar, called backward deterministic normal
form (BDNF) with no repeated rhs, i.e., such that there

10We will see in Section 5 that this concept is important also to parse other
classes of languages

14

are no two rules with the same rhs. Such a construction
has been defined by McNaughton by assimilating PG’s
stencils to the terminal characters of regular grammars,
whose nonterminal characters, in turn, are in one-to-one
correspondence with the states of FSA. Then, on the basis
of this analogy, the set of nonterminals of the grammar in
normal form is the power set of the original one and the
rule set is inductively built in the following, natural, way:

– Without loss of generality the procedure starts with
a preliminary normal form where there are no re-
naming rules except for those that rewrite the axiom
which are the only non-parenthesized ones; further-
more the axiom does not occur in any rhs and is the
lhs exclusively of renaming rules (as, e.g. the paren-
thesized version of GAE1, without the parentheses
in the rules rewriting S).

– If there are several rules {S 1} → α, {S 2} → α, ...,
then such rules are replaced by the unique rule {S 1∪
S 2 ∪ ...} → α. For instance if we have A → α | β
and B→ α | γ, we remain with A→ β, B→ γ, and
{A, B} → α

– for all rules where S 1, S 2, ... occur the new rules
where {S 1 ∪ S 2 ∪ ...} replaces each occurrence of
S 1, S 2, ... are added.

– The new axiom S is created and, for each set S j

containing a nonterminal that is the rhs of a rule
rewriting the axiom of the original grammar, the
rule S → S j is added.

– The procedure is iterated until no new nonterminals
and no new rules are generated. At this point use-
less nonterminals and rules are erased.

On the basis of these two fundamental properties deriving the
effective closure w.r.t. Boolean operations within a given uni-
verse of stencils is a natural extension of the well-known op-
erations for RL (notice that RL are a special case of structured
languages whose stencils are only linear, i.e., of the type aN, a
(or Na, a) for a ∈ Σ) by further pursuing the analogy between
grammar’s nonterminals and automaton’s states:

• Given a PG G in BDNF, the complement of L(G) w.r.t.
its structure universe is obtained in the following way:

– Let Aerr < Vn be a new nonterminal and let h be the
homomorphism that maps every element of Vn ∪
{Aerr} into N and every element of Σ into itself;
then complete G’s production set P with produc-
tions Aerr → α for all α ∈ (V ∪ {Aerr})∗ such that
h(α) is in the production set of GS but α is not in P;

– The new (renaming) productions with S as the lhs
have as rhs the complement w.r.t. Vn of the original
ones plus S → Aerr.

Notice that in general, if k is the homomorphism that
erases the parentheses, it is not the case that k(L(GS) \
L(G)) = Σ∗ \ k(L(G)) not even if k(L(GS) = Σ∗.

• The intersection between two languages sharing the same
set of stencils (if not, build the union of the two sets) is
obtained by building a new nonterminal alphabet that is
the cartesian product of the original ones and composing
the production sets in the natural way 11. Then, by De
Morgan’s laws, the closure w.r.t. union is also obtained.

As usual, an immediate corollary of these closure properties is
the decidability of the containment problem for two languages
belonging to the same structure universe.

McNaughton also showed in [3] how any PG can be ef-
fectively transformed into an equivalent one with a minimum
number of nonterminals: again, the procedure he provided is a
natural but nontrivial extension of the well-known one for min-
imizing the states of FSA. We do not report, however, the tech-
nicalities of this result since it is not part of our main stream.

Given that the trees associated with sentences generated by
PG are isomorphic to the sentences themselves, the parsing
problem for such languages disappears and scales down to a
simpler recognition problem as it happens for RL. Thus, rather
than using the full power of general PDA or PDT for such a job,
tree-automata have been proposed in the literature as a recog-
nition device equivalent to PG as well as FSA are equivalent to
regular grammars.

Intuitively, a tree-automaton (TA) traverses either top-down
or bottom-up a labeled tree to decide whether to accept it or
not, thus it is a tree-recognizer or tree-acceptor. Not surpris-
ingly, the above constructions of the BDNF for PG and the
proofs of closure properties strongly resemble the correspond-
ing well-known constructions for FSA (and have been naturally
rephrased in terms of TA). We do not go further into the ex-
position of TA, however; the interested reader can refer to the
specialized literature, e.g, [4, 5], or to the larger version of this
paper [20].

On the basis of the important results obtained by McNaugh-
ton in his seminal paper, many other families of CFL have been
defined in several decades of literature with the general goal of
extending (at least some of the) closure and decidability prop-
erties, and logic characterizations that make RL such a “nice”
class despite its limits in terms of generative power. Most of
such families maintain the key property of being “structured”
in some generalized sense w.r.t. parenthesis languages.

In the following section we introduce so called input-driven
languages, also known as visibly pushdown languages which
received much attention in recent literature and exhibit a fairly
complete set of properties imported from RL.

4.2. Input-driven or visibly pushdown languages

The concept of input-driven CF language has been intro-
duced in [6] in the context of building efficient recognition al-
gorithms for DCFL: according to [6] a DPDA is input-driven if
the decision of the automaton whether to execute a push move,
i.e. a move where a new symbol is stored on top of the stack, or
a pop move, i.e. a move where the symbol on top of the stack

11Further obvious details are omitted.

15

is removed therefrom, or a move where the symbol on top of
the stack is only updated, depends exclusively on the current
input symbol rather than on the current state and the symbol on
top of the stack as in the general case. Later, several equivalent
definitions of the same type of pushdown automata, whether de-
terministic or not, have been proposed in the literature; among
them, here we choose an early one proposed in [29], which bet-
ter fits with the notation adopted in this paper than the later one
in [8].

Definition 4.4. Let the input alphabet Σ be partitioned into three
disjoint alphabets, Σ = Σc∪Σr∪Σi, named, respectively, the call
alphabet, return alphabet, internal alphabet. A visibly push-
down automaton (VPA) over (Σc,Σr,Σi) is a tuple (Q, I,Γ, Z0,
δ, F), where

• Q is a finite set of states;

• I ⊆ Q is the set of initial states;

• F ⊆ Q is the set of final or accepting states;

• Γ is the finite stack alphabet;

• Z0 ∈ Γ is the special bottom stack symbol;

• δ is the transition relation, partitioned into three disjoint
subrelations:

– Call move: δc ⊆ Q × Σc × Q × (Γ \ {Z0}),
– Return move: δr ⊆ Q × Σr × Γ × Q,

– Internal move: δi ⊆ Q × Σi × Q.

A VPA is deterministic iff I is a singleton, and δc, δr, δi are –
possibly partial– functions:
δc : Q×Σc → Q×(Γ\{Z0}), δr : Q×Σr×Γ→ Q, δi : Q×Σi → Q.

The automaton configuration, the transition relation between
two configurations, the acceptance of an input string, and the
language recognized by the automaton are then defined in the
usual way: for instance if the automaton reads a symbol a in
Σc while is in the state q and has C on top of the stack, it
pushes onto the stack a new symbol D and moves to state q′

provided that (q, a, q′,D) belongs to δc; conversely, if the au-
tomaton reads a symbol b in Σr while is in the state q and has
D on top of the stack, it pops D from the stack and moves to
state q′ provided that (q, b,D, q′) belongs to δr; in such a case
we say the the two symbols read, respectively, during the call
and the corresponding return move match. Notice that in this
way the special symbol Z0 can occur only at the bottom of the
stack, during the computation. A language over an alphabet
Σ = Σc ∪ Σr ∪ Σi recognized by some VPA is called a visibly
pushdown language (VPL).

The following remarks help put IDL, alias VPL, in perspec-
tive with other families of CFL.

• Once PDA are defined in a standard form where their
moves either push a new symbol onto the stack or re-
move it therefrom or leave the stack unaffected, the two
definitions of IDL and VPL are equivalent. Both names

for this class of languages are adequate: on the one side,
the attribute input-driven emphasizes that the type of au-
tomaton’s move is determined exclusively on the basis of
the current input symbol12; on the other side we can con-
sider VPL as structured languages since the structure of
their sentences is immediately visible thanks to the parti-
tioning of Σ.

• VPL generalize McNaughton’s parenthesis languages:
open parentheses are a special case of Σc and closed ones
of Σr; further generality is obtained by the possibility of
performing an unbounded number of internal moves, ac-
tually “purely finite state” moves between two matching
call and return moves and by the fact that VPA can accept
unmatched return symbols at the beginning of a sentence
as well as unmatched calls at its end; a motivation for the
introduction of such a generality is offered by the need
of modeling systems where a computation containing a
sequence of procedure calls is suddenly interrupted by a
special event such as an exception or an interrupt.

• Being VPL essentially structured languages, their corre-
sponding automata are just recognizers rather than real
parsers.

• VPa are real-time; in fact they read one input symbol for
each move. We have mentioned that this property can be
obtained for nondeterministic PDA recognizing any CFL
but not for deterministic ones.

• Although VPL are studied mainly in connection with their
recognizing automata, a class of CFG has also been de-
fined that generates them (see e.g., [8]).

VPL have obtained much attention since they represent a
major step in the path aimed at extending many, if not all, of the
important properties of RL to structured CFL. They are closed
w.r.t. all major language operations, namely the Boolean ones,
concatenation, Kleene ∗ and others; this also implies the decid-
ability of the containment problem, which, together with the
characterization in terms of a MSO logic, again extending the
result originally stated for RL, opens the door to applications in
the field of automatic verification.

A key step to achieve such important results is the possi-
bility of effectively determinizing nondeterministic VPA. The
basic idea is similar to the classic one that works for RL, i.e, to
replace the uncertainty on the current state of a nondetermin-
istic automaton with the subset of Q containing all states were
the automaton could possibly abide. Unlike the case of FSA
however, when the automaton executes a return move it is nec-
essary to “match” the current state with the one that was entered
at the time of the corresponding call; to do so the key idea is to
“pair” the set of states nondeterministically reached at the time
of a return move with those that were entered at the time of the
corresponding call; intuitively, the latter ones are memorized

12We will see, however, that the same term can be interpreted in a more
general way leading to larger classes of languages.

16

and propagated through the stack, whose alphabet is enriched
with pairs of set states. As a result at the moment of the return
it is possible to check whether some of the states memorized at
the time of the call “match” with some of the states that can be
currently held by the nondeterministic original automaton.

We do not go into the technical details of this construction,
referring the reader to [29] for them; we just mention that, un-
like the case of RL, the price to be paid in terms of size of the
automaton to obtain a deterministic version from a nondeter-
mistic one is 2O(s2), where s is the size of the original state set.
In [8] the authors also proved that such a gap is unavoidable
since there are VPL that are recognized by a nondeterministic
VPA with a state set of cardinality s but are not recognized by
any deterministic VPA with less than 2s2

states. In Section 5.1
we will provide a similar proof of determinization for a more
general class of automata.

Once a procedure to obtain a deterministic VPA from a non-
deterministic one is available, closure w.r.t. Boolean operations
follows quite naturally through the usual path already adopted
for RL and parenthesis languages. Closure under other major
language operations such as concatenation and Kleene ∗ is also
obtained without major difficulties but we do not report on it
since those operations are not of major interest for this paper.
Rather, we wish here to go back to the issue of logical charac-
terization.

4.2.1. The logic characterization of visibly pushdown languages
We have seen in Section 3.2 that attempts to provide a logic

characterization of general CFL produced only partial results
due to the lack of closure properties and to the fact that CFL
do not have an a priori fixed structure; in fact the characteri-
zation offered by [28] and reported here requires an existential
quantification w.r.t. relation M that represents the structure of
a string. Resorting to structured languages such as VPL in-
stead allowed for a fairly natural generalization of the classical
Büchi’s result for RL.

The key steps to obtain this goal are [8]:

• Using the same relation M introduced in [28],13 adding
its symbol as a basic predicate to the MSO logic’s syn-
tax given in Section 2.1 for RL, and extending its inter-
pretation in a fairly natural way: precisely M(x, y) holds
between the positions x and y of two matching symbols;
in the case of unmatched returns at the beginning of the
sentence and unmatched calls at the end the conventional
values M(−∞, y), M(x,+∞) are stated. This turns out
to be simpler and more effective in the case of structured
languages since, being such languages a priori unambigu-
ous (the structure of the sentence is the sentence itself),
there is only one such relation among the string positions
and therefore there is no need to quantify it. Furthermore
the relation is obviously one-to-one with a harmless ex-
ception of M(−∞, y), M(x,+∞).

• Repeating exactly the same path used for RL both in the
construction of an automaton from a logic formula and in

13Renamed nesting relation and denoted as{ or ν in later literature.

the converse one. This only requires the managing of the
new M relation in both constructions; precisely:

In the construction from the MSO formula to VPA, the el-
ementary automaton associated with the atomic formula
M(X,Y), where X and Y are the usual singleton second
order variables for any pair of first order variables x and
y, is represented by the diagram of Figure 9 where, like
in the same construction for RL, ◦ stands for any value of
Σ for which the transition can be defined according to the
alphabet partitioning, so that the automaton is determin-
istic, the second component of the triple corresponds to
X, and the third to Y. We use here the following notation
for depicting VPA: an arrow labeled a/B (resp., a, B, or
a alone) is a push (resp., pop or internal) move.

q0 q1 q2

(◦, 0, 0)

(◦, 0, 0), A
(◦, 0, 0)/A

(◦, 1, 0)/B

(◦, 0, 0)

(◦, 0, 1), B

(◦, 0, 0), A
(◦, 0, 0)/A

(◦, 0, 0)

(◦, 0, 0), A
(◦, 0, 0)/A

Figure 9: VPA associated with M(X,Y) atomic formula.

