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In Memory of
Professor Ferenc Gécseg





Professor Ferenc Gécseg, member of the Hungarian Academy of Sciences and
Professor Emeritus of the University of Szeged, passed away on 6th October, 2014.

Professor Gécseg studied at the József Attila University from 1957 to 1962 and
received his master degree as mathematics teacher for secondary schools, specialis-
ing in algebra. He joined the faculty of the University of Szeged (or Attila József
University as it was called at that time) in 1962 and worked at this university for
his entire career. In 1976 he received the degree of Doctor of Mathematical Sciences
of the Hungarian Academy of Sciences and was promoted to full professor in 1977.
For several years, he was the chair of the Department of Computer Science of the
Institute of Mathematics and the head of the Research Group on Theory of Au-
tomata of the Hungarian Academy of Sciences. Later he worked as full professor at
the Department of Computer Algorithms and Artificial Intelligence of the Institute
of Informatics. He was a founding member of the Doctoral School of Informatics.

At the beginning of his career, Professor Gécseg conducted research in universal
algebra and later turned to the study of a basic algebraic model of computation,
the so-called finite automaton. He obtained several results opening new vistas
in the field of describing the behaviour of finite automata and systems of finite
automata. His results concerning the composition and decomposition of automata
play an important role, among others, in the study of the complexity of digital
networks. At the end of the 1970’s, he became interested in tree automata and
tree transducers. He co-authored the first monograph dealing with tree automata.
Since tree transducers are a mathematical model of syntax directed translation, his
studies in this area are also relevant to the theory of machine translation. Professor
Gécseg published three monographs, a book chapter, a textbook, and over eighty
academic articles in leading periodicals and refereed conference proceedings.

He was the main organiser of the conferences ‘Algebraic Theory of Automata’
in the mid 1970’s in Szeged which at that time played an important role in cre-
ating and maintaining connections between the scientists of our region and those
of the western countries. Thanks to his teaching and research activities, an au-
tomata theory school evolved in Szeged. Several of his former students are now
leading tutors and professors with extensive international contacts and quite a few
of them were Széchenyi Professor Scholarship holders. A number of scientists have
joined his research work both in Hungary and abroad, the number of citations for
his publications is over 1000. In recognition of his academic work, he was elected
corresponding member of the Hungarian Academy of Sciences in 1987, foreign mem-
ber of the Finnish Academy of Sciences in 1994, and full member of the Hungarian
Academy of Sciences in 1995. In 1989, he became vice-president of the European
Association for Theoretical Computer Science and was reelected for another five
years in 1994. He was a member of the editorial board of foreign and Hungarian
periodicals and served as the editor in chief of the journal Acta Cybernetica for
about two decades. He was regularly invited to programme committees of interna-
tional conferences and acted as the chairman of the programme committees of FCT
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81, FCT 89 and ICALP 95, which is one of the most highly ranked international
conferences in theoretical computer science. These conferences were all organised
in Szeged.

On several occasions he spent quite some time at foreign universities. He was
a visiting professor for a year at Turku University in 1973-74; spent six months
at Tampere University of Technology in 1978 and six months at the University of
Western Ontario in 1987. In 1992, he worked for six months in Turku as a research
professor of the Finnish Academy of Sciences.

He actively participated in the university administration and the academic pub-
lic life. He was the dean of the Faculty of Science of József Attila University from
1987 to 1990. He served as a member of several ministerial and academic commit-
tees, including the Committee on Mathematics and the Committee on Information
Science of the Hungarian Academy of Sciences.

Professor Gécseg played a decisive role in establishing a recognised degree pro-
gramme in Informatics at the University of Szeged, in the creation of a school of
fundamental research in the theory of automata in Hungary, and by raising it to
international standing. At the same time, he did an exemplary work in teaching at
our university and produced very high quality academic results.

His death is a great loss to the University of Szeged and the scientific community.

Szeged, September, 2015

Zoltán Ésik and Zoltán Fülöp
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Two-Step Simulations of Reaction Systems

by Minimal Ones

Arto Salomaa∗

Abstract

Reaction systems were introduced by Ehrenfeucht and Rozenberg with
biochemical applications in mind. The model is suitable for the study of
subset functions, that is, functions from the set of all subsets of a finite set
into itself. In this study the number of resources of a reaction system is
essential for questions concerning generative capacity. While all functions
(with a couple of trivial exceptions) from the set of subsets of a finite set
S into itself can be defined if the number of resources is unrestricted, only a
specific subclass of such functions is defined by minimal reaction systems, that
is, the number of resources is smallest possible. On the other hand, minimal
reaction systems constitute a very elegant model. In this paper we simulate
arbitrary reaction systems by minimal ones in two derivation steps. Various
techniques for doing this consist of taking names of reactions or names of
subsets as elements of the background set. In this way also subset functions
not at all definable by reaction systems can be generated. We follow the
original definition of reaction systems, where both reactant and inhibitor sets
are assumed to be nonempty

Keywords: reaction system, reactant, inhibitor, minimal resources, subset
function, sequence

1 Introduction

A formal model of reaction systems was introduced by Ehrenfeucht and Rozenberg
in [3]. Everything is defined within a fixed finite background set S. The original
purpose was to model interactions between biochemical reactions. The reference
[3] contains some of the original motivation and initial setup. Each reaction is
characterized by its set of reactants, each of which has to be present for the reaction
to take place, by its set of inhibitors, none of which is allowed to be present, and by
its set of products, each of which will be present after a successful reaction. Thus,
a single reaction is based on facilitation and inhibition.

∗Turku Centre for Computer Science. Joukahaisenkatu 3–5 B, 20520 Turku, Finland. E-mail:
asalomaa@utu.fi
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Reaction systems provide a new kind of mechanism for generating functions
and sequences over a finite set. A reaction system produces (in a way explained
below) another subset Y of S and, thus, we have a subset function from subsets of
S to subsets of S. Iterating the function we get a sequence of subsets of S. The
theory of subset functions has been studied from many points of view, [15], and is
particularly important in many-valued logic,[8].

Many variants of reaction systems have been introduced. The reference [1]
constitutes a survey. However, the very active research in this area opens frequently
new vistas. We refer to [4] for quite new developments.

Apart from various applications, reaction systems as such have been objected
to many theoretical studies, [2, 5, 9, 10, 11, 12, 13]. The arising problems are
mathematically very interesting, since the model is simple and clean.

However, in this paper we are concerned with the basic variant only and follow
the original definition.

The elements of the sets of reactants and inhibitors are also referred to as
resources of the reaction. Since both sets are by definition nonempty and disjoint,
the smallest possible cardinality of the resource set equals 2. Such minimal reaction
systems constitute a very simple and interesting model of computation. The class
of subset functions defined by minimal reaction systems was characterized in [2].
As to be expected, the class is much smaller than the one defined by arbitrary
reaction systems.

In this paper we try to narrow the gap between the generative capacities of
arbitrary and minimal reaction systems. The method used below is a two-step
simulation. Starting with an arbitrary reaction system, we construct a minimal
one such that an arbitrary sequence of the former can be read from a sequence of
the latter by taking every second subset: first, third, fifth,. . . The remaining subsets
(second, fourth,. . . ) contain only ”junk” elements outside the background set of
the original reaction system.

The exposition in this paper is largely self-contained. In particular, the basic
definitions concerning reaction systems are given in Section 2. We define only the
core apparatus, and do not enter additions such as a sequence of inputs from the
environment, [3, 1].

2 Definitions and earlier results

We begin by defining the basic notions.

Definition 1. A reaction over the finite nonempty background set S is a triple

ρ = (R, I, P ),

where R, I and P are nonempty subsets of S such that R and I do not intersect.
The three sets are referred as reactants, inhibitors and products, respectively. A
reaction system AS over the background set S is a finite nonempty set

AS = {ρj | 1 ≤ j ≤ k},
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of reactions over S.

In this paper S will always denote the background set. It is nonempty and
finite. By subset functions we mean functions mapping the set 2S into itself.

We will follow the original definition in [3] (motivated by biochemical consid-
erations) and assume that both of the sets R and I are nonempty. It is also of
definite interest to develop the theory without this assumption. This gives rise to
many interesting constructions, also concerning stepwise simulation, see [6].

We will omit the index S from AS whenever S is understood. The cardinality
of a finite set X is denoted by ]X. The empty set is denoted by ∅. We now indicate
how reactions and reaction systems are used to define subset functions.

Definition 2. Consider a reaction ρ = (R, I, P ) over S and a subset T of S. The
reaction ρ is enabled with respect to T (or for T ), in symbols enρ(T ), if R ⊆ T and
I ∩ T = ∅. If ρ is (resp. is not) enabled, then we define the result by

resρ(T ) = P (resp. = ∅).

For a reaction system A = {ρj | 1 ≤ j ≤ k}, we define the result by

resA(T ) =

k⋃
j=1

resρj (T ).

An important fact to notice is that, according to Definition 2, an element in the
set T is not “consumed” in the application of a reaction but is also available for
other reactions when resA(T ) is computed. In the sequel we often refer to resA
as the function defined by the reaction system A.

Elements in the set R ∪ I are also referred to as resources. Reaction systems
are classified according to the maximal cardinality of the set of resources. We have
](R ∪ I) ≥ 2, since the sets R and I are nonempty and disjoint. A reaction system
is minimal if ](R ∪ I) = 2 holds for every reaction in the system. There is much
research concerning minimal reaction systems, for instance, see [2, 7, 9, 10, 12,
13, 14]. The capacity of minimal reaction systems for defining subset functions
is limited. We now quote the following fundamental result from [2], where the
capacity is characterized.

Definition 3. A subset function f is

• union-subadditive if f(X ∪ Y ) ⊆ f(X) ∪ f(Y ),

• intersection-subadditive if f(X ∩ Y ) ⊆ f(X) ∪ f(Y ),

for all subsets X and Y of S.

The characterization result in [2] is now given

Theorem 1. A function defined by a reaction system is definable by a minimal re-
action system if and only if it is both union-subadditive and intersection-subadditive.
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Sequences generated by reaction systems can be viewed as iterations of functions
resA. If resA(T ) = T ′, we use the simple notation

T ⇒A T ′,

or simply T ⇒ T ′ if A is understood. If

resA(Ti) = Ti+1, 0 ≤ i ≤ m− 1,

we write briefly
T0 ⇒ T1 ⇒ . . .⇒ Tm

and call m the length of the sequence. Since there are only 2]S subsets of S, there
is always an m such that, for some m1 < m, Tm = Tm1 , or else resA(Tm−1) is
undefined, in which case we write Tm = ∅. We say that the sequence ends with a
cycle or terminates, respectively. The sets Ti are usually referred to as states of the
sequence.

Maximally inhibited reaction systems, [9, 14], offer possibilities of constructing
arbitrary sequences or cycles.

Definition 4. A reaction system with the background set S is maximally inhibited
if every one of its reactions is of the form (R,S −R,P ).

Clearly, for every reaction system A, a maximally inhibited reaction system A′
can be constructed such that, for any T ,

resA(T ) = resA′(T ).

If resA(T ) = ∅, then there is no reaction in A′, where T is the set of reactants.

3 Names of reactions as elements of the back-
ground set

We now present our main result concerning the two-step simulation of arbitrary
reaction systems by minimal ones. We have earlier, [14], presented another form
of a similar construction. Names of reactions have been used as elements of the
background set also in [5]. Our result shows that if one starts with a sequence (or
cycle)

T0 ⇒ T1 ⇒ . . .⇒ Tm . . .

according to an arbitrary reaction system AS , then a minimal reaction system AM
with the sequence

T0 ⇒ U0 ⇒ . . . T1 ⇒ U1 ⇒ T2 . . .

can be constructed. The background set SM of AM includes S. Moreover, the
intermediate states Ui contain only elements of SM − S and, thus, are analogous
to nonterminals in grammars.
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Theorem 2. For every reaction system A, a minimal reaction system AM can be
effectively constructed such that, whenever T0 ⇒A T1, then T0 ⇒AM U0 ⇒AM T1.
Moreover, the set U0 does not contain elements of the background set of A.

Proof. Let A have the background set S and the set of reactions

ρi = (Ri, Ii, Pi), 1 ≤ i ≤ k.

We now define the minimal reaction system AM . Its background set is

SM = S ∪ {ρ1, . . . ρk, E}.

It will be convenient to divide its reactions into three groups.
The first group consists of taking, for every a ∈ S, the reaction

({a}, {E}, {ρi1 , . . . , ρim , E}, a ∈ Iij , 1 ≤ j ≤ m.

No reaction results if a does not belong to any inhibitor set.
The second group consists of taking, for every a ∈ S, the reactions

({b}, {a}, {ρj1 , . . . , ρjn , E}, a ∈ Rjν , 1 ≤ ν ≤ n, b ∈ S, b 6= a.

No reaction results if a does not belong to any reactant set.
The third group consists of reactions

({E}, {ρi}, Pi), 1 ≤ i ≤ k.

If a sequence of AM begins with ∅, there is nothing to prove. Thus, consider
a nonempty T ⊆ S. We claim that the second state in the sequence beginning
with T consists of E and the names of those reactions ρi for which enρi(T ) does
NOT hold. Then only some reactions ({E}, {ρi}, Pi) of the third group are enabled,
namely, exactly those for which enρi(T ) holds. Consequently, the third state in the
sequence equals resAM (T ), and Theorem 2 follows.

To prove our claim, note first that E is always present in the second state,
whereas no elements of S are present. We have to show that, whenever enρi(T )
does not hold, then ρi is present in the second state. By Definition 2, the relation
enρi(T ) does not hold if and only if either

1. a1 ∈ T ∩ Ii, for some a1, or else,

2. a2 ∈ Ri − T , for some a2.

Reactions in (1) (resp. in (2)) appear in the product set of the first (resp. the
second) group of reactions of AM . Consequently, exactly those reactions ρi from
the set {ρ1, . . . , ρk} are missing from the second state of the sequence for which
enρi(T ) holds. 2

As an example consider the reaction system A with the background set S =
{a, b, c} and reactions

ρ1 = ({a, c}, {b}, {b}), ρ2 = ({b, c}, {a}, {a, b}),
ρ3 = ({b}, {a, c}, {a, b, c}), ρ4 = ({c}, {a, b}, {a, c}).
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Now the minimal reaction system AM has the background set

{a, b, c, ρ1, ρ2, ρ3, ρ4, E}

and reactions

({a}, {E}, {ρ2, ρ3, ρ4, E}), ({b}, {E}, {ρ1, ρ4, E}), ({c}, {E}, {ρ3, E}),
({b}, {a}, {ρ1, E}), ({c}, {a}, {ρ1, E}), ({a}, {b}, {ρ2, ρ3, E}),

({c}, {b}, {ρ2, ρ3, E}), ({a}, {c}, {ρ1, ρ2, ρ4, E}), ({b}, {c}, {ρ1, ρ2, ρ4, E}),
({E}, {ρ1}, {b}), ({E}, {ρ2}, {a, b}), ({E}, {ρ3}, {a, b, c}), ({E}, {ρ4}, {a, c}).

The first two steps in the sequence of AM are listed below, beginning with the
6 possible nonempty proper subsets of S.

{a, b} ⇒ {ρ1, ρ2, ρ3, ρ4, E} ⇒ ∅
{a, c} ⇒ {ρ2, ρ3, ρ4, E} ⇒ {b}
{b, c} ⇒ {ρ1, ρ3, ρ4, E} ⇒ {a, b}
{a} ⇒ {ρ1, ρ2, ρ3, ρ4, E} ⇒ ∅

{b} ⇒ {ρ1, ρ2, ρ4, E} ⇒ {a, b, c}
{c} ⇒ {ρ1, ρ2, ρ3, E} ⇒ {a, c}

Our reaction system A is maximally inhibited and, consequently, each of the values
resA(T ) can be seen directly from the reaction, where T is the set of reactants.
This is not the case with our second example, where the reaction system is not
maximally inhibited.

Thus, consider now consider the reaction system A with the background set
S = {a, b, c, d} and reactions

ρ1 = ({a, b}, {c}, {b, d}), ρ2 = ({a}, {b, c}, {a}),
ρ3 = ({a}, {c, d}, {c}), ρ4 = ({b, c}, {a, d}, {a, c}),

ρ5 = ({c}, {a, b}, {a, b, c, d}), ρ6 = ({a, d}, {c}, {a, b, c}).

By the construction of Theorem 2, the minimal reaction system AM has the
background set

{a, b, c, d, ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E}
and reactions

({a}, {E}, {ρ4, ρ5, E}), ({b}, {E}, {ρ2, ρ5, E}), ({c}, {E}, {ρ1, ρ2, ρ3, ρ6, E}),
({d}, {E}, {ρ3, ρ4, E}), ({b}, {a}, {ρ1, ρ2, ρ3, ρ6, E}), ({c}, {a}, {ρ1, ρ2, ρ3, ρ6, E}),

({d}, {a}, {ρ1, ρ2, ρ3, ρ6, E}), ({a}, {b}, {ρ1, ρ4, E}), ({c}, {b}, {ρ1, ρ4, E}),
({d}, {b}, {ρ1, ρ4, E}), ({a}, {c}, {ρ4, ρ5, E}), ({b}, {c}, {ρ4, ρ5, E}),

({d}, {c}, {ρ4, ρ5, E}), ({a}, {d}, {ρ6, E}), ({b}, {d}, {ρ6, E}),
({c}, {d}, {ρ6, E}), ({E}, {ρ1}, {b, d}), ({E}, {ρ2}, {a}), ({E}, {ρ3}, {c}),

({E}, {ρ4}, {a, c}, ({E}, {ρ5}, {a, b, c, d}), ({E}, {ρ6}, {a, b, c}).
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The two-step simulation by AM of the original reaction system A is exhibited
in the following exhaustive list.

{a} ⇒ {ρ1, ρ4, ρ5, ρ6, E} ⇒ {a, c},
{b} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E} ⇒ ∅,

{c} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ6, E} ⇒ {a, b, c, d},
{d} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E} ⇒ ∅,
{a, b} ⇒ {ρ2, ρ4, ρ5, ρ6, E} ⇒ {b, c, d},
{a, c} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E} ⇒ ∅,
{a, d} ⇒ {ρ1, ρ3, ρ4, ρ5, E} ⇒ {a, b, c},
{b, c} ⇒ {ρ1, ρ2, ρ3, ρ5, ρ6, E} ⇒ {a, c},
{b, d} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E} ⇒ ∅,

{c, d} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ6, E} ⇒ {a, b, c, d},
{a, b, c} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E} ⇒ ∅,

{a, b, d} ⇒ {ρ2, ρ3, ρ4, ρ5, E} ⇒ {a, b, c, d},
{a, c, d} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E} ⇒ ∅,
{b, c, d} ⇒ {ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, E} ⇒ ∅.

The following result follows directly from the proof of Theorem 2.

Corollary 1. Assume that the background set and the set of reactions of a arbitrary
reaction system A are of cardinalities s and k, respectively. Then a minimal reac-
tion system AM satisfying Theorem 2 can be effectively constructed such that the
cardinalities of its background and reaction sets are s+k+1 and s2+k, respectively.

Corollary 1 is pleasing because it allows the extension of some results concerning
computational complexity of reaction systems to minimal reaction systems. We
hope to return to these matters in another context.

4 Extension to subset functions

Reaction systems provide a new formal tool of handling subset functions, that is,
functions from 2S into 2S , where S is a finite set. This is an important aspect of
reaction systems.

We begin with the following result.

Corollary 2. Let F (X) be a function mapping the set of all nonempty proper
subsets of a finite set S into the set of all subsets of S. Then there is (effectively)
a minimal reaction system AM such that

F (X) = res2AM (X).



254 Arto Salomaa

Proof. The claim follows by Theorem 2 by starting with the maximally inhib-
ited reaction system A with reactions (X,S−X,F (X)), where X runs through all
nonempty proper subsets of the background set. If F (X) is empty, the correspond-
ing triple is not among the reactions of AM . 2

It is not possible to extend Corollary 2 to concern functions F with F (∅) 6= ∅.
No reaction can produce anything nonempty from the empty set. We will now
prove that this is, in fact, the only exception.

Theorem 3. Let F be a subset function over the set S such that F (∅) = ∅. There
is effectively a minimal reaction system AM such that, for all X ⊆ S,

F (X) = res2AM (X).

Proof. We follow the proof of Theorem 2. We have to take care of the case, where
the whole background set S appears as an argument of the function F . Assume
first that F (S) = ∅. Then the proof of Theorem 2 works without any changes. The
second state of the sequence of AM , starting with S, is {E, ρ1, . . . , ρk}. Thus, none
of the reactions of the third group is enabled, yielding ∅.

Assume, secondly, that F (S) 6= ∅. In this case we make the following additions
to the reaction system AM . The element ρS is added to the background set of AM .
For every element a ∈ S, the element ρS is added to the product set of each reaction
in the second group. The reaction ({E}, {ρS}, F (S)) is added to the third group.
It is now easy to verify that

F (X) = res2AM (X),

holds for all X ⊆ S. 2

As an example we consider the background set S = {a, b, c} and the subset
function F defined by

X ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
F (X) ∅ ∅ {a, b, c} {a, c} ∅ {b} {a, b} {a, b}

This example is a modification of the first example in the preceding section.
We now define the minimal reaction system AM as in Theorem 3. The minimal

reaction system AM has the background set

{a, b, c, ρ1, ρ2, ρ3, ρ4, ρS , E}

and reactions

({a}, {E}, {ρ2, ρ3, ρ4, E}), ({b}, {E}, {ρ1, ρ4, E}), ({c}, {E}, {ρ3, E}),
({b}, {a}, {ρ1, ρS , E}), ({c}, {a}, {ρ1, ρS , E}), ({a}, {b}, {ρ2, ρ3, ρS , E}),

({c}, {b}, {ρ2, ρ3, ρS , E}), ({a}, {c}, {ρ1, ρ2, ρ4, ρS , E}),
({b}, {c}, {ρ1, ρ2, ρ4, ρS , E}), ({E}, {ρ1}, {b}), ({E}, {ρ2}, {a, b}),

({E}, {ρ3}, {a, b, c}), ({E}, {ρ4}, {a, c}), ({E}, {ρS}, {a, b}).
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We obtain now

{a, b, c} ⇒ {ρ1, ρ2, ρ3, ρ4, E} ⇒ {a, b}.

It is easy to see that, for any X ⊆ S, the function value F (X) appears as the third
state in the sequence beginning with X.

5 Names of subsets as elements of the background
set

We present for the sake of completeness the following result due to [7]. It uses names
of subsets, rather than names of reactions, as an extension of the background set.
While this approach is mathematically elegant, it leads to huge background sets.
Apparently it can also not be extended to subset functions as Theorem 3.

Theorem 4. For a maximally inhibited reaction system A with the background set
S, there is effectively a minimal reaction system AM such that, for every proper
subset X of S,

resA(X) = res2AM (X).

Proof. Since A is maximally inhibited, to test whether or not enρ(X) for ρ =
(R, I, P ), it suffices to test whether or not X = R. The proof is based on this
observation.

We introduce a new symbol NX (name of X), for every subset X of S. The
background set of AM is now S ∪ {NX |X ⊆ S}. Now we use the fact that, for any
X, at most one reaction in A is enabled with respect to X, namely, the reaction
(X,S − X,PX). As observed, to check whether or not not a reaction is enabled
with respect to the first state X in a sequence, we only have to eliminate reactions
whose reactant set is not X. This can be accomplished using the first group of
reactions in AM

({a}, {b}, {NX}), X ⊆ S, a ∈ S −X, or b ∈ X, a 6= b.

These reactions produce the name NY if and only if Y 6= X. This means that only
the correct NX is missing from the second state of the sequence.

The second group of reactions in AM consists of the following reactions

({NY }, {NX}, PX), X, Y ⊆ S, X 6= Y, X 6= S, ∅.

These reactions yield the set PX as the third state. 2

Considering sequences, every second state consists of ”junk” elements and is of
size 2s − 1, where s is the cardinality of S.
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6 Conclusion

Functions defined by minimal reaction system were characterized in [2]. However,
the conditions of the characterization are very hard to test. Therefore, methods
of transition from arbitrary reaction systems to minimal ones should be investi-
gated. In this paper we have investigated the method of stepwise simulation. It is
conceivable that better results are obtained by a different choice of objects whose
names are used in the construction. It is a general open problem to investigate the
gap between the class of functions defined by minimal and almost minimal reaction
systems ( where the cardinality of the resource set is at most 3 in every reaction).
We conjecture that this gap is bigger than the corresponding gap between almost
minimal and general reaction systems.
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Methods for Relativizing Properties of Codes

Helmut Jürgensen, Lila Kari, and Steffen Kopecki∗

Abstract

The usual setting for information transmission systems assumes that all
words over the source alphabet need to be encoded. The demands on encod-
ings of messages with respect to decodability, error-detection, etc. are thus
relative to the whole set of words. In reality, depending on the information
source, far fewer messages are transmitted, all belonging to some specific lan-
guage. Hence the original demands on encodings can be weakened, if only the
words in that language are to be considered. This leads one to relativize the
properties of encodings or codes to the language at hand.

We analyse methods of relativization in this sense. It seems there are four
equally convincing notions of relativization. We compare those. Each of them
has their own merits for specific code properties. We clarify the differences
between the four approaches.

We also consider the decidability of relativized properties. If P is a prop-
erty defining a class of codes and L is a language, one asks, for a given language
C, whether C satisfies P relative to L. We show that in the realm of regular
languages this question is mostly decidable.

In memory of Ferenc Gécseg, eminent scientist and dear friend

1 Codes in Information Systems

In an information system, a source S generates messages1 which, after some modi-
fications, enter a channel K. The channel may change a message because of physical
errors or human interference or other reasons. For a given channel K, and an input
message w, let κ(w) be the corresponding set of potential output messages. As-
sume the output of the source is a message u and the corresponding input to the
channel is a message γ(u); then, as the output of the channel one may observe any
message v in the set κ(γ(u)). The output of the channel undergoes changes again,
resulting in δ(v), with the aim to recover the message originally sent as closely as
possible. The technical details of this model are complicated [14]. Such details are

∗Department of Computer Science, The University of Western Ontario, London, Ontario,
N6A 5B7

1On purpose we keep the notion of “message” and much of the other entities involved at an
intuitive level. A formal treatment is found in [14]. Those details would be important for the
detailed picture, but do not help with the main ideas.
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provided in [14, 22]; instead, we explain the concepts and ideas intuitively only. We
ask the reader not to make any assumptions beyond what is being stated as those
might be quite misleading.

Coding theory in general assumes that a source can generate any sequence of
output symbols, albeit with differing probabilities. In reality, a source may only
generate a subset M of the set of all possible output sequences2. For instance, a
source might generate exactly the grammatically correct sentences of a given natural
language. For coding theory this changes important parts of the task. Instead of
the set of all potential messages one only needs to deal with the messages in M :
encode these messages and decode their channel outputs into messages in M .

Thus, suppose the source generates a message u in the set M . Technical mod-
ifications, which may include compression, encryption, encoding, and even modu-
lation change the message u into the sent message γ(u). This is what enters the
channel. As output of the channel one finds a received message v ∈ κ(γ(u)) which
may differ from γ(u) due the physical characteristics of the channel K. From v
one tries to reconstruct a message δ(v) = u′ such that u′ ∈ M and, ideally, such
that u′ = u. Given the characteristics of S and K, the general goal is to find γ and δ
such that the whole system works well, whatever this may mean concretely3. The
choice of γ and δ implicitly depends on the set M .

In general we assume that all entities in the model use discrete signals and
synchronized discrete time4. In particular this means that there are finite non-empty
alphabets Θ and Σ such that the messages potentially issued by the source S form
a language M ⊆ Θ+, where Θ+ is the set of all (non-empty, finite) words which
can be formed using the letters in Θ. Σ is the set of input symbols for K such that
γ(Θ+) ⊆ Σ+, where Σ+ is the set of all non-empty words over Σ. Here γ need not
be a mapping, but could be a relation γ ⊆ Θ+ ×Σ+ with γ(u) = {u′ | (u, u′) ∈ γ}.
Σ is also the set of output symbols of the channel5. κ is the input-output relation
of the channel. Thus (w, v) ∈ κ means that v is a potential output of κ for input
w. The set κ(w) for w ∈ Σ+ may contain the empty word λ, hence

κ(w) = {v | (w, v) ∈ κ} ⊆ Σ∗ = Σ+ ∪ {λ}.

In this setting δ is a partial mapping of Σ∗ into Θ+ such that, ideally, δ(κ(γ(u))) ∈
M for u ∈ M . In this context, we say that γ and δ are encodings and decodings,
respectively. In general, C = γ(Θ) ⊆ Σ+ is called the code6 of γ.

2In a probabilistic setting, a threshold for the probability of a source output might determine
the set M .

3For instance, if S and K are defined by probabilities, one may require the following: If S sends
u and v is observed as the corresponding output, then the probability of u having been sent with
v observed exceeds the probability of u′ being sent when v is observed for all output messages
of S different from u. For details of this probabilistic setting see [22]; for the corresponding
combinatorial setting see [14].

4This latter assumption does not exclude synchronization errors on the logical level.
5To use an output alphabet different from Σ certainly is an option, but is just a nuisance

generalization, which changes little.
6Thus a code is just a subset of Σ+ without any further requirements; in much, but not all of

the literature, the term ‘code’ implies unique decodability. This issue is dealt with later in this
paper.



Methods for Relativizing Properties of Codes 261

Ignoring many technical issues, γ encodes messages potentially sent by S and
δ decodes received messages. The basic requirement is that δ(γ(u)) = u for all
messages u. More subtle conditions may have to be satisfied, when errors need to
be taken into account.

The successful functioning of such a system of information transmission depends
very much on the properties of γ. In general we do not care about what happens to
messages which will never be sent7. Hence, instead of considering the set Θ∗ of all
potential output messages over Θ, we focus on the set M of all potential (or likely)
outputs of S, but disregarding probabilities.

This simplifies the scenario: We eliminate the source S and the set of potential
messages completely. Instead we consider a language C ⊆ Σ+ serving as a code.
The set M of potential messages is now replaced by the set L ⊆ Σ∗ of words which
might have to be decoded as outputs of the channel. The precise relation between
C and L will be discussed further below. Intuitively, the set C+ ∩ L is the set of
potential encoded messages, and L is the set potential channel outputs for these.

Finally we consider properties P of codes (or encodings) in this context. In
general such a property would define the performance of an encoding in an infor-
mation transmission setting such that the code itself determines properties of the
encoding, for example: unique decodability; decoding delay; synchronization delay;
error-detection; error-tolerance; error-correction. It turns out that such properties
relativize in unexpected ways.

Obviously, when P contains a proposition of the form

∀x1, . . . , xn ∈ C ∀y1, . . . yn ∈ Σ+ . . . ,

replacing Σ+ by the language L will change P . Intuitively, this is meant by rela-
tivizing properties of C to L.

With these preliminaries collected, we can state the main ideas of the present
paper:

General Question. Let X be a finite non-empty alphabet with at least two el-
ements. Let L and C be non-empty languages over X. Let P be a property of
languages.

1. Define what it means that C satisfies P relative to L.

2. With P fixed, what is the influence of L and vice versa?

3. Given P , C and L, can one decide whether C satisfies P with respect to L?

To give this question a more concrete meaning, assume that P is the property
of unique decodability: The set C = γ(Θ) is uniquely decodable if and only if every
word in Σ+ has at most one factorization into words in C; equivalently, C is uniquely

7This is similar to a key argument in the proof of Shannon’s channel theorem (see [22], for
example): Messages with probability 0 contribute errors of probability 0; hence we may ignore
them and concentrate on the likely messages. Of course, messages with probability 0 can occur,
but their influence has probability 0 too; hence, for practical purposes, they are ignored.
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decodable if and only if every word in C+ has exactly one factorization into words
in C. In general one implicitly assumes that L = Σ+ or L = C+ depending on
the requirement ‘at most one’ versus ‘exactly one’. To adapt the concept of unique
decodability to the information system at hand, one would postulate only that
L ⊆ Σ+ and that each word in L have at most one factorization. In this case, C is
uniquely decodable relative to L.

Example 1.1. Let Σ = {a, b}, L = (ab)+ and C = {a, ab, aab}. Then every word
in L has a unique decoding with respect to C. On the other hand, the word aab has
two distinct decodings. Hence C is not uniquely decodable in general, but uniquely
decodable relative to L.

Remark 1.1. Let L and C be non-empty subsets of Σ+. Every word in L has at
most one factorization into words in C if and only if every word in L ∩ C+ has
exactly one such factorization.

Indeed, as every word in L ∩ C+ has a factorization into words in C and every
word in L has no more than one such factorization, each word in L∩C+ has exactly
one factorization. Conversely, as the words in L \ C+ do not have a factorization
at all, when the words in L ∩ C+ have unique factorizations, then each word in L
has at most one factorization.

We now extrapolate from this idea to consider general code properties P as
discussed in [14]. We only consider error-free communication via the channel K.
Thus v = γ(u). The more general situation of errors will require several additional
difficult steps of relativization, for which we do not have a sufficient answer yet.

Earlier work with the intent to relativize various properties of codes includes
papers by Head [9, 10, 11, 12], Mahalingam [23], and by Daley, Jürgensen, Kari,
and Mahalingam [2]. In the present paper we do not so much consider special cases,
but focus on the relativization technique itself.

To define a class of codes two intuitively different techniques tend to be used: an
essentially combinatorial approach, based mainly on the structure of words in the
language C; an information theoretical approach, in which the coding and decoding
functions are prevalent. For a example, a prefix code C over the alphabet Σ can be
defined as a set of words, such that no word in the set is a proper prefix of another
word in that set; this is the combinatorial view. Equivalently, C is a prefix code
if it is uniquely decodable with decoding delay 0, the information theoretic view.
Each of these definitions may lead to an intuitively convincing relativization. When
these turn out not to be equivalent, which one should one choose? How are they
related?

We focus on this fundamental issue: How to relativize code properties of either
kind? When do revitalizations coincide? When is the relativized property decidable?

For classes of codes we refer primarily to [14]. Further information is found in [1]
and [27, 31].

Our paper is structured as follows: In the next section we introduce the notation
and basic notions. Most of this is standard, and included only to make the paper
self-contained. Some of the main unrelativized concepts are explained in that part
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of the paper. In Section 3 we introduce and compare relativization methods. We
review: (1) our approach of [2], which is based on a notion of admissibility; (2) the
concepts proposed by Head [11]. This analysis leads to four essentially different,
but equally well motivated, definitions of relativization. They are formally intro-
duced in Section 3.3, where also their relationship, depending on the code property
in question, is determined. Essentially, the four types of relativization arise from
different views of how a code property might be violated when restricted to a set
of messages smaller than Σ+. While each of the four versions may be considered
the “best” one, we only compare them, so as to understand what the respective
strengths are. In Section 4 we consider decidability questions. Typically: Given C,
L, P , and the type of relativization, we ask whether C is a code relative to L with
property P and the given relativization method. The paper concludes with some
general observations in Section 5.

There is a very important, but different, line of research which focuses on the
relativization or generalization of just unique decodabilty. This traces back to work
by Head andWeber [8, 30] and Harju and Karhumäki [7]. To our knowledge the most
recent work in this field is a paper by Guzmán [6] and the thesis by Gümüştop [5].

2 Notation and Basic Notions

The sets of positive integers and of non-negative integers are N and N0, respectively.
An alphabet is a non-empty set. To avoid trivial special cases, we assume that an
alphabet has at least two elements. Throughout this paper Σ is an arbitrary, but
fixed, alphabet. When required we add the assumption that Σ is finite. A word over
Σ is a finite sequence of symbols from Σ; the set Σ∗ of all words over Σ, including
the empty word λ, is a free monoid generated by Σ with concatenation of words
as multiplication. The set of non-empty words is Σ+, that is, Σ+ = Σ∗ \ {λ}. A
language over Σ is a subset of Σ∗. For a language L ⊆ Σ∗ and n ∈ N0 let

Ln =


{λ} if n=0,
L, if n=1,{
w
∣∣ ∃u ∈ L ∃v ∈ Ln−1 : w = uv

}
, if n>1.

Moreover, let
L∗ =

⋃
n∈N0

Ln and L+ =
⋃
n∈N

Ln.

If P is a property of languages, then LP (Σ) is the set of languages L over Σ for
which P (L) = 1, that is, P (L) is true. We write LP instead of LP (Σ) when Σ is
understood. In the remainder of this paper, unless explicitly stated otherwise, all
languages are assumed to be non-empty.

Many classes of codes and related languages can be defined systematically in
terms of relations on the free monoid Σ+ or in terms of abstract dependence sys-
tems. See [14, 16, 28, 31] for details. In the present paper only the following relations
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between words u, v ∈ Σ+ are considered:

Property Definition Notation
u is a prefix of v: v ∈ uΣ∗ u ≤p v
u is a proper prefix of v: v ∈ uΣ+ u <p v
u is a suffix of v: v ∈ Σ∗u u ≤s v
u is a proper suffix of v: v ∈ Σ+u u <s v
u is an infix of v: v ∈ Σ∗uΣ∗ u ≤i v
u is a proper infix of v: (u ≤i v) ∧ (u 6= v) u <i v
u is an outfix of v: ∃u1, u2 (u = u1u2 ∧ v ∈ u1Σ∗u2) u ωo v

u is a proper outfix of v: (u ωo v) ∧ (u 6= v) u ω 6=o v

We say that u is a scattered subword of v, and we write u ≤h v, if, for some n ∈ N,
there are u1, u2, . . . , un ∈ Σ∗ and v1, v2, . . . , vn+1 ∈ Σ∗ such that u = u1u2 · · ·un
and v = v1u1v2u2 · · ·unvn+1. We write u <h v to denote the fact that u is a proper
scattered subword of v, that is, u ≤h v and u 6= v. We say that u and v overlap,
and we write u ωol v, if there is q ∈ Σ+ such that q <p u and q <s v or vice versa.
The relation ωol is symmetric. Note that a word can overlap itself.

To simplify or unify notation, we sometimes write ωp instead of ≤p and so on,
for the partial orders above.

A binary relation ω on Σ+ defines the property (predicate) Pω of languages8
L ⊆ Σ+ as follows: Pω(L) = 1 if and only if, for all u, v ∈ L, one has u 6ω v and
v 6ω u. Clearly, if Pω(L) = 1 and L′ ⊆ L, then Pω(L′) = 1. Thus Pω(L) = 1 if and
only if Pω({u, v}) = 1 for all u, v ∈ L. Here the words u and v need not be distinct.
This is important for the case of ωol for instance. Obviously, when ω is reflexive
one has Pω(L) = 0 for every non-empty language L.

When ω = <p we write Pp instead of P<p
. Similarly, when ω = ωol we write

Pol instead of Pωol
. The predicates Ps, Pi and Po are defined analogously starting

from <s, <i and ω 6=o , respectively.
For a set S, P(S) is the set of all subsets of S and Pfin(S) is the set of all finite

subsets of S. For n ∈ N, let

P≤n(S) = {T | T ∈ P(S), |T | ≤ n}, P≥n = {T | T ∈ P(S), |T | ≥ n}

and
P=n(S) = {T | T ∈ P(S), |T | = n}.

In [14] the hierarchy of classes of codes is introduced using the systematic frame-
work of abstract dependence systems. For the purposes of the present paper, the
following simplified concepts suffice.

For the remainder of this section, we refer to [14, 31] and to sources cited there.
Let C ⊆ Σ+. The language C is uniquely decodable if C+ is a free subsemigroup

of Σ+ which is freely generated by C. A less abstract, but equivalent definition
reads as follows:

8The predicate Pω asserts that L has a certain property, defined by the negation of a relation.
Admittedly, this is awkward, but it is inevitable for reconciling the two different equally convincing
approaches.
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Definition 2.1. Let C ⊆ Σ+ be a language over Σ, and let w ∈ Σ+.

1. The word w is C-decodable if there are n ∈ N and words

u1, u2, . . . , un ∈ C such that u1u2 · · ·un = w.

In this case, the pair (n, (u1, u2, . . . , un)) is called a C-decoding of w.

2. The language C is uniquely decodable if every word in Σ+ has at most one
C-decoding.

Thus a language C is uniquely decodable, if and only if every word in C+ has
a unique C-decoding. We omit the reference to C when C is understood from
the context. In the following we sometimes use parentheses to describe various C-
decodings of a word. For example, if C = {a, ab, ba}, then w = aba = (a)(ba) =
(ab)(a) has two different C-decodings.

As every word in C+ involves only finitely many elements of C, the language C
is uniquely decodable if and only if every language in Pfin(C) is uniquely decodable.

In the literature one finds the term “code” used in two different ways: (1) a non-
empty language not containing the empty word; (2) a uniquely decodable non-empty
language not containing the empty word. For the rest of this paper we adopt the
second meaning. By Lcode we denote the set of codes over Σ. For a regular language
C ⊆ Σ+ it is decidable whether C ∈ Lcode; for linear languages the code property
is undecidable.

We now introduce some important classes of languages or codes. Further classes
will be defined when they are needed. Let C ⊆ Σ+.

For n ∈ N with n > 1, C is an n-code if every language in P≤n(C) is a code.
In general, an n-code is not necessarily a code. By Ln-code we denote the set of
n-codes over Σ. For regular C it is decidable whether C ∈ L2-code. For L3-code the
corresponding problem is open. The n-codes form an infinite descending hierarchy
with Lcode as its lower bound.

The language C is a prefix code if, for all u, v ∈ C, u 6<p v. It is a suffix code if,
for all u, v ∈ C, u 6<s v. It is a bifix code if it is both a prefix code and a suffix code.
It is an infix code if, for all u, v ∈ C, u 6<i v. It is an outfix code if, for all distinct
u, v ∈ C, u 6ωo v. It is a solid code if it is an infix code and if, for all u, v ∈ C not
necessarily distinct, u and v do not overlap. The language C is a hypercode if, for
all distinct u, v ∈ C, u 6<h v.

By Lp, Ls, Lb, Li, Lo, Lh, and Lsolid we denote the sets of prefix codes, suffix
codes, bifix codes, infix codes, outfix codes, hypercodes, and solid codes, respec-
tively. The first six of these classes of codes are defined by predicates Pp, Ps, Pb,
Pi, Po and Ph on P=2(C). For Lsolid we need Psolid = Pi ∧ Pol on P≤2(C). We
also use the predicates Pcode on Pfin(C) and Pn-code on P≤n(C) defining Lcode and
Ln-code, respectively.

For n ∈ N, the language C is an intercode of index n if, Σ+CnΣ+ ∩ Cn+1 =
∅. The class Lintern of intercodes of index n is defined by a predicate Pintern on
P≤2n+1(C) derivable from Pi. The set Linter1 of intercodes of index 1 is exactly
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the set Lcomma-free of comma-free codes. The languages in Linter =
⋃
n∈N Lintern are

called intercodes.

Lemma 2.1. (See [14, 31]) The following inclusions hold:

Lp ∪ Ls ( Lcode, Li ∪ Lo ( Lb = Lp ∩ Ls,

∀n Lintern ( Lintern+1
( Linter ( Lb, Lh ∩ Lsolid ( Lh ( Li ∩ Lo

and
Lh ∩ Lsolid ( Lsolid ( Lcomma-free ( Li.

It will simplify the notation significantly and also open the prospects of consid-
ering a different set of problems if we weaken the definitions as follows: For

% ∈ {p, s,b, i, o,h, solid, ol, intern, n-code, comma-free}

and potentially other types % of language properties, P% is a predicate on Pfin(C)
in the following sense: A language L ⊆ C has the property % if and only if P%(L)
holds true, that is, P%(L) = 1; for % ∈ {p, s,b, i, o, solid, ol} we are mainly interested
in situations when |L| ≤ 2 as this leads to manageable decision properties. As a
warning to the reader – we have seen this misread before – the set {u, v} is equal
to {u} when u = v, that is, {u, v} is not a pair, but a set.

3 Variations of Definitions
The definition of relativized codes given in [2] was phrased so as to capture and
generalize the special definitions proposed by Head in [9, 10, 11, 12] in the more
general framework of relations or predicates described in [14]. As noted in [2] these
definitions differ in a subtle way.

In Sections 3.1 and 3.2, we review two natural proposals for relativizing code
concepts. Abstracting from these, and considering other likely scenarios, it turns
out that one has to consider at least four versions according to the phenomena by
which violations of code properties could manifest themselves, each of them well
motivated. These are investigated in detail in Section 3.3 as violation-freeness or
admissibility of words. In Section 3.4 relativized codes are defined and inclusions
between classes of relativized are proved. We compare the concepts considered in
the earlier work [2, 11] to the ones introduced in the present paper in Section 3.5.

3.1 Admissibility of Words as Defined in [2]
We review the definitions and discussions of [2]. An improved general framework is
proposed in Section 3.3.

Definition 3.1. Let C be a subset of Σ+ and let P be a predicate on P≤2(C). A
word q ∈ C+ is said to be P -admissible for C if the following condition is satisfied:
if q = xuy = x′u′y′, with u, u′ ∈ C and x, x′, y, y′ ∈ C∗ then P ({u, u′}) = 1.
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This means that a word q ∈ C+ is P -admissible if every two words u, u′ ∈ C
appearing in C-decodings of q, together satisfy the property P . For example, for
P = Pp, a word q is prefix-admissible, if no two words u, u′ ∈ C appearing in C-
decodings of q are strict prefixes of each other. There is a subtle point: Suppose
that u′ is a proper prefix of u. For a word q, three different situations need to be
considered:

1. The word q has a C-decoding of the form

· · · (u′) · · · (u) · · · or · · · (u) · · · (u′) · · · .

2. The word q has two C-decodings of the forms

· · · (u′) · · · and · · · (u) · · · .

3. The word q has two C-decodings of the form q1(u′)v′q2 and q1(u)q2 with
u = u′v′ where q1, q2, v

′q2 ∈ C∗, v′ ∈ Σ+.

The difference between these situations becomes apparent in our discussion of rela-
tivized solid codes below. Definition 3.1 applies to any occurrences of u and u′, not
just to those situations in which u and u′ start at the same position in q, and also
not just to occurrences of u and u′ in the same C-decoding of q. Thus, if u and u′ are
distinct and occur in any C-decodings of a word q ∈ L, which is prefix-admissible
for C, then the set {u, u′} must be a prefix code.

Similarly, a word q ∈ C+ is overlap-admissible if no two words u, u′ ∈ C, not
necessarily distinct and appearing in any C-decodings of q, overlap. In particular,
if u ∈ C and u occurs in a C-decoding of q, then u must not overlap itself.

Definition 3.2. Let C be a subset of Σ+, let L ⊆ C+ and let P be a predicate on
P≤2(C). Then C is said to satisfy P relative to L if every q ∈ L is P -admissible
for C.

Definition 3.3. When C satisfies P relative to L we say that C is a P -code relative
to L.

As the predicate P is arbitrary, a P -code relative to L need not be uniquely
decodable even when L = C+. The restriction of L being a subset of C+ turns
out to be too restrictive in the new context of this paper and is lifted starting in
Section 3.3.

The following trivial observation is used without special mention in the sequel.

Remark 3.1. Let P , P1 and P2 be predicates on P≤2(C) with P = P1∧P2. Let q,
C and L be as in Definitions 3.1, 3.3 and 3.2. The following statements hold true:

1. q is P -admissible for C if and only if q is both P1-admissible and P2-admissible
for C.

2. C satisfies P relative to L if and only if C satisfies P1 and P2 relative to L.

3. C is a P -code relative to L if and only if C is both a P1-code and a P2-code
relative to L.
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3.2 Definitions Inspired by Tom Head

In [11] and related papers, Head proposed various relativizations of code concepts.
The most relevant for the present discussion, because it introduces issues not en-
countered in other contexts, is that of relativized solid codes. The formalism used
here leads to a novel general concept of relativization. This section of the paper
summarizes ideas and statements from [2] relevant to the issue at hand.

Definition 3.4. ([9]) Let C and L be non-empty subsets of Σ+. The set C is a
solid code relative to L if it satisfies the following conditions for all words q ∈ L:

1. if q = xszty with x, y, s, t ∈ Σ∗ such that z, szt ∈ C, then st = λ;

2. if q = xszty with x, y, s, t ∈ Σ∗ such that sz, zt ∈ C and z ∈ Σ+ then st = λ.

The first condition states that, for u, v ∈ C, if u <i v, then, for all q ∈ L, v 6≤i q.
The second condition states that if u, v ∈ C, and u and v overlap as u = sz and
v = zt with z ∈ Σ+, then, for all q ∈ L, szt 6≤i q.

Definition 3.4 is one possible relativization of the notion of solid code. It differs
from the notion of Psolid-code relative to a language as introduced in Definition 3.3.

Note that, if C is a solid code relative to L then C is a Pi-code relative to
L ∩ C+. Indeed, let q in L ∩ C+. If u ∈ C occurs in a C-decoding of q, v ∈ C and
u <i v, then v 6<i q. Hence v does not occur in a C-decoding of q. As shown in
Example 3.1 below, C being a solid code relative to L does not imply that C is a
Pol-code or a Psolid-code relative to L.

For (unrelativized) solid codes there is also a definition based on decompositions
of messages (see [14]): Let C be a subset of Σ+ and q ∈ Σ+. A C-decomposition
of q consists of two sequences u0, u1, . . . , un ∈ Σ∗ and v1, v2, . . . , vn ∈ C for some
n ∈ N, such that q = u0v1u1v2u2 · · · vnun and v 6≤i ui for all v ∈ C and i =
0, 1, . . . , n. Every word q ∈ Σ+ has at least one C-decomposition. Note that every
C-decomposition of a word in C+ can be considered as a C-decoding as follows:

u0 = u1 = · · · = un = λ

and the C-decoding is
(n, (v1, v2, . . . , vn)).

The set C is a solid code if and only if every word in Σ+ has a unique C-
decomposition. In [13], a relativization of the notion of solid code is proposed,
which is based on the uniqueness of C-decompositions, and this notion turns out
to be equivalent to the one of Definition 3.4.

Proposition 3.1. ([13]) Let L ⊆ Σ+. A language C ⊆ Σ+ is a solid code relative
to L if and only if every word q ∈ L has a unique C-decomposition.

The difference between these equivalent concepts and our approach to relativiz-
ing solid codes is illustrated by the following example.
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Example 3.1. ([11]) Let Σ = {a, b, c} and C = {ab, c, ba}. The set C is not
overlap-free, hence not a solid code. By Definition 3.4, C is a solid code relative to
the language L = ({abc}

⋃
{cba})∗. However, the set C is not a Psolid-code relative

to L, as q = abccba ∈ L has the C-decoding (ab)(c)(c)(ba) and is thus not Psolid-
admissible since ab ωol ba.

The main differences between Definitions 3.3 and 3.4 are as follows:

1. According to Definition 3.3, the mere and possibly unrelated existence of
words for which the predicate is false constitutes a violation. According to
Definition 3.4, the words in question must be in a specific violating position.

2. According to Definition 3.3, the words in violation must occur in C-decodings.
According to Definition 3.4, they may appear anywhere.

In the next section, we analyse these differences and provide new definitions ac-
cording to the analysis. Altogether, we have to investigate four different ways in
which code concepts can be relativized.

3.3 Violating Instances

There does not seem to be a unique best scheme for relativizing code properties.
All proposed schemes seem to diverge not only when the language L relativized
to is a subset of Σ+ or of C+, but also when the particular types of violations
of the code properties are considered. We now identify four violating scenarios in
very general terms. These seem to be the most common ones in real systems. For
specific natural code properties we state their relativizations. We also determine
the connection between the four notions of violation. Our basic definitions may
seem to be far too general; this permits us to capture most of the interesting cases
and to leave the field open for other cases which might require a relativization as
well.

To clarify the intuition, we start with examples. We consider a language C ⊆ Σ+

and a predicate P defining a class of codes.
A violating instance of Pp, the prefix-freeness predicate, would be the occur-

rence of a word v ∈ C such that there is a word u ∈ C with u <p v, that is,
Pp({u, v}) = 0. For Ps, Pi, Ph, Po and several other such predicates we have anal-
ogous characterizations. To help the readers’ intuition we switch freely between
predicates and relations whenever one or the other seems easier to understand.

Take Pb. One has Pb({u, v}) = 0 if u <p v or u <s v or vice versa. Thus there
are two potential violating instances of Pb, manifested as violating instances of Pp

and Ps, respectively.
This seems to determine the pattern for predicates defined by conjunctions or

disjunctions of predicates.
Thus a violating instance of the conjunction (intersection) P of two predicates

P1 and P2 could be a violating instance of P1 or a violating instance of P2. Dually,
if P is defined as the disjunction (union) of two such predicates, then violating
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instances of P are exactly the instances which are violating both P1 and P2. This
idea works well also with Psolid = Pi ∧ Pol.

These considerations suggest the following tentative definition:

Let P be an n-ary predicate. A violating instance of P is a set {u1, . . . , un}
of words such that P ({u1, . . . , un}) = 0.

This definition is not good enough as it does not capture how the words in question
are actually located with respect to each other; hence, a proper definition needs to
be based on relations or tuples with special properties rather than sets.

We consider a set of more detailed examples in order to detect a pattern. For

% ∈ {p, s,pi, si,b, i, o,h, solid, ol, intern, comma-free}

and potentially other types % of language properties, let ω% or <% be the cor-
responding relation or partial order, and P% be the corresponding predicate. Let
C ⊆ Σ+.

1. A violating instance of Pp is the occurrence of a word v ∈ C such that there
is u ∈ C with u <p v. Similarly for Ps, Ppi, Psi, and Pi.

2. A violating instance of Pb is the occurrence of a word v ∈ C such that there
is u ∈ C with u ωb v, that is, u <p v or u <s v.

3. A violating instance of Po is the occurrence of a word v ∈ C such that there
is u ∈ C with u ωo v and u 6= v.

4. A violating instance of Pol is the occurrence of a word w = w1w2w3 with
w1, w2, w3 ∈ Σ+ such that w1w2 ∈ C and w2w3 ∈ C; thus, w1w2 ωol w2w3.

5. A violating instance of Psolid is the occurrence of a word which is a violating
instance of Pi or of Pol.

6. A violating instance of Pintern is the occurrence of a word

w = v1v2 · · · vn+1 with v1, v2, . . . , vn+1 ∈ C

such that there are words

u1, u2, . . . , un ∈ C and x, y ∈ Σ+

with xu1u2 · · ·uny = w.

7. A violating instance of Pcomma-free is the occurrence of a word w = v1v2 such
that there are words u ∈ C and x, y ∈ Σ+ with xuy = w.

8. A violating instance of Ph is the occurrence of a word v ∈ C such that there
is a word u ∈ C with u <h v.
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The cases (1), (2), (3), (6), (7), and (8) above have in common that the (proper)
relation involved has a “direction”: The relations for

% ∈ {p, s,pi, si,b, i, o,h}

are anti-symmetric. For % ∈ {intern, comma-free}, that is, cases (6) and (7), one
considers the relations ωintern and ωcomma-free defined as follows9 [14]:

• ωintern is a (2n+ 1)-ary relation on C such that

(u1, u2, . . . , un, v1, v2, . . . , vn+1) ∈ ωintern

if and only if there are x, y ∈ Σ+ such that v1v2 · · · vn+1 = xu1u2 · · ·uny.

• ωcomma-free = ωintern for n = 1.

We interpret ωintern as a binary relation between n-tuples and (n + 1)-tuples of
words in C. Let ωintern be this binary relation, that is,

(u1, u2, . . . , un, v1, v2, . . . , vn+1) ∈ ωintern

if and only if (
(u1, u2, . . . , un), (v1, v2, . . . , vn+1)

)
∈ ωintern .

Similarly, we obtain ωcomma-free from ωcomma-free. Then, by definition, both ωintern

and ωcomma-free are anti-symmetric binary relations.
For Pol, instead of considering a binary relation between code words, it seems

more adequate to consider a binary relation ωol between a pair (u1, u2) of codewords
and a word w ∈ Σ+ such that (u1, u2) ωol w if and only if there are w1, w2, w3 ∈ Σ+

such that u1 = w1w2, u2 = w2w3, and w1w2w3 = w.
One could apply similar modifications to the relations defining the outfix codes,

the hypercodes, and all the codes in the shuffle hierarchy. For example, instead of
<h one could use the relation ωh defined as follows: (u1, u2, . . . , uk) ωh (v) if and
only if

v ∈ Σ∗u1Σ∗u2 · · ·Σ∗ukΣ∗ and u1u2 · · ·uk 6= v,

where k ∈ N and u1, u2, . . . , uk, v ∈ Σ+. For the present purposes the following, less
intuitive, alternative

(u1, u2, . . . , uk) ωh (v) if and only if u1u2 · · ·uk <h v

would also work. The former captures the idea that u1 ≤i q, u2 ≤i q, . . ., uk ≤i q in
the order given by the k-tuple (u1, u2, . . . , uk). The latter is a simple reformulation
of the embedding order. For our purposes, neither modification is needed.

Note that the transition from a relation ω% to its overlined version ω% is ad
hoc and not claimed to be in any way defined by an operator. We introduce the
latter only for convenience. In the sequel, to keep the notation simple, we drop the
distinction when there is no risk of confusion. For example, a statement of the form

9In [14] the order of the components is different. The change is not essential, but simplifies the
presentation.
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“For % ∈ {p, . . . , intern, . . .} the relation ω% satisfies . . .”

refers to ωp for % = p and, depending on the context, to ωintern or to ωintern for
% = intern.

To define violating instances in rather general terms, we consider binary rela-
tions on tuples of words and their corresponding binary predicates.

For any set S and any n ∈ N, let n-tuples(S) be the set of n-tuples of elements in
S and let all-tuples(S) =

⋃
n∈N n-tuples(S). We consider binary relations ω between

tuples of words over Σ. Typically there is a small upper bound on the arity of the
tuples. Such a relation ω would be a subset of⋃

1≤k≤m

⋃
1≤n≤m

k-tuples(Σ∗)× n-tuples(Σ∗)

for some m ∈ N. In some quite natural situations however, like that of hypercodes,
there might not be a priori bounds on k and n. This concern will be kept in mind as
we propose definitions. As such relations are defined by (disjoint) unions of relations
in a natural way as expressed by the formula above, their respective properties are
conjunctions of the individual properties according to the constituents. The details
are explained by example below.

Definition 3.5. Let n ∈ N and let u = (u1, u2, . . . , un) be an n-tuple of words in
Σ∗. Define word(u) as the word u1u2 · · ·un. Moreover, for u ∈ Σ∗, let word(u) = u.

The present goal is as follows: Let C ⊆ Σ+, C 6= ∅. For a word q ∈ Σ+ we want
to express that q does not contain words in C which violate a binary relation ω
on all-tuples(Σ+), the latter defining a class of languages or codes. Additionally, if
u ω v, then word(u) and word(v) must appear in some “natural” relationship within
q. A first attempt towards this goal might read as follows:

Let ω be a binary relation on all-tuples(Σ+) and let q ∈ Σ+. A violating
instance of ω in q is a pair (u, v) of distinct tuples of words in Σ+ such
that u ω v and word(v) ≤i q.

At a first glance this seems to be a clean definition. It only involves the relation ω,
but not the set C, and the latter can be built in later as a constraint. The following
example shows that the attempted definition will not work without a connection
to C.

Example 3.2. Let Σ = {a, b} and ω = <p. Then every word of length at least 2
contains a violating instance of <p.

Nevertheless, we work with this intuition. It does not lead to a general definition,
but at least to a usable one for many relevant cases. To simplify terminology,
when (u, v) is a violating instance of ω in q in the tentative sense above, we also
say, equivalently, that q contains (u, v) as a violating instance of ω – or of the
predicate Pω defining ω.
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For % ∈ {p, s,pi, si,b, i, o,h} we just consider the relation ω%. Similarly, for the
relations defining the shuffle hierarchy. For % ∈ {intern, comma-free, ol}, the rela-
tions ωintern , ωcomma-free, and ωol will serve. Thus, also the solid codes are included.
In each of the cases considered here, word(v) ≤i q implies that each component of u
is a subword, possibly scattered, of q. Our present motivation was to cover as much
as possible of the code hierarchy of [14].

To address the problems with the notion of violating instance of a relation ω,
we consider, simultaneously, a relation ω, a non-empty set C of words in Σ+, and
a word q ∈ Σ+. The relation ω is meant to describe a class of languages – or codes
– such that C does not contain any words which would lead to a violating instance
in q. Without loss of generality, one can assume that ω is irreflexive. We did not find
a satisfactorily simple definition which could be applied to any binary relation on
all-tuples(Σ+). Especially relations like ωol or ωol cause difficulties, as the relative
positions of the occurrences of their components in a word are not fixed. Therefore,
from here on we consider only a restricted class of relations:

% ∈ {p, s,pi, si,b, i, o,h, solid, ol, intern, comma-free}.

Definition 3.6. Let C ⊆ Σ+ and q ∈ Σ+. Let ω 6= ωol be an irreflexive, binary
relation on all-tuples(Σ+) such that, for all u, v ∈ all-tuples(Σ+), u ω v implies
word(u) ≤h word(v). Let Pω be the predicate defining ω.

1. The word q is Pω-violation-free for decompositions with respect to C, if there
are no u, v ∈ all-tuples(C) such that u ω v and word(v) ≤i q.

2. The word q is Pω-violation-free for decodings with respect to C, if for all
q1, q2 ∈ C∗ and all v ∈ all-tuples(C) with q = q1word(v)q2 there is no u ∈
all-tuples(C) such that u ω v.

3. The word q is said to be Pol-violation-free for decompositions with respect to
C, if there are no words u, v, w ∈ Σ+ such that uv, vw ∈ C and uvw ≤i q.

4. The word q is said to be Pol-violation-free for decodings with respect to C, if
there are no words q1, q2 ∈ C∗ and u, v, w ∈ Σ+ with uv, vw ∈ C such that
q = q1uvq2 with w ≤p q2 or q = q1vwq2 with u ≤s q1.

To explain Definition 3.6, we consider the special cases of prefix codes, outfix
codes, intercodes of some index n, and solid codes defined by the relations <p, ω 6=o ,
ω 6=intern

, and ωsolid as characteristic examples. Most other cases in the hierarchy of
codes are analogous. In the definition we attempt to capture an essential idea of
Head’s relativization: the respective code property is violated if and only if the
words involved appear exactly in the relative positions as defined by the code prop-
erty. Beyond that, we distinguish between violating instances for decompositions
and violating instances for decodings. The former may occur anywhere in the word
q under consideration – and this is the case of Head’s definition (Definition 3.4);
the latter can only occur at positions defined by a decoding. This distinction turns
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out to be important, as fewer positions in a word under consideration need to be
examined in the case of decodings compared to the case of decompositions.

Head’s relativization of the condition of overlap-freeness in Definition 3.4 really
applies only to decompositions. In Definition 3.6(4) we propose a possible inter-
pretation of Head’s approach in the context of decompositions. Another possible
interpretation would be as follows.

Let q = q1uvwq2 ∈ C∗ with uv, vw ∈ C and u, v, w ∈ Σ+. Then
q1, wq2 ∈ C∗ or q2, q1u ∈ C∗.

This is equivalent to Definition 3.6(4).
The first two parts of Definition 3.6 refer to binary relations ω on tuples of words

in Σ+ such that u ω v implies that word(u) ≤h word(v). Thus, if word(v) ≤i q, then
word(u) appears as a possibly scattered subword of that occurrence of word(v) in
q. The relation ωol is an important example of a relation which does not fit into
this pattern. We include ωol as a special case in Definition 3.6 to exhibit unsolved
problems in the relativization methods and the need for a more inclusive approach.

Among the cases for illustrating Definition 3.6, a simple one is that of prefix
codes and the like. The class of codes C is defined by a partial order ω 6= on Σ+ such
that u, v ∈ C implies that u 6ω 6= v. Moreover, u ω 6= v implies u <i v. If q contains a
violation of ω, then there are u, v ∈ C such that u ω 6= v and v ≤i q. Thus the mere
occurrence of v as an infix of q results in a violating instance, for decompositions.
For decodings, the word v has to appear at a special spot, determined by a decoding;
but note that the decoding need not be unique.

The case of outfix codes and of all shuffle codes down to the class of hypercodes
requires special consideration as to what we mean by “violation”. The case of outfix
codes is indicative of the issues. Suppose u is a proper outfix of v. Then v = u1v0u2

with u1u2 ∈ Σ+, u = u1u2, and v0 ∈ Σ+. If v ≤i q we have a violating instance
according to the definition, but u 6≤i q. Do we want this? We argue as follows:
The intent of using an outfix code could be to detect insertion errors, like the ones
which change u into v. In this, clearly, the occurrence of v in q gives rise to an
ambiguity as to how q should be read (both for decompositions and decodings).
Similar arguments concern the whole shuffle hierarchy and motivate the condition
of word(u) ≤h word(v) above. In general, the embedding is completely determined
by ω.

The case of intercodes of index n is special only in that we deal with tuples of
words. The relation defining the intercodes satisfies the conditions trivially.

Finally, for solid codes we need to consider the relation ωsolid = <i ∪ ωol. The
rôle of <i is similar to that of the prefix order above. The rôle of ωol is different.
Regardless of whether we use ωol or ωol, there is a problem which seems to require
special measures.

• Using ωol: If u ωol v with u, v ∈ Σ+ then v ≤i q does not imply that u ≤h q.

• Using ωol: If (u1, u2) ωol v then v ≤i q does not imply word((u1, u2)) =
u1u2 ≤h q. However, we have u1 ≤i q and u2 ≤i q.
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In either case, the mere occurrence of v does not result in a violating instance in
general.

Example 3.3. Let Σ = {a, b}.

1. Consider the prefix order <p and the language C = {a, ab}. This language
is not a prefix code. The set of words which are violation-free of <p for
decompositions with respect to C are the words not containing ab, that is, all
the words in Σ+ \Σ∗abΣ∗ = a+ ∪ b+a∗. The set of words which are violation-
free of <p for decodings with respect to C are the words in Σ+ \ C∗abC∗.

2. For the outfix relation, consider the language C = {aa, aba} which is not an
outfix code. A violation-free word for decompositions must not contain aba as
an infix, that is, must be in Σ+ \Σ∗abaΣ∗. For decodings, such a word must
not have the form C∗abaC∗.

3. For the intercode relation of index n, consider, without loss of generality,
n = 1 and the language C = {ab, bba}. The language C is not an intercode
of index 1, that is, not a comma-free code, as Σ+CΣ+ ∩ C2 6= ∅ with ab and
bbabba as witnesses. Note that C is a bifix code. For decompositions, bbabba
must not occur as an infix. For decodings, any word not in C∗bbabbaC∗ is
violation-free.

4. For the solid code relation, the infix part is analogous to <p that has already
been illustrated. The “new” problem is that of overlaps. Consider C = {ab, ba},
which is an infix code, but not an overlap-free language10. We focus on the
overlap relation either in the form ωol or the form of ωol. For decompositions
the words which do not contain aba or bab are violation-free. For decodings,
any word not in C∗{abab, baba}C∗ is violation-free.

Note that every non-empty word q /∈ C+ is violation-free for decodings with
respect to C.

In general there is a pattern: For decompositions q /∈ Σ∗word(v)Σ∗ is violation-
free. For decodings q /∈ C∗word(v)C∗ is violation-free.

When two relations interact, as in the case of solid codes, for violation-freeness
the corresponding property seems not to be just a simple Boolean junction of the
basic properties; this seems to require an expression of the co-locality of the re-
spective defining situations. Neither Definition 3.4 based on Head’s work nor our
Definition 3.6 covers this adequately. We hope to look at this issue in a subsequent
study.

Instead of violating instances one can also consider occurrences of words which,
taken together, violate the condition in question although their occurrences may
be “unrelated”. To this end we modify Definition 3.1 following the pattern of Defi-
nition 3.6. In contrast to the violating instances, we consider a property Pω which
is given by an k-ary relation ω ⊆ k-tuples(Σ+). For example: for prefix-freeness we

10Note that overlap-freeness alone does not imply unique decodability.
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have (u, v) ∈ ω 6=p if u <p v; for overlap-freeness we have (u, v) ∈ ωol if there exist
w1, w1, w3 ∈ Σ+ such that u = w1w2 and v = w2w3; and for the intercode property
of index n, we have

(u1, u2, . . . , un, v1, v2, . . . , vn+1) ∈ ωintern

if there exist x, y ∈ Σ+ such that v1v2 · · · vn+1 = xu1u2 · · ·uny. As our definition
covers the overlap relation and a word can have a non-trivial overlap with itself, like
(xyx, xyx) ∈ ωol, we cannot assume that the relation ω is irreflexive – if it is binary
– in general. On the other hand, all binary relations ω% with % ∈ {p, s,pi, si,b, i, o,h}
are irreflexive. In order to make the following definition as general as possible, we
let ω be an arbitrary subset of all-tuples(Σ+) rather than a k-ary relation.

Definition 3.7. Let C ⊆ Σ+, q ∈ Σ+, and ω ⊆ all-tuples(Σ+). Let Pω be the
predicate defining ω.

1. The word q is said to be Pω-admissible for decompositions with respect to C,
if, for all u = (u1, u2, . . . , un) ∈ ω ∩ all-tuples(C), there exists (at least) one
index 1 ≤ i ≤ n such that ui 6≤i q.

2. The word q is said to be Pω-admissible for decodings with respect to C, if, for
all u = (u1, u2, . . . , un) ∈ ω ∩ all-tuples(C), there exists (at least) one index
1 ≤ i ≤ n such that there are no C-decodings q = q1uiq2 with q1, q2 ∈ C∗.

Remark 3.2. For ωo and the relations defining the shuffle hierarchy except <i

the definition of admissibility differs significantly from that of violation-freeness.
Consider u, v ∈ C with (u, v) ∈ ω 6=o . The occurrence of v would be a violating
instance. However, it is no obstacle to admissibility unless also the word u occurs.
This statement holds true for all shuffle relations including <h, but excluding <i.

For intercodes ωintern , as well as comma-free codes and overlap-freeness, a word q
is violation-free if the words in u ∈ ωintern do not appear in a particular constellation
in q as defined by the binary relation ωintern . In contrast, for admissibility each word
in u ∈ ωintern is treated individually and can appear anywhere in q.

Example 3.4. Let Σ = {a, b}.

1. Consider the prefix order <p and the language C = {a, ab}. The set of words
which are admissible for decompositions with respect to C are the words
not containing ab, that is, all the words in a+ ∪ b+a∗; in this case violation-
freeness and admissibility coincide because a is an infix of ab. The set of
words which are admissible for decodings with respect to C are the words in
Σ+ \ (C∗abC∗ ∩ C∗aC∗) = Σ+ \ C+ ∪ a+ ∪ (ab)+.

2. For the outfix relation, consider the language C = {aa, aba} which is not an
outfix code. An admissible word for decompositions must not contain both
aba and aa as infixes, that is, must be in Σ+ \ (Σ∗abaΣ∗ ∩ Σ∗aaΣ∗). For
decodings, such a word must be in Σ+ \ (C∗abaC∗ ∩ C∗aaC∗).
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3. For the comma-free relation, consider the language C = {ab, bba}. The lan-
guage C is not a comma-free code, as Σ+CΣ+ ∩ C2 6= ∅ with ab and bbabba
as witnesses. Note that C is a bifix code. For decompositions, a word is ad-
missible if not both, bba and ab, are infixes of this word. For decodings, any
word not in C∗bbaC∗ ∩ C∗abC∗ is admissible.

4. For solid codes, consider C = {ab, ba}, which is an infix code, but not an
overlap-free language. We focus on the overlap relation in the form ωol rather
than ωol. For decompositions the words which do not contain ab and ba are
admissible, that is, all words in a+b∗ ∪ b∗a+ ∪ b+. For decodings, any word
not in C∗abC∗ ∩ C∗baC∗ is admissible.

The following two theorems show how the different notions of admissibility and
violation-freeness are related to each other. The set of relations considered can
be divided into two sets with two essentially different behaviours. The first set
contains only binary, asymmetric, irreflexive relations and its properties are stated
in Theorem 3.1; Figure 1 illustrates the relationships. The remaining properties are
covered by Theorem 3.2 below.

violation-free for
decompositions

violation-free
for decodings

admissible for
decompositions

admissible for
decodings

for all % (2)

for % ∈ {p, s, pi, si, b, i},
but not for % ∈ {o, h} (5)

for all % (3)

not conversely

for
all

%
(1)

not
conversely

for
all

%
(4)

not
conversely

Figure 1: Relation described in Theorem 3.1: The numbers on the arrows refer to
the statements in Theorem 3.1. This figure is restricted to % ∈ {p, s,pi, si,b, i, o,h}.

Theorem 3.1. Let C ⊆ Σ+, q ∈ Σ+ and % ∈ {p, s,pi, si,b, i, o,h}. The following
statements hold true:

1. If the word q is P%-violation-free for decompositions with respect to C, then it
is P%-violation-free for decodings, but not conversely.

2. If the word q is P%-violation-free for decompositions with respect to C, then it
is P%-admissible for decompositions with respect to C.
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3. If the word q is P%-violation-free for decodings with respect to C, then it is
P%-admissible for decodings with respect to C, but not conversely.

4. If the word q is P%-admissible for decompositions with respect to C, then it is
P%-admissible for decodings with respect to C, but not conversely.

5. For % ∈ {p, s,pi, si,b, i} the converse of (2) holds true. However, for % ∈ {o,h}
the converse of (2) does not hold.

Proof: Since ω 6=% is binary and irreflexive, we consider two distinct words u and v
such that u ω 6=% v. The words u and v are fixed throughout this proof.

Assume that the word q is P%-violation-free for decompositions with respect to
C, that is, v 6≤i q. In particular, v is not an infix of a decoding of q with respect to
C.

Conversely, consider the language C = {ab, abab, aa, ba} and note that abab is
the sole violating instance of P% for all relations considered here. The word aababa
with the unique C-decoding (3, (aa, ba, ba)) is P%-violation-free for decodings with
respect to C, but it is not P%-violation-free for decompositions with respect to C.
This proves (1).

Again, let q be P%-violation-free for decompositions with respect to C. As v 6≤i q,
trivially v and u cannot both be infixes of q. This proves (2).

Assume that the word q is P%-violation-free for decodings with respect to C.
Then v is not an infix of a decoding of q with respect to C. Thus, trivially v and u
cannot both be infixes of a decoding of q either.

Conversely, consider the language C = {ab, abbab} and note that ab ω 6=% abbab
for all relations considered here. The word abbab with the unique C-decoding
(1, (abbab)) is not P%-violation-free for decodings with respect to C, but it is P%-
admissible for decodings with respect to C. This proves (3).

Assume that the word q is P%-admissible for decompositions with respect to C.
Then u and v are not both infixes of q. Hence, they are not both infixes of decodings
of q with respect to C.

Conversely, consider the language C = {ab, abbab} again, and note that abbab
is P%-admissible for decodings with respect to C, but it is not P%-admissible for
decompositions with respect to C. This proves (4).

For % ∈ {p, s,pi, si,b, i}, if q is P%-admissible for decompositions with respect to
C, then v 6≤i q because u <i v due to the choice of %. Hence, q is P%-violation-free
for decompositions with respect to C.

Now, consider C = {aa, aba}, which is not an outfix code. The word aba contains
aba, but not aa. Therefore, aba is Po-admissible and Ph-admissible for decomposi-
tions with respect to C. On the other hand, the occurrence of aba is a Po-violating
and Ph-violating instance. This proves (5). �

The situation for overlap-free languages, solid codes, intercodes, and comma-
free codes is different from the code properties that are covered by Theorem 3.1;
Figure 2 illustrates the relationships stated in Theorem 3.2.
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Theorem 3.2. Let C ⊆ Σ+, q ∈ Σ+ and % ∈ {ol, solid, intern, comma-free}. The
following statements hold true:

1. If the word q is P%-violation-free for decompositions with respect to C, then it
is P%-violation-free for decodings, but not conversely.

2. If the word q is P%-admissible for decompositions with respect to C, then it is
P%-violation-free for decompositions with respect to C, but not conversely.

3. If the word q is P%-admissible for decompositions with respect to C, then it is
P%-admissible for decodings with respect to C, but not conversely.

4. If q is P%-asmissible for decodings with respect to C, this does not imply that
q is P%-violation-free for decodings or decompositions with respect to C. If q is
P%-violation-free for decodings or decompositions with respect to C, this does
not imply that q is P%-admissible for decodings with respect to C.

5. If q ∈ C+ and q is Psolid-violation-free for decodings with respect to C, then
q is also Psolid-violation-free for decompositions with respect to C.

violation-free for
decompositions

violation-free
for decodings

admissible for
decompositions

admissible for
decodings

for all % (2)

not conversely

for
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%
(3)

not
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for
all

%
(1)

only
if
%

=
so

lid
and

q
∈

C
+

(5)

incomparable (4)

Figure 2: Relation described in Theorem 3.2: The numbers on the arrows
refer to the statements in Theorem 3.2. This figure is restricted to % ∈
{ol, solid, intern, comma-free}.

Proof: Let % ∈ {ol, intern} and let u, v be word tuples such that u ω% v. For % =
intern, we require that u, v ∈ all-tuples(C) and we let w = u ·v be the concatenation
of the tuples u and v. For % = ol, we only require that u ∈ all-tuples(C) and we let
w = u. In both cases, we have w ∈ ω% ∩ all-tuples(C).

The case Pcomma-free is covered as a special case of Pintern , whereas the case
Psolid = Pi ∧ Pol requires special attention. Note that the positive statements of
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(1,2,3) follow for Psolid because they hold for Pol (proven below) and Pi (Theo-
rem 3.1).

If q is P%-violation-free for decompositions with respect to C, then word(v) is
not a proper infix of q. In particular, word(v) is not an infix of a decoding of
q as described in Definition 3.6. Hence, q is P%-violation-free for decodings with
respect to C. The same property holds for Psolid because it holds for Pol and Pi by
Theorem 3.1.

Conversely, for Pintern with n ≥ 1, let C = {ab, ba, a(ab)n+1}. The word a(ab)n+1,
with the unique C-decoding (1, (a(ab)n+1)), is Pintern -violation-free for decodings
with respect to C, but it is not Pintern -violation-free for decompositions with respect
to C as it contains the violating instance (ab)n+1. For Pol, let C = {ab, ba, abaa}.
The word abaa, with the unique C-decoding (1, (abaa)), is Pol-violation-free for de-
codings with respect to C, but it is not Pol-violation-free for decompositions with
respect to C as it contains the violating instance aba. For Psolid, this result can only
be obtained if q does not have a C-decoding and is, therefore, Psolid-violation-free
for decodings with respect to C, but contains a Psolid-violating instance as infix;
otherwise, statement (5) would be contradicted. This proves (1).

Assume q is P%-admissible for decompositions with respect to C. Hence, not all
of the words in w appear as infixes of q. Because word(v) contains all words from
w as infixes, we have word(v) 6≤i q. Hence, q is P%-violation-free for decompositions
with respect to C. This proves the “forward direction” of (2).

If q is P%-admissible for decompositions with respect to C, then not all of the
words from w can be infixes of q. In particular, they cannot all be infixes of decod-
ings of q. Hence, q is P%-admissible for decodings with respect to C. This proves
the “forward direction” of (3).

For % = intern with n ≥ 1, let C = {ab, ba}. The word (ab)n+1 is Pintern -
violation-free for decodings and decompositions with respect C, but it is Pintern -
admissible for decodings with respect to C since ba does not appear in the unique
C-decoding (n+ 1, (ab, . . . , ab)). Furthermore, (ab)n+1 is not Pintern-admissible for
decompositions with respect to C. On the other hand, the word abba with the unique
decoding (2, (ab, ba) is Pintern -violation-free for decodings and decompositions with
respect to C, but it is not Pintern -admissible for decodings or decompositions with
respect to C. Note that we do not require that ab or ba appears in n or n+1 distinct
positions in abba. This proves (4) and the “converse directions” of (2) and (3) do
not hold for intercodes of index n.

For % ∈ {ol, solid}, let C = {abb, bab}. The word abbabb is P%-admissible for
decodings with respect to C, because bab does not occur in a decoding of abbabb.
However, abbabb contains the violating instance abbab as described in Definition 3.6.
Therefore, abbabb is not P%-violation-free for decodings or decompositions with
respect to C. Furthermore, abbabb is not P%-admissible for decompositions with
respect to C. The word abbbab, on the other hand, is P%-violation-free for decodings
or decompositions with respect to C, but it is not P%-admissible for decodings or
decompositions with respect to C. This proves (4) and the “converse directions”
of (2) and (3) do not hold.

Let q = u1u2 · · ·un with u1, u2, . . . , un ∈ C be Psolid-violation-free for decodings
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with respect to C. Suppose q contains a Psolid-violating instance v as infix If v it
is a violating instance of Pi, let w = v ∈ C; if v it is a violating instance of Pol, let
w <p v such that w ∈ C and there exists w′ <s v such that w′ ∈ C and |ww′| > |v|.
We distinguish five cases:

• If w = ui, for some 1 ≤ i ≤ n, such that v ≤p wui+1 · · ·un then v would be a
witness that q is not Psolid-violation-free for decodings with respect to C.

• If w was an infix of any ui, then ui would be a witness that q is not Pi-
violation-free for decodings with respect to C.

• If w = uiui+1 · · ·uj for some i, j with 1 ≤ i < j ≤ n, then w (in the decoding
q = u1 · · ·ui−1wuj+1 · · ·un) would be a witness that q is not Pi-violation-free
for decodings with respect to C.

• If there existed 1 ≤ i < n and x, y, z ∈ Σ+ such that ui = xy, w = yz and
w ≤p ui+1 · · ·un, then xyz is a witness that q is not Pol-violation-free for
decodings with respect to C.

• If there existed 1 < i ≤ n and x, y, z ∈ Σ+ such that w = xy, ui = yz and
w ≤s u1 · · ·ui−1, then xyz is a witness that q is not Pol-violation-free for
decodings with respect to C.

This covers all possibilities of how w, as prefix of v, can be located in q. This proves
(5). �

One can intuit the relativization of a code property P as follows: If a word
q ∈ C+ satisfies the relativized property with respect to C, then the word should be
uniquely decodable over C. As we show next, this intuition holds true for the notion
of admissibility, but does so only for some special properties when considering
violation-freeness. However, the converse of this statement is not true: If a word
q is uniquely decodable over C, then q is not necessarily P -violation-free or P -
admissible for decompositions or decodings with respect to C. For example, consider
the prefix-free property and C = {ab, aba}. The word q = ababa has the unique
C-decoding (2, (ab, aba)); it is, however, neither Pp-violation-free nor Pp-admissible
for decompositions or decodings with repect to C.

Theorem 3.3. Let ω ⊆ k-tuples(Σ+) be a k-ary relation such that if a non-empty
language D satisfies Pω, then D is a code (all words over Σ+ have at most one D-
decoding). Let C ⊆ Σ+ be a non-empty language. If q is Pω-admissible for decodings
or decompositions, then q has at most one C-decoding.

Proof: Suppose q ∈ Σ+ has two C-decodings and is Pω-admissible for decodings or
decompositions relative to C. Let

(m, (u1, u2, . . . , um)) and (n, (v1, v2, . . . , vn))

be two distinct C-decodings of q. Let C ′ = {u1, u2, . . . , um, v1, v2, . . . , vn} ⊆ C.
As q is Pω-admissible for decodings or decompositions with respect to C, for all
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w ∈ k-tuples(C ′) we have w /∈ ω. Therefore, C ′ satisfies the property Pω and must
be a code. However, the word q has two C ′-decodings – a contradiction! �

This result easily extends to violation-free words for the properties P% with
% ∈ {p, s,pi, si,b, i, o,h, solid}, using Theorem 3.1. For Psolid we need to observe that
Psolid-violation-freeness with respect to a language C implies Pi-violation-freeness
with respect to C.

Corollary 3.1. Let % ∈ {p, s,pi, si,b, i, o,h, solid} and C ⊆ Σ+ be a non-empty
language. If q is P%-violation-free for decodings or decompositions, then q has at
most one C-decoding.

A similar result cannot be obtained for intercodes or comma-free codes: Let C =
{ab, abab} and n ≥ 1 The word abab clearly has two distinct C-decodings. However,
abab is Pintern-violation-free for decodings or decompositions with respect to C.
Indeed, for comma-freeness the shortest violating instance over C is (ab) ωcomma-free

(ab, abab) or (ab) ωcomma-free (abab, ab).

3.4 Relativized Codes
We have arrived at four notions of how a word may satisfy the predicate P% for a
given non-empty language C ⊆ Σ+:

1. vf-decomp: Violation-free for decompositions;

2. vf-decod: Violation-free for decodings;

3. adm-decomp: Admissible for decompositions;

4. adm-decod: Admissible for decodings.

Let M be the set of these notions. Each µ ∈M gives rise to a definition of a class
of relativized codes as follows:

Definition 3.8. Let C and L be non-empty subsets of Σ+, let µ ∈M and let

% ∈ {p, s,pi, si,b, i, o,h, solid, ol, intern, comma-free}.

The language C is a P%-µ code relative to L if every word in L has the property
P%-µ with respect to C.

Let Cµ% (L) be the class of P%-µ codes relative to L. Let Lµ% (C) be the class
of non-empty languages L ⊆ Σ+ such that C is a P%-µ code relative to L. The
following statements are consequences of the results obtained so far.

Theorem 3.4. In the statements below the symbols µ, %, C, and L are defined as
follows: µ ∈M,

% ∈ {p, s,pi, si,b, i, o,h, solid, ol, intern, comma-free},

C, L ⊆ Σ+, C 6= ∅, L 6= ∅. The following statements hold true:
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1. For all µ, % and C, the set Lµ% (C) is closed under arbitrary unions. Therefore,
it contains a unique maximal language denoted Mµ

C,%.

2. For all µ, % and L, the set Cµ% (L) is closed under non-empty intersections.

3. Cvf-decomp
% (L) ⊆ Cvf-decod

% (L) and Cadm-decomp
% (L) ⊆ Cadm-decod

% (L). The inclu-
sions are proper for some L.

