326 research outputs found

    Weighted automata define a hierarchy of terminating string rewriting systems

    Get PDF
    The "matrix method" (Hofbauer and Waldmann 2006) proves termination of string rewriting via linear monotone interpretation into the domain of vectors over suitable semirings. Equivalently, such an interpretation is given by a weighted finite automaton. This is a general method that has as parameters the choice of the semiring and the dimension of the matrices (equivalently, the number of states of the automaton). We consider the semirings of nonnegative integers, rationals, algebraic numbers, and reals; with the standard operations and ordering. Monotone interpretations also allow to prove relative termination, which can be used for termination proofs that consist of several steps. The number of steps gives another hierarchy parameter. We formally define the hierarchy and we prove that it is infinite in both directions (dimension and steps)

    Calibrating Generative Models: The Probabilistic Chomsky-SchĂĽtzenberger Hierarchy

    Get PDF
    A probabilistic Chomsky–Schützenberger hierarchy of grammars is introduced and studied, with the aim of understanding the expressive power of generative models. We offer characterizations of the distributions definable at each level of the hierarchy, including probabilistic regular, context-free, (linear) indexed, context-sensitive, and unrestricted grammars, each corresponding to familiar probabilistic machine classes. Special attention is given to distributions on (unary notations for) positive integers. Unlike in the classical case where the "semi-linear" languages all collapse into the regular languages, using analytic tools adapted from the classical setting we show there is no collapse in the probabilistic hierarchy: more distributions become definable at each level. We also address related issues such as closure under probabilistic conditioning

    Acta Cybernetica : Volume 19. Number 2.

    Get PDF

    Implementing flexible operators for regular path queries

    Get PDF
    Given the heterogeneity of complex graph data on the web, such as RDF linked data,a user wishing to query such data may lack full knowledge of its structure and irregularities. Hence, providing users with flexible querying capabilities can be beneficial. The query language we adopt comprises conjunctions of regular path queries, thus including extensions proposed for SPARQL 1.1 to allow for querying paths using regular expressions. To this language we add two operators: APPROX, supporting standard notions of approximation based on edit distance, and RELAX, which performs query relaxation based on RDFS inference rules. We describe our techniques for implementing the extended language and present a performance study undertaken on two real-world data sets. Our baseline implementation performs competitively with other automaton-based approaches, and we demonstrate empirically how various optimisations can decrease execution times of queries containing APPROX and RELAX, sometimes by orders of magnitude

    A Formal View on Training of Weighted Tree Automata by Likelihood-Driven State Splitting and Merging

    Get PDF
    The use of computers and algorithms to deal with human language, in both spoken and written form, is summarized by the term natural language processing (nlp). Modeling language in a way that is suitable for computers plays an important role in nlp. One idea is to use formalisms from theoretical computer science for that purpose. For example, one can try to find an automaton to capture the valid written sentences of a language. Finding such an automaton by way of examples is called training. In this work, we also consider the structure of sentences by making use of trees. We use weighted tree automata (wta) in order to deal with such tree structures. Those devices assign weights to trees in order to, for example, distinguish between good and bad structures. The well-known expectation-maximization algorithm can be used to train the weights for a wta while the state behavior stays fixed. As a way to adapt the state behavior of a wta, state splitting, i.e. dividing a state into several new states, and state merging, i.e. replacing several states by a single new state, can be used. State splitting, state merging, and the expectation maximization algorithm already were combined into the state splitting and merging algorithm, which was successfully applied in practice. In our work, we formalized this approach in order to show properties of the algorithm. We also examined a new approach – the count-based state merging algorithm – which exclusively relies on state merging. When dealing with trees, another important tool is binarization. A binarization is a strategy to code arbitrary trees by binary trees. For each of three different binarizations we showed that wta together with the binarization are as powerful as weighted unranked tree automata (wuta). We also showed that this is still true if only probabilistic wta and probabilistic wuta are considered.:How to Read This Thesis 1. Introduction 1.1. The Contributions and the Structure of This Work 2. Preliminaries 2.1. Sets, Relations, Functions, Families, and Extrema 2.2. Algebraic Structures 2.3. Formal Languages 3. Language Formalisms 3.1. Context-Free Grammars (CFGs) 3.2. Context-Free Grammars with Latent Annotations (CFG-LAs) 3.3. Weighted Tree Automata (WTAs) 3.4. Equivalences of WCFG-LAs and WTAs 4. Training of WTAs 4.1. Probability Distributions 4.2. Maximum Likelihood Estimation 4.3. Probabilities and WTAs 4.4. The EM Algorithm for WTAs 4.5. Inside and Outside Weights 4.6. Adaption of the Estimation of Corazza and Satta [CS07] to WTAs 5. State Splitting and Merging 5.1. State Splitting and Merging for Weighted Tree Automata 5.1.1. Splitting Weights and Probabilities 5.1.2. Merging Probabilities 5.2. The State Splitting and Merging Algorithm 5.2.1. Finding a Good π-Distributor 5.2.2. Notes About the Berkeley Parser 5.3. Conclusion and Further Research 6. Count-Based State Merging 6.1. Preliminaries 6.2. The Likelihood of the Maximum Likelihood Estimate and Its Behavior While Merging 6.3. The Count-Based State Merging Algorithm 6.3.1. Further Adjustments for Practical Implementations 6.4. Implementation of Count-Based State Merging 6.5. Experiments with Artificial Automata and Corpora 6.5.1. The Artificial Automata 6.5.2. Results 6.6. Experiments with the Penn Treebank 6.7. Comparison to the Approach of Carrasco, Oncina, and Calera-Rubio [COC01] 6.8. Conclusion and Further Research 7. Binarization 7.1. Preliminaries 7.2. Relating WSTAs and WUTAs via Binarizations 7.2.1. Left-Branching Binarization 7.2.2. Right-Branching Binarization 7.2.3. Mixed Binarization 7.3. The Probabilistic Case 7.3.1. Additional Preliminaries About WSAs 7.3.2. Constructing an Out-Probabilistic WSA from a Converging WSA 7.3.3. Binarization and Probabilistic Tree Automata 7.4. Connection to the Training Methods in Previous Chapters 7.5. Conclusion and Further Research A. Proofs for Preliminaries B. Proofs for Training of WTAs C. Proofs for State Splitting and Merging D. Proofs for Count-Based State Merging Bibliography List of Algorithms List of Figures List of Tables Index Table of Variable Name

    Acta Cybernetica : Volume 22. Number 2.

    Get PDF

    Parsing for agile modeling

    Get PDF
    Agile modeling refers to a set of methods that allow for a quick initial development of an importer and its further refinement. These requirements are not met simultaneously by the current parsing technology. Problems with parsing became a bottleneck in our research of agile modeling. In this thesis we introduce a novel approach to specify and build parsers. Our approach allows for expressive, tolerant and composable parsers without sacrificing performance. The approach is based on a context-sensitive extension of parsing expression grammars that allows a grammar engineer to specify complex language restrictions. To insure high parsing performance we automatically analyze a grammar definition and choose different parsing strategies for different parts of the grammar. We show that context-sensitive parsing expression grammars allow for highly composable, tolerant and variable-grained parsers that can be easily refined. Different parsing strategies significantly insure high-performance of parsers without sacrificing expressiveness of the underlying grammars
    • …
    corecore