In the construction from the VPA to the MSO formula,
besides variables Xi for encoding states, we also need
variables to encode the stack. We introduce variables CA

and RA, for A ∈ Γ, to encode, respectively, the set of
positions in which a call pushes A onto the stack, and in
which a return pops A from the stack.

The following formula states that every pair (x, y) in M
must belong, respectively, to exactly one CA and exactly
one RA:

∀x, y (M(x, y)⇒ ∨
A∈Γ x ∈ CA ∧ y ∈ RA)∧

∀x
∧

A∈Γ

 x ∈ CA ⇒ ¬
∨

B,A x ∈ CB

∧
x ∈ RA ⇒ ¬

∨
B,A x ∈ RB

 .
The following formula expresses the fact that, if the au-
tomaton is in state qi and reads the symbol a ∈ Σc, then it
moves to state q j and pushes the symbol A onto the stack
(without loss of generality, we assume that the original
VPA is deterministic).

∀x, y

 x ∈ Xi ∧ succ(x, y) ∧ a(y)
⇒

y ∈ CA ∧ y ∈ X j

Symmetrically, return transitions δr(qi, a, A) = q j are for-
malized as follows:

∀x, y, z

 y ∈ Xi ∧ succ(y, z) ∧ M(x, z) ∧ z ∈ RA ∧ a(z)
⇒

z ∈ X j

 .
17

0 1 2 3
a/B

a/A

b, A

b, B

b, A

b, B

Figure 10: A VPA recognizing {anbn | n > 0}.

The remaining subformulas –for internal transitions, ini-
tial and final states– and the global formula quantifying
second order variables, are the same as those for FSA.

Example 4.5. Consider the alphabet Σ = (Σc = {a}, Σr = {b},
Σi = ∅) and the VPA depicted in Figure 10.

The MSO formula ∃X0, X1, X2, X3,CA,CB, RA, RB(φA∧φM)
is built on the basis of such an automaton, where φM is the con-
junction of the formulas defined above, and φA is:

∃z(∄x(succ(x, z)) ∧ z ∈ X0)∧
∃y(∄x(succ(y, x)) ∧ y ∈ X3)∧
∀x, y (x ∈ X0 ∧ succ(x, y) ∧ a(y)⇒ y ∈ CB ∧ y ∈ X1)∧
∀x, y (x ∈ X1 ∧ succ(x, y) ∧ a(y)⇒ y ∈ CA ∧ y ∈ X1)∧
∀x, y, z (y ∈ X1 ∧ succ(y, z) ∧ M(x, z) ∧ z ∈ RA ∧ b(z)⇒ z ∈ X2)∧
∀x, y, z (y ∈ X2 ∧ succ(y, z) ∧ M(x, z) ∧ z ∈ RA ∧ b(z)⇒ z ∈ X2)∧
∀x, y, z (y ∈ X2 ∧ succ(y, z) ∧ M(x, z) ∧ z ∈ RB ∧ b(z)⇒ z ∈ X3)∧
∀x, y, z (y ∈ X1 ∧ succ(y, z) ∧ M(x, z) ∧ z ∈ RB ∧ b(z)⇒ z ∈ X3) .

Other studies, e.g. [12], aimed at exploiting less power-
ful logics, such as variants of linear temporal ones to support
a more practical automatic verification of VPL as it happened
with great success with model-checking for RL; such attempts,
however, are still in a preliminary stage and algorithmic model-
checking is not the main focus of this paper; thus, we do not go
deeper into this issue.

4.3. Other structured context-free languages
As we said, early work on parenthesis languages and tree-

automata ignited many attempts to enlarge those classes of lan-
guages and to investigate their properties. Among them VPL
have received much attention in the literature and in this paper,
probably thanks to the completeness of the obtained results –
closure properties and logic characterization. To give an idea of
the vastness of this panorama and of the connected problems,
and to help comparison among them, in this section we briefly
mention a few more of such families with no attempt for ex-
haustiveness.

4.3.1. Balanced grammars
Balanced grammars (BG) have been proposed in [30] as a

first approach to model mark-up languages such as XML by
exploiting suitable extensions of parenthesis grammars. Basi-
cally a BG has a partitioned alphabet exactly in the same way
as VPL; on the other hand any production of a BG has the form
A → aαb where a ∈ Σc, b ∈ Σr, and α is a regular expression14

14A regular expression over a given alphabet V is built on the basis of alpha-
bet’s elements by applying union, concatenation, and Kleene ∗ symbols; it is
well-known that the class of languages definable by means of regular expres-
sions is RL.

over VN ∪ Σi.
Since it is well-known that the use of regular expressions in

the rhs of CF grammars can be replaced by a suitable expansion
by using exclusively “normal” rules, we can immediately con-
clude that balanced languages, i.e. those generated by BG, are
a proper subclass of VPL (e.g. they do not admit unmatched
elements of Σc and Σr). Furthermore they are not closed under
concatenation and Kleene ∗ [30]; we are not aware of any logic
characterization of these languages.

4.3.2. Height-deterministic languages
Height-deterministic languages, introduced in [27], are a

more recent and fairly general way of describing CFL in terms
of their structure. In a nutshell the hidden structure of a sen-
tence is made explicit by making ε-moves visible, in that the
original Σ alphabet is enriched as Σ ∪ {ε}; if the original input
string in Σ∗ is transformed into one over Σ ∪ {ε} by inserting
an explicit ε wherever a recognizing automaton executes an ε-
move, we obtain a linear representation of the syntax-tree of
the original sentence, so that the automaton can be used as a
real parser. We illustrate such an approach by means of the
following example.

Example 4.6. Consider the language L = L1 ∪ L2, with L1 =

{anbnc∗ | n ≥ 0}, L2 = {a∗bncn | n ≥ 0} which is well-known to
be inherently ambiguous since a string such as anbncn can be
parsed both according to L1’s structure and according to L2’s
one. A possible nondeterministic PDA A recognizing L could
act as follows:

• A pushes all a’s until it reaches the first b; at this point
it makes a nondeterministic choice:

– in one case it makes a “pause”, i.e., an ε-move and
enters a new state, say q1;

– in the other case it directly enters a different state,
say q2 with no “pause”;

• from now on its behavior is deterministic; precisely:

– in q1 it checks that the number of b’s equals the
number of a’s and then accepts any number of c’s;

– in q2 it pushes the b’s to verify that their number
equals that of the c’s.

Thus, the two different behaviors ofA when analyzing a string
of the type anbncn would result in two different strings in the ex-
tended alphabet Σ∪{ε}15, namely anεbncn and anbncn; it is now
simple to state a one-to-one correspondence between strings
augmented with explicit ε and the different syntax-trees asso-
ciated with the original input: in this example, anεbncn corre-
sponds to the structure of Figure 11 (a) and anbncn to that of
Figure 11 (b). It is also easy to build other nondeterministic
PDA recognizing L that “produce” different strings associated
with different structures.

15This could be done explicitly by means of a nondeterministic transducer
that outputs a special marker in correspondence of an ε-move, but we stick to
the original [27] formalization where automata are used exclusively as accep-
tors without resorting to formalized transducers.

18

a

a ε b

b

c

c a

a

b

b c

c

(a) (b)

Figure 11: Different structures for anεbncn (a) and anbncn (b), for n = 2.

Once the input string structures are made visible by intro-
ducing the explicit ε character, the characteristics of PDA, of
their subclasses, and of the language subfamilies they recog-
nize, are investigated by referring to the heights of their stack.
Precisely:

• Any PDA is put into a normalized form, where

– the δ relation is complete, i.e., it is defined in such
a way that for every input string, whether accepted
or not, the automaton scans the whole string:
∀x∃c(c0 = (x, q0,Z0)

∗
p−− c = (ε, q, γ));

– every element of δ is exclusively in one of the forms:
(q, A, o, q′, AB), or (q, A, o, q′, A), or (q, A, o, q′, ε),
where o ∈ (Σ ∪ {ε}) ;

– for every q ∈ Q all elements of δ having q as the
first component either have o ∈ Σ or o = ε, but not
both of them.

• For any normalizedA and word w ∈ (Σ∪ {ε})∗,N(A,w)
denotes the set of all stack heights reached by A after
scanning w.

• A is said height-deterministic (HPDA) iff ∀w ∈ (Σ∪{ε})∗,
|N(A,w)| = 1.

• The family of height-deterministic PDA is named HPDA;
similarly, HDPDA denotes the family of deterministic
height-deterministic PDA, and HRDPDA that of deter-
ministic, real-time (i.e., those that do not perform any
ε-move) height-deterministic PDA. The same acronyms
with a final L replacing the A denote the corresponding
families of languages.

It is immediate to realize (Lemma 1 of [27]) that every PDA ad-
mits an equivalent normalized one. Example 4.6 provides an in-
tuitive explanation that every PDA admits an equivalent HPDA
(Theorem 1 of [27]); thus HPDL = CFL; also, any (normalized)
DPDA is, by definition an HPDA and therefore a deterministic
HPDA; thus HDPDL = DCFL. Finally, since every determin-
istic VPA is already in normalized form and is a real-time ma-
chine, VPL ⊂ HRDPDL: the strict inclusion follows from the
fact that L = {anban} cannot be recognized by a VPA since the
same character a should belong both to Σc and to Σr.

Coupling the extension of the alphabet from Σ to Σ∪{ε}with
the set N(A,w) allows us to consider HPDL as a generalized

kind of structured languages. As an intuitive explanation, let
us go back to Example 4.6 and consider the two behaviors of
A when parsing the string aabbcc once it has been “split” into
aabbcc and aaεbbcc; the stack heights N(A,w) for all their
prefixes are, respectively: (1, 2, 3, 4, 3, 2) and (1, 2, 2, 1, 0, 0, 0)
(if we do not count the bottom of the stack Z0). In general, it is
not difficult to associate every sequence of stack lengths during
the parsing of an input string (in (Σ∪{ε})∗!) with the syntax-tree
visited by the HPDA.

As a consequence, the following fundamental definition of
synchronization between HPDA can be interpreted as a form of
structural equivalence.

Definition 4.7. Two HPDAA andB are synchronized, denoted
asA ∼ B, iff ∀w ∈ (Σ ∪ {ε})∗, N(A,w) = N(B,w).

It is immediate to realize that synchronization is an equiv-
alence relation and therefore to associate an equivalence class
[A]∼ with every HPDA; we also denote as A-HDPL the class
of languages recognized by automata in [A]∼. Then, in [27] the
authors show that:

• For every deterministic HPDAA the classA-HDPL is a
Boolean algebra.16

• Real-time HPDA can be determinized (with a complexity
of the same order as for VPA), so that the class of real-
time HPDL coincides with HRDPDL.

On the other hand neither HRDPDL nor HDPDL are closed
under concatenation and Kleene ∗ [31] so that the gain obtained
in terms of generative power w.r.t. VPL has a price in terms of
closure properties. We are not aware of logic characterizations
for this class of structured languages.

Let us also mention that other classes of structured lan-
guages based on some notion of synchronization have been stud-
ied in the literature; in particular, in [27] the authors compare
their class with those of [32] and [33]. Finally, we acknowledge
that our survey does not consider some logic characterization of
tree or even graph languages which refer either to very specific
families (such as, e.g. star-free tree languages [34]) and/or to an
alphabet of basic elements, e.g., arcs connecting tree or graph
nodes [35], which departs from the general framework of string
(structured) languages.

5. Operator precedence languages

Operator precedence grammars (OPG) have been introduced
by R. Floyd in his pioneering paper [13] with the goal of build-
ing efficient, deterministic, bottom-up parsers for programming
languages. In doing so he was inspired by the hidden struc-
ture of arithmetic expressions which suggests to “give prece-
dence” to, i.e, to execute first multiplicative operations w.r.t.
the additive ones, as we illustrated through Example 3.1. Es-
sentially, the goal of deterministic bottom-up parsing is to un-
ambiguously decide when a complete rhs has been identified

16If the automaton is not deterministic only closures under union and inter-
section hold.

19

so that we can proceed with replacing it with the unique cor-
responding lhs with no risk to apply some roll-back if another
possible reduction was the right one. Floyd achieved such a
goal by suitably extending the notion of precedence between
arithmetic operators to all grammar terminals. OPG obtained
a considerable success thanks to their simplicity and to the ef-
ficiency of the parsers obtained therefrom; incidentally, some
independent studies also uncovered interesting algebraic prop-
erties ([14]) which have been exploited in the field of grammar
inference ([15]). As we anticipated in the introduction, how-
ever, the study of these grammars has been dismissed essen-
tially because of the advent of other classes, such as the LR
ones, which can generate all DCFL; OPG instead do not have
such power as we will see soon, although they are able to cover
most syntactic features of normal programming languages, and
parsers based on OPG are still in practical use (see, e.g., [18]).