4. Cvf-decomp
% (L) = Cadm-decomp

% (L) for % ∈ {p, s,pi, si,b, i}; Cvf-decomp
% (L) ⊆

Cadm-decomp
% (L) for % ∈ {o,h}; and Cvf-decomp

% (L) ⊇ Cadm-decomp
% (L) for % ∈

{solid, ol, intern, comma-free}. The inclusions are proper for some L.

5. Cvf-decod
% (L) ⊆ Cadm-decod

% (L) for % ∈ {p, s,pi, si,b, i, o,h}. The inclusion is
proper for some L.

6. If C ′ ⊆ C, C ′ 6= ∅, then Lµ% (C) ⊆ Lµ% (C ′) for all µ and %.

7. If L′ ⊆ L then Cµ% (L) ⊆ Cµ% (L′) for all µ and %.

Proof: All statements are easy consequences of the definitions and of Theorems 3.1
and 3.2. �

Theorem 3.4 summarizes simple aspects of relativizing code properties. More
detailed issues can be learned from Theorems 3.1 and 3.2. In both cases, the state-
ments are limited to specific code properties %. To identify the common scheme for
a wider class of code properties is still an open problem.

3.5 The Old and New Definitions Compared
We outline how the definitions of code relativization given in [2] and [9] compare to
the ones in the present paper. While we attempted to maintain consistency, it was
inevitable that some definitions would change given the fact that a detailed look
prompted by [13] revealed the need for a more general and less uniform approach.
Hence, when reading the older papers together with this one, it is important to
watch for slight, but possibly important, differences in the definitions, before using
the statements of theorems. Particular attention needs to be paid to the issues in
the following remark.

Remark 3.3. Let L,C ⊆ Σ+ be non-empty languages.

1. Let P be a predicate on P≤2(C). Note that a subset ω of 1-tuples(Σ+) ∪
2-tuples(Σ+) describes the predicate P , that is P = Pω, if and only if

P ({x, y}) = 0 ⇐⇒ (x, y) ∈ ω or (y, x) ∈ ω and

P ({x}) = 0 ⇐⇒ (x) ∈ ω or (x, x) ∈ ω.

Let P = Pω be described by a set of tuples ω. A word q ∈ C+ is P -admissible
for C in the sense of Definition 3.1 if and only if it is P -admissible for decodings
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with respect to C in the sense of Definition 3.7. Furthermore, if L ⊆ C+, then
C is a P -code relative to L in the sense of Definition 3.3 if and only if C is a
P -admissible code for decodings relative to L in the sense of Definition 3.8.

Note that, Definitions 3.1 and 3.3 do not cover the cases when q /∈ C+ and L 6⊆
C+, respectively, while, in this paper, we naturally extend these definitions
to all words q ∈ Σ+ and languages L ⊆ Σ+.

2. C is a solid code relative to L according to Definition 3.4 if and only if every
word q ∈ L is Psolid-violation-free for decompositions with respect to C in the
sense of Definition 3.6 or, equivalently, if C is a Psolid-violation-free code for
decompositions relative to L in the sense of Definition 3.8.

We suggest that the framework of this paper supersede those of [2, 9]. The
concepts are still not ideal, but approaching what we consider the right ones.

4 Decidability Questions

In general, given non-empty languages C,L ⊆ Σ+ and a code property P , one
would like to know whether C is a P -code relative to L. In practical terms, we are
given a language L of messages to be transmitted. We are also given a target for
the transmission quality expressed by the predicate P . We want to know whether a
given candidate code C serves the purpose. This gives rise to decidability problems
for relativized codes.

For unrelativized codes, that is codes relative to Σ+, results regarding the decid-
ability of code properties as of 1996 are proved or summarized in [15, 14]. Further
details are found in [3] and [4]. It is known that code properties are usually decid-
able when C is a regular language, and undecidable when C is a linear language.
In [4] it is shown that the boundary between decidability and undecidability is sig-
nificantly lower than that of linear languages. For relativized code properties this
implies that one should not expect decidability unless C is regular. Regarding as-
sumptions about L, we only consider the case of L being regular as well. At present
we do not know to which extent this restriction can be lifted.

We first review two notions which we use in some of the proofs in this section.

1. Let L ⊆ Σ+. The syntactic congruence ∼L with respect to L is defined as
follows: For u, v ∈ Σ+, u ∼L v if and only if, for all x, y ∈ Σ∗, either xuy
and xvy are both in L or both not in L. The syntactic semigroup of L is
the quotient semigroup Σ+/∼L. Each element of the syntactic semigroup of
L is a syntactic class which can be viewed as a language itself. For a word
u we write [u]L to denote its syntactic class. The syntactic semigroup of a
language L is finite if and only if L is regular. For languages L1 and L2 over
the same alphabet Σ, ∼(L1,L2) denotes the intersection of the congruences
∼L1 and ∼L2 . For additional basic information on syntactic semigroups we
refer to [17, 24].
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2. The second notion to consider is that of shuffling on a trajectory. This concept
is widely used in order to describe code properties [29, 18, 19, 20, 21, 14]. A
trajectory t is a word over the alphabet {0, 1}. The result of shuffling two
words u and v on the trajectory t is a word w = u �t v that is obtained
by using all letters from u and v where the trajectory t determines in which
places to use letters from u or v. Shuffling is defined recursively by

λ�λ λ = λ, au�0t v = a(u�t v), u�1t bv = b(u�t v)

where a, b ∈ Σ, u, v ∈ Σ∗, and t ∈ {0, 1}∗. Note that u�t v is only defined if
|u| = |t|0 and |v| = |t|1. This concept is extended to languages L1, L2 and a
set of trajectories t by

L1 �t L2 = {u�t v | u ∈ L1, v ∈ L2, t ∈ t}.

The shuffle of two regular languages on a regular set of trajectories yields a
regular language.

Let P% be a code property and C ⊆ Σ+ be a non-empty language. For each of
the four notions of relativized codes µ ∈M there is a maximal language Mµ

C,% such
that a language L is a P%-µ code relative to C if and only if L ⊆ Mµ

C,%, as stated
in Theorem 3.4.

We show that Mvf-decomp
C,% and Mvf-decod

C,% are effectively constructible regular
languages for all P% considered in this paper. Thus, to decide whether or not a
given regular language is a P%-violation-free code for decompositions or decodings
relative to another regular language, one can test for inclusion of regular languages.
Let VC,% = {v ∈ C | v is a violating instance of P% in C}. Here, a violating instance is
a word(v) as used in Definition 3.6. Since Pol-violation-freeness and Psolid-violation-
freeness, do not follow the general definition, these properties are treated separately.

Lemma 4.1. Let C ⊆ Σ+ be a non-empty language and let

% ∈ {p, s,pi, si,b, i, o,h, intern, comma-free}.

We have Mvf-decomp
C,% = Σ+ \ Σ∗VC,%Σ

∗ and Mvf-decod
C,% = Σ+ \ C∗VC,%C∗.

Proof: The languagesMvf-decomp
C,% andMvf-decod

C,% contain precisely those words which
are violation-free for decompositions or decodings, respectively, with respect to C.
This is a direct consequence of Definition 3.6. �

Theorem 4.1. For

% ∈ {p, s,pi, si,b, i, o,h, ol, solid, intern, comma-free}

and regular C ⊆ Σ+ the languages Mvf-decomp
C,% and Mvf-decod

C,% are effectively regular.
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Proof: The sets of violations can be expressed as VC,p = C∩CΣ+, VC,s = C∩Σ+C,
VC,pi = C ∩Σ∗CΣ+, VC,si = C ∩Σ+CΣ∗, VC,b = VC,p ∪VC,s, VC,i = C ∩ (Σ+CΣ∗ ∪
CΣ+), VC,intern = Cn+1 ∩ Σ+CnΣ+, VC,comma-free = CC ∩ Σ+CΣ+, which are
all regular languages. The sets of violations for outfix-codes and hypercodes can
be expressed using shuffling on a trajectory: we have VC,h = C ∩ (C �th Σ+) for
th = {0, 1}+ and VC,o = C ∩ (C �to Σ+) for to = 0∗1+0∗; both sets of violations
are regular.

Using Lemma 4.1, we obtain that Mvf-decomp
C,% and Mvf-decod

C,% are regular because
VC,% is regular for % ∈ {p, s,pi, si,b, i, o,h, intern, comma-free}. All steps in these
constructions are effective.

For % = ol, the set of violations can be written as

VC,ol = {xyz | x, y, z ∈ Σ+, xy, yz ∈ C} =
⋃

X,Y,Z∈Σ+/∼C

XY⊆C,Y Z⊆C

XY Z

which is an effectively regular language. As before, we obtain Mvf-decomp
C,ol = Σ+ \

Σ∗VC,olΣ
∗.

The set Mvf-decod
C,ol cannot be expressed in a similar manner as above; neverthe-

less, it is effectively regular, given as

Mvf-decod
C,ol = Σ+ \

⋃
X,Y,Z∈Σ+/∼C

XY⊆C,Y Z⊆C

(
C∗XY (ZΣ∗ ∩ C+) ∪ (C+ ∩ Σ∗X)Y ZC∗

)
.

Finally, we have Mvf-decomp
C,solid = Mvf-decomp

C,i ∩ Mvf-decomp
C,ol and

Mvf-decod
C,solid = Mvf-decod

C,i ∩Mvf-decod
C,ol . �

Since the constructions of the regular languages in both Lemma 4.1 and Theo-
rem 4.1 are effective, one concludes:

Corollary 4.1. Let

% ∈ {p, s,pi, si,b, i, o,h, ol, solid, intern, comma-free}.

For given regular languages C and L it is decidable

1. whether or not C is a P%-violation-free code for decompositions relative to L,
and

2. whether or not C is a P%-violation-free code for decodings relative to L.

This result can be extended to P%-admissible codes for decompositions for those
properties for which P%-admissibility and P%-violation-freeness coincide – see The-
orem 3.1.
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Corollary 4.2. Let
% ∈ {p, s,pi, si,b, i}.

For given regular languages C and L it is decidable whether or not C is an P%-
admissible code for decompositions relative to L.

The situation changes when considering admissibility for decodings. Decidability
cannot be expressed as an inclusion test of two regular languages as before.

Proposition 4.1. For a given regular C ⊆ Σ∗ the language Madm-decod
C,p is not

necessarily regular.

Proof: Let Σ = {0, 1} and C = 10∗. Obviously, a word w ∈ 10i10j ∈ C2 belongs
to Madm-decod

C,% if and only if i = j. Therefore, the language Madm-decod
C,% cannot be

regular as its intersection with the regular language C2 is not regular. �

Deciding whether or not a regular language C is an P%-admissible code for
decodings relative to a regular language L works in two stages: first, decide whether
or not C is a code relative to L, that is, every word in L has at most one C-decoding;
then, verify that every decoding of a word in L is P%-admissible. We focus only on
code properties P% defined by irreflexive binary relations; this excludes solid codes,
intercodes, comma-free codes and overlap-free languages.

The next lemma forms the basis for deciding whether or not a regular language
C is a code relative to a regular language L. The lemma itself does not require that
the languages L and C be regular.

Lemma 4.2. Let L,C ⊆ Σ+ be non-empty languages. The language C is a code
relative to L if and only if, for all syntactic classes Y ∈ Σ+/∼C contained in C,
one has

(C∗Y )−1L ∩ C∗ ∩ (Y −1C \ {λ})C∗ = ∅.

Proof: Suppose C is not a code relative to L. There exists a word w = u1 · · ·un =
v1 · · · vm ∈ L such that u1, . . . , un, v1, . . . , vm ∈ C and ui 6= vi for some 1 ≤ i ≤
min{n,m}. Let i be minimal such that ui 6= vi and, by symmetry, assume that ui <p
vi. Let Y = [ui]C and observe that z = ui+1 · · ·un belongs to (C∗Y )−1L as well
as C∗; furthermore, since u−1

i vi ∈ Y −1C \ {λ}, we obtain z = (u−1
i vi)vi+1 · · · vm ∈

(Y −1C \ {λ})C∗. Therefore,

(C∗Y )−1L ∩ C∗ ∩ (Y −1C \ {λ})C∗

is not empty.
Conversely, suppose that

z ∈ (C∗Y )−1L ∩ C∗ ∩ (Y −1C \ {λ})C∗

exists for some Y ∈ Σ+/∼C with Y ⊆ C. Let x1, . . . , xi ∈ C∗ and y ∈ Y such that
w = x1 · · ·xiyz ∈ L. There are u1, . . . , un ∈ C such that z = u1 · · ·un. Furthermore,
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we let v0 ∈ y(Y −1C \{λ}) and v1, . . . , vm ∈ C such that yz = v0, . . . , vm; note that
v0 ∈ C. Thus, we found two factorizations

w = x1 · · ·xiyu1 · · ·un = x1 · · ·xiv0 · · · vm

of a word that belongs to L where all factors belong to C and y 6= v0. We conclude
that C is not a code relative to L. �

Theorem 3.3 and Lemma 4.2 lead to a general method for deciding whether
a regular language C is an P%-admissible code for decodings relative to a regular
language L provided the relation ω% is binary and recognizable in a transducer
model with a decidable emptiness or membership problem. This applies to

% ∈ {p, s,pi, si,b, i, o,h}.

In [15] it is shown that the emptiness problem for a transducer model is decidable
if and only if its membership problem is decidable. Furthermore, if the emptiness
problem of a transducer machine recognizing ω% is decidable, then for regular X,Y
it is decidable whether or not x ∈ X and y ∈ Y exists such that x ω% y.

Theorem 4.2. Let C,L ⊆ Σ+ be non-empty regular languages and let P% be a code
property such that ω% is irreflexive and recognizable by a transducer machine with
decidable emptiness problem. It is decidable whether or not C is a P%-admissible
code for decodings relative to L.

Proof: According to Theorem 3.3, for C to be an P%-admissible code for decodings
relative to L, it is necessary that C is a code relative to L. By Lemma 4.2, we can
decide whether or not C is a code relative to L by performing a series of emptiness
test of regular languages. Henceforth, we assume that we have preformed this test
and that C is a code relative to L.

We will show that, under the premise that C is a code relative to L, C is a
P%-admissible code for decodings relative to L if and only if for all syntactic classes
X,Y ∈ Σ+/∼(C,L) such that X,Y ⊆ C and there exist x ∈ X and y ∈ Y with
x ω% y or y ω% x, we have

C∗XC∗Y C∗ ∩ L = ∅.

Recall that one can decide whether or not there are x ∈ X and y ∈ Y such that
x ω% y or y ω% x because ω% is recognizable by a transducer machine with decidable
emptiness problem [15].

Now, suppose that w ∈ C∗XC∗Y C∗ ∩ L exists for a pair X,Y ∈ Σ+/∼(C,L)

such that X,Y ⊆ C and there exist x ∈ X and y ∈ Y with x ω% y or y ω% x.
Let w ∈ u1Xu2Y u3 for u1, u2, u3 ∈ C∗. One obtains that u1Xu2Y u3 ⊆ L and,
therefore, u1xu2yu3 ∈ C∗XC∗Y C∗ ∩ L with x ω% y or y ω% x. Hence C is not a
P%-admissible code for decodings relative to L.

Conversely, let w ∈ L be a witness for the fact that C is not a P%-admissible
code for decodings relative to L; that is, two words x, y ∈ C such that x ω% y or
y ω% x appear in decodings of w over C; note that we cannot have x = y since ω% is
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irreflexive. As C is a code relative to L, x and y appear in the same decoding; thus,
without loss of generality, we can factorize w = u1xu2yu3 with u1, u2, u3 ∈ C∗ and
C∗[x](C,L)C

∗[y](C,L)C
∗ ∩ L cannot be empty. �

With the tools used in this section we cannot answer the following questions:

1. For % ∈ {o,h, ol, solid, intern, comma-free} and given regular languages C, L,
is it decidable whether or not C is a P%-admissible code for decompositions
relative to L?

2. For % ∈ {ol, solid, intern, comma-free} and given regular languages C, L, is it
decidable whether or not C is a P%-admissible code for decodings relative to
L?

5 Final Remarks

In information processing, coding serves several purposes. These are expressed by
code properties. In a real information transmission system, messages arrive with
different probabilities including many with probability 0. Unless data ideal compres-
sion is applied, which would essentially eliminate the latter and make all messages
equally likely, coding should take into account which messages are likely to be
encoded. This idea is modelled by relativized codes. Thus the standard code prop-
erties, both information theoretically and in terms of combinatorics, have their
relativized counterparts, relativized to the language of likely messages to be en-
coded. This is very much in the spirit of Shannon’s channel coding theorem [26]
where messages of probability 0 are practically ignored.

Contrary to what was envisaged in [2], no uniformly acceptable relativization
seems possible. Instead, examining various potential models, we arrived at four
definitions, each of which seems to be equally well motivated.

We compare these models both among each other and to intuitive expecta-
tions. We also consider their decidability properties. We have indicated a few open
questions. Many more could have been mentioned.

Acknowledgement: Research reported in this paper was supported by grants
from the Natural Sciences and Engineering Council of Canada.
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Remembering Ferenc Gécseg
This paper is dedicated to Ferenc Gécseg. By his influential work he is known to
and admired by, all authors of this paper.

The first author, “I” in the sequel, was a close friend and is adding a few personal
memories.

Between 1970 and 2000 I was a frequent visitor to Hungary mostly working
with Jenő Szép and István Peák in Budapest, but also with colleagues at the Math-
ematics Department in Szeged, in particular with Ferenc. As we grew familiar, we
usually spent the time in his garden, a bit outside Szeged, and research ideas grew
among grapes and fruits. We shared many interests including universal algebra and
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automaton theory of course, but also gardening, and social politics – and even the
birthday. We wrote several papers together: on dependence in algebras, on algebras
with dimension, on soliton automata, on products of automata, and on automata
over algebras.

Ferenc and his wife Maria visited us in London, Canada, in 1987/88 for nearly
a year. This is when Ferenc taught me much of what I did not know in universal
algebra. He also tried to teach me how to turn the soil in our garden; that was
not quite as successful, because our soil is very heavy clay unlike the sand in the
Szeged area. We visited each other and met on many occasions, including several
important seminars in Bulgaria. Exchanging thoughts on all kinds of matters, in-
cluding scientific, political and social issues, was always an exceptionally positive
experience.

I was in contact with Ferenc about a week before his death. He did not sound
confident but expressed some hope. I and my wife miss him and his wife Maria,
who died a few years ago.
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Quotient Complexities of Atoms in

Regular Ideal Languages∗

Janusz Brzozowski† and Sylvie Davies‡

Abstract

A (left) quotient of a language L by a word w is the language w−1L = {x |
wx ∈ L}. The quotient complexity of a regular language L is the number of
quotients of L; it is equal to the state complexity of L, which is the number
of states in a minimal deterministic finite automaton accepting L. An atom
of L is an equivalence class of the relation in which two words are equivalent
if for each quotient, they either are both in the quotient or both not in it;
hence it is a non-empty intersection of complemented and uncomplemented
quotients of L. A right (respectively, left and two-sided) ideal is a language
L over an alphabet Σ that satisfies L = LΣ∗ (respectively, L = Σ∗L and
L = Σ∗LΣ∗). We compute the maximal number of atoms and the maximal
quotient complexities of atoms of right, left and two-sided regular ideals.

Keywords: atom, left ideal, quotient, quotient complexity, regular language,
right ideal, state complexity, syntactic semigroup, two-sided ideal

I dedicate this work to the memory of Ferenc Gécseg. I have known Ferenc

for many years not only as an eminent scientist, author of numerous publi-

cations, and editor of Acta Cybernetica, but also as a good friend. I fondly

remember his generosity and hospitality during my frequent visits to Hungary.

Janusz Brzozowski

1 Introduction

We assume that the reader is familiar with basic concepts of regular languages
and finite automata; more background is given in the next section. Consider a
regular language L over a finite non-empty alphabet Σ. Let D = (Q,Σ, δ, q1, F ) be
a minimal deterministic finite automaton (DFA) recognizing L, where Q is the set
of states, δ : Q×Σ → Q is the transition function, q1 is the initial state, and F ⊆ Q

∗This work was supported by the Natural Sciences and Engineering Research Council of Canada

under grant No. OGP0000871.
†David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON,

Canada N2L 3G1. E-mail: brzozo@uwaterloo.ca
‡Department of Pure Mathematics, University of Waterloo, Waterloo, ON, Canada N2L 3G1.

E-mail: sldavies@uwaterloo.ca



294 Brzozowski, Davies

is the set of final states. There are three natural equivalence relations associated
with L and D.

The Nerode right congruence [14] is defined as follows: Two words x and y are
equivalent if for every v ∈ Σ∗, xv is in L if and only if yv is in L. The set of all
words that “can follow” a given word x in L is the left quotient of L by x, defined by
x−1L = {v | xv ∈ L}. In automaton-theoretic terms x−1L is the set of all words v
that are accepted from the state q = δ(q1, x) reached when x is applied to the initial
state of D; this is known as the right language of state q, the language accepted by
DFA Dq = (Q,Σ, δ, q, F ). The Nerode equivalence class containing x is known as
the left language of state q, the language accepted by DFA qD = (Q,Σ, δ, q1, {q}).
The number n of Nerode equivalence classes is the number of distinct left quotients
of L, known as its quotient complexity [1]. This is the same number as the number
of states in D, and is therefore known as L’s state complexity [16]. Quotient/state
complexity is now a commonly used measure of complexity of a regular language,
and constitutes a basic reference for other measures of complexity. One can also
define the quotient complexity of a Nerode equivalence class, that is, of the language
accepted by DFA qD. In the worst case – for example, if D is strongly connected
– this is n for every q.

The Myhill congruence [13] refines the Nerode right congruence and is a (two-
sided) congruence. Here a word x is equivalent to a word y if for all u and v in Σ∗,
uxv is in L if and only if uyv is in L. This is also known as the syntactic congru-
ence [15] of L. The quotient of the free semigroup Σ+ by this congruence is the
syntactic semigroup of L. In automaton-theoretic terms two words are equivalent
if they induce the same transformation of the set of states of a minimal DFA of L.
The quotient complexity of Myhill classes has not been studied.

The third equivalence, which we call the atom congruence is a left congruence
refined by the Myhill congruence. Here two words x and y are equivalent if ux ∈ L
if and only if uy ∈ L for all u ∈ Σ∗. Thus x and y are equivalent if x ∈ u−1L if
and only if y ∈ u−1L. An equivalence class of this relation is called an atom of
L [9]. It follows that an atom is a non-empty intersection of complemented and
uncomplemented quotients of L.

The atom congruence is related to the Myhill and Nerode congruences in a nat-
ural way. Say a congruence on Σ∗ recognizes L if L can be written as a union of
the congruence’s classes. The Myhill congruence is the unique coarsest congruence
(that is, the one with the fewest equivalence classes) that recognizes L [15]. The
Nerode and atom congruences are respectively the coarsest right and left congru-
ences that recognize L.

The quotient complexity of atoms of regular languages has been studied in [4,
8, 12]. In this paper we study the quotient complexity of atoms in three subclasses
of regular languages, namely, right, left, and two-sided ideals.

Ideals are fundamental concepts in semigroup theory. A language L over an al-
phabet Σ is a right (respectively, left and two-sided) ideal if L = LΣ∗ (respectively,
L = Σ∗L and L = Σ∗LΣ∗). The quotient complexity of operations on regular ideal
languages has been studied in [6], and the reader should refer to that paper for
more information about ideals. Ideals appear in pattern matching. A right (left)
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ideal LΣ∗ (Σ∗L) represents the set of all words beginning (ending) with some word
of a given set L, and Σ∗LΣ∗ is the set of all words containing a factor from L.

2 Preliminaries

It is well known that a language L ⊆ Σ∗ is regular if and only if it has a finite number
of quotients. We denote the number of quotients of L (the quotient complexity) by
κ(L). This is the same as the state complexity, the number of states in a minimal
DFA of L. Since we will not be discussing other measures of complexity, we refer
to both quotient and state complexity as just complexity.

Let the set of quotients of a regular language L be K = {K1, . . . ,Kn}. The
quotient automaton of L is the DFA D = (K,Σ, δ, L, F ), where δ(Ki, a) = Kj if
a−1Ki = Kj , L = K1 = ε−1L by convention, and F = {Ki | ε ∈ Ki}. This DFA is
uniquely defined by L and is isomorphic to every minimal DFA of L.

A transformation of a set Qn of n elements is a mapping of Qn into itself,
whereas a permutation of Qn is a mapping of Qn onto itself. In this paper we
consider only transformations of finite sets, and we assume without loss of generality
that Qn = {1, . . . , n}. An arbitrary transformation has the form

t =

(

1 2 · · · n− 1 n
i1 i2 · · · in−1 in

)

,

where ik ∈ Qn for 1 6 k 6 n. The image ij of element j under transformation t is
denoted by jt. The image of S ⊆ Qn is St =

⋃

j∈S{jt}. The identity transformation
1 maps each element to itself. For k > 2, a transformation (permutation) t is a
k-cycle if there is a set P = {q1, q2, . . . , qk} ⊆ Qn such that if q1t = q2, q2t =
q3, . . . , qk−1t = qk, qkt = q1, and qt = q for all q 6∈ P . A k-cycle is denoted
by (q1, q2, . . . , qk). A 2-cycle (q1, q2) is called a transposition. A transformation
is constant if it maps all states to a single state q; we denote it by (Qn → q).
A transformation t that maps p to q, q 6= p and does not afffect any r 6= p is
denoted by (p → q). The set of all transformations of Qn is a monoid under
composition, called the complete transformation monoid and denoted by Tn. The
following is well-known:

Proposition 1. The complete transformation monoid Tn has size nn and can be
generated by {(1, . . . , n), (1, 2), (n → 1)}, and by {(1, . . . , n), (2, . . . , n), (n → 1)}.

For a DFA D = (Q,Σ, δ, q1, F ) we define the transformations {δw | w ∈ Σ+}
by qδa = δ(q, a) for a ∈ Σ, and qδw = qδxδa for w = xa, x ∈ Σ∗. This set is a
semigroup under composition and it is called the transition semigroup of D. We
also define δε = 1. The transformation δw is called the transformation induced by
w. To simplify notation, we usually make no distinction between the word w ∈ Σ∗

and the transformation δw. If D is the quotient automaton of L, then the transition
semigroup of D is isomorphic to the syntactic semigroup of L [15]. A state q ∈ Q
is reachable from p ∈ Q if pw = q for some w ∈ Σ∗, and reachable if it is reachable
from q1. Two states p, q are indistinguishable if pw ∈ F ⇔ qw ∈ F for all w ∈ Σ∗,
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and distinguishable otherwise. Indistinguishability is an equivalence relation on Q;
furthermore, if D recognizes a language L, we can compute κ(L) by counting the
number of equivalence classes under indistinguishability of the reachable states of
D. A state is empty if its right language (defined in the introduction) is ∅.

3 Atoms

Atoms of regular languages were studied in [9], and their complexities in [3, 8, 12].
As discussed earlier, atoms are the classes of the atom congruence, a left congruence
which is the natural counterpart of the Myhill two-sided congruence and Nerode
right congruence. The Myhill and Nerode congruences are fundamental in regular
language theory, but it seems comparatively little attention has been paid to the
atom congruence and its classes. In [2] it was argued that it is useful to consider the
complexity of a language’s atoms when searching for complex regular languages,
since one would expect such languages to have complex atoms.

Below we present an alternative characterization of atoms, which we use in our
proofs. Earlier papers on atoms such as [3, 8, 9] take this as the definition of atoms,
for it was not known until recently that atoms may be viewed as congruence classes
(this fact was first noticed by Iván in [12]).

From now on assume all languages are non-empty. Denote the complement of a
language L by L = Σ∗\L. Let Qn = {1, . . . , n} and let L be a regular language with
quotients K = {K1, . . . ,Kn}. Each subset S of Qn defines an atomic intersection
AS =

⋂

i∈S Ki ∩
⋂

i∈S Ki, where S = Qn \ S. An atom of L is a non-empty atomic
intersection. Since atoms are pairwise disjoint, every atom A has a unique atomic
intersection associated with it, and this atomic intersection has a unique subset S
of K associated with it. This set S is called the basis of A.

Throughout the paper, L is a regular language of complexity n with quotients
K1, . . . ,Kn and minimal DFA D = (Qn,Σ, δ, 1, F ) such that the language of state
i is Ki. Let AS =

⋂

i∈S Ki ∩
⋂

i∈S Ki be an atom. For any w ∈ Σ∗ we have

w−1AS =
⋂

i∈S

w−1Ki ∩
⋂

i∈S

w−1Ki.

Since a quotient of a quotient of L is also a quotient of L, w−1AS has the form;

w−1AS =
⋂

i∈X

Ki ∩
⋂

i∈Y

Ki,

where |X | 6 |S| and |Y | 6 n− |S|, X,Y ⊆ Qn.
The complexity of atoms of a regular language was computed in [8] using a

unique NFA defined by Ln, called the átomaton. In that NFA the language of each
state qS is an atom AS of Ln. To find the complexity of that atom, the átomaton
started in state qS was converted to an equivalent DFA. A more direct and simpler
method was used by Szabolcs Iván [12] who constructed the DFA for the atom
directly from the DFA Dn. We follow that approach here and outline it briefly for
completeness.
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For any regular language L an atom AS corresponds to the ordered pair (S, S),
where S (S) is the set of subscripts of uncomplemented (complemented) quotients.
If L is represented by a DFA D = (Q,Σ, δ, q1, F ), it is more convenient to think of
S and S as subsets of Q. Similarly, any quotient of AS corresponds to a pair (X,Y )
of subsets of Q. For the quotient of AS reached when a letter a ∈ Σ is applied to
the quotient corresponding to (X,Y ) we get

a−1

(

⋂

i∈X

Ki ∩
⋂

i∈Y

Ki

)

=
⋂

i∈X

a−1Ki ∩
⋂

i∈Y

a−1Ki =
⋂

i∈X

Kia ∩
⋂

i∈Y

Kia.

In terms of pairs of subsets of Q, from (X,Y ) we reach (Xa, Y a). Note that if
X ∩ Y 6= ∅ in (X,Y ) then the corresponding quotient is empty. Note also that the
quotient of atom AS corresponding to (X,Y ) is final if and only if each quotient
Ki with i ∈ X contains ε, and each Kj with j ∈ Y does not contain ε.

These considerations lead to the following definition of a DFA for AS [12]:

Definition 1. Suppose D = (Q,Σ, δ, q1, F ) is a DFA and let S ⊆ Q. Define the
DFA DS = (QS ,Σ,∆, (S, S), FS), where

• QS = {(X,Y ) | X,Y ⊆ Q,X ∩ Y = ∅} ∪ {⊥}.

• For all a ∈ Σ, ∆((X,Y ), a) = (δ(X, a), δ(Y, a)) if δ(X, a) ∩ δ(Y, a) 6= ∅, and
∆((X,Y ), a) = ⊥ otherwise; and ∆(⊥, a) = ⊥.

• FS = {(X,Y ) | X ⊆ F, Y ⊆ F}.

DFA DS recognizes the atomic intersection AS of L. If DS recognizes a non-
empty language, then AS is an atom.

4 Complexity of Atoms in Regular Languages

Upper bounds on the maximal complexity of atoms of regular languages were de-
rived in [8]; for completeness we include these results. For n = 1 there is only one
non-empty language L = Σ∗; it has one atom, L, which is of complexity 1. From
now on assume that n > 2.

Proposition 2. Let L be a regular language with n > 2 quotients. Then L has at
most 2n atoms. If S ∈ {Qn, ∅}, then κ(AS) 6 2n − 1. Otherwise,

κ(AS) 6 1 +

|S|
∑

x=1

n−|S|
∑

y=1

(

n

x

)(

n− x

y

)

.

Proof. Since the number of subsets S of Qn is 2n, there are at most that many
atoms. For atom complexity consider the following three cases:

1. S = Qn. Then AQn
=
⋂

i∈Qn

Ki is the intersection of all quotients of L. For

w ∈ Σ∗, we have w−1AQn
=
⋂

i∈X Ki, where 1 6 |X | 6 |Qn|. Hence there
are at most 2n − 1 quotients of this atom.
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2. S = ∅. Now A∅ =
⋂

i∈Qn

Ki, and w−1A∅ =
⋂

i∈Y Ki, where 1 6 |Y | 6 |Qn|.
As in the first case, there are at most 2n − 1 quotients of this atom.

3. ∅ ( S ( Qn. Then AS =
⋂

i∈S Ki ∩
⋂

i∈S Ki. Every quotient of AS has

the form w−1AS =
⋂

i∈X Ki ∩
⋂

i∈Y Ki, where 1 6 |X | 6 |S| and 1 6 |Y | 6
n− |S|. There are two subcases:

a) If X ∩ Y 6= ∅, then w−1AS = ∅.

b) If X ∩ Y = ∅, there are at most
∑|S|

x=1

∑n−|S|
y=1

(

n
x

)(

n−x
y

)

quotients of AS

of this form. This follows since
(

n

x

)

is the number of ways to choose a

set X ⊆ Qn of size x, and once X is fixed,
(

n−x
y

)

is the number of ways
to choose a set Y ⊆ Qn of size y that is disjoint from X . Taking the
sum over the permissible values of x and y gives the formula above.

Adding the results of (a) and (b) we have the required bound.

It was shown in [2] that the language Ln accepted by the minimal DFA Dn

of Definition 2, also illustrated in Figure 1, meets all the complexity bounds for
common operations on regular languages.

Definition 2. For n > 2, let Dn = (Qn,Σ, δn, 1, {n}), where Qn = {1, . . . , n} is
the set of states, Σ = {a, b, c} is the alphabet, the transition function δn is defined
by a = (1, . . . , n), b = (1, 2), and c = (n → 1), state 1 is the initial state, and {n}
is the set of final states. Let Ln be the language accepted by Dn. (If n = 2, a and
b induce the same transformation; hence Σ = {a, c} suffices.)

1 2 3 . . . n− 1 n

c
a, b

b

c

a

b, c

a a

b, c

a

a, c

b

Figure 1: DFA of a regular language whose atoms meet the bounds.

It was proved in [8] that Ln has 2n atoms, all of which are as complex as possible.
We include the proof of this theorem following [12]. We first prove a general result
about distinguishability of states in DS , which we will use throughout the paper.

Lemma 1 (Distinguishability). Let D = (Q,Σ, δ, q1, F ) be a minimal DFA and for
S ⊆ Q, let DS = (QS ,Σ,∆, (S, S), FS) be the DFA of the atom AS . Then:
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1. States (X,Y ) and (X ′, Y ′) of DS are distinguishable if X 6= X ′ and AX , AX′

are both atoms, or if Y 6= Y ′ and AY , AY ′ are both atoms.

2. If one of AX or AY is an atom, then (X,Y ) is distinguishable from ⊥.

Proof. First note that if AZ is an atom, then the initial state of DZ must be non-
empty, so there is a word wZ in the transition semigroup of D such that (Z,Z)wZ =
(U, V ) with U ⊆ F , V ⊆ F , i.e., (U, V ) ∈ FS . In particular, (X,Y )wX ∈ FS , since
Y ⊆ X . We also have (X,Y )wY ∈ FS , since Y is sent to a subset of F , and X ⊆ Y
is sent to a subset of F . This proves (2): if one of AX or AY is an atom, then one
of wX or wY is in the transition semigroup of D, and hence (X,Y ) can be mapped
to a final state but ⊥ cannot. Now, we consider the two cases from (1):

1. X 6= X ′. Suppose X ′ 6⊆ X . Then (X,Y )wX ∈ FS , but (X ′, Y ′)wX 6∈ FS ,
since X ′ \X is a non-empty subset of X and hence gets mapped outside of
F . Thus wX distinguishes these states. If instead we have X 6⊆ X ′, then wX′

distinguishes the states. Hence if AX , AX′ are atoms, wX and wX′ are in the
transition semigroup of D, and the states are distinguishable.

2. Y 6= Y ′. If Y ′ 6⊆ Y , then wY distinguishes (X,Y ) from (X ′, Y ′); otherwise,
wY ′ distinguishes the states. As before, if AY , AY ′ are atoms then the states
are distinguishable.

Theorem 1. For n > 2, the language Ln of Definition 2 has 2n atoms and each
atom meets the bounds of Proposition 2.

Proof. The DFA for the atomic intersection AS is DS = (QS ,Σ,∆, (S, S), FS),
where FS = {(X,Y ) | X ⊆ {n}, Y ⊆ Qn \ {n}}. By Proposition 1, the transition
semigroup of Dn consists of all nn transformations of the state set Qn. Hence (S, S)
can be mapped to a final state in FS by a transformation that sends S to {n} and
S to {1}. It follows that all 2n atomic intersections AS , S ⊆ Qn are atoms. By the
Distinguishability Lemma, all distinct states in DS are distinguishable. It suffices
to prove the number of reachable states in each DS meets the bounds.

If S = Qn, then the DFA DS of AS has initial state (Qn, ∅). The reachable states
of DS are of the form (X, ∅), where X is the image of Qn under some transformation
in the transition semigroup. Since we have all transformations, we can reach all
2n − 1 states (X, ∅), ∅ ( X ⊆ Qn. For S = ∅ a similar argument works.

If ∅ ( S ( Qn, then for any state (X,Y ) with 1 6 X 6 |S|, 1 6 Y 6 n − |S|
and X ∩ Y = ∅, we can find a transformation mapping S onto X and S onto Y .

So all these states are reachable, and there are
∑|S|

x=1

∑n−|S|
y=1

(

n

x

)(

n−x

y

)

of them. In

addition, ⊥ is reachable from (S, S) by the constant transformation (Qn → 1) and
so the bound is met.
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5 Complexity of Atoms in Right Ideals

If L is a right ideal, one of its quotients is Σ∗; by convention we assume that
Kn = Σ∗. In any atom AS the quotient Kn must be uncomplemented, that is, we
must have n ∈ S. Thus A∅ is not an atom. The results of this section were stated
in [4] without proof; for completeness we include the proofs.

Proposition 3. Suppose L is a right ideal with n > 1 quotients. Then L has at
most 2n−1 atoms. The complexity κ(AS) of atom AS satisfies

κ(AS) 6

{

2n−1, if S = Qn;

1 +
∑|S|

x=1

∑n−|S|
y=1

(

n−1
x−1

)(

n−x

y

)

, if ∅ ( S ( Qn.
(1)

Proof. Let AS be an atom. Since w−1Σ∗ = Σ∗ for all w ∈ Σ∗, w−1AS always
has Kn uncomplemented; so if (X,Y ) corresponds to w−1AS , then n ∈ X . Since
the number of subsets S of Qn containing n is 2n−1, there are at most that many
atoms. Consider two cases:

1. S = Qn. Then w−1L =
⋂

i∈X Ki, and each such quotient of AS is represented
by (X, ∅), where 1 6 |X | 6 n. Since n is always in X , there are at most 2n−1

quotients of this atom.

2. ∅ ( S ( Qn. Then w−1AS =
⋂

i∈X Ki ∩
⋂

i∈Y Ki, where 1 6 |X | 6 |S| and
1 6 |Y | 6 n−|S|. We know that if X ∩Y 6= ∅, then w−1AS = ∅. Thus we are
looking for pairs (X,Y ) such that n ∈ X and X ∩ Y = ∅. To get X we take
n and choose |X | − 1 elements from Qn \ {n}, and then to get Y we take |Y |

elements from Qn\X . The number of such pairs is
∑|S|

x=1

∑n−|S|
y=1

(

n−1
x−1

)(

n−x

y

)

.
Adding the empty quotient we have our bound.

For n = 1, L = Σ∗ is a right ideal with one atom of complexity 1. For n = 2,
L = aa∗ is a right ideal with two atoms L and L of complexity 2. It was shown
in [4] that the languages of the DFAs of Definition 3 are “most complex” amongst
right ideals, in the sense that they meet all the complexity bounds for common
operations, but no proof of atom complexity was given. We include this proof here.

Definition 3. For n > 3, let Dn = (Qn,Σ, δn, 1, {n}), where Σ = {a, b, c, d}, and
δn is defined by a = (1, . . . , n − 1), b = (2, . . . , n − 1), c = (n − 1 → 1) and
d = (n− 1 → n). Let Ln be the language accepted by Dn. If n = 3, b is not needed;
hence Σ = {a, c, d} suffices. Also, let L2 = aa∗ and L1 = a∗.

Theorem 2. For n > 1, the language Ln of Definition 3 is a right ideal that has
2n−1 atoms and each atom meets the bounds of Proposition 3.
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1 2 3 . . . n− 2 n− 1 n

b, c, d

a

c, d

a, b

c, d

a, b a, b a, b d

b

a, c

c, d a, b, c, d

Figure 2: DFA of a right ideal whose atoms meet the bounds.

Proof. The cases n < 3 are easily verified; hence assume n > 3. By Proposition
1, the transformations {a, b, c} restricted to Qn−1 generate all transformations of
Qn−1. When d is included, we get all transformations of Qn that fix n. For
S ⊆ Qn, n ∈ S, consider the DFA DS , which has initial state (S, S). There is a
transformation of Qn fixing n that sends (S, S) to the final state ({n}, {1}). Hence
AS is an atom if n ∈ S, and so Ln has 2n−1 atoms.

We now count reachable and distinguishable states in the DFA of each atom.
Suppose S = Qn. The initial state of DS is (Qn, ∅); by transformations that fix
n, we can reach any state (X, ∅) with {n} ⊆ X ⊆ Qn. There are 2n−1 such
states, and since AX is an atom if n ∈ X , all of them are distinguishable by the
Distinguishability Lemma.

Suppose ∅ ( S ( Qn. From the initial state (S, S), by transformations that
fix n we can reach any (X,Y ) with 1 6 |X | 6 |S|, 1 6 |Y | 6 n − |S|, n ∈ X

and X ∩ Y = ∅. There are
∑|S|

x=1

∑n−|S|
y=1

(

n−1
x−1

)(

n−x
y

)

such states. For all such

states (X,Y ), we have n ∈ X and n ∈ Y , so AX and AY are both atoms; hence
by the Distinguishability Lemma, all of these states are distinguishable from each
other and from ⊥. The state ⊥ is also reachable by the constant transformation
(Qn → n), and so the bound is met.

6 Complexity of Atoms in Left Ideals

If L is a left ideal, then L = Σ∗L, and w−1L contains L for every w ∈ Σ∗. By
convention we let L = K1.

Proposition 4. Suppose L is a left ideal with n > 2 quotients. Then L has at
most 2n−1 + 1 atoms. The complexity κ(AS) of atom AS satisfies

κ(AS)











= n, if S = Qn;

6 2n−1, if S = ∅;

6 1 +
∑|S|

x=1

∑n−|S|
y=1

(

n−1
x

)(

n−x−1
y−1

)

, otherwise.

(2)

Proof. Consider the atomic intersections AS such that 1 ∈ S; then
⋂

i∈S Ki = L
(since every quotient contains L), and there are two possibilities: Either S = Qn,
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in which case AS = AQn
=
⋂

i∈Qn

Ki = L, or there is at least one quotient, say Ki

which is complemented. Since Ki contains L, it can be expressed as Ki = L ∪Mi,
where L ∩Mi = ∅. Then the intersection has the term L ∩ (L ∪Mi) = ∅, and AS

is not an atom. Thus for AS to be an atom, either 1 6∈ S or S = Qn. Hence there
are at most 2n−1 + 1 atoms.

For atom complexity, consider the following cases:

1. S = Qn. Then AQn
= L, and the complexity of AQn

is precisely n.

2. S = ∅. Now A∅ =
⋂

i∈Qn

Ki, and every quotient of A∅ is an intersection
⋂

i∈Y Ki, where 1 6 |Y | 6 |Qn|. There are 2n − 1 such intersections, but
consider any quotient Ki 6= L of a left ideal; it can be expressed as Ki =
L ∪Mi, where L ∩Mi = ∅. We have

K1 ∩Ki = L ∩ L ∪Mi = L ∩ L ∩Mi = L ∩Mi = Ki.

Thus every intersection
⋂

i∈Y Ki which has Y 6= ∅ and does not have K1 as

a term defines the same language as K1 ∩
⋂

i∈Y Ki. There are 2n−1 − 1 such
intersections. Adding 1 for the intersection which just has the single term
K1, we get our bound 2n−1.

3. ∅ ( S ( Qn. Then AS =
⋂

i∈S Ki ∩
⋂

i∈S Ki, where neither S nor S is
empty. If 1 ∈ S then AS is not an atom, so assume 1 6∈ S. Every quotient
of AS has the form w−1AS =

⋂

i∈X Ki ∩
⋂

i∈Y Ki, where 1 6 |X | 6 |S| and
1 6 |Y | 6 n− |S|.

a) 1 ∈ X . We claim that w−1AS = ∅ for all w ∈ Σ∗. For suppose that
there is a term Ki, i ∈ S, and a word w ∈ Σ∗ such that w−1Ki = K1.
Since K1 ⊆ Ki, we have w−1K1 ⊆ w−1Ki = K1. Since also K1 ⊆
w−1K1 because L is a left ideal, we have w−1K1 = K1. But 1 ∈ S, so
w−1

(
⋂

i∈S Ki

)

=
⋂

i∈Y Ki has w−1K1 = K1 as a term. Thus 1 ∈ Y ,
which means X ∩ Y 6= ∅. Hence w−1AS = ∅.

b) 1 6∈ X . We are looking for pairs (X,Y ) such that X ∩ Y = ∅. As we
argued in (2), K1∩Ki = Ki for each i, so we can assume without loss of
generality that 1 ∈ Y . To get X we choose |X | elements from Qn \ {1}
and to get Y we take {1} and choose |Y |−1 elements from (Qn\X)\{1}.

The number of such pairs is
∑|S|

x=1

∑n−|S|
y=1

(

n−1
x

)(

n−x−1
y−1

)

.

Adding 1 for the empty quotient we have our bound.

Next we compare the bounds for left ideals with those for right ideals. To
calculate the number of pairs (X,Y ) such that n ∈ X and X ∩ Y = ∅ for right
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ideals, we can first choose Y from Qn \ {n}, and then choose X by taking n and
choosing |X | − 1 elements from (Qn \ Y ) \ {n}. The number of such pairs is

1 +

n−|S|
∑

y=1

|S|
∑

x=1

(

n− 1

y

)(

n− y − 1

x− 1

)

.

If we interchange x and y we note that this is precisely the number of pairs (X,Y )
such that 1 ∈ Y and X ∩ Y = ∅ for an atom of a left ideal with a basis of size
n− |S|. Thus we have

Remark 1. Let R be a right ideal of complexity n and let AS be an atom of R,
where ∅ ( S ( Qn. Let L be a left ideal of complexity n and let A′

S
be an atom of

L. The upper bounds on the complexities of AS and A′
S

are equal.

Now we consider the question of tightness of the bounds in Proposition 4. For
n = 1, L = Σ∗ is a left ideal with one atom of complexity 1; so the bound of
Proposition 4 does not hold.

The DFAs of Definition 4 and Figure 3 were introduced in [10]. It was shown
in [7] that the languages of these DFAs have the largest syntactic semigroups
amongst left ideals of complexity n. Moreover, it was shown in [5] that these
languages also meet the bounds on the quotient complexity of boolean operations,
concatenation and star. Together with our result about the number of atoms and
their complexity, this shows that these languages are “most complex” left ideals.

Definition 4. For n > 3, let Dn = (Qn,Σ, δn, 1, {n}), where Σ = {a, b, c, d, e},
and δn is defined by a = (2, . . . , n), b = (2, 3), c = (n → 2), d = (n → 1), and
e = (Qn → 2). If n = 3, inputs a and b coincide; hence Σ = {a, c, d, e} suffices.
Also, let D2 = (Q2, {a, b, c}, δ2, 1, {2}), where a = 1, b = (Q2 → 2), c = (Q2 → 1).
Let Ln be the language accepted by Dn; we have L2 = Σ∗b(a ∪ b)∗.

1 2 3 4 . . . n− 1 n
e

a, b, c, d c, d, e

a, b

b, e c, d

a

e

a a

b, c, d b, c, d

a

e

a, c, e

d

b

Figure 3: DFA of a left ideal whose atoms meet the bounds.
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Theorem 3. For n > 2, the language Ln of Definition 4 is a left ideal that has
2n−1 + 1 atoms and each atom meets the bounds of Proposition 4.

Proof. It was proved in [10] that Ln is a left ideal of complexity n. The case n = 2
is easily verified; hence assume n > 3. It was proved in [7] that the transition
semigroup of Dn contains all transformations of Qn that fix 1 and all constant
transformations. Recall that if AS is an atom of a left ideal, then either S = Qn

or 1 6∈ S. For all S with 1 6∈ S, from (S, S) we can reach the final state ({n}, {1})
of DS (or (∅, {1}) for S = ∅) by transformations that fix 1. For S = Qn, let
w = (Qn → n); then (Qn, ∅)w = ({n}, ∅) is final in DS . Hence if S = Qn or 1 6∈ S,
then AS is an atom of Ln, and so L has 2n−1 + 1 atoms.

We now count reachable and distinguishable states in the DFA of each atom. We
know that AQn

has complexity n for all left ideals, so assume 1 6∈ S. If S = ∅, the
initial state of DS is (∅, Qn). By transformations that fix 1 we can reach (∅, Y ) for
all Y with {1} ⊆ Y ⊆ Qn. There are 2n−1 of these states. Since Y does not contain
1, AY is an atom, so all of these states are distinguishable by the Distinguishability
Lemma.

If ∅ ( S ( Qn, the initial state of DS is (S, S). Since 1 6∈ S, by transformations
that fix 1, we can reach any state (X,Y ) with 1 6 |X | 6 |S|, 1 6 |Y | 6 n − |S|,

1 6∈ X , 1 ∈ Y , and X ∩ Y = ∅. There are
∑|S|

x=1

∑n−|S|
y=1

(

n−1
x

)(

n−x−1
y−1

)

such states.
They are all distinguishable from each other and from ⊥ by the Distinguishability
Lemma, since 1 6∈ X , 1 ∈ Y imply that AX and AY are both atoms. We can also
reach ⊥ from (S, S) by any constant transformation, and so the bound is met.

7 Complexity of Atoms in Two-Sided Ideals

7.1 Upper Bounds

A language is a two-sided ideal if it is both a right ideal and a left ideal.

Proposition 5. Suppose L is a two-sided ideal with n > 2 quotients. Then L has
at most 2n−2 + 1 atoms. The complexity κ(AS) of atom AS satisfies

κ(AS)











= n, if S = Qn;

6 2n−2 + n− 1, if S = Qn \ {1};

6 1 +
∑|S|

x=1

∑n−|S|
y=1

(

n−2
x−1

)(

n−x−1
y−1

)

, otherwise.

(3)

Proof. Since L is a left ideal, AS is an atom only if S = Qn or S ⊆ Qn \ {1}; since
L is a right ideal we must also have n ∈ S. This gives our upper bound of 2n−2 + 1
atoms.

We know that AQn
has complexity n since this is true for left ideals. Since L is

a right ideal, A∅ is not an atom, so we can assume S 6= ∅.
Suppose AS is an atom of L, with S 6= Qn and S 6= Qn \{1}. We proved for left

ideals that the number of distinct non-empty quotients of AS is bounded by the
number of pairs (X,Y ), 1 6 |X | 6 |S|, 1 6 |Y | 6 n−|S|, 1 6∈ X , 1 ∈ Y , X ∩Y = ∅.
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Since L is a right ideal, we must also have n ∈ X and n 6∈ Y . There are
(

n−2
|X|−1

)

possibilities for X , since X must contain n and the remaining |X | − 1 elements are

taken from Qn \ {1, n}. If X is fixed, there are
(

n−|X|−1
|Y |−1

)

possibilities for Y , since

Y must contain 1 and the remaining |Y |−1 elements are taken from (Qn \X)\{1}.
Since Qn \X always contains 1, the size of (Qn \X) \ {1} is always n − |X | − 1.
Summing over the possible sizes of X and Y and adding 1 for the empty quotient,
we get the required bound.

This leaves the case of S = Qn \ {1}. Each quotient of AS has the form

w−1AS =

(

⋂

i∈X

Ki

)

∩Kj ,

where Kj = w−1K1 = w−1L, and n ∈ X . We can view the non-empty quotients as
states (X, {j}) of the DFA DS for AS , where D is a minimal DFA for L. We must
have n ∈ X and X ∩ {j} = ∅, and so j 6∈ X .

For each p in Qn, define the set S(p) = {q ∈ Qn | Kp ( Kq}. The elements
of S(p) are called the successors of p. Note that p is not a successor of itself. We
claim that if the quotient w−1AS is non-empty and the corresponding state of DS

is (X, {j}), then X ⊆ S(j).

To see this, note that since L is a left ideal, we have L ⊆ Ki for all i ∈ Qn. It
follows that w−1L = Kj ⊆ w−1Ki for all i ∈ Qn. Thus in the formula for w−1AS

above, we have Kj ⊆ Ki for all i ∈ X . But if Kj = Ki for any i ∈ X , then w−1AS

is empty. Thus Kj ( Ki for all i ∈ X , which implies that X ⊆ S(j).

X must contain n, since L is a right ideal. Thus for each j, there are at most
2|S(j)|−1 states (X, {j}). The index j can range from 1 to n − 1; we cannot have

j = n since n ∈ X but j 6∈ X . This gives an upper bound of
∑n−1

j=1 2|S(j)|−1 for the
number of non-empty quotients.

This bound is not tight, so we refine it by considering the distinguishability
relations between states of DS . Choose i 6= n ∈ S(j) and a non-empty set Y ⊆

S(i) \ {n}. Then Ki ( Kq for all q ∈ Y , so we have Ki ∩
(

⋂

q∈Y Ki

)

= Ki. This

means ({i, n}, {j}) is indistinguishable from (Y ∪{i, n}, {j}). Since Y is non-empty
and does not contain n, there are at most 2|S(i)|−1 − 1 possibilities for Y .

From this we get a new upper bound for the number of distinguishable states
(X, {j}) for a fixed j, as follows: first take our previous bound of 2|S(j)|−1. Then for
each i 6= n ∈ S(j), subtract 2|S(i)|−1 − 1 to account for the states (Y ∪ {i, n}, {j})
that are equivalent to ({i, n}, {j}). Our new bound is

2|S(j)|−1 −
∑

i∈S(j)
i6=n

(2|S(i)|−1 − 1) = (|S(j)| − 1) + 2|S(j)|−1 −
∑

i∈S(j)
i6=n

2|S(i)|−1.

Summing over all possible values of j, and adding 1 for the empty quotient, we get
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the following bound on the complexity of AS :

1 +

n−1
∑

j=1









(|S(j)| − 1) + 2|S(j)|−1 −
∑

i∈S(j)
i6=n

2|S(i)|−1









.

Noting that S(1) = {2, . . . , n} and |S(1)| = n− 1, we pull out the j = 1 case from
the outermost summation:

1 + (n− 2) + 2n−2 −
∑

i∈S(1)
i6=n

2|S(i)|−1 +

n−1
∑

j=2









(|S(j)| − 1) + 2|S(j)|−1 −
∑

i∈S(j)
i6=n

2|S(i)|−1









.

Observe that 1 + (n− 2) + 2n−2 is equal to 2n−2 + n− 1, the bound we are trying
to prove. We will show that the value of the rest of this formula is always less than
or equal to zero. We pull

∑n−1
j=2 2|S(j)|−1 out to the front:

2n−2 + n− 1 +

n−1
∑

j=2

2|S(j)|−1 −
∑

i∈S(1)
i6=n

2|S(i)|−1 +

n−1
∑

j=2









(|S(j)| − 1)−
∑

i∈S(j)
i6=n

2|S(i)|−1









.

Note that
∑n−1

j=2 2|S(j)|−1 =
∑

i∈S(1)
i6=n

2|S(i)|−1, so cancellation occurs:

2n−2 + n− 1 +
n−1
∑

j=2









(|S(j)| − 1) −
∑

i∈S(j)
i6=n

2|S(i)|−1









.

Now, the value of the innermost summation is always greater than or equal to
|S(j)| − 1: for each i ∈ S(j), i 6= n, we know that n is a successor of i, and hence
S(i) > 1 and 2|S(i)|−1 > 1. Thus the value of the outermost summation is always
less than or equal to zero. It follows that the number of quotients of AS is at most
2n−2 + n− 1.

Next we address the question of tightness of the bounds for two-sided ideals.
For n = 1, L = Σ∗ is a two-sided ideal with one atom of complexity 1; so the bound
of Proposition 5 does not hold.

The DFAs of Definition 5 and Figure 4 were introduced in [10]. It was shown
in [7] that these languages have the largest syntactic semigroups amongst two-sided
ideals of complexity n. Moreover, it was shown in [5] that they also meet the bounds
on the quotient complexity of boolean operations, concatenation and star. Together
with our result about the number of atoms and their complexity, this shows that
these languages are “most complex” two-sided ideals.
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Definition 5. Let n > 4, and let Dn = (Qn,Σ, δn, 1, {n}) be the DFA with Σ =
{a, b, c, d, e, f}, a = (2, 3, . . . , n− 1), b = (2, 3), c = (n− 1 → 2), d = (n− 1 → 1),
e = (Qn−1 → 2), and f = (2 → n). For n = 4, inputs a and b coincide. Also, let
D3 = (Q3, {a, b, c}, δ3, 1, {3}), where a = 1, b = (Q2 → 2), c = (2 → 3), and let
D2 = (Q2, {a, b, c}, δ2, 1, {2}), where a = 1, b = (Q2 → 2), c = (Q2 → 1). Let Ln

be the language accepted by Dn.

n

a, b, c, d, e, f

f

1 2 3 4 . . . n− 2 n− 1
e

a, b, c, d, f

c, d, e

a, b

b, e

c, d, f

a

e

a a

b, c, d, f b, c, d, f

a

e

a, c, e

d

b, f

Figure 4: DFA of a two-sided ideal whose atoms meet the bounds.

Theorem 4. For n > 2, the language Ln of Definition 5 is a two-sided ideal that
has 2n−2 + 1 atoms and each atom meets the bounds of Proposition 5.

Proof. It was proved in [10] that Ln is a two-sided ideal of complexity n. The cases
with n < 4 are easily verified; hence assume n > 4.

The following observations were made in [7]: Transformations {a, b, c} restricted
to Qn \ {1, n} generate all the transformations of {2, . . . , n − 1}. Together with d
and f , they generate all transformations of Qn that fix 1 and n. Also, we have
ef = (Qn → n).

Recall that if AS is an atom of a two-sided ideal, then n ∈ S, and either S = Qn

or 1 6∈ S. We know AQn
is an atom of complexity n for all left ideals (and hence

all two-sided ideals), so assume n ∈ S, 1 6∈ S. Then 1 ∈ S, and so from state (S, S)
in DS we can reach the final state ({n}, {1}) by transformations that fix 1 and n.
Hence AS is an atom for every S with n ∈ S, 1 6∈ S. There are 2n−2 of these atoms,
as well as the atom AQn

, for a total of 2n−2 + 1.
Consider the atom AS for S 6= Qn and S 6= Qn \ {1}. In the DFA DS , the

initial state is (S, S), and we have n ∈ S, 1 6∈ S. By transformations that fix 1 and
n, we can reach (X,Y ) for all X,Y ⊆ Qn such that n ∈ X , 1 ∈ Y , X ∩ Y = ∅,

1 6 |X | 6 |S|, 1 6 |Y | 6 n − |S|. There are
∑|S|

x=1

∑n−|S|
y=1

(

n−2
x−1

)(

n−x−1
y−1

)

such

states. Since n ∈ X , 1 6∈ X and n ∈ Y , 1 6∈ Y we see that AX and AY are atoms.
Hence by the Distinguishability Lemma, all of these states are distinguishable from
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each other and from ⊥. Since S 6= ∅, we can reach ⊥ from (S, S) by ef = (Qn → n).
Hence the bound is met.

It remains to show that the complexity of AS , S = Qn\{1} also meets the bound.
The initial state of DS is ({2, . . . , n}, {1}). By transformations that fix 1 and n,
we can reach all 2n−2 states of the form (X, {1}) with {n} ⊆ X ⊆ Qn \ {1}. From
({n}, {1}), we can reach n−2 additional states ({n}, {i}) for 2 6 i 6 n−1 by eai−2.
Finally, we can reach the sink state ⊥ from the initial state by ef = (Qn → n).
This gives a total of 2n−2 +n−1 reachable states, which matches the upper bound.

To see these states are distinguishable, note that AX is an atom if {n} ⊆ X ⊆
Qn \ {1}. Also, A{1} = AQn\{1} is an atom. Hence by the Distinguishability

Lemma, all states of the form (X, {1}) are distinguishable from each other and
from ⊥. Also, ({n}, {i}) is distinguished from ({n}, {j}) by an−if , which sends
the former state to the non-final state ⊥, but sends the latter to some final state
({n}, {k}) with k 6= 2. And each ({n}, {j}), 1 6 j 6 n − 1 is a final state, so it
is distinguishable from all states of the form (X, {1}), X 6= {n} and from ⊥, since
they are not final. Hence all 2n−2 + n− 1 reachable states are distinguishable.

8 Some Numerical Results

The following tables compare the maximal complexities for atoms AS of two-sided
ideals (first entry), left ideals (second entry) and regular languages (third entry)
with complexity n. Right ideals are omitted because their complexities are essen-
tially the same as those of left ideals, by Remark 1. When the maximal complexity
is undefined (e.g., because no languages in a class have atoms AS for a particu-
lar size of S) this is indicated by an asterisk. The maximum values for each n
are in boldface. The nth entry in the ratio row shows the approximate value of
mn/mn−1, where mi is the ith entry in the max row. It has been shown by Diekert
and Walter [11] that the ratio converges exponentially fast to 3 for the class of
regular languages and for all three classes of ideal languages.

n 1 2 3 4 5 · · ·

|S| = 0 ∗/1/1 ∗/2/3 ∗/4/7 ∗/8/15 ∗/16/31 · · ·
|S| = 1 1/1/1 2/2/3 3/5/10 5/13/29 9/33/76 · · ·
|S| = 2 2/2/3 4/4/10 8/16/43 20/53/141 · · ·
|S| = 3 3/3/7 7/8/29 20/43/141 · · ·
|S| = 4 4/4/15 12/16/76 · · ·
|S| = 5 5/5/31 · · ·
max 1/1/1 2/2/3 4/5/10 8/16/43 20/53/141 · · ·
ratio − 2.00/2.00/3.00 2.00/2.50/3.33 2.00/3.20/4.30 2.50/3.31/3.28 · · ·
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n 6 7 8 9

|S| = 0 ∗/32/63 ∗/64/127 ∗/128/255 ∗/256/511
|S| = 1 17/81/187 33/193/442 65/449/1, 017 129/1, 025/2, 296
|S| = 2 48/156/406 112/427/1, 086 256/1, 114/2, 773 576/2, 809/6, 859
|S| = 3 64/166/501 182/542/1, 548 484/1, 611/4, 425 1, 234/4, 517/12, 043
|S| = 4 48/106/406 182/462/1, 548 584/1,646/5,083 1,710/5,245/15,361
|S| = 5 21/32/187 112/249/1, 086 484/1, 205/4, 425 1,710/4, 643/15, 361
|S| = 6 6/6/63 38/64/442 256/568/2, 773 1, 234/3, 019/12, 043
|S| = 7 7/7/127 71/128/1, 017 576/1, 271/6, 859
|S| = 8 8/8/255 136/256/2, 296
|S| = 9 9/9/511
max 64/166/501 182/542/1, 548 584/1, 646/5, 083 1, 710/5, 245/15, 361
ratio 3.20/3.13/3.55 2.84/3.27/3.09 3.21/3.04/3.28 2.93/3.19/3.02

9 Conclusions

We have derived tight upper bounds for the number of atoms and quotient complex-
ity of atoms in right, left and two-sided regular ideal languages. The recently dis-
covered relationship between atoms and the Myhill and Nerode congruence classes
opens up many interesting research questions. The quotient complexity of a lan-
guage is equal to the number of Nerode classes, and the number of Myhill classes
has also been used as a measure of complexity, called syntactic complexity since it
is equal to the size of the syntactic semigroup. We can view the number of atoms
as a third fundamental measure of complexity for regular languages.

It is known [8] that the number of atoms of a regular language L is equal to
the quotient complexity of the reversal of L. The quotient complexity of reversal
has been studied for various classes of languages in the context of determining
the quotient complexity of operations on regular languages. Hence, the maximal
number of atoms is known for many language classes.

However, as far as we know the quotient complexity of atoms has not been
studied outside of regular languages and ideals. For simplicity, let us call the
atom congruence the left congruence, the Nerode congruence the right congruence,
and the Myhill congruence the central congruence. When computing the quotient
complexity of atoms, we are computing the number of right congruence classes of
each left congruence class. We can consider variations of this idea: how many right
classes and left classes do the central classes have? How many central classes do
the left classes have? These questions are outside the scope of this paper, but we
believe they should be investigated.
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Conditional Lindenmayer Systems with Subregular

Conditions: The Extended Case

Jürgen Dassow∗ and Stefan Rudolf†

In memorian Ferenc Gécseg, a pioneer in Theoretical Computer Science

Abstract

We study the generative power of extended conditional Lindenmayer sys-
tems where the conditions are finite, monoidal, combinational, definite, nilpo-
tent, strictly locally (k)-testable, commutative, circular, suffix-closed, star-
free, and union-free regular languages. The results correspond to those ob-
tained for conditional context-free languages.

Keywords: Lindenmayer systems, controlled derivations, subregular condi-
tions

1 Introduction

In the theory of formal languages one imposes very often conditions to perform
a step in the generation of words. By practical reasons – but also by theoretical
considerations – it is very useful that one can check the condition by an efficient
procedure. Thus one relates the condition to regular languages, for which the
membership problem can be decided in linear time. We mention here as examples
regularly controlled context-free grammars, conditional context-free grammars, tree
controlled context-free grammars, networks of evolutionary processors with regular
filters, and contextual grammars with selection languages (for details see [4], [16],
[13], and [14]).

In these cases the process of checking the condition given by a regular language
is now very simple and efficient, however, the increase of generative power is consid-
erable (for instance, for the first four devices mentioned above, one has an increase
from context-free languages to recursively enumerable languages). Since on the one
hand practical requirements do not ask for arbitrary regular languages and on the
other hand theoretical studies – for instance proofs – show that only special regular
languages are used, it is very natural to study the devices with subregular languages

∗Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik, PSF 4120, D-39016
Magdeburg, Germany, E-mail: dassow@iws.cs.uni-magdeburg.de
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for the control. The effect of using subregular languages defined by combinatorial
and algebraic properties to the generative power was investigated in the last two
decades (see e. g. [1], [3], and [6]).

In 1968, A. Lindenmayer introduced a new type of formal grammars and lan-
guages in order to describe the development of organisms. We refer to [15] as a
monograph on Lindenmayer systems and languages.

Also in this area it is necessary to restrict the applicability of tables by biological
reasons (e.g. in order to model the change of the seasons, the different development
if water is present or not etc.). In a conditional Lindenmayer system a table P can
only be applied to a sentential form w if w belongs to a language associated to P .
A first variant of such systems was studied in [17].

In [5] the systematic study of conditional Lindenmayer systems where the lan-
guages associated to the tables belong to some family of subregular languages was
started. In [5], the case of non-extended Lindenmayer systems was investigated.
In this paper we continue by the consideration of extended conditional Linden-
mayer systems with subregular conditions. We prove that propagating extended
conditional Lindenmayer systems with suffix-closed, union-free, star-free, circular,
or strictly locally k-testable (for k ≥ 2) conditions allow further characterizations
of the family of context-sensitive languages, whereas the use of monoidal, combi-
national, definite, nilpotent and strictly-locally 1-testable languages as conditions
does not lead to an increase of the power, i. e., one obtains the family of ET0L lan-
guages; systems with commutative conditions are as powerful as non-erasing matrix
grammars (with appearance checking). For arbitrary Lindenmayer systems (with
erasing rules) one gets characterizations of the family of recursively enumerable
languages, if the conditions are suffix-closed, union-free, star-free, circular, strictly
locally k-testable (for k ≥ 1), or commutative; for the other families of subregular
languages the place in the hierarchy is not determined completely.

2 Definitions

We assume that the reader is familiar with the basic concepts of the theory of
formal languages and automata. In this section we only recall some notations and
some definitions such that a reader can understand the results. We refer to [16],
[15], and [4].

The inclusion of the set X in the set Y is denoted by X ⊆ Y . If the inclusion
is strict, we write X ⊂ Y .

For an alphabet V , i. e, V is a finite non-empty set, the set of all words and
all non-empty words over V are denoted by V ∗ and V +, respectively. The empty
word is denoted by λ. For a language L, let alph(L) be the minimal set V such
that L ⊆ V ∗. For a word w ∈ V ∗ and a subset C of V , the number of occurrences
of letters of C in w is denoted by #C(w). If C only consists of a letter a, we write
#a(w) instead of #{a}(w).

Let V = {a1, a2, . . . , an} (with a fixed order of the letters of V ). Then, for a
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word w ∈ V ∗, we define the Parikh vector πV (w) of w by

πV (w) = (#a1(w),#a2(w), . . . ,#an(w)).

For a language L over V , we set

πV (L) = {πV (w) | w ∈ L}.

A language L over V is called semi-linear if πV (L) is a finite union of sets of
the form

{(a1, a2, . . . , an) +

p∑
j=1

αj(b1,j , b2,j , . . . , bn,j) | αj ∈ N}.

If we consider a primed version V ′ = {a′ | a ∈ V } of some alphabet V , then,
for a word w = a1a2 . . . am with ai ∈ V for 1 ≤ i ≤ m, we set w′ = a′1a

′
2 . . . a

′
m.

Moreover, if U is a subset of V , then we set U ′ = {a′ | a ∈ U}. Analogous notation
we also use for double primed versions of V , etc.

In this paper two languages L1 and L2 are considered as equal if they differ at
most in the empty word, i. e., L1 \ {λ} = L2 \ {λ}.

The families of finite, regular, context-free, context-sensitive, and recursively
enumerable languages are denoted by FIN , REG , CF , CS , and RE , respectively.

2.1 Matrix Grammars and Languages

Matrix grammars are an important representant of grammars with controlled deri-
vations. They are equivalent to many other such devices. We recall their definition
since we shall show that also some extended conditional Lindenmayer systems are
equivalent to matrix grammars.

A matrix grammar is a quintuple G = (N,T,M, S,Q) where
– N and T are disjunct alphabets of nonterminals and terminals,
– M = {m1,m2, . . . ,mr} is a finite set of finite sequences mi of context-free

rules, i. e.,
mi = (Ai,1 → vi,1, Ai,2 → vi,2, . . . Ai,ri → vi,ri)

for 1 ≤ i ≤ r (the elements of M are called matrices),
– S is an element of N , and
– Q is a subset of the productions occurring in the matrices of M
The application of a matrix mi is defined as a sequential application of the rules

of mi in the given order where a rule of Q can be ignored if its left-hand side does
not occur in the current sentential form, i.e., x =⇒mi

y holds iff there are words
wj , 1 ≤ j ≤ ri + 1, such that x = w1, y = wri+1 and, for 1 ≤ j ≤ ri,

wj = xjAi,jyj and wj+1 = xjvi,jyj

or
wj = wj+1 and Ai,j does not occur in wj and Ai,j → vi.j ∈ Q.
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The language L(G) generated by G consists of all words z ∈ T+ such that there is
a derivation

S =⇒mi1
v1 =⇒mi2

v2 =⇒mi3
. . . =⇒mit

vt = z

for some t ≥ 1.
By MATλ and MAT we denote the families of languages generated by matrix

grammars and matrix grammars without erasing rules, respectively.
It is well-known that

CF ⊂ MAT ⊂ CS ⊂ RE = MATλ.

2.2 Subregular Families of Languages

The aim of this section is the definition of the subregular families of languages
considered in this paper and the relation between them.

For a language L over V , we set

Comm(L) = {ai1 . . . ain | a1 . . . an ∈ L, n ≥ 1, {i1, i2, . . . , in} = {1, 2, . . . , n}},
Circ(L) = {vu | uv ∈ L, u, v ∈ V ∗},
Suf(L) = {v | uv ∈ L, u, v ∈ V ∗}

We consider the following restrictions for regular languages. For a language L
with V = alph(L), we say that L is

– combinational iff it can be represented in the form L = V ∗A for some subset
A ⊆ V ,

– definite iff it can be represented in the form L = A ∪ V ∗B where A and B
are finite subsets of V ∗,

– nilpotent iff L is finite or V ∗ \ L is finite,
– commutative iff L = Comm(L),
– circular iff L = Circ(L),
– suffix-closed (or fully initial or multiple-entry language) iff Suf(L) = L,
– union-free iff L can be described by a regular expression which is only built

by product and star,
– star-free (or non-counting) iff L can be described by a regular expression

which is built by union, product, and complementation,
– monoidal iff L = V ∗,

For more details on languages of the types defined above we refer to [19], [11],
and [18].

In [2], it was shown that a regular language R ⊂ V ∗ is commutative if and only
if there is a semi-linear set M and R = π−1V (M).

It is obvious that combinational, definite, nilpotent, union-free and star-free
languages are regular, whereas non-regular languages of the other types mentioned
above exist.

For a natural number k ≥ 1, a language L is strictly locally k-testable iff there
are three subsets A, B and C of V k such that a1a2 . . . an with n ≥ k and ai ∈ V ,
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1 ≤ i ≤ n, belongs to L iff a1a2 . . . ak ∈ A, aj+1aj+2 . . . aj+k ∈ B for 1 ≤ j ≤
n− k − 1, and an−k+1an−k+2 . . . an ∈ C. Moreover, a language L is called strictly
locally testable iff it is strictly locally k-testable for some k ≥ 1.

Obviously, strictly locally testable languages can be accepted by finite automata,
and hence they are regular.

A set R ⊂ V ∗ is strictly locally 1-testable if and only if there are sets A ⊆ V ,
B ⊆ V , and C ⊆ V such that R = AC∗B ∪ (A ∩B) (see for instance [2]).

By COMB , DEF , NIL, COMM , CIRC , SUF , UF , SF , MON , LOC k, k ≥ 1,
and LOC , we denote the families of all combinational, definite, nilpotent, regular
commutative, regular circular, regular suffix-closed, union-free, star-free, monoidal,
strictly locally k-testable, and strictly locally testable languages, respectively. We
set

G = {FIN ,MON ,COMB ,DEF ,NIL,COMM ,CIRC ,SUF ,UF ,SF ,LOC}
∪ {LOC k | k ≥ 1}.

The relations between families of G are investigated e. g. in [12] and [20] and their
set-theoretic relations are given in Figure 1.
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OO
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Figure 1: Hierarchy of subregular languages (an arrow from X to Y denotes X ⊂ Y ,
and if two families are not connected by a directed path then they are incomparable)

Representations of definite automata and definite and nilpotent tree automata
and languages were studied by Ferenc Gécseg and coauthors in [7], [8], [9], and [10].
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2.3 Extended Conditional Lindenmayer Systems

We start with some definitions concerning Lindenmayer systems and introduce then
conditional Lindenmayer systems.

An extended tabled Lindenmayer system without interaction (ET0L system, for
short) is an (r + 3)-tuple H = (V, T, P1, P2, . . . , Pr, w), where

– V is an alphabet, T is a subset of V ,
– for 1 ≤ i ≤ r, Pi is a finite set of rules a → v with a ∈ V and v ∈ V ∗ such

that, for any b ∈ V , there is a word vb with b→ vb ∈ Pi,
– w ∈ V +.
The sets Pi, 1 ≤ i ≤ r, are called tables. For simplicity, for a table, we shall

give only the rules for the letters a for which a rule a→ w with w 6= a exists in the
table, i. e., for all letters b, for which no rules are mentioned, there is only the rule
b→ b in the table.

For x ∈ V + and y ∈ V ∗, we say that x derives y in H, written as x =⇒H y, iff
– x = a1a2 . . . an with ai ∈ V for 1 ≤ i ≤ n,
– y = y1y2 . . . yn,
– ai → yi ∈ Pj for 1 ≤ i ≤ n and some j, 1 ≤ j ≤ r.
The language L(H) generated by H is defined as

L(H) = {z | z ∈ T ∗, w =⇒∗H z}

where =⇒∗H is the reflexive and transitive closure of =⇒H .
An ET0L system is called propagating if no table contains a rule a→ λ.
By ET0L and EPT0L, we denote the families of all languages generated by

ET0L systems and propagating ET0L systems, respectively.
It is well-known that the following relation holds

CF ⊂ EPT0L = ET0L ⊂ MAT .

Definition 1. A conditional ET0L system is an (n+ 3)-tuple

H = (V, T, (P1, R1), (P2, R2), . . . , (Pn, Rn), w),

where
– H ′ = (V, T, P1, P2, . . . , Pn, w) is an ET0L system, and,
– for 1 ≤ i ≤ n, Ri is a regular language over some alphabet U ⊆ V .
For x ∈ V + and y ∈ V ∗, we say that x derives y in H, written as x =⇒H y, if

and only if there is a number j, 1 ≤ j ≤ n
– x = a1a2 . . . at with ai ∈ V for 1 ≤ i ≤ t,
– y = y1y2 . . . yt,
– ai → yi ∈ Pj for 1 ≤ i ≤ t, and
– x ∈ Rj.
The language L(H) generated by H is defined as

L(H) = {z | z ∈ T ∗, w =⇒∗H z}

where =⇒∗H is the reflexive and transitive closure of =⇒H .
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By definition, in a condition ET0L system, a table Pj is only applicable to a
sentential form x, if x belongs to the conditional language Rj associated with Pj .

Example 1. We consider the ET0L system

H = (V, {a, b}, (P1, R1), (P2, R2), (P3, R3), (P4, R4), (P5, R5), SD)

with

V = {S,A,B1, B2, C,D, a, b},
(P1, R1) = ({S → ASC}, V ∗{D}),
(P2, R2) = ({S → AC,D → λ}, V ∗{D}),
(P3, R3) = ({A→ Ab,C → B1, C → B2}, V ∗{C}),
(P4, R4) = ({B1 → λ,B2 → C}, V ∗{B1}),
(P5, R5) = ({A→ a}, V ∗{b}).

We start with SD, have to apply sometimes P1 and then once P2 (the only rules
where the words in the associated language end with D). This yields AnCn. Now
we have to apply P3 and get (Ab)nz where z is a word of length n over {B1, B2}.
If z ends with B2, then the derivation cannot be continued. If B1 is the last letter
of z, we can only apply P4 and obtain (Ab)nCr with r < n (since we cancel at
least the last letter of z). This process can be iterated, in each step we add a letter
b after each A, and cancel at least one C. Finally, we get (Abm)n with m ≤ n
(m gives the number of iterations, for which 1 ≤ m ≤ n holds). Now, by the use
of P5 we get (abm)n with n ≥ 1 and 1 ≤ m ≤ n. Thus

L(H) = {(abm)n | 1 ≤ m ≤ n}.

We note that it is well-known that L(H) cannot be generated by an ET0L
system.

In this paper, we study the generative power of conditional ET0L systems, if
one restricts to a class of subregular languages. For X ∈ G, we define CEL(X) and
CEPL(X) as the families of all languages which can be generated by conditional
ET0L and conditional propagating ET0L system (V, T, (P1, R1), . . . , (Pn, Rn), w),
where all languages Ri, 1 ≤ i ≤ n, are in X.

By these definitions, the language from Example 1 is in CEL(COMB).

The following relations follow immediately from the definitions.

Lemma 1. i) For all X,Y ∈ G with X ⊆ Y ,

CEL(X) ⊆ CEL(Y ), CEPL(X) ⊆ CEPL(Y ), and CEPL(X) ⊆ CEL(X).

3 Some Equalities and Inclusions

In this section we prove inclusions CEL(X) ⊆ CEL(Y ) (CEPL(X) ⊆ CEPL(Y ))
and equalities CEL(X ′) = CEL(Y ′) (CEPL(X ′) = CEPL(Y ′)) for some families X,
Y , X ′, and Y ′, respectively.
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Lemma 2. CEL(REG) = CEL(UF ) and CEPL(REG) = CEPL(UF ).

Proof. It is known that any regular language is a union of finitely many union-free
languages. Let

G = (V, T, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω)

be a conditional ET0L system with regular conditions. Moreover, for 1 ≤ i ≤ n,
let

Ri = Ri,1 ∪Ri,2 ∪ · · · ∪Ri,ri ,
where Ri,j is union-free for 1 ≤ j ≤ n. It is easy to prove that the ET0L system

(V, T, (P1, R1,1), . . . , (P1, R1,r1), (P2, R2,1), . . . , (Pn, Rn,1), . . . , (Pn, Rn,rn), ω)

with union-free conditions generates L(G). Hence, CL(REG) ⊆ CL(UF ).
The converse inclusion follows by Lemma 1 and the inclusions given in the

diagram of Figure 1.
Thus CL(REG) = CL(UF ).

For propagating ET0L systems, we have to repeat the proof.

Lemma 3. CEL(REG) ⊆ RE and CEPL(REG) ⊆ CS.

Proof. Let L ∈ CEL(REG), and let G = (V, T, (P1, R1)(P2, R2), . . . , (Pn, Rn), ω)
be a conditional ET0L system with regular conditions generating L. Then we
construct a Turing machine M which works as follows (the detailed description
of M is left to the reader):

(1) M checks whether ω is the word on the tape. If this is the case, M accepts;
otherwise, it continues with (2).

(2) M chooses an i, 1 ≤ i ≤ n, remembers i in the state, and chooses a decom-
position w = w1w2 . . . wm of the tape content w; this can be done by writing
w1#w2# . . . wm−1#wm at the tape.

(3) M replaces each wj 1 ≤ j ≤ m, by some aj where aj → wj ∈ Pi (if wj is the
empty word, this means that aj with aj → λ ∈ Pi is inserted) and cancels all
symbols #. If M can perform this step (i. e., the tape content w1w2 . . . wm
is changed to a1a2 . . . am), it continues with (4); otherwise, M stops without
accepting.

(4) M checks whether a1a2 . . . am ∈ Ri. In the affirmative case, M continues
with (1); otherwise, M stops without accepting.

It is easy to see that a word w is accepted by M if and only if

w `i1 w1 `i2 w2 `i3 · · · `iq−1
wq−1 `iq ω,

where `i stands for applying (1) to (4) with i chosen in (2), if and only if

ω =⇒Piq
wq−1 =⇒Piq−1

wq−2 =⇒Piq−2
. . . =⇒Pi2

w1 =⇒Pi1
w

ω ∈ Riq , wk ∈ Rik for 1 ≤ k ≤ q−1, and w ∈ T ∗ if and only if w ∈ L(G). Therefore
the language accepted by M is L(G). Thus CEL(REG) ⊆ RE .
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If the conditional T0L system G is propagating, each wj of the decomposition
is non-empty. Then it follows easily that the maximal length of the tape contents is
twice the length of the input word. Hence the Turing machine is a linearly bounded
automaton, which implies CEPL(REG) ⊆ CS .

Lemma 4. RE ⊆ CEL(LOC 1).

Proof. Let L ∈ RE . Then there is a grammar G = (N,T, P, S) in Kuroda normal
form (i. e., all rules have one of the following forms: A → BC, A → a, A → λ, or
AB → CD with A,B,C,D ∈ N and a ∈ T ) which generates L. Let P1 be the set
of all rules of P of the form AB → CD and P2 = P \ P1.

Let S′′ and # be additional symbols not in N ∪ T . We set

V ′ = {a′ | a ∈ N ∪ T} ∪ {#},
Vp = {ap | a ∈ N ∪ T} for p ∈ P2,

Vp = {ap | a ∈ N ∪ T} ∪ {a′p | a ∈ N ∪ T} for p ∈ P1,

Vr = {ar | a ∈ N ∪ T ∪ {#} } ∪ {a′r | a ∈ N ∪ T ∪ {#} },
V = {S′′} ∪N ∪ T ∪ V ′ ∪ Vr ∪

⋃
p∈P

Vp.

We now construct a conditional ET0L system H as follows: The basic and terminal
alphabet are V and T , and the axiom is S′′. Now we give all tables and conditions
(if no rule is mentioned for some letter a, then a → a is the only rule for a in the
production set):

(P1, R1) = ({S′′ → #S′}, {S′′}+)

(we introduce from the axiom the word #S′; the symbol # remembers the beginning
of the word, because we shall use circular versions of a word; S′ is the primed version
of the start symbol of G),

(P2, R2) = (
⋃

a∈N∪T
{a′ → a′, a′ → ar, a

′ → a′r} ∪
⋃

a∈N∪T

⋃
p∈P1

{a′ → ap}

∪
⋃

a∈N∪T

⋃
p∈P2

{a′ → ap, a
′ → a′p} ∪ {#→ #,#→ #r,#→ #′r},

V ′(V ′)+),

(given a word over V ′, we can change some letters a′ to their versions ar and a′r
or their versions associated with a rule p; looking at the conditions of the tables
defined below, the obtained word can only be handled if the changes are only done
for the last letter or last and first letters and the introduced versions have to fit;
more precise, from x′w′y′ with x′, y′ ∈ V ′ and w′ ∈ (V ′)∗, we can derive only x′w′yp
with p ∈ P1, or xpw

′y′p with p ∈ P2, or xrw
′y′r),

(Pr,a,b, Rr,a,b) = ({ar → b′a′, b′r → λ}, {ar}(V ′)∗{b′r}) for a, b ∈ V ′
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(if we obtained arw
′b′r from a′w′b′, we now derive b′a′w′, i. e., we have performed

a rotation step from a′wb′ to b′a′w′),

(Pp, Rp) = ({Ap → B′C ′}, (V ′)+{Ap}) for p = A→ BC

(if we obtained x′w′Ap, then we obtain x′w′B′C ′, i. e., we have simulated an appli-
cation A→ BC)

(Pp, Rp) = ({Ap → a′}, (V ′)+{Ap}) for p = A→ a

(if we obtained x′w′Ap, then we obtain x′w′a′, i. e., we have simulated an applica-
tion A→ a)

(Pp, Rp) = ({Ap → λ}, (V ′)+{Ap}) for p = A→ λ

(if we obtained x′w′Ap, then we obtain x′w′, i. e., we have simulated an application
A→ λ)

(Pp, Rp) = ({Bp → D′, A′p → C ′}, {Bp}(V ′)+{A′p}) for p = AB → CD

(if we obtained Bpw
′Ap, then we obtain D′w′C ′, i. e., we have simulated an appli-

cation AB → CD up to some rotation),

(P3, R3) = ({a′ → a | a ∈ T} ∪ {#→ λ}, {#}T ∗)

(if we have a word #x′ with x ∈ T , then we can derive x).
We now prove that L(G) ⊆ L(H). The basic idea is to start with #S′ (produced

by one application of P1 to the axiom S′′), perform circular shifts on a sentential
form getting words of the form x′r+1x

′
r+2 . . . x

′
n#x′1x

′
2 . . . x

′
r and simulate the appli-

cation of a rule in G by applying some table which only changes the last (if the rule
is in P1) or first and last letter (which are neighbouring letters in the non-rotated
word, if the rule is from P2), and to finish by a cancellation of # and returning to
non-primed letters. Thus we can generate in H any word w ∈ T ∗ which can be
generated by G.

The converse inclusion L(H) ⊆ L(G) holds, since we can perform only the
rotation steps, or simulations of rules of P , or a cancellation of the primes, if we
have a terminal word.

Since all the conditions of H are in LOC 1, the statement follows.

Lemma 5. CS ⊆ CEPL(LOC 2).

Proof. Let L ∈ CS . Then there is a context-sensitive grammar G = (N,T, P, S) in
Kuroda normal form, i. e., all rules have the form A → B, A → BC, AB → CD,
and A→ a with A,B,C,D ∈ N and a ∈ T , such that L = L(G). Let p1, p2, . . . , pr
be the rules of P which have the form third mentioned form. For each rule
pi = AiBi → CiDi, we introduce new letters A′i and B′i such that A′i 6= B′j for
1 ≤ i, j ≤ r and A′i 6= A′j and B′i 6= B′j for 1 ≤ i, j ≤ r, i 6= j. Let

V ′ = {A′i | 1 ≤ i ≤ n} ∪ {B′i | 1 ≤ i ≤ n}.
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Then we define the conditional ET0L system

H = (N ∪ T ∪ V ′, T, (Q,R), (Q′, R′), S)

with

Q ={X → X | X ∈ N ∪ T ∪ V ′} ∪ {A→ w | A→ w ∈ P}
∪ {Ai → A′i | pi = AiBi → CiDi, 1 ≤ i ≤ n}
∪ {Bi → B′i | pi = AiBi → CiDi, 1 ≤ i ≤ n}

R =(N ∪ T )∗

Q′ ={X → X | X ∈ N ∪ T} ∪
r⋃
i=1

{A′i → Ci, B
′
i → Di}

R′ =(N ∪ T ∪
r⋃
i=1

{A′iB′i})∗.

It is easy to see that the conditions R and R′ belong to LOC 2.
We now prove that L(H) = L(G).
Let u ∈ (N ∪ T )+ be a sentential form of G. Let u =⇒ v using some rule r

of P which is different from all pi, 1 ≤ i ≤ r. Then u = u1Au2, y = u1wu2, and
r = A→ w. This derivation can be simulated by a derivation according to table Q
using X → X for all letters in u1 and u2 and A→ w for A in the special position.
If a rule ri = AiBi → CiDi is applied to u we get u = v1AiBiv2 =⇒ v1CiDiv2 = y.
This derivation can be simulated in a two-step derivation

u = v1AiBiv2 =⇒Q v1A
′
iB
′
iv2 =⇒Q′ v1CiDiv2 = y

where X → X from Q and Q′ are applied to the letters of v1 and v2. Since G as
well as H start with the axiom S, it is clear that L(G) ⊆ L(H).

Assume that x ∈ (N ∪ T )+ is a sentential form of H. Then the application of
Q′ does not change x. Thus we have to apply Q. Let x =⇒Q y. If y contains
a letter Ai, then its successor in y is Bi since we cannot continue the derivation,
otherwise (by the definition of R′). Let us assume without loss of generality (only
the positions of the letters Xi, 1 ≤ i ≤ n, and the subwords AijBij , 1 ≤ j ≤ m,
can occur in another order) that

x = u1X1u2X2u3X3 . . . unXnv1Ai1Bi1v2Ai2Bi2v3 . . . vmAimBimvm+1.

If X → X is applied to all letters of the words ui, 1 ≤ i ≤ n, and vj , 1 ≤ j ≤ m+1,
Xi → wi ∈ P is applied to all letters Xi, 1 ≤ i ≤ n, and Aij → A′ij and Bij → B′ij
are applied to the letters Aij and Bij , 1 ≤ j ≤ m, we get

x =⇒Q u1w1u2w2u3w3 . . . unwnv1A
′
i1B
′
i1v2A

′
i2B
′
i2v3 . . . vmA

′
imB

′
imvm+1 = y.

If n ≥ 1 and m ≥ 1, we have to apply Q′ and get

y =⇒Q′ u1w1u2w2u3w3 . . . unwnv1Ci1Di1v2Ci2Di2v3 . . . vmCimDimvm+1 = y.



324 Jürgen Dassow and Stefan Rudolf

Since we have the derivation

x = u1X1u2X2u3X3 . . . unXnv1Ai1Bi1v2Ai2Bi2v3Ai3Bi3v4 . . . vmAimBimvm+1

=⇒ u1w1u2X2u3X3 . . . unXnv1Ai1Bi1v2Ai2Bi2v3Ai3Bi3v4 . . . vmAimBimvm+1

=⇒ u1w1u2w2u3X3 . . . unXnv1Ai1Bi1v2Ai2Bi2v3Ai3Bi3v4 . . . vmAimBimvm+1

. . .

=⇒ u1w1u2w2u3w3 . . . unwnv1Ai1Bi1v2Ai2Bi2v3Ai3Bi3v4 . . . vmAimBimvm+1

=⇒ u1w1u2w2u3w3 . . . unwnv1Ci1Di1v2Ai2Bi2v3Ai3Bi3v4 . . . vmAimBimvm+1

=⇒ u1w1u2w2u3w3 . . . unwnv1Ci1Di1v2Ci2Di2v3Ai3Bi3v4 . . . vmAimBimvm+1

. . .

=⇒ u1w1u2w2u3w3 . . . unwnv1Ci1Di1v2Ci2Di2v3 . . . vmCimDimvm+1 = y,

the derivation x =⇒∗ y in H can be simulated in G. If n = 0 or m = 0, we get
analogously simulations. Thus L(H) ⊆ L(G), too.

Corollary 1. CEL(REG) = RE and CEPL(REG) = CS.

Proof. By Lemmas 1, 4, 5, and 3,

RE ⊆ CEL(LOC 1) ⊆ CEL(REG) ⊆ RE

and
CS ⊆ CEPL(LOC 2) ⊆ CEPL(REG) ⊆ CS ,

from which the statement immediately follows.

Lemma 6. RE = CEL(SUF ) and CS = CEPL(SUF ).

Proof. i) Let L ∈ RE . Then, by Corollary 1, L = L(G) for some ET0L system

G = (V, T, (P1, R1), (P2, R2), . . . (Pn, Rn), ω)

with regular conditions. Let V ′ = {a′ | a ∈ V }, and let S, F , and # be additional
symbols. Then we set

Pinit = {S → #ω′} ∪ {a′ → a′ | a′ ∈ V ′ ∪ {#, F}} ∪ {a→ F | a ∈ V }
and Rinit = {S, λ},

Pi = {a′ → w′ | a→ w ∈ Pi, a ∈ V } ∪ {a→ a | a ∈ {S,#, F}} ∪ {a→ F | a ∈ V }
and Ri = Suf({#z′ | z ∈ Ri}) for 1 ≤ i ≤ n,

Pfin = {#→ λ} ∪ {a′ → a | a ∈ T} ∪ {a′ → F | a′ ∈ (V ′ \ T ′) ∪ V ∪ {S, F}}
and Rfin = Suf({#}T ∗)

and consider the conditional ET0L system

H = (V ∪ V ′ ∪ {S, F,#}, T, (Pinit, Rinit), (P1, R1), . . . (Pn, Rn), (Pfin , Rfin), S).
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Any derivation in H starts with S =⇒ #ω and in the sequel Pinit cannot be
applied. Moreover, by the definition of the production sets of H, any derivable
word – except S – has the form #z′ for some z ∈ V ∗ or z with z ∈ T ∗ or it contains
at least one letter F . A set Pi is applicable to #z′ if and only if z ∈ Ri, and its
application yields #u′ if and only if z =⇒Pi

u holds in G. Furthermore, #z′ =⇒ z
if and only if z ∈ T ∗ by application of Rfin . From elements of z ∈ T ∗ we obtain a
word consisting only of F s. If a word x contains an occurrence of F , then all words
derivable from x contain an F , too; hence we cannot terminate the derivation. Now
it follows easily that L = L(H). Thus we have RE ⊆ CEL(SUF ).

The converse inclusion follows from the relation CEL(SUF ) ⊆ CEL(REG) = RE
by Lemma 1 and Corollary 1.

ii) Let L ∈ CS and T = alph(L). Moreover,

L =
⋃
a∈T
{a}La where La = {w | aw ∈ L2}.

Let

T1 = {a | a ∈ T, La = ∅},
T2 = {a | a ∈ T, La = {λ}},
T3 = {a | a ∈ T, λ ∈ La, w ∈ La for some non-empty word},
T4 = {a | a ∈ T, λ /∈ La, w ∈ La for some non-empty word}.

If a ∈ T3, then we set L′a = La \ {λ}. Then we get

L = T2 ∪ T3 ∪
⋃
a∈T3

{a}L′a ∪
⋃
a∈T4

{a}La.

By the closure properties of CS , La for all a ∈ T4 and L′a for a ∈ T3 are context-
sensitive languages and only consist of non-empty words. Hence, by Corollary 1,
for any a ∈ T4, there is a propagating conditional ET0L system Ga such that
L(Ga) = La.

Now, for each a ∈ T4, we construct the ET0L system G′a with suffix-closed
conditions as in the proof of the first statement of this lemma where we only change
# → λ to # → a in the set Pfin. Then it follows as above that L(Ga) = {a}La
and Ga is propagating. Analogously, we can construct a propagating ET0L system
G′a for a ∈ T3 such that L(G′a) = {a}L′a.

Now we rename all nonterminals in the ET0L systems G′a, a ∈ T3∪T4 such that
no nonterminal occurs in two different systems. Moreover, we change the rules and
regular sets according to the renaming and add to each table rules A → A for all
nonterminals not occurring in this table. For a ∈ T3 ∪ T4, let

G′′a = (V ′, T, (P ′′1,a, R
′′
1,a), (P ′′2,a, R

′′
2,a), . . . , (P ′′na,a, R

′′
na,a), Sa).

Now we construct the propagating conditional ETOL system G with the alpha-
bets V ′ ∪ {S} and T , where S is an additional symbol, the axiom S, the tables
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(P ′′i,a ∪ {S → S}, Ri,a) for a ∈ T3 ∪ T4 and 1 ≤ i ≤ na and the additional table

({S → a | a ∈ T2 ∪ T3} ∪ {S → Sa | a ∈ T3 ∪ T4}, {S, λ}).

Obviously, G is propagating, all conditions of G are suffix-closed, and

L(G) = T2 ∪ T3 ∪
⋃

a∈T3∪T4

L(G′′a) = T2 ∪ T3 ∪
⋃

a∈T3∪T4

L(G′a)

= T2 ∪ T3 ∪
⋃
a∈T3

{a}L′a ∪
⋃
a∈T4

{a}La = L.

Lemma 7. RE = CEL(CIRC ) and CS = CEPL(CIRC ).

Proof. Let L ∈ RE . Then, by Corollary 1, L = L(G) for some ET0L system

G = (V, T, (P1, R1), (P2, R2), . . . (Pn, Rn), ω)

with regular conditions. From G we construct the conditional ET0L system H as in
the first part of the proof of Lemma 6, where we take Circ instead of Suf in all cases.
Then the obtained system has circular conditions. Moreover, L(H) = L(G) = L
can be shown as in the proof of Lemma 6. Thus we have RE ⊆ CEL(CIRC ).

The converse inclusion follows from Lemma 3.

The proof of the second statement of the Lemma can be given by modifications
analogous to those in the proof of the second statement of Lemma 6.

Lemma 8. CEPL(LOC 1) ⊆ EPT0L.

Proof. Let L be a language in CEPL(LOC 1). Then L is generated by some condi-
tional ET0L system G = (V, T, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω) with conditions
in LOC 1. Then, for 1 ≤ i ≤ n, Ri = AiB

∗
i Ci∪(Ai∩Ci) for some sets Ai, Bi, Ci ⊆ V .

We first discuss the case that ω = azb for some a, b ∈ V and z ∈ V ∗.
Let

V ′ = {a′ | a ∈ V }, V ′′ = {a′′ | a ∈ V } and V ′′′ = {a′′′ | a ∈ V }.

Moreover, for a set U ⊂ V , we set

U ′ = {a′ | a ∈ U}, U ′′ = {a′′ | a ∈ U} and U ′′′ = {a′′′ | a ∈ U}.

For a word w = a1a2 . . . am with ai ∈ V , we set w′ = a′1a
′
2 . . . a

′
m. We define the

EPT0L system

H = (V ∪ V ′ ∪ V ′′ ∪ {F}, T, P ′1, P ′2, . . . , P ′n, Q, a′′z′b′′),

where

P ′i = {x′′ → y′′v′ | x ∈ Ai, x→ yv ∈ Pi} ∪ {x′ → v′ | x ∈ Bi, x→ v ∈ Pi}
∪ {x′′′ → v′y′′′ | x ∈ Ci, x→ vy ∈ Pi}
∪ {x→ F | x ∈ (V ′ ∪ V ′′ ∪ V ′′′ ∪ {F}) \ (A′′i ∪B′i ∪ C ′′′i )}
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for 1 ≤ i ≤ n and

Q = {x′ → x | x ∈ T} ∪ {x′′ → x | x ∈ T} ∪ {x′′′ → x | x ∈ T}
∪ {x→ F | x ∈ (V ′ ∪ V ′′ ∪ V ′′′ ∪ {F}) \ (T ′ ∪ T ′′ ∪ T ′′′)}.

By these settings, without introducing F in a sentential form of the system H,
x1vx2 =⇒Pi

x3ux4 in G if and only if x′′1v
′x′′′2 =⇒P ′i

x′′3u
′x′′′4 in H and, moreover,

x′′1v
′x′′′2 =⇒Q x1vx2 in H if and only if x1vx2 ∈ T+. Furthermore, if a letter

F occurs in a sentential form w of H, then it also occurs in all sentential forms
derivable from w in H. Thus it is obvious that

ω = azb =⇒Pi1
a1z1b1 =⇒Pi2

a2z2b2 =⇒Pi3
. . . =⇒Pik

akzkbk

in G for some letters ai, bi ∈ V and some words zi ∈ V ∗ for 1 ≤ i ≤ k if and only if

a′′z′b′′′ =⇒P ′i1
a′′1z
′
1b
′′′
1 =⇒P ′i2

a′′2z
′
2b
′′′
2 =⇒Pi′3

. . . =⇒P ′ik
a′′kz
′
kb
′′′
k =⇒Q akzkbk

in H. Therefore L(G) = L(H) and it is shown that L ∈ EPT0L.
Now we discuss the case that ω is a letter. Then we define L1 as the set of all

letters, i. e., words of length 1, which can be derived in G, and L2,i with 1 ≤ i ≤ n
as the set of all words of length ≥ 2, which can be obtained from x ∈ L1∩Ai∩Ci by
the application of a rule of Pi. Now we add a further letter S to the basic alphabet
of H and a further table

Q′ = {S → x | x ∈ L1} ∪ {S → x | x ∈ L2,i, 1 ≤ i ≤ n}
∪ {x→ x | x ∈ V ∪ V ′ ∪ V ′′ ∪ V ′′′ ∪ {F}}.

Now it follows analogously to the above considerations that L(G) = L(H) holds.

Lemma 9. CEPL(DEF ) ⊆ EPT0L.

Proof. Let R = A∪V ∗B with finite sets A ⊆ V ∗ and B ⊆ V ∗. Let m be a number
which is greater than the maximal length of words in A and B. Then we have

R = {w | |w| ≤ m,w ∈ L} ∪ V ∗(
⋃
w∈B

V m−|v|{w}),

i. e., R can be represented as R = A′ ∪ V ∗B′ with A′ ⊆
⋃m
j=1 V

j and B′ ⊆ V m.
Let L ∈ CEPL(DEF ). Then L = L(G) for some propagating ET0L system

G = (V, T, (P1, R1), (P2, R2), . . . , (Pn, Rn), ω)

with definite conditions. By the above observation, without loss of generality, we
can assume that there is a number m ≥ |ω| such that, for 1 ≤ i ≤ n, Ri = Ai∪V ∗i Bi
with Ai ⊆

⋃m
j=1 V

j
i and Bi ⊆ V mi for some Vi ⊆ V .

Moreover, let V ′ = {a′ | a ∈ V } and V ′′ = {[w] | w ∈ V ∗, |w| ≤ m}. We
construct the EPT0L system

H = (V ∪ V ′ ∪ V ′′), T, P1, P2, . . . , Pn, Q, [ω])
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with

Pi ={a→ a | a ∈ V ∪ {F}} ∪ {a′ → z′ | a ∈ Vi, a→ z ∈ Pi}
∪ {[w]→ [z] | [w] ∈ V ′′, w ∈ Ai ∪Bi, w =⇒Pi z, |z| ≤ m}
∪ {[w]→ x′[z] | [w] ∈ V ′′, w ∈ Ai ∪Bi, w =⇒Pi xz, |z| = m}
∪ {a′ → F | a ∈ V \ Vi} ∪ {[w]→ F | [w] ∈ V ′′, w /∈ Ai ∪Bi}

for 1 ≤ i ≤ n and

Q = {a→ a | a ∈ V ∪ {F}} ∪ {a′ → a | a ∈ V } ∪ {[w]→ w | [w] ∈ V ′′}.

By the construction, all sentential forms have the form [w], x′[w] or x with
[w] ∈ V ′′ and x ∈ V +. Furthermore, we have the derivations [w] =⇒Pi

[z] if and
only if w =⇒Pi

z, [w] =⇒Pi
x′[z] if and only if w =⇒Pi

xz. Moreover, if a word
y ∈ V ∗ is obtained by using x′[w] =⇒Q y (if xw = y and |y| ≥ m+ 1) or [y] =⇒Q y
(if |y| ≤ m), then it is not changed by further derivation steps, because we have
only the rule a→ a for a ∈ V in all tables. Thus any derivation in H has the form

[ω] =⇒Pi1
[w1] =⇒Pi2

. . . =⇒Pir
[wr]

=⇒Pir+1
x′1[wr+1] =⇒Pir+2

x′2[wr+2] =⇒Pir+3
. . . =⇒Pir+s

x′s[wr+s]

=⇒Q xswr+s =⇒ xswr+s =⇒ . . .

with [wi] ∈ V ′′ for 1 ≤ i ≤ r + s and xj ∈ V ∗ for 1 ≤ j ≤ s; and such a derivation
exists if and only there is a derivation

ω =⇒Pi1
w1 =⇒Pi2

. . . =⇒Pir
wr =⇒Pir+1

x1wr+1

=⇒Pir+2
x2wr+2 =⇒Pir+3

. . . =⇒Pir+s
xswr+s

in G exists. Therefore, L(H) = L(G) and L ∈ EPT0L.

Lemma 10. ET0L ⊆ CEPL(MON ).

Proof. Let L be a language in ET0L. Then there is a propagating ET0L system
G = (V, T, P1, P2, . . . , Pr, ω) generating L. In an ET0L system, any table can
be applied to any sentential form. Thus the conditional propagating ET0L system
(V, T, (P1, V

∗), (P2, V
∗), . . . , (Pr, V

∗), ω) with monoidal conditions generates L, too.
Therefore ET0L ⊆ CEPL(MON ).

Lemma 11. CEPL(COMM ) = MAT and CEL(COMM ) = MATλ

Proof. i) MATλ ⊆ CEL(COMM ).
We recall that any recursively enumerable language can be generated by a ma-

trix grammar G in 2-normal form (see Lemma 1.2.3 in [4]), i. e., by a matrix gram-
mar G = (N1 ∪N2 ∪ {S}, T, M, S, Q) where all matrices of M have one of the
following forms

– (S → AX) with A ∈ N1 and X ∈ N2,
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– (A→ w, X → Y ) with A ∈ N1, w ∈ (N1 ∪ T )∗, and X,Y ∈ N2,
– (A→ w, X → λ) with A ∈ N1, w ∈ (N1 ∪ T )∗, and X ∈ N2,

and Q contains only rules of the form A→ w.
Let L be a language in MATλ. Then L is generated by a matrix grammar

G = (N1∪N2∪{S}, T, M, S, Q) which satisfies the above mentioned normal form
conditions. Let m1,m2, . . .mr be the matrices (A→ w,X → z) of M , z ∈ N2∪{λ}
with A → w /∈ F and mr+1,mr+2, . . .ms be the matrices (A → w,X → z) of M ,
z ∈ N2 ∪ {λ} with A→ w ∈ F We set

V = N1 ∪N2 ∪ {S} ∪ T ∪ {B′ | B ∈ N1 ∪N2 ∪ T} ∪
⋃

(A→w,X→z)∈M

{Am, Xm}

and
(P,R) = ({S → AX | (S → AX) ∈M}, {S}).

With a matrix m = (A → w,X → z) with z ∈ N2 or z = λ, we associate
(Pm,1, Rm,1) and (Pm,2, Rm,2) defined by

Pm,1 = {A→ A,A→ Am, X → Xm},
Rm,1 = (N1 ∪N2 ∪ T )+,

Pm,2 = {Am → w,Xm → Y },
Rm,2 = {w | w ∈ (N1 ∪ T ∪ {Am, Xm})+,#Am = #Xm = 1},

and if A→ w is an element of F , we add

(P ′m,2, R
′
m,2) = ({Xm → Y }, {w | w ∈ ((N1 \ {A}) ∪ T ∪ {Xm})+,#Xm

= 1}).

We construct the conditional Lindenmayer system

G′ = (V, T, (P,R), (Pm1,1, Rm1,1), (Pm1,2, Rm1,2),

. . . , (Pmr,1, Rmr,1), (Pmr,2, Rmr,2),

(Pmr+1,1, Rmr+1,1), (Pmr+1,2, Rmr+1,2), (P ′mr+1,2, R
′
mr+1,2),

. . . , (Pms,1, Rms,1), (Pms,2, Rms,2), (P ′ms,2, R
′
ms,2), S).

Obviously, all conditions are commutative. We now prove that L(G′) = L(G).
In both devices any derivation starts with S =⇒ AX.
Now let z1Az2X be a sentential form of G, and let m = (A→ w,X → Y ) be a

matrix of M . Then in G we get z1wz2Y . In G′, by application of (Pm,1, Rm,1), we
obtain a word which differs from z′1Amz

′
2Xm where z′1 and z′2 are obtained from z1

and z2 by replacing some As by Am. However, the derivation can only continued if
there are no Ams in z′1 and z′2, i. e., we obtained z1Amz2Xm. Now only (Pm,2, Rm,2)
can be applied which yields z1wz2Y . Therefore we have simulated a derivation step
of G. If A→ w is in F and the sentential form zX does not contain a letter A, then
we get in G the word zY , and in G′ we have the simulation zX =⇒ zXm =⇒ zY .

Obviously, a successful derivation in G′ consists only of the mentioned derivation
steps.
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Moreover, the derivation in G stops if and only if no table (Pm,2, Rm,2) and
(P ′m,2, R

′
m,2) changes the sentential form.

Thus L(G′) = L(G) follows.

ii) MAT ⊆ CEPL(COMM ).
This can be shown analogously. We have only to start with the accurate normal

form (see Definition 1.3.2 and Lemma 1.3.7 in [4]).

iii) CEL(COMM ) ⊆ MATλ

Let L ∈ CEL(COMM ). Then there is a conditional Lindenmayer system G =
(V, T, (P1, R1), (P2, R2, . . . , (Pn, Rn), w) such that, for any i, 1 ≤ i ≤ n, Ri is a
commutative and regular language.

Let
V = {A1, A2, . . . , Am} and T = {Ap+1, Ap+2, . . . , Am}.

Obviously, for 1 ≤ i ≤ n, Ri is a set over V and Ri = π−1V (Mi) for some semi-linear
set Mi. Let

Mi =

ri⋃
j=1

Mi,j

with

Mi,j = {(a1,i,j , a2,i,j , . . . , am,i,j)

+

ti,j∑
k=1

αk(b1,k,i,j , b2,k,i,j , . . . , bm,k,i,j) | αj ∈ N for 1 ≤ k ≤ ti,j}

for some ar,i,j and br,k,i,j , 1 ≤ r ≤ m, 1 ≤ i ≤ n, 1 ≤ j ≤ ri, and 1 ≤ k ≤ tij .
We define the matrix grammar G′ = (N ′, T ′,M, S,Q) where

N ′ = {S,Z,#} ∪
m⋃
i=1

{A′i, A′′i } ∪
n⋃
j=1

{Zi, Z ′i} ∪
⋃

1≤i≤n
1≤j≤ti

{Zi,j}

T ′ = T ∪ {X},
Q = {A′i → # | 1 ≤ i ≤ m} ∪ {A′′i → # | 1 ≤ i ≤ m},

and M consists of all matrices constructed as follows. As initial rules we take all
rules

(S → Ziw
′) for 1 ≤ i ≤ n

(we generate a primed version of the axiom w of G accompanied by some control
symbol Zi).

For any 1 ≤ i ≤ n, 1 ≤ i′ ≤ n, and 1 ≤ j ≤ ri, we introduce the matrices

(Zi → Zi,j , (A
′
1 → A′′1)a1,i,j , (A′2 → A′′2)a2,i,j , . . . , (A′m → A′′m)am,i,j )

(Zi,j → Zi,j , (A
′
1 → A′′1)b1,k,i,j , (A′2 → A′′2)b2,k,i,j , . . . , (A′m → A′′m)bm,k,i,j )

for 1 ≤ k ≤ ti,j
(Zi,j → Z ′i, A

′
1 → #, A′2 → #, . . . , A′m → #) for 1 ≤ j ≤ ri,
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(applying these matrices to a sentential form Ziv
′ for some v′ ∈ (V ′)∗ one checks

whether the Parikh vector of v is contained in Mi,j ; thus the Z ′iv
′′ can only be

obtained if the sentential form is contained in Ri)

(Z ′i → Z ′i, A
′′ → w′) for A→ w ∈ Pi

(after checking that the sentential form is in Ri we apply the rules of Pi),

(Z ′i → Zi′ , A
′′
1 → #, A′′2 → #, . . . , A′′n → #)

(if all letters of v′′ are replaced, i. e., we get z′ where v =⇒ z holds in G and have
simulated a derivation step in G, we can start the same process with i′),

(Zi → Z,A′1 → #, A′2 → #, . . . , A′p → #),

(Z → Z,A′q → Aq) for p+ 1 ≤ q ≤ m,
(Z → X,A′q+1 → #, A′q+2 → #, . . . , A′m → #).

(if Ziv
′ does not contain the letters A′1, A

′
2, . . . A

′
p, i. e., v is a word over the terminal

alphabet T , we replace all letters A′q by Aq, and finally Z by X).
By the given explanations, it is easy to see that L(G′) = {X}L(G).
Thus {X}L(G) ∈ MATλ. By the closure properties of MAT (see [4], page 48),

L(G) ∈ MATλ which proves the statement.

iv) CEPL(COMM ) ⊆ MAT
Since the construction in iii) produces no erasing rules in the matrix grammar

if the conditional Lindenmayer system contains no erasing rules, the statement
follows by the same construction.

Lemma 12. CEPL(FIN ) = CEL(FIN ) = FIN

Proof. Obviously, any language in CEL(FIN ) is finite. Thus CEL(FIN ) ⊆ FIN .
Let L ⊂ T+ be finite language (note that by our setting that languages are

equal if they differ at most in the empty word, we can ignore the empty word, if it
is in L). It is easy to see that the propagating ET0L system

({S} ∪ T, T, ({S → w | w ∈ L}, {S}), S)

with a finite condition generates L. Thus FIN ⊆ CEPL(FIN ).
By these inclusions and Lemma 1, we get the statement of the lemma.

4 Summary and Conclusions

By a combination of the lemmas above and Example 1, we get the following theo-
rem.

Theorem 1. For all s ≥ 1 and r ≥ 2, the diagram given in Figure 2 holds.
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RE
= CEL(REG) = CEL(COMM )
= CEL(SUF ) = CEL(CIRC )
= CEL(SF ) = CEL(UF )
= CEL(LOC ) = CEL(LOC s)

CEL(DEF )

CS = CEPL(REG)
= CEPL(SF ) = CEPL(UF )
= CEPL(SUF ) = CEPL(CIRC )
= CEPL(LOC ) = CEPL(LOC r)

OO

CEL(NIL) CEL(COMB) MAT = CEPL(COMM )

OO

ET0L = EPT0L
= CEPL(MON ) = CEL(MON )
= CEPL(COMB) = CEPL(DEF )
= CEPL(NIL) = CEPL(LOC1)

OOii

FIN
= CEPL(FIN ) = CEL(FIN )

OO

Figure 2: Hierarchy of language families CEL(X) and CEPL(X) with X ∈ G (an
arrow from Z1 to Z2 denotes Z1 ⊂ Z2; a line from Z1 to a higher positioned Z2

stands for Z1 ⊆ Z2; the relation between families which are connected by a broken
line is unknown; and if two families are not connected by a directed path or a
broken line, then they are incomparable)

If one only considers the propagating families, then the hierarchy is completely
determined. However, in the general case, there are some open problems related to
the families CEL(NIL), CEL(COMB), and CEL(DEF ); essentially we only have the
relations which follow directly from the relation between the subregular families.

The obtained picture is very similar to that which was obtained for (sequential)
context-free conditional grammars (for a definition see [4]). Especially,

CEL(X) = Z ∈ {RE ,CS ,MAT ,ET0L}

implies that the family of context-free conditional grammars with conditions from
X coincides with Z, too; this implication also holds for systems/grammars with
only non-erasing rules. However, the families of context-free conditional grammars
with definite, nilpotent, and combinational conditions are also equal to ET0L. In
contrast, for Lindenmayer systems ET0L ⊂ CEL(COMB) ⊆ CEL(DEF ).
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On a Property of Non Liouville Numbers∗

Jean-Marie De Koninck† and Imre Kátai‡

Dedicated to the memory of Professor Ferenc Gécseg

Abstract

Let α be a non Liouville number and let f(x) = αxr + ar−1x
r−1 + · · · +

a1x+a0 ∈ R[x] be a polynomial of positive degree r. We consider the sequence
(yn)n≥1 defined by yn = f(h(n)), where h belongs to a certain family of
arithmetic functions and show that (yn)n≥1 is uniformly distributed modulo 1.

Keywords: non Liouville numbers, uniform distribution modulo 1

1 Introduction and notation

Let t(n) be an arithmetic function and let f ∈ R[x] be a polynomial. Under what
conditions is the sequence (f(t(n)))n≥1 uniformly distributed modulo 1 ? In the
particular case where f is of degree one, the problem is partly solved. For instance,
it is known that, if α is an irrational number and if t(n) = ω(n) or Ω(n), where
ω(n) stands for the number of distinct prime factors of n and Ω(n) for the number
of prime factors of n counting their multiplicity, with ω(1) = Ω(1) = 0, then the
sequence ({αt(n)})n≥1 is uniformly distributed modulo 1 (here {y} stands for the
fractional part of y). In 2005, we [1] proved that if α is a positive irrational number
such that for each real number κ > 1 there exists a positive constant c = c(κ, α)
for which the inequality ‖αq‖ > c/qκ holds for every positive integer q, then the
sequence ({ασ(n)})n≥1 is uniformly distributed modulo 1. (Here ‖x‖ stands for
the distance between x and the nearest integer and σ(n) stands for the sum of
the positive divisors of n.) Observe that one can construct an irrational number
α for which the corresponding sequence ({ασ(n)})n≥1 is not uniformly distributed
modulo 1. On the other hand, given an integer q ≥ 2 and letting sq(n) stand for
the sum of the digits of n expressed in base q, it is not hard to prove that, if α is an
irrational number, the sequence ({αsq(n)})n≥1 is uniformly distributed modulo 1.
In fact, in the past 15 years, important results have been obtained concerning the
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topic of the so-called q-ary arithmetic functions. For instance, it was proved that
the sequence ({αsq(p)})p∈℘ (here ℘ is the set of all primes) is uniformly distributed
modulo 1 if and only if α ∈ R \Q. In 2010, answering a problem raised by Gelfond
[10] in 1968, Mauduit and Rivat [13] proved that the sequence ({αsq(n2)})n≥1 is
uniformly distributed modulo 1 if and only if α ∈ R \Q.

Recall that an irrational number β is said to be a Liouville number if for all
integers m ≥ 1, there exist two integers t and s > 1 such that

0 <

∣∣∣∣β − t

s

∣∣∣∣ < 1

sm
.

Hence, Liouville numbers are those real numbers which can be approximated “quite
closely” by rational numbers.

Here, if α is a non Liouville number and

f(x) = αxr + ar−1x
r−1 + · · ·+ a1x+ a0 ∈ R[x] is of degree r ≥ 1, (1)

we prove that (f(t(n)))n≥1 is uniformly distributed modulo 1, for those arithmetic

functions t(n) for which the corresponding function aN,k :=
1

N
#{n ≤ N : t(n) = k}

is “close” to the normal distribution as N becomes large.
Given P ⊆ ℘, let ΩP(n) =

∑
pr‖n
p∈P

r. From here on, we let q ≥ 2 stand for a

fixed integer. Now, consider the sequence (yn)n≥1 defined by yn = f(h(n)), where
h(n) is either one of the five functions

ω(n), Ω(n), ΩP(n), sq(n), sq(n
2). (2)

Here, we show that the sequence (yn)n≥1 is uniformly distributed modulo 1.
For the particular case h(n) = sq(n), we also examine an analogous problem, as

n runs only through the primes. Finally, we consider a problem involving strongly
normal numbers.

Recall that the discrepancy of a set of N real numbers x1, . . . , xN is the quantity

D(x1, . . . , xN ) := sup
[a,b)⊆[0,1)

∣∣∣∣∣∣ 1

N

∑
{xν}∈[a,b)

1− (b− a)

∣∣∣∣∣∣ .
For each positive integer N , let

M = MN = bδN
√
Nc, where δN → 0 and δN logN →∞ as N →∞. (3)

We shall say that an infinite sequence of real numbers (xn)n≥1 is strongly uniformly
distributed mod 1 if

D(xN+1, . . . , xN+M )→ 0 as N →∞

for every choice of M (and corresponding δN ) satisfying (3). Then, given a fixed
integer q ≥ 2, we say that an irrational number α is a strongly normal number
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in base q (or a strongly q-normal number) if the sequence (xn)n≥1, defined by
xn = {αqn}, is strongly uniformly distributed modulo 1. The concept of strong
normality was recently introduced by De Koninck, Kátai and Phong [2].

We will at times be using the standard notation e(x) := exp{2πix}. Finally, we
let ϕ stand for the Euler totient function.

2 Background results

The sum of digits function sq(n) in a given base q ≥ 2 has been extensively studied
over the past decades. Delange [4] was one of the first to study this function.
Drmota and Rivat [7], [14] studied the function sq(n

2) and then, very recently,
Drmota, Mauduit and Rivat [9] analyzed the distribution of the function sq(P (n)),
where P ∈ Z[x] is a polynomial of a certain type.

Here, we state as propositions some other results and recall two relevant results
of Halász and Kátai.

First, given an integer q ≥ 2, we set

µq =
q − 1

2
, σ2

q =
q2 − 1

12
.

Proposition 1. Let δ > 0 be an arbitrary small number and let ε > 0. Then,

uniformly for
∣∣k − µq logq N

∣∣ < 1

δ

√
logq N ,

#{n ≤ N : sq(n) = k} =

N√
2πσ2

q logq N

(
exp

{
−

(k − µq logq N)2

2σ2
q logq N

}
+O

(
1

log
1
2−εN

))
.

Proof. This result is in fact a particular case of Proposition 3 below.

Proposition 2. Let ε > 0. Uniformly for all integers k ≥ 0 such that (k, q−1) = 1,

#{p ≤ N : sq(p) = k} =

q − 1

ϕ(q − 1)

π(N)√
2πσ2

q logq N

(
exp

{
−

(k − µq logq N)2

2σ2
q logq N

}
+O

(
1

log
1
2−εN

))
.

Proof. This is Theorem 1.1 in the paper of Drmota, Mauduit and Rivat [8].

Let G = (Gj)j≥0 be a strictly increasing sequence of integers, with G0 = 1.
Then, each non negative integer n has a unique representation as n =

∑
j≥0 εj(n)Gj

with integers εj(n) ≥ 0 provided that
∑
j<k

εj(n)Gj < Gk for all integers k ≥ 1. Then,

the sum of digits function sG(n) is given by

sG(n) =
∑
j≥0

εj(n). (4)
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Setting aN,k := #{n ≤ N : sG(n) = k}, consider the related sequence (XN )N≥1 of
random variables defined by

P (XN = k) =
aN,k
N

,

so that the expected value of XN and its variance are given by

E[XN ] =
1

N

∑
n≤N

sG(n) and V [XN ] =
1

N

∑
n≤N

(sG(n)− E[XN ])2. (5)

Let us choose the sequence (Gj)j≥0 as the particular sequence

G0 = 1, Gj =

j∑
i=1

aiGj−1 + 1 (j > 0), (6)

where the ai’s are simply the positive integers appearing in the Parry α-expansion
(here α > 1 is a real number) of 1, that is

1 =
a1
α

+
a2
α2

+
a3
α3

+ · · ·

It can be shown (see Theorem 2.1 of Drmota and Gajdosik [5]) that, for such a
sequence (Gj)j≥0, setting

G(z, u) :=

∞∑
j=1

(
aj−1∑
`=0

z`

)
za1+···+aj−1uj

and letting 1/α(z) denote the analytic solution u = 1/α(z) of the equationG(z, u) =
1 for z in a sufficiently small (complex) neighbourhood of z0 = 1 such that α(1) = α,
then,

E[XN ] = µ
logN

logα
+O(1)

and

V [XN ] = σ2 logN

logα
+O(1),

where

µ =
α′(1)

α
and σ2 =

α′′(1)

α
+ µ− µ2.

Proposition 3. Let G = (Gj)j≥0 be as in (6). If σ2 6= 0, then, given an arbitrary
small ε > 0, uniformly for all integers k ≥ 0,

#{n ≤ N : sG(n) = k} =

N√
2πV [XN ]

(
exp

{
− (k − E[XN ])2

2V [XN ]

}
+O

(
1

log
1
2−εN

))
.
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Proof. This is Theorem 2.2 in the paper of Drmota and Gajdosik [5].

Let a be a positive integer. Let q = −a+ i (or q = −a− i) and set Q = a2 + 1
and N = {0, 1, . . . , Q − 1}. It is well known that every Gaussian integer z can be
written uniquely as

z =
∑
`≥0

ε`(z)q
` with each ε` ∈ N .

Then, define the sum of digits function sq(z) of z ∈ Z[i] in base q as

sq(z) =
∑
`≥0

ε`(z).

Proposition 4. Let A be the set of those positive integers a for which if p | q =
−a ± i and |p| 6= 1, then |p|2 ≥ 689. Let DN = {z ∈ C : |z| ≤

√
N} ∩ Z[i] or

DN = {z ∈ C : |<(z)| ≤
√
N, |=(z)| ≤

√
N}∩Z[i]. Then, uniformly for all integers

k ≥ 0, we have

1

#DN
#{z ∈ DN : sq(z

2) = k} =

Q(k, q − 1)√
2πσ2

Q logQ(N2)

(
exp{−∆2

k

2
}+O

(
(log logN)11√

logN

))
,

where

∆k =
k − µQ logQ(N2)√

σ2
Q logQ(N2)

, µQ =
Q− 1

2
, σ2

Q =
Q2 − 1

12
.

Proof. This result is a simplified version of Theorem 4 in Morgenbesser [15].

Let a ∈ N and q = −a + i ∈ Z[i]. Set N = {0, 1, . . . , a2}. Then, every z ∈ Z[i]
can be written uniquely as

z =
∑
j≥0

εj(z)q
j with each εj(z) ∈ N .

Let L be a non negative integer and consider a function F : NL+1 → Z satisfying
F (0, 0, . . . , 0) = 0 and set

sF (z) =

∞∑
j=−L

F (εj(z), εj+1(z), . . . , εj+L(z)).

The following is due to Drmota, Grabner and Liardet [6].
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Proposition 5. Under certain conditions on F stated in Corollary 3 in Drmota,
Grabner and Liardet [6],

#{z ∈ Z[i] : |z|2 < N, sF (z) = k} =

πN√
2πσ2 log|q|2N

exp

{
−

(k − µ log|q|2 N)2

2σ2 log|q|2 N

}(
1 +O

(
1√

logN

))

uniformly for |k−µ log|q|2 N | ≤ c
√

log|q|2 N , where c can be taken arbitrarily large.

For any particular set of primes P, let E(x) = EP(x) :=
∑
p≤x
p∈P

1

p
.

The following two results, which we state as propositions, are due respectively
to Halász [11] and Kátai [12].

Proposition 6. (Halász) Let 0 < δ ≤ 1 and let P be a set of primes with
corresponding functions ΩP(n) and E(x) = EP(x). Then, assuming that E(x) →
∞ as x→∞, the estimate∑

n≤x
ΩP (n)=k

1 =
xE(x)k

k!
e−E(x)

{
1 +O

(
|k − E(x)|
E(x)

)
+O

(
1√
E(x)

)}

holds uniformly for all positive integers k and real numbers x ≥ 3 satisfying

E(x) ≥ 8

δ3
and δ ≤ k

E(x)
≤ 2− δ.

Proposition 7. (Kátai) For 1 ≤ h ≤ x, let

Ak(x, h) :=
∑

x≤n≤x+h
ω(n)=k

1, Bk(x) :=
∑
n≤x

ω(n)=k

1,

δk(x, h) :=
Ak(x, h)

h
− Bk(x)

x
, E(x, h) :=

∞∑
k=1

δ2k(x, h).

Letting ε > 0 be an arbitrarily small number and x7/12+ε ≤ h ≤ x, then

E(x, h)� 1

log2 x ·
√

log log x
.

3 Main results

Theorem 1. Let f(x) be as in (1), h(n) be one of the five functions listed in (2)
and yn := f(h(n)). Then, the sequence (yn)n≥1 is uniformly distributed modulo 1.
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Theorem 2. Let f(x) be as in (1). Then, the sequence (zp)p∈℘, where zp :=
f(sq(p)), is uniformly distributed modulo 1.

Theorem 3. Let Q ≥ 2 and q ≥ 2 be fixed integers. Let α be a strongly Q-
normal number. Let g be a real valued continuous function defined on [0, 1] such

that
∫ 1

0
g(x) dx = 0. Then,

lim
N→∞

1

N

N∑
n=1

g(αQh(n)) = 0, (7)

where h(n) = sq(n) or sq(n
2). Moreover, letting π(N) stand for the number of

prime numbers not exceeding N , we have

lim
N→∞

1

π(N)

∑
p≤N

g(αQsq(p)) = 0. (8)

The following corollary follows from estimate (7) of Theorem 3.

Corollary 1. With α and h(n) as in Theorem 3, the sequence (αQh(p))p∈℘ is
uniformly distributed modulo 1.

In light of Proposition 3, we have the following two corollaries.

Corollary 2. Let G be as in (4). Then, letting f be as in (1), the sequence
({f(sG(n))})n≥0 is uniformly distributed modulo 1.

Corollary 3. Let G be as in (4). Then, if α is a strongly normal number in base
Q, the sequence ({α ·QsG(n)})n≥0 is uniformly distributed modulo 1.

As a direct consequence of the Main Lemma and of Proposition 4, we have the
following result.

Theorem 4. Let DN be as in Proposition 4. Let f be as in (1). For each z ∈ DN ,
set yz := f(sq(z

2)). Then, the discrepancy of the sequence yz tends to 0 as N →∞,
that is

D(yz : z ∈ DN )→ 0 as N →∞.
Theorem 5. Let DN be as in Proposition 4. Let α be a strongly normal number
in base Q and consider the sequence (yz)z∈DN . Then

D(yz : z ∈ DN )→ 0 as N →∞.

In line with Proposition 7, we have the following.

Theorem 6. Let ε > 0 be a fixed number. Let H = bx7/12+εc and set

πk([x, x+H]) := #{n ∈ [x, x+H] : ω(n) = k}.

Let f be as in (1) and set

S(x) =
∑

x≤n≤x+H

e(f(ω(n))).

Then
S(x)

H
→ 0 as x→∞.
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4 Preliminary lemmas

Lemma 1. Let α be a non Liouville number and let f(x) be as in (1). Then,

sup
U≥1

1

N

∣∣∣∣∣
U+N∑
n=U+1

e(f(n))

∣∣∣∣∣→ 0 as N →∞.

Proof. Since α is a non Liouville number, there exists a positive integer ` such that
if τ is a fixed positive number and∣∣∣∣α− t

s

∣∣∣∣ ≤ 1

sτ
, (t, s) = 1, s ≤ τ,

then τ1/` < s.
Vaughan ([16], Lemma 2.4) proved that if

∣∣α− t
s

∣∣ < 1
s2 and K = 2t−1, then,

given any small number ε > 0,

U+N∑
n=U+1

e(f(n))�ε N
1+ε

(
1

s
+

1

N
+

s

N t

)1/K

. (9)

Now, choose τ = N t/2 so that N t/2` < s < τ . It then follows from (9) that

U+N∑
n=U+1

e(f(n))� N1−δ,

for some δ > 0 which depends only on ε and `, thus completing the proof of Lemma
1.

Using this result, we can establish our Main Lemma.

Lemma 2. (Main Lemma) For each positive integer N , let (EN (k))k≥1 be a
sequence of non negative integers called weights which, given any δ > 0, satisfies
the following three conditions:

(a)

∞∑
k=1

EN (k) = 1;

(b) there exists a sequence (LN )N≥1 which tends to infinity as N →∞ such that

lim sup
N→∞

∞∑
k=1

|k−LN |√
LN

> 1
δ

EN (k)→ 0 as δ → 0;

(c) lim
N→∞

max
|k−LN |√

LN
≤ 1
δ

max
1≤`≤δ3/2

∣∣∣∣EN (k + `)

EN (k)
− 1

∣∣∣∣ = 0.
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Moreover, let α and f be as in (1) and let

TN (f) :=

∞∑
k=1

e(f(k))EN (k).

Then,
TN (f)→ 0 as N →∞. (10)

Proof. Let δ > 0 be fixed and set

S := bδ3/2
√
LNc, tm = bLNc+mS (m = 1, 2, . . .),

Um = [tm, tm+1 − 1] (m = 1, 2, . . .).

Let us now write
TN (f) = S1(N) + S2(N), (11)

where

S2(N) =
∑

|k−LN |> 1
δ

√
LN

Ek(N)e(f(k)),

S1(N) =
∑

|m|≤1/δ5/2

∑
k∈Um

Ek(N)e(f(k)) =
∑

|m|≤1/δ5/2

S
(m)
1 (N),

say.
First observe that, by condition (b) above,

|S2(N)| ≤
∑

|k−LN |√
LN

> 1
δ

EN (k) = o(1) as N →∞. (12)

On the other hand, it follows from condition (c) above and Lemma 1 that, as
N →∞, ∣∣∣S(m)

1 (N)
∣∣∣ ≤ Etm(N)

∣∣∣∣∣ ∑
k∈Um

e(f(k))

∣∣∣∣∣+ o(1)
∑
k∈Um

Ek(N)

= o(1)SEtm(N) + o(1)
∑
k∈Um

Ek(N),

while ∣∣∣∣∣SEtm(N)−
∑
k∈Um

Ek(N)

∣∣∣∣∣ = o(1)
∑
k∈Um

Ek(N).

Gathering these two estimates, we obtain that

S1(N)→ 0 as N →∞. (13)

Using (12) and (13) in (11), conclusion (10) follows.



344 Jean-Marie De Koninck and Imre Kátai

Lemma 3. For each integer k ≥ 1, let

πk(x) := #{n ≤ x : ω(n) = k},
π∗k(x) := #{n ≤ x : Ω(n) = k}

Then, the relations

πk(x) = (1 + o(1))
x

log x

(log log x)k−1

(k − 1)!
,

π∗k(x) = (1 + o(1))
x

log x

(log log x)k−1

(k − 1)!

hold uniformly for

|k − log log x| ≤ 1

δx

√
log log x, (14)

where δx is some function of x chosen appropriately and which tends to 0 as x→∞.

Proof. This follows from Theorem 10.4 stated in the book of De Koninck and Luca
[3].

5 Proof of Theorem 1

We first consider the case when h(n) is one of the three functions ω(n), Ω(n) and
ΩE(n). Set

πk(N) = #{n ≤ N : ω(n) = k},
π∗k(N) = #{n ≤ N : Ω(n) = k},
Tk(N) = #{n ≤ N : ΩE(n) = k}.

In light of Lemma 3 and Proposition 6, the corresponding weights of the sequences
(πk(N))k≥1, (π∗k(N))k≥1 and (Tk(N))k≥1 are πk(N)/N , π∗k(N)/N and Tk(N)/N ,
respectively.

Now, in order to obtain the conclusion of the Theorem, we only need to prove
that, for each non zero integer m,

1

N

∑
n≤N

e(mf(h(n)))→ 0 as N →∞.

But this is guaranteed by Lemma 1 if we take into account the fact that since α is
a non Liouville number, the number mα is also non Liouville for each m ∈ Z \ {0}.
Hence, the theorem is proved.
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6 Proof of Theorem 2

We cannot make a direct use of Lemma 2 because the estimate in that lemma only
holds for those positive integers k such that (k, q − 1) = 1. To avoid this obstacle,
we shall subdivide the positive integers k according to their residue class modulo
q − 1. Observe that there are ϕ(q − 1) such classes. Hence, we write each k as

k = t(q − 1) + `, (`, q − 1) = 1.

Hence, for each positive integer ` such that (`, q − 1) = 1, we set

℘` := {p ∈ ℘ : sq(p) ≡ ` (mod q − 1)}, Π`(N) := #{p ≤ N : p ∈ ℘`}. (15)

It is easy to verify that

Π`(N)

π(N)
= (1 + o(1))

1

ϕ(q − 1)
(N →∞). (16)

Thus, in order to prove Theorem 2, we need to show that the sum

U`(N) :=
∑
p≤N

sq(p)≡` (mod q−1)

e(mf(sq(p))),

where m is any fixed non zero integer, satisfies

U`(N) = o(1) as N →∞. (17)

Setting

σN (k) := #{p ≤ N : sq(p) = k},

we have

U`(N) =
∑

k≡` (mod q−1)

e(mf(k))σN (k)

=
∑
t≥0

e(mf(t(q − 1) + `))σN (t(q − 1) + `). (18)

Observe that the leading coefficient of the above polynomial f(t(q − 1) + `) is
α(q − 1)k, which is a non Liouville number as well (as we mentioned in the proof
of Theorem 1), and also that the functions

wN (t) :=
1

Π`(N)
σN (t(q − 1) + `)

may be considered as weights (since
∑∞
k=1 wN (t) = 1). Thus, applying Lemma 2,

we obtain (17), thereby completing the proof of Theorem 2.
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7 Proof of Theorem 3

We shall skip the proof of estimate (7), since it can be obtained along the same
lines as that of the main theorem in De Koninck, Kátai and Phong [2].

In order to obtain (8), we separate the set ℘ into ϕ(q− 1) distinct sets ℘`, with
corresponding counting function ΠN (`) defined in (15).

Observe that

g(αQt(q−1)+`)σN (t(q − 1) + `) = g((αQ`) ·Qt(q−1))σN (t(q − 1) + `)

Now, since α is a strongly Q-normal number, then so is αQ`, a number which is
strongly Qq−1-normal.

We then have∑
p≤N

g(αQsq(p)) =
∑
k≥1

∑
p≤N

sq(p)=k

g(αQk)

=

q−1∑
`=1

(`,q−1)=1

∑
p≤N
p∈℘`

g(αQt(q−1)+`)σN (t(q − 1) + `)

=

q−1∑
`=1

(`,q−1)=1

∑
p≤N
p∈℘`

g((αQ`) ·Qt(q−1))σN (t(q − 1) + `).

Since we then have

lim
N→∞

1

Π`(N)

∑
p≤N
p∈℘`

g(αQsq(p)) = 0 for each ` with (`, q − 1) = 1,

summing up over all `’s such that (`, q − 1) = 1, estimate (8) follows immediately.
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[2] J.M. De Koninck, I. Kátai and B.M. Phong, On strong normality, preprint.

[3] J.M. De Koninck and F. Luca, Analytic Number Theory: Exploring the
Anatomy of Integers, Graduate Studies in Mathematics, Vol. 134, American
Mathematical Society, Providence, Rhode Island, 2012.

[4] H. Delange, Sur la fonction sommatoire de la fonction “somme des chiffres”,
Enseign. Math. (2) 21.1 (1975), 31–47.

[5] M. Drmota and J. Gajdosik, The distribution of the sum-of-digits function, J.
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[12] I. Kátai, A remark on a paper of K. Ramachandra in Number theory (Ootaca-
mund, 1984), 147–152, Lecture Notes in Math., 1122, Springer, Berlin, 1985.

[13] C. Mauduit and J. Rivat, Sur un problème de Gelfond: la somme des chiffres
des nombres premiers, Ann. of Math. (2) 171 (2010), no. 3, 1591-1646.

[14] C. Mauduit and J. Rivat, La somme des chiffres des carrés, Acta Math. 203
(2009), No. 1, 107–148.

[15] J. F. Morgenbesser, The sum of digits of squares in Z[i], J. Number Theory
130 (2010), 1433–1469.

[16] R. C. Vaughan, The Hardy-Littlewood method, Bull. Amer. Math. Soc. (N.S.)
7 (1982), no. 2, 433–437.

Received 25th February 2015





Acta Cybernetica 22 (2015) 349–357.

Asymptotic Approximation for the Quotient

Complexities of Atoms

Volker Diekert∗ and Tobias Walter∗†

For Ferenc Gécseg, in memoriam

Abstract

In a series of papers, Brzozowski together with Tamm, Davies, and Szyku la
studied the quotient complexities of atoms of regular languages [6, 7, 3, 4].
The authors obtained precise bounds in terms of binomial sums for the most
complex situations in the following five cases: (G): general, (R): right ideals,
(L): left ideals, (T ): two-sided ideals and (S): suffix-free languages. In each
case let κC(n) be the maximal complexity of an atom of a regular language L,
where L has complexity n ≥ 2 and belongs to the class C ∈ {G,R,L, T ,S}.
It is known that κT (n) ≤ κL(n) = κR(n) ≤ κG(n) < 3n and κS(n) =

κL(n − 1). We show that the ratio κC(n)
κC(n−1)

tends exponentially fast to 3 in
all five cases but it remains different from 3. This behaviour was suggested
by experimental results of Brzozowski and Tamm; and the result for G was
shown independently by Luke Schaeffer and the first author soon after the
paper of Brzozowski and Tamm appeared in 2012. However, proofs for the
asymptotic behavior of

κG(n)

κG(n−1)
were never published; and the results here are

valid for all five classes above. Moreover, there is an interesting oscillation
for all C: for almost all n we have κC(n)

κC(n−1)
> 3 if and only if κC(n+1)

κC(n)
< 3.

1 Introduction and Preliminaries

Let Σ denote a finite non-empty alphabet, Σ∗ the set of words over Σ and
1 ∈ Σ∗ the empty word. A language L is a subset of Σ∗. A class of languages
is called a Boolean algebra if it is closed under finite unions and complemen-
tation. By L ⊆ Σ∗ we denote a regular language with ∅ 6= L 6= Σ∗. The set
of regular languages is denoted by G, because it is the “general” case, here.
The set L = Σ∗ \ L is the complement of L. The language L is a left, right
or two-sided ideal if L = Σ∗L, L = LΣ∗ or L = Σ∗LΣ∗. A language L is
suffix-free if w ∈ L and xw ∈ L implies x = 1. We denote by L,R, T and

∗FMI, Universität Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany.
E-mail: {diekert,walter}@fmi.uni-stuttgart.de
†The second author was supported by the German Research Foundation (DFG) under grant

DI 435/6-1.
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S the classes of Left ideals, Right ideals, T wo-sided ideals and Suffix-free
languages, respectively.

For x ∈ Σ∗ denote by L(x) = {y ∈ Σ∗ | xy ∈ L} the (left) quotient of L
by x. Frequently, a left quotient L(x) is also denoted by x−1L. We prefer the
notation L(x) because Σ∗ acts naturally on the right; and then the formula
for the action becomes L(x) · y = L(xy). Indeed, the classical Myhill-Nerode
Theorem asserts that this action leads to the minimal deterministic finite au-
tomaton accepting L. The set of states for this DFA is QL = {L(x) | x ∈ Σ∗},
the initial state is L = L(1) and the final states are those L(x) with 1 ∈ L(x).
The transitions are given by L(x) · a = L(xa) for x ∈ Σ∗ and a ∈ Σ. The size
|QL| is therefore the number of quotients of L. It is also called the quotient
complexity, or simply the complexity, of L; and the complexity of L is denoted
by κ(L).

Given a regular language L it is natural to consider the smallest Boolean
algebra BQ(L) which contains L and is closed under quotients. A priori, it is
not obvious that BQ(L) is finite; but it is: every set in BQ(L) can be written
as a union of atoms AS where S ⊆ QL and

AS =
⋂

L(x)∈S

L(x) ∩
⋂

L(y)/∈S

L(y).

Atoms have been introduced by Brzozowski and Tamm in [5, 2]. The com-
plexity of atoms was studied in [6, 7].

More generally, for X,Y ⊆ QL define

L(X,Y ) =
⋂

L(x)∈X

L(x) ∩
⋂

L(y)∈Y

L(y).

In particular, AS = L(S,QL \ S).
The observation L(X,Y )(w) = L(X(w), Y (w)) = L(X ′, Y ′) with X ′ =

{L(xw) | L(x) ∈ X} and Y ′ = {L(xw) | L(x) ∈ Y } leads to the following
remark.

Remark 1.1. Let L be regular, n its complexity and X,Y ⊆ QL. Then the
following assertions hold.

• X ∩ Y 6= ∅ implies L(X,Y ) = ∅.
• The non-empty quotients of AS have the form L(X,Y ) with |X| ≤ |S|

and X ∩ Y = ∅.
• S 6= T implies AS ∩AT = ∅.
• Since |{AS | S ⊆ QL}| ≤ 2n and since every element in BQ(L) is a union

of atoms, we have |BQ(L)| ≤ 22n . The upper bound 22n is optimal: It is
proved in [6] that for every n ≥ 2 there exists a language L of complexity
n with 2n atoms. As AS∩AT = ∅ for S 6= T , the atoms form a partition
of Σ∗. Hence, there are 22n distinct unions of atoms.

A 3-coloring of Q is a disjoint union Q = X ∪ Y ∪ W where X,Y,W
are called colors. Thus, there are 3n different 3-colorings. A combinatorial
interpretation leads to the well-known formula

3n =

n∑
x=0

n−x∑
y=0

(
n

x

)(
n− x
y

)
.
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Indeed, each 3-coloring is uniquely described by first choosing the elements
with color X out of n elements and then choosing the elements with color
Y out of the remaining n − |X| elements. As X ∩ Y = ∅ induces a unique
3-coloring with W = Q \ (X ∪ Y ), there are at most 3n non-empty sets of
the form L(X,Y ). We will use the concept of 3-colorings in order to give a
combinatorial interpretation for the bounds of [3].

2 Upper bounds

In this section we will deduce simple upper bounds for the complexity of atoms
in each case by making observations on the structure of the quotients. These
upper bounds are not optimal, but straightforward and still good enough to
show the asymptotic behaviour.

Lemma 2.1. Let L be a regular language of complexity n ≥ 2 and AS be an
atom of L. Then AS has complexity of at most 3n + 1.

Proof. There are at most 3n quotients of the form L(X,Y ) and the empty
set.

Lemma 2.2. Let L be a right ideal of complexity n ≥ 2 and AS be an atom
of L. Then AS has complexity of at most 3n−1.

Proof. For all x with 1 ∈ L(x) we have 1 · w ∈ LΣ∗(x) = L(x) for all
w ∈ Σ∗ and, thus, L(x) = Σ∗. Therefore, Σ∗ is the unique final state in
QL. Additionally, we must have Σ∗ ∈ S, as Σ∗ 6∈ S implies AS = ∅. By
Σ∗(x) = Σ∗ for all x ∈ Σ∗, we see that every quotient AS(x) = L(X,Y ) must
contain Σ∗ in X. Thus, there are at most 3n−1 quotients AS(x), which shows
that AS has complexity of at most 3n−1.

Lemma 2.3. Let L be a left ideal of complexity n ≥ 2 and AS be an atom of
L. Then AS has complexity of at most 3n−1 + 2.

Proof. As L = Σ∗L, we have

L ⊆ L(x) = {y ∈ Σ∗ | xy ∈ L} = {y ∈ Σ∗ | xy ∈ Σ∗L}

for all x ∈ Σ∗. Hence, for any X with L ∈ X we have

L(X,Y ) = L ∩
⋂

L(y)∈Y

L(y).

Thus, if Y 6= ∅ then L(X,Y ) = ∅. Also, L ⊆ L(x) implies L(x) ⊆ L which
yields L(X,Y ) = L(X,Y ∪ {L}) for L 6∈ X. It follows that there are at most
3n−1 + 2 quotients.

The first term counts the L(X,Y ) with X = {L} which is not smaller than
to count the L(X,Y ) with L ∈ X. By the argument above, only L({L}, ∅)
and ∅ are of this type.

The second term counts those (X,Y,W ) with L /∈ X (in which case we
can assume L ∈ Y by the argumentation above).
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Lemma 2.4. Let L be a two-sided ideal of complexity n ≥ 2 and AS be an
atom of L. Then AS has complexity of at most 3n−2 + 2.

Proof. This is similar to the analysis in the case of left ideals, since there
are only two cases with L ∈ X. Again, for L 6∈ X we have L(X,Y ) =
L(X,Y ∪ {L})), i.e., we may assume L ∈ Y . As every two-sided ideal is
in particular a right ideal, we have that Σ∗ is the unique final state in QL.
Again, only those L(X,Y ) with Σ∗ ∈ X are reachable as quotients of an
atom. Thus, we can deduce that AS has at most 3n−2 + 2 quotients.

3 Lower bounds

In this section we revisit the complexity bounds of atoms for left, right and
two-sided ideals obtained by Brzozowski, Tamm and Davies. The bounds are
optimal. We use them to derive (weaker) lower bounds in explicit form. For
|S| ∈ O(1) or n − |S| ∈ O(1) it holds κ(AS) ∈ O(2n) where AS is an atom
of a language L of complexity n. As we are only interested in the maximal
complexity of atoms of some language L, we will restrict the proposition below
to 0 < |S| < n− 1. This excludes special cases not needed in our analysis.

Proposition 3.1 ([7, 1, 3]). Let k, n ∈ N with 0 < k < n − 1 and C ∈
{G,R,L, T }. Then there there exists a language L ∈ C of complexity n and
an atom AS of L with |S| = k such that the complexity of AS is given by:

κ(AS) =


1 +

∑|S|
x=1

∑n−|S|
y=1

(
n
x

)(
n−x
y

)
, for C = G

1 +
∑|S|
x=1

∑n−|S|
y=1

(
n−1
x−1

)(
n−x
y

)
, for C = R

1 +
∑|S|
x=1

∑n−|S|
y=1

(
n−1
x

)(
n−x−1
y−1

)
, for C = L

1 +
∑|S|
x=1

∑n−|S|
y=1

(
n−2
x−1

)(
n−x−1
y−1

)
, for C = T .

Moreover, for every L of complexity n in the corresponding class C and every
S, the right hand sides are upper bounds.

Remark 3.1. The maximal complexity of atoms of left ideals and right
ideals turns out to be same. This was also observed in [3]. Indeed, using the
trinomial revision (see for example [8]) for the last equality below, we can do
the following calculation:

|S|∑
x=1

n−|S|∑
y=1

(
n− 1

x− 1

)(
n− x
y

)
=

n−|S|∑
y=1

|S|∑
x=1

(
n− 1

x− 1

)(
n− x
y

)

=

n−|S|∑
x=1

|S|∑
y=1

(
n− 1

y − 1

)(
n− y
x

)

=

n−|S|∑
x=1

|S|∑
y=1

(
n− 1

x

)(
n− x− 1

y − 1

)
.

In the following we give a combinatorial interpretation of the sums in
Proposition 3.1.
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Lemma 3.1. For every n ≥ 3 there exists a regular language L of complexity
n such that L has an atom AS of complexity in 3n −Θ(8n/2).

Proof. Let S be such that |S| = n/2 (if n is even; the proof is similar if n is
odd). By Proposition 3.1 there exists a regular language L of complexity n

such that the atom AS of L has complexity 1+
∑n/2
x=1

∑n/2
y=1

(
n
x

)(
n−x
y

)
for some

S ⊆ QL. Observe that
∑n
x=0

∑n−x
y=0

(
n
x

)(
n−x
y

)
= 3n has the combinatorial

interpretation of counting all 3-colorings of Q = X∪Y ∪W . We will count the
3-colorings which are missing in

∑n/2
x=1

∑n/2
y=1

(
n
x

)(
n−x
y

)
. As the indices start

with 1 instead of 0 and end with n/2 instead of n, the cases for X = ∅ or
Y = ∅ and for |X| > n/2 or |Y | > n/2 are missing. There are 2n possibilities
with |X| = 0 and 2n many with |Y | = 0. There are at most 2n possibilities
for X with |X| > n/2. Since |X| > n/2, we must have |Y | < n/2 and,
thus, there are at most 2n/2 choices remaining for Y . This leaves at most
2n · 2n/2 = 8n/2 missing 3-colorings with |X| > n/2. The case |Y | > n/2 is
symmetrical. Combining all those cases shows that the number of missing
3-colorings is in Θ(8n/2).

Lemma 3.2. For every n ≥ 3 there exists a right ideal L of complexity n
such that L has an atom AS of L with complexity in 3n−1 −Θ(8n/2).

Proof. By Proposition 3.1 we obtain a right ideal L of complexity n such
that L has an atom AS of complexity 1 +

∑n/2
x=1

∑n/2
y=1

(
n−1
x−1

)(
n−x
y

)
. Observe

that
∑n
x=1

∑n−x
y=0

(
n−1
x−1

)(
n−x
y

)
= 3n−1 has the combinatorial interpretation of

counting 3-colorings of Q = X ∪ Y ∪W with a precolored element Σ∗ ∈ X
(see Section 2 on why Σ∗ is in X). Again, we count the 3-colorings which

are missing in
∑n/2
x=1

∑n/2
y=1

(
n−1
x−1

)(
n−x
y

)
; namely, those with Y = ∅, |X| > n/2

or |Y | > n/2. The analysis in the proof of Lemma 3.1 shows that this is in
Θ(8n/2).

Lemma 3.3. For every n ≥ 3 there exists a two-sided ideal L of complexity
n such that there is an atom AS of L with complexity in 3n−2 −Θ(8n/2).

Proof. By Proposition 3.1 we obtain a two-sided ideal L of complexity n such
that L has an atom AS of complexity 1 +

∑n/2
x=1

∑n/2
y=1

(
n−2
x−1

)(
n−x−1
y−1

)
. We

count the number of 3-colorings of Q = X ∪ Y ∪W with precolored elements
L ∈ Y and Σ∗ ∈ X. There are 3n−2 =

∑n
x=1

∑n−x
y=1

(
n−2
x−1

)(
n−x−1
y−1

)
such 3-

colorings. Thus, in
∑n/2
x=1

∑n/2
y=1

(
n−2
x−1

)(
n−x−1
y−1

)
the 3-colorings with |X| > n/2

or |Y | > n/2 are not counted. The analysis in the proof of Lemma 3.1 shows
that this is in Θ(8n/2).

4 Asymptotic behaviour

As above, let C be one of the classes: (G) general regular languages, (R) right
ideals, (L) left ideals, (T ) two-sided ideals or (S) suffix-free languages. Define

κC(n) = max {κ(AS) | AS is an atom of L ∈ C of complexity n} .

This section studies the behaviour of κC(n)/κC(n− 1) as a function in n.
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n 8 9 10 11 12 13 14 15

κG(n) 5083 15361 48733 146169 455797 1364091 4212001 12601332

ratio 3.284 3.022 3.173 2.999 3.118 2.992 3.088 2.992

Table 1: κG(n) and the ratio κG(n)/κG(n− 1) for some small n

4.1 Asymptotic Approximation

Combining the explicit lower and upper bounds we obtain the following result
which was announced in [3].

Theorem 4.1. Let C ∈ {G,L,R, T ,S}. Then the ratio κC(n)/κC(n − 1)
converges exponentially fast to 3.

Proof. First, we will prove this for the class of right ideals. By Lemma 3.2
and Lemma 2.2 we have

3n−1 − f(n) ≤ κR(n) ≤ 3n−1

for some f ∈ Θ(8n/2). We conclude

3n−1 − f(n)

3n−2
≤ κR(n)

κR(n− 1)
≤ 3n−1

3n−2 − f(n− 1)
,

which implies the assertion. The cases of general regular languages and two-
sided ideals are analogous using the respective lemmas. The case of left ideals
follows as κL(n) = κR(n) for n ≥ 3 by Remark 3.1. The case of suffix-free
languages is clear because κS(n) = κL(n− 1) as is shown in [4].

4.2 Oscillation

In [6] it is shown that

κG(n) = 1 +

bn/2c∑
x=1

n−bn/2c∑
y=1

(
n

x

)(
n− x
y

)
. (1)

This means that κ(AS) is maximal for |S| = bn/2c. In this section we will
prove that the quotient κC(n)/κC(n − 1) does not only converge to 3, but
also does so oscillating. Oscillation was observed first by calculating κG(n)
in the range 1 ≤ n ≤ 20. It came as a little surprise as the first ten values
do not reveal this, [6]. In Table 1 we display the values κG(n) and the ratios
κG(n)/κG(n− 1) for 8 ≤ n ≤ 15.

Theorem 4.2. For every C ∈ {G,R,L, T ,S} there exists some n0 ∈ N such
that

κC(n)/κC(n− 1) > 3 ⇐⇒ κC(n+ 1)/κC(n) < 3

for all n ≥ n0. Moreover, for almost all n we have κC(n)/κC(n− 1) 6= 3.

Proof. We give the proof for the general class C = G, only. Similar calculations
show the result in the other cases. This is not done here and left to the reader.

We apply the interpretation of the sums as the number of 3-colorings
from above. Let HCn be the set of all 3-colorings of {1, . . . , n} in which
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the color X appears at most bn/2c times and the color Y appears at most
n− bn/2c = dn/2e times. We also let hc(n) = |HCn|.

Besides the term +1 and starting at x = 1 and y = 1, instead of x = 0
and y = 0 for hc(n), the right-hand side in Equation (1) is identical to hc(n).
More precisely, we have the following estimation.

κG(n) < hc(n) =

bn/2c∑
x=0

n−bn/2c∑
y=0

(
n

x

)(
n− x
y

)
≤ κG(n) + 2n+1. (2)

Thus, apart from an error term bounded by 2n+1 ∈ O(2n) the numbers
κG(n) and hc(n) are equal. We show two statements.

1. If n is large enough and even, then κG(n+ 1) < 3 · κG(n).

2. If n is large enough and odd, then κG(n+ 1) > 3 · κG(n).

1.) Let n be even, i.e., n/2 = dn/2e = bn/2c = b(n+ 1)/2c and dn/2e+
1 = d(n+1)/2e. We calculate hc(n+1) by considering 3-colorings of {1, . . . , n}
and extending them by choosing a color for n+1. Consider first any 3-coloring
of {1, . . . , n} in HCn. There are 3 possible extensions of this 3-coloring by
choosing the color of n+ 1, i.e., there are at most 3hc(n) possible extensions
of HCn. Not all of those extensions are in HCn+1. We cannot extend those
3-colorings of {1, . . . , n}, which already had n/2 elements in X by choosing
n + 1 ∈ X. Let us count how many such 3-colorings in HC(n) exist: there

are
(
n
n/2

)
choices for X and, for each fixed X, there are

∑n/2
y=0

(
n/2
y

)
= 2n/2

choices for Y . In total, we see that there are 3hc(n) −
(
n
n/2

)
2n/2 extensions

of HCn in HCn+1.

It remains to count the number of 3-colorings in HCn+1 which are not
extensions of any 3-coloring in HCn. These are exactly the extensions of
those 3-colorings of {1, . . . , n} in which we have |Y | = n/2 + 1. As n −
(n/2 + 1) = n/2 − 1, X may contain at most n/2 − 1 elements, i.e., |X| ≤
n/2 − 1. Consequently, n + 1 may be either colored X or W . Thus, there
are 2 ·

(
n

n/2+1

)
2n/2−1 =

(
n

n/2+1

)
2n/2 extensions of this type. The binomial

coefficient
(
n
n/2

)
is the largest one among all

(
n
k

)
where k ∈ Z. In particular,(

n
n/2

)
≥ 2n

n+1
for all n ∈ N and

(
n
n/2

)
≥ 2n

n
for n ≥ 2. We conclude

3hc(n)− hc(n+ 1) = 2n/2
((

n

n/2

)
−

(
n

n/2 + 1

))

= 2n/2
(
n

n/2

)
· 1

n/2 + 1

≥ 2n/2 · 2n · 1

n · (n/2 + 1)
=

√
8
n

n · (n/2 + 1)
.

Note that the term
(
n
n/2

)
−
(

n
n/2+1

)
=
(
n
n/2

)
· 1
n/2+1

is equal to the Catalan

number Cn/2; and better estimations for the difference 3hc(n)−hc(n+ 1) are

possible. The fraction
√
8
n

n·(n/2+1)
is greater than three times the error term

2n+1 for almost all n.
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Class C n0
regular languages (G) 10

left ideals (L) 11
right ideals (R) 11

two-sided ideals (T ) 5
suffix-free languages (S) 12

Table 2: Smallest n0 where oscillation starts.

Thus, there exists a (small) number n0 such that for all even n ≥ n0 we
obtain κG(n+ 1) < 3κG(n). According to Table 1 we have n0 = 10.

2.) Let n be odd and n ≥ 3. We have (n + 1)/2 = bn/2c + 1 = dn/2e.
Again, consider the extensions of 3-colorings of {1, . . . , n}. First, consider the
extensions of HCn. They are not in HCn+1 if and only if |Y | = dn/2e and the
color of n+ 1 is the color Y . For fixed Y , there are 2bn/2c choices for X. In
total, there are 3hc(n) −

(
n
dn/2e

)
2bn/2c extensions of colorings in HCn which

are in HCn+1.
It remains to count the number of colorings in HCn+1 which are not ex-

tensions of colorings in HCn.
These are exactly the extensions of those 3-colorings of {1, . . . , n} in which

we have |X| = bn/2c+ 1. As n− (bn/2c+ 1) = dn/2e − 1, the color Y may
contain at most dn/2e − 1 elements, i.e., |Y | ≤ dn/2e − 1. Consequently,
n+ 1 may be either colored Y or W . Thus, there are 2 ·

(
n

bn/2c+1

)
2dn/2e−1 =

2 ·
(

n
bn/2c+1

)
2bn/2c extensions of this type. Consequently, we obtain

hc(n+ 1)− 3hc(n) = 2bn/2c
(

2

(
n

bn/2c+ 1

)
−

(
n

dn/2e

))

= 2bn/2c
(

n

dn/2e

)
≥ 2bn/2c2n/n.

This number is asymptotically larger than any error in O(2n) and, thus, we
obtain κG(n+1) > 3κG(n) for all odd n greater than some n0. This concludes
the proof of the oscillation property in the case of C = G. The other cases
can be handled with very similar methods. Therefore, as mentioned above,
this is left to the reader.

We calculated the exact values for n0 in every case, see Table 2. Note that
in the cases (G), (L), (R) and (S) κ(n)/κ(n− 1) > 3 holds for 4 ≤ n < n0.
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A Novel Cryptosystem Based on

Gluškov Product of Automata∗†

Pál Dömösi‡ and Géza Horváth§

Abstract

The concept of Gluškov product was introduced by V. M. Gluškov in 1961. It
was intensively studied by several scientists (first of all, by Ferenc Gécseg and
the automata-theory school centred around him in Szeged, Hungary) since
the middle of 60’s. In spite of the large number of excellent publications, no
application of Gluškov-type products of automata in cryptography has arisen
so far. This paper is the first attempt in this direction.

Keywords: cryptosystem, Gluškov product of automata

1 Dedication

This paper is dedicated to the memory of our late colleague, teacher and friend,
Professor Ferenc Gécseg who has been a central figure in modern automata theory.
He established the world famous research school of Szeged University in automata
theory. His death is an irreplaceable loss for the whole research community of
theoretical computer science.

2 Introduction

The connection of certain automata through various communication links leads
to the notion of composition of automata [9]. A substantial body of literature
in this important scientific field has been published by researchers belonging to
the automata-theory school centred around Ferenc Gécseg in Szeged, Hungary [8,
9]. The specific concept of automaton also applied in cryptography, the cellular
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automaton, can also be regarded a special composition of automata, where the
cells functioning as the members of the composition are composed of one and the
same type of elementary automata, and the pattern of the communication links and
connections between these elementary automata is a simple network. Despite the
large number of publications on compositions of automata (authored predominantly
by Hungarian researchers), no cryptographic applications of the results have been
disclosed so far.

Several cryptosystems have been designed on the basis of abstract automata.
Some of them are based on Mealy automata or their generalization (see, for exaple
[1, 14, 20, 21]), some of them are based on cellular automata (see, for example
[12, 13, 16, 23]), while [6] is based on automata without outputs . The best-known
abstract automata based cryptosystems all share the common problem of serious
realization difficulties: some systems are easy to defeat [2, 3, 4, 17, 19, 22], the
technical realization of others result in slow performance [6, 7, 12, 21], and still
others exhibit difficulties in the choice of the key-automaton [5, 16]. These draw-
backs justify the need of novel cryptosystems overcoming these problems. By some
experimental results we will show the security of the proposed system. (Serious
security analysis should be necessary in the future work.) By an example we show
that the technical realization of the novel system is not difficult. Moreover, we give
a method to generate key automata easily.

A Gluškov product of automata [11] is loosely defined as a collection of automata
that each of which changes its state at discrete time steps by a local transition
function of the states and a global input. Moreover, the synchronous action of the
local state transitions defines a global transition on the entire product. Thus a
Gluškov product of automata is also an automaton. Usually it is assumed that the
component automata are connected together according to a directed graph D. The
vertices of D are considered as automata and the edges indicate the existence of
communication links. Thus D has no parallel edges.

An important observation of this paper is that, using the concept of Gluškov
product, we can store certain properties of very large automata such that their
transitions can be computed easily. By this observation, we can built new secure
symmetric block ciphers based on Gluškov product of automata.

3 Preliminaries

We start with some standard concepts and notation. For all notions and notation
not defined here we refer to the monographs [8, 9, 10, 15, 18]. A word (over Σ) is
a finite sequence of elements of some nonempty and finite set Σ. We call the set
Σ an alphabet, the elements of Σ letters. By the free monoid Σ∗ generated by Σ
we mean the set of all words (including the empty word λ) having catenation as
multiplication. We set Σ+ = Σ∗ \ {λ}, where the subsemigroup Σ+ of Σ∗ is said to
be the free semigropu generated by Σ. By an automaton we mean a deterministic
finite automaton without outputs. In more details, an automaton is an algebraic
structure A = (A,Σ, δ) consisting of the nonempty and finite state set A, the
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nonempty and finite input set Σ, and a transition function δ : A × Σ → A. The
elements of the state set are the states, and the elements of the input set are the
input signals. An element of A+ is called a state word 1 and an element of Σ∗

is called an input word. State and input words are also called state strings and
input strings, respectively. If a state string a1a2 · · · as (a1, . . . , as ∈ A) has at least
three elements, the states a2, a3, . . . , as−1 are also called intermediate states. It is
understood that δ is extended to δ∗ : A× Σ∗ → A+ with δ∗(a, λ) = a, δ∗(a, xq) =
δ(a, x)δ∗(δ(a, x), q), a ∈ A, x ∈ Σ, q ∈ Σ∗. In other words, δ∗(a, λ) = a and for
every nonempty input word x1x2 · · ·xs ∈ Σ+ (where x1, x2, . . . , xs ∈ Σ) there are
a1, . . . , as ∈ A with δ(a, x1) = a1, δ(a1, x2) = a2, . . . , δ(as−1, xs) = as such that
δ∗(a, x1 · · ·xs) = a1 · · · as.

In the sequel, we will consider the transition of an automaton in this extended
form and thus we will denote it by the same Greek letter δ. If b is the last letter
of δ(a,w) for some a, b ∈ A,w ∈ Σ∗ then we say that w takes the automaton from
its state a into state b, and we also say that the automaton goes from state a into
state b under the effect of w. The automaton B = (B, Y, δB) with B ⊆ A, Y ⊆ Σ
and δB(a, x) = δ(a, x), a ∈ B, x ∈ Y is a subautomaton of A. In particular, if
B ⊆ A and Y = Σ then B is a state-subautomaton of A. Moreover, if B = A and
Y ⊆ Σ then B is an input-subautomaton of A. The automaton C = (C,ΣC , δC)
is isomorphic to A if there are bijective mappings τ1 : C → A, τ2 : ΣC → Σ with
τ1(δC(c, x)) = δ(τ1(c), τ2(x)), c ∈ C, x ∈ ΣC . If ΣC = Σ and τ2(x) = x, x ∈ Σ
then we say that C is state isomorphic to A. In this case, we also say that A is a
state-isomorphic copy of C and vice versa.2

The transition matrix of an automaton is a matrix with rows corresponding to
each input and columns corresponding to each state; the state δ(a, x) is put at the
entry of any row indicated by an input x ∈ Σ and any column indicated by a state
a ∈ A . If all rows of the transition matrix are permutations of the state set then
we speak about a permutation automaton.

Next we prove the following statement.

Proposition 1. Given a permutation automaton A = (A,Σ, δ), for every pair
b ∈ A, x ∈ Σ, there exists exactly one a ∈ A with δ(a, x) = b.

Proof. Assume that there exists no a ∈ A with δ(a, x) = b. Then the row of of the
transition matrix labeled by x does not contain b. But then A is not a permutation
automaton, a contradiction.

Next we assume that there are a1, a2 ∈ A with a1 6= a2 δ(a1, x) = b and
δ(a2, x) = b. Then the row of of the transition matrix labeled by x contains b two
times, a contradiction again.

Let Ai = (Ai,Σi, δi) be automata where i ∈ {1, . . . , n}, n ≥ 1. Take a fi-
nite nonvoid set Σ and a feedback function ϕi : A1 × · · · × An × Σ → Σi for
every i ∈ {1, . . . , n}. A Gluškov-type product of the automata Ai with respect

1The empty word is not considered as a state word.
2Obviously, then the bijective mapping τ1 : C → A unambigously determines the state isomor-

phism of C onto A.
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to the feedback functions ϕi (i ∈ {1, . . . , n}) is defined to be the automaton
A = A1 × · · · × An(Σ, (ϕ1, . . . , ϕn)) with state set A = A1 × · · · × An, input set
Σ, transition function δ given by δ((a1, . . . , an), x) = (δ1(a1, ϕ1(a1, . . . , an, x)), . . . ,
δn(an, ϕn(a1, . . . , an, x))) for all (a1, . . . , an) ∈ A and x ∈ Σ.

We shall use the feedback functions ϕi, i ∈ {1, . . . , n} in an extended sense as
mappings ϕ∗i : A1 × · · · × An × Σ∗ → Σ∗i , where ϕ∗i (a1, . . . , an, λ) = λ,
and ϕ∗i (a1, . . . , an, px) = ϕ∗i (a1, . . . , an, p)ϕi(δ1(a1, ϕ

∗
1(a1, . . . , an, p)), . . . ,

δn(an, ϕ
∗
n(a1, . . . , an, p)), x), ai ∈ Ai, i ∈ {1, . . . , n}, p ∈ Σ∗, x ∈ Σ. In the sequel,

ϕ∗i , i ∈ {1, . . . , n} will also be denoted by ϕi.
We can imagine this structure as a working model in the following way. The

product is a collection of automata so that every member of this collection is sup-
plied with a transformer which is a special type of finite state transducer. The
transformers, realizing the feedback functions mentioned above, are able to get an
input vector containing a common external input sign and the state of all com-
ponent automata. They can each transform this input vector into an appropriate
input sign for their component automaton. The product is at work along a discrete
time scale in the following way: all transformers of the product get a common
external input sign x, and simultaneously, all transformers get the value of the
instantaneous states a1, . . . , an of all component-automata as input information.
Induced by this this input vector (a1, . . . , an, x), the transformers produce an input
sign xi = ϕi(a1, . . . , an, x), i ∈ {1, . . . , n} for their component-automata. Then,
these (transformed) input signs take every component-automaton into a new (not
necessarily different) state δi(ai, xi) = δi(ai, ϕi(a1, . . . , an, x)), and then, in the
next time period, the whole process takes place again. We will use several gener-
alizations and several restrictions of this concept. If the transformers are able to
produce not only single input signs but entire input words (strings of input signs),
then induced by the inner input sign x and the value of the instantaneous states
a1, . . . , an they produce a (possibly empty) input word ϕi(a1, . . . , an, x) working
as microprocessors, for their component automata then we get the model of the
generalized product.