Only recently we renewed our interest in this class of gram-
mars and languages for two different reasons that are the object
of this survey. On the one side in fact, OPL, despite being ap-
parently not structured, since they require and have been mo-
tivated by parsing, have shown rather surprising relations with
various families of structured languages; as a consequence it
has been possible to extend to them all the language properties
investigated in the previous sections. On the other side, OPG
enable parallelizing their parsing in a natural and efficient way,
unlike what happens with other parsers which are compelled to
operate in a strict left-to-right fashion, thus obtaining consider-
able speed-up thanks to the wide availability of modern parallel
HW architectures.

Therefore, after having resumed the basic definitions and
properties of OPG and their languages, we show, in Section 5.1,
that they considerably increase the generative power of struc-
tured languages but, unlike the whole class of DCFL, they still
enjoy all algebraic and logic properties that we investigated for
such smaller classes. In Section 5.2 we show how parallel pars-
ing is much better supported by this class of grammars than by
the presently used ones.

Definition 5.1. A grammar rule is in operator form if its rhs
has no adjacent nonterminals; an operator grammar (OG) con-
tains only such rules.

Notice that the grammars considered in Example 3.1 are OG.
Furthermore any CF grammar can be recursively transformed
into an equivalent OG one [17].

Next, we introduce the notion of precedence relations be-
tween elements of Σ: we say that a is equal in precedence to b
iff the two characters occur consecutively, or at most with one
nonterminal in between, in some rhs of the grammar; in fact,
when evaluating the relations between terminal characters for
OPG, nonterminals are inessential, or “transparent”. The letter
a yields precedence to b iff a can occur at the immediate left of
a subtree whose leftmost terminal character is b (again whether
there is a nonterminal character at the left of b or not is inessen-
tial). Symmetrically, a takes precedence over b iff a occurs as
the rightmost terminal character of a subtree and b is its follow-
ing terminal character. These concepts are formally defined as
follows.

+ ∗ e
+ ⋗ ⋖ ⋖
∗ ⋗ ⋗ ⋖
e ⋗ ⋗

Figure 12: The OPM of the GAE1 of Example 3.1.

Definition 5.2. For an OG G and a nonterminal A, the left and
right terminal sets are

LG(A) = {a ∈ Σ | A ∗⇒ Baα}
RG(A) = {a ∈ Σ | A ∗⇒ αaB} where B ∈ VN ∪ {ε}.

The grammar name G will be omitted unless necessary to
prevent confusion.

For an OG G, let α, β range over (VN∪Σ)∗ and a, b ∈ Σ. The
three binary operator precedence (OP) relations are defined as
follows:

• equal in precedence: a � b ⇐⇒
∃A→ αaBbβ, B ∈ VN ∪ {ε},

• takes precedence: a ⋗ b ⇐⇒
∃A→ αDbβ,D ∈ VN and a ∈ RG(D),

• yields precedence: a ⋖ b ⇐⇒
∃A→ αaDβ,D ∈ VN and b ∈ LG(D).

For an OG G, the operator precedence matrix (OPM) M =

OPM(G) is a |Σ| × |Σ| array that, for each ordered pair (a, b),
stores the set Mab of OP relations holding between a and b.

For the grammar GAE1 of Example 3.1 the left and right
terminal sets of nonterminals E, T and F are, respectively:
L(E) = {+, ∗, e},L(T) = {∗, e},L(F) = {e},R(E) = {+, ∗, e},

R(T) = {∗, e}, and R(F) = {e}.
Figure 12 displays the OPM associated with the grammar

of GAE1 of Example 3.1 where, for an ordered pair (a, b), a
is one of the symbols shown in the first column of the matrix
and b one of those occurring in its first row. Notice that, unlike
the usual arithmetic relations denoted by similar symbols, the
above precedence relations do not enjoy any of the transitive,
symmetric, reflexive properties.

Definition 5.3. An OG G is an operator precedence or Floyd
grammar (OPG) iff M = OPM(G) is a conflict-free matrix, i.e.,
∀a, b, |Mab| ≤ 1. An operator precedence language (OPL) is a
language generated by an OPG.

A conflict-free matrix associates to every string at most only
one structure, as we will show next; this aspect, paired with a
way of deterministically choosing rules’ rhs to be reduced, are
the basis of Floyd’s natural bottom-up deterministic parsing al-
gorithm. This latter feature is enabled by introducing the Fis-
cher normal form.

Definition 5.4. An OPG is in Fischer normal form (FNF) iff it
is invertible, i.e., no two rules have the same rhs, has no empty

20

rules, i.e., rules whose rhs is ε, except possibly S → ε, and
no renaming rules, i.e, rules whose rhs is a single nonterminal,
except possibly those whose lhs is S .

For every OPG an equivalent one in FNF can effectively be built
[36, 17]. The core part of the construction is avoiding repeated
rhs, which is obtained in the same way as for parenthesis gram-
mars (BDNF, see Section 4.1). A FNF grammar (manually)
derived from GAE1 of Example 3.1 is GAEFNF :

S → E | T | F
E → E + T | E + F | T + T | F + F | F + T | T + F
T → T ∗ F | F ∗ F
F → e

We can now see how the precedence relations of an OPG can
drive the deterministic parsing of its sentences: consider again
the sentence e + e ∗ e; add to its boundaries the conventional
symbol # which implicitly yields precedence to any terminal
character and to which every terminal character takes prece-
dence, and evaluate the precedence relations between pairs of
consecutive symbols; they are displayed below:

⋖ e ⋗ + ⋖ e ⋗ ∗ ⋖ e ⋗ #.

A handle is a candidate rhs, and is included within a pair ⋖,
⋗, with only � between consecutive terminals in it. The three
occurrences of e enclosed within the pair (⋖,⋗), identify han-
dles and are the rhs of production F → e. Thanks to the FNF,
there is no doubt on the corresponding lhs; therefore they can
be reduced to F. Notice that such a reduction could be applied
in any order, possibly even in parallel; this feature will be ex-
ploited later in Section 5.2.

More generally, let us consider the traditional left-to-right
bottom-up OP parser, reported as Algorithm 1, in a slightly gen-
eralized variant that allows for nonterminals in the input string,
and permits the presence of (X,⋗) pairs in the stack, facts that
will be necessary in a parallel setting.

In the case of string e + e ∗ e, Algorithm 1 is called with
α = e+e∗e#, head = 1, end = 6, S = (#,⊥). The complete run
is reported in Figure 13. We observe that, thanks to the FNF, the
bottom-up shift-reduce algorithm works deterministically until
the axiom is reached (more precisely, reductions stop at the sin-
gle nonterminal E since the renaming rules of S are inessen-
tial for parsing) and a syntax-tree of the original sentence –
represented by the mirror image of the rightmost derivation–
is built. To avoid making the notation uselessly cumbersome,
however, we omit specifying output operations both in the algo-
rithm and in the table, since they are identical to the extension
already described in Section 3.1 for general CF parsers.

This first introduction to OPG allows us to draw some early
important properties thereof:

• In some sense OPL are input-driven even if they do not
match exactly the definition of these languages: in fact,
the decision of whether to apply a push operation (at the
beginning of a rhs) or a shift one (while scanning a rhs) or
a pop one (at the end of a rhs) depends only on terminal

step S α(head) . . . # Y op X
0 (#,⊥) e + e ∗ e# # ⋖ e
1 (e,⋖)(#,⊥) +e ∗ e# e ⋗ +
2 (F,⊥)(#,⊥) +e ∗ e# # ⋖ +
3 (+,⋖)(F,⊥)(#,⊥) e ∗ e# + ⋖ e
4 (e,⋖)(+,⋖)(F,⊥)(#,⊥) ∗e# e ⋗ ∗
5 (F,⊥)(+,⋖)(F,⊥)(#,⊥) ∗e# + ⋖ ∗
6 (∗,⋖)(F,⊥)(+,⋖)(F,⊥)(#,⊥) e# ∗ ⋖ e
7 (e,⋖)(∗,⋖)(F,⊥)(+,⋖)(F,⊥)(#,⊥) # e ⋗ #
8 (F,⊥)(∗,⋖)(F,⊥)(+,⋖)(F,⊥)(#,⊥) # ∗ ⋗ #
9 (T,⊥)(+,⋖)(F,⊥)(#,⊥) # + ⋗ #

10 (E,⊥)(#,⊥) # # � #

Figure 13: A run of Algorithm 1, with grammar GAEFNF and input string
e + e ∗ e.

characters but not on a single one, as a look-ahead of one
more terminal character is needed.17

• The above characteristic is also a major reason why OPL,
though allowing for efficient deterministic parsing of var-
ious practical programming languages [18, 37, 13], do
not cover the whole family DCFL. Consider the language
L = {0anbn | n ≥ 0} ∪ {1anb2n | n ≥ 0}: a DPDA can eas-
ily “remember” the first character in its state; then push
all the a’s onto the stack and, when it reaches the bs de-
cide whether to scan one or two bs for every a depending
on its memory of the first read character. On the other
hand, it is clear that any grammar generating L would
necessarily exhibit some precedence conflict: intuitively,
the string bb can be generated paired with a single a ei-
ther by means of a single production A → aAbb, which
would generate the conflict b � b and b ⋗ b, or by means
of two consecutive steps A =⇒ aBb, B =⇒ b, which
would generate the conflict a � b, a ⋖ b.18

• We like to consider OPL as structured languages in a
generalized sense since, once the OPM is given, the struc-
ture of their sentences is immediately defined and univo-
cally determinable as it happens. e.g., with VPL once the
alphabet is partitioned into call, return, and internal al-
phabet. However, we would be reluctant to label OPL as
visible since there is a major difference between paren-
thesis-like terminals which make the language sentence
isomorphic to its syntax-tree, and precedence relations
which help building the tree but are computed only dur-
ing the parsing. Indeed, not all of them are immediately
visible in the original sentence: e.g., in some cases such
as in the above sentence # ⋖ F + ⋖ F ∗ F ⋗ # precedence
relations are not even matched so that they can be assimi-
lated to real parentheses only when they mark a complete

17As it happens in other deterministic parsers such as LL or LR ones (see
Section 3.1.1).

18The above L is instead LL (see Section 3.1.1), while the language {anbn |
n ≥ 1} ∪ {ancn | n ≥ 1} is OPL but not LL; thus, OPL and LL languages are
uncomparable.

21

Algorithm 1 : OP-parsing(α, head, end,S)
Remark. α ∈ V∗ is the input string, head and end are integers marking respectively the first and the last character of the portion
of α to be parsed; S is the initial stack contents, and contains pairs (Z, p) ∈ (V ∪ {#}) × {⋖,�,⋗,⊥}. The p component encodes the
precedence relation found between two consecutive terminal symbols; thus it is always ⊥ when Z ∈ VN .
When the algorithm is called in sequential mode: α = β#, for some β, head = 1, end = |α|, S = (#,⊥).

1. Let X = α(head) and consider the precedence relation between the top-most terminal Y found in S and X.

2. If Y ⋖ X then push (X,⋖); head := head + 1.

3. If Y � X then push (X,�); head := head + 1.

4. If X ∈ VN then push (X,⊥); head := head + 1.

5. If Y ⋗ X then consider S:
(a) if S does not contain any ⋖ then push (X,⋗); head := head + 1

(b) else let S = (Xn, pn) . . . (Xi,⋖)(Xi−1, pi−1) . . . (X0, p0) where ∀ j, i < j ≤ n, p j , ⋖

i. if Xi−1 ∈ VN (hence pi−1 = ⊥) and there exists a rule A → Xi−1Xi . . . Xn then replace (Xn, pn) . . . (Xi,⋖)(Xi−1, pi−1)
in S with (A,⊥);

ii. if Xi−1 ∈ VT ∪ {#} and there exists a rule A→ Xi . . . Xn then replace (Xn, pn) . . . (Xi,⋖) in S with (A,⊥);
iii. otherwise start an error recovery procedure.

6. If (head < end) or (head = end and S , (B,⊥)(a,⊥)), for B ∈ VN , a ∈ Σ ∪ {#} then repeat from step (1); else return S.

rhs. In summary, we would consider that OPL are struc-
tured (by the OPM) as well as PL (by explicit parenthe-
ses), VPL (by alphabet partitioning), and other families
of languages; however, we would intuitively label them
at most as “semi-visible” since making their structure vis-
ible requires some partial parsing, though not necessarily
a complete recognition.

5.1. Algebraic and logic properties of operator precedence lan-
guages

OPL enjoy all algebraic and logic properties that have been
illustrated in the previous sections for much less powerful fam-
ilies of structured languages.

As a first step we introduce the notion of a chain as a for-
mal description of the intuitive concept of “semi-visible struc-
ture”. To illustrate the following definitions and properties we
will continue to make use of examples inspired by arithmetic
expressions but we will enrich such expressions with, possibly
nested, explicit parentheses as the visible part of their structure.
For instance the following grammar GAEP is a natural enrich-
ment of previous GAE1 to generate arithmetic expressions that
involve parenthesized subexpressions (we use the slightly mod-
ified symbols ’L’ and ’M’ to avoid overloading with other uses of
parentheses).