If we assume that transformers do not necessarily have access to all the instan-
taneous states of component automata, but only some restricted subset, then we
will get the models of several special types of the products [8, 9].

It is clear that, by definition, a Gluškov product is a parallel working system.
Since parallel working Gluškov product is not appropriate for block cipher, we
define its sequentially working version called sequentially working Gluškov product.

Consider the above defined Gluškov product modifying its transition function
in the following way. Let δ be given by
δ((a1, . . . , an), x) = (δ1(a1, ϕ1(a1, . . . , an, x)), δ2(a2, ϕ2(a′1, a2, . . . , an, x)), . . . ,
δn−1(an−1, ϕn−1(a′1, . . . , a

′
n−2, an−1, an, x)), δn(an, ϕn(a′1, . . . , a

′
n−1, an, x))) for all

(a1, . . . , an) ∈ A and x ∈ Σ, where, in order, a′1 = δ1(a1, ϕ1(a1, . . . , an, x)), a′2 =
δ2(a2, ϕ2(a′1, . . . , an, x)), . . . , a′n−1 = δn−1(an−1, ϕn−1(a′1, . . . , a

′
n−2, an−1, an, x)).

Given a function f : X1 × · · · × Xn → Y, we say that f is really indepen-
dent of its i-th variable if for every pair (x1, . . . , xn), (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)

∈ X1×· · ·×Xn, f(x1, . . . , xn) = f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn). Otherwise we say
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that f really depends on its i-th variable.
A (finite) directed graph (or, in short, a digraph) D = (V,E) (of order n > 0) is

a pair consisting of sets of vertices V = {v1, . . . , vn} and edges E ⊆ V ×V. Elements
of V are sometimes called nodes. If |V | = n then we also say that D is a digraph
of order n.

Given a digraph D = (V,E), we say that the above defined Gluškov product
(sequentially working Gluškov product) is a D-product (sequentially working D-
product) if for every pair i, j ∈ {1, . . . , n}, (i, j) /∈ E implies that the feedback
function ϕi is really independent of its j-th variable.

By a key automaton we mean a sequentially working Gluškov product having
the following properties:

- it consists of automata components that are state isomorphic to each other so
that their state sets also coincide with each other,

- it has the same state and input sets which are sets of all strings with a given
length over a fixed alphabet,

- it is a permutation automaton.

4 Encryption and Decryption

Both of the encryption and decryption apparatus use the same key automaton and
they use the same pseudorandom generator. We have to use the same pseudo-
random blocks during the encryption and decryption processes, because otherwise
decryption is impossible, and these pseudorandom blocks have to be secret, oth-
erwise the system is vulnerable. Modern block ciphers create different ciphertext
each time when they encrypt the same plaintext. To reach this goal, we have to
change the seed of the pseudorandom generator each time when we use encryption.
It is not too difficult to satisfy all these properties: we need two blocks, one is
constant, secret and part of the key, let us call it ,,core vector”, and the other block
is changed each time when we use encryption, this one is public, – it is the first
block of the ciphertext, – and let us call it ,,initialization vector”. The recent seed
can be calculated as a function of these two blocks. The most simple solution is
to use the exclusive or (bitwise addition modulo 2) operator. In this way the seed
will be secret, both of the encryption and decryption process calculate the same
seed, they can calculate the same secret pseudorandom blocks, and the seed and
the pseudorandom blocks are changed each time, when we use encryption.

There is a fixed positive integer k which is the number of the rounds (see later).
Before the encryption procedure, the pseudorandom generator gets its initialization
vector as a true random sign r1 . . . rn ∈ Σn, where the pseudorandom alphabet Σ
is also the plaintext and the ciphertext alphabet simultaneously. This initialization
vector will be also the first block of the ciphertext.

The encryption procedure is the following. The apparatus reads the plaintext
block-by-block and, after reading the next plaintext block a1 · · · an ∈ Σn (first the
first block), it generates the second, third, etc. blocks of the ciphertext in the
following way.
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First the random number generator generates a word w1 · · ·wk of pseudoran-
dom sequences, where w1, . . . , wk ∈ Σn. The key automaton A = (Σn,Σn, δA) goes
from state (a1, . . . , an) into state (c1, · · · , cn) = δA((a1, . . . , an), w1 · · ·wk), where
a1 · · · an is the referred next plaintext block. The state (c1, . . . , cn) will be per-
formed sequentially such that, in order, we specify the state δA((a1, . . . , an), w1) by
(a1, . . . , an) and w1, the state δA((a1, . . . , an), w1w2), by δA((a1, . . . , an), w1) and
w2, . . . , the state δA((a1, . . . , an), w1 · · ·wk−1) by
δA((a1, . . . , an), w1 · · ·wk−2) and wk−1, the state (c1, . . . , cn) =
δA((a1, . . . , an), w1 · · ·wk) by δA((a1, . . . , an), w1 · · ·wk−1) and wk.

Let wi = (x1, . . . , xn) where x1, . . . , xn ∈ Σ for some i ∈ {1, . . . , k} and let
us define (d1, . . . , dn) and (e1, . . . , en) by (e1, . . . , en) = δA((a1, . . . , an), w1 · · ·wi)
and (d1, . . . , dn) = δA((a1, . . . , an), w1 · · ·wi−1) if i > 1, moreover, (e1, . . . , en) =
δA((a1, . . . , an), w1) and (d1, . . . , dn) = (a1, . . . , an) if i = 1.

Clearly, then (e1, . . . , en) = δA((d1, . . . , dn), (x1, . . . , xn)).

This transition will be performed sequentially in the following way.

e1 = δ1(d1, ϕ1(d1, d2, . . . , dn, (x1, . . . , xn)),

e2 = δ2(d2, ϕ2(e1, d2, d3, . . . , dn, (x1, . . . , xn)),

. . .

en−1 = δn−1(dn−1, ϕn−1(e1, . . . , en−2, dn−1, dn, (x1, . . . , xn)),

en = δn(dn, ϕn(e1, . . . , en−1, dn, (x1, . . . , xn)).

Applying the above procedure in k round, we finally receive the state
(c1, . . . , cn). Then, concatenating the calculated blocks, we will get the ciphertext
c1 · · · cn.

The decryption procedure is the following. Before the decryption procedure, the
pseudorandom generator gets the first ciphertext block as its initialization vector
r1 . . . rn ∈ Σn.

Then the apparatus reads the ciphertext block-by-block and, after reading the
next ciphertext block c1 · · · cn ∈ Σn (first the second block), it generates the first,
second, third, etc. blocks of the plaintext back in the following way.

First the random number generator generates the same word w1 · · ·wk of pseu-
dorandom sequences as at the encryption. Recall that the key automaton is a
permutation automaton. Therefore, by Proposition 1, it has exactly one state
(a1, . . . , an) from which the key automaton goes into the state (c1, . . . , cn) under the
effect of w1 · · ·wk. Then, applying the transition (c1, · · · , cn) =
δA((a1, . . . , an), w1 · · ·wk) the plaintext block a1 · · · ak can be unambiguously re-
covered.

We specify the state δA((a1, . . . , an), w1 · · ·wk−1) by (c1, . . . , cn) =
δA((a1, . . . , an), w1 · · ·wk) and wk, the state δA((a1, . . . , an), w1 · · ·wk−2) by
δA((a1, . . . , an), w1 · · ·wk−1) and wk−1, . . . , the state δA((a1, . . . , an), w1) by
δA((a1, . . . , an), w1w2) and w2, the state (a1, . . . , an) by δA((a1, . . . , an), w1) and
w1.

The vectors wi, (d1, . . . , dn), and (e1, . . . , en) are defined in the same way as it
is done at the encryption procedure. In more details, similarly as previously, let
wi = (x1, . . . , xn) where x1, . . . , xn ∈ Σ for some i ∈ {1, . . . , k} and let us define
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(d1, . . . , dn) and (e1, . . . , en) by (e1, . . . , en) =
δA((a1, . . . , an), w1 · · ·wi) and (d1, . . . , dn) = δA((a1, . . . , an), w1 · · ·wi−1) if i > 1,
moreover, (e1, . . . , en) = δA((a1, . . . , an), w1) and (d1, . . . , dn) =
(a1, . . . , an) if i = 1.

To recover d1 · · · dn, the following equalities are used.
By en = δn(dn, ϕn(e1, . . . , en−1, dn, (x1, . . . , xn)), we can determine dn,
by en−1 = δn−1(dn−1, ϕn−1(e1, . . . , en−2, dn−1, dn, (x1, . . . , xn)), we can
determine dn−1,
. . . ,
by e2 = δ2(d2, ϕ2(e1, d2, . . . , dn, (x1, . . . , xn)),we can determine d2,
by e1 = δ1(d1, ϕ1(d1, d2, . . . , dn, (x1, . . . , xn)),we can determine d1.
Thus we can get the plaintext block in k rounds back.
Therefore, if all of ϕ1, . . . , ϕn can be computed easily, then the proposed system

could be effective.
To sum up, the discussed cryptosystem is a block cipher. Since the key au-

tomaton is a permutation automaton, for every ciphertext there exists exactly one
plaintext making the encryption and decryption unambiguous. Moreover, there is
a huge number of corresponding encoded messages to each plaintext so that several
encryptions of the same plaintext yield several distinct ciphertexts.

5 Example

Next we consider a special key automaton for which the proposed cryptosystem
is effective and secure. We are going to use a sequentially working D-product of
automata for key automaton in this Section.

Let Σ be the set of all binary strings with a given length ` ≥ 1 and let n be a
positive integer.

Let A1 = (Σ,Σ × Σ, δA1
) be a permutation automaton and let Ai =

(Σ,Σ×Σ, δAi), i = 2, . . . , n be state-isomorphic copies of A1 such that A1, . . . ,An

are pairwise distinct.3 Given a digraph D = (V,E) with V = {1, . . . , n}, E =
{(n, 1), (1, 2), . . . , (n − 1, n)} define the Gluškov-type product, called D-product,
AD = A1× · · · ×An(Σn, (ϕ1, . . . , ϕn)) of A1, . . . ,An so that for every (a1, . . . , an),
(x1, . . . , xn) ∈ Σn, i ∈ {1, . . . , n},

ϕ1(a1, . . . , an, (x1, . . . , xn)) = (an⊕xn, x1), where an⊕xn is the bitwise addition
modulo 2 of an and xn,

ϕi(a1, . . . , an, (x1, . . . , xn)) = (ai−1⊕xi−1, xi), i = 2, . . . , n where ai−1⊕xi−1 is
the bitwise addition modulo 2 of ai−1 and xi−1.

Then the sequentially working version of AD is the automaton B = (Σn,Σn, δB),
where for every (a1, . . . , an), (x1, . . . , xn) ∈ Σn, δB((a1, . . . , an), (x1, . . . , xn)) =
(b1, . . . , bn) such that

b1 = δA1
(a1, ϕ1(a1, . . . , an, (x1, . . . , xn))

and ϕ1(a1, . . . , an, (x1, . . . , xn)) = (an ⊕ xn, x1),

3In other words, for every i, j ∈ {1, . . . , n}, i 6= j implies Ai 6= Aj .
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b2 = δA2(a2, ϕ2(b1, a2, . . . , an, (x1, . . . , xn)),
and ϕ2(b1, a2, . . . , an, (x1, . . . , xn)) = (b1 ⊕ x1, x2),
. . .
bn−1 = δAn−1

(an−1, ϕn−1(b1, . . . , bn−2, an−1, an, (x1, . . . , xn)),
and ϕn−1(b1, . . . , bn−2, an−1, an, (x1, . . . , xn)) = (bn−2 ⊕ xn−2, xn−1),
bn = δAn

(an, ϕn(b1, . . . , bn−1, an, (x1, . . . , xn)),
and ϕn(b1, . . . , bn−1, an,(x1, . . . , xn)) = (bn−1 ⊕ xn−1, xn).

Of course, the values of the feedback functions can be computed easily. By the
encryption procedure, using the transition matrices of the component automata,
we can specify easily the state b1 from a1, an, xn, x1, the state b2 from a2, b1, x1, x2,
. . . , the state bn−1 from an−1, bn−2, xn−2, xn−1, the state bn from an, bn−1, xn−1, xn.
On the other hand, all component automata of the key automaton are permuta-
tion automata. Therefore, by the decryption procedure, using again the transition
matrices of the component-automata, we can specify unambiguously the state an
from bn−1, bn, xn−1, xn, the state an−1 from bn−2, bn−1, xn−2, xn−1, . . . , the state
a2 from b1, b2, x1, x2, the state a1 from an, b1, xn, x1.

6 Avalanche Effect

The avalanche effect is a very important property of block ciphers. We say the
block cipher has avalanche effect when a small change in the plaintext block (or
in the key) results a significant change in the corresponding ciphertext block, and
also small change in the ciphertext block (or in the key) results a significant change
in the corresponding plaintext block after decoding. In section 4 we introduced
a very simple key automaton, which works well, but it has just limited avalanche
effect. Suppose we have a plaintext block a = (a1, . . . , an) ∈ Σn, a pseudorandom
block w1 = (x1, . . . , xn) ∈ Σn and the key automaton B = (Σn,Σn, δB) goes to
the ciphertext block b = (b1, . . . , bn) ∈ Σn from a by the effect of w1. (In short,
δB(a,w1) = b.) Let us define c = (a1, . . . , ai−1, ci, ai+1, . . . , an) ∈ Σn, where ai 6= ci,
1 < i < n, and calculate the d = δB(c, w1) value. We will see that d starts with
b1, . . . , bi−1 so changing ai to ci has no effect for the first i−1 part of the ciphertext
block. However, from the i-th part, we have appropriate avalanche effect. This is
the same with the pseudorandom block, changing xi to ci (xi 6= ci, 1 < i < n)
has no effect for the first i− 1 part of the ciphertext block, but it has appropriate
avalanche effect from the i-th part of the ciphertext. The solution is simple. We
should repeat the encoding procedure twice. First calculate the a′ = δB(a,w1)
block, then calculate the b = δB(a′, w1) ciphertext block.

Unfortunately, the situation during the decoding is worst. Suppose we have the
b = (b1, . . . , bn) ∈ Σn ciphertext block, the w1 = (x1, . . . , xn) ∈ Σn pseudorandom
block and the key automaton B = (Σn,Σn, δB) goes to the ciphertext block b from
the paintext block a = (a1, . . . , an) ∈ Σn by the effect of w1. (In short, δB(a,w1) =
b.) Let us define γB such that γB(δB(a,w), w) = a for each a,w ∈ Σn. In this case
γB(b, w1) = a. Now let us define the d = (b1, . . . , bi−1, di, bi+1, . . . , bn) ∈ Σn, where
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bi 6= di, 1 < i ≤ n. Comparing a and γB(d,w1) we can recognize that changing the
i-th part of the ciphertext block has effect only on the i-th and i− 1-th part of the
plaintext block. This means we can not have appropriate avalanche effect during
decoding using only the above defined γB function. To solve this problem, we have
to use the δB function twice during the decoding process.

Finally, we created the following function, which has 3 parameters, can do
the encoding and the decoding, and – based on experimental results, – it has
appropriate avalanche effect during the encoding and the decoding process:

f(a,w1, w2) = γB(γB(δB(δB(a,w1), w1), w2), w2).

This function first receives the plaintext block a and two pseudorandom blocks
w1 and w2.

Then, it calculates the a′ = δB(a,w1) value.
In the next round, it calculates the a′′ = δB(a′, w1) value.
In the next round, it calculates the a′′′ = γB(a′′, w2) value.
In the next round, it calculates the b = γB(a′′′, w2) value, which is the ciphertext

block.

Decoding done with the same function, but it has different parameters:
f(b, w2, w1). In this case the same f function first receives the ciphertext block
b and the two pseudorandom blocks w2 and w1 in the opposite order.

Then, it calculates the a′′′ = δB(b, w2) value.
In the next round, it calculates the a′′ = δB(a′′′, w2) value.
In the next round, it calculates the a′ = γB(a′′, w1) value.
In the next round, it calculates the a = γB(a′, w1) value, which is the plaintext

block.

For protection against chosen ciphertext attack, we recommend to repeat this
procedure at least twice during the encoding and decoding process, with different
pseudorandom numbers. For example, the ciphertext block b can be calculated
from the plaintext block a by the function f(f(a,w1, w2), w3, w4), with four pseu-
dorandom number blocks w1, w2, w3, w4, and then, we can decipher the plaintext
block a from the ciphertext block b using the function f(f(b, w4, w3), w2, w1).

7 Experimental Results

We have been developed some practical tests using 16 bytes (128 bits) long input
blocks, output blocks and pseudorandom blocks. It has been done for the cases
when both of the encryption and decryption algorithms in Chapter 4 have been
modified as it is formulated in Chapter 6.

7.1 Keyspace Size

Using the above mentioned parameters with 256 possible states, (1 byte long states,)
we need 16 automata, having a transition matrix 216 = 65536 lines and 28 = 256
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columns. Each cell of the automaton contains 1 byte long data. (One state.) The
size of the matrix is 16 megabytes, and the number of possible matrices is 256!65536,
where the exclamation mark means the factorial operation. This is much more
than good enough protection against brute-force attack. When we use isomorphic
automata, this huge number should be further increase to have 256!65536 ∗ 256!15 =
256!65551 possible keys.

7.2 Speed Test Results

The practical tests of the encoding and decoding algorithm were done on an average
table PC, (3,1 GHz Intel Core I3-2100 processor, 4 Gigabyte RAM). The program
we used was a well written C# implementation. The results of the speed tests of
the 8 bit version can be seen in the table 1.

Table 1: Results of the speed tests

size (bytes) encoding time decoding time encoded bytes per second
131104 00.0169140 00.0164919 7751212
524336 00.0572925 00.0573531 9151913
1048656 00.1111786 00.1098338 9432175
33556496 03.8841316 04.0200288 8639382
134225936 16.0446227 16.1320934 8365789

The results of the speed tests show that using an average PC, the encoding time
is more than 7 megabytes per second, and decoding time is about the same.

7.3 Effectiveness of the Avalanche Effect

We used to test the avalanche effect in the following way. We chose 1000000 ran-
dom plaintext blocks, encoded them, and then we changed 1 bit in each plaintext
block, encoded again, then we calculated the number of the different bytes in the
ciphertext blocks pair-wise. The opposite case has been also tested, namely there
were chosen 1000000 random ciphertext blocks, we decoded them, and then we
changed 1 bit in each ciphertext block, decoded again, and calculated the number
of the different bytes in each plaintext blocks pair-wise. The results can be seen in
the table 2.

Table 2: Results of the avalanche effect of encoding and decoding

different characters in one block encoding decoding
0-12 0 0
13 24 32
14 1771 1743
15 58851 59028
16 939354 939197
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When we change only one bit in the plaintext block, the difference between the
corresponding ciphertext blocks will be really huge in the majority of the cases.
The same effect can be seen in the opposite case, changing one bit in the ciphertext
block results huge difference in the plaintext block as well.

We created another table as well. In this table we calculated the optimal
avalanche effect. We had choosen 2×1000000 completely random blocks, and then
calculated the difference between them pair-wise. The results can be seen in the
table 3.

Table 3: Results of the avalanche effect of complete random blocks

different characters in one block
0-12 0
13 32
14 1693
15 58681
16 939594

By our experimental results, we can conclude that the algorithm has the optimal
avalanche effect, and an appropriate speed (more than 7 megbyte/s). Of course the
speed of the algorithm depends on the hardware and the programming language /
program code as well.

8 Conclusion and Future Work

This paper is devoted to propose a novel cryptosystem based on Gluškov product
of automata. By a simple example, its utility is shown. The avalanche effect tests
show good results. Moreover, some experimental results show the effectiveness.
However, serious security analysis and rigorous machine-independent investigation
should be necessary in the future work.
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Context-Free Tree Grammars are as Powerful as

Context-Free Jungle Grammars

Frank Drewes∗ and Joost Engelfriet†

Dedicated to the memory of Ferenc Gécseg

Abstract

Jungles generalize trees by sharing subtrees and allowing garbage. It is
shown that IO context-free tree grammars generate the same jungle languages
as context-free jungle grammars. Also, they define the same subsets of any
algebra.

Keywords: context-free tree grammar, jungle, delegation network

1 Introduction

One of the main motivations for studying tree language theory is that a tree over
a ranked alphabet is a term, which can be interpreted as an element of any al-
gebra, see, e.g., Sections I.2, I.3, II.1 and II.2 of the influential book of Gécseg
and Steinby [13]. Thus, the interpretation of a tree language, i.e., a set of trees,
becomes a subset of the algebra. Regular tree grammars [13, Section II.3] and
context-free tree grammars [14, Section 15] generate tree languages. However, as
shown by Mezei and Wright in [17], a regular tree grammar can also naturally be
viewed as a system of equations (or, more informally, as a recursive program) that
has a least fixed point semantics in any algebra, and thus defines a subset of the
algebra. The main result of [17] is that, for any algebra, the semantics of a regular
tree grammar G equals the interpretation of the tree language L(G) generated by
G. Thus, the semantics of the program G is determined by the set of syntactic
objects it generates. This program-schematic result was generalized to context-free
tree grammars in [11], both for call by value semantics vs. inside-out (IO) gener-
ation, and for call by name semantics vs. outside-in (OI) generation. However, in
the call by value case it holds for deterministic algebras, but not for nondetermin-
istic algebras. In a usual, deterministic algebra, each operator symbol of rank k
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is interpreted as a k-ary operation on the domain of the algebra, whereas in a
nondeterministic algebra, it is interpreted as a (k + 1)-ary relation (see, e.g., [13,
Section II.2]). Thus, in a nondeterministic algebra, a tree is interpreted as a subset
of the algebra; as in the deterministic case, a tree language is also interpreted as
a subset of the algebra, viz. the union of the interpretations of its elements. Since
grammars are essentially nondeterministic programs, it is natural to interpret them
in nondeterministic algebras.

It was shown in [5] that the call by value case for nondeterministic algebras can
be handled by considering jungles (or DOAGs, directed ordered acyclic graphs)
instead of trees. A jungle is a representation of a tree, in which equal subtrees can
be shared, and in which “garbage” can occur that is not used in the tree, see, e.g.,
[1, 15, 16, 18].1 Jungles can be interpreted in any nondeterministic algebra, in a
natural way. The sharing of subtrees allows to fix a nondeterministic choice for
later multiple use, whereas the garbage allows to force the evaluation of trees that
are later disregarded. As shown in [5], a context-free tree grammar G can be turned
into a graph grammar that generates jungles, in a straightforward way, such that
the call by value semantics of G equals the interpretation of the “jungle language”
LJ(G) generated by G, for any nondeterministic algebra.

On the basis of the above “Mezei-and-Wright-like” result for LJ(G), one may
ask whether context-free tree grammars have the same jungle generating power as
context-free jungle grammars, which are context-free graph grammars in which all
right-hand sides of rules are jungles (see [5, Definition 7.6]). In this paper, we answer
this question affirmatively. Moreover, we define the least fixed point semantics of a
context-free jungle grammar in any nondeterministic algebra, viewing the grammar
as a system of equations, and we prove that context-free jungle grammars define
the same subsets of the algebra as IO context-free tree grammars. As a corollary we
obtain that the above Mezei-and-Wright-like result also holds for context-free jungle
grammars G. Finally, a context-free jungle grammar generates the tree language
obtained by unfolding the generated jungles, and we show that context-free jungle
grammars generate the same tree languages as IO context-free tree grammars.

Thus we conclude that, in all respects, IO context-free tree grammars have the
same power as context-free jungle grammars.

In Section 2 we define basic concepts, such as trees and IO context-free tree
grammars. Jungles are defined in Section 3, and we define the substitution of one
jungle for a node of another jungle. It is shown that this substitution is conflu-
ent and associative (in the sense of [3]), a folklore result. In Section 4 we define
context-free jungle grammars (CFJGs), in such a way that context-free tree gram-
mars (CFTGs) are a special case. The derivations of a CFJG use the jungle sub-
stitution defined in the previous section. We show the simple fact that the rules
of a CFJG can be substituted into one another (generalizing the corresponding
property of context-free string grammars), and we prove our main result: for every
CFJG G there is a CFTG H that generates the same jungle language. As a corol-
lary we obtain that CFJGs generate the same tree languages as IO CFTGs. In

1When trees are called terms, jungles are called term graphs.
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Section 5 we turn to semantics. We recall (nondeterministic) algebras and define
the interpretation of jungles in such an algebra. Then we introduce the notion of
a jungle delegation network, which is a CFJG G together with an algebra A. It
generalizes the (finitary, tree) delegation network of [4, 5], which is an IO CFTG
with an algebra. Finally, we define the least fixed point semantics of a jungle del-
egation network (G,A), and prove that it defines the same subset of A as the tree
delegation network (H,A), where H is as above. As a corollary we obtain that that
subset is equal to the interpretation in A of the jungle language LJ(G) generated
by G: our Mezei-and-Wright-like result for context-free jungle grammars.

The results of this paper were already suggested in the Conclusion of [5].

2 Basic Terminology

The set of all natural numbers (including zero) is denoted N. For n ∈ N, we let
[n] = {1, . . . , n}. The set of all finite strings (or sequences) over a set A is denoted
by A∗, and λ denotes the empty string. The length of a string u is denoted by |u|.

We assume functions to be total, i.e., if f : A → B is a function, then f(a)
is defined for every a ∈ A. Functions from A to B are a special case of binary
relations r ⊆ A × B. As usual, we let r(A′) = {b ∈ B | ∃a ∈ A′ : (a, b) ∈ r} for
A′ ⊆ A, and r(a) = r({a}) for a ∈ A. Note that, in this way, r can be viewed as a
“nondeterministic function” r : A→ P(B) where P(B) is the powerset of B.

A signature (or ranked alphabet) is a pair (Σ, rk), where Σ is a finite set of
symbols, and rk assigns to every f ∈ Σ a rank rk(f) ∈ N. We will denote (Σ, rk)
simply by Σ. If necessary, the rank k of a symbol f is indicated by writing f as f(k).

The set of all trees over Σ is denoted by TΣ. It is the smallest set of strings
such that for all k ∈ N, f(k) in Σ, and t1, . . . , tk ∈ TΣ, the string f(t1, . . . , tk) is in
TΣ (where the parentheses and the comma are assumed to be special symbols not
in Σ). A tree of the form f( ), where f has rank 0, is identified with the string f of
length 1. A subset of TΣ is a tree language.

As usual, a tree t ∈ TΣ will be identified with a graph whose nodes are labelled
with symbols in Σ. A node is a string in (N \ {0})∗ which, intuitively, represents
the Dewey path from the root to the node. Thus, λ is the root of t and vi is the
i-th child of node v. Formally, we define the set V (t) of nodes of t, the subtree t/v
at a node v, and the label `t(v) of node v inductively, as follows. If t = f(t1, . . . , tk),
then V (t) = {λ} ∪ {iv | i ∈ [k], v ∈ V (ti)}; furthermore, t/λ = t, `t(λ) = f, and,
for all i ∈ [k] and v ∈ V (ti), t/iv = ti/v and `t(iv) = `ti(v). A node v of t is said
to be an occurrence of the symbol `t(v).

As usual, to define the substitution of a tree s for a node v of a tree t, we use the
set of variables X = {x1, x2, x3, . . . }. For k ∈ N, Xk = {x1, . . . , xk} is a signature
such that xi has rank 0 for every i ∈ [k]. We assume X to be disjoint with all the
usual signatures. For such a signature Σ, the set TΣ∪Xk

is denoted by TΣ(Xk); it
is the set of trees with k variables.

For t ∈ TΣ, v ∈ V (t) and s ∈ TΣ(Xk), where k = rk(`t(v)), the substitution
of s for v in t, denoted t[v ← s], is defined as follows:
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• t[λ← s] is the result of substituting t/i for each occurrence of xi in s;

• if t = f(t1, . . . , tm), then t[iv ← s] = f(t1, . . . , ti−1, ti[v ← s], ti+1, . . . , tm).

This notion of substitution leads to the definition of context-free tree grammars
(see, e.g., [14, Section 15]).

Definition 1. A context-free tree grammar (abbreviated CFTG) is a four-tuple
G = (Ξ,Σ, R, gin) such that

• Ξ and Σ are disjoint signatures of nonterminals and terminals, respectively,

• R is a finite set of rules of the form g(x1, . . . , xk)→ s, where k ∈ N, g(k) ∈ Ξ
and s ∈ TΞ∪Σ(Xk), and

• gin ∈ Ξ is the initial nonterminal, of rank 0.

For trees t, t′ ∈ TΞ∪Σ, there is an IO derivation step t ⇒G,IO t′ if there are a
node v ∈ V (t) and a rule g(x1, . . . , xk) → s in R such that `t(v) = g, t/vi ∈ TΣ

for every i ∈ [k], and t′ = t[v ← s]. The tree language IO-generated by G is
LIO(G) = {t ∈ TΣ | gin ⇒∗G,IO t}.

Example 1. We consider a very simple example of a CFTG G1 = (Ξ,Σ, R, gin).

It has signatures Σ = {f(2), d(1), a(0), c(0)} and Ξ = {g(0)
in , g

(2)
1 , g

(1)
2 , g

(2)
3 }, and R

consists of the rules

gin → g2(f(a, g1(a, c))),
g1(x1, x2) → f(x1, x1),

g2(x1) → g3(x1, d(x1)), and
g3(x1, x2) → x1.

This grammar has exactly one derivation, viz., gin ⇒G1,IO g2(f(a, g1(a, c)))⇒G1,IO

g2(f(a, f(a, a))) ⇒G1,IO g3(f(a, f(a, a)), d(f(a, f(a, a)))) ⇒G1,IO f(a, f(a, a)), and
so LIO(G1) = {f(a, f(a, a))}.

3 Jungles and their Substitution

In this section, we recall some notions regarding jungles [1, 15, 16, 18], and present
some elementary properties of jungles.

Jungles can either be defined as node-labeled graphs (see, e.g., [1, 2]) or, equiv-
alently, as edge-labeled hypergraphs (see, e.g., [5, 15, 18]). Here we choose to
define them as node-labeled graphs, which are technically more convenient for our
purposes (and which are closer to trees).
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3.1 Jungles

Intuitively, a jungle is a directed ordered acyclic graph representing a tree. In such
a jungle, subtrees can be shared and unreachable subtrees, so-called garbage, may
occur.

Let Σ be a signature. A directed ordered graph (abbreviated DOG) over Σ is
a triple G = (V, lab, arg) consisting of a finite set V of nodes, a labelling func-
tion lab : V → Σ, and an argument function arg : V → V ∗ such that |arg(v)| =
rk(lab(v)) for every v ∈ V .

We define the rank of a node v as the rank of its label, i.e., rk(v) = rk(lab(v)).
The elements of the sequence arg(v) are called the arguments of v. In particular,
the i-th element of the sequence will be denoted arg(v, i), and is called the i-th
argument of v. The DOG G can be visualized as an ordinary directed graph (V,E)
with labelled nodes and edges, where the set of edges is E = {(v, arg(v, i)) | v ∈
V, i ∈ [rk(v)]} and the label of the edge (v, arg(v, i)) is the natural number i.
Accordingly, for nodes v and w of G, a (directed) path from v to w is a sequence
v1 · · · vn ∈ V ∗ such that n ≥ 1, v = v1, w = vn and vj+1 is an argument of vj for
every j ∈ [n − 1]. The DOG G is acyclic (in short, a DOAG) if, for every v ∈ V ,
the only path from v to v is v. A topological order of a DOG G is a linear order
< on its set V of nodes such that arg(v, i) < v for every v ∈ V and i ∈ [rk(v)].
It is well known (and easy to see) that a DOG is a DOAG if and only if it has a
topological order.

A jungle over Σ is a DOAG with a designated node, i.e., it is a four-tuple
J = (V, res, lab, arg) where (V, lab, arg) is a DOAG over Σ, and res ∈ V is the
result node of J . The set of jungles over Σ is denoted JΣ. A subset of JΣ is a
jungle language. For k ∈ N, we denote JΣ∪Xk

by JΣ(Xk); it is the set of jungles
with k variables. Note that JΣ(X0) = JΣ. If necessary, the components of a jungle
J will be denoted by VJ , resJ , labJ , argJ , respectively, and similarly for derived
notions such as EJ , rkJ , etc. Two jungles J and K are disjoint if VJ ∩ VK = ∅.
As usual, we do not distinguish between isomorphic jungles, i.e., jungles that are
identical up to a bijective renaming of their nodes.

Figure 1 shows three example jungles: K,K ′′ ∈ JΣ and K ′ ∈ JΣ(X1) where
Σ is the signature {f(2), h(1), d(1), a(0), c(0)}. All edges are assumed to be directed
downwards. Outgoing edges of the same node are assumed to be ordered from left
to right. Result nodes are indicated by dashed circles. Thus, K ′′ = (V, res, lab, arg)
with, e.g., V = {d, f1, a1, f2, a2, c} and res = f1, lab(d) = d, lab(f1) = lab(f2) = f,
lab(a1) = lab(a2) = a, lab(c) = c, arg(d) = f1, arg(f1) = a1f2, arg(f2) = a2a2, and
arg(c) = λ. A topological order of K ′′ is c < a2 < f2 < a1 < f1 < d.

Since trees over Σ are identified with graphs in the usual way, we will view TΣ

as a subset of JΣ. To be precise, every tree t ∈ TΣ will be identified with the jungle
(V, res, lab, arg) where V = V (t), res = λ, and for every v ∈ V , lab(v) = `t(v) and
arg(v, i) = vi for i ∈ [rk(`t(v))]. In this way, TΣ ⊆ JΣ and TΣ(Xk) ⊆ JΣ(Xk) for
every k ∈ N.

Jungles generalize trees by allowing nodes (and hence whole subtrees) to be
shared. A node w of a jungle J is shared if there are distinct pairs (v, j), (v′, j′)
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Figure 1: Jungles K, K ′ and K ′′. Using jungle substitution as defined later,
K ′′ = K[v ← K ′], where v is the node of K with label h.

such that argJ(v, j) = w = argJ(v′, j′). Moreover, jungles contain garbage nodes,
i.e., nodes w for which there is no path in J from resJ to w. When jungles are
interpreted in a nondeterministic algebra (as we will do in Section 5), a node may
have no value, one value, or several possible values. Then shared nodes and garbage
nodes force a call by value semantics: a node must be evaluated, even if it will not
be used (i.e., is garbage); and when it is used several times (i.e., is shared), the
same value must be taken each time. In Figure 1, the node with label a of K is
shared (and so is the node a2 of K ′′), and the nodes with label c and d are garbage.

3.2 Jungle Substitution

We first show how to contract certain edges of jungles. Let id be a symbol of
rank 1 that does not occur in Σ; intuitively, it stands for the identity function. For
a jungle J ∈ JΣ∪{id}(Xn), n ∈ N, and a set W of nodes of J with label id we
define ctrW (J) ∈ JΣ∪{id}(Xn) to be the result of contracting all edges (v, arg(v, 1))
of J with v ∈ W ; the node that results from the identification of v and arg(v, 1)
receives the label of arg(v, 1). Formally, for J = (V, res, lab, arg) and W ⊆ {v ∈
V | lab(v) = id}, we define the function γ : V → V \W such that γ(v) = v if
v ∈ V \W , and γ(v) = γ(v′) if v ∈ W and v′ is the (unique) argument of v; note
that γ is well defined because J is acyclic. Then ctrW (J) = (V \W, res ′, lab′, arg ′)
where res ′ = γ(res), lab′ is the restriction of lab to V \W , and for v ∈ V \W , if
arg(v) = v1 · · · vk with vi ∈ V then arg ′(v) = γ(v1) · · · γ(vk). Note that ctrW (J) is
indeed acyclic: the restriction of a topological order of J to V \W is a topological
order of ctrW (J). In particular, we define the contraction ctr(J) ∈ JΣ(Xn) of J by
ctr(J) = ctrW (J) where W = {v ∈ V | lab(v) = id}. Thus, Vctr(J) consists of all
nodes of J that do not have label id; the above function γ : VJ → Vctr(J) is called
the track function of J .

For a jungle J and a node v of rank k, we now show how to substitute a jungle
K with k variables for that node v in J . Intuitively, the node v is replaced by the
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result node of K, and every node of K with label xi is replaced by the i-th argument
of v. Note that in the special case where the result node of K has label xi, the
node v is replaced by its i-th argument.

Formally, let J ∈ JΣ(Xn), v ∈ VJ with rkJ(v) = k, and K ∈ JΣ(Xk). We
assume that J and K are disjoint, otherwise we consider a disjoint isomorphic copy
of K. We first define the jungle J〈v ← K〉 ∈ JΣ∪{id}(Xn) to be the union of J
and K, with result node resJ , and with the following changes: lab(v) is changed
into id and arg(v) into resK , and for every w ∈ VK and i ∈ [k], if lab(w) = xi,
then lab(w) is changed into id and arg(w) into arg(v, i).2 It should be clear that
U = J〈v ← K〉 is acyclic: if <J and <K are topological orders for J and K,
respectively, then a topological order for U is obtained by inserting <K just before
v in <J , i.e., <U is the union of <J , <K , {(v′, w) | v′ ∈ VJ , v′ < v, w ∈ VK} and
{(w, v′) | w ∈ VK , v′ ∈ VJ , v ≤ v′}.

Finally, we define J [v ← K] ∈ JΣ(Xn) to be the jungle ctr(J〈v ← K〉). It
is called the substitution of K for v in J . Note that VJ[v←K] is the union of
VJ \ {v} and VK \ {w ∈ VK | labK(w) ∈ X}. Note also that the track function γ of
J〈v ← K〉 is the identity on VJ[v←K]; moreover, γ(v) = resK if labK(resK) /∈ X,
γ(v) = argJ(v, i) if labK(resK) = xi, and γ(w) = argJ(v, i) for every w ∈ VK with
labK(w) = xi. A very simple example of substitution is shown in Figure 1.

In the next section we will need the fact that jungle substitution is confluent
and associative, as defined in [3]. These are natural properties that are satisfied
by many notions of substitution that are used in context-free grammars for several
types of structures, as shown in [3].3 We start with a simple lemma.

Lemma 1. For a jungle J ∈ JΣ∪{id}(Xn), a node v ∈ VJ of rank k with labJ(v) 6=
id, and a jungle K ∈ JΣ∪{id}(Xk),

ctr(J)[v ← ctr(K)] = ctr(J〈v ← K〉).

Proof. The straightforward proofs of the following two equalities are left to the
reader. Let W,W1,W2 be sets of nodes with label id, such that W,W1 ⊆ VJ and
W2 ⊆ VK .

(i) ctr(ctrW (J)) = ctr(J)

(ii) ctrW1(J)〈v ← ctrW2(K)〉 = ctrW1∪W2(J〈v ← K〉)
By (ii), ctr(J)[v ← ctr(K)] = ctr(ctrW1∪W2

(J〈v ← K〉)) where W1 = {w ∈ VJ |
labJ(w) = id} and W2 = {w ∈ VK | labK(w) = id}. This equals ctr(J〈v ← K〉)
by (i), applied to J〈v ← K〉.

2To be completely formal, U = J〈v ← K〉 is defined as follows: VU = VJ ∪ VK , resU = resJ ,

• labU (u) = labJ (u) and argU (u) = argJ (u) if u ∈ VJ and u 6= v,

• labU (v) = id and argU (v) = resK ,

• labU (u) = labK(u) and argU (u) = argK(u) if u ∈ VK and labK(u) /∈ Xk, and

• labU (u) = id and argU (u) = argJ (v, i) if u ∈ VK and labK(u) = xi, for every i ∈ [k].

3When jungles are defined as hypergraphs, jungle substitution is modeled by hyperedge re-
placement (see [5, Section 4]). It is well known that the corresponding notion of hypergraph
substitution is confluent and associative (see, e.g., [6, Section 2.2.2]).
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In the next two lemmas we show that jungle substitution is confluent and asso-
ciative, respectively.

Lemma 2. For jungles J ∈ JΣ(Xn), K1 ∈ JΣ(Xk1), K2 ∈ JΣ(Xk2) and distinct
nodes v1, v2 ∈ VJ of rank k1, k2, respectively,

J [v1 ← K1][v2 ← K2] = J [v2 ← K2][v1 ← K1].

Proof. By Lemma 1, J [v1 ← K1][v2 ← K2] = ctr(J〈v1 ← K1〉〈v2 ← K2〉). It is
obvious that J〈v1 ← K1〉〈v2 ← K2〉 = J〈v2 ← K2〉〈v1 ← K1〉.

Lemma 3. For jungles J ∈ JΣ(Xn), K1 ∈ JΣ(Xk1), K2 ∈ JΣ(Xk2) and nodes
v1 ∈ VJ of rank k1 and v2 ∈ VK1

of rank k2 with labK1
(v2) /∈ Xk1 ,

J [v1 ← K1][v2 ← K2] = J [v1 ← K1[v2 ← K2]].

Proof. The proof is similar to the previous one. Lemma 1 implies that both
J [v1 ← K1][v2 ← K2] = ctr(J〈v1 ← K1〉〈v2 ← K2〉) and J [v1 ← K1[v2 ← K2]] =
ctr(J〈v1 ← K1〈v2 ← K2〉〉). And it is obvious that J〈v1 ← K1〉〈v2 ← K2〉 =
J〈v1 ← K1〈v2 ← K2〉〉.

4 Context-free Jungle Grammars

Having defined jungles and their substitution, we now define the notion of a context-
free jungle grammar in an obvious way, see [5, Definition 7.6].

Definition 2. A context-free jungle grammar (abbreviated CFJG) is a four-tuple
G = (Ξ,Σ, R, gin) such that

• Ξ and Σ are disjoint signatures of nonterminals and terminals, respectively,

• R is a finite set of rules of the form g(x1, . . . , xk)→ K, where k ∈ N, g(k) ∈ Ξ
and K ∈ JΞ∪Σ(Xk), and

• gin ∈ Ξ is the initial nonterminal, of rank 0.

For jungles J, J ′ ∈ JΞ∪Σ, there is a derivation step J ⇒G J ′ if there are a node v ∈
VJ and a rule g(x1, . . . , xk) → K in R such that labJ(v) = g and J ′ = J [v ← K].
The jungle language generated by G is LJ(G) = {J ∈ JΣ | gin ⇒∗G J}.4

Since every tree is a jungle, every context-free tree grammar G is also a context-
free jungle grammar, generating not only the tree language LIO(G) but also the
jungle language LJ(G).

4Note that gin is a (one-node) jungle, because gin has rank 0 and TΞ∪Σ ⊆ JΞ∪Σ.
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Example 2. We consider a very simple example of a CFJG G2 = (Ξ,Σ, R, gin).
It has the same terminal signature Σ = {f(2), d(1), a(0), c(0)} as the CFTG G1 of
Example 1. The nonterminal signature is Ξ = {g(0), h(1)} with gin = g, and the
set R consists of the two rules g→ K and h(x1)→ K ′, where K and K ′ are given
in Figure 1. The unique derivation of this grammar is g ⇒G K ⇒G K[v ← K ′],
where v is the node of K with label h. Thus LJ(G2) = {K ′′}, where K ′′ is given
in Figure 1.

As another simple example we consider the context-free jungle grammar G1 of
Example 1. A derivation of G1 is shown in Figure 2; it generates the jungle K ′′.
The other two derivations of G1 also generate the jungle K ′′ (in accordance with
Lemma 2). Thus, LJ(G1) = LJ(G2) = {K ′′}.

An interpretation of grammars G2 and G1 will be given in Examples 5 and 6.

gin ⇒ g2

f

a g1

a c

⇒ g2

f

a f

a c

⇒

g3

d

f

a f

a c

⇒ d

f

a f

a c

Figure 2: A derivation of G1.

Our next aim is to show that rules of a CFJG can be substituted into each
other, without changing the generated jungle language. More precisely, consider
a rule g(x1, . . . , xk) → K and let v ∈ VK be a node of rank m with nonterminal
label h. Then this rule can be replaced by all rules

g(x1, . . . , xk)→ K[v ← K ′]

where K ′ is the right-hand side of a rule with left-hand side h(x1, . . . , xm). This
clearly holds for the CFJG G2 of Example 2: the resulting grammar has rules
g→ K ′′ and h(x1)→ K ′, and thus generates the same jungle language {K ′′}; note
that the second rule has become superfluous.

The above property is well known for context-free string grammars, and for
several types of context-free graph grammars. Its proof is based on the fact that
jungle substitution is confluent and associative, as shown in the previous section.

Lemma 4. Let G = (Ξ,Σ, R, gin) be a CFJG. Let K ∈ JΞ∪Σ and let v ∈ VK be
such that labK(v) = h(m) ∈ Ξ. Then, for every J ∈ JΣ and n ∈ N, K ⇒n

G J if and
only if there exists a rule h(x1, . . . , xm)→ K ′ in R such that K[v ← K ′]⇒n−1

G J .
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Proof. The if direction is obvious, because K ⇒G K[v ← K ′]. The only-if direction
is proved by induction on n. Let K ⇒G K[w ← L] ⇒n−1

G J be the first step of
the derivation. If w = v then there is a rule h(x1, . . . , xm) → L in R, and we
are ready. Now assume that w 6= v. By the induction hypothesis, there is a
rule h(x1, . . . , xm) → K ′ in R such that K[w ← L][v ← K ′] ⇒n−2

G J . Hence
K[v ← K ′][w ← L]⇒n−2

G J by Lemma 2. This implies that

K[v ← K ′]⇒G K[v ← K ′][w ← L]⇒n−2
G J,

and so K[v ← K ′]⇒n−1
G J .

Theorem 1. Let G = (Ξ,Σ, R, gin) be a CFJG. Let g(x1, . . . , xk) → K be a rule
in R and let v ∈ VK be such that labK(v) = h(m) ∈ Ξ. Let G′ be the CFJG
(Ξ,Σ, R′, gin) where R′ is obtained from R by replacing the rule g(x1, . . . , xk)→ K
by all rules g(x1, . . . , xk) → K[v ← K ′] where h(x1, . . . , xm) → K ′ is in R. Then
LJ(G′) = LJ(G).

Proof. We prove by induction on the length of the derivations that for all I ∈ JΞ∪Σ

and J ∈ JΣ, I ⇒∗G J if and only if I ⇒∗G′ J .
For the only-if direction, we consider the first step of the derivation I ⇒∗G J .

It clearly suffices to consider the case that the rule g(x1, . . . , xk) → K is applied
in this step. Thus, let I ⇒G I[w ← K] ⇒∗G J , where labI(w) = g. By Lemma 4
there is a rule h(x1, . . . , xm) → K ′ in R such that I[w ← K][v ← K ′] ⇒∗G J , and
this derivation is shorter than the derivation I ⇒∗G J . Hence, by the induction
hypothesis, I[w ← K][v ← K ′]⇒∗G′ J . Now, by Lemma 3, we have I[w ← K][v ←
K ′] = I[w ← K[v ← K ′]], and so I ⇒G′ I[w ← K[v ← K ′]]⇒∗G′ J , where the rule
g(x1, . . . , xk)→ K[v ← K ′] of G′ is applied in the first step.

The if direction is similar, but slightly easier. For the first step of the derivation
I ⇒∗G′ J it suffices to consider a rule g(x1, . . . , xk) → K[v ← K ′] in R′. If I ⇒G′

I[w ← K[v ← K ′]] ⇒∗G′ J , then I[w ← K][v ← K ′] ⇒∗G J by Lemma 3 and the
induction hypothesis, and so I ⇒G I[w ← K]⇒∗G J by Lemma 4.

Before proving our main result, we discuss an easy normal form of context-free
jungle grammars. A CFJG G = (Ξ,Σ, R, gin) is in variable normal form if, for
every rule g(x1, . . . , xk) → K in R and every i ∈ [k], exactly one node of K has
label xi. It is easy to see that for every CFJG G an equivalent CFJG G′ can be
constructed that is in variable normal form, as follows. If g(x1, . . . , xk) → K is a
rule of G, then g(x1, . . . , xk)→ K ′ is a rule of G′, where K ′ is obtained from K by
identifying all nodes with label xi, for each i ∈ [k], and adding an isolated node with
label xi if K does not have such a node. To be precise, K ′ = g(x1, . . . , xk)[λ← K],
i.e., the substitution of K for the node with label g in the jungle g(x1, . . . , xk). It
follows from Lemma 3 (and is also easy to see) that J [v ← K ′] = J [v ← K] for
every jungle J and every node v ∈ VJ with label g, and hence LJ(G′) = LJ(G).

The equivalence of G′ and G can also be proved by Theorem 1, as follows. Let
G1 be the CFJG obtained from G by replacing every rule g(x1, . . . , xk) → K by
the rules g(x1, . . . , xk) → g0(x1, . . . , xk) and g0(x1, . . . , xk) → K, where g0 is a
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new nonterminal. Obviously, LJ(G1) = LJ(G). Application of Theorem 1 to each
rule g(x1, . . . , xk) → g0(x1, . . . , xk), changes G1 into the equivalent grammar G′1
in which that rule is changed into all rules g(x1, . . . , xk) → K ′. Since the rules
g0(x1, . . . , xk) → K have become useless in G′1, we obtain that LJ(G′1) = LJ(G′)
and hence LJ(G) = LJ(G′).

We now show the main result of this paper: context-free tree grammars have
the same jungle generating power as context-free jungle grammars.

Theorem 2. For every context-free jungle grammar G there is a context-free tree
grammar H such that LJ(H) = LJ(G).

Proof. Let G = (Ξ,Σ, R, gin) be a CFJG in variable normal form, which can be
assumed by the discussion above. Consider a rule g(x1, . . . , xk) → K in R. We
will construct an equivalent CFJG G′ in which this rule is replaced by a finite set
of CFTG rules. By repeating this construction we obtain the required CFTG H.
In the CFJG G′ = (Ξ′,Σ, R′, gin), the rule will be simulated by a sequence of rules
that build the jungle K node by node, in a bottom-up fashion. This is similar to,
but slightly more complicated than, the construction of Chomsky normal form for
context-free string grammars.

Let v1 < · · · < vk < vk+1 < · · · < vk+`, ` ≥ 0, be a topological order of K such
that v1, . . . , vk are the (unique) nodes of K with labels x1, . . . , xk, respectively.
Obviously such a topological order exists, because the nodes v1, . . . , vk have no
arguments. We define Ξ′ = Ξ ∪ {g0, g1, . . . , g`} where gi is a new nonterminal of
rank k + i, for 0 ≤ i ≤ `. Moreover, we define R′ to be the set of rules obtained
from R by replacing the rule g(x1, . . . , xk)→ K by the CFTG rules

• g(x1, . . . , xk)→ g0(x1, . . . , xk),

• gi−1(x1, . . . , xk+i−1)→ gi(x1, . . . , xk+i−1, fi(xj1 , . . . , xjp)) for i ∈ [`],

where f
(p)
i = labK(vk+i) and argK(vk+i, q) = vjq for every q ∈ [p], and

• g`(x1, . . . , xk+`)→ xj , where resK = vj .

For i ∈ [` + 1], let ti be the right-hand side of the rule with left-hand side
gi−1(x1, . . . , xk+i−1). Note that in the second item jq ∈ [k + i − 1], because <
is a topological order. Thus, ti ∈ TΞ∪Σ(Xk+i−1) as required.

To prove the correctness of this construction, we take new nodes r0, . . . , r`,
we assume that the nodes in the right-hand side g0(x1, . . . , xk) of the first rule
are r0, v1, . . . , vk with respective labels g0, x1, . . . , xk, and we assume for i ∈ [`],
that the nodes in ti with labels gi and fi are ri and vk+i, respectively. For 0 ≤
i ≤ `, we define the jungle Ki = (V, res, lab, arg) ∈ JΞ′∪Σ(Xk) as follows: V =
{ri, v1, . . . , vk+i}, res = ri, lab(ri) = gi, arg(ri) = v1 · · · vk+i, and for j ∈ [k + i],
lab(vj) = labK(vj) and arg(vj) = argK(vj). Moreover, we define K`+1 = K.

It can easily be checked that K0 = g0(x1, . . . , xk) and Ki = Ki−1[ri−1 ← ti]
for every i ∈ [` + 1]. Thus, by iterated application of Theorem 1 (i.e., formally
by induction on i), the grammar G′ is equivalent to the grammar G′i that is ob-
tained from G′ by changing the rule g(x1, . . . , xk) → g0(x1, . . . , xk) into the rule
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g(x1, . . . , xk)→ Ki. Hence, since K`+1 = K, the grammar G′`+1 has all rules of G
plus all rules gi(x1, . . . , xk+i) → ti+1 for 0 ≤ i ≤ `. However, since g0 does not
appear in any right-hand side of a rule of G′`+1, the rules gi(x1, . . . , xk+i) → ti+1

have become useless in G′`+1, and hence G′`+1 is equivalent to G.
This shows that LJ(G′) = LJ(G).

Example 3. We illustrate the construction in the proof of Theorem 2 with the
CFJG G2 of Example 2. It has initial nonterminal g and it has the two rules
g → K and h(x1) → K ′, where K and K ′ are given in Figure 1. The resulting
CFTG H has the same initial nonterminal g. Its rules are constructed based on the
following topological orders of K and K ′ (where we indicate nodes by their labels):
a < c < f < h for K, and x1 < a < f < d for K ′. This gives the following rules:

g → g0

g0 → g1(a)
g1(x1) → g2(x1, c)

g2(x1, x2) → g3(x1, x2, f(x1, x1))
g3(x1, x2, x3) → g4(x1, x2, x3, h(x3))

g4(x1, x2, x3, x4) → x4

h(x1) → h0(x1)
h0(x1) → h1(x1, a)

h1(x1, x2) → h2(x1, x2, f(x2, x1))
h2(x1, x2, x3) → h3(x1, x2, x3, d(x3))

h3(x1, x2, x3, x4) → x3

Of course, this is not the simplest CFTG that generates the same jungle language
as G2. A simpler one is the grammar G1 of Example 1, as we saw in Example 2.

Thus, context-free tree grammars have the same jungle generating power as
context-free jungle grammars. Vice versa, every jungle represents a tree (by un-
folding) and we will show that context-free jungle grammars have the same tree
generating power as context-free tree grammars.

Every jungle J ∈ JΣ represents a unique tree tree(J) ∈ TΣ, namely tree(J) =
tree(J, resJ), where tree(J, v) is defined as follows, for all v ∈ VJ : if labJ(v) =
f(k) and argJ(v) = v1 · · · vk, then tree(J, v) = f(tree(J, v1), . . . , tree(J, vk)). For
example, tree(K ′′) = f(a, f(a, a)) where K ′′ is given in Figure 1.

For a context-free jungle grammar G we define the tree language generated by G
as LT(G) = {tree(J) | J ∈ LJ(G)}.

Theorem 3. A tree language can be generated by a context-free jungle grammar if
and only if it can be IO-generated by a context-free tree grammar.

Proof. (If) It is shown in [5, Corollary 6.5] that LT(G) = LIO(G) for every context-
free tree grammar G.5

5As an example, LIO(G1) = {f(a, f(a, a))} for the context-free tree grammar G1 of Example 1,
and, by Example 2, LJ(G1) = {K′′} and so LT(G1) = {tree(K′′)} = {f(a, f(a, a))}.
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(Only if) For a context-free jungle grammar G, let H be a context-free tree
grammar such that LJ(H) = LJ(G), which exists by Theorem 2. By the previous
paragraph, LIO(H) = LT(H) and so LIO(H) = {tree(J) | J ∈ LJ(H)} = {tree(J) |
J ∈ LJ(G)} = LT(G).

Related results are proved in [7, 9, 12, 10]. It is shown in [7] (see also [8])
that IO context-free tree grammars generate the same tree languages as attribute
grammars with one synthesized attribute. As shown in [9], arbitrary attribute
grammars generate the same tree languages as jungle generating context-free graph
grammars (which generalize context-free jungle grammars). In [12] it is proved that
total deterministic macro tree transducers compute the same tree translations as
top-down tree-to-jungle transducers. Finally, in [10] context-free tree grammars
are considered such that for every rule g(x1, . . . , xk)→ s, each parameter xi occurs
exactly once in s; it should be clear that LIO(G) = LJ(G) = LT(G) for such a
grammar G (cf. [5, Theorem 6.7]).

5 Jungle Delegation Networks

In this section we interpret context-free jungle grammars in algebras and call them
jungle delegation networks.

5.1 Interpretations and Algebras

We wish to interpret every symbol of a signature Σ as an operation on the elements
of a set A, and to use this interpretation for evaluating jungles over Σ. Usually, the
interpretation of a symbol f(k) would be a k-ary function f : Ak → A. However, we
wish to consider the more general case of nondeterministic operations (as in [13,
Section II.2]; see also [5, 11]). For this purpose, symbols are interpreted as relations
f ⊆ Ak × A rather than as functions. Of course, functions and partial functions
are special cases.

A Σ-interpretation into A is a function σ that maps every symbol f(k) ∈ Σ to
a relation σ(f) ⊆ Ak × A; in particular, if k = 0 then σ(f) ⊆ A. The pair (A, σ)
is called a (nondeterministic) Σ-algebra. If σ(f) is a function for all f ∈ Σ, then
(A, σ) is a deterministic Σ-algebra.

Jungles with n variables can now be interpreted as derived operations of a given
Σ-algebra (A, σ), in an obvious way (see [5, Definition 5.2]).

Definition 3 (jungle evaluation). Consider a Σ-algebra (A, σ) and a jungle J ∈
JΣ(Xn). Given a1, . . . , an ∈ A, let ASSJ,σ(a1, . . . , an) be the set of all assignments
(i.e., functions) α : VJ → A such that every v ∈ VJ :

• if labJ(v) = xi, then α(v) = ai; and

• if labJ(v) = f ∈ Σ and argJ(v) = v1 · · · vk, then α(v) ∈ f(α(v1), . . . , α(vk))
where f = σ(f).



386 Frank Drewes and Joost Engelfriet

Now, σ(J) ⊆ An × A is the relation given by

σ(J)(a1, . . . , an) = {α(resJ) | α ∈ ASSJ,σ(a1, . . . , an)},

for all a1 . . . , an ∈ A. For a set of jungles J ⊆ JΣ(Xn), σ(J ) =
⋃
J∈J σ(J).

Since every tree is a jungle, this also defines σ(t) for every tree t ∈ TΣ(Xn).
It should be clear that σ(t) is the usual evaluation of t in a (nondeterministic)
Σ-algebra, see, e.g., [5, Lemma 5.3]. For a set of trees T ⊆ TΣ(Xn), σ(T ) is called
the derived relation of T over (A, σ) in [11, Definition 5.8].

Example 4. We extend [5, Example 5.1]. Let Σ = {f(2), d(1), a(0), c(0)} be the sig-
nature of Examples 1 and 2, and consider the Σ-algebra (A, σ) where A = {♦,♥}∗,
σ(f) is string concatenation, σ(a) = {♦,♥}, σ(c) = {♦}, and σ(d) is the partial
function d : A → A such that, for every string w ∈ A, d(♦w) = w and d(♥w) and
d(λ) are undefined (thus, d checks that the first symbol of a string is diamonds,
and deletes that symbol). Now consider the interpretation σ(K ′′) of the jungle K ′′

of Figure 1. If one constructs α ∈ ASSK′′,σ in a bottom-up fashion, then α(resK′′)
can have the values ♦♦♦, ♦♥♥, ♥♦♦, and ♥♥♥ (note that the last two symbols
are equal because of the shared node with label a). Thus, due to the presence of
the node with label d, we have σ(K ′′) = {♦♦♦,♦♥♥}. If we redefine σ(c) = ∅,
then σ(K ′′) = ∅ because no value can be assigned to the node with label c.

The jungle K ′ of Figure 1 is interpreted as the function σ(K ′) = k′ : A → A
such that k′(w) = ♦w for every w ∈ A.

5.2 Delegation Networks

We are now ready to give the formal definition of delegation networks.

Definition 4. A jungle delegation network is a system N = (G,A, σ), where
G = (Ξ,Σ, R, gin) is a context-free jungle grammar and (A, σ) is a Σ-algebra. If G
is a context-free tree grammar, then N is a tree delegation network.6

The signature Ξ ∪ Σ is denoted by ΣN . For g(k) ∈ Ξ we denote by rhsG(g) the
set of right-hand sides of rules in R with left-hand side g(x1, . . . , xk).

The semantics of N is obtained by defining a ΣN -interpretation σN into A that
agrees with σ on Σ. Since the rules of G are recursive, it is natural to choose a
least fixed point semantics, using Kleene’s fixed point theorem which we state next
(see, e.g., [13, Theorem I.4.8]).

Proposition 1. Let C be a complete lattice, and let ϕ : C → C be an ω-continuous
function. Then ϕ has a least fixed point, and this least fixed point is equal to the
least upper bound of all ϕm(0), m ∈ N, where 0 is the zero element of C.

6A tree delegation networkN is called a finitary delegation network in [5]. In [11, Definition 5.1]
the syntactic part G of N is called a system of context-free Σ-equations.
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We recall that a complete lattice is a set C with a partial order ≤ such that
every subset of C has a least upper bound. Moreover, ω-continuity of ϕ means
that if c0 ≤ c1 ≤ c2 ≤ · · · (with ci ∈ C) and c ∈ C is the least upper bound
of {ci | i ∈ N}, then ϕ(c) is the least upper bound of {ϕ(ci) | i ∈ N}. The zero
element 0 of C is its smallest element (i.e., the least upper bound of ∅).

As is well known, the set of all relations r ⊆ Ak × A is a complete lattice with
⊆ as partial order. We extend this ordering to ΣN -interpretations τ, τ ′ into A in
the usual way: τ ≤ τ ′ if and only if τ(f) ⊆ τ ′(f) for all f ∈ ΣN . With the partial
order ≤, the set of all ΣN -interpretations into A is a complete lattice, as is also
well known. If T is a set of such interpretations, with least upper bound υ, then,
for every f ∈ ΣN , υ(f) is the union of all τ(f), τ ∈ T . Note that the zero element 0
of the lattice is the ΣN -interpretation such that 0(f) = ∅ for all f ∈ ΣN .

The semantics of N is a subset of A. It will be called the language defined by N ,
generalizing the notions of string language, tree language, graph language, picture
language, etc. The semantics of N is an obvious generalization of the one for tree
delegation networks (see [5, Definition 2.4]). Intuitively, G is viewed as a system
of equations (g = rhsG)g∈Ξ, where rhsG is viewed as the union of its elements, and
these equations are solved in the algebra (A, σ).

Definition 5. Let N = (G,A, σ) be a jungle delegation network such that G =
(Ξ,Σ, R, gin). Let CN be the complete lattice of all ΣN -interpretations into A.

1. The function ϕN : CN → CN is defined as follows for every τ ∈ CN :

• ϕN (τ)(f) = σ(f) for every f ∈ Σ, and

• ϕN (τ)(g) = τ(rhsG(g)) for every g ∈ Ξ.

2. The least fixed point of ϕN is denoted by σN .7

3. The language defined by N is L(N ) = σN (gin).

Note that the language defined by N is a subset of A, because the rank of gin

is 0. Note furthermore that, for f ∈ Σ, we have σN (f) = σ(f).
As already observed in [5], if N is a tree delegation network, then, for every

g ∈ Ξ, the relation σN (g) is what is called the call by value relation computed by G
over (A, σ) in the discussion after Corollary 5.7 in [11].

Example 5. Consider the jungle delegation network N2 = (G2,A, σ) where G2 is
the CFJG of Example 2 and (A, σ) is the string algebra defined in Example 4. Since
K ′ does not contain nonterminal symbols, we obtain that σN2(h) = σ(K ′), which is
the function k′ that puts � in front of a string (as observed in the latter example).
This implies that σN2

(g) = σ′(K), where σ′ extends σ with σ′(h) = k′. From this
it is easy to see that N2 defines the language L(N2) = σN2

(g) = {♦♦♦,♦♥♥}.
7By Proposition 1, σN exists, as it is easy to verify that ϕN is ω-continuous. Note that by

Definition 3, if τ0 ≤ τ1 ≤ τ2 ≤ · · · (with τi ∈ CN ), τ ∈ CN is the least upper bound of {τi | i ∈ N},
and J ⊆ JΣ(Xn) is finite, then τ(J ) is the union of all τi(J ), i ∈ N.
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We have seen in Example 2 that LJ(G2) = {K ′′}, where K ′′ is given in Figure 1.
Combining this with the fact that σ(K ′′) = {♦♦♦,♦♥♥} (as seen in Example 4),
we find that L(N2) = σ(LJ(G2)). In other words, L(N2) equals the interpretation
of the jungle language generated by its CFJG G2. We will prove in Theorem 6 that
this is a result that holds in general.

To express the semantics of a substitution J [v ← K] in terms of that of J and
K, we need some terminology. Let v have rank k, let @ be a new symbol of rank k,
and let J [v ← @] be the jungle obtained from J by changing the label of v into @,
i.e., J [v ← @] = J [v ← @(x1, . . . , xk)]. The next lemma shows that the semantics
of J [v ← K] is equal to the semantics of J [v ← @], when @ is interpreted as the
semantics of K. For a Σ-algebra (A, σ) and a relation r ⊆ Ak × A, we denote
by σ〈@ := r〉 the (Σ ∪ {@})-interpretation σ′ into A such that σ′(@) = r and
σ′(f) = σ(f) for every f ∈ Σ.

Lemma 5. Let (A, σ) be a Σ-algebra. Let J ∈ JΣ(Xn), v ∈ VJ with rkJ(v) = k and
labJ(v) ∈ Σ, and K ∈ JΣ(Xk). Then σ(J [v ← K]) = σ〈@ := σ(K)〉(J [v ← @]).

Proof. Without loss of generality we assume that id ∈ Σ, that σ(id) is the identity
on A, and that id does not occur in J and K. Obviously, σ(I) = σ(ctr(I)) for
every I ∈ JΣ(Xn). Hence σ(J [v ← K]) = σ(J〈v ← K〉).

If α ∈ ASSJ〈v←K〉,σ(a1, . . . , an), then the restriction αK of α to VK is in
ASSK,σ(b1, . . . , bk) where bi = α(argJ(v, i)). Moreover, αK(resK) = α(v). This
shows that the restriction αJ of α to VJ is in ASSJ[v←@], σ〈@:=σ(K)〉(a1, . . . , an),
and so σ(J [v ← K]) ⊆ σ〈@ := σ(K)〉(J [v ← @]).

If αJ ∈ ASSJ[v←@], σ〈@:=σ(K)〉(a1, . . . , an), then there exists an assignment αK ∈
ASSK,σ(b1, . . . , bk) such that bi = αJ(argJ(v, i)) and αK(resK) = αJ(v). It is now
clear that αJ ∪αK is in ASSJ〈v←K〉,σ(a1, . . . , an), from which we can conclude that
σ〈@ := σ(K)〉(J [v ← @]) ⊆ σ(J [v ← K]).

The next theorem is similar to Theorem 1 in Section 4. It shows that rules of
the grammar of a jungle delegation network can be substituted into each other,
without changing the language defined by the network.

Theorem 4. Let N = (G,A, σ) and N ′ = (G′,A, σ) be jungle delegation networks,
where G and G′ are as in Theorem 1. Then L(N ′) = L(N ).

Proof. By assumption, G = (Ξ,Σ, R, gin) and G′ = (Ξ,Σ, R′, gin) where R′ is ob-
tained from R by replacing the rule g(x1, . . . , xk)→ K by all rules g(x1, . . . , xk)→
K[v ← K ′] such that h(x1, . . . , xm)→ K ′ is in R; here v is a node of K such that
labK(v) = h(m) ∈ Ξ.

We will prove that σN = σN ′ , where σN is the least fixed point of ϕN and
similarly for N ′ (see Definition 5). For m ∈ N, we will denote ϕmN (0) by σN ,m, and
similarly for N ′. Thus, by Proposition 1, σN is the least upper bound of all σN ,m,
m ∈ N. Note that by Definition 5, σN ,m+1(k) = σN ,m(rhsG(k)) for every m ∈ N
and k ∈ Ξ; and, of course, σN ,0(k) = ∅.

We first show that σN ′,m ≤ σN for all m ∈ N, which implies that σN ′ ≤ σN . It
suffices to prove that σN ′,m(k) ⊆ σN (k) for all k ∈ Ξ and m ∈ N. The proof is by
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induction on m. It is trivial for m = 0. For the induction step, consider σN ′,m+1(k).
Since this equals σN ′,m(rhsG′(k)), it remains to prove that σN ′,m(J) ⊆ σN (k) for
every J ∈ rhsG′(k). We consider two cases.

Case 1 : J ∈ rhsG(k). By induction we have σN ′,m(J) ⊆ σN (J); because, in
general, if τ1 ≤ τ2 then τ1(J) ⊆ τ2(J). Moreover σN (J) ⊆ σN (k), because σN is a
fixed point of ϕN .

Case 2 : k = g and J = K[v ← K ′]. By Lemma 5, σN ′,m(K[v ← K ′]) =
σN ′,m〈@ := σN ′,m(K ′)〉(K[v ← @]). By induction, and since σN is a fixed point of
ϕN , we obtain that σN ′,m(K ′) ⊆ σN (h). Thus, again by induction,

σN ′,m(K[v ← K ′]) ⊆ σN 〈@ := σN (h)〉(K[v ← @]) = σN (K) ⊆ σN (g).

In the other direction, we prove by induction on m that σN ,m ≤ σN ′ . As
above, it suffices to prove in the induction step that σN ,m(J) ⊆ σN ′(k) for every
J ∈ rhsG(k). As above there are two cases. The first case, where J ∈ rhsG′(k), is
handled as above. It remains to consider the second case, where k = g and J = K.
If m = 0 then σN ,m(K) = ∅ because a non-variable (namely h) occurs in K, and
we are ready. Now let m ≥ 1. Then

σN ,m(K) = σN ,m〈@ := σN ,m(h)〉(K[v ← @])
= σN ,m〈@ := σN ,m−1(rhsG(h))〉(K[v ← @])
=

⋃
K′∈rhsG(h) σN ,m〈@ := σN ,m−1(K ′)〉(K[v ← @])

⊆
⋃
K′∈rhsG(h) σN ′〈@ := σN ′(K ′)〉(K[v ← @])

=
⋃
K′∈rhsG(h) σN ′(K[v ← K ′])

⊆ σN ′(g)

where the last three steps are by induction, by Lemma 5, and by the fact that σN ′

is a fixed point of ϕN ′ , respectively.

We can now prove that tree delegation networks are as powerful as jungle dele-
gation networks.

Theorem 5. For every jungle delegation network N there is a tree delegation
network N ′ over the same algebra such that L(N ′) = L(N ).

Proof. Let N = (G,A, σ). Then we define N ′ = (H,A, σ) where H is the CFTG
constructed in the proof of Theorem 2. Since the proof of LJ(H) = LJ(G) was
entirely based on Theorem 1, the proof of L(N ′) = L(N ) is exactly the same, now
based on Theorem 4.

Note that the construction of N ′ in the above proof does not depend on the
given algebra. Thus, Theorem 5 is a program-schematic result.

Finally, we prove a Mezei-Wright-like result for jungle delegation networks N =
(G,A, σ): the language defined byN is equal to the semantics of the jungle language
generated by G.
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Theorem 6. For every jungle delegation network N = (G,A, σ),

L(N ) = σ(LJ(G)).

If, moreover, (A, σ) is deterministic, then L(N ) = σ(LT(G)).

Proof. Let N ′ = (H,A, σ) be the tree delegation network constructed in the proofs
of Theorems 2 and 5. Then L(N ) = L(N ′) by Theorem 5, and LJ(G) = LJ(H)
by Theorem 2. It is proved in [5, Theorem 5.6] for tree delegation networks that
L(N ′) = σ(LJ(H)).

In [5, Theorem 6.6] it is proved that if (A, σ) is deterministic, then L(N ′) =
σ(LIO(H)). In the proof of Theorem 3 we already saw that LIO(H) = LT(G).

Example 6. Let G1 and G2 be the grammars of Examples 1 and 2. We have seen
in Example 2 that LJ(G1) = LJ(G2). Hence, by Theorem 6, L(N1) = L(N2) for
all delegation networks N1 = (G1,A, σ) and N2 = (G2,A, σ) over the same algebra
(A, σ). In other words, G1 and G2 are equivalent program schemes. In particular,
by Example 5, we have that L(N1) = σ(K ′′) = {♦♦♦,♦♥♥} for the string algebra
(A, σ) defined in Example 4.

Note that L(N1) is not equal to σ(LT(G1)). In fact, LT(G1) = {f(a, f(a, a))}
(see the footnote in the proof of Theorem 3), and σ(f(a, f(a, a))) is the set of all
strings of length 3 in A = {♦,♥}∗. As discussed in Example 4, this illustrates two
effects: in the IO-generated tree the second and third a are not shared, so that the
second and third symbol of the resulting strings may differ. Morover, the node with
label d above the root of K ′′ (which is garbage) is not present, thus allowing the
first symbol of the string to differ from ♦. In fact, the node with label c is garbage
as well and thus not present in the IO-generated tree. If we redefine σ(c) = ∅, see
Example 4, then L(N1) = L(N2) = ∅ whereas σ(LT(G1)) is the same as above.
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Abstract

Local weighted tree languages over semirings are introduced. For an ar-
bitrary semiring, a weighted tree language is shown to be recognizable iff it
appears as the image of a local weighted tree language under a deterministic
relabeling.

1 Introduction

Trees or terms are fundamental concepts among others in computer science. In this
paper we consider trees over ranked alphabets. Tree automata were introduced in
the 60s of the last century in [6, 18, 20] and since then the theory of tree automata
and tree languages has developed rapidly, see [12, 13] and [5] for surveys. Not much
later, already in the 80s, quantitative aspects gained attention and weighted tree
automata were introduced in [2, 1]. Within the last decades several authors have
dealt with different weighted tree automaton models and their behaviour. Among
others, for weighted tree automata over semirings, a Kleene-type characterization
was obtained in [7], fixed point characterizations in [16, 4], and a characterization
by weighted monadic second-order logic in [8, 9]. A summary of these and several
other results on weighted tree automata and weighted tree languages can be found
in [10] and [11].

Local tree languages were considered first time in [6, 17, 18, 19]. They are
defined in the way that the membership of a tree to a local tree language can
be decided by checking local properties of that tree. More exactly, for a ranked
alphabet Σ, a Σ-fork (shortly: fork) is a tuple (σ1 . . . σk, σ), where σ ∈ Σ is a symbol
of arity k and σ1, . . . , σk are further symbols in Σ. The fork (σ1 . . . σk, σ) occurs in
a tree if the tree has a σ-node of which the k sons are labeled by σ1, . . . , σk from
left to right. Let Fork(Σ) be the set of all Σ-forks. Moreover, let us fix a subset
F ⊆ Fork(Σ) of admissible forks and a subset R ⊆ Σ of admissible roots. Then, a
tree ξ ∈ TΣ belongs to the local tree language determined by the couple (F,R) if
and only if all forks in ξ belong to F and the root of ξ belongs to R. A summary

∗This work was supported by the NKFI grant K 108 448.
†Department of Foundations of Computer Science, University of Szeged, Árpád tér 2, 6720

Szeged, Hungary. E-mail: fulop@inf.u-szeged.hu
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and the main result of these investigations is presented in [12, Sect. II.9] and [13,
Sect. 9]. The main result is a characterization of recognizable tree languages by
images of local tree languages under deterministic relabelings, cf. [12, Thm. II.9.5]
and [13, Prop. 8.1].

To the best of the author’s knowledge, the quantitative aspects of local tree
languages has not been investigated yet. In this paper we fill this gap in the theory
of weighted tree languages. We introduce the concept of a local weighted tree
language over a semiring S in a natural way. Namely, we associate a weight to
each fork by a mapping ϕ : Fork(Σ) → S and to each root by another mapping
ρ : Σ→ S. We note that in both cases the weight can be 0. Then the weight of a
tree ξ ∈ TΣ will be the (semiring) product of the weights associated to the forks in ξ
and the weight associated to the root of ξ. The order of the factors is the postorder
of the nodes of ξ. Finally, we show that that the mentioned characterization result
in the classical (unweighted) case can be generalized to the weighted one. In fact,
we prove (cf. Theorem 1) that a weighted tree language over an arbitrary semiring
is recognizable if and only if it can be obtained as the image of a local weighted
tree language under a deterministic relabeling.

2 Preliminaries

We denote by N the set of nonnegative integers. Let Q and S be sets, and let k ∈ N.
We will write just q1 . . . qk for an element (q1, . . . , qk) of Qk. Hence Q0 = {ε}. We
denote the set of all mappings v : Q → S by SQ. For each v ∈ SQ and q ∈ Q, we
abbreviate v(q) by vq.

A ranked alphabet is a tuple (Σ, rk) where Σ is a finite set and rk : Σ→ N is a
mapping called rank mapping. For every k ≥ 0, we define Σk = {σ ∈ Σ | rk(σ) = k}.
Sometimes we write σ(k) to mean that σ ∈ Σk. Moreover, let H be a set disjoint
with Σ. The set of Σ-terms over H, denoted by TΣ(H), is the smallest set T
such that (i) Σ0 ∪ H ⊆ T and (ii) if k ≥ 1, σ ∈ Σk, and ξ1, . . . , ξk ∈ T , then
σ(ξ1, . . . , ξk) ∈ T . We denote TΣ(∅) by TΣ.

We define the height and the root of trees as the functions height : TΣ → N and
rt : TΣ → Σ, respectively, as follows: (i) for every α ∈ Σ0, we define height(α) = 0,
rt(α) = α and (ii) for every ξ = σ(ξ1, . . . , ξk), where k ≥ 1, we define height(ξ) =
1 + max{height(ξi) | 1 ≤ i ≤ k} and rt(ξ) = σ.

A semiring (S,+, ·, 0, 1) is an algebra which consists of a commutative monoid
(S,+, 0), called the additive monoid of S, and a monoid (S, ·, 1), called the mul-
tiplicative monoid of S, such that multiplication distributes (from both left and
right) over addition, and moreover, 0 6= 1 and 0 is absorbing with respect to · (also
both from left and right). An introduction to and several details about semirings
can be found e.g. in the books [14] and [15].

In the rest of this paper Σ and ∆ will denote arbitrary ranked alphabets
unless specified otherwise, and S will denote an arbitrary semiring.

A deterministic relabeling (for short: drel) is a mapping τ : Σ → ∆ satisfying
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τ(Σk) ⊆ ∆k for every k ≥ 0. The mapping τ extends to the tree transformation
τ ′ : TΣ → T∆ defined by τ ′(σ(ξ1, . . . , ξk)) = τ(σ)(τ ′(ξ1), . . . , τ ′(ξk)) for every k ≥ 0,
σ ∈ Σk, and ξ1, . . . , ξk ∈ TΣ. In what follows we will call τ ′ also a drel and write τ
for τ ′.

A weighted tree language over Σ and S (for short: weighted tree language) is
a mapping Φ : TΣ → S, and a weighted tree language over S is a weighted tree
language over Σ and S for some ranked alphabet Σ. For every ξ ∈ TΣ, the element
Φ(ξ) of S is called the weight of ξ. Now let τ : TΣ → T∆ be a drel. We extend τ to
weighted tree languages as follows: for every Φ : TΣ → S, we define τ(Φ) : T∆ → S
by

τ(Φ)(ζ) =
∑

ξ∈TΣ,τ(ξ)=ζ

Φ(ξ)

for every ζ ∈ T∆. Let C(S) be a class of weighted tree languages over S. We denote
by d-REL(C(S)) the class of all weighted tree languages τ(Φ), where τ is a drel
and Φ ∈ C(S).

A Σ-algebra (V, θ) consists of a nonempty set V (carrier set) and an arity pre-
serving mapping θ, called the interpretation, from Σ to the set operations over V ,
i.e., θ(σ) : V k → V for every k ≥ 0 and σ ∈ Σk. The Σ-term algebra (TΣ, top),
defined by top(σ)(ξ1, . . . , ξk) = σ(ξ1, . . . , ξk) for σ ∈ Σk and ξ1, . . . , ξk ∈ TΣ, is ini-
tial in the class of all Σ-algebras, i.e., for every Σ-algebra (V, θ), there is a unique
Σ-algebra homomorphism from TΣ to V .

A weighted tree automaton (over Σ and S) (for short: wta) is a tuple A =
(Q,Σ, S, δ, κ) where

• Q is a finite nonempty set, the set of states,

• Σ is the ranked input alphabet,

• δ = (δk | k ∈ N) is a family of transition mappings1 δk : Qk × Σk ×Q→ S,

• κ : Q→ S is the root weight mapping.

For every k ∈ N and transition w = (q1 . . . qk, σ, q) ∈ Qk × Σk ×Q, and 1 ≤ i ≤ k,
we call qi the ith input state of w and denote it by ini(w). Similarly, we call q the
output state of w and denote it by out(w). Moreover, we call the element δk(w) of
S the weight of the transition w.

For A we consider the Σ-algebra (SQ, δA) where, for every k ≥ 0 and σ ∈ Σk,
the k-ary operation δA(σ) : SQ × . . .× SQ → SQ is defined by

δA(σ)(v1, . . . , vk)q =
∑

q1,...,qk∈Q
(v1)q1 · . . . · (vk)qk · δk(q1 . . . qk, σ, q)

for every q ∈ Q and v1, . . . , vk ∈ SQ. (Here
∑

and · denote a finite sum and the
multiplication in the semiring S, respectively.) Let us denote the unique Σ-algebra

1In the literature δ is also called a tree representation and δk is given as a mapping of type

Σk → SQk×Q.
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homomorphism from TΣ to SQ by hδ. The weighted tree language ||A|| : TΣ → S
recognized by A is defined by

||A||(ξ) =
∑
q∈Q

hδ(ξ)q · κ(q)

for every ξ ∈ TΣ. Due to the definitions of δA and hδ, we obtain that

hδ(σ(ξ1, . . . , ξk))q =
∑

q1,...,qk∈Q
hδ(ξ1)q1 · . . . · hδ(ξk)qk · δk(q1 . . . qk, σ, q) (1)

for every σ(ξ1, . . . , ξk) ∈ TΣ and q ∈ Q. An introduction to the theory of wta over
semirings and several results can be found in [10] and [11].

Example 1. (Cf. [3, Example 3.3]) We consider the arctic semiring Arct =
(N ∪ {−∞},max,+,−∞, 0) and construct the wta A = (Q,Σ,Arct, δ, κ) which
recognizes the weighted tree language height. Let Q = {p1, p2}, Σ = {σ(2), α(0)},
and κ(p1) = 0 and κ(p2) = −∞. Moreover, let

δ0(ε, α, p1) = δ0(ε, α, p2) = 0,
δ2(p1p2, σ, p1) = δ2(p2p1, σ, p1) = 1,
δ2(p2p2, σ, p2) = 0,

and for every other transition (q1q2, σ, q) we have δ2(q1q2, σ, q) = −∞. We con-
sider the tree ξ = σ(α, α) and compute hδ(ξ)p1

and hδ(ξ)p2
. Clearly, hδ(α)p1

=
δ0(α)ε,p1

= 0 and hδ(α)p2
= 0. Then

hδ(σ(α, α))p1
= maxq1,q2∈Q{hδ(α)q1 + hδ(α)q2 + δ2(q1q2, σ, p1)} = 1

(note that δ2(p1p1, σ, p1) = δ2(p2p2, σ, p1) = −∞ and −∞ is neutral for max) and,
similarly, hδ(σ(α, α))p2 = 0. In general, we can prove by structural induction on ξ
that hδ(ξ)p1

= height(ξ) and hδ(ξ)p2
= 0 for every ξ ∈ TΣ. Thus ||A|| = height and

hence height ∈ Rec(Σ,Arct).

A wta A = (Q,Σ, S, δ, κ) is bottom-up deterministic (for short: bu-
deterministic) if for every k ≥ 0, σ ∈ Σk, and w ∈ Qk there is at most one
q ∈ Q such that δk(w, σ, q) 6= 0. If A is bu-deterministic, then for every input tree
ξ ∈ TΣ, there is at most one q ∈ Q such that hδ(ξ)q 6= 0. In this case the operation
+ of S is not used for the computation of ||A||.

A weighted tree language Φ : TΣ → S is recognizable (resp. bu-deterministically
recognizable) if there is a wta (resp. bu-deterministic wta) A such that Φ = ||A||.
The class of all recognizable weighted tree languages over Σ and S (resp. over S)
is denoted by Rec(Σ, S) (resp. Rec(S)). The notation bud-Rec(Σ, S) is introduced
analogously.

Finally, we recall that recognizable weighted tree languages are closed under
(deterministic) relabelings. A proof can be found, e.g., in [8, Lm. 3.4]. However,
in [8] a wta is defined over a commutative semiring and the semantics of a wta is
defined in terms of runs. Therefore we give a short proof for our case.

Proposition 1. d-REL(Rec(S)) ⊆ Rec(S).
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Proof. Let A = (Q,Σ, S, δ, κ) be a wta and τ : TΣ → T∆ be a drel. We define the
wta A′ = (Q,∆, S, δ′, κ) by

δ′(q1 . . . qk, ω, q) =
∑

σ∈Σk,τ(σ)=ω

δ(q1 . . . qk, σ, q)

for every k ≥ 0, ω ∈ ∆k, and q, q1, . . . , qk ∈ Q, and show that A′ computes τ
(
||A||
)
.

We can show by induction on the height of ζ and using equality (1) that

hδ′(ζ)q =
∑

ξ∈TΣ,τ(ξ)=ζ

hδ(ξ)q

for every ζ ∈ T∆ and q ∈ Q. Then we get

||A||′(ζ) =
∑
q∈Q

hδ′(ζ)q · κ(q) =
∑
q∈Q

( ∑
ξ∈TΣ,τ(ξ)=ζ

hδ(ξ)q

)
· κ(q) =

∑
ξ∈TΣ,τ(ξ)=ζ

(∑
q∈Q

hδ(ξ)q · κ(q)
)

=
∑

ξ∈TΣ,τ(ξ)=ζ

||A||(ξ) = τ
(
||A||
)
(ζ)

for each ζ ∈ T∆, which proves ||A||′ = τ
(
||A||
)
.

3 The result

A Σ-fork (shortly: fork) is a tuple (σ1 . . . σk, σ) for some k ≥ 0, where σ ∈ Σk and
σ1, . . . , σk are further symbols in Σ. The fork (σ1 . . . σk, σ) occurs in a tree if the
tree has a σ-node of which the k sons are labeled by σ1, . . . , σk from left to right.
We consider the family Fork(Σ) = (Forkk(Σ) | k ≥ 0), where

Forkk(Σ) = {(σ1 . . . σk, σ) | σ1, . . . , σk ∈ Σ, σ ∈ Σk}.

Note that Forkk(Σ) = Σk × Σk, hence Fork0(Σ) = Σ0.
A weighted local system (over Σ and S) (for short: wls) is a pair L = (Σ, S, ϕ, ρ),

where ϕ is a family of mappings (ϕk | k ≥ 0) with ϕk : Forkk(Σ)→ S and ρ : Σ→ S
is a further mapping. Intuitively, we associate a weight, i.e., an element of S to
each fork and also to each symbol in Σ. Note that this weight can be 0.

Next we define the weighted tree language determined by L. For this, we extend
ϕ to the mapping ϕ′ : TΣ → S defined by induction as follows:

(i) ϕ′(σ) = ϕ0(σ) for every σ ∈ Σ0,

(ii) ϕ′(σ(ξ1, . . . , ξk)) = ϕ′(ξ1) · . . . · ϕ′(ξk) · ϕk(rt(ξ1) . . . rt(ξk), σ) for every k ≥ 1,
σ ∈ Σk, and ξ1, . . . , ξk ∈ TΣ.

In the following we write ϕ for ϕ′. The weighted tree language ||L|| : TΣ → S
determined by L is defined by ||L||(ξ) = ϕ(ξ) · ρ(rt(ξ)) for every ξ ∈ TΣ. Note that,
like for deterministic wta, the operation + of S is not used for the definition of ||L||.
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Thus, ϕ(ξ) is the (semiring) product of the weights associated to the forks in ξ.
The order of the factors is the postorder of the nodes of ξ. Moreover, the weight
||L||(ξ) of ξ is the product of ϕ(ξ) and the weight associated to the root of ξ.

A weighted tree language Φ : TΣ → S is called local if there is a wls L such that
Φ = ||L||. The class of all local weighted tree languages over Σ and S (resp. over
S) is denoted by Loc(Σ, S) (resp. Loc(S)).

Example 2. We consider again the ranked alphabet Σ = {σ(2), α(0)}. We define
the wls L = (Σ,Arct, ϕ, ρ) by

• ϕ2(σα, σ) = ϕ2(αα, σ) = 1 and in every other case ϕ2( , σ) = 0,

• ϕ0(ε, α) = 0, and by ρ(σ) = ρ(α) = 0.

It should be clear that ||L||(ξ) is the number of the occurrences of the pattern σ( , α)
in ξ, where ’ ’ is a placeholder which may be filled by either σ or α. We note that
in [11, Example 3.4] a wta is given over the semiring of natural numbers which
recognizes ||L||.

Next we show that local weighted tree languages are bu-deterministically rec-
ognizable.

Lemma 1. Loc(Σ, S) ⊆ bud-Rec(Σ, S).

Proof. Let L = (Σ, S, ϕ, ρ) by a wls over Σ and S. We construct a wta A =
(Q,Σ, S, δ, κ) such that ||A|| = ||L||. For this, we define

• Q = {σ | σ ∈ Σ},

• for every k ≥ 0, σ1 . . . σk ∈ Σk, σ ∈ Σk, and ω ∈ Σ,

δk(σ1 . . . σk, σ, ω) =

{
ϕk(σ1 . . . σk, σ) if ω = σ
0 otherwise,

• κ(σ) = ρ(σ) for every σ ∈ Σ.

It is clear that A is bu-deterministic. Next we show the following statement by
induction on ξ: for every ξ ∈ TΣ and ω ∈ Σ, we have

hδ(ξ)ω =

{
ϕ(ξ) if ω = rt(ξ)
0 otherwise.

Let ξ = σ(ξ1, . . . , ξk) for some k ≥ 0, σ ∈ Σk, and ξ1, . . . , ξk ∈ TΣ. We have

hδ(σ(ξ1, . . . , ξk))ω =∑
σ1,...,σk∈Σ

hδ(ξ1)σ1
· . . . · hδ(ξk)σk

· δk(σ1 . . . σk, σ, ω) =

ϕ(ξ1) · . . . · ϕ(ξk) · δk(rt(ξ1) . . . rt(ξk), σ, ω) =

ϕ(ξ1) · . . . · ϕ(ξk) · ϕk(rt(ξ1) . . . rt(ξk), σ) if ω = σ and 0 otherwise =

ϕ(σ(ξ1, . . . , ξk)) if ω = σ and 0 otherwise,
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where the second equality is justified by the I. H. and the third one by the definition
of δk. Note that the case k = 0 covers also the base of the induction. Finally, let
ξ ∈ TΣ. Then we get

||A||(ξ) =
∑
ω∈Σ

hδ(ξ)ω · κ(ω) = ϕ(ξ) · κ(rt(ξ)) = ϕ(ξ) · ρ(rt(ξ)) = ||L||(ξ),

where the second equality follows from the statement and the other ones from the
corresponding definitions.

One can easily find a semiring S and a ranked alphabet Σ such that the
inclusion in Lemma 1 is strict. For instance, consider the Boolean semiring
B = ({0, 1},∨,∧, , 0, 1), the ranked alphabet Σ = {γ(1), α(0)} and the weighted
tree language Φ defined by Φ

(
γ(γ(α))

)
= 1 and Φ(ξ) = 0 for every other ξ ∈ TΣ.

It is easy to show that Φ ∈ (bud-Rec(Σ,B) \ Loc(Σ,B)). Another example can be
found for the Boolean case on [12, p. 107].

Finally, we give a characterization of recognizable weighted tree languages by
images of local weighted tree languages under deterministic relabelings.

Theorem 1. Rec(S) = d-REL(Loc(S)).

Proof. The inclusion from right to left follows from Proposition 1 and Lemma 1.
Therefore, we prove the other inclusion.

For this, let A = (Q,Σ, S, δ, κ) be a wta. We will construct a ranked alphabet
∆, a wls L = (∆, S, ϕ, ρ), and a deterministic relabeling τ : T∆ → TΣ such that
||A|| = τ(||L||).

Let ∆k = Qk × Σk × Q for every k ≥ 0. Moreover, let us define ϕ and ρ as
follows. For every k ≥ 0, ω1 . . . ωk ∈ ∆ and (q1 . . . qk, σ, q) ∈ ∆k, let

ϕk
(
ω1 . . . ωk, (q1 . . . qk, σ, q)

)
=

 δk(q1 . . . qk, σ, q) if out(ωi) = qi
for all 1 ≤ i ≤ k

0 otherwise,

and

ρ((q1 . . . qk, σ, q)) = κ(q).

Finally, let τk : ∆k → Σk be defined by τ((q1 . . . qk, σ, q)) = σ for every k ≥ 0 and
(q1 . . . qk, σ, q) ∈ ∆k.

First we prove the following statement by induction: for every ξ ∈ TΣ and
q ∈ Q, we have

hδ(ξ)q =
∑

ζ∈T∆,τ(ζ)=ξ
out(rt(ζ))=q

ϕ(ζ).

Let ξ = σ(ξ1, . . . , ξk) for some k ≥ 0, σ ∈ Σk, and ξ1, . . . , ξk ∈ TΣ. In the following

computation we abbreviate a product of the form a1 · . . . · ak by
∏k
i=1 ai, where
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a1, . . . , ak ∈ S. Then

hδ(σ(ξ1, . . . , ξk))q =

∑
q1,...,qk∈Q

( k∏
i=1

hδ(ξi)qi

)
· δk(q1 . . . qk, σ, q) =

∑
q1,...,qk∈Q

( k∏
i=1

( ∑
ζi∈T∆,τ(ζi)=ξi
out(rt(ζi))=qi

ϕ(ζi)

))
· δk(q1 . . . qk, σ, q) =

∑
q1,...,qk∈Q

( ∑
∀1≤i≤k:ζi∈T∆,

τ(ζi)=ξi,out(rt(ζi))=qi

k∏
i=1

ϕ(ζi)

)
· δk(q1 . . . qk, σ, q) =

∑
q1,...,qk∈Q

( ∑
∀1≤i≤k:ζi∈T∆,

τ(ζi)=ξi,out(rt(ζi))=qi

( k∏
i=1

ϕ(ζi)
)
· δk(q1 . . . qk, σ, q)

)
=

∑
∀1≤i≤k:ζi∈T∆,

τ(ζi)=ξi

( k∏
i=1

ϕ(ζi)
)
· δk
(
out(rt(ζ1)) . . . out(rt(ζk)), σ, q

)
=

∑
∀1≤i≤k:ζi∈T∆,

τ(ζi)=ξi

( k∏
i=1

ϕ(ζi)
)
· ϕk

(
rt(ζ1) . . . rt(ζk),

(
out(rt(ζ1)) . . . out(rt(ζk)), σ, q

))
=

∑
∀1≤i≤k:ζi∈T∆,
τ(ζi)=ξi,qi∈Q

( k∏
i=1

ϕ(ζi)
)
· ϕk

(
rt(ζ1) . . . rt(ζk), (q1 . . . qk, σ, q)

)
=

∑
∀1≤i≤k:ζi∈T∆,
τ(ζi)=ξi,qi∈Q

ϕ
(
(q1 . . . qk, σ, q)(ζ1, . . . ζk)

)
=

∑
ζ∈T∆,τ(ζ)=σ(ξ1,...,ξk)

out(rt(ζ))=q

ϕ(ζ).

The first, second, and the sixth equality follows from (1), the I. H., and the definition
of ϕ, respectively. Finally, the seventh one follows from the fact that if qi 6=
out(rt(ζi)) for some 1 ≤ i ≤ k, then ϕk

(
rt(ζ1) . . . rt(ζk), (q1 . . . qk, σ, q)

)
= 0.
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Finally, for every ξ ∈ TΣ, we have

||A||(ξ) =
∑
q∈Q

hδ(ξ)q · κ(q) =
∑
q∈Q

( ∑
ζ∈T∆,τ(ζ)=ξ
out(rt(ζ))=q

ϕ(ζ) · κ(q)

)
=

∑
ζ∈T∆,τ(ζ)=ξ

ϕ(ζ) · κ(out(rt(ζ))) =
∑

ζ∈T∆,τ(ζ)=ξ

ϕ(ζ) · ρ(rt(ζ)) =

∑
ζ∈T∆,τ(ζ)=ξ

||L||(ζ) = τ(||L||)(ξ),

where the second equality is justified by the statement proved above.
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Abstract

The concatenation of trees can be defined either as a sequential or a par-
allel operation, and the corresponding iterated operation gives an extension
of Kleene-star to tree languages. Since the sequential tree concatenation is
not associative, we get two essentially different iterated sequential concatena-
tion operations that we call the bottom-up star and top-down star operation,
respectively. We establish that the worst-case state complexity of bottom-up
star is (n + 3

2
) · 2n−1. The bound differs by an order of magnitude from the

corresponding result for string languages. The state complexity of top-down
star is similar as in the string case. We consider also the state complexity
of the star of the concatenation of a regular tree language with the set of all
trees.

Keywords: tree automata, state complexity, iterated concatenation

1 Introduction

The descriptional complexity of finite automata has been studied for over half a
century [13, 15, 16], and there has been particularly much work done over the
last two decades. The reader may find more information in the surveys [4, 8,
12]. Also the state complexity of various extensions of finite automata, such as
tree automata [14, 19] and input-driven pushdown automata (a.k.a. nested word
automata) [7, 17] has been considered. These models retain the feature of finite
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automata that a nondeterministic automaton can be converted to an equivalent
deterministic automaton.

Concatenation of tree languages can be defined either as a sequential or a par-
allel operation. Tight state complexity bounds for the concatenation of regular
(respectively, subtree-free) tree languages were given in [18] (respectively, [3]) and
the state complexity of concatenation operations with the set of all trees was con-
sidered in [11].

Here we consider the iterated concatenation of trees, that is, an extension of
the Kleene-star operation for tree languages. If defined in the usual way, the it-
erated parallel concatenation is not a regularity preserving operation and Gécseg
and Steinby [6] define the Kleene-star of tree languages slightly differently. Since
sequential concatenation of tree languages is non-associative, there are two essen-
tially different ways to define the corresponding iterated operation. We name these
variants the bottom-up star and the top-down star operations. It is easy to see
that the top-down (sequential) star operation coincides with the iterated product
(Kleene-star) based on parallel concatenation considered in [6].

We give tight state complexity bounds for both the bottom-up and the top-
down Kleene-star operations. We show that the bottom-up star of a tree language
recognized by a deterministic bottom-up automaton with n states can be recognized
by an automaton with (n + 3

2 ) · 2n−1 states and, furthermore, there exist worst-
case examples where this number of states is needed. This bound is, roughly, n
times the corresponding bound for regular string languages. On the other hand,
the state complexity of the top-down star operation is shown to coincide with the
state complexity of Kleene-star on string languages.

The state complexity of combined operations on regular languages was first
considered by A. Salomaa et al. [21], and later there has been much interest in
this topic [2, 10]. In the last section we consider the state complexity of tree
concatenation combined with star in the special case where one of the argument
languages consists of the set of all trees. For some of the combined operations
we get tight bounds that are significantly lower than the function composition of
the state complexity of concatenation with FΣ and the state complexity of the
corresponding star operation.

To conclude the introduction we comment on the difference between classical
ranked tree automata [5] and unranked tree automata. Much of the recent work on
tree automata uses automata operating on unranked trees that are used in modern
applications such as XML document processing [1, 18, 19, 22]. The transitions of
an unranked tree automaton A are defined in terms of regular languages, called
horizontal languages. Each horizontal language is specified by a deterministic finite
automaton (DFA) that processes strings of states of the bottom-up computation, or
vertical states. The size of A is defined to be the sum of the number of vertical states
and the numbers of states of the DFAs used to define the horizontal languages.

In the case of the Kleene-star operations, the worst-case state complexity bounds
for the numbers of vertical states can be reached using just binary trees, and for
the sake of readability we restrict here consideration to automata operating on
ranked trees. The upper bound construction for bottom-up star for unranked tree
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automata was given in [20]. The generalized construction relies on the same ideas
as Lemma 2 below, however, the notations are considerably more involved.

In the case of DFAs operating on strings, it is common to give state complexity
bounds in terms of complete DFAs, that is, all transitions of a DFA are required to
be defined, see e.g. [8, 24]. In order to keep our state complexity bounds consistent
with corresponding results for tree automata operating on unranked trees [1, 18, 19],
our definition allows a deterministic tree automaton to have undefined transitions.

Note that requiring a ranked tree automaton (or an ordinary DFA) to be com-
plete, changes the number of states by at most one. On the other hand, for deter-
ministic tree automata operating on unranked trees where the horizontal languages
are defined by DFAs [1, 18, 19], the sizes of an incomplete deterministic automaton
and the corresponding completed version may be significantly different. In an un-
ranked tree automaton, adding a dead state qsink for the bottom-up computation,
requires the addition, corresponding to an input symbol σ, a horizontal language
Lσ,qsink

that is the complement of a finite disjoint union Lσ,q1 ∪ . . . ∪ Lσ,qn , where
q1, . . . , qn are the vertical states of the incomplete automaton. The size of the min-
imal DFA for Lσ,qsink

may be considerably larger than the sum of the sizes of the
DFAs for Lσ,qi , i = 1, . . . , n, [9].

2 Basic definitions on tree automata

We assume that the reader is familiar with the basics of automata and formal
languages [23, 24]. Here we recall and introduce some definitions related to tree
automata. For more information the reader may consult the texts by Gécseg and
Steinby [5, 6] or the electronic book by Comon et al. [1].

The cardinality of a finite set S is |S| and the power set of S is 2S . The set
of positive integers is N. A ranked alphabet is a finite set Σ where each element
is associated a nonnegative integer as its rank. The set of elements of rank m
is Σm, m ≥ 0. The set of trees over ranked alphbet Σ, or Σ-trees, FΣ, is the
smallest set S satisfying the condition: if m ≥ 0, σ ∈ Σm and t1, . . . , tm ∈ S then
σ(t1, . . . , tm) ∈ S.

A tree domain is a prefix-closed subset D of N∗ such that if ui ∈ D, u ∈ N∗,
i ∈ N then uj ∈ D for all 1 ≤ j < i. The set of nodes of a tree t ∈ FΣ can be
represented in the well-known way as a tree domain dom(t) ⊆ {1, . . . ,M}∗ where
M is the largest rank of any element of the ranked alphabet Σ. The tree t is then
viewed as a mapping t : dom(t)→ Σ.

We assume that notions such as the root, a leaf, a subtree and the height of a
tree are known. We use the convention that the height of a single node tree is zero.
For σ ∈ Σ and t ∈ FΣ, leaf(t, σ) ⊆ dom(t) denotes the set of leaves of t with label
σ. Let t be a tree and u some node of t. The tree obtained from t by replacing
the subtree at node u with a tree s is denoted t(u← s). The notation is extended
in the natural way for a set of pairwise independent nodes U of t and S ⊆ FΣ:
t(U ← S) is the set of trees obtained from t by replacing each node of U by some
tree in S.
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The set of Σ-trees where exactly one leaf is labelled by a special symbol x
(x 6∈ Σ) is FΣ[x]. For t ∈ FΣ[x] and t′ ∈ FΣ, t(x ← t′) denotes the tree obtained
from t by replacing the unique occurrence of variable x by t′.

A deterministic bottom-up tree automaton (DTA) is a tuple A = (Σ, Q,QF , g),
where Σ is a ranked alphabet, Q is a finite set of states, QF ⊆ Q is a set of accepting
states and g associates to each σ ∈ Σm a partial function σg : Qm −→ Q, m ≥ 0.
In the usual way, we define the state tg ∈ Q reached by A at the root of a tree
t = σ(t1, . . . , tm), σ ∈ Σm, m ≥ 0, ti ∈ FΣ, i = 1, . . . ,m, inductively by setting
tg = σg((t1)g, . . . , (tm)g) if the right side is defined, and tg is undefined otherwise.
The tree language recognized by A is L(A) = {t ∈ FΣ | tg ∈ QF }. Deterministic
bottom-up tree automata recognize the family of regular tree languages.

The intermediate stages of a computation of A, called configurations of A, are
Σ-trees where some leaves may be labeled by states of A. The set of configurations
of A consists of ΣA-trees where ΣA0 = Σ0 ∪ {Q} and ΣAm = Σm when m ≥ 1.

A bottom-up automaton begins processing the tree from the leaves because,
following a common custom, we view trees to be drawn with the root at the top.
As discussed in the previous section, our definition allows a DTA to have undefined
transitions, that is, σg, σ ∈ Σm, is a partial function.

2.1 Iterated concatenation of trees

We extend the string concatenation operation to an operation where a leaf of a tree
is replaced by another tree. Concatenation of trees can be defined also as a parallel
operation, however, as will be observed below the iteration of parallel concatenation
does not preserve recognizability.

For σ ∈ Σ0 and t1, t2 ∈ FΣ, we define the sequential σ-concatenation of t1 and
t2 as

t1 ·sσ t2 = { t2(u← t1) | u ∈ leaf(t2, σ) }. (1)

That is, t1 ·sσ t2 is the set of trees obtained from t2 by replacing one occurrence of
a leaf labeled by σ with t1. The definition is extended in the natural way for tree
languages T1, T2 ⊆ FΣ by setting

T1 ·sσ T2 =
⋃

ti∈Ti,i=1,2

t1 ·sσ t2.

Alternatively, we can consider a parallel σ-concatenation of tree languages T1, T2 ⊆
FΣ by setting

T1 ·pσ T2 = { t2(leaf(t2, σ)← T1) | t2 ∈ T2 }.

The operation T1 ·pσ T2 is called the σ-product of T1 and T2 in [6]. Note that the
parallel concatenation of tree languages could not be defined by defining first the
concatenation of individual trees (as was done for sequential concatenation in (1))
and then taking union over sets of trees. For trees t1, t2 ∈ FΣ, t1 ·pσ t2 is an individual
tree while t1 ·sσ t2 is a set of trees. In the case where no leaf of t2 is labeled by σ,
t1 ·sσ t2 = ∅ and t1 ·pσ t2 = t2.
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Figure 1: A tree in T s,t,∗σ (a) and in T s,b,∗σ (b). Here t0, t1, . . . ti+1 are trees in T .

When considering bottom-up tree automata operating on unary trees, both of
the above definitions reduce to the usual concatenation of string languages: when
processing T1 ◦T2, ◦ ∈ {·sσ, ·pσ}, the automaton reads first an element of T1 and then
an element of T2.

The parallel concatenation operation is associative, however, sequential concate-
nation is nonassociative, as observed below in Example 1. The nonassociativity of
sequential concatenation means, in particular, that there are two variants of the
iteration of the operation.

For σ ∈ Σ and T ⊆ FΣ, we define the kth sequential top-down σ-power of T ,
k ≥ 0, by setting T s,t,0σ = {σ}, and T s,t,kσ = T ·sσ T s,t,k−1

σ , when k ≥ 1. The
sequential top-down σ-star of T is then

T s,t,∗σ =
⋃
k≥0

T s,t,kσ .

Similarly, the kth sequential bottom-up σ-power of T , is defined by setting T s,b,0σ =
{σ}, T s,b,1σ = T and T s,b,kσ = T s,b,k−1

σ ·sσ T , when k ≥ 2. The sequential bottom-up
σ-star of T is

T s,b,∗σ =
⋃
k≥0

T s,b,kσ .

Note that the definition of bottom-up σ-powers explicitly sets T s,b,1σ to be equal to
T . This is done because T s,b,0σ ·sσ T can be a strict subset of T if some trees of T
contain no occurrences of σ. Figure 1 illustrates the definitions of top-down star
and bottom-up star.

Example 1. It is easy to see that sequential concatenation is non-associative.
Consider a ranked alphabet Σ determined by Σ2 = {ω}, Σ0 = {σ} and let t =
ω(σ, σ). Now t ·sσ t = {ω(ω(σ, σ), σ), ω(σ, ω(σ, σ))} and t1 = ω(ω(σ, σ), ω(σ, σ)) ∈
t ·sσ (t ·sσ t) but, on the other hand, t1 6∈ (t ·sσ t) ·sσ t.

To illustrate the difference of top-down and bottom-up star, respectively, con-
sider T = {ω(σ, σ)}. We note that T s,t,∗σ = FΣ and

T s,b,∗σ = {r ∈ FΣ | each non-leaf node of r has at least one leaf as a child }.
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Note that with T = {ω(σ, σ)}, T s,b,kσ , k ≥ 0, consists of trees of height (exactly) k.
The trees of T s,b,∗σ all consist of a path labeled by binary symbols ω and all children
of nodes of the path that “diverge” from the path are labeled by the leaf symbol σ.

The following characterization of bottom-up σ-star as the smallest set closed
under concatenation with T from the right follows directly from the definition of
bottom-up star. The characterization will be used in the next section.

Lemma 1. For σ ∈ Σ0 and T ⊆ FΣ, define clσ(T ) as the smallest set S ⊆ FΣ

such that (i) T ∪ {σ} ⊆ S, and (ii) t1 ·sσ t2 ∈ S for every t2 ∈ T and t1 ∈ S. Then
clσ(T ) = T s,b,∗.

Completely analogously we can define, for T ⊆ FΣ, the parallel σ-star of T , de-
noted T p,∗σ . Since parallel concatenation is associative, we do not need to distinguish
the bottom-up and top-down variants. However, we note that with T = {ω(σ, σ)},
T p,∗σ consists of all balanced trees over the ranked alphabet Σ, where Σ2 = {ω},
Σ0 = {σ}. Since the “straightforward” definition of Kleene-star based on parallel
concatenation does not preserve regularity, in fact, Gécseg and Steinby [6] define a
regularity preserving σ-iteration operation by defining the kth (k ≥ 1) power of T
by parallel-concatenating the union of all the ith powers of T , 0 ≤ i ≤ k − 1, with
the tree language T .

It is easy to verify that the definition of the σ-iteration operation (based on par-
allel concatenation) given in section 7 of [6] coincides with the sequential top-down
star defined above, and in the following we will focus only on the sequential variants
of iterated concatenation. The top-down (respectively, bottom-up) σ-powers and
σ-star of a tree language T are in the following denoted T t,kσ , (k ≥ 0), and T t,∗σ
(respectively, T b,kσ and T b,∗σ ), that is, we drop the superscript “s” in the notation.

3 Bottom-up and top-down star: state complexity

We establish for the bottom-up star operation a tight state complexity bound that is
of a different order of magnitude than the state complexity of Kleene-star for string
languages. First we give an upper bound for the state complexity of bottom-up
star.

Lemma 2. Suppose that tree language L is recognized by a DTA with n states. For
σ ∈ Σ0, the tree language Lb,∗σ can be recognized by a DTA with (n+ 3

2 )2n−1 states.

Proof. Let A = (Σ, Q,QF , gA) be a DTA with n states recognizing the tree
language L. Without loss of generality we assume that σgA is defined, because
otherwise

L(A)b,∗σ = L(A)b,0σ ∪ L(A)b,1σ = {σ} ∪ L(A),

and it is easy to construct a DTA with n+ 1 states that recognizes L(A) ∪ {σ}.
Choose three disjoint subsets of 2Q × (Q ∪ {dead}) by setting

(i) P1 = {(S, q) | S ∈ 2Q, {q, σgA} ⊆ S, q ∈ QF },
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(ii) P2 = {(S, q) | S ∈ 2Q, q ∈ S ∩ (Q−QF )},

(iii) P3 = {(S, dead) | S ∈ 2Q, S 6= ∅}.

Here dead is a new element not in Q. Now define a DTA B = (Σ, P, PF , gB) where

P = P1 ∪ P2 ∪ P3 ∪ {pnew}, PF = {(S, q) ∈ P | S ∩QF 6= ∅} ∪ {pnew}.

We define the transitions of B by setting, σgB = pnew, and for τ ∈ Σ0 − {σ},

τgB =

 ({τgA , σgA}, τgA) if τgA ∈ QF ,
({τgA}, τgA) if τgA ∈ Q−QF ,
undefined, if τgA is undefined.

(2)

To define transitions on Σm, m ≥ 1, we view pnew as the state ({σgA}, σgA), and
hence every state of B is represented in the form (S, q), S ⊆ Q, q ∈ Q. (Note that
pnew is not the same as ({σgA}, σgA), because the former is an accepting state and
the latter need not be accepting.) For τ ∈ Σm and (S1, q1), . . . , (Sm, qm) ∈ P , we
first denote

X =

m⋃
i=1

{τgA(q1, . . . , qi−1, z, qi+1, . . . , qm) | z ∈ Si}

Now we define
τgB ((S1, q1), . . . , (Sm, qm)) (3)

to be equal to

(i) (X ∪ {σgA}, τgA(q1, . . . , qm)) if τgA(q1, . . . , qm) ∈ QF ,

(ii) (X, τgA(q1, . . . , qm)) if τgA(q1, . . . , qm) ∈ Q−QF ,

(iii) (X,dead) if X 6= ∅ and τgA(q1, . . . , qm) is undefined.

In the remaining case, where X = ∅ and τgA(q1, . . . , qm) is undefined, also (3) is
undefined. Note that if for some 1 ≤ i ≤ m, qi = dead, this implies automatically
that τgA(q1, . . . , qm) is undefined.

Recall that if (S, q), S ⊆ Q, q ∈ Q is a state of B then q ∈ S and, furthermore,
if q ∈ QF then σgA ∈ S. The transitions of gB preserve this property and the
state in (i) (in (ii), (iii), respectively) is an element of P1 (an element of P2, P3,
respectively).

The second component of the state of B simply simulates the computation of A
on the current subtree, and goes to the state dead if the next state of A is undefined.
Intuitively, the first component of the state of B consists of all states that A could
reach at the current subtree t′ assuming that

in t′ at most one subtree of L(A)b,kσ , k ≥ 0, has been replaced by a leaf σ. (4)

Inductively, assume that B assigns to the root of tree ti a state (Si, (ti)gA) where
Si ⊆ Q satisfies the property (4) for ti, i = 1, . . . ,m. Now the rule (3) assigns to the
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Figure 2: The DFA A from [24] with added c-transitions.

root of tree t = τ(t1, . . . , tm) a state (S, q) where q = τgA((t1)gA , . . . , (tm)gA) and S
consists of all states that A could reach at the root of t assuming the computation
uses as arguments q1, . . . , qm where (by the definition of the set X) at most one of
the qi’s can be replaced by an arbitrary state from Si, 1 ≤ i ≤ m. This means that
the state (S, q) again satisfies the property (4) for the tree t.

The choice of the set of final states PF and Lemma 1 now imply that L(B) =
L(A)b,∗σ .

It remains to estimate the worst-case size of B. We note that if QF = {σgA},
in B only states of the form ({q}, q), q ∈ Q, can be reachable, and pnew can be
identified with ({σgA}, σgA). In this case L(A)b,∗σ has a DTA with n states. Thus,
without loss of generality we assume that QF contains a final state distinct from
σgA .

We note that |P1| = |QF | · 2n−2, |P2| = |Q − QF | · 2n−1 and |P3| = 2n − 1.
Here the estimation of the size of P1 relies on the above observation that we can
exclude the possibility QF = {σgA}. Thus, the cardinality of P1 ∪P2 ∪P3 ∪ {pnew}
is maximized as (n+ 3

2 )2n−1 when |QF | = 1.
The upper bound of Lemma 2 is of a different order of magnitude than the

known state complexity of Kleene-star for string languages [24]. It remains to
verify that the bound of Lemma 2 can be reached in the worst case.

Figure 2 represents a DFA A used in [24, 25] for the lower bound construction
for Kleene-star where we have added transitions on the symbol c. Note that A is
an incomplete DFA since the c transition on 0 is undefined. Based on A we define
in the following a tree automaton MA.

Choose Σ = Σ0 ∪ Σ1 ∪ Σ2 where Σ0 = {e}, Σ1 = {a, b, c} and Σ2 = {a2, d2}.
We define a DTA MA = (Σ, QA, QA,F , gA), where QA = {0, 1, . . . , n− 1}, QA,F =
{n− 1} and the transition function gA is defined by setting:

(i) egA = 0, cgA(i) = i, 1 ≤ i ≤ n− 1,

(ii) agA(i) = (a2)gA(i, i) = i+ 1, 0 ≤ i ≤ n− 2,
agA(n− 1) = (a2)gA(n− 1, n− 1) = 0,

(iii) bgA(i) = i+ 1, 1 ≤ i ≤ n− 2, bgA(j) = 0, j ∈ {0, n− 1},

(iv) (d2)gA(0, i) = i, i = 0, 2, 3, . . . , n− 1, (d2)gA(1, 1) = 1.

All transitions of gA not listed above are undefined. Intuitively, the construction
of MA can be, roughly speaking, explained as follows. Denote by Td the subset of
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FΣ consisting of trees without any occurrences of the binary symbol d2, thus the
only binary symbol in trees of Td is a2. On a tree t ∈ Td, the DTA MA simulates
the computation of A on each string of symbols starting from a node of height
one, where occurrences of a2 are “interpreted” simply as a. The computations on
different paths verify that for any u ∈ dom(t) labeled by a2 and any nodes v1 and
v2 of height one below u, the simulated computations started from v1 and v2 agree
at u.

Note that the original DFA has no transitions on d, and the transitions on d2

have been added for a technical reason that will be used in the proof of Lemma 4.
Also, the above intuitive description is not completely precise on how MA operates
on binary symbols a2 where one child is a leaf (that gets assigned the state 0)
and the other child is not a leaf. The following Lemmas 3 and 4 rely only on
the formal definition of the transition function gA of MA. The above intuitive
description of the operation of MA is intended only as a guide that may be useful
in understanding the operation of the DTA constructed to recognize the bottom-
up e-star of L(MA). Finally, note that the d2-transitions will be needed only
to establish the reachability of one particular state, and in most of the technical
constructions the above intuitive description of the operation of MA (based on the
DFA A of Figure 2) can be sufficient.

Using the construction of the proof of Lemma 2, based on MA we construct
a DTA MB = (Σ, QB , QB,F , gB) that recognizes the tree language L(MA)b,∗e . We
make the convention that the sink-state “dead” used in the proof is denoted by n.
Thus the set of states QB consists of the special state pnew assigned to e and all
pairs

(P, q), P ⊆ {0, . . . , n− 1}, 0 ≤ q ≤ n, (5)

where 0 ≤ q ≤ n − 1 implies q ∈ P , q = n − 1 implies 0 ∈ P and q = n implies
P 6= ∅. The number of pairs as in (5) is (n+ 3

2 )2n−1 − 1.
In the following two lemmas we establish that MB is a minimal DTA. That

is, first we show that all states of QB are pairwise inequivalent with respect to
the Myhill-Nerode equivalence relation extended to trees. Second we show that all
states of QB are reachable, that is, for each q ∈ QB there exists t ∈ FΣ such that
tgB = q. The proof of our first lemma assumes that all states are reachable which
will be established next in Lemma 41.

Lemma 3. All states of MB are pairwise inequivalent.

Proof. For the sake of convenience, we assume that we have already proven that
all states of MB are reachable (Lemma 4). Thus, in order to distinguish two states
with respect to the Myhill-Nerode relation, we can use an arbitrary configuration
of MB where one leaf is replaced by the given states. More formally, in order to
show that two distinct states of QB , p1 and p2, are inequivalent, it is sufficient to
find t ∈ FΣMB [x] such that the computation of MB started from the configuration
t(x ← p1) accepts if and only if the computation started from the configuration
t(x← p2) does not accept.

1The proof of Lemma 4 does not rely on Lemma 3.
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We first show that any two distinct states (S1, q1) and (S2, q2) as in (5) are not
equivalent. After that we consider the special state pnew. We begin by considering
the case where neither of q1 or q2 is equal to n (which was used to denote the dead
state of MA).

Case 0 ≤ q1, q2 ≤ n− 1: (a) Assume S1 6= S2 and s ∈ S1−S2 (The other possibility
is completely symmetric.) After reading n − s − 1 unary symbols a, a final
state is reached from state (S1, q1). On the other hand, since (S2, q2) is as
in (5), q2 6= s. This means that the computation C that begins with (S2, q2)
and reads n − s − 1 unary symbols a ends with a non-final state. Note that
at some point during the computation C, the second component may become
n − 1 which adds an element 0 to the first component. However, at the end
of the computation C the first component cannot contain n− 1.

(b)(i) Next we consider the case S1 = S2 = S, {0, 1, . . . , n − 2} 6⊆ S and
q1 6= q2. According to the definition of the states (5), q1, q2 ∈ S. Choose
p ∈ {0, 1, . . . , n−2}−S and consider a tree t1 = a2n−2−q1a2(({q1, p}, p), x) ∈
FΣMB [x]. Since p ∈ {0, 1, . . . , n− 2}, ({q1, p}, p) is a legal state (5). Consider
the computation of MB on tree t1(x ← (S, q1)). Since p 6∈ S the state
({q1 + 1}, n) is assigned to the root of the subtree a2(({q1, p}, q1), (S, q1)).
(Here addition is modulo n.) After this the computation reads the 2n−2−q1

unary symbols a in t1 and ends in an accepting state. On the other hand,
consider the computation of MB on t1(x ← (S, q2)). Since p 6∈ S and q2 6∈
{q1, p}, the transition (a2)gB on arguments ({q1, p}, p), (S, q2)) is undefined
and the computation does not accept.

(b)(ii) Consider S = {0, 1, . . . , n− 2}, and hence we know that q1, q2 6= n− 1.
From state (S, qi) by reading a unary symbol b we get (S′, q′i), where S′ =
{0, 2, . . . , n − 2, n − 1}. Since q1, q2 6= n − 1, q′1 6= q′2 and the states (S′, q′1)
and (S′, q′2) are distinguished as in b(i) above.

(b)(iii) Consider then the possibility S = {0, 1, . . . , n − 1} and q1 6= q2. If
{q1, q2} 6= {0, n − 1}, by reading a unary symbol b from (S, q1) and (S, q2),
respectively, we get two states (S′, q′1), (S′, q′2), q′1 6= q′2, that are distinguished
as in the previous case2. Next consider the case {q1, q2} = {0, n−1}, and first
assume that n ≥ 3. By reading a unary symbol a we obtain states (S, q1 + 1),
(S, q2 + 1) where q1 + 1 6= q2 + 1 and qi + 1 6= n − 1, i = 1, 2 (addition is
modulo n). The states (S, q1 + 1) and (S, q2 + 1) can be distinguished as in
the previous cases.

Finally consider the possibility n = 2 and {q1, q2} = {0, 1}. From state
({0, 1}, 1) by reading unary symbols ca, we reach the accepting state ({0, 1}, 0).
On the other hand, a computation starting from ({0, 1}, 0) by reading the
unary symbols ca reaches the nonaccepting state ({0}, 2).

Case where q2 = n: First assume q1 6= n. Choose t2 ∈ FΣMB [x] by setting t2 =
an−2a2(({0, 1}, 1), bn−1(x)). Since n − 1 consecutive b-transitions take any

2The b-transitions of A violate injectivity only on states 0 and n− 1.
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state of A to state 0, the computation of MB on t2(x← (S1, q1)) assigns state
({0}, 0) to the root of the subtree bn−1((S1, q1)). Then the state ({1}, n) is
reached at the root of the subtree a2(({0, 1}, 1), bn−1((S1, q1))). A final state
({n − 1}, n) is reached after reading further n − 2 unary symbols a. On the
other hand, in the computation of MB on t2(x ← (S2, n)) the state ({0}, n)
is assigned to the root of the subtree bn−1((S2, n)). When reading the binary
symbol a2 with arguments ({0, 1}, 1) and ({0}, n) the computation step of
MB is undefined, and hence MB does not accept t2(x← (S2, n)).

Finally consider the case where also q1 = n. Thus S1 6= S2 and choose
s ∈ S1−S2. After reading n− s− 1 unary symbols a, a final state is reached
from state (S1, n), and the same computation does not reach a final state
from (S2, n).

It remains to show that pnew is not equivalent with any state (S, q) as in (5). Since
pnew is final, it is sufficient to consider states where n − 1 ∈ S. Thus, by reading
a unary symbol c from state (S, q) we get a state (S′, q′), where n − 1 ∈ S′ and
0 ≤ q′ ≤ n. On the other hand, computations starting from pnew are identical
to computations starting from ({0}, 0) and hence a computation step with unary
symbol c is undefined.

Before the next lemma we introduce the following notation. For a unary tree
representing a configuration of MB , t = z1(z2(. . . zm(z0) . . .)) ∈ FΣMB , we define
word(t) = zmzm−1 . . . z1. Note that word(t) consists of the sequence of symbols
labeling the nodes of t bottom-up, and the label of the leaf is not included. In the
following when we refer to word(t) of a tree t, without further mention, this implies
that t is a unary tree.

Lemma 4. All states of MB are reachable.

Proof. The transition function of MB assigns the special state pnew to leaf symbol
e. Recall that from pnew the computation of MB continues as from ({0}, 0). Thus,
after reading n− 1 unary symbols a we reach the state ({0, n− 1}, n− 1).

Inductively, we assume that a state ({0, 1, 2, . . . , k, n−1}, n−1), 0 ≤ k < n−2,
is reachable. We show that ({0, 1, 2, . . . , k+1, n−1}, n−1) is also reachable. From
state ({0, 1, 2, . . . , k, n− 1}, n− 1), we reach the state Z1 = ({1, 2, . . . , k + 1, 0}, 0)
by reading a unary symbol a. By our assumption on k, k + 1 < n− 1. Thus from
Z1 we reach the state Z2 = ({2, 3, . . . , k+2, 0}, 0) by reading b. Since k < n−2, all
elements of {2, 3, . . . , k + 2, 0} are distinct (that is, the b-transition does not take
k+1 to 0). After reading n−1 symbols a, the state ({1, 2, . . . , k+1, n−1, 0}, n−1)
is reached. The element 0 is added to the first component as the second component
becomes n− 1.

By the above inductive claim we now know that the state ({0, 1, . . . , n− 2, n−
1}, n − 1) is reachable. After reading i + 1 a′s, state ({0, 1, . . . , n − 2, n − 1}, i) is
reached, 0 ≤ i ≤ n− 1.

Inductively, assume that all states (S, j), where |S| ≥ k + 1, 1 ≤ k < n and
0 ≤ j ≤ n − 1 as in (5) are reachable. We show that then also states where
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|S| = k are reachable. Let (S, si) where S = {s1, s2, . . . , sk}, 1 ≤ i ≤ k and
0 ≤ s1 < s2 < . . . < sk ≤ n − 1 be an arbitrary state where |S| = k. Recall that
in states of MB , when the second component is not n, it must belong to the first
component.

In the below cases (a) and (b), numbers z ≥ n are interpreted as the unique
element of {0, 1, . . . , n− 1} congruent to z modulo n.

(a-i) First consider the case where si < n − 1. The following discussion assumes
n ≥ 3, and the case n = 2 is handled in case (a-ii). Since |S| = k < n,
in the “cyclical sequence” of s1, . . . , sk, there exist two consecutive numbers
with difference at least two, where the difference between the numbers sk and
s1 is counted modulo n. More formally, either there exists 1 ≤ j ≤ k − 1
such that sj+1 − sj ≥ 2 or n + s1 − sk ≥ 2. In the latter case we choose
j = k. In the following we assume that i ≤ j. The case where i > j is
similar and only some notations are changed. According to the inductive
assumption, the state Z3 = ({0, n − 1} ∪ S1, n + si − sj − 1) where S1 =
{sj+1−sj−1, sj+2−sj−1, . . . , sk−sj−1, n+s1−sj−1, n+s2−sj−1, . . . , n+
sj−1 − sj − 1} is reachable. Note that since 0 ≤ s1 < s2 < . . . < sk ≤ n − 1
and sj+1 − sj ≥ 2, |S1 ∪ {0, n − 1}| = k + 1. After reading from state
Z3 a unary symbol b, we get the state Z4 = ({0} ∪ S2, n + si − sj) where
S2 = {sj+1−sj , sj+2−sj , . . . , sk−sj , n+s1−sj , n+s2−sj , . . . , n+sj−1−sj}.
Since 0 ≤ s1 < s2 < . . . < sk ≤ n − 1, 0 /∈ S2. From state Z4 we reach the
state ({sj , sj+1, sj+2, . . . , sk, n+ s1, n+ s2, . . . , n+ sj−1}, n+ si) by reading
sj symbols a. The latter state is the state (S, si) that we wanted.

(a-ii) Assume that si < n − 1 and n = 2. Now k = 1, and the only legal state
(S, si), |S| = k = 1, 0 ≤ si < 1, is ({0}, 0) (because we know that si ∈ S).
The state ({0}, 0) is reached from state pnew by reading unary symbols ab.

(b) Now consider the case where si = n − 1, and thus i = k. This implies that
0 ∈ S, and we have si(= sk) = n − 1 and s1 = 0. Since k < n, there
exists 1 ≤ j ≤ k − 1 such that sj+1 − sj ≥ 2. According to the inductive
assumption, the state Z5 = ({0, n − 1} ∪ S3, n − 2 − sj) is reachable, where
S3 = {sj+1 − sj − 1, sj+2 − sj − 1, . . . , sk−1 − sj − 1, n − 1 − sj − 1, n +
0 − sj − 1, n + s2 − sj − 1, . . . , n + sj−1 − sj − 1}. Similarly as in (a) above
we observe that |S3 ∪ {0, n − 1}| = k + 1. From state Z5 we get the state
Z6 = ({sj+1 − sj , sj+2 − sj , . . . , sk−1 − sj , n − 1 − sj , n + 0 − sj , n + s2 −
sj , . . . , n+ sj−1 − sj , 0}, n− 1− sj) by reading a symbol b. After reading sj
symbols a, from state Z6 we reach the state ({sj+1, sj+2, . . . , sk−1, n− 1, n+
0, n+s2, . . . , n+sj−1, sj}, n−1). This means that we have reached the desired
state (S, n− 1) with S = {0, s2, . . . , sk−1, n− 1}.

Up to now, we have shown that all that states (S, j), S ⊆ {0, . . . , n − 1},
0 ≤ j ≤ n − 1 as in (5) are reachable. Next we will show that the states (S, n),
S ⊂ {0, 1, . . . , n− 1} are reachable.

We know that ({0, 1, . . . , n − 1}, 0) is reachable and from this state we get
Z7 = ({1, . . . , n − 1}, n) by reading a unary symbol c. From Z7 we get all states
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(S, n), |S| = n−1 by cycling the elements of S using a-transitions. Now inductively,
assume that all states (S, n), n > |S| ≥ k+ 1, k < n− 1 are reachable. Consider an
arbitrary state (S, n) where |S| = k. Choose 0 ≤ j ≤ n−1 such that j 6∈ S. By our
inductive assumption the state (S ∪ {j}, n) is reachable. From this state we reach
(S, n) by reading the sequence of unary symbols an−jcaj . Note that transitions on
a always add one modulo n to states of S and the c-transition deletes the element
0 and is the identity on all other elements.

It remains to consider the state ({0, 1, . . . , n − 1}, n). We know that states
({0, 1}, 0) and ({0, 1, . . . , n − 1}, 1) are reachable. According to the definition
of d2-transitions of MA, the d2-transition of MB with arguments ({0, 1}, 0) and
({0, 1, . . . , n− 1}, 1) gives the state ({0, 1, . . . , n− 1}, n).

Note that above the transitions on d2 were needed only to establish that the
state ({0, 1, . . . , n− 1}, n) is reachable in MB . The transitions of d2 in MA did not
have a similar intuitive interpretation as the other transitions based on the DFA
A, and they were introduced only for the technical purpose needed at the end of
the proof of Lemma 4.

By Lemmas 2, 3 and 4 we have a tight bound for the state complexity of bottom-
up star that differs by an order of magnitude from the known bound for Kleene-star
of string languages [4, 24].

Theorem 1. If A is a DTA with n states, the bottom-up star of L(A) can be
recognized by a DTA with (n+ 3

2 ) · 2n−1 states. For every n ≥ 2, there exists an n-
state DTA A and σ ∈ Σ0 such that the minimal DTA for L(A)b,∗σ has (n+ 3

2 ) ·2n−1

states.

Next we give a tight state complexity bound for top-down star of regular tree
languages. The top-down iteration of the concatenation operation allows the re-
placement of subtrees at arbitrary locations and, as can perhaps be expected, the
state complexity is similar as for the Kleene-star of string languages. However, it
should be noted that we are considering incomplete automata and the known state
complexity bounds for ordinary DFAs are stated in terms of complete DFAs [24, 25].
The state complexity results for complete and incomplete DFAs, respectively, differ
slightly for operations such as union or concatenation [24, 18].

Theorem 2. Let A = (Σ, QA, QA,F , gA) be a DTA with n states and σ ∈ Σ0. The
top-down σ-star of the tree language recognized by A, L(A)t,∗σ , can be recognized by
a DTA B with 3

4 · 2
n states and this bound can be reached in the worst case.

Proof. The construction of B = (Σ, QB , QB,F , gB) is similar as the construction
used to recognize the Kleene-star of a string language. The set of states QB consists
of nonempty subsets of P ⊆ QA such that P ∩ QA,F 6= ∅ implies σgA ∈ P , and
additionally QB has one new state qnew that is reached at leaves labeled by σ (the
symbol that defines the star operation). Note that the state qnew is used as a copy
of σgA because the latter state is not, in general, accepting. The cardinality of QB
is maximized as 2n−1−2n−2 +1 = 3

4 ·2
n by choosing |QA,F | = 1. We leave details

of the construction to the reader.
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When restricted to unary trees, the top-down (or bottom) star operation coin-
cides with Kleene-star on string languages. Theorem 5.5 of [24] gives a complete
DFA C with n states such that the state complexity of the Kleene-star of L(C) is
3
4 · 2

n. Furthermore, C does not have a dead state, which means that the same
lower bound construction works for incomplete DFAs.

4 Kleene-Star Combined with Concatenation

The worst case state complexity of star–of–concatenation of string languages is
known [2]. However, already in the case of string languages determining the precise
state complexity of combined operations is often quite involved [2, 10].

For tree languages we consider a restricted case of Kleene-star combined with
concatenation where one of the arguments for concatenation is the set of all trees
FΣ. For some of the combined operations we get tight bounds that are significantly
lower than the function composition of the state complexity of the individual op-
erations. Altogether there are four combinations of bottom-up star (or top-down
star) with the parallel or sequential concatenation with the set of all trees. The
combined operations for bottom-up star are as follows:

(FΣ ·pσ L)b,∗σ , (L ·pσ FΣ)b,∗σ , (L ·sσ FΣ)b,∗σ , and (FΣ ·sσ L)b,∗σ .

It turns out that, for the first and the last of the listed combined operations, the tree
automaton constructions can be significantly simplified by relying on general obser-
vations about the (parallel or sequential) concatenation of a general tree language
with the set of all trees.

Lemma 5. Let L ⊆ FΣ and σ ∈ Σ0. Then

(i) (FΣ ·pσ L)b,∗σ = (FΣ ·pσ L)t,∗σ = FΣ ·pσ L ∪ {σ},

(ii) (L ·sσ FΣ)b,∗σ = (L ·sσ FΣ)t,∗σ = L ·sσ FΣ ∪ {σ}.

Using Lemma 5, we get tight state complexity bounds for two combined oper-
ations involving bottom-up star and top-down star, respectively.

Theorem 3. Let A be a DTA with n states and σ ∈ Σ0. Then, (FΣ ·pσ L(A))b,∗σ
can be recognized by a DTA with 2n−1 + 1 states and this bound can be reached in
the worst case.

Proof. Let A = (Σ, QA, QA,F , gA) be a DTA with n states recognizing the tree
language L. Without loss of generality we assume that σgA is defined, because
otherwise FΣ ·pσ L(A) = L(A), and (FΣ ·pσ L(A))b,∗σ = L(A) ∪ {σ} and we can easily
construct a DTA with n+ 1 states to recognize L(A) ∪ {σ}.

We define a DTA B = (Σ, QB , QB,F , gB) where

QB = 2QA ∪ {qnew}, QB,F = {P ∈ QB | P ∩QA,F 6= ∅} ∪ {qnew},
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and the transitions of gB are defined as below. Note that qnew can be viewed as
a copy of the state {σgA}. The reason why we have an additional state qnew is
because qnew needs to be an accepting state and {σgA} is not accepting, in general.

For τ ∈ Σ0, τ 6= σ, τgB = {τgA , σgA}, and, σgB = qnew. For P ∈ QB , define
P ⊆ QA by

P =

{
P if P ∈ 2QA ,

{σgA} if P = qnew.

Now for τ ∈ Σk, k ≥ 1, and Pi ∈ QB , i = 1, . . . , k, define

τgB (P1, . . . , Pk) = τgA(P1, . . . , Pk) ∪ {σgA}.

We leave to the reader the details of verifying that B recognises the tree lan-
guage FΣ ·pσ L(A) ∪ {σ}. Among the states P ∈ QB , the sets where σgA /∈ P are
unreachable. Therefore, the number of reachable states of B is at most 2n−1 + 1.

For the lower bound, we can modify the corresponding construction by Yu et
al. [25] for string languages. The proof of Theorem 2.1 of [25] gives an n-state DFA
C3 over alphabet Γ = {a, b} such that

Γ∗ · L(C) = {w ∈ Γ∗ | w = ubv, |v|a ≡ n− 2 (mod n− 1)}.

and verifies that the state complexity of Γ∗ ·L(C) is 2n−1. We note that the empty
string is not in Γ∗ · L(C). Thus, when C is interpreted as a tree automaton C ′

with unary symbols a, b and a nullary symbol σ, a tree automaton recognizing
FΣ ·pσ L(C ′) ∪ {σ} needs one additional state for the leaf symbol σ.

Now by Lemma 5 (i) and Theorem 3 we get a tight state complexity bound for
the corresponding combined operation involving top-down star.

Corollary 1. If L ⊂ FΣ is recognized by a DTA with n states, for any σ ∈ Σ0, the
tree language (FΣ ·pσ L)t,∗σ has a DTA with 2n−1 + 1 states and this number of states
is necessary in the worst case.

Theorem 4. Let A be a DTA with n states and σ ∈ Σ0. Then, (L(A) ·sσ FΣ)b,∗σ
can be recognized by a DTA with n+ 2 states and this bound can be reached in the
worst case.

Proof. Let A = (Σ, QA, QA,F , gA) be a DTA with n states recognizing the
tree language L. We define a DTA B = (Σ, QB , QB,F , gB) for the tree language
(L(A) ·sσ FΣ)b,∗σ = L(A) ·sσ FΣ ∪ {σ}. The following construction assumes that σgA
is defined and σgA 6∈ QA,F . If either of these two conditions is not satisfied, the
construction is similar and simpler (in both cases B can do with one fewer state).

Choose

QB = QA ∪ {qσ, qdummy}, QB,F = QA,F ∪ {qσ},

3In the notations of [25], the DFA C is called B.
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and the transitions of gB are defined as below. For τ ∈ Σ0,

τgB =


qσ if τ = σ,

τgA if τ 6= σ and τgA is defined,

qdummy otherwise.

Define g : QB → QB by setting g(qσ) = σgA and g(q) = q when q 6= qσ. Recall
that we assumed that σgA is defined. Let qfinal be an arbitrary but fixed element
of QA,F . Now for τ ∈ Σk, k ≥ 1, and pi ∈ QB , i = 1, . . . , k, define

τgB (p1, . . . , pk) =


qfinal if ∃j, 1 ≤ j ≤ k where pj ∈ QA,F ,
τgA(f(p1), . . . , f(pk)) if p1, . . . pk ∈ (QA −QA,F ) ∪ {qσ}

and τgA(f(p1), . . . , f(pk)) is defined,

qdummy in all other cases.

The DTA B simulates the computation of A up to a point when it reaches a
final state, and having reached a final state is marked by entering the state qfinal.
The state qσ is entered only in a leaf labeled by σ and for transitions on symbols
of Σk, k ≥ 1, qσ is treated as σgA . The “copy” of the state σgA is needed because
B has to accept σ and σgA is not accepting. If the computation of A reaches an
undefined transition (before entering a final state), B enters the state qdummy. Thus
it is clear that B recognizes the set trees having a subtree in L(A) and additionally
the tree consisting of the single leaf labeled by σ.

Next we show that the upper bound n+ 2 is tight. Choose Σ = Σ0 ∪ Σ1 ∪ Σ2,
where Σ0 = {c}, Σ1 = {a} and Σ2 = {b}. We define a DTA C = (Σ, QC , QC,F , gC),
where QC = {0, 1, . . . , n − 1}, QC,F = {n − 1}, and the transition function gC is
defined by setting:

cgC = 0, agC (i) = i+ 1 (mod n) for 0 ≤ i ≤ n− 1.

All transitions not listed above are undefined. In particular, note that all transitions
for the binary symbol b are undefined. Based on C, we construct a DTA D =
(Σ, QD, QD,F , gD) recognizing (L(A) ·sc FΣ)b,∗c = L(A) ·sc FΣ ∪ {c}, as described
above. Here QD = QC ∪ {qc, qdummy}, QD,F = QC,F ∪ {qc}.

We verify that all states of D are reachable and pairwise inequivalent, and none
of the states is a dead state. The state 1 is reached by reading the tree a(c). Then
the cyclic transitions on unary symbols a guarantee that states 2, 3, . . . n and 0 are
also reachable. The state qc is reached in a leaf labeled by c and qdummy is reachable
because C has undefined transitions.

States 0 ≤ i < j ≤ n − 1 are not equivalent because by reading n − 1 − i
unary symbols a the state i ends in the accepting state n − 1 and by reading the
same sequence of unary symbols j does not enter an accepting state. By the same
reasoning qc is not equivalent to any state 1 ≤ j ≤ n. The state qc is not equivalent
with 0 because the former is a final state and the latter is not. The state qdummy

cannot reach a final by reading a sequence of a’s while all other states have this
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property. Finally to verify that none of the states is a dead state, above we have
already observed that the states 0 ≤ i ≤ n − 1 and qc can reach a final state
by reading a sequence of a’s. According to the definition of the transitions of D,
bgD (qdummy, n − 1) = n − 1 and it follows that also qdummy is not a dead state.
(Note that in the DTA D we must have qfinal = n− 1 since n− 1 is the only final
state of C.)

We have verified that the minimal DTA for L(A) ·sc FΣ ∪ {c} has n + 2 states
and this concludes the proof.

In the construction used for the lower bound of Theorem 4, the symbol b of
rank two has no defined transitions in the original DTA C. However, it can be
noted that the tight bound cannot be reached by tree languages over a ranked
alphabet that has no symbols of rank greater than one. If the ranked alphabet has
only unary and nullary symbols, in the DTA B constructed to recognize the tree
language (L(A) ·sσ FΣ)b,∗σ the state qdummy will always be a dead state.

Again using Lemma 5 (ii) and Theorem 4 we get a tight bound for the same
combined operation involving top-down star:

Corollary 2. For a tree language L recognized by a DTA with n states and σ ∈ Σ0,
the tree language (L ·sσ FΣ)t,∗σ has a DTA with n+2 states and n+2 states is needed
in the worst case.

For establishing an upper bound for the combined operations (L ·pσ FΣ)b,∗σ and
(L ·pσ FΣ)t,∗σ we first consider a construction for the parallel concatenation of L and
FΣ. If A is an n-state DFA on strings over alphabet Γ, the language L(A) · Γ∗ can
be recognized by a DFA with n states. For the parallel concatenation of an n-state
tree language and FΣ we use 2n states.

Lemma 6. Let A be a DTA with n states and f final states and σ ∈ Σ0. Then,
L(A) ·pσ FΣ can be recognized by a DTA with 2n+ 1− f states.

Proof. Let A = (Σ, QA, QA,F , gA). We construct a DTA B = (Σ, QB , QB,F , gB)
for the tree language L(A) ·pσ FΣ. Note that if σ ∈ L(A), then L(A) ·pσ FΣ = FΣ.
Without loss of generality we can assume that σgA 6∈ QA,F . Choose

QB = {0, 1} × (QA −QA,F ) ∪ {0} × (QA,F ∪ {qAdead}),

where qAdead is a new element not in QA, QB,F = {(0, q) | q ∈ QA ∪ {qAdead}} and
the transitions of gB are defined as below. We set σgB = (1, σgA) if σgA is defined,
and σgB is undefined otherwise. For τ ∈ Σ0, τ 6= σ,

τgB =

{
(0, τgA) if τgA is defined,

(0, qAdead) if τgA is not defined.

For τ ∈ Σk, k ≥ 1, and x1, . . . , xk ∈ {0, 1}, q1, . . . , qk ∈ QA ∪ {qAdead} we define
τgB ((x1, q1), . . . , (xk, qk)) to be

(i) (1, τgA(q1, . . . , qk)) if there exists 1 ≤ i ≤ k such that xi = 1 and
τgA(q1, . . . , qk) ∈ Q−QA,F ,
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(ii) (0, τgA(q1, . . . , qk)) if τgA(q1, . . . , qk) ∈ QA,F ,

(iii) (0, τgA(q1, . . . , qk)) if xi = 0, i = 1, . . . , k and τgA(q1, . . . , qk)) is defined,

(iv) (0, qAdead) if τgA(q1, . . . , qk) is undefined and x1 = . . . = xk = 0,

(v) undefined in all the remaining cases.

Note that in the above definitions if some qi is qAdead, the transition τgA(q1, . . . , qk)
is naturally undefined.

We note that the tree language L(A) ·pσ FΣ consists of all Σ-trees t that have
the property that any leaf labeled by σ must belong to a subtree of t that is in
L(A). The DTA B checks this property as follows. The second components of the
states simulate the computation of A and the bit in the first component keeps track
of whether or not the current subtree has a leaf labeled by σ that “was not part
of a subtree” belonging to L(A). More precisely, suppose that the computation
reaches the root of t in state (x, q). If x = 1, this indicates t had a leaf ` labeled
by σ and the computation from ` to the root of t has not passed through a final
state of A. Note that in the transitions of B when the second component becomes
an element of QA,F the first component is always reset to 0, that is, pairs of the
form (1, q), q ∈ QA,F , are not used as states of B. If the second component of the
state is qAdead, this indicates that the computation of A on the current subtree t is
undefined. In this situation if t contains a leaf labeled by σ, t cannot be a subtree
of L(A) ·pσ FΣ and the state (1, qAdead) is not in QB .

The claim follows since |QB | = 2 · |QA|+ 1− |QA,F |.
Now combining Lemma 6 with, respectively, Theorem 1 and Theorem 2 we get

the following upper bounds for the state complexity of bottom-up or top-down star
of a tree language L ·pσ FΣ. Note that the bound of Lemma 6 reaches the worst case
2n when the DTA has exactly one final state.

Proposition 1. Let A be a DTA with n states and σ ∈ Σ0. Then (L(A) ·pσ FΣ)b,∗σ
can be recognized by a DTA with (4n+ 3) · 4n−1 states.

The tree language (L(A)·pσFΣ)t,∗σ can be recognized by a DTA with 3·4n−1 states.

We do not know whether the bounds of Proposition 1 are optimal. Finally, the
bottom-up or top-down star of the sequential concatenation of FΣ with a regular
tree language L, FΣ ·sσ L, seem to be the most problematic of the combined op-
erations involving Kleene star and concatenation with FΣ. For these operations
we know only trivial upper bounds implied by the state complexity of sequential
concatenation and the corresponding star operation.

5 Conclusion

In the last section we have considered the state complexity of star–of–concatenation
in the special case where one of the argument tree languages consists of the set of
all trees. The precise state complexity of star–of–concatenation remains open for
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general tree languages. For references dealing with the string case the reader may
consult [2].

For top-down and bottom-up star we have established the precise worst case
state complexity. The lower bound construction for Kleene-star in [24] uses a two-
letter alphabet, and hence the worst-case state complexity of top-down star can be
achieved over a ranked alphabet with two unary and one nullary symbol. It is clear
that one unary and one nullary symbol is not sufficient because the state complexity
of Kleene-star for string languages over a one-letter alphabet is (n − 1)2 + 1 [24].
With one binary symbol ω and one nullary symbol σ, we can encode strings over a
two letter alphabet as trees “built up” from elements ω(σ, x) and ω(x, σ). In this
way one clearly gets an exponential lower bound construction, however, we do not
know whether one binary and one nullary symbol is sufficient to reach the precise
bound of Theorem 2.

Our lower bound construction for Theorem 1 uses a ranked alphabet of six sym-
bols. The state complexity for bottom-up star is of a different order of magnitude
than the corresponding bound for string languages. This means that the worst-case
constructions essentially need to rely on “tree properties” and finding the minimal
alphabet size remains an open question.
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[10] Jirásková, G., Okhotin, A.: On the state complexity of star of union and star
of intersection. Fund. Informaticae 109 (2011) 161–178.

[11] Ko, S.-K., Lee, H.-R., Han, Y.-S.: State complexity of regular tree languages
for tree pattern matching, Proc. of DCFS’14, LNCS 8614, Springer, 2014, pp.
246–257.

[12] Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal
languages. Bulletin of the EATCS 111 (2013) 70–86.

[13] Lupanov, O.B.: A comparison of two types of finite sources. Problemy Kiber-
netiki 9 (1963) 328–335.

[14] Martens, W., Niehren, J.: On the minimization of XML schemas and tree
automata for unranked trees. J. Comput. System Sci. 73 (2007) 550–583.

[15] Maslov, A.N.: Estimates of the number of states of finite automata, Dokl.
Akad. Nauk. SSSR, 194 (1970) Soviet Math. Dokl. 11 (1970) 1373–1375.

[16] Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars
and formal systems. Proc. SWAT (FOCS), IEEE Computer Society (1971)
188–191.

[17] Okhotin, A., Salomaa, K.: Descriptional complexity of unambiguous input-
driven pushdown automata. Theoret. Comput. Sci. 566 (2015) 1–11.

[18] Piao, X., Salomaa, K.: State complexity of the concatenation of regular tree
languages. Theoret. Comput. Sci. 429 (2012) 273–281

[19] Piao, X., Salomaa, K.: Transformations between different models of unranked
bottom-up tree automata. Fund. Informaticae 109 (2011) 405–424.

[20] Piao, X., Salomaa, K.: State complexity of star and quotient operation for
unranked tree automata, School of Computing, Queen’s University Technical
Report No. 2011-577 (19 pp.), 2011

[21] Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations.
Theoret. Comput. Sci. 383 (2007) 140–152.

[22] Schwentick, T.: Automata for XML, — a survey. J. Comput. System Sci. 73
(2007) 289–315.

[23] Shallit, J.: A Second Course in Formal Languages and Automata Theory,
Cambridge University Press, 2009.

[24] Yu, S.: Regular languages, in: Handbook of Formal Languages, Vol. I,
(G. Rozenberg, A. Salomaa, Eds.), Springer, 1997, pp. 41–110.

[25] Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic opera-
tions on regular languages. Theoret. Comput. Sci. 125 (1994) 315–328.

Received 2nd June 2015



Acta Cybernetica 22 (2015) 423–433.

On a Parity Based Group Testing Algorithm∗
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This paper is dedicated to the memory of Professor Ferenc Gécseg

Abstract

In traditional Combinatorial Group Testing the problem is to identify up
to d defective items from a set of n items on the basis of group tests. In this
paper we describe a variant of the group testing problem above, which we call
parity group testing. The problem is to identify up to d defective items from
a set of n items as in the classical group test problem. The main difference
is that we check the parity of the defective items in a subset. The test can
be applied to an arbitrary subset of the n items with two possible outcomes.
The test is positive if the number of defective items in the subset is odd,
otherwise it is negative. In this paper we extend Hirschberg et al.’s method
to the parity group testing scenario.

Keywords: combinatorial group testing

1 Introduction

1.1 Motivation

Dealing with errors during transmission has been a long-standing problem of com-
munication theory. Numerous error scenarios have been considered, mostly focus-
ing on cases when the channel is unreliable. In [8] Hachem et al. proposed a novel
possibility: what if the encoder itself is introducing uncertainty?

There are several causes as to why an encoder might behave in a faulty man-
ner [8]. First, the physical device implementing the encoder might be faulty, causing
the encoder to have faults itself. Second, due to ever-reducing chip size, soft errors
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c1 c2 c3 c4 c5 c6 c7

p1 1 0 0 0 1 1 1
p2 0 1 0 1 0 1 1
p3 0 0 1 1 1 0 1


c1 c2 c3 c4 c5 c6 c7

p1 p2 p3

Figure 1: The generator matrix and the Tanner graph of the (7, 3) dual Hamming code.

in processing and storage are becoming more and more frequent [13]. Third, with
the scaling of technology, device degradation and variability in transistor design
may also cause unreliable behaviour [3]. Lastly, errors might happen during dis-
tributed encoding when physically separated devices are connected through a noisy
channel, as in sensor networks [2].

In this work we adapt their fault model. Let us consider the Tanner-type factor
graph defined as below. For a given k×n linear code G and (n−k)×n parity check
matrix H the Tanner graph is the following. The Tanner graph T = ({V1, V2}, E)
consists of node set V1 ∪̇V2, where |V1| = k and |V2| = n; and for i ∈ {1, . . . , k}, j ∈
{1, . . . , n} edge set E = {{vi1, v

j
2} : vi1 ∈ V1, v

j
2 ∈ V2, G[i, j] = 1}.

Note that as the Tanner graph is defined by the generator matrix, it is not
necessarily unique to the code.

Let us model the faults as edges getting erased in the factor graph of G, which
reveal themselves as bits getting flipped 1→ 0. It is assumed that due to the edge
erasures every bit that is 1 may get flipped to 0 independently from each other with
probability p.

Assuming that the original generator matrix is known to both the receiver and
the transmitter, an easy way to check against erasures would be to send the unit
vectors of length k as test messages. In this case when sending the ith unit vector
the receiver would receive the ith row of the generator thus enabling to detect any
number of faults after getting all the messages – as many as the number of rows in
the generator. The natural question follows: can one do better?

In this work we investigate what one can do to check whether the encoder itself
is introducing uncertainty. Hachem et al. [8] considered the problem of introducing
enough redundancy so as to counteract the effects of a faulty encoder. The problem
we address in this paper is how one would go about discovering the locations of
these erasures.

1.2 Introducing Parity Group Testing

The traditional problem in group testing is the following. Let S be a set of items
with n elements, some of them (say, at most d) are possibly defective. For simpler
notation we assume that S = {1, 2, . . . , n}. We intend to find the defective items via
group tests. A group test is a subset T of S; testing T has two possible outcomes.
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It is positive if there is at least one defective item in T and negative otherwise. The
tests may be executed either in an adaptive manner, taking the preceding tests’
outcome into account when designing the next one, or non-adaptively, when all
tests are to be determined at the start. In this paper we consider the non-adaptive
version of the problem.

The main objective of any combinatorial group testing (CGT) scheme is to find
the defective elements via such group tests efficiently. Efficiency may be measured
in different ways, a prevalent goal is to try and minimize the number of subsets T
to be tested. There is rich literature on the subject, for further details we refer the
reader to [4, 10, 11].

Translating this concept to binary linear encoders goes as follows. The set of
items are all the bits that could get erased, the 1s in the generator matrix. A test
would be a message, which gets evaluated based on whether it differs from what we
were supposed to receive or not – assuming that the generator matrix of the code
is known to both the receiver and the transmitter. The items included in a test
are the ones from every row where there is a 1 in the test message, so individual
testing of the items would be to send messages that contain only a single 1 in them,
i.e. the unit vectors. Testing a pool of potential erasures is to send a message that
contains more than just one bit that is 1.

Let us present an illustrative example. Let G be the generator matrix for the
(7,4)–Hamming code, known to both the transmitter and the receiver. Suppose
the erasures denoted by bold 0’s on Figure 2 happen. Sending the unit vectors
of length 4 would display the current state of G row-by-row on the receiver side,
making it possible to diagnose any number of faults using 4 messages.

However, the erasures cancel each other out if we send a message containing
more than just one bit that is 1 and they hit an even number of erasures. For
example let us send the message (1, 1, 0, 0) using G′ depicted on Figure 2b. The
received word would be (0, 0, 0, 1, 0, 1, 1) whereas the correct word we should receive
with an erasure-free received word is (1, 0, 0, 0, 0, 1, 1). This reveals that there are
erasures in the first and fourth column but the two erasures in the second column
don’t show up.

Motivated by this observation, we define parity group testing as follows. In
the parity group testing problem the aim again is to find at most d defectives
in an n-element set S. However, the two outcomes of a test T ⊆ S are changed:
instead of revealing the presence of defectives in T the result of a test will now show
whether there is an odd or even number of defective items in T , hence the name
parity testing. Our aim is for given set size n and maximum number of defectives
d identify all the defective items such that the number of necessary parity group
tests is small.



426 Sándor Z. Kiss, Éva Hosszu, Lajos Rónyai, and János Tapolcai


1

1

0

0




1 1 0 1 0 0 1

0 1 0 1 0 1 0

1 0 0 1 1 0 0

1 1 1 0 0 0 0


(

1 0 0 0 0 1 1
)

(a) The generator matrix G sending the
message (1, 1, 0, 0).


1

1

0

0



0 0 0 0 0 0 1

0 0 0 1 0 1 0

0 0 0 1 1 0 0

1 1 1 0 0 0 0


(

0 0 0 1 0 1 1
)

(b) The erasure-stricken matrix G′ send-
ing the message (1, 1, 0, 0).(

1 0 0 0 0 1 1
)

XOR
(

0 0 0 1 0 1 1
)(

1 0 0 1 0 0 0
)

(c) The resulting group test reveals an error
in the first column by taking the XOR of the
received words.

Figure 2: An example of group tests translated to linear encoders.

2 A Chinese Remainder Theorem based CGT Al-
gorithm

In this section first we recap a previous CGT algorithm our parity group testing
constructions are based on, then we describe our algorithms for identifying faulty
items in the parity setting. We assume the underlying set S to be {1, . . . , n} and
that there are at most d faulty items (unless stated otherwise).

Eppstein, Goodrich and Hirschberg [5] provided a non-adaptive combinatorial
group testing algorithm based on the Chinese Remainder Theorem. First a sequence
of pairwise coprime positive integers {p1, p2, . . . , pk} is selected such that

nd ≤ P =

k∏
i=1

pi.

In this setting the the total number of tests would be

t(n, d) =

k∑
i=1

pi.

We may assume that p1 < p2 < · · · < pk. The first group test X contains the
numbers a where a ≡ 0 (mod p1) holds, while the second contains the numbers b
satisfying b ≡ 1 (mod p1), and so on, till all remainders for each pi are taken for
i = 1, . . . , k.
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2.1 Constructive Algorithm to Find the Solution for Single
Defective items

Note that if there is at most one defective item, then parity group testing is the
same as the classical group testing problem, i.e., if the set X contains odd number
of defective items, then it follows that the only defective item is in X, otherwise X
does not contain the defective item.

Let ai denote the remainder of a single item x ∈ S for pi. The task is to find
the number x which satisfies the following system of congruences:

x ≡ ai (mod pi) (1)

for i = 0, . . . , k.
For each i the integers pi and

∏
j 6=i pj are relatively prime. Using the extended

Euclidean algorithm we can find integers ri and qi such that

ripi + qi
∏
j 6=i

pj = 1.

Then, choosing ei = qi
∏

j 6=i pj , x can be reconstructed by

x =

k∑
i=1

aiei (mod
∏
j

pj) (2)

which satisfies (1). This well known scheme of reconstruction from Chinese Re-
mainders can be summarized as follows.

Algorithm 1 Chinese Remainder

Input: (p1, . . . , pk), (a1, . . . , ak)

for i = 1 to k do
Compute

Ni =
∏
j 6=i

pj ,

qi = N−1i (mod pi).

end for
Compute

x =

k∑
i=1

aiqiNi (mod p1p2 · · · pk).

2.2 Constructive Algorithm to Find the Solution for d de-
fective items in the parity setting

Let x1, . . . , xd denote the defective items, where d > 1.
The following simple fact shows that the defective items can be well separated

in the different residue classes.



428 Sándor Z. Kiss, Éva Hosszu, Lajos Rónyai, and János Tapolcai

Claim 1. Let e1, . . . , ev be pairwise coprime positive integers. If v ≥
(
d
2

)
log2 n,

then there exists an ei, where 1 ≤ i ≤ v such that x1, . . . , xd lie in different residue
classes modulo ei.

Proof. We prove the statement by contradiction. Assume that 1 ≤ x1 < . . . < xd ≤
n, and for any 1 ≤ i ≤ v there are at least two elements among x1, . . . , xd such that
they are in the same residue classes modulo ei. In other words for all 1 ≤ i ≤ v,
there exist 1 ≤ l < m ≤ d such that ei|xm − xl. There may be at most

(
d
2

)
pairs of

the last type, hence by the pigeonhole principle there exist 1 ≤ r < s ≤ d such that
for at least c ≥ log2 n different indices j we have ej |xs − xr. As ei’s are pairwise
coprime, it follows that

∏
ej |(xs − xr), but n ≤ 2c ≤

∏
ej |(xs − xr) < n which is

a contradiction. (Here the product is over the indices j such that ej |xs − xr.)

If we set k ≥
(
d
2

)
log2 n + d log2 n + 1, it follows from the above Claim that

there exists pairwise coprime numbers p1, . . . , pt among the numbers p1, . . . , pk
such that p1 · · · pt ≥ nd and x1, . . . , xd lie in different residue classes modulo pi,
where 1 ≤ i ≤ t. This means that parity testing with the integers p1, . . . , pt the
positive outcome (i.e., when the parity of the defective items is odd in a residue
class modulo pi) implies that there is exactly one defective item in the corresponding
residue class. Please note that such a collection p1, . . . , pt can be efficiently selected
from p1, . . . , pk.

Let y
(1)
i , . . . , y

(d)
i denote the remainders of the d defective items x1, . . . , xd ∈ S

modulo pi. Recall that we selected the moduli pi in such a way that

nd ≤ P =

t∏
i=1

pi.

The task is to find the numbers x1, . . . , xd which satisfy the following system of
congruences:

x1 ≡ y(1)i (mod pi), . . . , xd ≡ y(d)i (mod pi)

for all 1 ≤ i ≤ t.
Please note that for an i the residues y

(j)
i are pairwise different for j = 1, . . . , d.

Having the numbers y
(j)
i at hand, we can calculate the residues of the elementary

symmetric polynomials1 of x1, . . . , xd modulo all the pi by using Algorithm 3:

σ1(x1, . . . , xd) ≡ a
(1)
1 (mod p1), . . . , σ1(x1, . . . , xd) ≡ a

(1)
t (mod pt);

...

σd(x1, . . . , xd) ≡ a
(d)
1 (mod p1), . . . , σd(x1, . . . , xd) ≡ a

(d)
t (mod pt);

By using the Chinese remainder theorem we can calculate

σ1(x1, . . . , xd) ≡ A1 (mod P ), . . . , σd(x1, . . . , xd) ≡ Ad (mod P ).

1For details, see the Appendix.
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As P ≥ nd and
0 < σ1(x1, . . . , xd), . . . , σd(x1, . . . , xd) < nd

the following equalities hold.

σ1(x1, . . . , xd) = A1, . . . , σd(x1, . . . , xd) = Ad .

It is easy to see that the roots of the polynomial

f(w) = wd − σ1wd−1 + σ2w
d−2 − ....+ (−1)dσd

are x1, . . . , xd. We can find the roots of f by using the root finder method [9]. The
essence of this method is to isolate the roots by using the Sturm theorem and we
can find the roots applying the bisection method (binary search). More formally
we have the following algorithm.

Algorithm 2 Parity based Chinese Remainder Sieve algorithm

Input: y
(1)
i , . . . , y

(d)
i for all 1 ≤ i ≤ t, p1, . . . , pt

1: for j = 1 to d do
2: for i = 1 to t do
3: σj(y

(1)
i , . . . , y

(d)
i ) = a

(j)
i (mod pi)

4: end for
5: Aj = ChineseRemainder(a

(j)
1 , . . . , a

(j)
t , p1, . . . , pt)

6: end for
7: Set f(z) = zd +

∑d
l=1(−1)lAlz

d−l

8: Compute (x1, x2, . . . , xd) = Root Finder (f(z))

3 Analysis

In this section we will give a brief analysis of the running time of our algorithm
and an upper bound for the number of test required to identify the defective items
as well. Throughout the remaining part of this section log n denotes the natural
logarithm i.e., the logarithm to the base e.

3.1 Number of tests

Let t(n, d) denote the number of tests constructed in the Chinese Remainder Sieve
discovered by Hirschberg et al. They proved that the d defective items could be
identified using the number of tests

t(n, d) <
d2d log ne2

2 logd2d log ne

(
1 +

1.2762

logd2d log ne

)
.

As noted in the introduction, in our case the number of required tests is

t(n, d) =

k∑
i=1

pi.
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To simplify the calculations we can assume that the pi’s are primes. Let qi denote
the ith largest prime. It follows that we have to estimate

k∑
i=1

qi.

It is well known [7] that qk = O(k log k) which implies that

k∑
i=1

qi = O(k2 log k).

In our case we can choose k =
(
d
2

)
log2 n+ d log2 n+ 1 = d(d+1)

2 log2 n+ 1, thus we
have the following upper bound to the number of tests in the parity case:

t(n, d) = O
(
d4 log2 n · log d+ d4 log2 n · log log n

)
.

3.2 Running time

Claim 2. The Parity based Chinese Remainder Sieve algorithm finds the defective
items by using O(d10 log3 n) bit operations. This is in addition to the cost of the
tests.

Proof. The Parity based Chinese Remainder Sieve algorithm contains four steps.
In the first step it determined the residues yji . They are essentially the outcomes of
the tests. In the second step, it computes the elementary symmetric polynomials,
in the third step it uses the Chinese remainder theorem, and finally it determines
the roots of the corresponding polynomial.

In Algorithm 3 we compute the symmetric polynomials recursively. In the rth
step there are r − 1 additions and r − 1 multiplications, thus we can compute all
symmetric polynomials by using 1 + . . . + (d − 1) additions and multiplications.
As 1 ≤ x1, . . . , xd ≤ n, one addition needs O(log n) bitoperations, and one multi-
plication requires O(log2 n) bit operations, thus the total cost of Algorithm 3. is
O(d2 log2 n) bit operations.

In this paragraph we analyze the Chinese remaindering process (Algorithm 1.)
It is well known [1] that Chinese remaindering requires O(log2 P ) bitoperations. It
is easy to see [16] that

logP ≤
k∑

i=1

log qi ≤ π(qk) log qk = k log qk,

where π(x) denotes the number of primes up to x. It is well known [7] that the kth
prime number is O(k log k), thus we have

logP = O(k(log k + log log k)) = O(k log k).
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We know that
k = O(d2 log n),

which implies k log k = O(d2 log n(log d+log log n)). It follows that the total cost is
O(d4 log2 n · (log2 d+ (log log n)2)). Since the number of systems of congruences is
d, computing the Aj ’s in the Chinese Remainder Filter needs O(d5 log2 n(log2 d+
(log log n)2)) bit operations.

In the last step we have to determine the roots of the polynomial f(z). For a
polynomial f(z) = adz

d + . . . + a1z + a0 let

K =

d∑
i=0

|ai|.

It is clear that all coefficients of our polynomial are at most nd, which implies
that K < dnd. It follows from [6] that the running time of Heindel’s algorithm is
O(d10+d7 log3K). We have to use the bisection method at most d−1 times, which
requiresO(d log n) operations, because the length of each interval is at most n. Thus
the total cost to determine all roots requires at most O(d10 +d10 log3 n+d log n) =
O(d10 log3 n) bitoperations. This implies that the total cost of the Chinese Remain-
der Filter Algorithm is O(d2 log2 n+ d5 log2 n(log2 d+ (log log n)2) + d10 log3 n) =
O(d10 log3 n) bit operations.

Please note that there is a more sophisticated algorithm than Heindel’s method,
it can be found in [15]. The running time of this algorithm is better than Heindel’s
algorithm.

4 Conclusions

Motivated by the problem of error location in a linear encoder in this paper we
introduced a novel variant of a classic combinatorial search task called parity group
testing. After presenting the basic framework we showed how to adapt the Chinese
Remainder Theorem based search algorithm to our scenario such that d defectives

can be found in a set of n elements using O
(
d4 log2 n · log d+ d4 log2 n · log log n

)
parity group tests, using O(d10 log3 n) bit operations.
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432 Sándor Z. Kiss, Éva Hosszu, Lajos Rónyai, and János Tapolcai

[4] Ding Zhu Du and Frank Hwang. Combinatorial group testing and its applica-
tions. World Scientific, 1993.

[5] David Eppstein, Michael T Goodrich, and Daniel S Hirschberg. Improved
combinatorial group testing algorithms for real-world problem sizes. SIAM
Journal on Computing, 36(5):1360–1375, 2007.

[6] R. Loos G. E. Collins. Polynomial real root isolation by differentation. In
Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Compu-
tation, pages 15–20. ACM, 1976.

[7] E. Kowalski H. Iwaniec. Analytic Number Theory, volume 53. American Math-
ematical Society, 2004.

[8] Jad Hachem, I-Hsiang Wang, Christina Fragouli, and Suhas Diggavi. Coding
with encoding uncertainty. In IEEE International Symposium on Information
Theory Proceedings (ISIT), pages 276–280. IEEE, 2013.

[9] Lee E. Heindel. Integer arithmetic algorithms for polynomial real zero deter-
mination. J. ACM, 18(4):533–548, October 1971.

[10] FK Hwang. A method for detecting all defective members in a population by
group testing. Journal of the American Statistical Association, 67(339):605–
608, 1972.

[11] FK Hwang and VT Sós. Non-adaptive hypergeometric group testing. Studia
Sci. Math. Hungar, 22:257–263, 1987.

[12] Hao Jiang, Stef Graillat, and Roberto Barrio. Accurate and fast evaluation
of elementary symmetric functions. In IEEE Symposium on Computer Arith-
metic, pages 183–190, 2013.

[13] Michael Nicolaidis. Circuit-Level Soft-Error Mitigation. Springer, 2011.

[14] Viktor V. Prasolov. Polynomials. Springer, 2004.

[15] Michael Sagraloff and Kurt Mehlhorn. Computing real roots of real polyno-
mials. Journal of Symbolic Computation, 2015.

[16] G. Tenenbaum. Introduction to analytic and probabilistic number theory, vol-
ume 46. Cambridge University Press, 1995.

Appendix

We need the following facts about polynomials [14]. For m ≥ 0, let

σm = σm(t1, . . . , td) =
∑

1≤j1<j2<...<jm≤d

tj1 · . . . · tjm
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be the mth elementary symmetric polynomial of t1, . . . , td.
We can compute the elementary symmetric polynomials by using the following

algorithm [12].

Algorithm 3 Elementary Symmetric Polynomial Calculator

Input: X = (x1, . . . , xd) and m
Output: all the elementary symmetric polynomials
σ1, . . . , σd

1: function σ
(d)
m = SumESF(X,m)

2: σ
(i)
0 = 1, 1 ≤ i ≤ d− 1;σ

(i)
j = 0, j > i;σ

(1)
1 = x1

3: for i = 2 to d do
4: for j = 1 to i do

5: σ
(i)
j = σ

(i−1)
j + xiσ

(i−1)
j−1

6: end for
7: end for

It is also well known [14] that if we have a polynomial p(x), where αi denotes
its coefficients and βis are the roots of p(x),

p(x) = xd + . . . + αd−1x+ αd = (x− β1) . . . (x− βd),

then we have αi = (−1)d−iσi(β1, . . . , βd).