GAEP : S → E | T | F
E → E + T | T ∗ F | e | LEM
T → T ∗ F | e | LEM
F → e | LEM

Definition 5.5 (Operator precedence alphabet). An operator
precedence (OP) alphabet is a pair (Σ,M) where Σ is an al-
phabet and M is a conflict-free operator precedence matrix, i.e.

a |Σ ∪ {#}|2 array that associates at most one of the operator
precedence relations: �, ⋖ or ⋗ with each ordered pair (a, b).
As stated above the delimiter # yields precedence to other ter-
minals and other terminals take precedence over it (with the
special case # � # for the final reduction of renaming rules.)
Since such relations are stated once and forever, we do not ex-
plicitly display them in OPM figures.

If Mab = {◦}, with ◦ ∈ {⋖,�,⋗} ,we write a◦b. For u, v ∈ Σ∗
we write u ◦ v if u = xa and v = by with a ◦ b.

Definition 5.6 (Chains). Let (Σ,M) be a precedence alphabet.

• A simple chain is a word a0a1a2 . . . anan+1, written as
a0 [a1a2 . . . an]an+1 , such that: a0, an+1 ∈ Σ ∪ {#}, ai ∈ Σ
for every i : 1 ≤ i ≤ n, Ma0an+1 , ∅, and a0 ⋖ a1 �
a2 . . . an−1 � an ⋗ an+1.

• A composed chain is a word a0x0a1x1a2 . . . anxnan+1, with
xi ∈ Σ∗, where a0 [a1a2 . . . an]an+1 is a simple chain, and ei-
ther xi = ε or ai [xi]ai+1 is a chain (simple or composed),
for every i : 0 ≤ i ≤ n. Such a composed chain will be
written as a0 [x0a1x1a2 . . . anxn]an+1 .

• The body of a chain a[x]b, simple or composed, is the
word x.

Example 5.7. Figure 14 (a) depicts the OPM(GAEP), whereas
Figure 14 (b) represents the “semi-visible” structure induced
by the operator precedence alphabet of grammar GAEP for the
expression #e+ e ∗ Le+ eM#: #[e]+, +[e]∗, L[e]+, +[e]M are simple
chains and #[x0 + x1]# with x0 = e, x1 = e ∗ Le + eM, +[y0 ∗ y1

]#

with y0 = e, y1 = Le + eM, ∗[Lw0M]# with w0 = e + e, L[z0 + z1]M
z0 = e, z1 = e, are composed chains.

22

Notice that, thanks to the fact that the OPM is conflict-free,
for any string in #Σ∗#, there is at most one way to build, induc-
tively, a composed chain of (Σ,M).

Definition 5.8 (Compatible word). A word w over (Σ,M) is
compatible with M iff the two following conditions hold:

• For each pair of letters c, d, consecutive in w, Mcd , ∅;

• for each substring x of #w# such that x = a0x0a1x1a2 . . .
anxnan+1, if a0⋖a1 � a2 . . . an−1 � an⋗an+1 and, for every
0 ≤ i ≤ n, either xi = ε or ai [xi]ai+1 is a chain (simple or
composed), then Ma0an+1 , ∅.

For instance, the word e + e ∗ Le + eM is compatible with
the operator precedence alphabet of grammar GAEP, whereas
e + e ∗ Le + eMLe + eM is not.

Thus, given an OP alphabet, the set of possible chains over
Σ∗ represents the universe of possible structured strings com-
patible with the given OPM.

5.1.1. Operator precedence automata
Despite abstract machines being the classical way to for-

malize recognition and parsing algorithms for any family of
formal languages, and despite OPL having been invented just
with the purpose of supporting deterministic parsing, their the-
oretical investigation has been abandoned before a family of
automata completely equivalent to their generative grammars
appeared in the literature. Only recently, when the numerous
still unexplored benefits obtainable from this family appeared
clear to us, we filled up this hole with the herewith resumed
definition ([38]). The formal model presented in this paper is
a “traditional” left-to-right automaton, although, as we already
anticipated while illustrating Algorithm 1 and will thoroughly
exploit in the Section 5.2 a distinguishing feature of OPL is that
their parsing can be started in arbitrary positions with no harm
nor loss of efficiency. This choice is explained by the need to
extend and to compare results already reported for other lan-
guage families. The original slightly more complicated version
of this model was introduced in [39].

Definition 5.9 (Operator precedence automaton). An opera-
tor precedence automaton (OPA) is a tupleA = (Σ,M,Q, I, F, δ)
where:

• (Σ,M) is an operator precedence alphabet,

• Q is a set of states (disjoint from Σ),

• I ⊆ Q is the set of initial states,

• F ⊆ Q is the set of final states,

• δ ⊆ Q × (Σ ∪ Q) × Q is the transition relation, which is
the union of three disjoint relations:

δshift ⊆ Q×Σ×Q, δpush ⊆ Q×Σ×Q, δpop ⊆ Q×Q×Q.

An OPA is deterministic iff

• I is a singleton

• All three components of δ are –possibly partial– func-
tions:

δshift : Q×Σ→ Q, δpush : Q×Σ→ Q, δpop : Q×Q→ Q.

We represent an OPA by a graph with Q as the set of vertices
and Σ∪Q as the set of edge labelings. The edges of the graph are
denoted by different shapes of arrows to distinguish the three
types of transitions: there is an edge from state q to state p
labeled by a ∈ Σ denoted by a dashed (respectively, normal)
arrow iff (q, a, p) ∈ δshift (respectively, ∈ δpush) and there is an
edge from state q to state p labeled by r ∈ Q and denoted by a
double arrow iff (q, r, p) ∈ δpop.

To define the semantics of the automaton, we need some
new notations.

We use letters p, q, pi, qi, . . . to denote states in Q. Let Γ be
Σ × Q and let Γ′ = Γ ∪ {Z0} be the stack alphabet; we denote
symbols in Γ′ as [a, q] or Z0. We set symbol([a, q]) = a,
symbol(Z0) = #, and state([a, q]) = q. Given a stack contents
Π = πn . . . π2π1Z0, with πi ∈ Γ , n ≥ 0, we set symbol(Π) =
symbol(πn) if n ≥ 1, symbol(Π) = # if n = 0.

As usual, a configuration of an OPA is a triple c = ⟨w, q, Π⟩,
where w ∈ Σ∗#, q ∈ Q, and Π ∈ Γ∗Z0.

A computation or run of the automaton is a finite sequence
of moves or transitions c1 p−− c2; there are three kinds of moves,
depending on the precedence relation between the symbol on
top of the stack and the next symbol to read:
push move: if symbol(Π)⋖ a then ⟨ax, p, Π⟩ p−− ⟨x, q, [a, p]Π⟩,
with (p, a, q) ∈ δpush;
shift move: if a � b then ⟨bx, q, [a, p]Π⟩ p−− ⟨x, r, [b, p]Π⟩,
with (q, b, r) ∈ δshift;
pop move: if a ⋗ b then ⟨bx, q, [a, p]Π⟩ p−− ⟨bx, r, Π⟩, with
(q, p, r) ∈ δpop.

Observe that shift and pop moves are never performed when
the stack contains only Z0.

Push and shift moves update the current state of the automa-
ton according to the transition relations δpush and δshift, respec-
tively: push moves put a new element on top of the stack con-
sisting of the input symbol together with the current state of the
automaton, whereas shift moves update the top element of the
stack by changing its input symbol only. Pop moves remove the
element on top of the stack, and update the state of the automa-
ton according to δpop on the basis of the pair of states consisting
of the current state of the automaton and the state of the re-
moved stack symbol; notice that in this moves the input symbol
is used only to establish the ⋗ relation and it remains available
for the following move.

The language accepted by the automaton is defined as:

L(A) =
{
x | ⟨x#, qI , Z0⟩

∗
p−− ⟨#, qF , Z0⟩, qI ∈ I, qF ∈ F

}
.

Example 5.10. The OPA depicted in Figure 15 accepts the lan-
guage of arithmetic expressions generated by grammar GAEP.
The same figure also shows the syntax-tree of the sentence e +
e ∗ Le + eM and an accepting computation on this input.

23

+ ∗ L M e
+ ⋗ ⋖ ⋖ ⋗ ⋖
∗ ⋗ ⋗ ⋖ ⋗ ⋖L ⋖ ⋖ ⋖ � ⋖M ⋗ ⋗ ⋗
e ⋗ ⋗ ⋗

#
x0

e

+ x1

y0

e

∗ y1

L w0

z0

e

+ z1

e

M

#

(a) (b)

Figure 14: OPM of grammar GAEP (a) and structure of the chains in the expression #e + e ∗ Le + eM# (b).

q0 q1

q2 q3

e

L

q0, q1
+, ∗

eL
q0, q1, q2, q3

+, ∗ M

E

E

e

+ T

T

e

∗ FL E

E

e

+ T

e

M

input state stack
e + e ∗ Le + eM# q0 Z0

+e ∗ Le + eM# q1 [e, q0]Z0

+e ∗ Le + eM# q1 Z0

e ∗ Le + eM# q0 [+, q1]Z0

∗Le + eM# q1 [e, q0][+, q1]Z0

∗Le + eM# q1 [+, q1]Z0Le + eM# q0 [∗, q1][+, q1]Z0

e + eM# q2 [L, q0][∗, q1][+, q1]Z0

+eM# q3 [e, q2][L, q0][∗, q1][+, q1]Z0

+eM# q3 [L, q0][∗, q1][+, q1]Z0

eM# q2 [+, q3][L, q0][∗, q1][+, q1]Z0M# q3 [e, q2][+, q3][L, q0][∗, q1][+, q1]Z0M# q3 [+, q3][L, q0][∗, q1][+, q1]Z0M# q3 [L, q0][∗, q1][+, q1]Z0

q3 [M, q0][∗, q1][+, q1]Z0

q3 [∗, q1][+, q1]Z0

q3 [+, q1]Z0

q3 Z0

Figure 15: Automaton and example of computation for the language of Ex-
ample 5.10. Recall that shift, push and pop transitions are denoted by dashed,
normal and double arrows, respectively.

Notice the similarity of the above definition of OPA with
that of VPA (Definition 4.4) and with the normalized form for
PDA given in Section 4.3.2. This similarity, on the other hand,
produces some remarkable difference between the sequence of
moves of an OPA and the execution flow of Algorithm 1: whereas
a shift move of the OPA does not change the length of the stack
but only the contents of its top, Algorithm 1 pushes the read
symbol onto the stack.

Showing the equivalence between OPG and OPA, though
somewhat intuitive, requires to overcome a few non-trivial tech-
nical difficulties, mainly in the path from OPG to OPA. Here
we offer just an informal description of the rationale of the two
constructions and an illustrating example; the full proof of the
equivalence between OPG and OPA can be found in [38].

For convenience and with no loss of generality, let G be an
OPG with no empty rules, except possibly S → ε, and no re-
naming rules, except possibly those whose lhs is S , an OPA
A equivalent to G is built in such a way that a successful com-
putation thereof corresponds to building bottom-up the mirror
image of a rightmost derivation of G: A performs a push tran-
sition when it reads the first terminal of a new rhs; it performs
a shift transition when it reads a terminal symbol inside a rhs,
i.e. a leaf with some left sibling leaf; it performs a pop transi-
tion when it completes the recognition of a rhs, then it guesses
(nondeterministically, if there are several rules with the same
rhs) the nonterminal at the lhs.

Each state ofA contains two pieces of information: the first
component represents the prefix of the rhs under construction,
whereas the second component is used to recover the rhs pre-
viously under construction (see Figure 16) whenever all rhs’s
nested below have been completed. Without going into the de-
tails of the construction and the formal equivalence proof be-
tween G and A, we further illustrate the rationale of the con-
struction through the following Example.

Example 5.11. Consider again grammar GAEP. Figure 17
shows the first part of an accepting computation of the au-
tomaton derived therefrom. Consider, for instance, step 3 of
the computation: at this point the automaton has already re-
duced (nondeterministically) the first e to E and has pushed the
following + onto the stack, paired with the state from which it

24

. . .

β
B

. . .

A

α

. . .

β
A

α

Figure 16: When parsing α, the prefix previously under construction is β.

was coming; thus, its new state is ⟨E+, ε⟩; at step 6, instead, the
state is ⟨T∗, E+⟩ because at this point the automaton has built
the T∗ part of the current rhs and remembers that the prefix of
the suspended rhs is E+. The computation partially shown in
Figure 17 is equal to that of Figure 15 up to a renaming of the
states; the shape of syntax-trees and consequently the sequence
of push, shift and pop moves in OPL depends only on the OPM,
not on the visited states.

step input state stack
0 e + e ∗ Le + eM# ⟨ε, ε⟩ Z0

1 +e ∗ Le + eM# ⟨e, ε⟩ [e, ⟨ε, ε⟩]Z0

2 +e ∗ Le + eM# ⟨E, ε⟩ Z0

3 e ∗ Le + eM# ⟨E+, ε⟩ [+, ⟨E, ε⟩]Z0

4 ∗Le + eM# ⟨e, ε⟩ [e, ⟨E+, ε⟩][+, ⟨E, ε⟩]Z0

5 ∗Le + eM# ⟨T, E+⟩ [+, ⟨E, ε⟩]Z0

6 Le + eM# ⟨T∗, E+⟩ [∗, ⟨T, E+⟩][+, ⟨E, ε⟩]Z0

Figure 17: Partial accepting computation of the automaton built from grammar
GAEP.