Received 15th June 2015
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Weighted First-Order Logics over Semirings∗

Eleni Mandrali† and George Rahonis‡

Dedicated to the memory of Ferenc Gécseg

Abstract

We consider a first-order logic, a linear temporal logic, star-free expres-
sions and counter-free Büchi automata, with weights, over idempotent, zero-
divisor free and totally commutative complete semirings. We show the expres-
sive equivalence (of fragments) of these concepts, generalizing in the quanti-
tative setup, the corresponding folklore result of formal language theory.

1 Introduction

The expressive equivalence of monadic second-order logic and finite automata over
finite words was established in [5, 16] and over infinite words in [6]. Droste and
Gastin, in [8] (cf. also [9]), introduced a weighted monadic second-order logic over
semirings and showed that sentences from a fragment of this logic, interpreted over
finite words, are equivalent to weighted automata. A corresponding result for infi-
nite words was stated in [13]. Recently in [12], the authors extended the expressive
equivalence of monadic second-order logic and automata over more general struc-
tures, namely valuation monoids. On the other hand, first-order (FO for short)
logic (i.e., the logic obtained from monadic second-order one by relaxing second-
order quantifiers) is equivalent to linear temporal logic (LTL for short), star-free
expressions and counter-free Büchi automata (cf. for instance [7]). More interest-
ingly, LTL and its alternatives serve as specification languages in model checking
for real world applications [3, 22, 31]. The last few years there is also an increas-
ing interest in establishing FO logic and its equivalent objects in the quantitative
framework. This is motivated by the need to create model checking tools which
incorporate quantitative features. In [14], the aforementioned equivalence was es-
tablished in the weighted setup of arbitrary bounded lattices. Recently, in [26] (cf.
also [24]), we introduced a weighted FO logic, a weighted LTL, ω-star-free series
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and counter-free weighted Büchi automata over the max-plus semiring with dis-
counting and investigated fragments of them satisfying an expressive equivalence.
The convergence of infinite sums over nonnegative real numbers was ensured by the
existence of discounting parameters.

In this paper, we consider a weighted FO logic, a weighted LTL, ω-star-free
series and counter-free weighted Büchi automata over idempotent, zero-divisor free
and totally commutative complete semirings. We show that there are suitable
fragments of our objects so that the classes of infinitary series, derived by them,
coincide. Our results can be proved for series over finite words as well, though we
skip any technical detail.

The structure of our paper is as follows. Except of this introductory section,
in Section 2 we recall the notion of totally commutative complete semirings and
present notations used in the paper. The underlying structure for all weighted
objects considered in the paper will be an arbitrary idempotent, zero-divisor free
and totally commutative complete semiring.

In Section 3 we introduce the weighted LTL and define the semantics of LTL
formulas interpreted as infinitary series. We consider a fragment of our LTL namely
the fragment of U -nesting formulas. We should note that a quantitative LTL over
De Morgan algebras was introduced for the first time in [21].

In Section 4 we consider the weighted FO logic which is in fact the one induced
by the weighted MSO logic of [8, 9]. Its semantics is interpreted by infinitary series
as induced by the semantics of the corresponding weighted MSO logic of [13]. We
consider the fragment of weakly quantified FO logic formulas and in our first main
result, in Section 5, we show that every series which is definable by a U -nesting
LTL formula is definable also by a weakly quantified FO logic sentence.

In Section 6 we deal with star-free and ω-star-free series. We recall that the
class of star-free languages over an alphabet A is the smallest class of languages
over A which contains ∅, the singleton {a} for every a ∈ A, and which is closed
under finite union, complementation and concatenation. Furthermore, the class of
ω-star-free languages over A is the closure of the empty set under the operations of
union, complement and concatenation with star-free languages on the left (cf. for
instance [7, 23, 27, 29]). It is worth noting that the application of the star-operation
(whenever it is permitted) to star-free languages is implemented by the other oper-
ations. However, in the setup of series (over semirings) the complement operation
is not ”too strong”. Therefore, we defined the class ω-star-free series as the least
class of infinitary series generated by the monomials (over A and our semiring) by
applying finitely many times the operations of sum, Hadamard product, comple-
ment, Cauchy product, and iteration and ω-iteration restricted to series of the form∑
a∈A (ka)a where, for every a ∈ A, ka is an element of our semiring. The second

main result of the paper, in Section 7, states that the class of definable series by
weakly quantified FO logic sentences is contained in the class of ω-star-free series.

In Section 8 we introduce counter-free weighted automata and counter-free
weighted Büchi automata and investigate closure properties of the classes of their
behaviors. We define a fragment of the class of series accepted by counter-free
weighted Büchi automata, namely the class of almost simple ω-counter-free series
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and we show, in Section 9, that this contains the class of ω-star-free series.
Finally, in Section 10 we show that the class of almost simple ω-counter-free

series is contained in the class of series which are definable by U -nesting LTL for-
mulas. In fact this last inclusion concludes the coincidence of the classes of series
definable by U -nesting formulas of the weighted LTL and weakly quantified FO
logic sentences, ω-star-free series and almost simple ω-counter-free series. In the
Conclusion we refer to some interesting problems for further research. A prelimi-
nary version of this paper appeared in [25].

2 Preliminaries

Let A be an alphabet, i.e., a finite nonempty set. As usually, we denote by A∗ the
set of all finite words over A and A+ = A∗\{ε}, where ε is the empty word. The set
of all infinite sequences with elements in A, i.e., the set of all infinite words over A,
is denoted by Aω. A finite word w = a0 . . . an−1, where a0, . . . , an−1 ∈ A (n ≥ 1),
is written also as w = w(0) . . . w(n − 1) where w(i) = ai for every 0 ≤ i ≤ n − 1.
For every 0 ≤ i ≤ n− 1, we denote by w<i (resp. w≤i) the prefix w(0) . . . w(i− 1)
(resp. w(0) . . . w(i)) of w and by w>i (resp. w≥i) the suffix w(i + 1) . . . w(n − 1)
(resp. w(i) . . . w(n−1)) of w. For every infinite word w = a0a1 . . . which is written
also as w = w(0)w(1) . . ., the words w<i, w≤i, w>i, w≥i are defined in the same way,
with the suffixes w>i, w≥i being infinite words.

Throughout the paper A will denote an alphabet.

A semiring (K,+, ·, 0, 1) consists of a set K, two binary operations + and ·
and two constant elements 0 and 1 such that 〈K,+, 0〉 is a commutative monoid,
〈K, ·, 1〉 is a monoid, multiplication distributes over addition, and 0 · k = k · 0 = 0
for every k ∈ K. The semiring is denoted simply by K if the operations and the
constant elements are understood.

The semiring K is called commutative if k · k′ = k′ · k for every k, k′ ∈ K. It is
called additively idempotent (or simply idempotent), if k + k = k for every k ∈ K.
Moreover, the semiring K is zero-sum free (resp. zero-divisor free) if k + k′ = 0
implies k = k′ = 0 (resp. k · k′ = 0 implies k = 0 or k′ = 0) for every k, k′ ∈ K. It
is well known that every idempotent semiring is necessarily zero-sum free (cf. [1]).

Next, assume that the semiring K is equipped, for every index set I, with
infinitary sum operations

∑
I : KI → K, such that for every family (ki | i ∈ I) of

elements of K and k ∈ K we have∑
i∈∅

ki = 0,
∑
i∈{j}

ki = kj ,
∑
i∈{j,l}

ki = kj + kl for j 6= l,

∑
j∈J

(∑
i∈Ij

ki

)
=
∑
i∈I

ki, if
⋃
j∈J Ij = I and Ij ∩ Ij′ = ∅ for j 6= j′,

∑
i∈I

(k · ki) = k ·
(∑
i∈I

ki

)
,
∑
i∈I

(ki · k) =
(∑
i∈I

ki

)
· k.
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Then the semiring K together with the operations
∑
I is called complete [15, 19].

A complete semiring is said to be totally complete [18], if it is endowed with a
countably infinite product operation satisfying for every sequence (ki | i ≥ 0) of
elements of K the subsequent conditions:∏

i≥0

1 = 1,
∏
i≥0

ki =
∏
i≥0

k′i

k0 ·
∏
i≥0

ki+1 =
∏
i≥0

ki,
∏
j≥1

∑
i∈Ij

ki =
∑

(i1,i2,...)∈I1×I2×...

∏
j≥1

kij ,

where in the second equation k′0 = k0 · . . . · kn1
, k′1 = kn1+1 · . . . · kn2

, . . . for an
increasing sequence 0 < n1 < n2 < . . . , and in the last equation I1, I2, . . . are
arbitrary index sets.

Furthermore, we will call a totally complete semiring K totally commutative
complete if it satisfies the statement:

∏
i≥0

(ki · k′i) =

∏
i≥0

ki

 ·
∏
i≥0

k′i

 .

Obviously a totally commutative complete semiring is commutative. For our theory,
we shall also need that a totally commutative complete semiring K satisfies the
property

k 6= 0 =⇒
∏
i≥0

k 6= 0

for every k ∈ K. Therefore in the sequel, by abusing terminology, when we refer to
totally commutative complete semirings we assume that they additionally satisfy
the above property.

Example 1. The following semirings are totally commutative complete, and all but
the second one are idempotent. Moreover, by excluding the arbitrary completely
distributive complete lattices, the remaining ones are zero-divisor free.

• the boolean semiring B = ({0,1} ,+, ·,0,1),

• the semiring (N ∪ {∞},+, ·, 0, 1) of extended natural numbers [17],

• the arctical semiring or max-plus semiring (R+ ∪ {±∞},max,+,−∞, 0),

• each completely distributive complete lattice (cf. [2]) with the operations
supremum and infimum, in particular each complete chain [20].

Lemma 1. Let K be an idempotent totally complete semiring and I an index set
of size at most continuum. Then, the following statements hold.

(i) [10, Chap. 5, Lm. 7.3]
∑
I

1 = 1.
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(ii)
∑
I

k = k for every k ∈ K.

(iii)
∑
i∈I
ki =

∑
k∈K

∃i∈I,ki=k

k for every family (ki)i∈I in K.

Proof. (ii) By (i) and distributivity we get
∑
I

k = k ·
∑
I

1 = k · 1 = k.

(iii) For every k ∈ K we let Ik = {i ∈ I | ki = k}. Then we get∑
i∈I

ki =
∑
k∈K

∃i∈I,ki=k

∑
Ik

k =
∑
k∈K

∃i∈I,ki=k

k

where the second equality follows by (ii).

In the rest of the paper K will denote a totally commutative complete,
idempotent and zero-divisor free semiring.

Let Q be a set. A formal power series (or simply series) over Q and K is a
mapping s : Q → K. For every v ∈ Q we write (s, v) for the value s(v) and refer
to it as the coefficient of s on v. The support of s is the set supp(s) = {v ∈
Q | (s, v) 6= 0}. The constant series k̃ (k ∈ K ) is defined, for every v ∈ Q, by(
k̃, v
)

= k. The characteristic series 1P of a set P ⊆ Q is given by (1P , v) = 1 if

v ∈ P , and (1P , v) = 0 otherwise. We denote by K 〈〈Q〉〉 the class of all series over
Q and K.

Let s, r ∈ K 〈〈Q〉〉 and k ∈ K. The sum s + r, the scalar products ks and sk
as well as the Hadamard product s � r are defined elementwise by (s + r, v) =
(s, v) + (r, v), (ks, v) = k · (s, v), (sk, v) = (s, v) · k, and (s� r, v) = (s, v) · (r, v)
for every v ∈ Q. Abusing notations, if P ⊆ Q, then we shall identify the restriction
s|P of s on P with the series s � 1P . Moreover, if supp (s) ⊆ P , sometimes in
the sequel we shall identify s|P with s. It is a folklore result that the structure(
K 〈〈Q〉〉 ,+,�, 0̃, 1̃

)
is a commutative semiring. In our paper, we work with the

semirings K 〈〈A∗〉〉 and K 〈〈Aω〉〉 of finitary and infinitary series over A and K,
respectively.

Let B be another alphabet and h : A∗ → B∗ be a nondeleting homomorphism,
i.e., h(a) 6= ε for each a ∈ A. Then h can be extended to a mapping h : Aω → Bω

by letting h(w) = (h(w(i)))i≥0 for every w ∈ Aω. Moreover, h is extended to a
mapping h : K 〈〈A∗〉〉 → K 〈〈B∗〉〉 as follows. For every s ∈ K 〈〈A∗〉〉 the series
h(s) ∈ K 〈〈B∗〉〉 is given by (h(s), u) =

∑
w∈h−1(u)(s, w) for every u ∈ B∗. Since

K is complete, h is also extended to a mapping h : K 〈〈Aω〉〉 → K 〈〈Bω〉〉 which
is defined for every series s ∈ K 〈〈Aω〉〉 by (h(s), u) =

∑
w∈h−1(u)(s, w) for every

u ∈ Bω. If r ∈ K 〈〈B∗〉〉 (resp. r ∈ K 〈〈Bω〉〉), then the series h−1(r) ∈ K 〈〈A∗〉〉
(resp. h−1(r) ∈ K 〈〈Aω〉〉) is determined by (h−1(r), w) = (r, h(w)) for every
w ∈ A∗ (resp. w ∈ Aω).
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3 Weighted linear temporal logic

For every letter a ∈ A we consider a proposition pa and we let AP = {pa | a ∈ A}.
As usually, for every p ∈ AP we identify ¬¬p with p.

Definition 1. The syntax of formulas of the weighted linear temporal logic
(weighted LTL for short) over A and K is given by the grammar

ϕ ::= k | pa | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | ϕUϕ | �ϕ

where k ∈ K and pa ∈ AP .

We denote by LTL(K,A) the set of all such weighted LTL formulas ϕ. We
represent the semantics ‖ϕ‖ of formulas ϕ ∈ LTL(K,A) as infinitary series in
K 〈〈Aω〉〉.

Definition 2. Let ϕ ∈ LTL(K,A). The semantics of ϕ is a series ‖ϕ‖ ∈ K 〈〈Aω〉〉
which is defined inductively as follows. For every w ∈ Aω we set

- (‖k‖ , w) = k,

- (‖pa‖ , w) =

{
1 if w(0) = a
0 otherwise

,

- (‖¬ϕ‖ , w) =

{
1 if (‖ϕ‖ , w) = 0
0 otherwise

,

- (‖ϕ ∨ ψ‖ , w) = (‖ϕ‖ , w) + (‖ψ‖ , w) ,

- (‖ϕ ∧ ψ‖ , w) = (‖ϕ‖ , w) · (‖ψ‖ , w) ,

- (‖©ϕ‖ , w) = (‖ϕ‖ , w≥1) ,

- (‖ϕUψ‖ , w) =
∑
i≥0

 ∏
0≤j<i

(‖ϕ‖ , w≥j)

 · (‖ψ‖ , w≥i)
 ,

- (‖�ϕ‖ , w) =
∏
i≥0

(‖ϕ‖ , w≥i) .

The eventually operator is defined as in the classical LTL, i.e., by ♦ϕ := 1Uϕ,

hence we have (‖♦ϕ‖ , w) =
∑
i≥0

(‖ϕ‖ , w≥i) for every w ∈ Aω.

The syntactic boolean fragment bLTL(K,A) of LTL(K,A) is given by the gram-
mar

ϕ ::= 0 | 1 | pa | ¬ϕ | ϕ ∨ ϕ | ©ϕ | ϕUϕ

where pa ∈ AP. For every formula ϕ ∈ bLTL(K,A) it is easily obtained, by struc-
tural induction on ϕ and using idempotency, that ‖ϕ‖ gets only values in {0, 1}. By
identifying 0 with 0 and 1 with 1 it is trivially concluded that ‖ϕ‖ coincides with
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the semantics in the boolean semiring B. The conjunction and always operators
are defined, respectively, by the macros ϕ∧ψ := ¬(¬ϕ ∨ ¬ψ) and �ϕ := ¬♦¬ϕ.
Clearly, the application of the operators ∧ and � in bLTL(K,A) formulas ϕ,ψ
coincides semantically with the application of the classical operators ∧ and � in
ϕ,ψ considered as classical formulas.

We aim to define a further fragment of LTL(K,A). For this we need some pre-
liminary matter. More precisely, an atomic-step formula is an LTL(K,A) formula
of the form

∨
a∈A (ka ∧ pa) where ka ∈ K and pa ∈ AP for every a ∈ A. An LTL-

step formula is an LTL(K,A) formula of the form
∨

1≤i≤n (ki ∧ ϕi) where ki ∈ K
and ϕi ∈ bLTL(K,A) for every 1 ≤ i ≤ n. We shall denote by stLTL (K,A)
the class of LTL-step formulas over A and K. Furthermore, we shall denote by
abLTL (K,A) the class of almost boolean LTL formulas over A and K, i.e., formu-
las of the form

∧
1≤i≤n ϕi with ϕi ∈ bLTL (K,A) or ϕi =

∨
a∈A (ka ∧ pa), for every

1 ≤ i ≤ n.

Definition 3. The fragment ULTL (K,A) of U -nesting LTL formulas over A and
K is the least class of formulas in LTL (K,A) which is defined inductively in the
following way.

• k ∈ ULTL (K,A) for every k ∈ K.

• abLTL (K,A) ⊆ ULTL (K,A).

• If ϕ ∈ ULTL (K,A), then ¬ϕ ∈ ULTL (K,A).

• If ϕ,ψ ∈ ULTL (K,A), then ϕ ∧ ψ,ϕ ∨ ψ ∈ ULTL (K,A).

• If ϕ ∈ ULTL (K,A), then ©ϕ ∈ ULTL (K,A).

• If ϕ ∈ bLTL (K,A) or ϕ is an atomic-step formula, then �ϕ ∈ ULTL (K,A).

• If ϕ ∈ abLTL (K,A) and ψ ∈ ULTL (K,A), then ϕUψ ∈ ULTL (K,A).

A series r ∈ K 〈〈Aω〉〉 is called ω-ULTL-definable if there is a formula ϕ ∈
ULTL (K,A) such that r = ‖ϕ‖. We shall denote by ω-ULTL (K,A) the class of
ω-ULTL-definable series over A and K.

4 Weighted first-order logic

In this section, we define the weighted first-order logic (weighted FO logic, for
short) and consider a syntactic fragment of it. We aim to show that the class of
semantics of sentences in this fragment contains the class ω-ULTL (K,A).

Definition 4. The syntax of formulas of the weighted FO logic over A and K is
given by the grammar

ϕ ::= k | Pa(x) | x ≤ y | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x � ϕ | ∀x � ϕ

where k ∈ K and a ∈ A.
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We shall denote by FO(K,A) the set of all weighted FO logic formulas over
A and K. In order to define the semantics of FO(K,A) formulas, we recall the
notions of extended alphabet and valid assignment (cf. for instance [30]). Let V be
a finite set of first-order variables. For an infinite word w ∈ Aω we let dom(w) = ω.
A (V, w)-assignment σ is a mapping associating variables from V to elements of ω.
For every x ∈ V and i ∈ ω, we denote by σ[x → i] the (V, w)-assignment which
associates i to x and acts as σ on V \{x}. We encode pairs (w, σ) for every w ∈ Aω
and (V, w)-assignment σ, by using the extended alphabet AV = A× {0, 1}V . Each
word in AωV can be considered as a pair (w, σ) where w is the projection over A
and σ is the projection over {0, 1}V . Then, σ is called a valid (V, w)-assignment
whenever for every x ∈ V the x-row contains exactly one 1. In this case, we
identify σ with the (V, w)-assignment so that for every first-order variable x ∈ V,
σ(x) is the position of the 1 on the x-row. It is well-known (cf. [7]) that the set
NV = {(w, σ) | w ∈ Aω, σ is a valid (V, w) -assignment} is an ω-star-free language
over AV . The set free(ϕ) of free variables in a formula ϕ ∈ FO(K,A) is defined
as usual.

Definition 5. Let ϕ ∈ FO(K,A) and V be a finite set of variables with free(ϕ) ⊆
V. The semantics of ϕ is a series ‖ϕ‖V ∈ K 〈〈AωV〉〉 . Consider an element (w, σ) ∈
AωV . If σ is not a valid assignment, then we put (‖ϕ‖V , (w, σ)) = 0. Otherwise, we
inductively define (‖ϕ‖V , (w, σ)) ∈ K as follows.

- (‖k‖V , (w, σ)) = k,

- (‖Pa(x)‖V , (w, σ)) =

{
1 if w(σ(x)) = a
0 otherwise

,

- (‖x ≤ y‖V , (w, σ)) =

{
1 if σ(x) ≤ σ(y)
0 otherwise

,

- (‖¬ϕ‖V , (w, σ)) =

{
1 if (‖ϕ‖V , (w, σ)) = 0
0 otherwise

,

- (‖ϕ ∨ ψ‖V , (w, σ)) = (‖ϕ‖V , (w, σ)) + (‖ψ‖V , (w, σ)) ,

- (‖ϕ ∧ ψ‖V , (w, σ)) = (‖ϕ‖V , (w, σ)) · (‖ψ‖V , (w, σ)) ,

- (‖∃x � ϕ‖V , (w, σ)) =
∑
i≥0

(
‖ϕ‖V∪{x} , (w, σ[x→ i])

)
,

- (‖∀x � ϕ‖V , (w, σ)) =
∏
i≥0

(
‖ϕ‖V∪{x} , (w, σ[x→ i])

)
.

If V = free(ϕ), then we simply write ‖ϕ‖ for ‖ϕ‖free(ϕ). Moreover, by Prop. 5

in [13], it holds
(‖ϕ‖V , (w, σ)) =

(
‖ϕ‖ ,

(
w, σ|free(ϕ)

))
for every (w, σ) ∈ NV .
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The syntactic boolean fragment bFO(K,A) of FO(K,A) is defined by the gram-
mar

ϕ ::= 0 | 1 | Pa(x) | x ≤ y | ¬ϕ | ϕ ∨ ϕ | ∃x � ϕ.

For every formula ϕ ∈ bFO(K,A) it is easily obtained, by structural induction on
ϕ and using idempotency, that ‖ϕ‖ gets only values in {0, 1}. By identifying 0 with
0 and 1 with 1 it is trivially concluded that ‖ϕ‖ coincides with the semantics in
the boolean semiring B. The conjunction and universal quantification are defined,
respectively, by the macros ϕ∧ψ := ¬(¬ϕ∨¬ψ) and ∀x �ϕ := ¬∃x �¬ϕ. Clearly, the
application of the operators ∧ and ∀ in bFO(K,A) formulas ϕ,ψ coincides seman-
tically with the application of the classical operators ∧ and ∀ in ϕ,ψ considered as
classical formulas.

Next, we define a fragment of our logic. For this, we recall the notion of an
FO-step formula from [4]. More precisely, a formula ϕ ∈ FO(K,A) is an FO-
step formula if ϕ =

∨
1≤i≤n (ki ∧ ϕi) with ϕi ∈ bFO(K,A) and ki ∈ K for every

1 ≤ i ≤ n. Moreover, a formula ϕ ∈ FO(K,A) is called a letter-step formula
whenever ϕ =

∨
a∈A (ka ∧ Pa(x)) with ka ∈ K for every a ∈ A. We shall need also

the following macros:

- first(x) := ∀y � x ≤ y,
- x = y := x ≤ y ∧ y ≤ x,
- x < y := x ≤ y ∧ ¬(x = y),
- z ≤ x < y := z ≤ x ∧ x < y,
- ϕ→ ψ := ¬ϕ ∨ (ϕ ∧ ψ) .

Definition 6. A formula ϕ ∈ FO(K,A) will be called weakly quantified if when-
ever ϕ contains a subformula of the form ∀x � ψ, then ψ is either a boolean or a
letter-step formula with free variable x or a formula of the form y ≤ x → ψ′ or
z ≤ x < y → ψ′ where ψ′ is a letter-step formula with free variable x.

We denote by WQFO(K,A) the set of all weakly quantified FO(K,A) formulas
over A and K. A series s ∈ K 〈〈Aω〉〉 is called ω-wqFO-definable if there is a
sentence ϕ ∈ WQFO(K,A) such that s = ‖ϕ‖. We write ω-wqFO(K,A) for the
class of ω-wqFO-definable series in K 〈〈Aω〉〉.

5 ω-ULTL-definable series are ω-wqFO-definable

In this section we show that every ω-ULTL-definable series over A and K is also
ω-wqFO-definable. For this, we will prove that for every ϕ ∈ ULTL (K,A) there
exists a sentence ϕ′ ∈ WQFO(K,A) such that ‖ϕ‖ = ‖ϕ′‖, using the subsequent
technical results.

Lemma 2. Let ϕ ∈ ULTL (K,A) such that there exists ϕ′ (y) ∈ WQFO (K,A)
with
(‖ϕ′ (y)‖ , (w, [y → i])) = (‖ϕ‖ , w≥i) for every w ∈ Aω, i ≥ 0.
Then (‖¬ϕ′ (y)‖ , (w, [y → i])) = (‖¬ϕ‖ , w≥i) for every w ∈ Aω, i ≥ 0.
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Lemma 3. Let ϕ,ψ ∈ ULTL (K,A) such that there exist
ϕ′ (y) , ψ′ (x) ∈ WQFO (K,A) with (‖ϕ′ (y)‖ , (w, [y → i])) = (‖ϕ‖ , w≥i) and
(‖ψ′ (x)‖ , (w, [x→ i])) = (‖ψ‖ , w≥i) for every w ∈ Aω, i ≥ 0. Then, there ex-
ist ξ1 (x) , ξ2 (x) ∈WQFO (K,A) with

(‖ξ1 (x)‖ , (w, [x→ i])) = (‖ϕ ∧ ψ‖ , w≥i)

and

(‖ξ2 (x)‖ , (w, [x→ i])) = (‖ϕ ∨ ψ‖ , w≥i)

for every w ∈ Aω, i ≥ 0.

Proof. Without any loss, we assume that the variable x does not occur in ϕ′ (oth-
erwise we apply a renaming). We replace every occurrence of y with x in ϕ′, and
we let ξ1 (x) = ϕ′ (x)∧ψ′ (x) and ξ2 (x) = ϕ′ (x)∨ψ′ (x) which trivially satisfy our
claim.

Lemma 4. Let ϕ ∈ K ∪ abLTL (K,A). Then, there exists ϕ′ (x) ∈WQFO (K,A)
such that (‖ϕ′ (x)‖ , (w, [x→ i])) = (‖ϕ‖ , w≥i) for every w ∈ Aω, i ≥ 0.

Proof. Let ϕ = k ∈ K. Then we set ϕ′(x) = k. Next, let ϕ ∈ abLTL (K,A),
i.e., ϕ =

∧
1≤j≤n ψj with ψj ∈ bLTL (K,A) or ψj =

∨
a∈A (ka ∧ pa), for every

1 ≤ j ≤ n. If ψj ∈ bLTL(K,A), then it is well-known that there exists a for-
mula ψ′j(xj) ∈ bFO(K,A) with one free variable xj , such that (‖ψj‖ , w≥i) =(∥∥ψ′j(xj)∥∥ , (w, [xj → i])

)
for every w ∈ Aω, i ≥ 0. Without any loss, we can

assume that the variable xj (1 ≤ j ≤ n) does not occur in any ψ′k (whenever
ψ′k ∈ bLTL (K,A)) with k 6= j (if this is not the case, then we apply a re-
naming of variables). Therefore, we can replace xj in ψ′j with a new variable
x. In case ψj =

∨
a∈A (ka ∧ pa) we consider the WQFO (K,A) letter-step for-

mula ψ′j(x) =
∨
a∈A (ka ∧ Pa(x)). Now it is a routine matter to show that the

WQFO (K,A) formula ϕ′(x) =
∧

1≤j≤n ψ
′
j(x) satisfies our claim.

Lemma 5. Let ϕ ∈ ULTL (K,A) such that there exists a formula
ϕ′ (y) ∈ WQFO (K,A) with (‖ϕ′ (y)‖ , (w, [y → i])) = (‖ϕ‖ , w≥i) for every w ∈
Aω, i ≥ 0. Then, there exists a WQFO (K,A) formula ψ (x) such that
(‖ψ (x)‖ , (w, [x→ i])) = (‖©ϕ‖ , w≥i) for every w ∈ Aω, i ≥ 0.



Weighted First-Order Logics over Semirings 445

Proof. We let ψ (x) = ∃y. (y = x+ 1 ∧ ϕ′ (y)) and we have

(‖ψ (x)‖ , (w, [x→ i])) = (‖∃y. (y = x+ 1 ∧ ϕ′ (y))‖ , (w, [x→ i]))

=
∑
j≥0

(‖y = x+ 1 ∧ ϕ′ (y)‖ , (w, [x→ i, y → j]))

= (‖y = x+ 1 ∧ ϕ′ (y)‖ , (w, [x→ i, y → i+ 1]))

+
∑

j≥0,j 6=i+1

(‖y = x+ 1 ∧ ϕ′ (y)‖ , (w, [x→ i, y → j]))

= (‖y = x+ 1 ∧ ϕ′ (y)‖ , (w, [x→ i, y → i+ 1]))

= (‖ϕ′ (y)‖ , (w, [y → i+ 1]))

= (‖ϕ‖ , w≥i+1) = (‖©ϕ‖ , w≥i) .

for every w ∈ Aω, i ≥ 0, where the fourth equality holds by Lemma 1(ii).

Lemma 6. Let ϕ ∈ bLTL (K,A) or ϕ be an atomic-step formula. Then, there
exists ψ (y) ∈ WQFO (K,A) such that (‖ψ (y)‖ , (w, [y → i])) = (‖�ϕ‖ , w≥i) for
every w ∈ Aω, i ≥ 0.

Proof. If ϕ ∈ bLTL(K,A), then �ϕ ∈ bLTL(K,A), and thus there exists a formula
ψ (x) ∈ bFO(K,A) with one free variable x, such that (‖ψ (x)‖ , (w, [x→ i])) =
(‖�ϕ‖ , w≥i) for every w ∈ Aω, i ≥ 0. If ϕ =

∨
a∈A (ka ∧ pa), then we consider the

WQFO (K,A) letter-step formula ϕ′(x) =
∨
a∈A (ka ∧ Pa(x)). We also consider the

WQFO (K,A) formula ψ (y) = ∀x. (y ≤ x→ ϕ′(x)). Then, for every w ∈ Aω, i ≥ 0
we have

(‖ψ (y)‖ , (w, [y → i])) =
∏
j≥0

(‖y ≤ x→ ϕ′(x)‖ , (w, [y → i, x→ j]))

=
∏
j≥i

(‖y ≤ x ∧ ϕ′(x)‖ , (w, [y → i, x→ j]))

=
∏
j≥i

(‖ϕ′(x)‖ , (w, [x→ j]))

=
∏
j≥i

(‖ϕ‖ , w≥j)

= (‖�ϕ‖ , w≥i)

where the fourth equality holds by Lemma 4.

Lemma 7. Let ϕ ∈ abLTL (K,A) and ψ ∈ ULTL (K,A) such that there exists
ψ′ (y) ∈ WQFO (K,A) with (‖ψ′ (y)‖ , (w, [y → i])) = (‖ψ‖ , w≥i) for every w ∈
Aω, i ≥ 0. Then, there exists ξ (z) ∈ WQFO (K,A) such that
(‖ξ (z)‖ , (w, [z → i])) = (‖ϕUψ‖ , w≥i) for every w ∈ Aω, i ≥ 0.
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Proof. Let ϕ =
∧

1≤l≤m ϕl. Then, by the proof of Lemma 4, there exists a formula
ϕ′ (x) =

∧
1≤l≤m ϕ

′
l (x) where for every 1 ≤ l ≤ m, ϕ′l (x) ∈ bFO (K,A) or it is a

letter-step formula with (‖ϕ′l (x)‖ (w, [x→ i])) = (‖ϕl‖ , w≥i) for every w ∈ Aω, i ≥
0. Moreover, we have
(‖ϕ′ (x)‖ , (w, [x→ i])) = (‖ϕ‖ , w≥i) for every w ∈ Aω, i ≥ 0. We consider the
FO (K,A) formula ξ′ (z) = ∃y. (∀x. ((z ≤ x < y)→ ϕ′ (x)) ∧ (z ≤ y) ∧ ψ′ (y)). For
every w ∈ Aω, i ≥ 0 we compute

(‖ξ′ (z)‖ , (w, [z → i]))

=
∑
j≥0

(‖∀x. ((z ≤ x < y)→ ϕ′ (x)) ∧ (z ≤ y) ∧ ψ′ (y)‖ , (w, [z → i, y → j]))

=
∑
j≥0

(‖∀x. ((z ≤ x < y)→ ϕ′ (x)) ∧ ψ′ (y)‖ , (w, [z → i, y → i+ j]))

=
∑
j≥0

 ∏
0≤k<j

(‖ϕ′ (x)‖ , (w, [x→ i+ k]))

 · (‖ψ′ (y)‖ , (w, [y → i+ j]))


=
∑
j≥0

 ∏
0≤k<j

(‖ϕ‖ , w≥i+k)

 · (‖ψ‖ , w≥i+j)


= (‖ϕUψ‖ , w≥i) .

Now, we consider the formula

ξ (z) = ∃y.
(∧

1≤l≤m
(∀x. ((z ≤ x < y)→ ϕ′l (x))) ∧ (z ≤ y) ∧ ψ′ (y)

)
and for every w ∈ Aω, i ≥ 0 we get (‖ξ (z)‖ , (w, [z → i])) = (‖ξ′ (z)‖ , (w, [z → i])) =
(‖ϕUψ‖ , w≥i). Since ξ (z) ∈WQFO (K,A), we conclude our proof.

Lemma 8. For every ULTL (K,A) formula ϕ we can construct a WQFO (K,A)
formula ϕ′ (x) such that (‖ϕ′ (x)‖ , (w, [x→ i])) = (‖ϕ‖ , w≥i) for every w ∈ Aω, i ≥
0.

Proof. We use Lemmas 2, 3, 4, 5, 6, and 7.

Proposition 1. For every ϕ ∈ ULTL (K,A) we can construct a WQFO (K,A)
sentence ϕ′ with ‖ϕ′‖ = ‖ϕ‖.

Proof. Let ϕ ∈ ULTL (K,A). By the previous lemma, there exists aWQFO (K,A)
formula ψ (x) such that (‖ψ (x)‖ , (w, [x→ i])) = (‖ϕ‖ , w≥i), for every w ∈ Aω, i ≥
0. We consider the WQFO (K,A) sentence ϕ′ = ∃x. (first (x) ∧ ψ (x)) and we get
(‖ϕ′‖ , w) = (‖ψ (x)‖ , (w, [x→ 0]))
= (‖ϕ‖ , w) for every w ∈ Aω, i.e., ‖ϕ′‖ = ‖ϕ‖, as required.

By the above proposition, we get the main result of this section.
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Theorem 1. ω-ULTL (K,A) ⊆ ω-wqFO(K,A).

The result of the next corollary, which is trivially obtained by the constructive
proofs of this section’s lemmas and propositions, in fact generalizes the correspond-
ing result that relates boolean LTL and FO logic.

Corollary 1. For every ϕ ∈ ULTL (K,A) we can construct a WQFO(K,A) sen-
tence ϕ′, that uses at most three different names of variables, such that ‖ϕ′‖ = ‖ϕ‖ .

6 Star-free series

In this section, we introduce the notions of star-free and ω-star-free series over A
and K. Let L ⊆ A∗ (resp. L ⊆ Aω). As usually, we denote by 1L the characteristic
series of L. If L is a singleton, i.e., L = {w}, then we simply write 1w for 1{w}.
Furthermore, we simply denote by kL the series k1L for k ∈ K. The monomials
over A and K are series of the form (ka)a for a ∈ A and ka ∈ K. For simplicity,
we shall consider also the series of the form kε with k ∈ K as monomials. A series
s ∈ K 〈〈A∗〉〉 is called a letter-step series if s =

∑
a∈A (ka)a where ka ∈ K for every

a ∈ A. The complement s of a series s is given by (s, w) = 1 if (s, w) = 0, and
(s, w) = 0 otherwise. Let r, s ∈ K 〈〈A∗〉〉. The (Cauchy) product of r and s is the
series r · s ∈ K 〈〈A∗〉〉 defined for every w ∈ A∗ by

(r · s, w) =
∑
{(r, u) · (s, v) | u, v ∈ A∗, w = uv}.

The nth-iteration rn ∈ K 〈〈A∗〉〉 (n ≥ 0) of a series r ∈ K 〈〈A∗〉〉 is defined
inductively by

r0 = 1ε and rn+1 = r · rn for n ≥ 0.

Then, we have (rn, w) =
∑{∏

1≤i≤n(r, ui) | ui ∈ A∗, w = u1 . . . un

}
for every

w ∈ A∗. A series r ∈ K 〈〈A∗〉〉 is called proper if (r, ε) = 0. If r is proper, then for
every w ∈ A∗ and n > |w| we have (rn, w) = 0. The iteration r+ ∈ K 〈〈A∗〉〉 of a
proper series r ∈ K 〈〈A∗〉〉 is defined by r+ =

∑
n>0 r

n. Thus, for every w ∈ A+

we have (r+, w) =
∑

1≤n≤|w|

(rn, w) and (r+, ε) = 0.

Definition 7. The class of star-free series over A and K, denoted by SF (K,A),
is the least class of series containing the monomials (over A and K) and being
closed under sum, Hadamard product, complement, Cauchy product, and iteration
restricted to letter-step series.

Next, let r ∈ K 〈〈A∗〉〉 be a finitary and s ∈ K 〈〈Aω〉〉 an infinitary series. Then,
the Cauchy product of r and s is the infinitary series r · s ∈ K 〈〈Aω〉〉 defined for
every w ∈ Aω by

(r · s, w) =
∑
{(r, u) · (s, v) | u ∈ A∗, v ∈ Aω, w = uv} 1.

1Since the semiring K is idempotent (resp. By Lemma 1(ii)), the notation of the sum in the
definition of Cauchy product of two finitary series (resp. of a finitary and an infinitary series), is
consistent with the standard definition.
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The ω-iteration of a proper finitary series r ∈ K 〈〈A∗〉〉 is the infinitary series
rω ∈ K 〈〈Aω〉〉 which is defined by

(rω, w) =
∑{∏

i≥1(r, ui) | ui ∈ A∗, w = u1u2 . . .
}

for every w ∈ Aω.

Example 2. Let r =
∑
a∈A (ka)a ∈ K 〈〈A∗〉〉 be a letter-step series. We will show

that (r+)
+

= r+. Moreover, for every w ∈ Aω we have (rω, w) =
∏
i≥0 (r, w (i)).

Let w = w (0) . . . w (n− 1) ∈ A+. Then

(
r+, w

)
=
∑ ∏

1≤j≤k

(r, uj) | w = u1 . . . uk, 1 ≤ k ≤ n


=

∏
0≤j≤n−1

(r, w (j)) .

Furthermore, we get((
r+
)+
, w
)

=
∑ ∏

1≤j≤k

(
r+, uj

)
| w = u1 . . . uk, 1 ≤ k ≤ n


=
∑ ∏

1≤j≤k

 ∏
0≤ij≤|uj |−1

(r, uj (ij))

 | w = u1 . . . uk, 1 ≤ k ≤ n


=

∏
0≤j≤n−1

(r, w (j)) =
(
r+, w

)
.

Similarly, we can show that (rω, w) =
∏
i≥0 (r, w (i)), for every w ∈ Aω.

Definition 8. The class of ω-star-free series over A and K, denoted by ω-SF (K,A),
is the least class of infinitary series generated by the monomials (over A and K)
by applying finitely many times the operations of sum, Hadamard product, com-
plement, Cauchy product, iteration restricted to letter-step series, and ω-iteration
restricted to letter-step series.

The next result is trivially proved by Definitions 7, 8 and standard arguments.

Lemma 9. Let r ∈ SF (K,A) (resp. r ∈ ω-SF (K,A)) and B ⊆ A. Then r|B∗ ∈
SF (K,B) (resp. r|Bω ∈ ω-SF (K,B)).

In the sequel, we state properties of the classes SF (K,A) and ω-SF (K,A).
More precisely, we prove a splitting lemma and the closure of the classes under
inverse strict alphabetic epimorphisms and bijections.

Lemma 10. If r ∈ SF (K,A) (resp. r ∈ ω-SF (K,A)) and k ∈ K, then kr ∈
SF (K,A) (resp. kr ∈ ω-SF (K,A)).
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Proof. We have kr = kε · r, hence we get the proof of our claim.

Lemma 11. Let L,L′ ⊆ A∗ and K,K ′ ⊆ Aω. Then

- 1L∪L′ = 1L + 1L′ , 1K∪K′ = 1K + 1K′

- 1L∩L′ = 1L � 1L′ , 1K∩K′ = 1K � 1K′

- 1LL′ = 1L · 1L′ , 1LK = 1L · 1K

- 1L+ = (1L)
+

whenever ε /∈ L

- 1Lω = (1L)
ω

whenever ε /∈ L.

Proof. We use standard arguments and the idempotency property of the semiring
K. In particular, for the last statement we use Lemma 1(i).

The two subsequent results are shown by induction on the structure of star-free
(resp. ω-star-free) languages and series using Lemma 11.

Lemma 12. For every L ⊆ A∗ the following statements are equivalent.

(i) L is a star-free language.

(ii) 1L ∈ SF (K,A).

Lemma 13. For every L ⊆ Aω the following statements are equivalent.

(i) L is an ω-star-free language.

(ii) 1L ∈ ω-SF (K,A).

Since for every L ⊆ A∗ (resp. L ⊆ Aω) and k ∈ K we have kL = kε · 1L, by
Lemmas 12 and 13, we get Lemma 14 below.

Lemma 14. Let L ⊆ A∗ (resp. L ⊆ Aω) and k ∈ K. If L is star-free (resp.
ω-star-free), then kL ∈ SF (K,A) (resp. kL ∈ ω-SF (K,A)).

Lemma 15. If s ∈ SF (K,A) (resp. s ∈ ω-SF (K,A)), then supp(s) is a star-free
language (resp. an ω-star-free) language over A.

Proof. Using standard arguments, we state the proof by induction on the structure
of s.

Lemma 16.

(i) Let L ⊆ A∗ be a star-free language and B,Γ ⊆ A with B ∩ Γ = ∅. Then
1L|B∗ΓB∗ =

∑
1≤i≤n

(
1Mi
·
(
1γi · 1M ′i

))
where for every 1 ≤ i ≤ n, Mi,M

′
i ⊆

B∗ are star-free languages, and γi ∈ Γ.
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(ii) Let L ⊆ Aω be an ω-star-free language and B,Γ ⊆ A with B ∩ Γ = ∅. Then
1L|B∗ΓBω =

∑
1≤i≤n

(
1Mi
·
(
1γi · 1M ′i

))
where for every 1 ≤ i ≤ n, Mi ⊆ B∗

is star-free, M ′i ⊆ Bω is ω-star-free, and γi ∈ Γ.

Proof. We prove only (ii); Statement (i) is shown with the same arguments. By the
splitting lemma for ω-star-free languages (cf. Lm. 3.2. in [7]), we get L∩B∗ΓBω =⋃

1≤i≤nMiγiM
′
i where for every 1 ≤ i ≤ n, Mi ⊆ B∗ is star-free, γi ∈ Γ, and

M ′i ⊆ Bω is ω-star-free. Since 1L|B∗ΓBω = 1L∩B∗ΓBω , we complete our proof using
Lemma 11.

Proposition 2 (Splitting lemma for finitary series). Let s ∈ SF (K,A) and B,Γ ⊆
A with B ∩ Γ = ∅. Then s|B∗ΓB∗ =

∑
1≤i≤n

(
s

(i)
1 ·

(
s

(i)
2 · s

(i)
3

))
where for every

1 ≤ i ≤ n, s
(i)
1 , s

(i)
3 ∈ SF (K,B) and s

(i)
2 = (ki)γi with γi ∈ Γ, ki ∈ K.

Proof. We use induction on the structure of s. Let s = (ka)a , a ∈ A, be a monomial.
Then, if a ∈ Γ, we have s|B∗ΓB∗ = 1ε · ((ka)a · 1ε), otherwise s|B∗ΓB∗ = 1∅ ·(

(kγ)γ · 1∅
)

for an arbitrary γ ∈ Γ. If s = kε, then again s|B∗ΓB∗ = 1∅ ·
(

(kγ)γ · 1∅
)

for an arbitrary γ ∈ Γ.
Let s, r ∈ SF (K,A) satisfying the induction hypothesis. This means that

s|B∗ΓB∗ =
∑

1≤i≤n

(
s

(i)
1 ·

(
s

(i)
2 · s

(i)
3

))
and r|B∗ΓB∗ =

∑
1≤j≤m

(
r

(j)
1 ·

(
r

(j)
2 · r

(j)
3

))
where for every 1 ≤ i ≤ n and 1 ≤ j ≤ m, we have s

(i)
1 , s

(i)
3 , r

(j)
1 , r

(j)
3 ∈ SF (K,B) ,

s
(i)
2 = (ki)γi , r

(j)
2 = (lj)γ′j

, γi, γ
′
j ∈ Γ, ki, lj ∈ K. Obviously, (s+ r) |B∗ΓB∗ has the

required form.
Next let w ∈ B∗ΓB∗ and 0 ≤ k ≤ |w| − 1 with w(k) ∈ Γ. Then w<k, w>k ∈ B∗

and we have

(s|B∗ΓB∗ , w) =

 ∑
1≤i≤n

(
s

(i)
1 ·

(
s

(i)
2 · s

(i)
3

))
, w


=
∑

1≤i≤n

(
s

(i)
1 ·

(
s

(i)
2 · s

(i)
3

)
, w
)

=
∑

1≤i≤n

((
s

(i)
1 , w<k

)
·
(
s

(i)
2 , w(k)

)
·
(
s

(i)
3 , w>k

))
where the third equality holds since for every 1 ≤ i ≤ n and every decomposition

w = u1u2u3 with u2 6= w(k) we have
(
s

(i)
2 , u2

)
= 0.

Similarly

(r|B∗ΓB∗ , w) =

 ∑
1≤j≤m

(
r

(j)
1 ·

(
r

(j)
2 · r

(j)
3

))
, w


=

∑
1≤j≤m

((
r

(j)
1 , w<k

)
·
(
r

(j)
2 , w(k)

)
·
(
r

(j)
3 , w>k

))
.
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Hence,

((s� r) |B∗ΓB∗ , w) = (s|B∗ΓB∗ , w) · (r|B∗ΓB∗ , w)

=
∑

1≤i≤n

((
s

(i)
1 , w<k

)
·
(
s

(i)
2 , w(k)

)
·
(
s

(i)
3 , w>k

))
·
∑

1≤j≤m

((
r

(j)
1 , w<k

)
·
(
r

(j)
2 , w(k)

)
·
(
r

(j)
3 , w>k

))
=

∑
1≤i≤n
1≤j≤m

((
s

(i)
1 � r

(j)
1 , w<k

)
·
((
s

(i)
2 � r

(j)
2 , w(k)

)
·
(
s

(i)
3 � r

(j)
3 , w>k

)))

=

 ∑
1≤i≤n
1≤j≤m

((
s

(i)
1 � r

(j)
1

)
·
((
s

(i)
2 � r

(j)
2

)
·
(
s

(i)
3 � r

(j)
3

)))
, w

 .

Since s
(i)
1 � r

(j)
1 , s

(i)
3 � r

(j)
3 ∈ SF (K,B) , and s

(i)
2 � r

(j)
2 = (ki · lj)γi if γi = γ′j , and

s
(i)
2 �r

(j)
2 = 0γ for an arbitrary γ ∈ Γ otherwise, our claim is true for the Hadamard

product.
Furthermore,

((s · r) |B∗ΓB∗ , w) =
∑
{(s|B∗ΓB∗ , u) · (r, v) | u ∈ B∗ΓB∗, v ∈ B∗, w = uv}

+
∑
{(s, u) · (r|B∗ΓB∗ , v) | u ∈ B∗, v ∈ B∗ΓB∗, w = uv}

with∑
{(s|B∗ΓB∗ , u) · (r, v) | u ∈ B∗ΓB∗, v ∈ B∗, w = uv}

=
∑

 ∑
1≤i≤n

(
s

(i)
1 ·

(
s

(i)
2 · s

(i)
3

))
, u

 · (r, v) | u ∈ B∗ΓB∗, v ∈ B∗, w = uv


=
∑

 ∑
1≤i≤n

(
s

(i)
1 ·

(
s

(i)
2 · s

(i)
3

))
, u

 · (r|B∗ , v) | u, v ∈ A∗, w = uv


=

 ∑
1≤i≤n

(
s

(i)
1 ·

(
s

(i)
2 · s

(i)
3

)) · r|B∗ , w


=

 ∑
1≤i≤n

((
s

(i)
1 ·

(
s

(i)
2 · s

(i)
3

))
· r|B∗

)
, w


=

 ∑
1≤i≤n

(
s

(i)
1 ·

(
s

(i)
2 ·

(
s

(i)
3 · r|B∗

)))
, w
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where r|B∗ = r� 1B∗ ∈ SF (K,B), and the fourth equality holds since the Cauchy
product distributes over the sum of series. Similarly

∑
{(s, u) · (r|B∗ΓB∗ , v) | u ∈ B∗, v ∈ B∗ΓB∗, w = uv}

=
∑(s, u) ·

 ∑
1≤j≤m

(
r

(j)
1 ·

(
r

(j)
2 · r

(j)
3

))
, v

 | u ∈ B∗, v ∈ B∗ΓB∗, w = uv


=
∑(s|B∗ , u) ·

 ∑
1≤j≤m

(
r

(j)
1 ·

(
r

(j)
2 · r

(j)
3

))
, v

 | u, v ∈ A∗, w = uv


=

s|B∗ · ∑
1≤j≤m

(
r

(j)
1 ·

(
r

(j)
2 · r

(j)
3

))
, w


=

 ∑
1≤j≤m

(
s|B∗ ·

(
r

(j)
1 ·

(
r

(j)
2 · r

(j)
3

)))
, w


=

 ∑
1≤j≤m

((
s|B∗ · r(j)

1

)
·
(
r

(j)
2 · r

(j)
3

))
, w

 .

Thus,

((s · r) |B∗ΓB∗ , w) =

 ∑
1≤i≤n

(
s

(i)
1 ·

(
s

(i)
2 ·

(
s

(i)
3 · r|B∗

)))
, w


+

 ∑
1≤j≤m

((
s|B∗ · r(j)

1

)
·
(
r

(j)
2 · r

(j)
3

))
, w

 .

Therefore, the series (s · r) |B∗ΓB∗ has the required form.

Now, let s be a letter-step series. Then, s|B∗ΓB∗ = s|Γ =
∑
γ∈Γ (kγ)γ . Let

w ∈ supp(s+) ∩B∗ΓB∗, which implies that there is an index 0 ≤ k ≤ |w| − 1 such
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that w<k, w>k ∈ B∗ and w(k) ∈ Γ. Then

((
s+
)
|B∗ΓB∗ , w

)
=
∑
{(sm|B∗ΓB∗ , w) | 1 ≤ m ≤ |w|} =

(
s|w||B∗ΓB∗ , w

)
=

∏
0≤j≤|w|−1

(s, w(j))

=

 ∏
0≤j≤k−1

(s, w(j))

 · (s, w(k)) ·

 ∏
k<j≤|w|−1

(s, w(j))


=
(

(s|B)
+ ·
(
s|Γ · (s|B)

+
)
, w
)

=

∑
γ∈Γ

(
(s|B)

+ ·
(

(kγ)γ · (s|B)
+
))

, w



and this concludes the induction for letter-step series.

Finally, let s ∈ SF (K,A). Then s = 1
supp(s)

. Since supp (s) is a star-free

language, we get that supp (s) is also star-free. Hence, by Lemma 16(i) we conclude
our proof.

Proposition 3 (Splitting lemma for infinitary series). Let s ∈ ω-SF (K,A) and

B,Γ ⊆ A with B ∩ Γ = ∅. Then s|B∗ΓBω =
∑

1≤i≤n

(
s

(i)
1 ·

(
s

(i)
2 · s

(i)
3

))
where for

every 1 ≤ i ≤ n, s
(i)
1 ∈ SF (K,B) , s

(i)
3 ∈ ω-SF (K,B), and s

(i)
2 = (ki)γi with

γi ∈ Γ, ki ∈ K.

Proof. Taking into account the definition of ω-star-free series, firstly we embed the
proof of Lemma 2. Furthermore, we use arguments of that proof as follows. For
the operations of sum and Hadamard product we let s, r ∈ ω-SF (K,A), and for
Cauchy product we let s ∈ SF (K,A) and r ∈ ω-SF (K,A). For the complement
operation, we let s ∈ ω-SF (K,A) and we use the corresponding argument for ω-
star-free languages and Lemma 16(ii). Finally, let s be a letter-step series. Then,
s|B∗ΓB∗ = s|Γ =

∑
γ∈Γ (kγ)γ . Let w ∈ supp(sω) ∩ B∗ΓBω, i.e., there exists an



454 Eleni Mandrali and George Rahonis

index k ≥ 0 such that w<k ∈ B∗, w>k ∈ Bω, and w(k) ∈ Γ. Then we get

((sω) |B∗ΓBω , w)

=
∑∏

i≥1

(s, ui) | ui ∈ A∗, w = u1u2 . . .


=
∏
j≥0

(s, w(j))

=

 ∏
0≤j≤k−1

(s, w(j))

 · (s, w(k)) ·

∏
j>k

(s, w(j))


=
(

(s|B)
+ · (s|Γ · (s|B)

ω
) , w

)
=

∑
γ∈Γ

(
(s|B)

+ ·
(

(kγ)γ · (s|B)
ω
))

, w


i.e.,

(sω) |B∗ΓBω =
∑
γ∈Γ

(
(s|B)

+ ·
(

(kγ)γ · (s|B)
ω
))

and this completes our proof.

Proposition 4. Let A,B be two alphabets and h : A → B a bijection. Then
s ∈ SF (K,A) (resp. s ∈ ω-SF (K,A)) implies that h (s) ∈ SF (K,B) (resp.
h (s) ∈ ω-SF (K,B)).

Proof. There is an one-to-one correspondence between the words of A∗ and B∗

(resp. the words of Aω and Bω) derived by h. Then, we can easily state our proof
by induction on the structure of star-free (resp. ω-star-free) series.

Proposition 5. Let A,B be alphabets and h : A → B a strict alphabetic epi-
morphism. Then s ∈ SF (K,B) (resp. s ∈ ω-SF (K,B)) implies that h−1 (s) ∈
SF (K,A) (resp. h−1 (s) ∈ ω-SF (K,A)).

Proof. We prove our claim by induction on the structure of star-free (resp. ω-star-
free) series. Let s = (kb)b be a monomial over B and K. Then, h−1 (s) is a letter-
step series and thus a star-free series over A and K. If s = kε, then h−1 (s) = kε
since h is strict. Next let s1, s2 ∈ SF (K,B) (resp. s1, s2 ∈ ω-SF (K,B)) such that
h−1 (s1) , h−1 (s2) ∈ SF (K,A) (resp. h−1 (s1) , h−1 (s2) ∈ ω-SF (K,A)). Trivially
h−1 (s1 � s2) = h−1 (s1)� h−1 (s2) and h−1 (s1 + s2) = h−1 (s1) + h−1 (s2).



Weighted First-Order Logics over Semirings 455

Furthermore, for every w ∈ A∗ we have(
h−1 (s1 · s2) , w

)
= (s1 · s2, h (w))

=
∑
{(s1, u1) · (s2, u2) | u1, u2 ∈ B∗, u1u2 = h (w)}

=
∑
{(s1, h (w1)) · (s2, h (w2)) | w1, w2 ∈ A∗, w1w2 = w}

=
∑{(

h−1 (s1) , w1

)
·
(
h−1 (s2) , w2

)
| w1, w2 ∈ A∗, w1w2 = w

}
=
(
h−1 (s1) · h−1 (s2) , w

)
where the fourth equality holds since h is strict alphabetic. Hence h−1 (s1 · s2) =
h−1 (s1) · h−1 (s2). If s1 ∈ SF (K,B), s2 ∈ ω-SF (K,B), and w ∈ Aω, then we use
the same as above argument, where we write u2 ∈ Bω and w2 ∈ Aω.

Assume now that s is a letter-step series over B and K. Then, the series h−1 (s)
is a letter-step series over A and K, hence h−1 (s) ∈ SF (K,A). For every w ∈ A+

we get

(h−1(s+), w) = (s+, h(w)) =
∏

0≤j≤|w|−1

(s, h(w)(j))

=
∏

0≤j≤|w|−1

(s, h(w(j))) =
∏

0≤j≤|w|−1

(h−1(s), w(j))

= ((h−1(s))+, w),

i.e., h−1(s+) = (h−1(s))+ ∈ SF (K,A).
Next, let s ∈ SF (K,B). Then, s = 1

supp(s)
and supp (s) is, by Lemma 12, a

star-free language over B. Moreover, the language h−1
(

supp (s)
)
⊆ A∗ is star-free

(cf. for instance [28]) hence, the series h−1 (s) = h−1
(

1
supp(s)

)
= 1

h−1(supp(s)) is

star-free by Lemma 12. The case s ∈ ω-SF (K,B) is treated similarly.
Finally, assume that s is a letter-step series over B and K. Then, h−1(s) is a

letter-step series over A and K. Moreover, for every w ∈ Aω we have

(h−1(sω), w) = (sω, h(w)) =
∏
j≥0

(s, h(w)(j))

=
∏
j≥0

(s, h(w(j))) =
∏
j≥0

(h−1(s), w(j))

= ((h−1(s))ω, w),

i.e., h−1 (sω) =
(
h−1 (s)

)ω ∈ ω-SF (A,K), and our proof is completed.

7 ω-wqFO-definable series are ω-star-free

In the sequel, we show that every ω-wqFO-definable series over A and K is an
ω-star-free series, i.e., ω-wqFO (K,A) ⊆ ω-SF (K,A). For this, we use induction
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on the structure of WQFO (K,A) formulas. We shall need the following auxiliary
result.

Lemma 17. Let ϕ ∈ FO (K,A) and V be a finite set of first-order variables con-
taining free (ϕ). If ‖ϕ‖ is an ω-star-free series, then ‖ϕ‖V is an ω-star-free series.

Proof. Let ‖ϕ‖ be an ω-star-free series and h : AV → Afree(ϕ) the strict al-
phabetic epimorphism erasing the x-row for every x ∈ V \ free (ϕ). It holds
‖ϕ‖V = h−1 (‖ϕ‖) � 1NV . Then by Proposition 5 we get that h−1 (‖ϕ‖) ∈ ω-
SF (K,AV), and thus ‖ϕ‖V ∈ ω-SF (K,AV), as wanted.

Lemma 18. Let ϕ ∈ FO (K,A) be an atomic formula. Then, ‖ϕ‖ is an ω-star-free
series.

Proof. If ϕ = k ∈ K, then ‖ϕ‖ = kAω . Next, if ϕ = Pa (x) or x ≤ y, then ϕ is a
boolean first-order formula, hence L(ϕ) is an ω-star-free language and ‖ϕ‖ = 1L(ϕ)

is an ω-star-free series.

Lemma 19. Let ϕ ∈ FO (K,A) such that ‖ϕ‖ is an ω-star-free series. Then,
‖¬ϕ‖ is also an ω-star-free series.

Proof. By definition, we have ‖¬ϕ‖ = ‖ϕ‖.

Lemma 20. Let ϕ,ψ ∈ FO (K,A). If ‖ϕ‖ , ‖ψ‖ are ω-star-free series, then
‖ϕ ∧ ψ‖ , ‖ϕ ∨ ψ‖ are ω-star-free series.

Proof. Let V = free (ϕ)∪free (ψ). We have ‖ϕ ∧ ψ‖ = ‖ϕ‖V�‖ψ‖V and ‖ϕ ∨ ψ‖ =
‖ϕ‖V +‖ψ‖V , hence our claim follows by definition of ω-star-free series and Lemma
17.

Lemma 21. Let ϕ ∈ FO (K,A) such that ‖ϕ‖ is an ω-star-free series. Then,
‖∃x.ϕ‖ is also an ω-star-free series.

Proof. LetW =free (ϕ)∪{x} and V = free(∃x.ϕ) =W\{x}. We define two subal-
phabets B,Γ of AW by letting B = {(a, f) ∈ AW | f (x) = 0} and
Γ = {(a, f) ∈ AW | f (x) = 1}. Since ‖ϕ‖W ∈ ω-SF (K,AW) (by Lemma 17, in
case x /∈ free(ϕ)), by Proposition 3 we get

‖ϕ‖W |B∗ΓBω =
∑

1≤i≤n

(
s

(i)
1 ·

(
s

(i)
2 · s

(i)
3

))

with s
(i)
1 ∈ SF (K,B) , s

(i)
3 ∈ ω-SF (K,B) , and s

(i)
2 = (ki)γi , where ki ∈ K, γi ∈ Γ

for every 1 ≤ i ≤ n. We show that

‖∃x.ϕ‖ =

 ∑
1≤i≤n

(
h|B

(
s

(i)
1

)
·
(

(ki)h(γi)
· h|B

(
s

(i)
3

)))� 1NV
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where h : AW → AV is the strict alphabetic epimorphism assigning (a, f |V) to
(a, f) for every (a, f) ∈ AW .

Let (w, σ) ∈ NV . Then we have

(‖∃x.ϕ‖ , (w, σ))

=
∑
j≥0

(‖ϕ‖W , (w, σ [x→ j]))

=
∑
j≥0

(‖ϕ‖W |B∗ΓBω , (w, σ [x→ j]))

=
∑
j≥0

 ∑
1≤i≤n

(
s

(i)
1 ·

(
s

(i)
2 · s

(i)
3

))
, (w, σ [x→ j])


=
∑
j≥0

 ∑
1≤i≤n

 (
s

(i)
1 , (w, σ [x→ j])<j

)
·
(
s

(i)
2 , (w, σ [x→ j]) (j)

)
·
(
s

(i)
3 , (w, σ [x→ j])>j

) 
=
∑

1≤i≤n

∑
j≥0

 (
s

(i)
1 , (w, σ [x→ j])<j

)
·
(
s

(i)
2 , (w, σ [x→ j]) (j)

)
·
(
s

(i)
3 , (w, σ [x→ j])>j

) 
=
∑

1≤i≤n

∑
j≥0

 (
h|B

(
s

(i)
1

)
, (w, σ)<j

)
·
(

(ki)h(γi)
, (w, σ) (j)

)
·
(
h|B

(
s

(i)
3

)
, (w, σ)>j

) 
=
∑

1≤i≤n

(
h|B

(
s

(i)
1

)
·
(

(ki)h(γi)
· h|B

(
s

(i)
3

))
, (w, σ)

)

where the sixth equality holds since h
(

(ki)γi

)
= (ki)h(γi)

and h|B : B → AV is a

bijection. On the other hand, for every (w, σ) ∈ AωV \ NV we have ∑
1≤i≤n

(
h|B

(
s

(i)
1

)
·
(

(ki)h(γi)
· h|B

(
s

(i)
3

)))
� 1NV , (w, σ)

 = 0.

Hence, ‖∃x.ϕ‖ =

 ∑
1≤i≤n

(
h|B

(
s

(i)
1

)
·
(

(ki)h(γi)
· h|B

(
s

(i)
3

)))�1NV . By Propo-

sition 4, for every 1 ≤ i ≤ n, we get that h|B
(
si1
)
∈ SF (K,AV) , h|B

(
s

(i)
3

)
∈ ω-

SF (K,AV). Therefore ‖∃x.ϕ‖ is an ω-star-free series.

Lemma 22. Let ϕ ∈ FO (K,A) be a boolean, or a letter-step formula with free
variable x, or ϕ = (y ≤ x) → ψ, or ϕ = (y ≤ x < z) → ψ where ψ is a letter-step
formula with free variable x. Then, ‖∀x.ϕ‖ is an ω-star-free series.

Proof. If ϕ ∈ bFO (K,A), then ∀x.ϕ ∈ bFO (K,A), hence the language L(∀x.ϕ) is
ω-star-free and the series ‖∀x.ϕ‖ = 1L(∀x.ϕ) is ω-star-free.
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Next, assume that ϕ =
∨
a∈A (ka ∧ Pa(x)) is a letter-step formula with ka ∈ K

for every a ∈ A. We consider the letter-step series r =
∑
a∈A (ka)a. Then for every

word w ∈ Aω we have

(‖∀x.ϕ‖ , w) =
∏
i≥0

(‖ϕ‖ , (w, [x→ i]))

=
∏
i≥0

(∥∥∥∨
a∈A

(ka ∧ Pa(x))
∥∥∥ , (w, [x→ i])

)
=
∏
i≥0

(r, w(i))

= (rω, w)

where the fourth equality holds by Example 2. Hence, we get ‖∀x.ϕ‖ = rω which
implies that ‖∀x.ϕ‖ is an ω-star-free series.

Next, let ϕ = (y ≤ x) →
∨
a∈A (ka ∧ Pa(x)). We consider the subset F =

{(a, 0) | a ∈ A} of A{y}. The language F ∗ is star-free, hence, the series 1F∗ is

star-free. Consider the series s =
∑
a∈A

(
(ka)(a,0)

)
and s′ =

∑
a∈A

(
(ka)(a,1)

)
over A{y} and K. Now for every w ∈ Aω and l ≥ 0, we get

(‖∀x.ϕ‖ , (w, [y → l])) =
∏
j≥0

(∥∥∥(y ≤ x)→
∨

a∈A
(ka ∧ Pa(x))

∥∥∥ , (w, [x→ j, y → l])
)

=
∏
j≥l

(∥∥∥∨
a∈A

(ka ∧ Pa(x))
∥∥∥ , (w, [x→ j])

)
= (s′, (w(l), 1)) ·

∏
j>l

(s, (w(j), 0))

= (1F∗ · (s′ · sω) , (w, [y → l])),

i.e., ‖∀x.ϕ‖ = 1F∗ · (s′ · sω) is an ω-star-free series.

Finally, let ϕ = (y ≤ x < z) →
∨
a∈A (ka ∧ Pa(x)). We consider the finite

languages F = {(a, 0, 0) | a ∈ A}, F1 = {(a, 1, 0) | a ∈ A}, F2 = {(a, 0, 1) | a ∈ A}
and F3 = {(a, 1, 1) | a ∈ A} over A{y,z}. The languages F, F1, F2, F3, F

+, F ∗ are
star-free, hence the series 1F1

, 1F2
, 1F3

, 1F+ , 1F∗ are star-free. Since (F+)+ = F+

the languages L = (F+)ω, L′ = F2L are ω-star-free (cf. [28]) and the infinitary
series 1L, 1L′ are ω-star-free. We consider the series s =

∑
a∈A

(
k(a,0,0)

)
(a,0,0)

and

s′ =
∑
a∈A

(
k(a,1,0)

)
(a,1,0)

over A{y,z} and K, where k(a,0,0) = k(a,1,0) = ka for every

a ∈ A. Moreover, we let r1 = 1F∗ · (s′ · ((1ε + s+) · 1L′)) , r2 = 1F∗ · (1F3
· 1L) , and

r3 = 1F∗ · (1F2 · (1F∗ · (1F1 · 1L))).

Now, for every w ∈ Aω and j, l ≥ 0 with j < l, we have
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(r2 + r3, (w, [y → j, z → l])) = 0, and

(‖∀x.ϕ‖ , (w, [y → j, z → l]))

=
∏
i≥0

(∥∥∥(y ≤ x < z)→
∨

a∈A
(ka ∧ Pa(x))

∥∥∥ , (w, [x→ i, y → j, z → l])
)

=
∏
j≤i<l

(∥∥∥∨
a∈A

(ka ∧ Pa(x))
∥∥∥ , (w, [x→ i])

)
= (s′, (w(j), 1, 0)) ·

∏
j<i<l

(s, (w(i), 0, 0))

= (r1, (w, [y → j, z → l]))

= (r1 + (r2 + r3) , (w, [y → j, z → l])) .

Furthermore, for every w ∈ Aω and j, l ≥ 0 with j ≥ l, we get
(r1, (w, [y → j, z → l])) = 0, and

(‖∀x.ϕ‖ , (w, [y → j, z → l]))

=
∏
i≥0

(∥∥∥(y ≤ x < z)→
∨

a∈A
(ka ∧ Pa(x))

∥∥∥ , (w, [x→ i, y → j, z → l])
)

=
∏
i≥0

(‖¬ (y ≤ x < z)‖ , (w, [x→ i, y → j, z → l]))

= (r2 + r3, (w, [y → j, z → l]))

= (r1 + (r2 + r3) , (w, [y → j, z → l])) .

We conclude that ‖∀x.ϕ‖ = r1 + (r2 + r3), hence ‖∀x.ϕ‖ is an ω-star-free series, as
required.

Now, we are ready to state the main result of the section.

Theorem 2. ω-wqFO (K,A) ⊆ ω-SF (K,A).

Proof. We combine Lemmas 18, 19, 20, 21, and 22.

8 Counter-free series

In this section, we consider the concept of counter-freeness within weighted (resp.
weighted Büchi) automata over A and K. Our models will be nondeterministic. We
need first to recall the notions of weighted automata and weighted Büchi automata
over A and K. For simplicity reasons, we equip our finitary models with a set of
final states instead of a terminal distribution.

A weighted automaton over A and K is a quadruple A = (Q, in,wt, F ) where
Q is the finite state set, in : Q→ K is the initial distribution, wt : Q×A×Q→ K
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is a mapping assigning weights to the transitions of the automaton and F ⊆ Q is
the final state set.

Given a word w = a0 . . . an−1 ∈ A∗, a path of A over w is a finite sequence of
transitions Pw := ((qi, ai, qi+1))0≤i≤n−1. The running weight of Pw is the value

rwt(Pw) :=
∏

0≤i≤n−1

wt ((qi, ai, qi+1))

and the weight of Pw is given by

weight(Pw) := in(q0) · rwt(Pw).

The path Pw is called successful if qn ∈ F . We denote by succ(A) the set of
successful paths of A. The behavior of A is the series ‖A‖ : A∗ → K which is
defined, for every w ∈ A∗, by (‖A‖ , w) =

∑
Pw∈succ(A)

weight(Pw). A series r ∈

K 〈〈A∗〉〉 is called recognizable if it is the behavior of a weighted automaton over A
and K.

A weighted Büchi automaton A = (Q, in,wt, F ) over A and K is defined as a
weighted automaton. Given an infinite word w = a0a1 . . . ∈ Aω, a path of A over w
is an infinite sequence of transitions Pw := ((qi, ai, qi+1))i≥0. The running weight
of Pw is the value

rwt(Pw) :=
∏
i≥0

wt ((qi, ai, qi+1))

and the weight of Pw is given by

weight(Pw) := in(q0) · rwt(Pw).

A path Pw is called successful if at least one final state occurs infinitely often
along Pw. Then, the behavior of A is the infinitary series ‖A‖ : Aω → K whose
coefficients are given by (‖A‖ , w) =

∑
Pw∈succ(A)

weight(Pw), for every w ∈ Aω. An

infinitary series r ∈ K 〈〈Aω〉〉 is called ω-recognizable if it is the behavior of a
weighted Büchi automaton over A and K.

We shall need also the following notation. Given a weighted (resp. weighted
Büchi) automaton A = (Q, in,wt, F ), a word w = a0 . . . an−1 ∈ A∗, and states
q, q′ ∈ Q, we shall denote by P(q,w,q′) a path of A over w starting at state q and ter-
minating at state q′, i.e., P(q,w,q′) = (q, a0, q1) ((qi, ai, qi+1))1≤i≤n−2 (qn−1, an−1, q

′).
Then

rwt
(
P(q,w,q′)

)
= wt ((q, a0, q1)) ·

∏
1≤i≤n−2

wt ((qi, ai, qi+1)) ·wt ((qn−1, an−1, q
′)) .

Now, we are ready to introduce our counter-free weighted and counter-free
weighted Büchi automata.
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Definition 9. A weighted automaton (resp. weighted Büchi automaton) A =
(Q, in,wt, F ) over A and K is called counter-free ( cfwa, resp. cfwBa, for short)
if for every q ∈ Q, w ∈ A∗, and n ≥ 1, the relation

∑
P(q,wn,q)

rwt
(
P(q,wn,q)

)
6= 0

implies
∑

P(q,wn,q)

rwt
(
P(q,wn,q)

)
=

( ∑
P(q,w,q)

rwt
(
P(q,w,q)

))n
.

A series r ∈ K 〈〈A∗〉〉 (resp. r ∈ K 〈〈Aω〉〉) is called counter-free (resp. ω-
counter-free) if it is accepted by a cfwa (resp. cfwBa) over A and K. We shall
denote by CF (K,A) (resp. ω-CF (K,A)) the class of all counter-free (resp. ω-
counter-free) series over A and K.

A cfwa A = (Q, in,wt, F ) over A and K is called normalized if there are two
states q0, qt ∈ Q such that F = {qt} and for every q ∈ Q, a ∈ A, we have in(q) = 1
if q = q0, and in(q) = 0 otherwise, and wt((q, a, q0)) = 0 = wt((qt, a, q)). We
denote a normalized cfwa A simply by A = (Q, q0, wt, qt).

The following result has been proved for weighted automata in [11].

Lemma 23. For every cfwa A = (Q, in,wt, F ) we can effectively construct a nor-
malized cfwa A′ = (Q ∪ {q0, qt}, q0, wt

′, qt) such that (‖A′‖ , w) = (‖A‖ , w) for
every w ∈ A+ and (‖A′‖ , ε) = 0.

Proof. We use similar arguments as in the proof of Lm. 7 in [11]. In fact, it remains
to show that the normalized weighted automaton A′ is counter-free. Indeed, let
q ∈ Q ∪ {q0, qt}, w ∈ A+, n ≥ 1, and P ′(q,wn,q) be a path of A′ over w with

rwt(P ′(q,wn,q)) 6= 0. Since A′ is normalized we get that the states q0, qt do not occur

in the path P ′(q,wn,q) hence P ′(q,wn,q) is also a path of A. This implies that

∑
P ′

(q,wn,q)

rwt
(
P ′(q,wn,q)

)
=

∑
P(q,wn,q)

rwt
(
P(q,wn,q)

)
=

 ∑
P(q,w,q)

rwt
(
P(q,w,q)

)n

=

 ∑
P ′

(q,w,q)

rwt
(
P ′(q,w,q)

)n

,

where P(q,wn,q) denotes a path of A over w, and this concludes our proof.

A cfwBa A = (Q, in,wt, F ) over A and K is called initial weight normalized if
there is a state q0 ∈ Q such that for every q ∈ Q and a ∈ A we have in(q) = 1 if
q = q0, and in(q) = 0 otherwise, and wt((q, a, q0)) = 0. We denote an initial weight
normalized cfwBa A simply by A = (Q, q0, wt, F ).

Lemma 24. For every cfwBa A = (Q, in,wt, F ) we can effectively construct an
initial weight normalized cfwBa A′ = (Q ∪ {q0}, q0, wt

′, F ) such that ‖A′‖ = ‖A‖.

Proof. We use the same arguments, as in Lemma 23 for the modification of the
initial distribution.
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In the sequel, we prove closure properties of the classes CF (K,A) and ω-
CF (K,A). We shall need these properties in order to relate star-free and ω-star-free
series with counter-free and ω-counter-free series, nevertheless, these results have
also their own interest.

Proposition 6. The class CF (K,A) contains the monomials and it is closed under
sum, Hadamard product, complement, Cauchy product, and iteration restricted to
letter-step series.

Proof. The closure of CF (K,A) under sum, is shown by taking the disjoint union
of two cfwa. In this case, any ”loop” belongs either to the first or to the sec-
ond automaton, hence the derived weighted automaton is also counter-free. Since
monomials over A and K are obviously counter-free series, we get that letter-step
series are also counter-free.

Closure under Hadamard product is proved by using the standard ”product con-
struction” of two cfwa. More precisely, let A1=(Q1, in1, wt1, F1) and
A2=(Q2, in2, wt2, F2) be two cfwa over A and K. Consider the weighted au-
tomaton A =(Q, in,wt, F ) with Q = Q1 × Q2, F = F1 × F2, and in((q1, q2)) =
in1(q1) · in2(q2), wt(((q1, q2), a, (p1, p2))) = wt1((q1, a, p1)) · wt2((q2, a, p2)), for ev-
ery (q1, q2), (p1, p2) ∈ Q, a ∈ A. Then, for every w ∈ A∗ and path Pw of A over w,
there are two unique paths P1,w of A1 over w, and P2,w of A2 over w (obtained by
projections of Pw on Q1 and Q2, respectively, in the obvious way) and vice-versa.
Furthermore, we have weight(Pw) = weight(P1,w) ·weight(P2,w). Now assume that
for some (q1, q2) ∈ Q, w ∈ A∗, and n ≥ 1 there is a path P((q1,q2),wn,(q1,q2)) with

rwt
(
P((q1,q2),wn,(q1,q2))

)
6= 0. Then ∑

P((q1,q2),w,(q1,q2))

rwt
(
P((q1,q2),w,(q1,q2))

)n

=

 ∑
P1,(q1,w,q1),P2,(q2,w,q2)

(
rwt

(
P1,(q1,w,q1)

)
· rwt

(
P2,(q2,w,q2)

))n

=

 ∑
P1,(q1,w,q1)

rwt
(
P1,(q1,w,q1)

)
·

∑
P2,(q2,w,q2)

rwt
(
P2,(q2,w,q2)

)n

=

 ∑
P1,(q1,w,q1)

rwt
(
P1,(q1,w,q1)

)n

·

 ∑
P2,(q2,w,q2)

rwt
(
P2,(q2,w,q2)

)n

=
∑

P1,(q1,w
n,q1)

rwt
(
P1,(q1,wn,q1)

)
·

∑
P2,(q2,w

n,q2)

rwt
(
P2,(q2,wn,q2)

)
=

∑
P((q1,q2),wn,(q1,q2))

rwt
(
P((q1,q2),wn,(q1,q2))

)
which implies that A is counter-free, and by construction ‖A‖ = ‖A1‖ � ‖A2‖.
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Next, let r ∈ CF (K,A) and A = (Q, in,wt, F ) be a cfwa accepting r. We
consider the nondeterministic finite automaton A′ = (Q,A, I,∆, F ) with I = {q ∈
Q | in(q) 6= 0} and ∆ = {(q, a, q′) ∈ Q×A×Q | wt((q, a, q′)) 6= 0}. By construction
of A′, and since K is zero-divisor free, we get that for every q1, q2 ∈ Q and w ∈ A∗
the path P(q1,w,q2) exists in A′ iff rwt(P(q1,w,q2)) 6= 0 in A. Therefore, A′ accepts
the language supp(r) and it is trivially counter-free hence, supp(r) is a counter-
free language. Then, supp(r) is a counter-free language and let B be a counter-free
automaton accepting it. We convert B, in the obvious way, to a weighted automaton
B′ (with weights only 0 and 1) over A and K. Since K is idempotent, B′ trivially
accepts 1

supp(r)
= r, and it is easily obtained that it is counter-free. We conclude

that the series r is counter-free, as required.
Let now A1=(Q1, in1, wt1, F1) and A2=(Q2, in2, wt2, F2) be two cfwa over A

and K. Using Lemma 23 we consider the normalized cfwa
A′1=(Q1 ∪ {q0,1, qt,1}, q0,1, wt

′
1, qt,1) and A′2=(Q2 ∪ {q0,2, qt,2}, q0,2, wt

′
2, qt,2) such

that ‖A′i‖ coincides with ‖Ai‖ on A+ for i = 1, 2. Without any loss, we assume
that (Q1 ∪{q0,1, qt,1})∩ (Q2 ∪{q0,2, qt,2}) = ∅. We construct the weighted automa-
ton A =(Q, q0,1, wt, qt,2) with Q = Q1 ∪ {q0,1} ∪Q2 ∪ {q0,2, qt,2} where we identify
the states qt,1 and q0,2, and define the weight assignment mapping wt for every
q, q′ ∈ Q, a ∈ A by

wt((q, a, q′)) =


wt′1((q, a, q′)) if q, q′ ∈ Q1 ∪ {q0,1}
wt′2((q, a, q′)) if q, q′ ∈ Q2 ∪ {q0,2, qt,2}
wt′1((q, a, qt,1)) if q ∈ Q1 ∪ {q0,1} and q′ = q0,2

0 otherwise.
It is a routine matter to formally prove that ‖A‖ = ‖A′1‖ · ‖A′2‖ . Furthermore,
the weighted automaton A is counter-free since, by construction, any ”loop” with
weight 6= 0 belongs either to A′1 or to A′2. Now we let ki = (‖Ai‖ , ε) for i = 1, 2.
Then ‖A1‖ ·‖A2‖ = (‖A′1‖ · ‖A′2‖)+((k1)ε · ‖A′2‖)+(‖A′1‖ · (k2)ε)+((k1)ε · (k2)ε).
One can trivially construct cfwa accepting (k1)ε and (k2)ε and using simplifications
of our previous construction2 for A can easily show that the series (k1)ε · ‖A′2‖,
‖A′1‖ · (k2)ε, and (k1)ε · (k2)ε are counter-free which implies, by what we have
shown, that ‖A1‖ · ‖A2‖ is a counter-free series.

Finally, let r =
∑
a∈A (ka)a be a letter-step series with ka ∈ K for every a ∈ A.

We consider the cfwaA = ({q0, qt}, q0, wt, qt) with wt ((q0, a, qt)) = wt ((qt, a, qt)) =
ka for every a ∈ A, and the weight of any other transition is 0. Obviously r+ = ‖A‖,
and we are done.

Proposition 7. The class ω-CF (K,A) is closed under sum, complement, Cauchy
product and ω-iteration restricted to letter-step series.

Proof. The closure under sum and complement is shown as in Proposition 6. In
particular, for the complement we use the property k 6= 0 =⇒

∏
i≥0 k 6= 0 for every

k ∈ K, the fact that the class of counter-free Büchi recognizable (i.e., ω-star-free)
languages is closed under complement (cf. [7]), and Lemma 1(i).

2In fact the cfwa for (k1)ε and (k2)ε cannot be normalized.
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Next, let s1 ∈ CF (K,A) and s2 ∈ ω-CF (K,A), and A1 = (Q1, in1, wt1, F1),
A2 = (Q2, in2, wt2, F2) be a cfwa and a cfwBa over A and K accepting s1 and s2,
respectively. Furthermore, let A′1=(Q1 ∪ {q0,1, qt}, q0,1, wt

′
1, qt) be the normalized

automaton derived by A1 (cf. Lemma 23), and A′2=(Q2 ∪ {q0,2}, q0,2, wt
′
2, F2) be

the initial weight normalized cfwBa derived by A2 (cf. Lemma 24). Without any
loss, we assume that (Q1 ∪ {q0,1, qt}) ∩ (Q2 ∪ {q0,2}) = ∅. Consider the weighted
automaton A = (Q, q0,1, wt, F2) with Q = Q1 ∪ {q0,1} ∪Q2 ∪ {q0,2} where we have
identified the states qt and q0,2. The weight assignment mapping wt is defined for
every q, q′ ∈ Q and a ∈ A by

wt((q, a, q′)) =


wt′1((q, a, q′)) if q, q′ ∈ Q1 ∪ {q0,1}
wt′2((q, a, q′)) if q, q′ ∈ Q2 ∪ {q0,2}
wt′1((q, a, qt)) if q ∈ Q1 ∪ {q0,1} and q′ = q0,2

0 otherwise.

Trivially, ‖A‖ = s1|A+ · s2. Furthermore, the weighted Büchi automaton A is
counter-free since every ”loop” with weight 6= 0 belongs either to A′1 or to A′2. Let
(s1, ε) = k. Then s1 · s2 = s1|A+ · s2 + kε · s2 which concludes our claim since kε · s2

is trivially ω-counter-free.

Finally, let r =
∑
a∈A (ka)a be a letter-step series with ka ∈ K for every a ∈ A.

We consider the initial weight normalized cfwBa A = ({q0, qt}, q0, wt, {qt}) with
wt ((q0, a, qt)) = wt ((qt, a, qt)) = ka for every a ∈ A, and the weight of any other
transition is 0. Obviously rω = ‖A‖, and our proof is completed.

Next, we introduce the subclass of almost simple counter-free (resp. almost
simple ω-counter-free) series and we show, in Section 9, that it contains the class
SF (K,A) (resp. ω-SF (K,A)).

Definition 10. A cfwa (resp. cfwBa) A = (Q, in,wt, F ) over A and K is called
simple if for every q, q′, p, p′ ∈ Q, and a ∈ A, in(q) 6= 0 6= in(q′) implies in(q) =
in(q′), and wt((q, a, q′)) 6= 0 6= wt((p, a, p′)) implies wt((q, a, q′)) = wt((p, a, p′)).
Furthermore, a series r ∈ K 〈〈A∗〉〉 (resp. r ∈ K 〈〈Aω〉〉) is simple if it is the
behavior of a simple cfwa (resp. cfwBa) over A and K.

Proposition 8. If r, s ∈ K 〈〈Aω〉〉 are simple infinitary series, then r � s is also
simple.

Proof. Let A,B be two simple cfwBa accepting r, s, respectively. We let k, l for
the weights 6= 0 assigned by the initial distributions of A,B, respectively, and ka, la
for the weights 6= 0 of the transitions labelled by a ∈ A, in A and B, respectively.
Without any loss, we assume that ka, la exist for every a ∈ A, otherwise we consider
a subalphabet of A. The language L = supp (‖A‖) ∩ supp (‖B‖) is ω-counter-free
(cf. the proof of Proposition 7), and we get

‖A‖ � ‖B‖ = 1L �

(
(k · l)

(∑
a∈A

(ka · la)a

)ω)
.
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Let C = (Q,A, I,∆, F ) be a counter-free nondeterministic Büchi automaton ac-
cepting L and consider the wBa C′=(Q, in,wt, F ) where for every q, q′ ∈ Q, a ∈ A
we let in (q) = k · l if q ∈ I, and in (q) = 0 otherwise, and wt ((q, a, q′)) = ka · la if
(q, a, q′) ∈ ∆, and wt ((q, a, q′)) = 0 otherwise. Since C is counter-free, we can easily
show, using the idempotency property of K, that C′ is also counter-free. Moreover,
by definition C′ is simple, and ‖C′‖ = ‖A‖ � ‖B‖ which concludes our proof.

Definition 11.

• A series r ∈ K 〈〈A∗〉〉 is called almost simple if r =
∑

1≤i≤n

(
r

(i)
1 · . . . · r

(i)
mi

)
where, for every 1 ≤ i ≤ n, r

(i)
1 , . . . , r

(i)
mi are simple counter-free series over

A and K.

• A series r ∈ K 〈〈Aω〉〉 is called almost simple if r =
∑

1≤i≤n

(
r

(i)
1 · . . . · r

(i)
mi

)
where, for every 1 ≤ i ≤ n, r

(i)
1 , . . . , r

(i)
mi−1 are simple counter-free series and

r
(i)
mi is a simple ω-counter-free series over A and K.

From the above definition and Proposition 6 (resp. Proposition 7), we get that
a finitary (resp. infinitary) almost simple series is a counter-free (resp. an ω-
counter-free) series3. We shall denote by asCF (K,A) the class of almost simple
counter-free series and by ω-asCF (K,A) the class of almost simple ω-counter-free
series over A and K.

9 ω-star-free series are almost simple ω-counter-
free

In this section we prove that every star-free (resp. ω-star-free) series is an almost
simple counter-free (resp. almost simple ω-counter-free) series.

Theorem 3. SF (K,A) ⊆ asCF (K,A).

Proof. The class asCF (K,A) trivially contains the monomials over A and K.
Therefore, it suffices to show that it is closed under sum, Hadamard product,
complement, Cauchy product, and iteration restricted to letter-step series.

Closure under sum and Cauchy product is easily obtained by definition of the
class of almost simple counter-free series. For the closure under complement, let
r ∈ asCF (K,A), i.e., r ∈ CF (K,A). Then the weighted automaton B′ in the
proof of Proposition 6 is simple and moreover accepts the complement r hence,
r ∈ asCF (K,A). Trivially, we get that asCF (K,A) contains the letter-step se-
ries. Furthermore, the automaton A accepting r+ for a letter-step series r, in the
proof of Proposition 6, is trivially simple, hence the class asCF (K,A) is closed
under iteration restricted to letter-step series. Therefore, it remains to prove

3In fact we can define an almost simple counter-free weighted (resp. weighted Büchi) automa-
ton, but we do not need it here.
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the closure under �. Since, � distributes over sum it suffices to show that if
Ai = (Qi, ini, wti, Fi),Bj = (Pj , in

′
j , wt

′
j , Tj), for 1 ≤ i ≤ n, 1 ≤ j ≤ m, are simple

cfwa over A and K, then the counter-free series (‖A1‖·. . .·‖An‖)�(‖B1‖·. . .·‖Bm‖)
is almost simple. We proceed by induction on m, hence, assume firstly that m = 1.
Without any loss, we suppose the state sets Qi (1 ≤ i ≤ n) to be pairwise dis-
joint4. For every p, p′ ∈ P1 and 2 ≤ i ≤ n − 1, we consider the simple cfwa
C1,p = (Q1 × P1, in1, wt1, F1 × {p}), Ci,(p,p′) = (Qi × P1, ini,(p,p′), wti, Fi × {p′}),
and Cn,p = (Qn × P1, inn,p, wtn, Fn × T1) by

- in1

((
q(1), p1

))
= in1(q(1)) · in′1(p1) for every q(1) ∈ Q1, p1 ∈ P1,

- wt1

((
(q

(1)
1 , p1), a, (q

(1)
2 , p2)

))
= wt1

((
q

(1)
1 , a, q

(1)
2

))
·wt′1 ((p1, a, p2)) for ev-

ery q
(1)
1 , q

(1)
2 ∈ Q1, p1, p2 ∈ P1, a ∈ A, and

for every 2 ≤ i ≤ n− 1

- ini,(p,p′)
((
q(i), p1

))
= ini(q

(i)) if p1 = p, and ini,(p,p′)
((
q(i), p1

))
= 0

otherwise, for every q(i) ∈ Qi, p1 ∈ P1,

- wti

((
(q

(i)
1 , p1), a, (q

(i)
2 , p2)

))
= wti

((
q

(i)
1 , a, q

(i)
2

))
·wt′1((p1, a, p2)) for every

q
(i)
1 , q

(i)
2 ∈ Qi, p1, p2 ∈ P1, a ∈ A, and

- inn,p
((
q(n), p1

))
= inn(q(n)) if p1 = p, and inn,p

((
q(n), p1

))
= 0 otherwise,

for every q(n) ∈ Qn, p1 ∈ P1,

- wtn

((
(q

(n)
1 , p1), a, (q

(n)
2 , p2)

))
= wtn

((
q

(n)
1 , a, q

(n)
2

))
· wt′1((p1, a, p2)), for

every q
(n)
1 , q

(n)
2 ∈ Qn, p1, p2 ∈ P1, a ∈ A.

We claim that

(‖A1‖ · . . . · ‖An‖)� ‖B1‖ =∑
p1,...,pn−1∈P1

(
‖C1,p1‖ ·

∥∥C2,(p1,p2)

∥∥ · . . . · ∥∥Cn−1,(pn−2,pn−1)

∥∥ · ∥∥Cn,pn−1

∥∥) .
Clearly, it suffices to prove that for every w ∈ A∗, the sum ∑

w=w1...wn

 ∏
1≤i≤n

 ∑
P

(i)
wi
∈succ(Ai)

weight
(
P (i)
wi

)


 ∑
Pw∈succ(B1)

weight (Pw)


4Here, we deal with the case n > 1. For n = m = 1 we consider the product automaton of two

simple cfwa which is trivially simple.
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equals to

∑
p1,...,pn−1∈P1


∑

w=w1...wn



∑
Pw1
∈succ(C1,p1)

weight(Pw1
)

 ∏
1≤i≤n−2

 ∑
Pwi∈succ(Ci,(pi,pi+1))

weight(Pwi)


∑

Pwn−1
∈succ(Cn,pn−1)

weight(Pwn−1)




.

To this end, let w = a0a1 . . . am−1 ∈ supp((‖A1‖ · . . . · ‖An‖) � ‖B1‖) with
a0, a1, . . . , am−1 ∈ A. Let us assume that w1, . . . , wn ∈ A∗, with w = w1 . . . wn,

and P
(1)
w1 :

(
q
(1)
0 , a0, q

(1)
1

)(
q
(1)
1 , a1, q

(1)
2

)
. . .
(
q
(1)
i1

, ai1 , q
(1)
i1+1

)
,

P
(2)
w2 :

(
q
(2)
i1+1, ai1+1, q

(2)
i1+2

)(
q
(2)
i1+2, ai1+2, q

(2)
i1+3

)
. . .
(
q
(2)
i2

, ai2 , q
(2)
i2+1

)
,

...

P
(n)
wn :

(
q
(n)
in−1+1, ain−1+1, q

(n)
in−1+2

)(
q
(n)
in−1+2, ain−1+2, q

(n)
in−1+3

)
. . .
(
q
(n)
m−1, am−1, q

(n)
m

)
,

and Pw : (p0, a0, p1) (p1, a1, p2) . . . (pm−1, am−1, pm),

are successful paths of A1,A2 . . . ,An,B1 over w1, . . . , wn, w respectively. By

definition of C1,pi1+1
, C2,(pi1+1,pi2+1), . . . , Cn,pin−1+1

, we can construct from

P
(1)
w1 , . . . , P

(n)
wn and Pw the paths Pw1 , . . . , Pwn of C1,pi1+1 , . . . , Cn,pin−1+1 over

w1, . . . , wn respectively, as follows.

Pw1
:

((
q
(1)
0 , p0

)
, a0,

(
q
(1)
1 , p1

))((
q
(1)
1 , p1

)
, a1,

(
q
(1)
2 , p2

))
. . .

((
q
(1)
i1

, pi1

)
, ai1

,

(
q
(1)
i1+1

, pi1+1

))
,

Pw2
:

((
q
(2)
i1+1

, pi1+1

)
, ai1+1,

(
q
(2)
i1+2

, pi1+2

))((
q
(2)
i1+2

, pi1+2

)
, ai1+2,

(
q
(2)
i1+3

, pi1+3

))
. . .((

q
(2)
i2

, pi2

)
, ai2

,

(
q
(2)
i2+1

, pi2+1

))
,

.

.

.

Pwn :

((
q
(n)
in−1+1

, pin−1+1

)
, ain−1+1,

(
q
(n)
in−1+2

, pin−1+2

))
((
q
(n)
in−1+2

, pin−1+2

)
, ain−1+2,

(
q
(n)
in−1+3

, pin−1+3

))
. . .

((
q
(n)
m−1

, pm−1

)
, am−1,

(
q
(n)
m , pm

))
.

Then, weight
(
Pw1

)
· weight

(
Pw2

)
· . . . · weight

(
Pwn

)
= weight

(
P

(1)
w1

)
·

weight
(
P

(2)
w2

)
·. . .·weight

(
P

(n)
wn

)
·weight(Pw). Conversely, let pi1+1, . . . , pin−1+1 ∈

P1 such that w ∈ supp
(∥∥C1,pi1+1

∥∥ · . . . · ∥∥∥Cn,pin−1+1

∥∥∥). Using similar arguments as

above, and keeping the previous notations, we get that for every w1, . . . , wn ∈ A∗
with w = w1 . . . wn, and successful paths Pw1 , Pw2 , . . . , Pwn , there exist suc-

cessful paths P
(1)
w1 , P

(2)
w2 , . . . , P

(n)
wn , Pw such that weight

(
Pw1

)
· weight

(
Pw2

)
· . . . ·

weight
(
Pwn

)
= weight

(
P

(1)
w1

)
· weight

(
P

(2)
w2

)
· . . . · weight

(
P

(n)
wn

)
· weight(Pw).

Therefore, by standard computations, we get the equality of the two sums and this
concludes our claim for m = 1.

For the induction step, for simplicity, we prove our claim for m = 2. For every
1 ≤ i ≤ n and q(i) ∈ Qi, we define the simple cfwa Ai,q(i) = (Qi, ini, wti, {q(i)})
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and A′
i,q(i)

= (Qi, in
′
i, wti, Fi) with in′i(q) = 1 if q = q(i), and in′i(q) = 0 otherwise,

for every q ∈ Qi. Then, with similar as above arguments, we can show that
(‖A1‖ · . . . · ‖An‖)� (‖B1‖ · ‖B2‖) equals to∑

1≤i≤n
q(i)∈Qi

(((
‖A1‖ · . . . ·

∥∥Ai,q(i)∥∥)� ‖B1‖
)
·
((∥∥∥A′i,q(i)∥∥∥ · . . . · ‖An‖)� ‖B2‖

))
.

Hence, by induction hypothesis we conclude our claim.

Below, in our second main result of the present section, we show that every
ω-star-free series is an almost simple ω-counter-free series.

Theorem 4. ω-SF (K,A) ⊆ ω-asCF (K,A).

Proof. By Definition 8 and Theorem 3, it suffices to show that the class
ω-asCF (A,K) is closed under sum, Hadamard product, complement, ω-iteration
restricted to letter-step series, and if s1 ∈ asCF (K,A) and s2 ∈ ω-asCF (K,A),
then s1 · s2 ∈ ω-asCF (K,A). The last property as well as closure under sum
are easily obtained by Definition 11. For the closure under complement, we use
a similar argument as in the corresponding part of the proof of Theorem 3. Fur-
thermore, the automaton A accepting rω for a letter-step series r, in the proof
of Proposition 7, is trivially simple, hence the class ω-asCF (K,A) is closed un-
der ω-iteration restricted to letter-step series. Again, the most complicated case
is to prove the closure under Hadamard product, i.e., to prove that if Ai =
(Qi, ini, wti, Fi),Bj = (Pj , in

′
j , wt

′
j , Tj), for 1 ≤ i ≤ n−1, 1 ≤ j ≤ m−1, are simple

cfwa and An = (Qn, inn, wtn, Fn),Bm = (Pm, in
′
m, wt

′
m, Tm) are simple cfwBa over

A and K, then the ω-counter-free series (‖A1‖ · . . . · ‖An‖)� (‖B1‖ · . . . · ‖Bm‖) is
almost simple. We state our proof by induction on m, hence, let firstly m = 1,
i.e., B1 = (P1, in

′
1, wt

′
1, T1) be a simple cfwBa (again we assume n > 1, oth-

erwise if n = m = 1 we get our result by Proposition 8). We keep the no-
tations of Theorem 3 and consider the simple cfwa C1,p, and Ci,(p,p′) for every
2 ≤ i ≤ n − 1. Furthremore, for every p ∈ P1 we define the wBa Cn,p =(
Qn × P1 × {0, 1, 2}, inn,p, wtn, Qn × P1 × {2}

)
with the initial distribution inn,p

given for every q(n) ∈ Qn, p1 ∈ P1, x ∈ {0, 1, 2} by

inn,p(q
(n), p1, x) =

{
inn(q(n)) if p1 = p, x = 0
0 otherwise

,

and the weight assignment mapping wtn defined for every q
(n)
1 , q

(n)
2 ∈ Qn, p1, p2 ∈

P1, a ∈ A, x, y ∈ {0, 1, 2} as follows.

wtn

(((
q

(n)
1 , p1, x

)
, a,
(
q

(n)
2 , p2, y

)))
= wtn

((
q

(n)
1 , a, q

(n)
2

))
· wt′1 ((p1, a, p2))

if (x = y = 0 or q
(n)
2 ∈ Fn, x = 0, y = 1 or p2 /∈ T1, x = y = 1 or p2 ∈ T1, x = 1, y =

2 or x = 2, y = 0), and
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wtn

(((
q

(n)
1 , p1, x

)
, a,
(
q

(n)
2 , p2, y

)))
= 0 otherwise5.

We note that, since An (resp. B1, Cn,p)6 is simple, for every w ∈ Aω, all the
successful paths of An (resp. B1, Cn,p) over w with weight 6= 0 have the same
weight. Again we will show that

(‖A1‖ · . . . · ‖An‖)� ‖B1‖ =∑
p1,...,pn−1∈P1

(
‖C1,p1‖ ·

∥∥C2,(p1,p2)

∥∥ · . . . · ∥∥Cn−1,(pn−2,pn−1)

∥∥ · ∥∥Cn,pn−1

∥∥)
by proving that for every w ∈ Aω the sum ∑

w=w1...wn
w1,...,wn−1∈A∗,wnAω

 ∏
1≤i≤n

 ∑
P

(i)
wi
∈succ(Ai)

weight
(
P (i)
wi

)


 ∑

Pw∈succ(B1)

weight (Pw)


equals to

∑
p1,...,pn−1∈P1



∑
w=w1...wn

w1,...,wn−1∈A∗,wnAω



∑
Pw1

∈succ
(
C1,p1

)weight(Pw1
)

 ∏
1≤i≤n−2

 ∑
Pwi

∈succ
(
Ci,(pi,pi+1)

)weight(Pwi )



∑
Pwn−1

∈succ
(
Cn,pn−1

)weight(Pwn−1
)





.

To this end, let w = a0a1 . . . ∈ supp((‖A1‖ · . . . · ‖An‖)�‖B1‖) with a0, a1, . . . ∈ A.
We fix an analysis w = w1 . . . wn−1wn (w1, . . . , wn−1 ∈ A∗, wn ∈ Aω), and we let

P
(i)
wi , for every 1 ≤ i ≤ n, to be a successful path of Ai over wi, and Pw a successful

path of B1 over w. We keep the notations of the proof of Theorem 3, for the paths

P
(i)
wi (1 ≤ i ≤ n− 1), and we set

P
(n)
wn :

(
q

(n)
in−1+1, ain−1+1, q

(n)
in−1+2

)(
q

(n)
in−1+2, ain−1+2, q

(n)
in−1+3

)
. . ., and

Pw : (p0, a0, p1) (p1, a1, p2) . . ..

We consider the paths Pwi (1 ≤ i ≤ n− 1) as in the proof of Theorem 3, and let

Pwn :
((
q

(n)
in−1+1, pin−1+1, x1

)
, ain−1+1,

(
q

(n)
in−1+2, pin−1+2, x2

))
((
q

(n)
in−1+2, pin−1+2, x2

)
, ain−1+2,

(
q

(n)
in−1+3, pin−1+3, x3

))
. . .

where for every j ≥ 1 the choice of xj is done as follows. We have (xj = 0 and

(nondeterministically) xj+1 = 1 if q
(n)
in−1+j+1 ∈ Fn) or (xj = 1 and xj+1 = 1 if

pin−1+j+1 /∈ T1) or (xj = 1 and xj+1 = 2 if pin−1+j+1 ∈ T1) or (xj = 2 and xj+1 =
0). Clearly, by definition of C1,pi1+1

, . . . , Cn,pin−1+1
, the above paths are successful,

5For every p ∈ P1, ‖Cn,p‖ = ‖An‖ � ‖Bp‖, where Bp is the simple cfwBa derived by B1 by
replacing the initial distribution, with the one assigning the value 1 to p and 0 to any other state.
Since, An,Bp are simple, we conclude by Proposition 8 that ‖Cn,p‖ is simple.

6Abusing the definition, we call the wBa Cn,p simple though it is not counter-free.
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and we get that weight
(
P

(1)
w1

)
· . . . · weight

(
P

(n)
wn

)
· weight(Pw) = weight

(
Pw1

)
·

. . . · weight
(
Pwn

)
. Conversely, for fixed pi1+1, . . . , pin−1+1 ∈ P1 such that w ∈

supp
(∥∥C1,pi1+1

∥∥ · . . . · ∥∥∥Cn,pin−1+1

∥∥∥) , and successful paths Pw1 , Pw2 , . . . , Pwn , we

can determine the successful paths P
(1)
w1 , P

(2)
w2 , . . . , P

(n)
wn , Pw such that weight

(
Pw1

)
·

. . . · weight
(
Pwn

)
=

weight
(
P

(1)
w1

)
· . . . · weight

(
P

(n)
wn

)
· weight(Pw). By Lemma 1 we conclude the

required equality.
Next, for the induction step, again for simplicity, we state our claim for m = 2.

Now, we consider, for every 1 ≤ i ≤ n− 1 and q(i) ∈ Qi, the simple cfwa Ai,q(i) =

(Qi, ini, wti, {q(i)}) and A′
i,q(i)

= (Qi, in
′
i, wti, Fi) with in′i(q) = 1 if q = q(i), and

in′i(q) = 0 otherwise. Moreover, for every q(n) ∈ Qn we consider the simple cfwa
An,q(n) = (Qn, inn, wtn, {q(n)}) and the simple cfwBa A′

n,q(n) = (Qn, in
′
n, wtn, Fn)

with in′n(q) = 1 if q = q(n), and in′n(q) = 0 otherwise. Then, we get that the
Hadamard product (‖A1‖ · . . . · ‖An‖)� (‖B1‖ · ‖B2‖) equals to∑

1≤i≤n
q(i)∈Qi

(((
‖A1‖ · . . . ·

∥∥Ai,q(i)∥∥)� ‖B1‖
)
·
((∥∥∥A′i,q(i)∥∥∥ · . . . · ‖An‖)� ‖B2‖

))

and, by induction hypothesis and Theorem 3, we are done.

10 Closing the cycle

In this section, we prove that the class of almost simple ω-counter-free series is
included in the class ω-ULTL (K,A) and we conclude the main result of our paper.
For this, we shall need some preliminary matter on our weighted LTL.

For every ϕ ∈ LTL (K,A) and n ≥ 0 we denote by ©nϕ the n-th repetitive
application of the © operator on ϕ, i.e., ©nϕ := ©(© . . . (©︸ ︷︷ ︸

n times

ϕ) . . .), and hence

©0ϕ = ϕ. Then, for every w ∈ Aω we have (‖©nϕ‖ , w) = (‖ϕ‖ , w≥n). The
external next depth exnd (ϕ) of a formula ϕ ∈ LTL(K,A) is defined as follows.
If ϕ = ©ψ, then exnd (ϕ) = exnd (ψ) + 1. In any other case, we let exnd (ϕ) =
0. For instance exnd (© (© (� (© (pa ∧ 2))))) = 2, and if ϕ ∈ LTL (K,A) with
exnd (ϕ) = 0, then exnd (©nϕ) = n for every n ≥ 0. The following lemma is
concluded in a straightforward way by the definition of stLTL (K,A) formulas.

Lemma 25. Let ψ ∈ stLTL (K,A). Then exnd (ψ) = 0.

For every n ≥ 0, we denote by stLTL (©, n,∧) the class of all LTL (K,A)
formulas of the form

∧
0≤j≤m©kjψj with m ≥ 0, max0≤j≤m (kj) = n, and ψj ∈

stLTL (K,A) for every 0 ≤ j ≤ m. We let stLTL (©,∧) =
⋃
n≥0 stLTL (©, n,∧).

Furthermore, for every m ≥ 0, we let Um to be the set of all (m + 1)-tuples of
the form ((ϕ0, k0) , (ξ1, ϕ1, k1) , . . . , (ξm, ϕm, km)) where ϕi ∈ stLTL (©, ki,∧) and
ξj ∈ abLTL (K,A) for every 0 ≤ i ≤ m and 1 ≤ j ≤ m.
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Definition 12. Let T = ((ϕ0, k0) , (ξ1, ϕ1, k1) , . . . , (ξm, ϕm, km)) ∈ Um. For every
w ∈ Aω and j ≥ 0 we define the value 〈T ,w, j〉 ∈ K as follows. If j ≤ k0 + . . .+km,
we set 〈T ,w, j〉 = 0. Otherwise, for every i1, i2, . . . , im ∈ N and 0 ≤ l ≤ m we
define the sum Sl = k0 + i1 + k1 + . . .+ il + kl with the restriction that Sm = j− 1.
Then, we let

〈T,w, j〉 =
∑

i1,i2,...,im∈N
Sm=j−1

(‖ϕ0‖ , w) ·
∏

1≤l≤m

 ∏
0≤jl<il

(∥∥ξl∥∥ , w≥Sl−1+jl

)
·
(∥∥ϕl∥∥ , w≥Sl−1+il

)
 .

Note that in case m = 0, the restriction S0 = j − 1, i.e., k0 = j − 1 implies that
〈T ,w, j〉 = 0 for every j > k0 + 1. Therefore, if m = 0, then 〈T ,w, j〉 = 0 for every
j 6= k0 + 1, and 〈T ,w, k0 + 1〉 = (‖ϕ0‖ , w).

Composition algorithm. Let T1 = ((ϕ0, k0) , (ξ1, ϕ1, k1) , . . . , (ξm, ϕm, km)) ∈
Um and T2 = ((ψ0, l0) , (θ1, ψ1, l1) , . . . , (θn, ψn, ln)) ∈ Un with ψ0 =

∧
0≤j≤h

©pj %j .

We consider the formula % = ϕm ∧

 ∧
0≤j≤h

©km+pj+1 %j

 in

stLTL (©, km + l0 + 1,∧). Then, if m = 0 we let

T = ((%, k0 + l0 + 1) , (θ1, ψ1, l1) , . . . , (θn, ψn, ln)) ,

otherwise we let

T = ((ϕ0, k0) , (ξ1, ϕ1, k1) , . . . , (ξm, %, km + l0 + 1) , (θ1, ψ1, l1) , . . . , (θn, ψn, ln)) .

Clearly T ∈ Um+n, and we claim that

〈T,w, j〉 =
∑

0≤i≤j

(〈T1, w, i〉 · 〈T2, w≥i, j − i〉) (1)

for every w ∈ Aω, j ≥ 0. Assume firstly that m = n = 0. If j 6= k0+l0+2, then both
sides of the above relation equal to 0. If j = k0 + l0 +2, then 〈T,w, j〉 = (‖%‖ , w) =
(‖ϕ0‖ , w) · (‖ψ0‖ , w≥k0+1) = 〈T1, w, k0 + 1〉 · 〈T2, w≥k0+1, j − (k0 + 1)〉 =∑
0≤i≤j

(〈T1, w, i〉 · 〈T2, w≥i, j − i〉) .

Next, assume that n 6= 0 or m 6= 0. Then, if j > k0+k1+. . .+km+1+l0+. . .+ln,
we assign to 〈T,w, j〉 the sum of the products of the form(‖ϕ0‖ , w) ·

∏
1≤l≤m

( ∏
0≤jl<il

(
‖ξl‖ , w≥Sl−1+jl

)
·
(
‖ϕl‖ , w≥Sl−1+il

)
)

·

(‖ψ0‖ , w≥Sm+1) ·
∏

1≤h≤n


∏

0≤jh<i′h

(
‖θh‖ , w≥Sm+1+S′h−1+jh

)
·
(
‖ψh‖ , w≥Sm+1+S′h−1+i′h

)
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where the sum is taken over all i1, . . . , im, i
′
1, . . . , i

′
n ∈ N with k0 + i1 + k1 + . . . +

im + km + 1 + l0 + i′1 + l1 + . . .+ i′n + ln = j − 1.
On the other side, for every 0 ≤ i ≤ j, we get the value 〈T1, w, i〉 by summing

up the products

(‖ϕ0‖ , w) ·
∏

1≤l≤m

 ∏
0≤jl<il

(
‖ξl‖ , w≥Sl−1+jl

)
·
(
‖ϕl‖ , w≥Sl−1+il

) (2)

for every i1, . . . , im ∈ N with Sm = k0 + i1 + k1 + . . .+ im + km = i− 1. Similarly,
we obtain the value 〈T2, w≥i, j − i〉 as the sum of the products

(‖ψ0‖ , w≥i) ·
∏

1≤h≤n

 ∏
0≤jh<i′h

(
‖θh‖ , w≥i+S′h−1+jh

)
·
(
‖ψh‖ , w≥i+S′h−1+i′h

) (3)

for every i′1, . . . , i
′
n ∈ N with S′n = l0 + i′1 + l1 + . . . + i′n + ln = (j − i) − 1. By a

straightforward calculation in the right-hand side of (1) we conclude our claim.
Finally, assume that j ≤ k0 + k1 + . . .+ km + 1 + l0 + . . .+ ln. Then, 〈T,w, j〉 = 0,
and for every 0 ≤ i ≤ j at least one of the following is true: i ≤ k0 + . . . + km
which implies that 〈T1, w, i〉 = 0, or j − i ≤ l0 + . . . + ln, which implies that
〈T2, w≥i, j − i〉 = 0.

In the sequel, we recall an alternative definition for star-free languages which
does not involve the closure under complementation. For this, we shall need the
notion of bounded synchronization delay. More precisely, let k ≥ 0 be an integer.
A prefix-free set L ⊆ A+ has bounded synchronization delay if uvw ∈ L∗ implies
uv,w ∈ L∗ for every u,w ∈ A∗ and v ∈ Lk. The least integer k ≥ 0 satisfying the
aforementioned property is called the synchronization delay of L.

Lemma 26. [27] A prefix-free set of delay 0 is also of delay 1.

It is well-known (cf. for instance [27, Thm. 6.3]) that the class of star-free
languages over A is the smallest class of languages over A containing ∅ and {a} for
every a ∈ A, and which is closed under union, concatenation and star operation
restricted to prefix-free sets with bounded synchronization delay.

For every L,F ⊆ Aω we define the infinitary language (cf. [27]) LUF = {w ∈
Aω | w = uv where u ∈ A∗, v ∈ F and u′v ∈ L for each nonempty suffix u′ of u}.
It should be clear that supp (1LU1F ) = LUF , where the operation U among two
series r, s ∈ K 〈〈Aω〉〉, is defined for every w ∈ Aω, by

(rUs,w) =
∑
i≥0

 ∏
0≤j<i

(r, w≥j) · (s, w≥i)

 .

The two subsequent lemmas are proved in [27]. Here we present a slight modification
of them and for completeness shake we state their proofs.
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Lemma 27. Let L ⊆ A+ be a prefix-free set with bounded synchronization delay
k ≥ 1. Let u ∈ A∗, v ∈ L2k, and w ∈ Y ⊆ Aω such that

(i) uvw ∈ LkAω, and

(ii) u′vw ∈ Lk+1Aω ∪ (Aω\LkAω) for every suffix u′ of u.

Then uv ∈ L+.

Proof. We follow the inductive proof of Lm. 6.11 (pg. 371) in [27]. The induction
is on the length of u. We let first |u| = 0, then uv = v ∈ L2k and since ε /∈ L,
we have L2k ⊆ L+. Next, assume that our claim holds for |u| ≤ n − 1 and let
|u| = n. Condition (ii) holds for u′ = u, and hence we get uvw = u1u2 . . . uk+1r
with u1, u2, . . . , uk+1 ∈ L and r ∈ Aω. We point out the following cases.

- The word u1 is a prefix of u. Then, u = u1q with q ∈ A∗, and we get
uvw = u1u2 . . . uk+1r ⇒ u1qvw = u1u2 . . . uk+1r ⇒ qvw = u2 . . . uk+1r.
Thus, we can apply the induction hypothesis to (q, v, w). We conclude that
qv ∈ L+, and thus uv = u1qv ∈ L+.

- The word uv is a prefix of u1u2 . . . uk+1. Then, u1u2 . . . uk+1 = uvr with
r ∈ A∗. Since L has delay k, and v 6= ε we obtain that uv ∈ L+.

- We have |u| < |u1| and |u1u2 . . . uk+1| < |uv|. Then, u1 = up and uv =
u1u2 . . . uk+1q = upu2 . . . uk+1q for some p, q ∈ A∗, which implies that v =
pu2 . . . uk+1q. Since L has delay k, we have q ∈ L∗. Thus, uv = u1u2 . . . uk+1q
is in L+, as wanted.

Lemma 28. Let L ⊆ A+ be a prefix-free set with bounded synchronization delay
k ≥ 1 and Y ⊆ Aω. Then(

L+
)
Y = LY ∪ . . . ∪ L2k−1Y ∪R

with R = LkAω ∩
((
Lk+1Aω ∪

(
Aω \ LkAω

))
UL2kY

)
.

Proof. Again we follow the proof of Lm. 6.12 (pg. 372) in [27]. Let Z = LY ∪
...∪L2k−1Y ∪R. First we prove that Z ⊆ (L+)Y . Clearly, it suffices to show that
R ⊆ (L+)Y . Let z ∈ R. Then z ∈ LkAω and z = uvw with u ∈ A∗, v ∈ L2k

and w ∈ Y with u′vw ∈ Lk+1Aω ∪ (Aω\LkAω) for each nonempty suffix u′ of u.
Clearly, for u′ = ε it holds vw ∈ L2kAω ⊆ Lk+1Aω ∪ (Aω\LkAω). By the previous
lemma we get uv ∈ L+, which implies that uvw ∈ (L+)Y .

We show now the opposite inclusion. Let z ∈ LnY for some n > 0. If n < 2k,
then z ∈ Z. Let now z = uvw with u ∈ L∗, v ∈ L2k and w ∈ Y . Clearly
z ∈ LkAω. Hence, it remains to prove that u′vw ∈ Lk+1Aω ∪ (Aω\LkAω) for
each nonempty suffix u′ of u. Equivalently, it suffices to prove that u′vw ∈ LkAω
implies u′vw ∈ Lk+1Aω. Suppose that u′vw ∈ LkAω. Then u′vw = xq with x ∈ Lk
(1 ≤ i ≤ k) and q ∈ Aω. We point out the following two cases.



474 Eleni Mandrali and George Rahonis

- x is a proper prefix of u′v. Let u = pu′, p ∈ A∗. Since z = pu′vw = pxq,
there is a word s ∈ A+ such that pxs = pu′v = uv ∈ L∗. Since x ∈ Lk, we
have s ∈ L+. More precisely, since s 6= ε, it holds s ∈ L+, i.e., u′v = xs is in
Lk+1A∗, and u′vw is in Lk+1Aω.

- u′v is a prefix of x. Then x = u′vs for some s ∈ A∗. Since v ∈ L2k there exist
v1, v2 ∈ Lk with v = v1v2. We have x ∈ Lk and v1 ∈ Lk, which implies that
u′v1 ∈ L+. Hence u′v1v2w ∈ Lk+1Aω, and we are done.

Due to the idempotency of K, the subsequent result is a straightforward con-
clusion from the last lemma above.

Lemma 29. Let L ⊆ A+ be a prefix-free set with bounded synchronization delay
k ≥ 1 and Y ⊆ Aω. Then

1L+ · 1Y = (1L · 1Y ) + . . .+ (1L2k−1 · 1Y ) + r

with r = 1LkAω �
(
1Lk+1Aω∪(Aω\LkAω)U (1L2k · 1Y )

)
.

Lemma 30. Let L ⊆ A+ be a star-free language. Then, there exists an integer
n > 0 and Ti ∈ Umi (mi ≥ 0) for every 1 ≤ i ≤ n, such that for every w ∈ Aω and

j ≥ 0 we have (1L, w<j) =
∑

1≤i≤n

〈Ti, w, j〉.

Proof. We state the proof by induction on the structure of L. For the empty set
the tuple T = (0, 0) ∈ U0 satisfies our claim. Let L = {a} for a ∈ A. We consider
the tuple T = (pa, 0) ∈ U0

7. Then S0 = 0 and since S0 = j − 1 we get that
〈T,w, j〉 = 0 for j 6= 1. Moreover, 〈T,w, 1〉 = 1 if w(0) = a, and 〈T,w, 1〉 = 0
otherwise. Therefore 〈T,w, j〉 = (1a, w<j) for every w ∈ Aω, j ≥ 0.

Next, assume that the induction hypothesis holds for the star-free languages
L1, L2 ⊆ A+. Then, there exist n,m, li, hk ∈ N, and Ti ∈ Uli , T

′
k ∈ Uhk , (1 ≤

i ≤ n, 1 ≤ k ≤ m) such that for every w ∈ Aω, j ≥ 0 we have (1L1
, w<j) =∑

1≤i≤n
〈Ti, w, j〉 and (1L2

, w<j) =
∑

1≤k≤m
〈T ′k, w, j〉. Firstly, let L = L1 ∪ L2. Then

(1L, w<j) = (1L1
+ 1L2

, w<j) =
∑

1≤i≤n
〈Ti, w, j〉+

∑
1≤k≤m

〈T ′k, w, j〉, as wanted.

Next, let L = L1L2. Then 1L1L2
= 1L1

· 1L2
. For every 1 ≤ i ≤ n and 1 ≤

k ≤ m we derive from Ti, T
′
k the tuple Ti,k ∈ Uli+hk by applying the Composition

7In fact we transform pa to the equivalent stLTL (©, 0,∧) formula 1 ∧ pa.
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algorithm. Then, we get

(1L1
· 1L2

, w<j) =
∑

0≤p≤j

(
(1L1

, w<p) ·
(

1L2
, (w≥p)<j−p

))

=
∑

0≤p≤j

 ∑
1≤i≤n

〈Ti, w, p〉 ·
∑

1≤k≤m

〈T ′k, w≥p, j − p〉


=
∑

0≤p≤j

 ∑
1≤i≤n,1≤k≤m

(〈Ti, w, p〉 · 〈T ′k, w≥p, j − p〉)


=

∑
1≤i≤n,1≤k≤m

 ∑
0≤p≤j

(〈Ti, w, p〉 · 〈T ′k, w≥p, j − p〉)


=

∑
1≤i≤n,1≤k≤m

〈Ti,k, w, j〉

for every w ∈ Aω, j ≥ 0.
Finally, let L be a star-free prefix-free set with bounded synchronization delay

k ≥ 0 satisfying the induction hypothesis. By Lemma 26, it suffices to consider the
case k ≥ 1. We will prove our claim for L+. By Lemma 29, for Y = Aω, we get

1L+ · 1Aω = (1L · 1Aω ) + . . .+ (1L2k−1 · 1Aω ) +(
1LkAω �

(
1Lk+1Aω∪(Aω\LkAω)U (1L2k · 1Aω )

))
.

We denote 2k simply by p. By what we have shown above, the induction hypothesis,
and same arguments with the ones used in the previous inductive step, we can prove
that for every 1 ≤ h ≤ p there exist an nh ∈ N, so that the following hold. For
every 1 ≤ i ≤ nh there exist an mi ≥ 0 and a Th,i ∈ Umi with (1Lh , w<j) =∑
1≤i≤nh

〈Th,i, w, j〉, for every w ∈ Aω, j ≥ 0.

Let ϕ′, ϕ̃ ∈ bLTL (K,A) with semantics 1LkAω , 1Lk+1Aω∪(Aω\LkAω), respec-
tively. We set ϕ = ϕ′ if ϕ′ ∈ stLTL (©, 0,∧) and ϕ = 1∧ϕ′, otherwise. Clearly, ϕ′

and 1 ∧ ϕ′ are equivalent and 1 ∧ ϕ′ ∈ stLTL (©, 0,∧). We fix an 1 ≤ i ≤ np, and
we denote for simplicity Tp,i, Umi (where Tp,i ∈ Umi) with T,Um, respectively. Let

T = ((ψ0, l0) , (ϕ1, ψ1, l1) , . . . , (ϕm, ψm, lm))

and define the tuple T ′ ∈ Um+1 by

T ′ = ((ϕ, 0) , (ϕ̃, ψ0, l0) , (ϕ1, ψ1, l1) , . . . , (ϕm, ψm, lm)) .

Then, for every w ∈ Aω, j > l0 + . . .+ lm we have

〈T ′, w, j〉 =
∑

0≤q<j−(l0+...+lm)

(‖ϕ‖ , w) ·

 ∏
0≤h<q

(‖ϕ̃‖ , w≥h)

 · 〈T,w≥q, j − q〉

(4)
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and 〈T ′, w, j〉 = 0 for every j ≤ l0 + . . . + lm. We repeat the same procedure for
every 1 ≤ i ≤ np and we get the corresponding (mi + 1)-tuple T ′p,i.

Now, we show that for every w ∈ Aω, j ≥ 0 we have

(1L+ , w<j) =
∑

1≤h≤p−1

 ∑
1≤i≤nh

〈Th,i, w, j〉

+
∑

1≤i≤np

〈
T ′p,i, w, j

〉
.

To this end, let w<j ∈ L+, hence either w<j ∈
⋃

1≤h≤p−1

Lh or w<j ∈
⋃
h≥p

Lh. In

the first case
∑

1≤h≤p−1

(1Lh , w<j) = 1 and so
∑

1≤h≤p−1

( ∑
1≤i≤nh

〈Th,i, w, j〉

)
= 1.

In the latter case, ∃u ∈ L∗, v ∈ Lp such that w<j = uv. Since v =
(
w≥|u|

)
<|v|

and (1Lp , v) = 1, by induction hypothesis, we get that
∑

1≤i≤np

〈
Tp,i, w≥|u|, |v|

〉
=∑

1≤i≤np

〈
Tp,i, w≥|u|, j − |u|

〉
= 1. Then, by the proof of Lemma 28, we get that for

every suffix u′ of u we have u′vw≥j ∈ Lk+1Aω ∪
(
Aω \ LkAω

)
. Hence, (‖ϕ‖ , w) ·( ∏

0≤h<|u|
(‖ϕ̃‖ , w≥h)

)
·
〈
Tp,i, w≥|u|, j − |u|

〉
= 1 for some 1 ≤ i ≤ np. By this and

relation (4), we conclude that
∑

1≤i≤np

〈
T ′p,i, w, j

〉
= 1. Therefore, (1L+ , w<j) = 1

implies
∑

1≤h≤p−1

( ∑
1≤i≤nh

〈Th,i, w, j〉

)
= 1 or

∑
1≤i≤np

〈
T ′p,i, w, j

〉
= 1, as required.

Conversely, assume that
∑

1≤h≤p−1

( ∑
1≤i≤nh

〈Th,i, w, j〉

)
= 1 or

∑
1≤i≤np

〈
T ′p,i, w, j

〉
=

1. If the first one is true, then
∑

1≤h≤p−1

(1Lh , w<j) = 1. Otherwise, if the latter case

holds, then there is an 1 ≤ i ≤ np such that
〈
T ′p,i, w, j

〉
= 1. This implies that

j > l0 + . . .+ lmi , and by relation (4) we get

〈
T ′p,i, w, j

〉
=

∑
0≤q<j−(l0+...+lmi )

(‖ϕ‖ , w) ·
∏

0≤h<q

(‖ϕ̃‖ , w≥h) · 〈Tp,i, w≥q,j − q〉

 = 1.

Therefore, (‖ϕ‖ , w) = 1, and for some 0 ≤ q < j − (l0 + . . . + lmi) we have
(‖ϕ̃‖ , w≥h) =

(
1Lk+1Aω∪(Aω\LkAω), w≥h

)
= 1 for every 0 ≤ h < q, and

〈Tp,i, w≥q,j − q〉 =
(

1Lp , (w≥q)<j−q

)
= 1. We set u = w<q, and v = (w≥q)<j−q .

Then w = uvw≥j and the requirements of Lemma 27 are fulfilled. We conclude
that w<j = uv ∈ L+, i.e., (1L+ , w<j) = 1, and our proof is completed.

Remark 1. By the above inductive proof, we get that for every star-free language
L ⊆ A+ we can find a unique integer n > 0 and a unique (up to formulas’ equiva-
lence) set of tuples (Ti)1≤i≤n, with Ti ∈ Umi (mi ≥ 0) for every 1 ≤ i ≤ n, satisfying
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Lemma 30. More interestingly, we get that
∑

1≤i≤n
〈Ti, w, j〉 =

∑
1≤i≤n

〈Ti, w′, j〉 for

every w,w′ ∈ Aω with w<j = w′<j .

Example 3. Let A = {a, b} and L = {ab} . Clearly, L is a prefix-free set with
bounded synchronization delay k = 1. Following the inductive construction of
the previous proof we get: ϕ′ = pa ∧ ©pb, ϕL2Aω = pa ∧ ©pb ∧ ©2pa ∧ ©3pb,
ϕAω\LAω = ¬ (pa ∧©pb) and ϕ̃ = ϕL2Aω ∨ϕAω\LAω . We set T1 = (ϕ′, 1) and T2 =
((1 ∧ ϕ′, 0) , (ϕ̃, ϕL2Aω , 3)) . Then, (1L+ , w<j) = 〈T1, w, j〉+ 〈T2, w, j〉 for every w ∈
Aω, j ≥ 0. For instance, for every w ∈ Aω, 〈T1, w, j〉 = 1 iff (j = 2 and w<2 = ab) .
Let now w = abababu where u ∈ Aω. Then,

〈T2, w, 6〉 =
∑
i1∈N

0+i1+3=5

(‖ϕ′‖ , w) ·
∏

0≤j1<i1

(‖ϕ̃‖ , w≥j1) · (‖ϕL2Aω‖ , w≥i1)


= (‖ϕ′‖ , w) · (‖ϕ̃‖ , w) · (‖ϕ̃‖ , w≥1) · (‖ϕL2Aω‖ , w≥2)

= 1 = (1L+ , w<6) .

Similarly,

〈T2, w, 5〉 =
∑
i1∈N

0+i1+3=4

(‖ϕ′‖ , w) ·
∏

0≤j1<i1

(‖ϕ̃‖ , w≥j1) · (‖ϕL2Aω‖ , w≥i1)


= (‖ϕ′‖ , w) · (‖ϕ̃‖ , w) · (‖ϕL2Aω‖ , w≥1)

= 0 = (1L+ , w<5) .

It should be clear that the values obtained by the semantics of the formulas
ϕ′, ϕ̃, ϕL2Aω that appear in the computation of 〈T2, w, 6〉 do not depend on the suf-
fix u = w≥6 of w, but only on the prefix w<6. This implies that for w′ = abababu′

where u′ 6= u (u′ ∈ Aω) we get that 〈T2, w
′, 6〉 = 〈T2, w, 6〉. A similar observation

can be made for 〈T2, w, 5〉.
Example 4. Let A = {a, b} and L = a+b. For every w ∈ Aω, j ≥ 0 it holds
(1b, w<j) = 〈T1, w, j〉 and (1a+ , w<j) = 〈T2, w, j〉 + 〈T3, w, j〉 where T1 = (pb, 0),
T2 = (pa, 0), and T3 = ((pa, 0) , ((pa ∧©pa) ∨ ¬pa, pa ∧©pa, 1)) . We apply the
composition algorithm to T3 and T1 (resp. T2 and T1 ) and derive the tuple
T4 =

(
(pa, 0) ,

(
(pa ∧©pa) ∨ ¬pa, pa ∧©pa ∧©2pb, 2

))
(resp. T5 = (pa ∧©pb, 1)).

Then (1L, w<j) = 〈T4, w, j〉 + 〈T5, w, j〉. Indeed, consider w = aabu with u ∈ Aω.
It holds 〈T5, w, 3〉 = 0 and

〈T4, w, 3〉 =∑
i1∈N

0+i1+2=2

(‖pa‖ , w) ·
∏

0≤j1<i1

(‖(pa ∧©pa)‖ , w≥j1) ·
(∥∥pa ∧©pa ∧©2pb

∥∥ , w≥i1)


= (‖pa‖ , w) ·
(∥∥pa ∧©pa ∧©2pb

∥∥ , w)
= 1 = (1L, w<3) ,
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i.e., (1L, w<3) = 1 = 〈T4, w, 3〉+ 〈T5, w, 3〉, as wanted.

Proposition 9. Let L ⊆ A+ be a star-free language and r ∈ K 〈〈A∗〉〉 a letter-step
series. Then, for every ϕ ∈ ULTL (K,A) the infinitary series (1L � r+) · ‖ϕ‖ is
ω-ULTL-definable.

Proof. Let r =
∑
a∈A (ka)a where ka ∈ K for every a ∈ A. We set

ζ =
∨
a∈A (ka ∧ pa). By the previous lemma there exist an n > 0 and Tq ∈ Umq

(mq ≥ 0) for every 1 ≤ q ≤ n, such that for every w ∈ Aω, j ≥ 0 we have
(1L, w<j) =

∑
1≤q≤n

〈Tq, w, j〉. We fix a 1 ≤ q ≤ n and let us assume that

Tq =
(
(ϕ0, k0) , (ξ1, ϕ1, k1) , . . . ,

(
ξmq , ϕmq , kmq

))
.

We define the tuple T ′q ∈ Umq by

T ′q =
(

(ϕ′0, k0) , (ξ′1, ϕ
′
1, k1) , . . . ,

(
ξ′mq , ϕ

′
mq , kmq

))
as follows.

- If mq = 0, then ϕ′0 = ϕ0 ∧

 ∧
0≤h≤k0

©h ζ

.

- If mq > 0, then ξ′l = ξl ∧ ζ for every 1 ≤ l ≤ mq. Moreover, for every

0 ≤ l ≤ mq − 1, if kl 6= 0, then we let ϕ′l = ϕl ∧

 ∧
0≤h≤kl−1

©h ζ

, otherwise

ϕ′l = ϕl. Finally, we set ϕ′mq = ϕmq ∧

 ∧
0≤h≤kmq

©h ζ

.

We show that
〈
T ′q, w, j

〉
= 〈Tq, w, j〉 · (r+, w<j) for every w ∈ Aω, j ≥ 0. Indeed,

assume firstly that mq = 0. Then, for every j 6= k0 + 1 we get
〈
T ′q, w, j

〉
=

〈Tq, w, j〉 = 0 which implies that
〈
T ′q, w, j

〉
= 〈Tq, w, j〉 · (r+, w<j) . For j = k0 + 1

we have

〈
T ′q, w, k0 + 1

〉
=

∥∥∥∥∥∥ϕ0 ∧

 ∧
0≤h≤k0

©h ζ

∥∥∥∥∥∥ , w


= (‖ϕ0‖ , w) ·

∥∥∥∥∥∥
∧

0≤h≤k0

©h ζ

∥∥∥∥∥∥ , w


= 〈Tq, w, k0 + 1〉 ·
∏

0≤h≤k0

(∑
a∈A

(ka)a , w (h)

)
= 〈Tq, w, k0 + 1〉 ·

(
r+, w<k0+1

)
.
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Next let mq > 0. For every j ≤ k0+. . .+kmq we have
〈
T ′q, w, j

〉
= 〈Tq, w, j〉 = 0,

i.e.,
〈
T ′q, w, j

〉
= 〈Tq, w, j〉 · (r+, w<j). For every j > k0 + . . .+ kmq it holds

〈
T ′q, w, j

〉
=

∑
i1,i2,...,imq∈N
Smq=j−1

(‖ϕ′0‖ , w) ·
∏

1≤l≤mq

( ∏
0≤jl<il

(
‖ξ′l‖ , w≥Sl−1+jl

)
·
(
‖ϕ′l‖ , w≥Sl−1+il

)
) .

By definition we have

- (‖ϕ′0‖ , w) = (‖ϕ0‖ , w) ·
∏

0≤h≤k0−1

(r, w (h)),

-
(
‖ξ′l‖ , w≥Sl−1+jl

)
=
(
‖ξl‖ , w≥Sl−1+jl

)
· (r, w (Sl−1 + jl))

for every 1 ≤ l ≤ mq and 0 ≤ jl < il,

-
(
‖ϕ′l‖ , w≥Sl−1+il

)
=
(
‖ϕl‖ , w≥Sl−1+il

)
·

∏
0≤h≤kl−1

(r, w (Sl−1 + il + h))

for every 1 ≤ l ≤ mq − 1, and

-
(∥∥∥ϕ′mq∥∥∥ , w≥Smq−1+imq

)
=
(∥∥ϕmq∥∥ , w≥Smq−1+imq

)
·∏

0≤h≤kmq

(
r, w

(
Smq−1 + imq + h

))
.

Hence〈
T ′q, w, j

〉
=

∑
i1,i2,...,imq∈N
Smq=j−1

 (‖ϕ0‖ , w) ·
∏

1≤l≤mq

( ∏
0≤jl<il

(
‖ξl‖ , w≥Sl−1+jl

)
·
(
‖ϕl‖ , w≥Sl−1+il

)
)

·
∏

0≤h≤Smq
(r, w (h))


=

∑
i1,i2,...,imq∈N
Smq=j−1

(‖ϕ0‖ , w) ·
∏

1≤l≤mq

( ∏
0≤jl<il

(
‖ξl‖ , w≥Sl−1+jl

)
·
(
‖ϕl‖ , w≥Sl−1+il

)
) · (r+, w<j

)

= 〈Tq, w, j〉 ·
(
r+, w<j

)
.

Therefore, we get

(1L, w<j) ·
(
r+, w<j

)
=

 ∑
1≤q≤n

〈Tq, w, j〉

 · (r+, w<j
)

=
∑

1≤q≤n

(
〈Tq, w, j〉 ·

(
r+, w<j

))
=

∑
1≤q≤n

〈
T ′q, w, j

〉
.
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For every 1 ≤ q ≤ n, we define now the formula ζq ∈ ULTL (K,A) by

ζq = ϕ′0 ∧©k0
(
ξ′1U

(
ϕ′1 ∧©k1

(
ξ′2U

(
ϕ′2 ∧©k2

(
. . . U

(
ϕ′mq ∧©

kmq+1ϕ
))))))

.

By induction on mq, with straightforward calculations, we can show that

(‖ζq‖ , w) =
∑
j≥0

(〈
T ′q, w, j

〉
· (‖ϕ‖ , w≥j)

)
for every w ∈ Aω. Therefore, we conclude ∑

1≤q≤n

(‖ζq‖ , w)

 =
∑

1≤q≤n

∑
j≥0

(〈
T ′q, w, j

〉
· (‖ϕ‖ , w≥j)

)
=
∑
j≥0

 ∑
1≤q≤n

(〈
T ′q, w, j

〉
· (‖ϕ‖ , w≥j)

)
=
∑
j≥0

 ∑
1≤q≤n

〈
T ′q, w, j

〉 · (‖ϕ‖ , w≥j)


=
∑
j≥0

((
1L � r+, w<j

)
· (‖ϕ‖ , w≥j)

)
=
((

1L � r+
)
· ‖ϕ‖ , w

)
,

and our proof is completed.

Our next result states that the almost simple ω-counter-free series are ω-ULTL-
definable, and in fact concludes our theory.

Theorem 5. ω-asCF (K,A) ⊆ ω-ULTL(K,A).

Proof. Clearly it suffices to show that whenever A1, . . . ,An−1 are simple cfwa and
An is a simple cfwBa over A and K, then ‖A1‖ · . . . · ‖An‖ ∈ ω-ULTL(K,A). We

let ri = ‖Ai‖, and denote by ki the initial weight 6= 0 and k
(i)
a the weight 6= 0 of the

transitions of Ai (1 ≤ i ≤ n) labelled by a ∈ A. Since supp (rn) is an ω-counter-free
language it is also ω-LTL-definable hence, there is formula ϕ ∈ bLTL(K,A) with

‖ϕ‖ = 1supp(rn). We let ϕn = kn ∧ ϕ ∧

(
�

(∨
a∈A

(
k

(n)
a ∧ pa

)))
and we trivially

get rn = ‖ϕn‖. By construction ϕn ∈ ULTL (K,A). Furthermore, for every
1 ≤ i ≤ n − 1, the language supp (ri) \ {ε} ⊆ A∗ is counter-free hence, star-free.
Since

ri|A+ = 1supp(ri)\{ε} �
(
ki

(∑
a∈A

(
k

(i)
a

)
a

)+
)

for every 1 ≤ i ≤ n− 1, and
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rn−1|A+ · rn = kn−1

((
1supp(rn−1)\{ε} �

(∑
a∈A

(
k

(n−1)
a

)
a

)+
)
· rn
)

,

by applying Proposition 9, we get that(
1supp(rn−1)\{ε} �

(∑
a∈A

(
k

(n−1)
a

)
a

)+
)
· rn ∈ ω-ULTL(K,A)

which implies that there exists a ULTL (K,A) formula ϕ+
n−1 such that(

1supp(rn−1)\{ε} �
(∑

a∈A

(
k

(n−1)
a

)
a

)+
)
· rn =

∥∥ϕ+
n−1

∥∥.

Hence, rn−1|A+ · rn =
∥∥kn−1 ∧ ϕ+

n−1

∥∥. We let ϕn−1 =
(
kn−1 ∧ ϕ+

n−1

)
∨ ((rn−1, ε) ∧ ϕn) ∈ ULTL (K,A) and we have ‖ϕn−1‖ = rn−1 ·rn. Thus rn−1 ·rn ∈
ω-ULTL(K,A). We proceed in the same way, and we show that ri · . . . · rn ∈
ω-ULTL(K,A), for every 1 ≤ i ≤ n− 2, which concludes our proof.

Now we are ready to state the coincidence of the classes of ω-ULTL-definable,
ω-wqFO-definable, ω-star-free, and almost simple ω-counter-free series. More pre-
cisely, by Theorems 1, 2, 4, and 5 we get our main result.

Theorem 6 (Main theorem).

ω-ULTL (K,A) = ω-wqFO(K,A) = ω-SF (K,A) = ω-asCF (K,A).

Conclusion

We showed the coincidence of the classes of series definable in a fragment of the
weighted LTL, series definable in a fragment of the weighted FO logic, ω-star-free
series, and almost simple ω-counter-free series. Our underlying semiring required
to be idempotent, zero-divisor free and totally commutative complete satisfying an
additional property. It is an open problem whether we can relax the idempotency
and/or the zero-divisor freeness property of the semiring. Our results can be proved
for series over finite words. In this case we do not need completeness axioms
anymore. As a future research we state two main directions. The first one is
the development of our theory in the probabilistic setup, i.e., to investigate the
expressive equivalence (of fragments) of probabilistic LTL, probabilistic FO logic,
probabilistic ω-star-free expressions, and counter-free probabilistic Büchi automata,
where the last two concepts have not been defined yet. The latter concerns the
development of our theory in the setup of more general structures than semirings.
For instance, in [12] the authors studied weighted automata and weighted MSO
logics over valuation monoids which capture operations that play an important
role in practical applications.
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On Shift Radix Systems over Imaginary Quadratic

Euclidean Domains∗

Attila Pethő†, Péter Varga‡, and Mario Weitzer§

Dedicated to the memory of Professor Ferenc Gécseg

Abstract

In this paper we generalize the shift radix systems to finite dimensional
Hermitian vector spaces. Here the integer lattice is replaced by the direct sum
of imaginary quadratic Euclidean domains. We prove in two cases that the
set of one dimensional Euclidean shift radix systems with finiteness property
is contained in a circle of radius 0.99 around the origin. Thus their structure
is much simpler than the structure of analogous sets.

1 Introduction

For r ∈ Rn the mapping τr : Zn 7→ Zn, defined as

τr((a1, . . . , an)) = (a2, . . . , an−1, brac),

where ra denotes the inner product, is called shift radix system, shortly SRS. This
concept was introduced by S. Akiyama et al. [1] and they proved that it is a common
generalization of canonical number systems (CNS), first studied by I. Kátai and J.
Szabó [8], and the β-expansions, defined by A. Rényi [11]. For computational aspects
of CNS we refer to the paper of P. Burcsi and A. Kovács [5].

Among the several generalizations of CNS we cite here only one to polynomials
over Gaussian integers by M.A. Jacob and J.P. Reveilles [7]. Generalizing the shift
radix systems, H. Brunotte, P. Kirschenhofer and J. Thuswaldner [3] defined GSRS
for Hermitian vector spaces. A wider generalization of CNS, namely for polynomials
over imaginary quadratic Euclidean domains was studied by the first two authors
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E-mail: petho.attila@inf.unideb.hu
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486 Attila Pethő, Péter Varga, and Mario Weitzer

in [10]. It is well known that there are exactly five such domains, which are the ring
of integers of the imaginary quadratic fields Q(

√
d), d = 1, 2, 3, 7, 11. The Euclidean

norm function allows not only the division by remainder, but also to define a floor
function for complex numbers. This observation leads us to generalize SRS for Her-
mitian vector spaces endowed by floor functions depending on imaginary quadratic
Euclidean domains. Our generalization, which we call ESRS, is uniform for the five
imaginary quadratic Euclidean domains. This has the consequence that in case of
the Gaussian integers our floor function differs from that used in [3].

The SRS τr is said to have the finiteness property iff for all a ∈ Zn there exists

a k ≥ 1 such that τkr (a) = 0. Denote by D(0)
n the set of r ∈ Rn such that τr has

the finiteness property. From numeration point of view these real vectors are most

important. It turned out that the structure of D(0)
n is very complicated already for

n = 2, see [2], [12] and [13].
The analogue of the two dimensional SRS is the one dimensional GSRS and

ESRS. Brunotte et al. [3] studied first the set of one dimensional GSRS with finite-
ness property, which we denote by GSRS(0). It turned out that its structure is
quite complicated as well. Recently a more precise investigation of M. Weitzer [14]

showed that the structure of GSRS(0) is much simpler as that of D(0)
2 . Based on

extensive computer investigations he conjectures a finite description of GSRS(0).

Analogously to D(0)
n we can define D(0)

n,d, d = 1, 2, 3, 7, 11 in a straight forward

way. We show how one can compute good approximations of D(0)
n,d. Performing the

computation it turned out that the shape of these objects are quite different. The

subjective impression can be misleading, but we were able to prove that D(0)
n,d has

no critical points in the cases d = 2, 11. More specifically we prove that the circle

of radius 0.99 around the origin contains D(0)
n,d. In the other cases this is probably

not true. It is certainly not true for D(0)
2 and GSRS(0).

2 Basic concepts

In order to establish a shift radix system over the complex numbers, an imaginary
quadratic Euclidean domain will be used as the set of integers, and a floor function
is needed which can be determined by making its Euclidean function unique, so
choosing the set of fractional numbers from the possible values.

Definition 1. Let Ed = ZQ[
√
−d] be an imaginary quadratic Euclidean domain

(d ∈ {1, 2, 3, 7, 11}, see in [6]). Its canonical integral basis is: {1, ω}, where

ω :=

{ √
−d , if d ∈ {1, 2},

1+
√
−d

2 , otherwise.

(In the case of d = 1 instead of ω the imaginary unit i is used.)

For fixed d, the complex numbers 1, ω form a basis of C, as a two dimensional
vector space over R. Thus all z ∈ C can be uniquely written in the form z = e1+e2ω
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with e1, e2 ∈ R. Plainly z ∈ Ed iff e1, e2 ∈ Z. Let the functions Red : C 7→ R and
Imd : C 7→ R be defined as:

Red(z) := e1, Imd(z) := e2.

Red(z) and Imd(z) are called the real and imaginary parts of z.
The elements of Ed will be denoted by (e1, e2)d.

Plainly, for all z ∈ C we have

Imd(z) =
Im(z)

Im(ω)
,

Red(z) = Re(z)− Im(z)
Re(ω)

Im(ω)
.

In order to define a floor function, a set of fractional numbers has to be defined.
Regarding generalization purposes the absolute value of a fractional number should
be less than 1, a fractional number should not be negative in a sense, it is a superset
of the fractional numbers for the reals, and the floor function should be unambigu-
ous. From these considerations the following definition will be used to specify the
floor function with the set of fractional numbers which will be called fundamental
sail tile.

Definition 2. Let d ∈ {1, 2, 3, 7, 11}. Let the set

Dd :=

{
c ∈ C

∣∣∣∣ |c| < 1 |c+ 1| ≥ 1 − 1

2
≤ Imd(c) <

1

2

}

be defined as the fundamental sail tile (the set of fractional numbers).
Let p ∈ Ed. The set

Dd(p) :=

{
p+ c

∣∣∣∣ c ∈ C |c| < 1 |c+ 1| ≥ 1 − 1

2
≤ Imd(c) <

1

2

}

is called p-sail tile and p is called its representative integer.
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Figure 1: Tilings of C given by the sets Dd(p), d ∈ {1, 2, 3, 7, 11}.

By using Theorem 1 of [10] one can show that the sets Dd(p), where p runs
through Ed do not overlap and cover the complex plain C. This justifies the following
definition:

Definition 3. Let the function b cd : C→ Ed be defined as the floor function.
The floor of e is the representative integer p of the unique p-sail tile that contains
e.

The next lemma shows that the above defined floor function can be described
with the well-known floor function over the real numbers. We leave its simple proof
to the reader.

Lemma 1.

becd =



⌊
Re(e)−

⌊
Imd(e) + 1

2

⌋
Re(ω)

⌋
+ ω

⌊
Imd(e) + 1

2

⌋
, if(

Re(e)−
⌊
Re(e)−

⌊
Imd(e) + 1

2

⌋
Re(ω)

⌋
−

−
⌊
Imd(e) + 1

2

⌋
Re(ω)

)2
+

+
(
Im(e)−

⌊
Imd(e) + 1

2

⌋
Im(ω)

)2
< 1,⌊

Re(e)−
⌊
Imd(e) + 1

2

⌋
Re(ω)

⌋
+ ω

⌊
Imd(e) + 1

2 + 1
⌋

, otherwise.

Equipped with the appropriate floor functions we are in the position to define
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shift radix systems for Hermitian vectors. The notion depends on the imaginary
Euclidean domain.

Definition 4. Let C := (c1, . . . , cn) ∈ Cn be a complex vector. Let d ∈
{1, 2, 3, 7, 11} and the floor function bxcd defined as above.
For all vectors A := (a1, a2, . . . , an) ∈ En

d let

τd,C (A) := (a2, . . . , an,−q) ,

where q = bc1a1 + c2a2 + · · · + cnancd. The mapping τd,C : En
d 7→ En

d is called
Euclidean shift radix system with parameter d or ESRSd respectively, ESRS
for short. If B := τd,C(A), this mapping will be denoted by

A ⇒
d,C

B.

If for A,B ∈ En
d there is a k ∈ N, such that τ k

d,C(A) = B then this will be indicated

by:
A

∗
==⇒
d,C

B.

τd,C is called ESRS with finiteness property iff for all vectors A ∈ En
d

A
∗

==⇒
d,C

0,

where 0 is the zero vector.

Definition 5. The following sets form a generalization of the corresponding sets
defined in [1]:

D0
n,d :=

{
C ∈ Cn

∣∣∣∣ ∀A ∈ En
d : A

∗
==⇒
d,C

0

}
,

Dn,d :=

{
C ∈ Cn

∣∣∣∣ ∀A ∈ En
d the sequence

{
τ kd,C (A)

}
k≥0

is ultimately periodic

}
.

τd,C is ESRS with finiteness property iff C ∈ D0
n,d.

Remark 1. The construction defined in this section can be generalized by using a
complex number for d.

3 Basic properties of the one dimensional shift
radix systems

This section and the following ones will consider C as a one dimensional vector, i.e.
a complex number, which will be denoted by c. In this section we will investigate
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some properties of the one dimensional case. Theorem 1 can be considered as the
generalization of cutout polyhedra defined in [1]. These are areas defined by a closed
curve (arcs and lines). Let this area be denoted by P . Let’s consider this as cutout
area.

Theorem 1. Let c ∈ C. The number a0 ∈ Ed with (d, c) admits a period

a0 ⇒
d,c
a1 ⇒

d,c
a2 ⇒

d,c
a3 . . .⇒

d,c
al−1 ⇒

d,c
a0, if and only if

c ∈
(
Dd − a1
a0

)
∩
(
Dd − a2
a1

)
∩ · · · ∩

(
Dd − al−1
al−2

)
∩
(
Dd − a0
al−1

)
.

The number l will be called the length of the period.

Proof. The proof is essentially the same as the proof of Theorem 3 in [10].

The next theorem shows that if the ESRS associated to c has the finiteness
property then it must lie in the closed unit circle.

Theorem 2. Let |c| > 1, d ∈ {1, 2, 3, 7, 11} then τd,c doesn’t have the finiteness
property.

Proof. The basic idea is that we ignore those values of a where the length decreases
after applying τd,c, since after finitely many steps it will end in 0 or another value
a′ the absolute value of which increases by applying the mapping. Investigating the
length of a vector after applying the shift radix mapping:

a⇒
d,c
ac− r.

For the length
|a| > |ac− r| ≥ |a||c| − |r| > |a||c| − 1,

|a| < 1

|c| − 1
.

If this inequality holds the length decreases. This is a finite open disk around the
origin. For any other a the length will increase, so starting from a applying the
shift radix mapping leads to a divergent sequence.

Plainly τd,1 doesn’t have the finiteness property for any d. For finding ESRS
with finiteness property, one has to use a well chosen complex number c. Based on
Theorem 2, let’s start from the closed unit disc around the origin, and let’s ignore
these cutout areas in order to reach those points which are good to define ESRS
with finiteness property:

Remark 2. The set D0
n,d can be defined in the following way. Let S := {c ∈

C| |c| ≤ 1} and let’s consider the areas defined by Theorem 1 as Pi. Then

D0
n,d = S \ ∪Pi.
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Since cutout areas can be infinitely many, can be disjoint, overlapped by each
other or superset and subset of each other, finding the union area of all is a hard
problem. The following definition helps to estimate how many cutout areas are
around some point in Dn,d.

Definition 6. Let c ∈ Dn,d.

• If there exists an open neighborhood of c which contains only finitely many
cutout areas then we call c a regular point.

• If each open neighborhood of c has nonempty intersection with infinitely many
cutout areas then we call c a weak critical point for Dn,d.

• If for each open neighborhood U of c the set U \ D0
n,d cannot be covered by

finitely many cutout areas then c is called a critical point.

Let’s check what are the conditions to reach a cutout area in the one dimensional
case.

Remark 3. Theorem 1’s result for one dimensional case can be used to define
cutout areas with periods of any length. τd,c admits a period a0 ⇒

d,c
a1 ⇒

d,c
a2 ⇒

d,c

. . .⇒
d,c
an ⇒

d,c
a0 if and only if

c ∈
(
Dd − a1
a0

)
∩
(
Dd − a2
a1

)
∩ · · · ∩

(
Dd − an
an−1

)
∩
(
Dd − a0
an

)
.

The one-step and the two-step cases are really important, since the one-step
periods define large sets around−1, and the two-step case appear most likely around
1. The following two lemmata speak about these special cases.

Lemma 2. Let |c| < 1. τd,c admits a one-step period, if and only if c ∈ Dd

a − 1 for
an a ∈ Ed \ {0}.

Proof. The shift radix mapping leads to the following:

a⇒
d,c
−ac+ r,

a ∈ Ed \ {0}. This can be a one-step period, iff c = r
a − 1. r is a general element of

the fundamental sail tile, so c ∈ Dd

a − 1.

Lemma 3. Let |c| < 1. τd,c admits a two-step period, if and only if c ∈
(

Dd−a′

a

)
∩(Dd−a

a′

)
, where a, a′ ∈ Ed \ {0}.

Proof. The shift radix mapping leads to the following:

a⇒
d,c
−ac+ r,
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a ∈ Ed \ {0}. Let a′ := −ac+ r ∈ Ed \ {0}, a′ ⇒
d,c
−a′c+ r. This can be a two-step

period, iff a = −a′c+ r. This means that c has to be in the set

c ∈
(
Dd − a′

a

)
∩
(
Dd − a
a′

)
.

Theorem 3 shows that only finitely many a ∈ Ed have to be investigated to
decide the finiteness property of a specific value of c.

Theorem 3. Let |c| < 1. τd,c is a ESRS with finiteness property, iff for all a ∈ Ed

where |a| < 1
1−|c|

a
∗

=⇒
d,c

0.

Proof.

a⇒
d,c
−ac+ r, where

r ∈ Dd. To decide the finiteness property one has to check only those numbers
where the absolute value does not decrease.

|a| ≤ | − ac+ r| ≤ |a||c|+ |r| < |a||c|+ 1, so

|a| < 1
1−|c| .

Now, let’s see how the sets D0
1,d (d ∈ {1, 2, 3, 7, 11}) look like. Algorithm 1

defines a searching method, which will approximate the mentioned set using the
results of Remark 2 and Theorem 3. The input parameters are d ∈ {1, 2, 3, 7, 11}
and rs, which sets how many points in the unit circle will be tested, the result is a
superset of D0

1,d.
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Algorithm 1 Approximation algorithm for the set D0
1,d

1: d ∈ {1, 2, 3, 7, 11} (input parameter)
2: rs := 1000000 (input parameter)
3: res := 1√

rs

4: S := {c ∈ C| |c| ≤ 1}
5: Scurr := S
6: for rad ∈ {0, res, 2res . . . , 1} do
7: for ang ∈ {0, res, 2res . . . , 2π} do
8: ccurr := rad · ei·ang
9: if ccurr ∈ Scurr then

10: Acurr := {a′|a′ ∈ Ed |a′| < 1
1−|ccurr|}

11: for acurr ∈ Acurr do
12: if τd,ccurr admits a period P ′ starting from acurr then
13: Scurr = Scurr \ P ′
14: break operation 11
15: end if
16: end for
17: end if
18: end for
19: end for
20: return Scurr

Figure 2: Using Algorithm 1, these are the generated approximations of
D0

1,1,D0
1,2,D0

1,3,D0
1,7,D0

1,11, respectively (black area).
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The area close to the origin is the easiest part of the disc to decide the finiteness
property, so let’s consider the case |c| < 1

2 .

Theorem 4. Let |c| < 1 − 1√
4

= 1
2 . The function τd,c is a ESRS with finiteness

property, if c ∈ Dd. Additionally, if d = 11 then

c 6∈
{
z ∈ C

∣∣∣∣ |(−ω)z + ω − 1| ≥ 1 −
√

11

4
< Im((−ω)z + ω)

}
, and

c 6∈
{
z ∈ C

∣∣∣∣ |(−1 + ω)z − ω| ≥ 1 Im((−1 + ω)z + 1− ω) ≤
√

11

4

}
.

Proof. The proof of this theorem only uses basic considerations and the results of
this article.

The following Lemma implies that D0
1,d and D1,d reflected at the real axis coin-

cide almost everywhere. Parts where the two sets might not coincide are contained
in the union of their respective boundaries.

Lemma 4. Let c ∈ C, a, b ∈ Ed, and ϕ = (a1, a2, . . . , ak) ∈ Ek
d. Then 2Imd(ca) is

not an odd integer ⇔ (τca = b⇔ τca = b),
2Imd(ca) is an odd integer ⇒ (τca = b⇒ τca− b ∈ {(0,−1)d, (1,−1)d}).
In particular, if c is contained in the interior of the cutout area corresponding to ϕ
then
(a1, a2, . . . , ak) period of τc ⇔ (a1, a2, . . . , ak) period of τc.
Proof. The proof can be done the same way as the proof of Lemma 3.6 in [3].

Definition 7. Let(
((x2,1, y2,1), (a2,1, b2,1)), . . . , ((x2,45, y2,45), (a2,45, b2,45)

)
:=
(

((
1, 0
)
,
(
− 2, 0

))
,
((
− 529

4023 ,
22378908
45415717

)
,
(
0, 1
))

,
((
− 8413

3862276 ,
6385
8993

)
,
(
0, 1
))

,((
− 560

3763 ,
166
229

)
,
(
0, 1
))

,
((

11051
36427 ,

12022
16987

)
,
(
0, 1
))

,
((
− 39833

139318 ,
634841
887952

)
,
(
0, 1
))

,((
− 587

32542 ,
1260970
1501501

)
,
(
0, 1
))

,
((

20911
27059 ,

183
517

)
,
(
0, 1
))

,
((
− 3533

7022 ,
1411
1988

)
,
(
0, 1
))

,((
645
3757 ,

1432877
1660169

)
,
(
0, 1
))

,
((

844688
1266909 ,

2031
3445

)
,
(
0, 4
))

,
((

44399
51256 ,

4447
14348

)
,
(
0, 2
))

,((
781981
1137704 ,

159
260

)
,
(
0, 4
))

,((
3741
6160 ,

2237
3237

)
,
(
0, 2
))

,
((

18563
132052 ,

677269
744909

)
,
(
0, 1
))

,
((
− 273

461 ,
256
357

)
,
(
0, 1
))

,((
− 23531

44649 ,
2367
3041

)
,
(
0, 1
))

,
((
− 2504

4903 ,
53361
66614

)
,
(
0, 1
))

,
((

2295978
14352937 ,

128937
134770

)
,
(
0, 1
))

,((
− 22537

155137 ,
19631
20469

)
,
(
0, 1
))

,
((
− 1324

2503 ,
85287
104894

)
,
(
0, 1
))

,
((

186647
247677 ,

278
433

)
,
(
0, 2
))

,((
81473
111068 ,

86419
129984

)
,
(
0, 2
))

,
((
− 1087

2004 ,
670
809

)
,
(
0, 1
))

,
((

19
25 ,

16
25

)
,
(
0, 2
))

,
((

27
37 ,

25
37

)
,(

0, 2
))

,
((

13
17 ,

54
85

)
,
(
0, 2
))

,
((

7647
10000 ,

16
25

)
,
(
0, 2
))

,
((

7339
10000 ,

1347
2000

)
,
(
0, 2
))

,((
1979
20000 ,

4961
5000

)
,
(
0, 1
))

,
((
− 1979

20000 ,
397
400

)
,
(
0, 1
))

,
((
− 2701

5000 ,
8399
10000

)
,
(
0, 1
))

,((
− 1097

2000 ,
4169
5000

)
,
(
0, 1
))

,
((

1527
2000 ,

6429
10000

)
,
(
0, 2
))

,
((

3831
5000 ,

6413
10000

)
,
(
0, 2
))

,((
3699
5000 ,

6711
10000

)
,
(
0, 2
))

,
((

7321
10000 ,

6767
10000

)
,
(
0, 2
))

,
((

7419
10000 ,

1339
2000

)
,
(
0, 2
))

,((
3683
5000 ,

3377
5000

)
,
(
0, 2
))

,
((
− 1087

2000 ,
4183
5000

)
,
(
0, 1
))

,
((
− 1089

2000 ,
8387
10000

)
,
(
0, 1
))

,((
− 1089

2000 ,
1677
2000

)
,
(
0, 1
))

,
((

1
10 ,

7
5
√
2

)
,
(
0, 1
))

,((
1

100

(
50 +

√
1534

)
,−−100+

√
1534

100
√
2

)
,
(
0, 1
))

,
((

9
10 ,

3
5
√
2

)
,
(
0, 1
)))

,
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(
((x11,1, y11,1), (a11,1, b11,1)), . . . , ((x11,47, y11,47), (a11,47, b11,47)

)
:=
(

((1, 0), (−2, 0))
((
− 529

4023 ,
22378908
45415717

)
,
(
0, 1
))

,
((

25699
75158 ,

11951
22586

)
,
(
2, 0
))

,((
122233
192089 ,

5593
12399

)
,
(
0, 1
))

,
((

6229
23994 ,

22353
28738

)
,
(
0, 9
))

,
((

2039
57213 ,

17365
20941

)
,
(
0, 1
))

,((
3099
4183 ,

442047
1060847

)
,
(
0, 1
))

,
((
− 39923

156499 ,
22371
26896

)
,
(
0, 1
))

,
((

4038
5203 ,

4722
11383

)
,
(
0, 1
))

,((
285
406 ,

752
1417

)
,
(
0, 1
))

,
((

15765
22453 ,

431
725

)
,
(
0, 1
))

,
((

2023
7895 ,

2634
2981

)
,
(
0, 1
))

,((
− 810241

3496246 ,
662044
743591

)
,
(
0, 1
))

,
((

127129
185005 ,

42539
67882

)
,
(
0, 4
))

,
((
− 109151

435226 ,
1106
1235

)
,(

0, 1
))

,
((

1499
5037 ,

10953
12284

)
,
(
0, 1
))

,
((
− 8495

29356 ,
259913
290617

)
,
(
0, 1
))

,
((

755
851 ,

3083
7406

)
,
(
0, 1
))

,((
− 15483

32584 ,
4513239
5265740

)
,
(
0, 1
))

,
((
− 39752315

80135632 ,
1130
1337

)
,
(
0, 1
))

,
((
− 45318560

90412991 ,
235960
280199

)
,(

0, 1
))

,
((
− 422566

838723 ,
6443
7665

)
,
(
0, 1
))

,
((
− 7361

14390 ,
105082
125711

)
,
(
0, 1
))

,((
− 724614

1438463 ,
2019
2369

)
,
(
0, 1
))

,
((
− 4861

9600 ,
1020
1199

)
,
(
0, 1
))

,
((
− 1064

2059 ,
166081
196678

)
,
(
0, 1
))

,((
− 545

1034 ,
168253
200773

)
,
(
0, 1
))

,
((

13
50 ,

24
25

)
,
(
0, 1
))

,
((

13
51 ,

49
51

)
,
(
0, 1
))

,
((
− 45

82 ,
34
41

)
,(

0, 1
))

,
((
− 1135

2048 ,
1699
2048

)
,
(
0, 1
))

,
((
− 1125

2048 ,
851
1024

)
,
(
0, 1
))

,
((
− 1123

2048 ,
1701
2048

)
,(

0, 1
))

,
((
− 1083

2048 ,
869
1024

)
,
(
0, 1
))

,
((
− 1075

2048 ,
433
512

)
,
(
0, 1
))

,
((
− 1069

2048 ,
873
1024

)
,(

0, 1
))

,
((
− 531

1024 ,
1745
2048

)
,
(
0, 1
))

,
((
− 529

1024 ,
875
1024

)
,
(
0, 1
))

,
((

505
2048 ,

991
1024

)
,
(
0, 1
))

,((
511
2048 ,

1983
2048

)
,
(
0, 1
))

,
((

513
2048 ,

991
1024

)
,
(
0, 1
))

,
((

135
512 ,

987
1024

)
,
(
0, 1
))

,((
129106
516339 ,

2147435
2219844

)
,
(
0, 1
))

,
((

1
212

(
− 140 +

√
573
)
,
√
11
4

)
,(

0, 3
))

,
((−550−√42130

1500 ,
√
11
(
−25+2

√
42130

)
1500

)
,
(
0, 1
))

,((
1
48

(
− 33 +

√
93
)
, 1
48

√
11
(
3 +
√

93
))

,
(
0, 1
))

,
((

1639+
√
10021

6600 , 539+
√
10021

200
√
11

)
,(

0, 1
)))

,

and let C
(2)
0 (k) denote the ultimate period of the orbit of (a2,k, b2,k)2 under

τ2,(x2,k,y2,k) for all k ∈ {1, . . . 45} and C
(11)
0 (k) the ultimate period of the orbit

of (a11,k, b11,k)11 under τ11,(x11,k,y11,k) for all k ∈ {1, . . . 47}. Furthermore let for
all k ∈ Z:

C
(d)
1 (k) := ((−k, 1)d, (k,−1)d)

C
(d)
2 (k) := ((−k, 1)d, (k + 1,−1)d).

Theorem 5. The sets D(0)
1,2 and D(0)

1,11 do not contain any weakly critical points

(and thus no critical points) r satisfying r ∈ D(0)
1,2 and r ∈ D(0)

1,11 respectively. More

precisely the circle of radius 0.99 around the origin contains the sets D(0)
1,2 and D(0)

1,11.

Proof. For any cycle π of complex numbers let π denote the cycle one gets if all
elements of π are replaced by their complex conjugates. The cutout sets of the

cycles C
(2)
1 (k), C

(2)
2 (k), k ∈ Z, C

(2)
0 (1), . . . , C

(2)
0 (45), C

(2)
0 (1), . . . , C

(2)
0 (45), and

C
(11)
1 (k), C

(11)
2 (k), k ∈ Z, C

(11)
0 (1), . . . , C

(11)
0 (47), C

(11)
0 (1), . . . , C

(11)
0 (47) respec-

tively, completely cover the ring centered at the origin in the complex plane with
inner radius 99

100 and outer radius 1. Figures 3 and 3 show the cutout sets for the
cases d = 2 and d = 11 respectively. The list has been found by a combination of a
variant of Algorithm 1 with manual search.
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Figure 3: Cutout areas of D1,2 which covers the annulus with radii 99/100 and 1.
The green area represents the first cutout area, the blue ones are the two infinite
sequences.

Figure 4: Cutout areas of D1,11 which covers the annulus with radii 99/100 and 1.
The green area represents the first cutout area, the blue ones are the two infinite
sequences.
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4 Conclusion and further work

In this paper shift radix systems have been defined over the complex field (Definition
4), and the one dimensional case has been investigated more precisely.
This can be continued to investigate polynomials and vectors with greater degree,
Hausdorff dimensions can be calculated more precisely, or SRS over other Euclidean
domains can be investigated as well.
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Debrecen., to appear.

Received 23rd June 2015



Acta Cybernetica 22 (2015) 499–515.

Rectangular Algebras as Tree Recognizers

Magnus Steinby∗

To the memory of Ferenc Gécseg

Abstract

We consider finite rectangular algebras of finite type as tree recognizers.
The type is represented by a ranked alphabet Σ. We determine the varieties
of finite rectangular Σ-algebras and show that they form a Boolean lattice
in which the atoms are minimal varieties of finite Σ-algebras consisting of
projection algebras. We also describe the corresponding varieties of Σ-tree
languages and compare them with some other varieties studied in the litera-
ture. Moreover, we establish the solidity properties of these varieties of finite
algebras and tree languages. Rectangular algebras have been previously stud-
ied by R. Pöschel and M. Reichel (1993), and we make use of some of their
results.

1 Introduction

In a projection algebra every fundamental operation is a projection operation.
Pöschel and Reichel [11] defined rectangular τ -algebras as the members of the
variety generated by all projection algebras of type τ . Rectangular algebras are
also natural generalizations of rectangular bands; the rectangular algebras of type
〈2〉 are precisely the rectangular bands.

In this paper we study projection algebras and rectangular algebras as tree rec-
ognizers. Hence the algebras considered are finite and of a finite type, represented
here by a ranked alphabet Σ. Our general framework is the variety theory of tree
languages [12, 13], which establishes bijective correspondences between the vari-
eties Σ-tree languages (Σ-VTLs), the varieties of finite Σ-algebras (Σ-VFAs), and
the Σ-varieties of finite congruences (Σ-VFCs).

The class of all finite projection Σ-algebras is not a Σ-VFA, but it contains cer-
tain simple Σ-VFAs from which all the Σ-VFAs to be considered here are obtained.
Each such atomic Σ-VFA corresponds to some so-called projection alphabet. For
any projection alphabet Λ, the class FProjΛ of all finite Λ-projection algebras is a
minimal Σ-VFA, and these Σ-VFAs FProjΛ are the atoms of the Boolean lattice
of all sub-VFAs of the Σ-VFA FRAΣ of all finite rectangular Σ-algebras. Every
sub-VFA FRAL of FRAΣ corresponds to a set L of projection alphabets, and it

∗Department of Mathematics and Statistics, University of Turku, FIN-20014 Turku, Finland.
E-mail: steinby@utu.fi
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is the finite join of the Σ-VFAs FProjΛ such that Λ ∈ L. We also describe the
Σ-VFCs that correspond to the Σ-VFAs FProjΛ and FRAL.

It is easy to describe a tree language recognized by a projection algebra; whether
a tree is in it depends just on the label of the leaf at the end of a certain path
determined by the projection alphabet of the algebra. This observation leads to
a simple characterization of the members of the Σ-VTLs FProjΛ that correspond
to the Σ-VFAs FProjΛ. Moreover, we show that any tree language in FProjΛ is
also recognized by a two-element Λ-projection algebra PΛ, which therefore is (up
to isomorphism) the only nontrivial syntactic algebra in FProjΛ. We also note
that the syntactic monoid of any member of FProjΛ is either trivial or isomorphic
to a certain 3-element monoid. The Σ-VTLs FRAL that correspond to the more
general Σ-VFAs FRAL are shown to be the ring closures of the unions of the atomic
Σ-VTLs FProjΛ they contain. It is also noted that the membership problem is
decidable for these Σ-VTLs.