The converse construction from OPA to OPG is somewhat
simpler; in essence, from a given OPA A = (Σ,M,Q, I, F, δ) a
grammar G is built whose nonterminals are 4-tuples (a, q, p, b) ∈
Σ × Q × Q × Σ, written as ⟨a p, qb⟩. For simplicity we assume
that the OPM has no circularities in the � relation: in this way
there is an upper bound to the length of P’s rhs; in the (seldom
19) case where this hypothesis is not verified we can resort to a
generalized version of OPG which allows for rhs of grammar
productions that include regular expressions [40] as it has been
done in other extended forms of CFG. G’s rules are built on the
basis of A’s chains as follows (particular cases are omitted for
simplicity):

• for every simple chain a0 [a1a2 . . . an]an+1 , if there is a se-
quence ofA’s transitions that, while reading the body of

19A ”theoretical” example of OPL that cannot be generated by an OPG with-
out �-circularities is

L = {an(bc)n | n ≥ 1} ∪ {bn(ca)n | n ≥ 1} ∪ {cn(ab)n | n ≥ 1}.
However, we are not aware of OPL used in practical applications that require
such OPM.

the chain starting from q0 leaves A in qn+1, include the
rule

⟨a0 q0, qn+1
an+1⟩ −→ a1a2 . . . an

• for every composed chain a0 [x0a1x1a2 . . . anxn]an+1 , add
the rule

⟨a0 q0, qn+1
an+1⟩ −→ Λ0a1Λ1a2 . . . anΛn

if there is a sequence of A’s transitions that, while read-
ing the body of the chain starting from q0 leaves A in
qn+1, and, for every i = 0, 1, . . . , n, Λi = ε if xi = ε,
otherwise Λi = ⟨ai qi, q′i

ai+1⟩ if xi , ε and there is a path
leading from qi to q′i when traversing xi.

Since the size of G’s nonterminal alphabet is bounded and so
is the number of possible productions thanks to the hypothesis
of absence of circularities in M, the above procedure eventually
terminates when no new rules are added to P.

We have seen that a fundamental issue to state the prop-
erties of most abstract machines is their determinizability: in
the cases examined so far we have realized that the positive
basic result holding for RL extends to the various versions of
structured CFL, though at the expenses of more intricate con-
structions and size complexity of the deterministic versions ob-
tained from the nondeterministic ones, but not to the general
CF family. Given that OPL have been invented just with the
motivation of supporting deterministic parsing, and given that
they belong to the general family of structured languages, it is
not surprising to find that for any nondeterministic OPA with
s states an equivalent deterministic one can be built with 2O(s2)

states, as it happens for the analogous construction for VPL: in
[38] besides giving a detailed construction for the above result,
it is also noticed that, thanks to the fact the construction of an
OPA from an OPG in FNF produces an automaton already de-
terministic –since the grammar has no repeated rhs–, building a
deterministic OPA from an OPG by first putting the OPG into
FNF produces an automaton of an exponentially smaller size
than the other way around.

5.1.2. Operator precedence vs other structured languages
A distinguishing feature of OPL is that, on the one hand

they have been defined to support deterministic parsing, i.e.,
the construction of the syntax-tree of any sentence which is not
immediately visible in the sentence itself but, on the other hand,
they can still be considered as structured in the sense that their
syntax-trees are univocally determined once an OPM is fixed, as
it happens when we enclose grammar’s rhs within parentheses
or we split the terminal alphabet into Σc∪Σr∪Σi. It is therefore
natural to compare their generative power with that of other
structured languages.

In this respect, the main result of this section is that OPL
strictly include VPL, which in turn strictly include parenthesis
languages and the languages generated by balanced grammars
(discussed in Section 4.3.1).

This result was originally proved in [31]. To give an intu-
itive explanation of this claim consider the following remarks:

25

Σc Σr Σi

Σc ⋖ =̇ ⋖

Σr ⋗ ⋗ ⋗

Σi ⋗ ⋗ ⋗

Legend
Σc denotes “calls”
Σr denotes “returns”
Σi denotes internal characters

Figure 18: A partitioned matrix, where Σc, Σr ,Σi are set of terminal characters.
A precedence relation in position Σα, Σβ means that relation holds between all
symbols of Σα and all those of Σβ.

• Sequences ∈ Σ∗i can be assimilated to regular “sublan-
guages” with a linear structure; if we conventionally as-
sign to them a left-linear structure, this can be obtained
through an OPM where every character, but those in Σc,
takes precedence over all elements in Σi; by stating in-
stead that all elements of Σc yield precedence to the ele-
ments in Σi we obtain that after every call the OPA pushes
and pops all subsequent elements of Σi, as an FSA would
do without using the stack.

• All elements of Σr produce a pop from the stack of the
corresponding element of Σc, if any; thus we obtain the
same effect by letting them take precedence over all other
terminal characters.

• A VPA performs a push onto its stack when (and only
when) it reads an element of Σc, whereas an OPA pushes
the elements to which some other element yields prece-
dence; thus, it is natural to state that whenever on top
of the stack there is a call symbol, possibly after having
visited a subtree whose result is stored as the state com-
ponent in the top of the stack together with the terminal
symbol, such a symbol yields precedence to the following
call (roughly, open parentheses yield precedence to other
open parentheses and closed parentheses take precedence
over other closed parentheses).

• Once the whole subsequence embraced by two matching
call and return is scanned and possibly reduced, the two
terminals are faced, with the possible occurrence of an
irrelevant nonterminal in between, and therefore the call
must be equal in precedence to the return.

• Finally, the usual convention that # yields precedence to
everything and everything takes precedence over # en-
ables the managing of possible unmatched returns at the
beginning of the sentence and unmatched calls at its end.

In summary, for every VPAA with a given partitioned alphabet
Σ, an OPM such as the one displayed in Figure 18 and an OPA
A′ defined thereon can be built such that L(A′) = L(A).

In [31] it is also shown the converse property, i.e., that when-
ever an OPM is such that the terminal alphabet can be parti-
tioned into three disjoint sets Σc, Σr,Σi such that the OPM has
the shape of Figure 18, any OPL defined on such an OPM is
also a VPL. Strict inclusion of VPL within OPL follows from
the fact that VPA –which are a subclass of DPDA– recognize

VPL in real-time, whereas OPL include also languages that can-
not be recognized by any DPDA (see Section 3.1.1); there are
also real-time OPL20 such as

L = {bncn | n ≥ 1} ∪ { f ndn | n ≥ 1} ∪ {en(f b)n | n ≥ 1}

that are not VPL. In fact, strings of type bncn impose that b is
a call and c a return; for similar reasons, f must be a call and
d a return. Strings of type en(f b)n impose that at least one of
b and f must be a return, a contradiction for a VP alphabet. In
conclusion we have the following result:

Theorem 5.12. VPL are the subfamily of OPL whose OPM is
a partitioned matrix, i.e., a matrix whose structure is depicted
in Figure 18.

As a corollary OPL also strictly include balanced languages
and parenthesis languages. OPL are instead uncomparable with
HRDPDL: we have already seen that the language L1 = {anban}
is an HRDPDL but it is neither a VPL nor an OPL since it nec-
essarily requires a conflict a⋖a and a⋗a; conversely, the previ-
ous language L2 = {ambncndm | m, n ≥ 1} ∪ {amb+edm | m ≥ 1}
can be recognized by an OPA but by no HRDPDA (see Sec-
tion 3.1.1).

The increased power of OPL over other structured languages
goes far beyond the mathematical containment properties and
opens several application scenarios that are hardly accessible by
“traditional” structured languages. The field of programming
languages was the original motivation and source of inspira-
tion for the introduction of OPL; arithmetic expressions, used
throughout this paper as running examples, are just a small but
meaningful subset of such languages and we have emphasized
from the beginning that their partially hidden structure cannot
be “forced” to the linearity of RL, nor can always be made ex-
plicit by the insertion of parentheses.

VPL too have been presented as an extension of parenthesis
languages with the motivation that not always calls, e.g. proce-
dure calls, can be matched by corresponding returns: a sudden
closure, e.g. due to an exception or an interrupt or an unex-
pected end may leave an open chain of suspended calls. Such a
situation, however, may need a generalization that cannot be
formalized by the VPL formalism, since in VPL unmatched
calls can occur only at the end of a string.21 Imagine, for in-
stance, that the occurrence of an interrupt while serving a chain
of calls imposes to abort the chain to serve immediately the in-
terrupt; after serving the interrupt, however, the normal system
behavior may be resumed with new calls and corresponding re-
turns even if some previous calls have been lost due to the need
to serve the interrupt with high priority. Various, more or less

20When we say that an OPL L is real-time we mean, as usual, that there is
an abstract machine, in particular a DPDA, recognizing it that performs exactly
|x| moves for every input string x; this is not to say that an OPA accepting L
operates in real-time, since OPA’s pop moves are defined as ε moves. A real-
time subclass of OPA could be defined but has not yet been done so far.

21Recently, such a weakness of VPL has been acknowledged in [41] where
the authors introduced colored VPL to cope with the above problem; the ex-
tended family, however, still does not reach the power of OPL ([41]).

26

sophisticated, policies can be designed to manage such systems
and can be adequately formalized as OPL. The next example
describes a first simple case of this type; other more sophisti-
cated examples of the same type and further ones inspired by
different application fields can be found in [38].

Example 5.13 (Managing interrupts). Consider a software
system that is designed to serve requests issued by different
users but subject to interrupts. Precisely, assume that the sys-
tem manages “normal operations” according to a traditional
LIFO policy, and may receive and serve some interrupts de-
noted as int.

We model its behavior by introducing an alphabet with two
pairs of calls and returns: call and ret denote the call to, and
return from, a normal procedure; int, and serve denote the oc-
currence of an interrupt and its serving, respectively. The oc-
currence of an interrupt provokes discarding possible pending
calls not already matched by corresponding rets; furthermore
when an interrupt is pending, i.e., not yet served, calls to nor-
mal procedures are not accepted and consequently correspond-
ing returns cannot occur; interrupts however, can accumulate
and are served themselves along a LIFO policy. Once all pend-
ing interrupts have been served the system can accept new calls
and manage them normally.

Figure 19 (a) shows an OPM that assigns to sequences on
the above alphabet a structure compatible with the described
priorities. Then, a suitable OPA can specify further constraints
on such sequences; for instance the automaton of Figure 19 (b)
restricts the set of sequences compatible with the matrix by im-
posing that all int are eventually served and the computation
ends with no pending calls; furthermore unmatched serve and
ret are forbidden. E.g., the string call.call.ret.int.serve.call.ret

is accepted through the sequence of states q0
call−→ q1

call−→ q1
ret−→

q1
q1
=⇒ q1

q0
=⇒ q0

int−→ q2
serve−→ q2

q0
=⇒ q0

call−→ q1
ret−→ q1

q0
=⇒

q0; on the contrary, a sequence beginning with call.serve would
not be accepted.

5.1.3. Closure and decidability properties
Structured languages with compatible structures often en-

joy many closure properties typical of RL; noticeably, fami-
lies of structured languages are often Boolean algebras. The
intuitive notion of compatible structure is formally defined for
each family of structured languages; for instance two VPL have
compatible structure iff their tri-partition of Σ is the same; two
height-deterministic PDA languages (HPDL) have compatible
structure if they are synchronized. In the case of OPL, the no-
tion of structural compatibility is naturally formalized through
the OPM.

Definition 5.14. Given two OPM M1 and M2, we define set in-
clusion and union:

M1 ⊆ M2 if ∀a, b : (M1)ab ⊆ (M2)ab

M = M1 ∪ M2 if ∀a, b : Mab = (M1)ab ∪ (M2)ab.

Two matrices are compatible if their union is conflict-free.
A matrix is total (or complete) if it contains no empty cell.

The following theorem has been proved originally in [14]
by exploiting some standard forms of OPG that have been ap-
plied to grammar inference problems [15].

Theorem 5.15. For any conflict-free OPM M the OPL whose
OPM is contained in M are a Boolean algebra. In particular, if
M is complete, the top language of its associated algebra is Σ∗

with the structure defined by M.

Notice however, that the same result could be proved in a
simpler and fairly standard way by exploiting OPA and their
traditional composition rules (which pass through determiniza-
tion to achieve closure under complement). As usual in such
cases, thanks to the decidablity of the emptiness problem for
general CFL, a major consequence of Boolean closures is the
following corollary.

Corollary 5.16. The inclusion problem between OPL with com-
patible OPM is decidable.

Closure under concatenation and Kleene ∗ has been proved more
recently in [31]; whereas such closures are easily proved or
disproved for many families of languages, the technicalities to
achieve this result are not trivial for OPL; however we do not
go into their description since closure or non-closure w.r.t. these
operations is not of major interest in this paper.

5.1.4. Logic characterization
Achieving a logic characterization of OPL has probably been

the most difficult job in the recent revisit of these languages and
posed new challenges w.r.t. the analogous path previously fol-
lowed for RL and then for CFL [28] and VPL [8]. In fact we
have seen that moving from linear languages such as RL to tree-
shaped ones such as CFL led to the introduction of the relation
M between the positions of leftmost and rightmost leaves of any
subtree (generated by a grammar in DGNF); the obtained char-
acterization in terms of first-order formulas existentially quan-
tified w.r.t. the M relation (which is a representation of the sen-
tence structure) however, was suffering from the lack of closure
under complementation of CFL [28]; the same relation instead
proved more effective for VPL thanks to the fact that they are
structured and enjoy all necessary closures.

To the best of our knowledge, however, all previous char-
acterizations of formal languages in terms of logics that refer
to string positions (for instance, there is significant literature
on the characterization of various subclasses of RL in terms of
first-order or temporal logics, see, e.g., [2]) have been given for
languages whose recognizing automata operate in real-time.
This feature is the key that allows, in the exploitation of MSO
logic, to state a natural correspondence between automaton’s
state qi and second-order variable Xi in such a way that the
value of Xi is the set of positions where the state visited by the
automaton is qi.

OPL instead include also DCFL that cannot be recognized
by any DPDA in real-time and, as a consequence, there are po-
sitions where the recognizing OPA traverses different configu-
rations with different states. As a further consequence, the M

27

call ret int serve
call ⋖ =̇ ⋗ ⋗
ret ⋗ ⋗ ⋗ ⋗
int ⋖ �

serve ⋗ ⋗ ⋗ ⋗

q0

q2 q1

int call

int

serve
q2

q0

call

ret
q1

q0

(a) (b)

Figure 19: OPM (a) and automaton (b) for the language of Example 5.13.

relation adopted for CFL and VPL is not anymore a one-to-
one relation since the same position may be the position of the
left/rightmost leaf of several subtrees of the whole syntax-tree;
this makes formulas such as the key ones given in Section 4.2.1
meaningless.

The following key ideas helped overtaking the above diffi-
culties:

• A new relation µ replaces the original M adopted in [28]
and [8]; µ is based on the look-ahead-look-back mecha-
nism which drives the (generalized) input-driven parsing
of OPL based on precedence relations: thus, whereas in
M(x, y) x, y denote the positions of the extreme leaves of
a subtree, in µ(x, y) they denote the position of the con-
text of the same subtree, i.e., respectively, of the character
that yields precedence to the subtree’s leftmost leaf, and
of the one over which the subtree’s rightmost leaf takes
precedence.

Formally, µ(x, y) holds in a string #w# iff
#w# = w1aw2bw3, |w1| = x, |w1aw2| = y, and a[w2]b is a
chain. The new µ relation is not one-to-one as well, but,
unlike the original M, its parameters x, y are not “con-
sumed” by a pop transition of the automaton and remain
available to be used in further automaton transitions of
any type. In other words, µ holds between the positions
0 and n+ 1 of every chain, where, by convention, 0 is the
position of the first # and n + 1 is that of the last one (see
Definition 5.6).

For instance, Figure 20 displays the µ relation, graphi-
cally denoted by arrows, holding for the sentence e + e ∗Le + eM generated by grammar GAEP: we have µ(0, 2),
µ(2, 4), µ(5, 7), µ(7, 9), µ(5, 9), µ(4, 10), µ(2, 10), and µ(0,
10). Such pairs correspond to contexts where a reduce
operation is executed during the parsing of the string (they
are listed according to their execution order).

In general µ(x, y) implies y > x + 1, and a position x
may be in relation µ with more than one position and
vice versa. Moreover, if w is compatible with M, then
µ(0, |w| + 1).

e + e ∗ L e + e M

0 1 2 3 4 5 6 7 8 9 10

Figure 20: The string e + e ∗ Le + eM, with positions and relation µ.

Example 5.17. The following sentence of the MSO logic
enriched with the µ relation defines, within the universe
of strings compatible with the OPM of Figure 14(a), the
language where parentheses are used only when they are
needed (i.e. to give precedence to + over ∗).

∀x∀y

µ(x, y) ∧ L(x + 1)∧M(y − 1)
⇒

(∗(x) ∨ ∗(y))∧

∃z

x + 1 < z < y − 1 ∧ +(z) ∧

¬∃u∃v

 x + 1 < u < z ∧ L(u)∧
z < v < y − 1 ∧ M(v)∧

µ(u − 1, v + 1)

• Since in every position there may be several states held

by the automaton while visiting that position, instead of
associating just one second-order variable to each state
of the automaton we define three different sets of second-
order variables, namely, A0,A1, . . . ,AN , B0,B1, . . . ,BN

and C0,C1, . . . ,CN . Set Ai contains those positions of
word w where state qi may be assumed after a shift or
push transition, i.e. after a transition that “consumes” an
input symbol. Sets Bi and Ci encode a pop transition con-
cluding the reading of the body of a chain a[w0a1w1 . . .
alwl]al+1 in a state qi: set Bi contains the position of sym-
bol a that precedes the corresponding push, whereas Ci

contains the position of al, which is the symbol on top
of the stack when the automaton performs the pop move
relative to the whole chain.

Figure 21 presents such sets for the example automaton
of Figure 15, with the same input as in Figure 20. Notice
that each position, except the last one, belongs to exactly

28

one Ai, whereas it may belong to several Bi and at most
one Ci.

We now outline how an OPA can be derived from an MSO
logic formula making use of the new symbol µ and conversely.

From MSO formula to OPA
The construction from MSO logic to OPA essentially fol-

lows the lines given originally by Büchi, and reported in Sec-
tion 2.1: once the original alphabet has been enriched and the
formula has been put in the canonical form in the same way as
described in Section 2.1, we only need to define a suitable au-
tomaton fragment to be associated with the new atomic formula
µ(Xi, X j); then, the construction of the global automaton corre-
sponding to the global formula proceeds in the usual inductive
way.

Figure 22 represents the OPA for atomic formula ψ = µ(X,
Y). As before, labels are triples belonging to Σ × {0, 1}2, where
the first component encodes a character a ∈ Σ, the second the
positions belonging to X (with 1) or not (with 0), while the
third component is for Y. The symbol ◦ is used as a shortcut for
any value in Σ compatible with the OPM, so that the resulting
automaton is deterministic.

The semantics of µ requires for µ(X,Y) that there must be
a chain a[w2]b in the input word, where a is the symbol at the
only position in X, and b is the symbol at the only position in Y.
By definition of chain, this means that a must be read, hence in
the position represented by X the automaton performs either a
push or a shift move (see Figure 22, from state q0 to q1), as pop
moves do not consume input. After that, the automaton must
read w2. In order to process the chain a[w2]b, reading w2 must
start with a push move (from state q1 to state q2), and it must
end with one or more pop moves, before reading b (i.e. the only
position in Y – going from state q3 to qF).

This means that the automaton, after a generic sequence of
moves corresponding to visiting an irrelevant (for µ(X,Y)) por-
tion of the syntax-tree, when reading the symbol at position X
performs either a push or a shift move, depending on whether X
is the position of a leftmost leaf of the tree or not. Then it vis-
its the subsequent subtree ending with a pop labeled q1; at this
point, if it reads the symbol at position Y, it accepts anything
else that follows the examined fragment.

It is interesting to compare the diagram of Figure 22 with
those of Figure 1 (c) and of Figure 9: the first one, referring
to RL, uses two consecutive moves; the second one, referring
to VPL, may perform an unbounded number of internal moves
and of matching call-return pairs between the call-return pair in
positions x, y; the OPA does the same as the VPA but needs a
pair of extra moves to take into account the look-ahead-look-
back implied by precedence relations.

From the OPAA to the MSO formula
In this case the overall structure of the logic formula φ sat-

isfied by the sentences accpepted by a given OPA is the same
as in the previous cases for RL and VPL, and is given below:

φ := ∃e
∃A0,A1, . . . ,AN

∃B0,B1, . . . ,BN

∃C0,C1, . . . ,CN

Start0 ∧ φδ ∧
∨
q f ∈F

End f

 , (1)

where the first and last subformulae encode the initial and final
states of the run, respectively; formula φδ is defined as φδpush ∧
φδshift ∧ φδpop and encodes the three transition functions of the
automaton, which are expressed as the conjunction of forward
and backward formulae. Variable e is used to refer to the end
of a string.

The complete formalization of the δ transition relation as a
collection of formulas relating the various variables Ai, Bi,Ci,
however, is much more involved than in the two previous cases.
Here we only provide a few meaningful examples of such for-
mulas, just to give the essential ideas of how they have been
built; their complete set can be found in [38] together with the
equivalence proof. Without loss of generality we assume that
the OPA is deterministic.

Preliminarily, we introduce some notation to make the fol-
lowing formulas more understandable:

• When considering a chain a[w]b we assume w = w0a1w1
. . . aℓwℓ, with a[a1a2 . . . aℓ]b being a simple chain (any
wg may be empty). We denote by sg the position of sym-
bol ag, for g = 1, 2, . . . , ℓ and set a0 = a, s0 = 0, aℓ+1 = b,
and sℓ+1 = |w| + 1.

• x ⋖ y states that the symbol in position x yields prece-
dence to the one in position y and similarly for the other
precedence relations

• The fundamental abbreviation

Tree(x, z, v, y) := µ(x, y) ∧

(x + 1 = z ∨ µ(x, z))∧
¬∃t(z < t < y ∧ µ(x, t))∧
(v + 1 = y ∨ µ(v, y))∧
¬∃t(x < t < v ∧ µ(t, y))

is satisfied, for every chain a[w]b embraced within posi-
tions x and y, by a (unique, maximal) z such that µ(x, z),
if w0 , ε, z = x + 1 if instead w0 = ε; symmetrically
for y and v. In particular, if w is the body of a simple
chain, then µ(0, ℓ + 1) and Tree(0, 1, ℓ, ℓ + 1) are satis-
fied; if it is the body of a composed chain, then µ(0, |w| +
1) and Tree(0, s1, sℓ, sℓ+1) are satisfied. If w0 = ε then
s1 = 1, and if wℓ = ε then sℓ = |w|. In the exam-
ple of Figure 20 relations Tree(2, 3, 3, 4), Tree(2, 4, 4, 10),
Tree(4, 5, 9, 10), Tree(5, 7, 7, 9) are satisfied, among oth-
ers.

• The shortcut Qi(x, y) is used to represent thatA is in state
qi when at position x and the next position to read, pos-
sibly after scanning a chain, is y. Since the automaton
is not real time, we must distinguish between the case
of push and shift moves, which occur when the automa-
ton reads the character immediately following the current
one (case Succi(x, y)), and the case when the automaton

29

B3 C3

B3 C3

B3 C3

B3 C3

B1 C1 B1 C1 B3 C3 B3 C3

A0 A1 A0 A1 A0 A2 A3 A2 A3 A3

e + e ∗ L e + e M

0 1 2 3 4 5 6 7 8 9 10

Figure 21: The string of Figure 20 with Bi, Ai, and Ci evidenced for the automaton of Figure 15. Pop moves of the automaton are represented by linked pairs Bi, Ci.

q0 q1 q2 q3 qF
(◦, 0, 0)

(◦, 1, 0)

(◦, 1, 0)
q1

(◦, 0, 0)

(◦, 0, 0)

q0 q2

(◦, 0, 0)

(◦, 0, 0)

(◦, 0, 1)

(◦, 0, 1)
q0 (◦, 0, 0)

(◦, 0, 0)

q0, q3, qF

Figure 22: OPA for atomic formula µ(X,Y).

visits a whole subtree –i.e, scans a chain– through a se-
quence of moves terminating with a pop transition in state
qi and the next character to be read is in position y (case
Nexti(x, y)).

Succk(x, y) := x + 1 = y ∧ x ∈ Ak

Nextk(x, y) := µ(x, y) ∧ x ∈ Bk∧
∃z, v (Tree(x, z, v, y) ∧ v ∈ Ck)

Qi(x, y) := Succi(x, y) ∨ Nexti(x, y).

E.g., with reference to Figures 20 and 21, Succ2(5, 6),
Next3(5, 9), and Next3(5, 7) hold.

We can now show a meaningful sample of the various for-
mulas that code the automaton’s transition relation.

• The subformulas representing the initial and final states
of the parsing of a string of length e are defined as fol-
lows.

Starti := 0 ∈ Ai ∧ ¬
∨
j,i

(0 ∈ A j)

where i is the index of the only initial state, and

End f := ¬∃y(e + 1 < y) ∧ Next f (0, e + 1)

∧ ¬
∨
j, f

(Next j(0, e + 1)).

where f is the index of any final state.

• For each transition δpush(qi, c) = qk, the following for-
mula states that ifA is in position x and state qi and reads
the character in position y, it goes to state qk.

φpush f w(i, c, k) := ∀x, y (x ⋖ y ∧ c(y) ∧ Qi(x, y)⇒ y ∈ Ak)

For instance, with reference to the automaton of Figure 15
which recognizes arithmetic expressions with parenthe-
ses, we would build the formulas

∀x, y (x ⋖ y ∧ e(y) ∧ Q0(x, y)⇒ y ∈ A1)

and

∀x, y (x ⋖ y ∧ e(y) ∧ Q2(x, y)⇒ y ∈ A3)

and similar ones for other terminal characters. Notice
that the original formula given in Section 2.1 for RL can
be seen as a particular case of the above one.

• Conversely, if A is in state qk after a push starting from
position x and reading character c, in that position it must
have been in a state qi such that δpush(qi, c) = qk:

φpush bw(c, k) := ∀x, y

x ⋖ y ∧ c(y) ∧ y ∈ Ak∧

(x + 1 = y ∨ µ(x, y))
⇒∨

i|δpush(qi,c)=qk
Qi(x, y)

which, in the case of the automaton of Figure 15 would
produce, e.g., the formulas

∀x, y
(

x ⋖ y ∧ L(y) ∧ y ∈ A2∧
(x + 1 = y ∨ µ(x, y)) ⇒ Q0(x, y) ∨ Q1(x, y)

)
and

∀x, y
(

x ⋖ y ∧ e(y) ∧ y ∈ A3∧
(x + 1 = y ∨ µ(x, y)) ⇒ Q2(x, y)

)
(since there is only one push transition labeled e leading
to q3) and all the similar ones referring to the other ter-
minals and states.

30

• The formulas coding the shift transitions are similar to
the previous ones and therefore omitted.

• To define φδpop we introduce the shortcut Treei, j(x, z, v, y),
which represents the fact thatA is ready to perform a pop
transition from state qi having on top of the stack state q j;
such pop transition corresponds to the reduction of the
portion of string between positions x and y (excluded).

Treei, j(x, z, v, y) := Tree(x, z, v, y) ∧ Qi(v, y) ∧ Q j(x, z).

Formula φδpop is thus defined as the conjunction of three
collections of formulas. As before, the forward (abbre-
viated with the subscript f w) formulas give the sufficient
conditions for two positions to be in the sets Bk and Ck,
when performing a pop move, and the backward formulas
state symmetric necessary conditions. For each transition
δpop(qi, q j) = qk we write

φpop f w(i, j, k) := ∀x, z, v, y
(

Treei, j(x, z, v, y)⇒
x ∈ Bk ∧ v ∈ Ck

)
For each state qk:

φpop bwB(k) := ∀x
(

x ∈ Bk ⇒
∃y, z, v

∨
i, j|δpop(qi ,q j)=qk

Treei, j(x, z, v, y)

)

φpop bwC(k) := ∀v
(

v ∈ Ck ⇒
∃x, y, z

∨
i, j|δpop(qi ,q j)=qk

Treei, j(x, z, v, y)

)
In the case of the automaton of Figure 15 we would have

two φpop f w formulas with i = {0, 1}, j = 1, k = 1 and 4 with
i = {0, 1, 2, 3}, j = 3, k = 3; the following φpop bwB formulas:

∀x
(

x ∈ B1 ⇒
∃y, z, v Tree0,1(x, z, v, y) ∨ Tree1,1(x, z, v, y)

)

∀x
(

x ∈ B3 ⇒
∃y, z, v

∨
i=0...3 Treei,3(x, z, v, y)

)
and similarly for φpop bwC formulas.

5.2. Local parsability for parallel parsers
Let us now go back to the original motivation that inspired

Floyd when he invented the OPG family, namely supporting ef-
ficient, deterministic parsing. In the introductory part of this
section we noticed that the mechanism of precedence relations
isolates the grammar’s rhs from their context so that they can
be reduced to the corresponding lhs independently from each
other. This fact guarantees that, in whichever order such reduc-
tions are applied, at the end a complete grammar derivation will
be built; such a derivation corresponds to a visit of the syntax-
tree, not necessarily leftmost or rightmost, and its construction
has no risk of applying any back-tracks as it happens instead in
nondeterministic parsing. We call this property local parsabil-
ity property, which intuitively can be defined as the possibility
of applying deterministically a bottom-up, shift-reduce pars-
ing algorithm by inspecting only an a priori bounded portion
of any string. Various formal definitions of this concept have
been given in the literature, the first one probably being the one
proposed by Floyd himself in [42]; a fairly general definition of

local parsability and a proof that OPG enjoy it can be found in
[43].

Local parsability, however, has the drawback that it loses
chances of deterministic parsing when the information on how
to proceed with the parsing is arbitrarily far from the current
position of the parser, as we noticed in the case of language
L = {0anbn | n ≥ 0} ∪ {1anb2n | n ≥ 0}. We therefore have
a trade-off between the size of the family of recognizable lan-
guages, which in the case of LR grammars is the whole DCFL
class (see Section 3.1.1), and the constraint of proceeding rig-
orously left-to-right for the parser. So far this trade-off has been
normally solved in favor of the generality in the absence of se-
rious counterparts in favor of the other option. We argue, how-
ever, that the massive advent of parallel processing, even in the
case of small architectures such as those of tablets and smart-
phones, could dramatically change the present state of affairs.
On the one hand parallelizing parsers such as LL or LR ones
requires reintroducing a kind of nondeterministic guess on the
state of the parser in a given position, which in most cases voids
the benefits of exploiting parallel processors (see [43] for an
analysis of previous literature on various attempts to develop
parallel parsers). On the other hand, OPL are from the begin-
ning oriented toward parallel analysis whereas their previous
use in compilation shows that they can be applied to a wide va-
riety of practical languages, and further more as suggested by
other examples given here and in [38].

Next we show how we exploited the local parsability prop-
erty of OPG to realize a complete and general parallel parser
for these grammars. A first consequence of the basic property
is the following statement.

Statement 2. For every substring aδb of γaδbη ∈ V∗ derivable
from S , there exists a unique string α, called the irreducible
string, deriving δ such that S

∗⇒ γaαbη
∗⇒ γaδbη, and the

precedence relations between the consecutive terminals of aαb
do not contain the pattern ⋖ (�)∗ ⋗. Therefore there exists a
factorization aαb = ζθ into two possibly empty factors such
that the left factor does not contain ⋖ and the right factor does
not contain ⋗.

On the basis of the above statement, Algorithm 1 may re-
ceive as input a portion of a string, not necessarily enclosed
within the delimiters #, and the resulting output stack S can be
split in two parts, i.e. one that stores the substring ζ and does
not contain ⋖; one that stores θ and does not contain ⋗. We
call such stacks SL and SR, respectively. The complete descrip-
tion of a parallel OP parser based on splitting an input string on
arbitrary fragments is reported in Algorithm 2.

We illustrate it through an example based on the grammar
GAEFNF , which is a FNF of GAE1. If we supply to the parser
the partial string +e ∗ e ∗ e + e, we obtain ζ = +T+, θ = e and
+T+

∗⇒ +e ∗ e ∗ e+ since + ⋗ + and + ⋖ e.
At this point it is fairly easy to let several such generalized

parsers work in parallel:

• Suppose to use k parallel processors, also called work-
ers; then split the input into k chunks; given that an OP
parser needs a look-ahead-look-back of one character, the

31

Algorithm 2 : Parallel-parsing(β, k)

1. Split the input string β into k substrings: #β1β2 . . . βk#.

2. Launch k instances of Algorithm 1, where, for each 1 ≤ i ≤ k, the parameters are S = (ai,⊥), α = βibi, head = |β1β2 . . . βi−1|+
1, end = |β1β2 . . . βi| + 1; ai is the last symbol of βi−1, and bi the first of βi+1. Conventionally β0 = βk+1 = #. The result of this
pass are k′ ≤ k stacks, where each Si of them can be split in two parts: SL

i and SR
i , the first not containing ⋖, and the second

not containing ⋗.

3. Repeat:

(a) For each adjacent non-empty stack pairs (SL
i ,SR

i) and (SL
i+1,SR

i+1), launch an instance of Algorithm 1, with:
S = SR

i (a,⊥), where a ∈ V is the top symbol in SL
i ,

α = X2 . . . Xn, where SL
i+1 = (Xn, pn)(Xn−1, pn−1) . . . (X2, p2)(X1, p1),

head = 1, end = |α|.
(b) Until either we have a single, un-splittable stack S′ or the computation is aborted and some error recovery action is

taken.

4. Return S′.

chunks must overlap by one character for each consecu-
tive pair. For instance, the global input string #e + e + e ∗
e ∗ e+ ∗e+ e#, with k = 3 could be split as shown below:

#
1︷︸︸︷

e + e +
2︷ ︸︸ ︷

e ∗ e ∗ e + e
3︷ ︸︸ ︷

∗ e + e #

where the unmarked symbols + and e are shared by the
adjacent segments. The splitting can be applied arbitrar-
ily, although in practice it seems natural to use segments
of approximately equal length and/or to apply some heuris-
tic criterion (for instance, if possible one should avoid
particular cases where only ⋖ or ⋗ relations occur in a
single chunk so that the parser could not produce any re-
duction).

• Each chunk is submitted to one of the workers which pro-
duces a partial result in the form of the pair (SL,SR) (no-
tice that some of those partial stacks may be empty). In
our example, the three chunks submitted to workers, and
the resulting stacks are the following:

1. Input 1: S = (#,⊥), α = e + e+;
output 1: S = (+,⋖)(E,⊥)(#,⊥).

2. Input 2: S = (+,⊥), α = e ∗ e ∗ e + e;
output 2: S = (e,⋗)(+,⋖)(T,⊥)(+,⊥).

3. Input 3: S = (e,⊥), α = ∗e + e#;
output 3: S = (#,⋗)(F,⊥)(+,⋗)(F,⊥)(∗,⋗)(e,⊥).

Hence, the corresponding output stack pairs are:
SL

1 = ε, SR
1 = (+,⋖)(E,⊥)(#,⊥);

SL
2 = (+,⋖)(T,⊥)(+,⊥), SR

2 = (e,⋗);
SL

3 = (#,⋗)(F,⊥)(+,⋗)(F,⊥)(∗,⋗)(e,⊥), SR
3 = ε.

• The partial results are then combined in new input strings,
containing also nonterminals, and starting stacks, and the
process is iterated until a short enough single chunk is
processed and the original input string is accepted or re-
jected. In our example, the number of workers becomes
two, with the following inputs and outputs:

1. Input 1: S = (+,⋖)(E,⊥)(#,⊥), α = T+;
output 1: S = (+,⋖)(E,⊥)(#,⊥).

2. Input 2: S = (e,⋖)(+,⊥), α = ∗F + F#;
output 2: S = (#,⋗)(F,⊥)(+,⋗)(T,⊥)(+,⊥).

In practice it may be convenient to build the new seg-
ments to be supplied to the workers by facing an SR with
the following SL so that the likelihood of applying many
new reductions in the next pass is increased. For instance
the ζ = +T+ part produced by the parsing of the second
chunk could be paired with the SR = #E+ part obtained
from the parsing of the first chunk, producing the string
#E + T+ to be supplied to a worker for the new iteration.
Some experience shows that quite often optimal results in
terms of speed-up are obtained with 2, at most 3 passes
of parallel parsing.

[43] describes in detail PAPAGENO, a PArallel PArser GEN-
eratOr22 built on the basis of the above algorithmic schema.
It has been applied to several real-life data definition, or pro-
gramming, languages including JSON, XML, JavaScript, and
Lua and different HW architectures. The paper also reports on
the experimental results in terms of the obtained speed-up com-
pared with standard sequential parser generators as Bison. Be-
ing able to parse documents in parallel is getting more and more
important nowadays, e.g. for Big Data processing, where often
documents are in XML or JSON. Another important aspect is
power efficiency: think e.g. about a Web rendering engine on a
smartphone, which must process a complex HTML5 page with
plenty of JavaScript code in it.

6. Concluding remarks

The main goal of this paper is to show that an old-fashioned
and almost abandoned family of formal languages indeed offers

22PAPAGENO is freely available at https://github.com/

PAPAGENO-devels/papageno under GNU license.

32

https://github.com/PAPAGENO-devels/papageno
https://github.com/PAPAGENO-devels/papageno

considerable new benefits in apparently unrelated application
fields of high interest in modern applications, i.e., automatic
property verification and parallelization. In the first field OPL
significantly extend the generative power of the successful class
of VPL still maintaining all of their properties: to the best of our
knowledge, OPL are the largest class of languages closed un-
der all major language operations and provided with a complete
classification in terms of MSO logic.

Various other results about this class of languages have been
obtained or are under development, which have not been in-
cluded in this paper for length limits. We mention here just the
most relevant or promising ones with appropriate references for
further reading.

• The theory of OPL for languages of finite length strings
has been extended in [38] to ω-languages, i.e. languages
of infinite length strings: the obtained results perfectly
parallel those originally obtained by Büchi and others for
RL and subsequently extended to other families, notice-
ably VPL [8]; in particular, ω-OPL lose determinizability
in case of Büchi acceptance criterion as it happens for RL
and VPL.

• Some investigation is going on to devise more tractable
automatic verification algorithms than those allowed by
the full characterization of these languages in terms of
MSO logic. On this respect, the state of the art is ad-
mittedly still far from the success obtained with model
checking exploiting various forms of temporal logics for
FSA and several extensions thereof such as, e.g., timed
automata [44]. Some interesting preliminary results have
been obtained for VPL by [12] and for a subclass of OPL
in [45].

• The local parsability property can be exploited not only to
build parallel parsers but also to make them incremental,
in such a way that when a large piece of text or software
code is locally modified its analysis should not be redone
from scratch but only the affected part of the syntax-tree
is “plugged” in the original one with considerable saving;
furthermore incremental and/or parallel parsing can be
naturally paired with incremental and/or parallel seman-
tic processing, e.g. realized through the classic schema
of attribute evaluation [46, 19]. Some early results on in-
cremental software verification by exploiting the locality
property are reported in [47]. We also mention ongoing
work on parallel XML-based query processing.

• A seminal paper by Schützemberger [48] introduced the
concept of weighted languages as RL where each word
is given a weight in a given algebra which may represent
some “attribute” of the word such as importance or prob-
ability. Later, these weighted languages too have been
characterized in terms of MSO logic [49] and such a char-
acterization has also been extended to VPL [50] and ω-
VPL [51]. Recently, our two research groups started a
joint research on weighted OPL which confirmed that the
concepts of weighted languages too can be extended to

OPL as it happened for all other properties investigated
in this paper [52].

Acknowledgments. We acknowledge the contribution to our research
given by Alessandro Barenghi, Stefano Crespi Reghizzi, Violetta Lonati,
Angelo Morzenti, and Federica Panella. We also thank the anonymous
reviewers for their careful reading and valuable suggestions.

References

[1] E. M. Clarke, E. A. Emerson, A. P. Sistla, Automatic verification of finite-
state concurrent systems using temporal logic specifications, ACM Trans.
Program. Lang. Syst. 8 (1986) 244–263.

[2] E. A. Emerson, Temporal and modal logic, in: Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B), 1990,
pp. 995–1072.

[3] R. McNaughton, Parenthesis Grammars, J. ACM 14 (3) (1967) 490–500.
[4] J. Thatcher, Characterizing derivation trees of context-free grammars

through a generalization of finite automata theory, Journ. of Comp. and
Syst.Sc. 1 (1967) 317–322.

[5] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, M. Tommasi, Tree automata techniques and appli-
cations, Available on: http://www.grappa.univ-lille3.fr/tata,
release October, 12th 2007 (2007).

[6] K. Mehlhorn, Pebbling mountain ranges and its application of DCFL-
recognition, in: Automata, languages and programming (ICALP-80),
Vol. 85 of LNCS, 1980, pp. 422–435.

[7] B. von Braunmühl, R. Verbeek, Input-driven languages are recognized
in log n space, in: Proceedings of the Symposium on Fundamentals of
Computation Theory, Lect. Notes Comput. Sci. 158, Springer, 1983, pp.
40–51.

[8] R. Alur, P. Madhusudan, Adding nesting structure to words, J. ACM
56 (3).

[9] J. R. Büchi, Weak Second-Order Arithmetic and Finite Automata, Math-
ematical Logic Quarterly 6 (1-6) (1960) 66–92.

[10] C. C. Elgot, Decision problems of finite automata design and related arith-
metics, Trans. Am. Math. Soc. 98 (1) (1961) 21–52.

[11] B. A. Trakhtenbrot, Finite automata and logic of monadic predicates (in
Russian), Doklady Akademii Nauk SSR 140 (1961) 326–329.

[12] R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, L. Libkin,
First-order and temporal logics for nested words, Logical Methods in
Computer Science 4 (4).

[13] R. W. Floyd, Syntactic Analysis and Operator Precedence, J. ACM 10 (3)
(1963) 316–333.

[14] S. Crespi Reghizzi, D. Mandrioli, D. F. Martin, Algebraic Properties of
Operator Precedence Languages, Information and Control 37 (2) (1978)
115–133.

[15] S. Crespi Reghizzi, M. A. Melkanoff, L. Lichten, The Use of Grammatical
Inference for Designing Programming Languages, Commun. ACM 16 (2)
(1973) 83–90.

[16] D. E. Knuth, On the translation of languages from left to rigth, Informa-
tion and Control 8 (6) (1965) 607–639.

[17] M. A. Harrison, Introduction to Formal Language Theory, Addison Wes-
ley, 1978.

[18] D. Grune, C. J. Jacobs, Parsing techniques: a practical guide, Springer,
New York, 2008.

[19] S. Crespi Reghizzi, L. Breveglieri, A. Morzenti, Formal Languages and
Compilation, Second Edition, Texts in Computer Science, Springer, 2013.

[20] D. Mandrioli, M. Pradella, Generalizing input-driven languages: theoret-
ical and practical benefits, CoRR abs/1705.00984.
URL http://arxiv.org/abs/1705.00984

[21] C. A. R. Hoare, An axiomatic basis for computer programming, Commun.
ACM 12 (10) (1969) 576–580.

[22] W. Thomas, Handbook of theoretical computer science (vol. B), MIT
Press, Cambridge, MA, USA, 1990, Ch. Automata on infinite objects,
pp. 133–191.

[23] M. Frick, M. Grohe, The complexity of first-order and monadic second-
order logic revisited, Ann. Pure Appl. Logic 130 (1-3) (2004) 3–31. doi:
10.1016/j.apal.2004.01.007.
URL https://doi.org/10.1016/j.apal.2004.01.007

33

http://www.grappa.univ-lille3.fr/tata
http://arxiv.org/abs/1705.00984
http://arxiv.org/abs/1705.00984
http://arxiv.org/abs/1705.00984
https://doi.org/10.1016/j.apal.2004.01.007
https://doi.org/10.1016/j.apal.2004.01.007
http://dx.doi.org/10.1016/j.apal.2004.01.007
http://dx.doi.org/10.1016/j.apal.2004.01.007
https://doi.org/10.1016/j.apal.2004.01.007

[24] J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe,
A. Sandholm, Mona: Monadic second-order logic in practice, in: Tools
and Algorithms for the Construction and Analysis of Systems, First Inter-
national Workshop, TACAS ’95, LNCS 1019, 1995.

[25] S. A. Greibach, A new normal-form theorem for context-free phrase
structure grammars, J. ACM 12 (1) (1965) 42–52.

[26] J. Hartmanis, J. E. Hopcroft, What makes some language theory problems
undecidable, J. Comput. Syst. Sci. 4 (4) (1970) 368–376.

[27] D. Nowotka, J. Srba, Height-Deterministic Pushdown Automata, in:
L. Kucera, A. Kucera (Eds.), MFCS 2007, Ceský Krumlov, Czech Re-
public, August 26-31, 2007, Proceedings, Vol. 4708 of LNCS, Springer,
2007, pp. 125–134.

[28] C. Lautemann, T. Schwentick, D. Thérien, Logics for context-free lan-
guages, in: L. Pacholski, J. Tiuryn (Eds.), Computer Science Logic, 8th
International Workshop, CSL ’94, Kazimierz, Poland, September 25-30,
1994, Selected Papers, Vol. 933 of Lecture Notes in Computer Science,
Springer, 1994, pp. 205–216.

[29] R. Alur, P. Madhusudan, Visibly Pushdown Languages, in: STOC: ACM
Symposium on Theory of Computing (STOC), 2004.

[30] J. Berstel, L. Boasson, Balanced Grammars and Their Languages, in:
W. B. et al. (Ed.), Formal and Natural Computing, Vol. 2300 of LNCS,
Springer, 2002, pp. 3–25.

[31] S. Crespi Reghizzi, D. Mandrioli, Operator Precedence and the Visibly
Pushdown Property, J. Comput. Syst. Sci. 78 (6) (2012) 1837–1867.

[32] D. Fisman, A. Pnueli, Beyond Regular Model Checking, FSTTCS: Foun-
dations of Software Technology and Theoretical Computer Science 21.

[33] D. Caucal, Synchronization of Pushdown Automata, in: O. H. Ibarra,
Z. Dang (Eds.), Developments in Language Theory, Vol. 4036 of LNCS,
Springer, 2006, pp. 120–132.

[34] A. Potthoff, W. Thomas, Regular tree languages without unary symbols
are star-free, in: Z. Ésik (Ed.), Fundamentals of Computation Theory,
9th International Symposium, FCT ’93, Szeged, Hungary, August 23-
27, 1993, Proceedings, Vol. 710 of Lecture Notes in Computer Science,
Springer, 1993, pp. 396–405.

[35] D. Caucal, On infinite transition graphs having a decidable monadic the-
ory, Theor. Comput. Sci. 290 (1) (2003) 79–115.

[36] M. J. Fischer, Some properties of precedence languages, in: STOC ’69:
Proc. first annual ACM Symp. on Theory of Computing, ACM, New
York, NY, USA, 1969, pp. 181–190.

[37] K. De Bosschere, An Operator Precedence Parser for Standard Prolog
Text, Softw., Pract. Exper. 26 (7) (1996) 763–779.

[38] V. Lonati, D. Mandrioli, F. Panella, M. Pradella, Operator precedence
languages: Their automata-theoretic and logic characterization, SIAM J.
Comput. 44 (4) (2015) 1026–1088.

[39] V. Lonati, D. Mandrioli, M. Pradella, Precedence Automata and Lan-
guages, in: 6th Int. Computer Science Symposium in Russia (CSR), Vol.
6651 of LNCS, 2011, pp. 291–304.

[40] S. Crespi Reghizzi, M. Pradella, Higher-order operator precedence lan-
guages, in: E. Csuhaj-Varjú, P. Dömösi, G. Vaszil (Eds.), Proceedings
15th International Conference on Automata and Formal Languages, AFL
2017, Debrecen, Hungary, September 4-6, 2017., Vol. 252 of EPTCS,
2017, pp. 86–100. doi:10.4204/EPTCS.252.11.
URL https://doi.org/10.4204/EPTCS.252.11

[41] R. Alur, D. Fisman, Colored nested words, in: Language and Automata
Theory and Applications - 10th International Conference, LATA 2016,
Prague, Czech Republic, March 14-18, 2016, Proceedings, 2016, pp.
143–155. doi:10.1007/978-3-319-30000-9_11.
URL http://dx.doi.org/10.1007/978-3-319-30000-9_11

[42] R. W. Floyd, Bounded context syntactic analysis, Commun. ACM 7 (2)
(1964) 62–67.

[43] A. Barenghi, S. Crespi Reghizzi, D. Mandrioli, F. Panella, M. Pradella,
Parallel parsing made practical, Sci. Comput. Program. 112 (3) (2015)
195–226, dOI: 10.1016/j.scico.2015.09.002.

[44] R. Alur, D. L. Dill, A Theory of Timed Automata, Theor. Comput. Sci.
126 (2) (1994) 183–235.

[45] V. Lonati, D. Mandrioli, F. Panella, M. Pradella, First-order logic defin-
ability of free languages, in: L. D. Beklemishev, D. V. Musatov (Eds.),
Computer Science - Theory and Applications - 10th International Com-
puter Science Symposium in Russia, CSR 2015, Listvyanka, Russia, July
13-17, 2015, Proceedings, Vol. 9139 of Lecture Notes in Computer Sci-
ence, Springer, 2015, pp. 310–324.

[46] D. E. Knuth, Semantics of context-free languages, Mathematical Systems
Theory 2 (2) (1968) 127–145.

[47] D. Bianculli, A. Filieri, C. Ghezzi, D. Mandrioli, Syntactic-semantic in-
crementality for agile verification, Sci. Comput. Program. 97 (2015) 47–
54.

[48] M. P. Schützenberger, On the definition of a family of automata, Informa-
tion and Control 4 (2-3) (1961) 245–270.

[49] M. Droste, P. Gastin, Weighted automata and weighted logics, Theor.
Comput. Sci. 380 (1-2) (2007) 69–86.

[50] M. Droste, B. Pibaljommee, Weighted nested word automata and logics
over strong bimonoids, Int. J. Found. Comput. Sci. 25 (5) (2014) 641.

[51] M. Droste, S. Dück, Weighted automata and logics for infinite nested
words, Inf. Comput. 253 (2017) 448–466. doi:10.1016/j.ic.2016.
06.010.
URL https://doi.org/10.1016/j.ic.2016.06.010

[52] M. Droste, S. Dück, D. Mandrioli, M. Pradella, Weighted operator prece-
dence languages, in: K. G. Larsen, H. L. Bodlaender, J. Raskin (Eds.),
42nd International Symposium on Mathematical Foundations of Com-
puter Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark,
Vol. 83 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017, pp. 31:1–31:15. doi:10.4230/LIPIcs.MFCS.2017.31.
URL https://doi.org/10.4230/LIPIcs.MFCS.2017.31

34

https://doi.org/10.4204/EPTCS.252.11
https://doi.org/10.4204/EPTCS.252.11
http://dx.doi.org/10.4204/EPTCS.252.11
https://doi.org/10.4204/EPTCS.252.11
http://dx.doi.org/10.1007/978-3-319-30000-9_11
http://dx.doi.org/10.1007/978-3-319-30000-9_11
http://dx.doi.org/10.1007/978-3-319-30000-9_11
https://doi.org/10.1016/j.ic.2016.06.010
https://doi.org/10.1016/j.ic.2016.06.010
http://dx.doi.org/10.1016/j.ic.2016.06.010
http://dx.doi.org/10.1016/j.ic.2016.06.010
https://doi.org/10.1016/j.ic.2016.06.010
https://doi.org/10.4230/LIPIcs.MFCS.2017.31
https://doi.org/10.4230/LIPIcs.MFCS.2017.31
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.31
https://doi.org/10.4230/LIPIcs.MFCS.2017.31

	Introduction
	Regular Languages
	Logic characterization

	Context-free Languages
	Parsing context-free languages
	Parsing context-free languages deterministically

	Logic characterization of context-free languages

	Structured context-free languages
	Parenthesis grammars and languages
	Input-driven or visibly pushdown languages
	The logic characterization of visibly pushdown languages

	Other structured context-free languages
	Balanced grammars
	Height-deterministic languages

	Operator precedence languages
	Algebraic and logic properties of operator precedence languages
	Operator precedence automata
	Operator precedence vs other structured languages
	Closure and decidability properties
	Logic characterization

	Local parsability for parallel parsers

	Concluding remarks