Although the tree languages recognized by rectangular algebras have rather sim-
ple descriptions, their trees are not characterized by any local properties. Therefore
the Σ-VTLs FRAL have little in common with many of the Σ-VTLs previously con-
sidered in the literature. Thus we show that the intersection of any FRAL with
any one of the Σ-VTLs of nilpotent, definite, reverse definite, generalized definite
or locally testable Σ-tree languages is just the trivial Σ-VTL. Of course, the cor-
responding facts hold for Σ-VFAs. On the other hand, we show that FRAΣ is
contained in the Σ-VFA of all aperiodic Σ-tree languages. As another exception,
we show that for any projection alphabet Λ, the Σ-VTL FProjΛ is contained in
the family DRecΣ of Σ-tree languages recognized by deterministic top-down tree
recognizers. This implies that FRAΣ is contained in the Σ-VTL generated by
DRecΣ.

We also study the solidity properties of our Σ-VFAs and Σ-VTLs. Graczyńska
and Schweigert [7] noted that the solidity of a class of algebras can be defined in
terms of derived algebras. A derived algebra κ(A) of a Σ-algebra A is obtained by
replacing each fundamental operation of A with a term operation determined by
the given hypersubstitution κ, and a class K of Σ-algebras is solid if it contains all
derived algebras of its members. A family of Σ-tree languages is said to be solid, if it
is closed under inverse tree homomorphisms. In fact, we consider the more refined
notions of solidity with respect to a given class of hypersubstitutions. In [11] it
was shown that the rectangular Σ-algebras form the least nontrivial solid variety of
Σ-algebras, and hence it is to be expected that FRAΣ is the least nontrivial solid Σ-
VFA. Also the Σ-VFA of trivial Σ-algebras is naturally solid, but the remaining sub-
VFAs of FRAΣ are shown to have very weak solidity properties. The corresponding
facts hold for the Σ-VTLs FRAL.

2 Preliminaries

We may write A := B to emphasize that A is defined to be B. For any integer
n ≥ 0, let [n] := {1, . . . , n}. The set of all subsets of a set A is denoted by ℘(A).



Rectangular Algebras as Tree Recognizers 501

For any relation ρ ⊆ A×B, the fact that (a, b) ∈ ρ for some a ∈ A and b ∈ B, will
usually be expressed by writing a ρ b. For a mapping ϕ : A→ B, we may write the
image ϕ(a) of an element a ∈ A as aϕ. Especially homomorphisms are written this
way as right operators that are composed from left to right, i.e., the composition
of ϕ : A→ B and ψ : B → C is written as ϕψ.

Next we recall some basic matters concerning algebras, tree recognizers and tree
languages. For details and further references, cf. [1, 5, 6, 13], for example.

A ranked alphabet Σ is a finite set of symbols each of which has a unique positive
integer arity. For any m ≥ 1, the set of m-ary symbols in Σ is denoted by Σm.
Note that we assume that there are no nullary symbols. If Σ = Σ1, then Σ is said
to be unary. The rank type of Σ is the set r(Σ) := {m | Σm 6= ∅}. The ranked
alphabet Σ will have two roles. Firstly, the inner nodes of trees are labeled with
symbols from Σ. Secondly, Σ is a finite set of operation symbols that determines
the type of the algebras to be considered. To avoid exceptions for the unary case,
we make the following general assumption.

Convention. From now on, Σ is a ranked alphabet without nullary symbols that
contains at least one symbol of arity ≥ 2.

We also use ordinary finite nonempty alphabets X,Y, . . . that we call leaf al-
phabets. These are assumed to be disjoint from Σ. For any leaf alphabet X,
the set TΣ(X) of Σ-terms over X is the smallest set T such that X ⊆ T , and
f(t1, . . . , tm) ∈ T whenever m ∈ r(Σ), f ∈ Σm and t1, . . . , tm ∈ T . Such terms
are regarded in the usual way as labeled trees, and we call them ΣX-trees. Sub-
sets of TΣ(X) are called ΣX-tree languages. We may also speak about Σ-trees
and Σ-tree languages without specifying the leaf alphabet, or just about trees and
tree languages. A family of Σ-tree languages is a mapping V that assigns to ev-
ery leaf alphabet X a set V(X) of ΣX-tree languages. We write such a family as
V = {V(X)}X . For any two such families U and V, we set U ⊆ V iff U(X) ⊆ V(X)
for every X. Unions and intersections of families of Σ-tree languages are defined
by similar componentwise conditions.

Let ξ be a special symbol that does not appear in Σ or X. A Σ(X ∪{ξ})-tree in
which ξ appears exactly once, is called a ΣX-context. The set of all ΣX-contexts is
denoted by CΣ(X). If p, q ∈ CΣ(X) and t ∈ TΣ(X), then p ·q = q(p) and t ·q = q(t)
are the ΣX-context and the ΣX-tree obtained from q by replacing the ξ in it with
p or t, respectively. Clearly, CΣ(X) forms a monoid for the product p · q and the
identity element ξ.

A Σ-algebra A consists of a nonempty set A and a Σ-indexed family (fA | f ∈ Σ)
such that if f ∈ Σm, then fA : Am → A is an m-ary operation on A. We write
simply A = (A,Σ). Subalgebras, homomorphisms, (epimorphic) images and direct
products are defined as usual. An algebra B is said to cover an algebra A if A
is an image of a subalgebra of B. This we express by writing A � B. The ΣX-
trees form the ΣX-term algebra TΣ(X) = (TΣ(X),Σ), where fTΣ(X)(t1, . . . , tm) =
f(t1, . . . , tm) for all m ∈ r(Σ), f ∈ Σm and t1, . . . , tm ∈ TΣ(X).

A (deterministic bottom-up) ΣX-recognizer A = (A, α, F ) consists of a finite
Σ-algebra A = (A,Σ), the elements of which are called states, an initial assignment



502 Magnus Steinby

α : X → A that specifies the starting states at the leaves, and a set F ⊆ A of final
states. The root of a ΣX-tree t is reached in state tαA, where αA : TΣ(X)→ A is
the homomorphic extension of α, and hence the ΣX-tree language recognized by A
is defined as T (A) = {t ∈ TΣ(X) | tαA ∈ F}.

A ΣX-tree language is called recognizable, or regular, if it is recognized by a
ΣX-recognizer. Let RecΣ(X) be the set of all recognizable ΣX-tree languages, and
let RecΣ = {RecΣ(X)}X be the family of recognizable Σ-tree languages. We may
also say that a Σ-algebra A = (A,Σ) recognizes a ΣX-tree language T if T = Fϕ−1

for some homomorphism ϕ : TΣ(X) → A and some F ⊆ A. Obviously, a ΣX-tree
language is recognized by a finite algebra iff it is regular.

The following review of the variety theory of tree languages follows [12] and
[13], where also further references can be found. The syntactic algebra of a ΣX-tree
language T is the quotient algebra SA(T ) := TΣ(X)/θT , where θT is the syntactic
congruence of T defined by

s θT t ⇔ (∀p ∈ CΣ(X))(p(s) ∈ T ↔ p(t) ∈ T ) (s, t ∈ TΣ(X)).

It is easy to see that SA(T ) is the minimal Σ-algebra recognizing T in the sense
that a Σ-algebra A recognizes T iff SA(T ) � A.

A variety of Σ-tree languages (Σ-VTL) is a family of Σ-tree languages V =
{V(X)}X such that for all leaf alphabets X and Y ,

(V1) V(X) is a Boolean subalgebra of RecΣ(X),

(V2) if T ∈ V(X) and p ∈ CΣ(X), then p−1(T ) := {t ∈ TΣ(X) | p(t) ∈ T} ∈ V(X),
and

(V3) if T ∈ V(Y ), then Tϕ−1 := {t ∈ TΣ(X) | tϕ ∈ T} is in V(X) for every
homomorphism ϕ : TΣ(X)→ TΣ(Y ).

The least Σ-VTL is TrivΣ = {TrivΣ(X)}X , where TrivΣ(X) = {∅, TΣ(X)}, and
the greatest Σ-VTL is RecΣ = {RecΣ(X)}X .

A class of finite Σ-algebras K is called a variety of finite Σ-algebras (Σ-VFA)
(or a pseudovariety) if it is closed under subalgebras, epimorphic images and finite
direct products, i.e., if S(K), H(K), Pf (K) ⊆ K. The Σ-VFA generated by a class
K of finite Σ-algebras is denoted by Vf (K). Since Vf (K) = HSPf (K), a Σ-algebra
A is in Vf (K) iff A � A1 × . . .×An for some n ≥ 0 and algebras A1, . . . ,An ∈ K.
Let TrivΣ be the Σ-VFA of all trivial Σ-algebras.

For any Σ and X, let FCΣ(X) := {θ ∈ Con(TΣ(X)) | TΣ(X)/θ finite} be the set
of finite congruences of TΣ(X). If Γ assigns to each leaf alphabet a subset Γ(X) of
FCΣ(X), we write Γ = {Γ(X)}X , and we call Γ a Σ-variety of finite congruences
(Σ-VFC) if for all X and Y ,

(C1) Γ(X) is a filter of the lattice (FCΣ(X),⊆), and

(C2) ϕ ◦ θ ◦ ϕ−1 := {(s, t) | s, t ∈ TΣ(X), sϕ θ tϕ} belongs to Γ(X) for every
θ ∈ Γ(Y ) and every homomorphism ϕ : TΣ(X)→ TΣ(Y ).
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The three classes of varieties defined above form complete lattices with respect
to the natural inclusion relations. They are connected by three pairs of mutually
inverse isomorphisms.

For any Σ-VFA K, let Kt be the family of Σ-tree languages and let Kc be
the Σ-family of finite congruences such that for each X, Kt(X) = {T ⊆ TΣ(X) |
SA(T ) ∈ K} and Kc(X) = {θ ∈ FCΣ(X) | TΣ(X)/θ ∈ K}. For any Σ-VTL
V = {V(X)}X , let Va be the Σ-VFA generated by the syntactic algebras of the tree
languages belonging to V, and let Vc be the Σ-family of finite congruences such
that for any X, Vc(X) := [{θT | T ∈ V(Σ, X)}) is the filter of FCΣ(X) generated
by the syntactic congruences of the members of V(X). Finally, for any Σ-VFC
Γ = {Γ(X)}X , let Γa := Vf ({TΣ(X)/θ | θ ∈ Γ(X) for some X}) and let Γt be the
family of Σ-tree languages such that for anyX, Γt(X) = {T ⊆ TΣ(X) | θT ∈ Γ(X)}.
The Variety Theorem for Σ-tree languages can now be stated as follows.

Theorem 2.1. The mappings K 7→ Kt, V 7→ Va, K 7→ Kc, Γ 7→ Γa, V 7→ Vc, and
Γ 7→ Γt form three pairs of mutually inverse isomorphisms between the lattices of
all Σ-VFAs, Σ-VTLs and Σ-VFCs.

A Σ-VFC Γ = {Γ(X)}X is principal if for every X, Γ(X) is a principal filter
in FCΣ(X). It is easy to see that a family Γ = {[γX)}X , where γX ∈ FCΣ(X) for
each X, is a principal Σ-VFC iff for all X and Y , γX ⊆ ϕ ◦ γY ◦ ϕ−1 for every
homomorphism ϕ : TΣ(X)→ TΣ(Y ).

Remark 2.1. If Γ = {[γX)}X is a principal Σ-VFC, then Γt(X) is the finite set of
ΣX-tree languages saturated by γX . Conversely, if V = {V(X)}X is a Σ-VTL such
that V(X) is a finite set for every X, then Vc is a principal Σ-VFC because the
filter Vc(X) is generated by the syntactic congruences of the members of V(X).

The join of any finite set of Σ-VFAs can be described as follows.

Lemma 2.1. For any Σ-VFAs K1, . . . ,Kn (n ≥ 1), the join K1 ∨ . . . ∨ Kn =
Vf (K1 ∪ . . . ∪Kn) consists of all Σ-algebras A such that A � A1 × . . . × An for
some A1 ∈ K1, . . . ,An ∈ Kn.

The Σ-VTL generated by a family of recognizable Σ-tree languages V is the
least Σ-VTL containing V. The Boolean closure BV and the ring closure RV of
V are the families of Σ-tree languages such that for any X, BV(X) is the Boolean
closure of V(X) in RecΣ(X) and RV(X) is the least subset of RecΣ(X) containing
V(X) and closed under finite intersections and unions.

Lemma 2.2. If a family of recognizable Σ-tree languages V = {V(X)}X satisfies
conditions (V2) and (V3), then BV is the Σ-VTL generated by V. If, moreover,
T ∈ V(X) implies T { ∈ V(X) for every X, then RV is the Σ-VTL generated by V.

Proof. The lemma follows from the identities p−1(T ∪ T ′) = p−1(T ) ∪ p−1(T ′),
p−1(T {) = p−1(T ){, (T ∪ T ′)ϕ−1 = Tϕ−1 ∪ T ′ϕ−1 and T {ϕ−1 = (Tϕ−1){, where p
and ϕ are as in (V2) and (V3) and T and T ′ are tree languages of the appropriate
kind. �
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The join V1 ∨ . . . ∨ Vn of any Σ-VTLs V1 = {V1(X)}X , . . . ,Vn = {Vn(X)}X
(n ≥ 1) is naturally the Σ-VTL generated by the union V1 ∪ . . . ∪ Vn = {V1(X) ∪
. . . ∪ Vn(X)}X . Since the Vis are Σ-VTLs, this union satisfies the conditions of
Lemma 2.2, and we get

Corollary 2.1. If V1, . . . ,Vn (n ≥ 1) are Σ-VTLs, then V1 ∨ . . . ∨ Vn = R(V1 ∪
. . . ∪ Vn).

3 Projection algebras and rectangular algebras

For any m > 0 and i ∈ [m], the ith m-ary projection operation on a set A is the
mapping emi : Am → A, (a1, . . . , am) 7→ ai. (We omit A from the notation as it is
always known from the context.) An algebra A = (A,Σ) is called [11] a projection
algebra if for all m ∈ r(Σ) and f ∈ Σm, there is an i ∈ [m] for which fA = emi . Let
FProjΣ denote the class of all finite projection Σ-algebras. The direct product of
projection algebras is in general not a projection algebra, but we shall show that
FProjΣ contains subclasses that are Σ-VFAs.

The path alphabet of Σ is the set Σ̂ :=
⋃
{Σm × [m] | m ∈ r(Σ)} regarded as

an ordinary alphabet. We shall write fi for (f, i). Words over Σ̂ describe paths in
trees; if fi appears in such a word, then f labels a node on the path and i indicates
the direction taken at that node. We call a subalphabet Λ of Σ̂ a projection alphabet
if for all m ∈ r(Σ) and f ∈ Σm, there is exactly one i ∈ [m] such that fi ∈ Λ. Let
pa(Σ) denote the set of all projection alphabets over Σ. If Λ ∈ pa(Σ), the Λ-path
Λ(t) in a ΣX-tree t is defined as follows:

(1) Λ(x) = x for every x ∈ X;

(2) Λ(t) = fiΛ(ti) if t = f(t1, . . . , tm) and fi ∈ Λ.

Obviously, Λ(t) is always of the form wx, where w ∈ Λ∗ and x ∈ X. The word w
describes a path from the root to a leaf and x is the label of that leaf. Let Λ•(t)
denote this label x. Each projection algebra A defines a projection alphabet

ΛA := {fi | f ∈ Σm,m ∈ r(Σ), i ∈ [m], fA = emi },

and conversely, given the set A, this projection alphabet determines the projection
algebra A.

Definition 3.1. For any Λ ∈ pa(Σ), we call a projection algebra A = (A,Σ) a
Λ-projection algebra if ΛA = Λ. The class of all finite Λ-projection algebras is
denoted by FProjΛ. �

Let A and B be projection algebras. It is clear that if A is a subalgebra or
an image of B, then ΛA = ΛB. Moreover, it is easy to see that for any projection
alphabet Λ ∈ pa(Σ) the direct product of any family of Λ-projection algebras is a
Λ-projection algebra. Hence, any FProjΛ is a Σ-VFA. However, we can say a bit
more about these classes.
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For each Λ ∈ pa(Σ), let PΛ = ({0, 1},Σ) be the two-element Λ-projection
algebra. In [11] it was shown that the two-element projection algebras are the
only nontrivial subdirectly irreducible projection algebras. Hence the following
proposition is obvious.

Proposition 3.1. For any projection alphabet Λ ∈ pa(Σ), PΛ is the only nontrivial
subdirectly irreducible algebra in FProjΛ, and hence every algebra in FProjΛ is a
finite subdirect power of PΛ. Moreover, FProjΛ is a minimal Σ-VFA.

For any Λ ∈ pa(Σ) and any leaf alphabet X, let

ρΛ(X) := {(s, t) | s, t ∈ TΣ(X),Λ•(s) = Λ•(t)}.

It is easy to see that ρΛ(X) is a congruence on TΣ(X) and that the ρΛ(X)-classes
are precisely the sets [x] := {t ∈ TΣ(X) | Λ•(t) = x}, where x ∈ X. Hence the
quotient algebra FΛ(X) := TΣ(X)/ρΛ(X) has |X| elements. Moreover, for any
m ∈ r(Σ), f ∈ Σm and x1, . . . , xm ∈ X,

fFΛ(X)([x1], . . . , [xm]) = [xi],

for the i ∈ [m] such that fi ∈ Λ. Furthermore, it is clear that if A = (A,Σ)
is a Λ-projection algebra, then any mapping ϕ : {[x] | x ∈ X} → A is a homo-
morphism from FΛ(X) to A. Hence, FΛ(X) is freely generated over the class of
all Λ-projection algebras by the set {[x] | x ∈ X}. Since FΛ(X) is finite, it be-
longs to FProjΛ, and therefore ρΛ(X) is the least congruence θ on TΣ(X) such that
TΣ(X)/θ ∈ FProjΛ. This means that FProjcΛ is the principal Σ-VFC {[ρΛ(X))}X .
These observations are summarized by the following proposition.

Proposition 3.2. For any Λ ∈ pa(Σ) and any X, the set {[x] | x ∈ X} generates
FΛ(X) freely over FProjΛ. Moreover, FProjcΛ = {[ρΛ(X))}X .

The variety generated by all projection algebras of a given, not necessarily finite,
type was studied by Pöschel and Reichel [11] who called its members rectangular
algebras. Let us note that the rectangular algebras appear also in Ésik [3] in the
form of “diagonal theories”. We denote by RAΣ the variety of rectangular Σ-
algebras and by FRAΣ the Σ-VFA formed by the finite rectangular Σ-algebras.
Let us now exhibit all the sub-VFAs of FRAΣ.

For any set L ⊆ ℘(Σ̂) of projection alphabets, let FRAL denote the join
Vf (

⋃
Λ∈LFProjΛ) of the Σ-VFAs FProjΛ with Λ ∈ L. Of course, FRApa(Σ) =

FRAΣ and FRA{Λ} = FProjΛ for each Λ ∈ pa(Σ). The nontrivial subdirectly
irreducible members of FRAL are the algebras PΛ = ({0, 1},Σ) with Λ ∈ L, and
hence {PΛ | Λ ∈ L} is a minimal generating set of FRAL. It is also clear that for
any L,M⊆ pa(Σ),

(1) FRAL ⊂ FRAM iff L ⊂M, and

(2) FRAL ∩ FRAM = TrivΣ if L ∩M = ∅.
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Let n(Σ) denote the product of the arities of the symbols in Σ. It is clear
that n(Σ) is the number of projection alphabets Λ ∈ pa(Σ), and therefore also the
number the algebras PΛ. As noted in [11], this means that RAΣ has precisely 2n(Σ)

subvarieties. Using the above observations, we can formulate the corresponding
statement for FRAΣ in the following more detailed form.

Proposition 3.3. The Σ-VFAs FRAL (L ⊆ pa(Σ)) form a 2n(Σ)-element Boolean
sublattice of the lattice of all Σ-VFAs. In this sublattice

(1) the least element is TrivΣ, the greatest element is FRAΣ,

(2) FRAL∨FRAM = FRAL∪M, FRAL∧FRAM = FRAL∩M, and FRA{
L =

FRApa(Σ)\L, for all L,M⊆ pa(Σ), and

(3) the atoms are the minimal Σ-VFAs FProjΛ with Λ ∈ pa(Σ).

The join FRAc
L of the Σ-VFCs FProjcΛ with Λ ∈ L, is the principal Σ-VFC

{[ρL(X))}X , where ρL(X) :=
⋂

Λ∈L ρΛ(X) for each X. Hence, the counterpart of
Proposition 3.3 for Σ-VFCs can be written as follows.

Corollary 3.1. The Σ-VFCs FRAc
L form a 2n(Σ)-element Boolean sublattice in

the lattice of all Σ-VFCs. In this sublattice the least element is {{∇TΣ(X)}}X , the
greatest element is {[ρpa(Σ)(X))}X , and for all L,M⊆ pa(Σ), FRAc

L ∨FRAc
M =

{[ρL∪M(X))}X , FRAc
L ∧ FRAc

M = {[ρL∩M(X))}X , and (FRAc
L){ =

{[ρpa(Σ)\L(X))}X . The atoms of the sublattice are the Σ-VFCs FProjcΛ =
{[ρΛ(X))}X with Λ ∈ pa(Σ).

In [11] it was shown that any rectangular algebra of finite type is isomorphic
to the direct product of a finite family of projection algebras. In particular, any
member of FRAΣ is isomorphic to the direct product of a finite family of finite
projection algebras. By collecting together factors belonging to the same Σ-VFA
FProjΛ, this decomposition result can be expressed more precisely as follows.

Proposition 3.4. For any set of projection alphabets L = {Λ1, . . . ,Λk} ⊆ pa(Σ),
every algebra in FRAL is isomorphic to a direct product A1 × · · · × Ak where
Ai ∈ FProjΛi

for i = 1, . . . , k.

4 Projection and rectangular algebras as tree rec-
ognizers

We shall now consider the tree languages recognizable by projection algebras and
rectangular algebras. For any Λ ∈ pa(Σ) and any L ⊆ pa(Σ), let FProjΛ =
{FProjΛ(X)}X and FRAL = {FRAL(X)}X be the Σ-VTLs that correspond to
FProjΛ and FRAL, respectively. The Σ-VTL FRApa(Σ) may be denoted also by
FRAΣ.

It is easy to see that any ΣX-tree t can be evaluated in a Λ-projection algebra
A = (A,Σ) for an assignment α : X → A simply by transporting the value α(Λ•(t))
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along the path described by Λ(t) from the leaf to the root. This is expressed formally
by the following lemma.

Lemma 4.1. Let A = (A,Σ) be a Λ-projection algebra and let α : X → A be any
assignment. Then tαA = α(Λ•(t)) for every ΣX-tree t.

Corollary 4.1. T (A) = {t ∈ TΣ(X) | α(Λ•(t)) ∈ F} for any ΣX-recognizer
A = (A, α, F ) such that A ∈ FProjΛ.

For any Y ⊆ X, let TΛ(X,Y ) := {t ∈ TΣ(X) | Λ•(t) ∈ Y }. By Proposition 3.2,
the principal Σ-VFC {[ρΛ(X))}X corresponds to the Σ-VFA FProjΛ, and hence
also to the Σ-VTL FProjΛ. Clearly, the ΣX-tree languages saturated by ρΛ(X)
are exactly the sets TΛ(X,Y ). By Remark 2.1 this fact yields the first part of the
following proposition but we shall give a direct proof.

Proposition 4.1. For any projection alphabet Λ ∈ pa(Σ) and any leaf alphabet X,

FProjΛ(X) = {TΛ(X,Y ) | Y ⊆ X}.

Moreover, a ΣX-tree language T is in FProjΛ(X) if and only if SA(T ) is either
trivial or isomorphic to PΛ.

Proof. Firstly, T (A) in Corollary 4.1 equals TΛ(X,Y ) for Y = {x ∈ X | α(x) ∈ F}.
Conversely, for any given TΛ(X,Y ), let A = (PΛ, α, F ) be the ΣX-recognizer where
α(x) = 1 for x ∈ Y , α(x) = 0 for x ∈ X \ Y , and F = {1}. Then T (A) = {t ∈
TΣ(X) | α(Λ•(t)) = 1} = {t ∈ TΣ(X) | Λ•(t) ∈ Y } = TΛ(X,Y ) by Corollary 4.1
and Lemma 4.1.

Let us now consider any tree language T ⊆ TΣ(X). If SA(T ) is trivial or
isomorphic to PΛ, then T ∈ FProjΛ(X) as both the trivial Σ-algebras and PΛ are
in FProjΛ. On the other hand, if T ∈ FProjΛ(X), then T is recognized by a
Λ-projection algebra. By what we have shown above, this means that T is of the
form TΛ(X,Y ) and therefore recognized by PΛ. If PΛ is the minimal Σ-algebra
recognizing T , then SA(T ) ∼= PΛ, but otherwise SA(T ) is trivial. �

Every subdirectly irreducible algebra is syntactic, but the converse does not
hold in general. However, Proposition 4.1 shows that here the two classes coincide.

Corollary 4.2. A projection algebra is syntactic if and only if it is subdirectly
irreducible, i.e., iff it is trivial or isomorphic to one of the algebras PΛ (Λ ∈ pa(Σ)).

Although we know by the Variety Theorem 2.1 that FProjΛ is a Σ-VTL, it
may be instructive to show also directly that, for any given projection alphabet
Λ ∈ pa(Σ), the sets TΛ(X,Y ) form a Σ-VTL. Firstly, for any X and Y, Y ′ ⊆ X, we
have TΛ(X,Y ){ = TΛ(X,X \ Y ) and TΛ(X,Y ) ∪ TΛ(X,Y ′) = TΛ(X,Y ∪ Y ′). Let
us extend the function Λ• to ΣX-contexts in the obvious way. Then we have for
any p ∈ CΣ(X),

p−1(TΛ(X,Y )) =

 TΣ(X) = TΛ(X,X) if Λ•(p) ∈ Y ;
∅ = TΛ(X, ∅) if Λ•(p) ∈ X \ Y ;
TΛ(X,Y ) if Λ•(p) = ξ.
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Finally, if ϕ : TΣ(X)→ TΣ(Y ) is a homomorphism and Y ′ ⊆ Y , then TΛ(Y, Y ′)ϕ−1 =
TΛ(X,X ′), where X ′ = {x ∈ X | Λ•(xϕ) ∈ Y ′}.

Following [15], we define the syntactic monoid congruence of a ΣX-tree language
T as the relation µT on CΣ(X) such that

p µT q ⇔ (∀t ∈ TΣ(X))(∀r ∈ CΣ(X))(t · p · r ∈ T ↔ t · q · r ∈ T ) (p, q ∈ CΣ(X)),

and the syntactic monoid SM(T ) of T as the quotient monoid CΣ(X)/µT .
It is easy to see that if T = TΛ(X,Y ) with Y 6= X, ∅, then µT has the congruence

classes

(1) [ξ] = {p ∈ CΣ(X) | Λ•(p) = ξ},

(2) [p+] = {p ∈ CΣ(X) | Λ•(p) ∈ Y }, and

(3) [p−] = {p ∈ CΣ(X) | Λ•(p) ∈ X \ Y }.

Furthermore, [ξ] is the identity element in SM(T ) while [p+] and [p−] both are right
zeros as (p · p+, p+), (p · p−, p−) ∈ µT for any p+ ∈ [p+], p− ∈ [p−] and p ∈ CΣ(X).
Hence the following corollary of Proposition 4.1.

Corollary 4.3. For any Λ ∈ pa(Σ), any leaf alphabet X, and any T ∈ FProjΛ(X),
the syntactic monoid SM(T ) is either trivial or isomorphic to the 3-element monoid
M = {1, a, b} in which 1 is the identity element and the elements a and b are right
zeros.

However, Corollary 4.3 does not mean that the Σ-VTL FProjΛ can be char-
acterized by syntactic monoids. Indeed, the same syntactic monoids are obtained
for every Λ ∈ pa(Σ) and there are also completely different tree languages with
syntactic monoids isomorphic to M .

For each X, FProjΛ(X) contains just one tree language for each Y ⊆ X,
and hence FProjΛ(X) has 2|X| elements. Let us consider the more general Σ-
VTLs FRAL (L ⊆ pa(Σ)), i.e., the joins of the Σ-VTLs FProjΛ. By the Variety
Theorem, Propositions 3.3 and 3.1 translate into the following proposition about
Σ-VTLs.

Proposition 4.2. The Σ-VTLs FRAL (L ⊆ pa(Σ)) form a 2n(Σ)-element Boolean
sublattice of the lattice of all Σ-VTLs. In this sublattice the least element is TrivΣ =
{{∅, TΣ(X)}}X , the greatest element is FRAΣ, and for all L,M⊆ pa(Σ), FRAL∨
FRAM = FRAL∪M, FRAL ∧ FRAM = FRAL∩M, and FRA{

L = FRApa(Σ)\L.
The atoms of the sublattice, the Σ-VTLs FProjΛ (Λ ∈ pa(Σ)), are minimal Σ-
VTLs.

From Propositions 3.3 it also follows that for any L ⊆ pa(Σ) and any X, the
members of FRAL(X) are precisely the ΣX-tree languages saturated by ρL(X).
Now, it is easy to see that, quite generally, if θ1, . . . , θn(n ≥ 1) are equivalences on
a set U , then the subsets of U saturated by θ1 ∩ . . .∩ θn are precisely the sets that
can be represented as finite unions of intersections C1 ∩ . . . ∩ Cn, where for each
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i ∈ [n], Ci is a subset of U saturated by θi. Hence the following description of the
Σ-VTLs FRAL is obtained by using Proposition 4.1. It could also be expressed by
saying that FRAL is the ring closure of

⋃
Λ∈L FProjΛ.

Proposition 4.3. For any set L = {Λ1, . . . ,Λn} ⊆ pa(Σ) of projection alphabets
and any X, the members of FRAL(X) are precisely the unions of finitely many
intersections

TΛ1
(X,Y1) ∩ . . . ∩ TΛn

(X,Yn),

where Y1, . . . , Yn ⊆ X.

The following decidability result is obvious by the finiteness of FRAL(X), but
it also follows from the fact that a finite Σ-algebra belongs to FRAL iff it is
isomorphic to a subdirect product of algebras PΛ with Λ ∈ pa(Σ).

Proposition 4.4. For any L ⊆ pa(Σ), it can be decided whether a given regular
ΣX-tree language belongs to FRAL.

5 Comparisons with other varieties

It is to be expected that our varieties have little in common with most of the
varieties of finite algebras or varieties of tree languages considered in the literature.
Firstly, they are too small to contain other nontrivial varieties. In particular, the
Σ-VTLs FRAL contain no nonempty finite sets. On the other hand, the sets
TΛ(X,Y ) (∅ ⊂ Y ⊂ X) are not defined by any local properties of their trees – as
usually is the case. Let us make this incomparability explicit for a few Σ-VTLs.
The precise definitions of these can be found in [12] or [13], for example, but the
following informal descriptions should suffice here.

In the Σ-VTL NilΣ = {NilΣ(X)}X , each set NilΣ(X) consists of the finite and
the co-finite ΣX-tree languages, and Nila is the Σ-VFA NilΣ of nilpotent (finite)
Σ-algebras (defined in [4]).

A ΣX-tree language T is definite if there is a k ≥ 0 such that the membership
of a ΣX-tree in T depends only on the ‘root segment’ of t of height k−1. Similarly,
T is reverse definite if there is a k ≥ 0 such that whether or not t ∈ T depends
just on the subtrees of t of height < k. (In both cases, k = 0 means that no testing
is needed and, accordingly, T = ∅ or T = TΣ(X).) By allowing combinations of
these two types of tests, we get the generalized definite tree languages. The three
Σ-VTLs obtained this way are denoted by DefΣ, RDefΣ and GDefΣ, and the
corresponding Σ-VFAs by DefΣ, RDefΣ and GDefΣ, respectively.

A fork of ΣX-tree is a configuration of the form f(d1, . . . , dm), where f ∈ Σm,
m > 0 and d1, . . . , dm ∈ Σ∪X. A ΣX-tree language T is local if whether a ΣX-tree
t belongs to T is determined by the set of forks appearing in t and its root label.
The Σ-VTL LocΣ of locally testable Σ-tree languages is obtained as the Boolean
closure of the Σ-family of local tree languages. Let LocΣ be the corresponding
Σ-VFA.

Proposition 5.1. For any set of path alphabets L ⊆ pa(Σ),
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(a) FRAL ∩ V = TrivΣ if V is NilΣ, DefΣ, RDefΣ, GDefΣ or LocΣ, and

(b) FRAL ∩K = TrivΣ if K is NilΣ,DefΣ,RDefΣ,GDefΣ or LocΣ.

Proof. By the Variety Theorem, assertions (a) and (b) are equivalent. The case
L = ∅ being trivial, we assume that L 6= ∅.

Let us first assume that L consists of a single path alphabet Λ. Since FProjΛ
is a minimal Σ-VTL and the intersection of any Σ-VTLs is a Σ-VTL, statement
(a) holds for L = {Λ} if FProjΛ is not contained in any of the Σ-VTLs V. To
show this, we consider any TΛ(X,Y ) ∈ FProjΛ(X) such that ∅ ⊂ Y ⊂ X. Since
TΛ(X,Y ) is neither finite nor co-finite, it is not in NilΣ(X). To show that TΛ(X,Y )
is not definite, we select any f ∈ Σ, y ∈ Y and x ∈ X \Y , and define two sequences
of ΣX-trees by setting (1) s0 = y, t0 = x, and (2) sn+1 = f(sn, . . . , sn) and
tn+1 = f(tn, . . . , tn) for all n ≥ 0. Then, for every k ≥ 0, the trees sk and tk have
the same root segment of height k−1, but sk ∈ TΛ(X,Y ) while tk /∈ TΛ(X,Y ), and
therefore TΛ(X,Y ) is not definite. Similar arguments can be used in the remaining
cases. Since all the sets TΛ(X,Y ) are recognized by PΛ, it follows that PΛ cannot
belong to any of the Σ-VFAs NilΣ,DefΣ,RDefΣ,GDefΣ or LocΣ.

Consider now the general case ∅ 6= L ⊆ pa(Σ). Let K be any one of the Σ-
VFAs NilΣ, DefΣ, RDefΣ, GDefΣ or LocΣ. Assume that FRAL ∩K contains
a nontrivial Σ-algebra A. Then A would have a decomposition into a subdirect
product of some subdirectly irreducible algebras A1, . . . ,An (n ≥ 1) all of which
belong to both FRAL and K. However, the only nontrivial subdirectly irreducible
algebras in FRAL are the algebras PΛ with Λ ∈ L, and by the first part of the
proof, these do not belong to K. Therefore we must have FRAL ∩K = TrivΣ. �

We conclude this section with two examples of Σ-VTLs that contain the Σ-VTLs
FRAL. Thomas [15] calls a ΣX-tree language T aperiodic if there is an n ≥ 0 such
that

(∀t ∈ TΣ(X))(∀p, q ∈ CΣ(X))(t · pn · q ∈ T ↔ t · pn+1 · q ∈ T ).

The aperiodic Σ-tree languages form a Σ-VTL ApΣ that can be characterized by
syntactic monoids [15].

Proposition 5.2. FRAΣ ⊂ ApΣ.

Proof. We begin by showing that FProjΛ ⊂ ApΣ for every Λ ∈ pa(Σ). Let
T = TΛ(X,Y ) be any set in FProjΛ(X). The remaining two cases being trivial,
we may assume that ∅ ⊂ Y ⊂ X. To show that for any t ∈ TΣ(X) and p, q ∈ CΣ(X),
t · p · q ∈ T iff t · p2 · q ∈ T (our “n” is 1), we distinguish two cases:

1. If Λ•(q) ∈ X, then Λ•(t · p · q) = Λ•(q) = Λ•(t · p2 · q), and hence t · p · q ∈ T
iff t · p2 · q ∈ T .

2. If Λ•(q) = ξ, there are two subcases to consider. If Λ•(p) ∈ X, then Λ•(t · p ·
q) = Λ•(p) = Λ•(t · p2 · q), and hence t · p · q ∈ T iff t · p2 · q ∈ T . If Λ•(p) = ξ,
then Λ•(t · p · q) = Λ•(t) = Λ•(t · p2 · q), and again t · p · q ∈ T iff t · p2 · q ∈ T .
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The inclusion FRAΣ ⊆ ApΣ follows now because FRAΣ is the join of Σ-VTLs
contained in the Σ-VTL ApΣ. The inclusion is proper as all finite tree languages
are aperiodic. �

Finally, let us consider the tree languages recognized by deterministic tree rec-
ognizers that read their input trees starting at the root and accepting at the leaves.
General treatments of this topic and further references can be found in [5], [6], and
[9].

A deterministic top-down (DT) Σ-algebra B = (B,Σ) consists of a non-empty
set B and a Σ-indexed family of top-down operations fB : B −→ Bm (m ∈
r(Σ), f ∈ Σm). Such a DT Σ-algebra B is finite if B is a finite set. A DT ΣX-
recognizer is a system B = (B, b0, β), where B = (B,Σ) is a finite DT Σ-algebra, the
elements of which are called states, b0 ∈ B is the initial state, and β : X → ℘(B)
is the final state assignment. If we extend β to a mapping βB : TΣ(X)→ ℘(B) by
setting

(1) βB(x) = β(x) for each x ∈ X, and

(2) βB(t) = {b ∈ B | fB(b) ∈ βB(t1)× . . .× βB(tm)} for t = f(t1, . . . , tm),

then for any t ∈ TΣ(X), βB(t) is the set of the states b ∈ B such that B reaches every
leaf of t in an appropriate final state if started at the root of t in state b. Accordingly,
the tree language recognized by B is defined as T (B) := {t ∈ TΣ(X) | b0 ∈ βB(t)}.
A ΣX-tree language T is said to be DT-recognizable, if T = T (B) for a DT ΣX-
recognizer B. Let DRecΣ = {DRecΣ(X)}X , where for each X, DRecΣ(X) is the
set of all DT-recognizable ΣX-tree languages.1 It is well known that DRecΣ is a
proper subfamily of RecΣ.

Lemma 5.1. FProjΛ ⊂ DRecΣ for every Λ ∈ pa(Σ).

Proof. If T ∈ FProjΛ(X), then T = T (A) for a ΣX-recognizer A = (PΛ, α, F ),
where F = {1}. We define a DT ΣX-recognizer B = (B, 1, β) as follows. Let
B = ({0, 1},Σ) be the DT Σ-algebra such that for any m ∈ r(Σ), f ∈ Σm, fB(0) =
(0, . . . , 0, . . . , 0) and fB(1) = (0, . . . , 1, . . . , 0), where the “1” is in position i ∈ [m]
if fi ∈ Λ. For each x ∈ X, we set β(x) = {0, α(x)}. By induction on t ∈ TΣ(X), it
is easy to see that B reaches the leaf at the end of the path Λ(t) in state 1 and all
other leaves in state 0. Hence, B accepts t iff α(Λ•(t)) = 1, i.e., iff t ∈ T (A).

The inclusion is proper since every singleton tree language is DR-recognizable.
�

Since DRecΣ is not a Σ-VTL, Lemma 5.1 does not imply that FRAΣ ⊆ DRecΣ.
In fact, FRAL * DRecΣ if L contains two distinct projection alphabets Λ1 and
Λ2. Indeed, if x and y are two different symbols in X, then

T := {t ∈ TΣ(X) | Λ•1(t) = x,Λ•2(t) = y or Λ•1(t) = y,Λ•2(t) = x}
1Note that in the literature DT-recognizable tree languages are often called DR-recognizable

tree languages (derived from “root-to-frontier” instead of the currently dominating “top-down”).
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is recognized by PΛ1 × PΛ2 although it is not DT-recognizable. On the other
hand, as shown by Jurvanen [8, 9], the Boolean closure BDRecΣ is the Σ-VTL
generated by DRecΣ, and hence Lemma 5.1 yields the following conclusion. That
the inclusion is proper, is easily seen by considering, for example, any set of the
form {f(x, . . . , x)}.

Proposition 5.3. FRAΣ ⊂ BDRecΣ.

6 Solidity properties

Pöschel and Reichel [11] have shown that the rectangular Σ-algebras form the least
nontrivial solid variety of Σ-algebras. For the general theory of solid varieties the
reader may consult [10], for example. We shall consider the solidity properties of
our Σ-VFAs and Σ-VTLs.

Let Ξ := {ξ1, ξ2, ξ3, . . .} be a set of variables which do not appear in any of the
other alphabets. For any n ≥ 1, let Ξn := {ξ1, . . . , ξn} and TΣ(Ξn) be the set of
n-ary Σ-terms, and TΣ(Ξ) :=

⋃
n≥1 TΣ(Ξn) be the set of all Σ-terms with variables.

If t ∈ TΣ(Ξn) and t1, . . . , tn are terms of any kind, then t[t1, . . . , tn] denotes the
term obtained from t by substituting for every occurrence of a variable ξ1, . . . , ξn
the respective term t1, . . . , tn. The term function An → A defined by an n-ary term
t ∈ TΣ(Ξn) in a Σ-algebra A = (A,Σ) is denoted by tA.

A hypersubstitution of type Σ is a mapping κ : Σ→ TΣ(Ξ) such that if f ∈ Σm,
then κ(f) ∈ TΣ(Ξm). Let S denote the set of all hypersubstitutions of type Σ. Any
κ ∈ S is extended to a mapping κ̂ : TΣ(Ξ)→ TΣ(Ξ) by setting κ̂(ξi) = ξi for every
i ≥ 1, and κ̂(t) = κ(f)[κ̂(t1), . . . , κ̂(tm)] for t = f(t1, . . . , tm). We let κ denote κ̂,
too.

For any κ ∈ S and any Σ-algebra A = (A,Σ), the Σ-algebra κ(A) = (A,Σ) such
that fκ(A) = κ(f)A for each f ∈ Σ, is a derived algebra of A. In [7] it was noted
that the solidity of varieties can be defined in terms of derived algebras, and the
idea of solidity with respect to submonoids of the monoid of all hypersubstitutions
of a given type was introduced in [2]. For a class H ⊆ S of hypersubstitutions,
a class K of Σ-algebras is said to be H-solid if κ(A) ∈ K whenever A ∈ K and
κ ∈ H, and it is solid if it is S-solid.

The first part of the following lemma can easily be verified by term induction.
The second statement follows from the well-known fact that homomorphisms pre-
serve also term functions.

Lemma 6.1. Let κ be a hypersubstitution of type Σ, and let A and B be any
Σ-algebras.

(a) tκ(A) = κ(t)A for any n ≥ 1 and any n-ary term t ∈ TΣ(Ξn).

(b) Any homomorphism ϕ : A → B is also a homomorphism from κ(A) to κ(B).

Let us call κ ∈ S permutative if for all m ∈ r(Σ) and f ∈ Σm, κ(f) =
g(ξi1 , . . . , ξim) for some g ∈ Σm and some permutation (i1, . . . , im) of (1, . . . ,m).
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Let pS denote the set of all these hypersubstitutions. In the terminology of [14],
they are precisely the linear, nondeleting, symbol-to-symbol ΣΣ-substitutions.

Proposition 6.1. The Σ-VFAs TrivΣ and FRAΣ are solid, and FRAΣ is the
least nontrivial solid Σ-VFA. On the other hand, if ∅ ⊂ L ⊂ pa(Σ), then FRAL is
not even pS-solid.

Proof. Since the variety of rectangular Σ-algebras is solid by Theorem 5.1 of [11],
also the Σ-VFA FRAΣ is solid. Moreover, FRAΣ ⊆ K for every nontrivial solid
Σ-VFA K. Indeed, if A = (A,Σ) is any nontrivial member of K, we obtain for any
given Λ ∈ pa(Σ) the Λ-projection algebra B = (A,Σ) as the derived algebra κ(A),
if for any m ∈ r(Σ) and f ∈ Σm, we set κ(f) = ξi for the i ∈ [m] such that fi ∈ Λ.
From this it follows that K contains all the algebras PΛ with Λ ∈ pa(Σ), and hence
all of FRAΣ.

Assume now that ∅ ⊂ L ⊂ pa(Σ). To prove that FRAL is not pS-solid, it
obviously suffices to show that for any two projection alphabets Λ,Λ′ ∈ pa(Σ), there
exists a permutative hypersubstitution κ for which PΛ′ = κ(PΛ). To define such a
κ, consider any m ∈ r(Σ) and f ∈ Σm. If fi ∈ Λ and fj ∈ Λ′ (i, j ∈ [m]), then we
set κ(f) = f(ξi1 , . . . , ξim), where (i1, . . . , im) is the permutation of (1, . . . ,m) that
just transposes i and j. It is then clear that fκ(PΛ) = fPΛ′ . �

To define the solidity of Σ-VTLs, we adapt some notions from [14] to the present
setting of a fixed ranked alphabet. Firstly, if H ⊆ S is a class of hypersubstitu-
tions of type Σ, an H-morphism ϕ : TΣ(X) → TΣ(Y ) is defined by its underlying
hypersubstitution ϕ∗ ∈ H and a mapping ϕX : X → TΣ(Y ) as follows:

(1) xϕ = ϕX(x) for x ∈ X;

(2) tϕ = ϕ∗(f)[t1ϕ, . . . , tmϕ] for t = f(t1, . . . , tm).

The following fact is easily verified.

Lemma 6.2. If ϕ : TΣ(X) → TΣ(Y ) is an S-morphism, then ϕ : TΣ(X) →
ϕ∗(TΣ(Y )) is a homomorphism of Σ-algebras.

For any H ⊆ S, a Σ-VTL V = {V(X)}X is H-solid if T ∈ V(Y ) implies that
Tϕ−1 ∈ V(X) for every H-morphism ϕ : TΣ(X)→ TΣ(Y ). In particular, V is solid
if it is S-solid.

In [14] it was shown that any general variety of finite algebras and the corre-
sponding general variety of tree languages (the “general” signifies that the ranked
alphabet is not fixed) have matching solidity properties. Although restricting such
general varieties to one given ranked alphabet does not yield exactly our Σ-VFAs
and Σ-VTLs, this holds also here.

Lemma 6.3. Let H be any class of hypersubstitutions of type Σ. If a Σ-VFA K is
H-solid, then so is the Σ-VTL Kt.

Proof. Consider any H-morphism ϕ : TΣ(X) → TΣ(Y ). If T ∈ Kt(Y ), then there
exist an algebra A = (A,Σ) in K and a homomorphism ψ : TΣ(Y )→ A such that
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T = Fψ−1 for some F ⊆ A. By Lemmas 6.2 and 6.1, ϕ : TΣ(X) → ϕ∗(TΣ(Y ))
and ψ : ϕ∗(TΣ(Y )) → ϕ∗(A) are homomorphisms. Hence ϕψ : TΣ(X) → ϕ∗(A)
is a homomorphism and Tϕ−1 = F (ϕψ)−1. Since ϕ∗(A) ∈ K, this means that
Tϕ−1 ∈ Kt(X). �

Proving the converse of Lemma 6.3 would require some further preparations, so
we avoid its use and just refer the reader to [14] for the corresponding fact about
general varieties.

Proposition 6.2. The Σ-VTLs TrivΣ and FRAΣ are solid, and FRAΣ is the least
nontrivial Σ-VTL. However, if ∅ ⊂ L ⊂ pa(Σ), then FRAL is not even pS-solid.

Proof. That TrivΣ and FRAΣ are solid follows from Proposition 6.1 by Lemma
6.3.

To show that FRAL is not pS-solid for ∅ ⊂ L ⊂ pa(Σ), consider any Λ,Λ′ ∈
pa(Σ) such that Λ ∈ L, but Λ′ /∈ L. Let X = {x, y} and ϕ : TΣ(X)→ TΣ(X) be the
pS-morphism such that ϕ∗ is the hypersubstitution κ defined in the second part of
the proof of Proposition 6.1, and ϕX(x) = x and ϕX(y) = y. Then TΛ(X, {y}) ∈
FRAL(X), but TΛ(X, {y})ϕ−1 = TΛ′(X, {y}) /∈ FRAL(X). �
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On Ground Word Problem of

Term Equation Systems

Sándor Vágvölgyi∗

To the memory of my teacher and colleague Ferenc Gécseg

Abstract

We give semi-decision procedures for the ground word problem of variable
preserving term equation systems and term equation systems. They are nat-
ural improvements of two well known trivial semi-decision procedures. We
show the correctness of our procedures.

Keywords: term equation systems; ground word problem; Knuth-Bendix
completion procedure; ground term rewriting systems

1 Introduction

A term equation l ≈ r is called variable preserving if the same variables occur in
the left-hand side l as in the right-hand side r. A term equation system (TES)
E is called variable preserving if all of its equations are variable preserving. The
ground word problem is undecidable even for variable-preserving TESs, see Exam-
ple 4.1.4 on page 60 in [1]. We recall the well known trivial semi-decision procedure
PRO1 for the ground word problem of variable preserving TESs and its straightfor-
ward generalization, the trivial semi-decision procedure PRO2 for the ground word
problem of TESs.

On the basis of PRO1, we give a semi-decision procedure PRO3 for the ground
word problem of variable preserving TESs. Given a TES E and ground terms p, q
over the ranked alphabet Σ, procedure PRO3 constructs the ground TESs (GTESs)
Pi and Qi, i ≥ 1 such that

(a) Pi ∪Qi ⊆ ↔∗E for i ≥ 1.
Condition (a) ensures that the congruence closure of Pi ∪Qi is a subset of ↔∗E .
Procedure PRO3 outputs an answer and halts if and only if

(b) there is a j ≥ 1 such that
p↔∗Pj∪Qj

q or

↔∗Pj
∩({ p } × TΣ) =↔∗E ∩({ p } × TΣ) or

∗Department of Foundations of Computer Science, University of Szeged, Árpád tér 2, H-6720
Szeged, Hungary. E-mail: vagvolgy@inf.u-szeged.hu
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↔∗Qj
∩({ q } × TΣ) =↔∗E ∩({ q } × TΣ).

Condition (b) says that we have a proof of p↔∗E q, or the intersection of ↔∗Pj
with

({ p } × TΣ) is equal to that of ↔∗E , or the intersection of ↔∗Qj
with ({ q } × TΣ) is

equal to that of ↔∗E . Assume that (b) holds. If p↔∗Pj∪Qj
q holds, PRO3 outputs

’yes’, and halts. Otherwise, if
• the intersection of ↔∗Pj

with ({ p } × TΣ) is equal to that of ↔∗E , or

• the intersection of ↔∗Qj
with ({ q } × TΣ) is equal to that of ↔∗E ,

then p↔∗E q does not hold either. Hence semi-decision procedure PRO3 outputs
’no’ and halts.

Procedure PRO3 constructs the ground TESs (GTESs) Pi and Qi, i ≥ 1 in the
following way. We put a ground instance l′ ≈ r′ of an equation l ≈ r of E ∪E−1 in
P1 if l′ is a subterm of p. Then we iterate the following computation items.
• We convert the GTES Pi into an equivalent reduced ground term rewrite

system Ri applying Snyder’s fast ground completion algorithm [19].
• We define the GTES Pi+1 from the reduced ground term rewrite system Ri

by adding all ground instances l ≈ r of equations in E ∪ E−1 such that
- l ≈ r is not in ↔∗Pi

and that
- there exists a term s such that the conversion p↔∗Pi

s can be continued ap-
plying l ≈ r to s. If Pi+1 = Ri, then we let Ri+1 = Ri, and hence Ri = Pj = Rj
holds for j ≥ i+ 1.
Here we consider both the reduced ground term rewrite system Ri and the GTES
Pi+1 as subsets of TΣ × TΣ. Furthermore, we consider a ground instance of an
equation in E ∪ E−1 as an element of TΣ × TΣ.

We define the GTES Qi symmetrically to Pi for i ≥ 1.
Procedure PRO3 computes in the following way. For each i = 1, 2, . . .,
• if p↔∗Pi∪Qi

q, then we output the answer ’yes’ and halt;
• otherwise, if i ≥ 2 and we did not add ground instances of equations in

E ∪ E−1 to the reduced ground term rewrite system RPi−1
, equivalent to Pi−1, or

to the reduced ground term rewrite system RQi
, equivalent to Qi−1, in the previous

iteration step, then we output the answer ’no’ and halt.
Assume that p↔∗E q. Then, at some step during the run of procedure PRO3,

p↔∗P∪Q q becomes true, and procedure PRO3 outputs ’yes’ and halt. If p↔∗E q
does not hold, then procedure PRO3 either outputs ’no’ and halts or runs forever.

We give a semi-decision procedure PRO4 for the ground word problem of TESs.
We obtain it generalizing PRO3 taking into account PRO2. The main difference is
the following. We define Pi+1 from Ri by adding all ground instances l′ ≈ r′ of the
equations l ≈ r in E ∪ E−1 such that
• l′ ≈ r′ is not in ↔∗Pi

, that
• there exists a term s such that a conversion p↔∗Pi

s can be continued applying
l ≈ r to s, and that
• we substitute some finitely many ground terms depending on i, Ri, and p, for

those variables in r that do not appear in l.
We modify the halting condition of the proceedure so that it stops if we did not add
ground instances of equations in E ∪ E−1 to Pi or Qi in two successive iteration
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steps. We need two successive steps rather than one. Because, in general, the
heights of the substituted terms becomes larger in each step. If we do not add
ground equations to Pi in a step, then in the next step we still may add ground
equations to Pi.

Procedures PRO3 and PRO4 compute in a different way than all versions of
the Knuth-Bendix completion procedure. To some instances of the ground word
problem of a TES E, procedures PRO3 and PRO4 give an answer sooner than
all versions of the Knuth-Bendix completion procedure or it is open whether some
version of the Knuth-Bendix completion procedure gives an answer at all. Con-
sequently, they may compute efficiently for some instances of the ground word
problem of a TES E, when the various versions of the Knuth-Bendix completion
procedure does not give an answer to the ground word problem of a TES E at all
or at least not in a reasonable time. However, it is still open in which cases are
PRO3 and PRO4 really efficient.

In Section 2, we present a brief review of the notions, notations, and preliminary
results used in the paper. In Section 3 we introduce and study the concept of
reading-up reachability for reduced ground term rewriting systems. In Section 4
we present the procedures PRO1 and PRO2. In Section 5, we present the procedure
PRO3, and show its correctness. We give examples when procedure PRO3 is more
efficient than procedure PRO1. In Section 6, we present the procedure PRO4,
and show its correctness. In Section 7, we compare procedures PRO3 and PRO4
with the basic Knuth-Bendix completion procedure (see Section 7.1 in [1]), an
improved version of the Knuth-Bendix completion procedure described by a set of
inference rules (see Section 7.2 in [1]), the goal-directed completion procedure based
on SOUR graphs [13, 14], and the unfailing Knuth-Bendix completion procedure
[2]. In Section 8, we sum up our results, and explain the applicability of procedures
PRO3 and PRO4.

2 Preliminaries

In this section we present a brief review of the notions, notations and preliminary
results used in the paper. For all unexplained notions and notation see [1].

Relations. Let ρ be an equivalence relation on A. Then for every a ∈ A, we
denote by a/ρ the ρ-class containing a, i.e. a/ρ = { b | aρb }. For each B ⊆ A, let
B/ρ = { b/ρ | b ∈ B }.

2.1 Abstract Reduction Systems

An abstract reduction system is a pair (A,→), where the reduction → is a binary
relation on the set A. →−1,↔,→∗, and↔∗ denote the inverse, the symmetric clo-
sure, the reflexive transitive closure, and the reflexive transitive symmetric closure
of the binary relation →, respectively.
• x ∈ A is reducible if there is y such that x→ y.
• x ∈ A is irreducible if it is not reducible.
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• y ∈ A is a normal form of x ∈ A if x→∗ y and y is irreducible. If x ∈ A has
a unique normal form, the latter is denoted by x↓.
• y ∈ A is a descendant of x ∈ A if x→∗ y.
• x ∈ A and y ∈ A are joinable if there is a z such that x→∗ z ←∗ y, in which

case we write x↓y.
The reduction → is called
• confluent if for all x, y1, y2 ∈ A, if y1 ←∗ x→∗ y2, then y1↓y2;
• locally confluent if for all x, y1, y2 ∈ A, if y1 ← x→ y2, then y1↓y2;
• terminating if there is no infinite chain x0 → x1 → x2 → · · · ;
• convergent if it is both confluent and terminating.

If → is convergent, then each x ∈ A has a unique normal form [1].
Terms. A ranked alphabet Σ is a finite set of symbols in which every element

has a unique rank in the set of nonnegative integers. For each integer m ≥ 0, Σm
denotes the elements of Σ which have rank m.

Let Y be a set of variables. The set of terms over Σ with variables in Y is denoted
by TΣ(Y ). The set TΣ(∅) is written simply as TΣ and called the set of ground terms
over Σ. We specify a countably infinite set X = {x1, x2, . . . } of variables which
will be kept fixed in this paper. Moreover, we put Xn = {x1, x2, . . . , xn }, for
n ≥ 0. Hence X0 = ∅. For any i ≥ 1 and j ≥ 0, let X[i,j] = ∅ if i > j, and let
X[i,j] = {xi, xi+1, . . . , xj } otherwise.

For a term t ∈ TΣ(X), the height height(t) ∈ N is defined by recursion:
(a) if t ∈ Σ0 ∪X, then height(t) = 0,
(b) if t = σ(t1, . . . , tm) with m ≥ 1 and σ ∈ Σm, then

height(t) = 1 +max(height(ti) | 1 ≤ i ≤ m).
For each k ≥ 0, HEΣ,≤k(X) = { t ∈ TΣ(X) | height(t) ≤ k }.

Let N be the set of all positive integers. N∗ stands for the free monoid generated
by N with empty word λ as identity element. For each word α ∈ N∗, length(α)
stands for the length of α. Consider the words α, β, γ ∈ N∗ such that α = βγ.
Then we say that β is a prefix of α. Furthermore, if α 6= β, then β is a proper
prefix of α. For a term t ∈ TΣ(X), the set Pos(t) ⊆ N∗ of positions is defined by
recursion:

(i) if t ∈ Σ0 ∪X, then Pos(t) = {λ }, and

(ii) if t = σ(t1, . . . , tm) with m ≥ 1 and σ ∈ Σm, then Pos(t) = {λ } ∪ { iα | 1 ≤
i ≤ m and α ∈ Pos(ti) }.

For each term t ∈ TΣ(X), size(t) is the cardinality of Pos(t).
For each t ∈ TΣ(X) and α ∈ Pos(t), we introduce the subterm t/α ∈ TΣ(X) of

t at α as follows:

(a) for t ∈ Σ0 ∪X, t/λ = t;

(b) for t = σ(t1, . . . , tm) with m ≥ 1 and f ∈ Σm, if α = λ then t/α = t,

otherwise, if α = iβ with 1 ≤ i ≤ m, then t/α = ti/β

For any t ∈ TΣ(X), α ∈ Pos(t), and r ∈ TΣ(X), we define t[α← r] ∈ TΣ(X).
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(i) If α = λ, then t[α← r] = r.

(ii) If α = iβ, for some integer i, then t = σ(t1, . . . , tm) with f ∈ Σm and
1 ≤ i ≤ m. Then t[α← r] = σ(t1, . . . , ti−1, ti[β ← r], ti+1, . . . , tm).

For a term t ∈ TΣ(X), the set sub(t) of subterms of t is defined as sub(t) =
{ t/α | α ∈ Pos(t) }.

Given a term t ∈ TΣ(Xn), n ≥ 0, and terms t1, . . . , tn, we denote by t[t1, . . . , tn]
the term which can be obtained from t by replacing each occurrence of xi in t by ti
for 1 ≤ i ≤ n. A context is a term u ∈ TΣ∪{ � }, where the nullary symbol � appears
exactly once in u. We denote the set of all contexts over Σ by CΣ. For a context
u and a term t, u[t] is defined from u by replacing the occurrence of � with t.

For the sake of simplicity, we may write unary terms as strings. For example,
we write fgh# for the term f(g(h(#))) and f3x1 for f(f(f(x1))), where f, g, h are
unary symbols and # is a nullary symbol.

Algebras. Let Σ be a ranked alphabet. A Σ algebra is a system B = (B,ΣB),
where B is a nonempty set, called the carrier set of B, and ΣB = { fB | f ∈ Σ } is
a Σ-indexed family of operations over B such that for every f ∈ Σm with m ≥ 0,
fB is a mapping from Bm to B. An equivalence relation ρ ⊆ B×B is a congruence
on B if

fB(t1, . . . , tm)ρfB(p1, . . . , pm)

whenever f ∈ Σm, m ≥ 0, and tiρpi, for 1 ≤ i ≤ m. For each B′ ⊆ B, let
[B′]ρ = { [b]ρ | b ∈ B′ }. In this paper we shall mainly deal with the algebra
TA = (TΣ,Σ) of ground terms over Σ, where for any f ∈ Σm with m ≥ 0 and
t1, . . . , tm ∈ TΣ, we have

fTA(t1, . . . , tm) = f(t1, . . . , tm) .

We now recall the concept of a set of representatives for a congruence ρ and a set
of ρ-classes.

Definition 1. [6] Let ρ be a congruence on TA and let A be a set of ρ-classes. A
set REP of ground terms is called a set of representatives for A if

• REP ⊆
⋃
A,

•
⋃

( sub(t) | t ∈ REP ) ⊆ REP , and

• each class Z ∈ A contains exactly one term t ∈ REP .

Term equation systems. Let Σ be a ranked alphabet. A term equation
system (TES for short) E over Σ is a finite subset of TΣ(X)×TΣ(X). Elements (l, r)
of E are called equations and are denoted by l ≈ r. The reduction relation →E ⊆
TΣ(X)×TΣ(X) is defined as follows. For any terms s, t ∈ TΣ(X), s→E t if there is
a pair l ≈ r in E and a context u ∈ CΣ(X1) and a substition δ such that s = u[δ(l)]
and t = u[δ(r)]. When we apply an arbitrary equation l ≈ r ∈ E∪E−1, we rename
the variables of l and r such that l ∈ TΣ(Xk+m) and r ∈ TΣ(Xk ∪X[k+m+1,k+m+`])
for some k,m, ` ≥ 0.
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The word problem for a TES E is the problem of deciding for arbitrary p, q ∈
TΣ(X) whether p↔∗E q. The ground word problem for E is the word problem
restricted to ground terms p and q.

For the notion of a term rewriting system (TRS), see Section 4.2 in [1]
Knuth-Bendix completion procedure. We now briefly recall the basic

Knuth-Bendix completion procedure, see Section 7.1 in [1]. The basic Knuth-
Bendix completion procedure starts with a TES E and tries to find a convergent
TRS R that is equivalent to E. A reduction order > is provided as an input for the
procedure. Since the word problem is not decidable in general, a finite convergent
TRS cannot always be obtained. In the basic Knuth-Bendix completion procedure
this could be due to failure or to non-termination of completion. In the initializa-
tion phase, the basic completion procedure removes trivial identities of the form
s = s and tries to orient the remaining nontrivial identities. If this succeeds, then
it computes all critical pairs of the TRS obtained. The terms in each critical pair
〈s, t〉 are reduced to their normal forms ŝ and t̂. If the normal forms are identical,
then this critical pair is joinable, and nothing needs to be done for it. Otherwise,
the procedure tries to orient the terms ŝ and t̂ into the rewrite rule ŝ → t̂ with
ŝ > t̂ or t̂ → ŝ with t̂ > ŝ. In this way the procedure orients all instances of the
terms ŝ and t̂ as well. If this succeeds, then the new rule is added to the current
rewrite system. This process is iterated until failure occurs or the rewrite system
is not changed during a step of the iteration, that is, the system does not have
non-joinable critical pairs.

If the basic completion procedure applied to (E,>) terminates succesfully with
output R, then R is a finite convergent TRS that is equivalent to E. In this case,
R yields a decision procedure for the word problem for E. If the basic completion
procedure applied to (E,>) does not terminate, then it outputs an infinite conver-
gent TRS that is equivalent to E. In this case, the completion procedure can be
used as a semidecision procedure for the word problem for E.

Assume that we want to decide for given terms p, q ∈ TΣ(X), whether p↔∗E q
holds. We call the pair (p, q) the goal. The basic Knuth-Bendix completion proce-
dure is independent of the goal. Hence, if p↔∗E q does not hold, and the set E of
equations has no finite convergent system, then the basic Knuth-Bendix completion
will run forever. In the light of this observation, Lynch and Strogova [13, 14] pre-
sented a goal-directed completion procedure based on SOUR graphs. Similarly to
the basic Knuth-Bendix completion procedure, the goal-directed completion proce-
dure uses a reduction order >. Unlike the basic Knuth-Bendix completion proce-
dure, it uses some inference rules. The main difference, described in an intuitive
simplified way, is the following. Along the completion procedure, we try to con-
struct a rewrite system R and a conversion

p = r1↔
R
r2↔

R
· · ·↔

R
rn = q, n ≥ 1 (1)

in a nondeterministic way. We compute and orient critical pairs and control the
completion process keeping in our mind that the rules of R should be applicable
along a conversion (1). When orienting the equations into rules along the comple-
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tion process, we do not put a rule in R if it is not applicable along a conversion (1).
If we do not find a conversion (1), the goal-directed completion procedure detects
that (p, q) 6∈ ↔∗E , outputs ’no’ and halts. Consider the following example. Let
ranked alphabet Σ consist of the unary symbols f , g and the nullary symbols $, #.
Consider the variable preserving TES E = { ffx ≈ gfx }. We raise the problem
whether $↔∗E #. The basic Knuth-Bendix completion procedure runs forever on
this example [13]. Along the goal oriented completion procedure, we find no rewrite
rule such that it is applicable along a conversion $ = r1↔R r2↔R · · ·↔R rn = #,
n ≥ 1. Therefore, the goal-directed completion procedure detects that ($,#) 6∈ ↔∗E ,
outputs ’no’, and halts [13].

We now adopt a more detailed description of the goal-directed completion pro-
cedure. [14] The goal-directed completion procedure uses a reduction order > and
computes critical pairs equipped with equational and ordering constraints, and con-
structs a graph. “The goal-directed completion procedure has two phases. The first
phase is the compilation phase. In this phase, all the edges and the recursive con-
straints labelling each edge are created. This phase also takes into account the goal
to be solved. Importantly, this phase takes only polynomial time, because there are
only polynomially many edges in the graph. The result of this phase is a constrained
tree automaton representing a schematized version of the completed system, and a
set of constraints representing potential solutions to the goal. The constraints that
are generated are the equational constraints representing the unification problems,
and ordering constraints arising from the critical pair inferences.

The second phase is the goal solving (or constraint solving) phase. In this
phase, the potential solutions to the goal are solved in order to determine whether
they are actual solutions of the goal. This phase can take infinitely long, since
the constraints are recursive. Step by step a constraint is rolled back, based on
which edges it is created from, and the equational and ordering constraints are
solved along the way. In some cases, the ordering constraints cause the recursion
to halt, and therefore the constraints are completely solved. The procedure is truly
goal oriented, because only a polynomial amount of time is spent compiling the
set of equations. The rest of the time is spent working backwards from the goal
to solve the constraints. If the procedure is examined more closely, we see that
the second phase of the procedure is exactly a backwards process of completion.
A schematization of an equation in the completed system is applied to the goal,
step by step until it rewrites to an identity. At the same time, the schematized
equation that is selected is worked backwards until we reach the original equations
from which it is formed.” [14]

See Section 7.2 in [1] for an improved version of the Knuth-Bendix comple-
tion procedure described by a set of inference rules. A detailed description of the
unfailing Knuth-Bendix completion procedure can be found in [2].

Ground term equation systems and rewriting systems. A ground term
equation system (GTES) E over a ranked alphabet Σ is a finite binary relation
on TΣ. Elements (l, r) of E are called equations and are denoted by l ≈ r. The
reduction relation →E ⊆ TΣ(X) × TΣ(X) is defined as follows. For any ground
terms s, t ∈ TΣ, s→E t if there is a pair l ≈ r in E and a context u ∈ CΣ(X1)
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such that s = u[l] and t = u[r]. It is well known that the relation ↔∗E is a
congruence on the term algebra TA [18]. We call ↔∗E the congruence induced by
E. The size of E is defined as the number of occurrences of symbols in the set.
sub(E) = { sub(l) | l ≈ r ∈ E ∪ E−1 }. Clearly, ↔∗E ∩(sub(E) × sub(E)) is an
equivalence relation on sub(E). The word problem for a GTES E is the problem
of deciding for arbitrary p, q ∈ TΣ whether p↔∗E q.

A ground term rewrite system (GTRS) over a ranked alphabet Σ is a finite
subset R of TΣ × TΣ. The elements of R are called rules and a rule (l, r) ∈ R
is written in the form l → r as well. Moreover, we say that l is the left-hand
side and r is the right-hand side of the rule l → r. lhs(R) = {l | l → r ∈ R },
rhs(R) = {r | l→ r ∈ R }. sub(R) = { sub(l) | l ∈ lhs(R) }∪{ sub(r) | r ∈ lhs(R) }.

The reduction relation →R ⊆ TΣ(X) × TΣ(X) is defined as follows. For any
ground terms s, t ∈ TΣ, s→R t if there is a pair l ≈ r in E and a context u ∈ CΣ(X1)
such that s = u[l] and t = u[r]. Here we say that R rewrites s to t applying the
rule l→ r. A GTRS R is equivalent to a GTRS E, if ↔∗R =↔∗E holds.

IRR(R) denotes the set of all ground terms irreducible by R. A GTRS R is
reduced if for every rule u→ v in R, u is irreducible with respect to R− {u→ v }
and v is irreducible with respect to R. For a reduced GTRS R, IRR(R)∩ sub(R) =
sub(R) − lhs(R), and sub(R) − lhs(R) is a set of representatives for sub(R)/↔∗R,
see Theorem 3.14 on page 162 in [17].

We say that a GTRS R is confluent, locally confluent, terminating, or conver-
gent, if →R has the corresponding property.

We recall the following important result.

Proposition 1. [19] Any reduced GTRS R is convergent.

Proposition 2. For a reduced GTRS R, one can reduce a ground term t ∈ TΣ

to its normal form in linear time of size(t). We traverse the term t in postorder.
When visiting a position α, we reduce the subterm t/α of t at α to is normal form
t/α↓R.

We say that a GTRS R is equivalent to a GTES E if ↔∗R =↔∗E .

Proposition 3. [19] For a GTES E one can effectively construct an equivalent
reduced GTRS R in O(n log n) time. Here n is the size of E.

Proof. We briefly recall Snyder’s [19] fast ground completion algorithm. We run
a congruence closure algorithm for E over the subterm graph of E [4, 15]. In this
way we get the representation of the equivalence relation ↔∗E ∩(sub(E)× sub(E)).
We compute a set REP of representatives for sub(E)/↔∗E . Then we construct a
reduced GTRS R over Σ as follows. We put the rewrite rule l→ r in R if
• l = f(p1, . . . , pm) for some f ∈ Σm, m ≥ 0, and p1, . . . , pm ∈ REP ,
• r ∈ REP ,
• l 6= r and l↔∗E r.

�
We can decide the word problem of a GTES E applying a congruence closure

algorithm [4, 15] for the GTES E1 = E∪{ p ≈ p, q ≈ q } and then examine whether
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p, q are in the same class of the equivalence relation ↔∗E1
∩(sub(E1) × sub(E1)).

Assume that we want to solve the word problem of a fixed GTES E for varying terms
p, q. Then we compute a convergent GTRS over Σ equivalent to E [8, 14, 16, 19].
We compute p ↓R and q ↓R, and compare them. If p ↓R= q ↓R, then p↔∗E q.
Otherwise, (p, q) 6∈ ↔∗E . By Proposition 2, we can decide the word problem of E
in linear time. We can also extend the signature. We introduce constants for the
equivalence classes of↔∗E ∩(sub(E)×sub(E)). Then we can construct in O(n log n)
time a reduced GTRS over the extended signature such that p↓R= q↓R if and only
if p↔∗E q. By Proposition 2, we can decide the word problem of E in linear time.
Finally, assume that we want to solve the word problem of a fixed GTES E for
a fixed term p and varying term q. Then we can construct in O(n log n) time a
deterministic tree automaton recognizing the ↔∗E-class of p [17].
For other completion algorithms on GTRSs see [5, 16]. For further results on
GTRSs see [18]. Proposition 1 and Proposition 3 imply the following well known
result.

Proposition 4. [19] For a GTES E and ground terms p, q, one can decide whether
p↔∗E q.

3 Reachability starting from a term attached to a
context

Let R be a reduced GTRS over Σ and s, t ∈ IRR(R). We say that R reaches t
starting from s attached to some context, if there is a u ∈ CΣ such that u[s]→∗R t.
Let RAC(s) denote the set of all terms t ∈ IRR(R) which are reachable by R
starting from s attached to some context.

Example 1. Let Σ = Σ0 ∪Σ1, Σ0 = { 0, 1 }, and Σ2 = { f }. Let GTRS R consist
of the equations f(0, 0) → 0 and f(0, 1) → 1. Clearly R is reduced. Then each
element of IRR(R) containing 0 is in RAC(0). For example, f(f(1, 0), 1) ∈ RAC(0),
because f(f(1, �), 1) ∈ CΣ and

f(f(1, �), 1)[0] = f(f(1, 0), 1)→∗R f(f(1, 0), 1).
Furthermore, 1 ∈ RAC(0), because

f(�, 1)[0] = f(0, 1)→R 1.
Thus each element of IRR(R) containing 1 is in RAC(0). Consequently, IRR(R) =
RAC(0).

Lemma 1. Let R be a reduced GTRS over Σ. For any s ∈ sub(R) − lhs(R), we
can effectively compute RAC(s) ∩ (sub(R)− lhs(R)).

Proof. Let RAC0 = { s }. For each i ≥ 0, let RACi+1 consists of all elements
t, where
• t ∈ RACi or
• t ∈ sub(R) − lhs(R) and there is a rule f(t1, . . . , tm) → t in R for some

f ∈ Σm, t1, . . . , tm ∈ sub(R)− lhs(R), such that tj ∈ RACi for some 1 ≤ j ≤ m, or
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• t ∈ sub(R) − lhs(R) and t = f(t1, . . . , tm) for some f ∈ Σm, t1, . . . , tm ∈
sub(R)− lhs(R), and tj ∈ RACi for some 1 ≤ j ≤ m. Then

RACi ⊆ RACi+1 ⊆ RAC(s) ∩ (sub(R)− lhs(R)) for i ≥ 0 . (2)

Hence there is an integer 0 ≤ ` ≤ card(sub(R)−lhs(R)) such that RAC` = RAC`+1.
Then

RAC` = RAC`+k for k ≥ 1 . (3)

Hence
RAC` ⊆ RAC(s) ∩ (sub(R)− lhs(R)) . (4)

To show the reverse inclusion, we need the following.

Claim 1. For any u ∈ CΣ of height n ≥ 0 and t ∈ sub(R)− lhs(R), if u(s)→∗R t,
then t ∈ RACn.

Proof. By induction on n.
�

By (2), (3), and Claim 1, RAC(s) ∩ (sub(R)− lhs(R)) ⊆ RAC`. By (4),

RAC(s) ∩ (sub(R)− lhs(R)) = RAC` .

We compute the sets RAC0,RAC1, . . . , Rcard(sub(R)−lhs(R)). In this way we obtain
the integer ` and RAC(s) ∩ (sub(R)− lhs(R)).

�

Lemma 2. For any reduced GTRS R and s, t ∈ IRR(R), R reaches t starting from
s attached to some context if and only if

(i) t = u[s] for some u ∈ CΣ or
(ii) s ∈ (sub(R) − lhs(R)), and there are u ∈ CΣ and r ∈ rhs(R) such that

t = u[r] and R reaches r starting from s attached to some context.

Proof. (⇒) Assume that R reaches t starting from s attached to some context.
Then there is u ∈ CΣ such that u[s]→∗R t. If u[s] = t, then (i) holds. Otherwise,
u[s] →+

R t. Hence there are v1, v2, z ∈ CΣ and a rule l → r in R such that
u[s] = v1[z[s]]→∗R v1[l]→R v1[r]→∗R v2[r] = t, where

(a) u = v1[z],
(b) z[s]→∗R l,
(c) l→ r ∈ R,
(d) v1→∗R v2 over the ranked alphabet Σ ∪ �.

Hence t = v2[r], v2 ∈ CΣ, r ∈ rhs(R). By (b), s ∈ sub(l) or s ∈ sub(l1) for some
l1 ∈ LHS(R). Recall that s ∈ IRR(R). Hence s ∈ (sub(R)− lhs(R)).

(⇐) If (i) holds, then R reaches t starting from s attached to some context.
Assume that (ii) holds. Then there is z ∈ CΣ such that z[s]→∗R r. Consequently

(u[z])[s] = u[z[s]]→∗R u[r] = t. Hence R reaches t starting from s attached to some
context.

�
Lemma 1 and Lemma 2 imply the following result.

Proposition 5. For any s, t ∈ IRR(R), we can decide whether R reaches t starting
from s attached to some context.
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4 Two trivial semi-decision procedures

We present the well known trivial semi-decision procedure PRO1 for the ground
word problem of variable preserving TESs. We give examples when PRO1 is effi-
cient. Then we present the trivial semi-decision procedure PRO2 for the ground
word problem of TESs. Note that PRO2 is a straightforward generalization of
PRO1.

Procedure PRO1 Input: A variable preserving TES E over the ranked alphabet
Σ and ground terms p, q ∈ TΣ.
Output: ’yes’ if p↔∗E q, ’no’ or undefined otherwise.
Let U0 = { p }, V0 = { q }, i = 0.
repeat

i := i+ 1;
Ui := Ui−1 ∪ { s| there is u ∈ Ui−1 such that u↔E s };
Vi := Vi−1 ∪ { s| there is u ∈ Vi−1 such that u↔E s };

until (Ui = Ui−1 or Vi = Vi−1) or Ui ∩ Vi is not empty;
if Ui ∩ Vi is not empty
then begin output ’yes’; halt end;

output ’no’;
halt

For any variable preserving TES E and ground term u, the set { s|u↔E s } is finite
and then effectively computable. Thus for every i ≥ 0, Ui and Vi, are finite and can
be computed effectively. Hence the above procedure can be implemented. Clearly,
PRO1 outputs ’yes’ and halts if and only if p↔∗E q. If PRO1 outputs ’no’ and halts,
then (p, q) 6∈ ↔∗E .

We adopt the following example of Lynch [13].

Example 2. Let Σ = Σ0 ∪ Σ1, Σ0 = { $,# }, Σ1 = { f, g }. Consider the TES
E = { ffx ≈ gfx }. We raise the problem whether $↔∗E #. On the one hand, the
basic Knuth-Bendix completion procedure runs forever on this example [13]. On
the other hand, the goal-directed completion procedure outputs ’no’ and halts [13].
It is still open whether the goal-directed completion procedure halts on the TES E
and any goal [13].

Observe that for each u ∈ TΣ, the set { s | u↔∗E s } is finite. Hence for any
p, q ∈ TΣ, PRO1 outputs the correct answer and halts. For this example, PRO1 is
more efficient than the basic Knuth-Bendix completion procedure, and is at least
as efficient as the goal-directed completion procedure [13, 14].

Example 3. Let Σ = Σ0 ∪ Σ2, Σ0 = { ?, $,# }, and Σ2 = { f }. We define
the terms combi ∈ TΣ(Xi), i ≥ 1, as follows. Let comb1 = f(x1, ?), combi+1 =
f(x1, combi[x2, . . . , xi+1]) for i ≥ 1. For example, comb3 = f(x1, f(x2, f(x3, ?))).
Let n ≥ 1, p = comb2n[#, . . . ,#], and q = comb2n[$, . . . , $]. We run procedure
PRO1 on the TES E = {# ≈ $ } and the ground terms p and q. Then

card(Ui) = card(Vi) =

(
2n
i

)
+

(
2n
i− 1

)
+ · · ·+

(
2n
1

)
for i = 1, . . . n,
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Ui ∩ Vi = ∅ for i = 0, 1, . . . n− 1, and
comb2n[#, . . . ,#, $, . . . , $] ∈ Un ∩ Vn.

Hence in the nth step, PRO1 outputs ’yes’ and halts.

Example 4. We present Ceitin’s [3, 11] semi-Thue system as a TES. Let Σ =
Σ0 ∪ Σ1, Σ0 = { $ }, and Σ1 = { a, b, c, d, e }. E consists of the equations

acx1 ≈ cax1, adx1 ≈ dax1, bcx1 ≈ cbx1, bdx1 ≈ dbx1,
ecax1 ≈ cex1, edbx1 ≈ dex1,
cdcax1 ≈ cdcaex1, caaax1 ≈ aaax1, daaax1 ≈ aaax1.

Proposition 6. [3, 11] It is undecidable for an arbitrary given ground term t ∈ TΣ

whether t↔∗E a3$.

We run procedure PRO1 on the TES E and the ground terms p = a3$ and
q = edb$. We compute as follows.
U0 = { p }, V0 = { q },
U1 = { a3$, ca3$, da3$ }, V1 = { edb$, ebd$, de$ },
U2 = { a3$, ca3$, da3$, cca3$, cda3$, dca3$, dda3$, acaa$, adaa$ }, V2 = V1.
Now procedure PRO1 outputs ’no’ and halts.

Let n ≥ 1, p = (bd)2n$, and q = (db)2n$. We apply procedure PRO1 to TES E
and ground terms p and q. We compute as follows.
U0 = { p }, V0 = { q },
U1 = { p, db(bd)2n−1$, . . . , (bd)2n−1db$ },
V1 = { q, bd(db)2n−1$, . . . , (db)2n−1bd$, },
U2 = U1 ∪ { dbdb(bd)2n−2$, dbbddb(bd)2n−3$, . . . , (bd)2n−2dbdb$ },
V2 = V1 ∪ { bdbd(db)2n−2$, bddbbd(db)2n−3$, . . . , (db)2n−2bdbd$ },

. . . .
Observe that Ui ∩ Vi = ∅ for i = 0, 1, . . . , n − 1. Clearly, (bd)n(db)n$ ∈ Un ∩ Vn.
After computing Un and Vn, procedure PRO1 outputs ’yes’ and halts.

Example 5. We continue Example 4. Let p ∈ TΣ be arbitrary such that symbols
a or c appear in p. Let q ∈ TΣ such that a, c do not appear in q. That is, only the
constant $ and the symbols b, d, or e appear in q.

Observe that the left-hand side and the right-hand side of the fourth and sixth
rules do not contain a or c. Both sides of all other rules contain a or c. Hence for
any reduction sequence
p→R p1→R p2→···→R pn, n ≥ 1, for any 1 ≤ i ≤ n, the term pi contains the
constant $ and at least one a or c. Furthermore, along any reduction sequence
q→R q1→R q2→···→R qn, n ≥ 1, we only use the fourth and sixth equations.
Consequently, the set { v ∈ TΣ | q↔∗E v } is finite. Furthermore neither a nor c
appears in any element of the set { v ∈ TΣ | q↔∗E v }. Thus

(p, q) 6∈ ∗↔
E
, (5)

and Ui ∩ Vi = ∅ for i ≥ 0. Thus procedure PRO1 outputs ’no’ and halts on the
input E, p, q.
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Example 6. Let Σ = Σ0 ∪ Σ1, Σ0 = { a }, and Σ1 = { f }. TES E consists of the
equation ffx ≈ x. We run procedure PRO1 on TES E and ground terms p = a
and q = fa. We compute as follows.
U0 = { a }, V0 = { fa },
U1 = { a, ffa }, V1 = { fa, f3a },
U2 = { a, ffa, f4a }, V2 = { fa, f3a, f5a },. . ..
U0 ⊂ U1 ⊂ U2 ⊂ · · · ,
V0 ⊂ V1 ⊂ V2 ⊂ · · · , and
Ui ∩ Vi = ∅ for i ≥ 0.
Hence procedure PRO1 does not halt.

To present the semi-decision procedure PRO2, we define the sets Ui ⊆ TΣ,
i ≥ 0, by recursion. Let U0 = { p }. Let i ≥ 1. We put all elements of Ui−1 in Ui.
Moreover, we put in Ui all s ∈ TΣ such that
• l′ ≈ r′ is a ground instance of some equation l ≈ r in E ∪ E−1 obtained by

substituting arbitrary ground terms of height less than or equal to i − 1 for all
variables that do not appear in l,
• v ∈ CΣ,
• v[l′] ∈ Ui−1 and s = v[r′].

We define Vi ⊆ TΣ, i ≥ 0, symmetrically to Ui, i ≥ 0. Clearly for every i ≥ 0, Ui
and Vi are finite and can be computed effectively. Note that there may be an i ≥ 1
such that Ui = Ui+1 and Ui+1 ⊂ Ui+2.

Example 7. Let Σ = Σ0 ∪ Σ1, Σ0 = { 0, 1 }, and Σ2 = { f }. Let TES E consist
of the equations

f(x1, x1) ≈ 0, f(0, x1) ≈ x1.
Let p = f(1, 0) and q = f(1, f(1, 1)). Then
U0 = { f(1, 0) }, V0 = { f(1, f(1, 1)) },
U1 = { f(1, 0), f(f(0, 1), 0), f(1, f(0, 0)), f(1, f(1, 1)) },
V1 = { f(1, f(1, 1)), f(f(0, 1), f(1, 1)), f(1, 0), f(1, f(f(0, 1), 1)),
f(1, f(1, f(0, 1))) }.

Procedure PRO2 Input: A TES E over the ranked alphabet Σ and ground terms
p, q ∈ TΣ.
Output: ’yes’ if p↔∗E q, undefined otherwise.
1 i := i+ 1;

compute Ui and Vi;
if Ui ∩ Vi is not empty then begin output ’yes’; halt end;
goto 1

PRO2 outputs ’yes’ and halts if and only if p↔∗E q.

Example 8. We continue Example 7. We run procedure PRO2 on TES E and
ground terms p, q. We compute as follows. We compute U0 and V0. We observe
that U0 ∩ V0 is empty. Then we compute U1 and V1. We observe that U1 ∩ V1 is
not empty. Procedure PRO2 outputs ’yes’ and halts.
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5 Semi-decision procedure for the ground word
problem of variable preserving TESs

We present the semi-decision procedure PRO3 for the ground word problem of
variable preserving TESs, and show its correctness. PRO3 is an improvement of
PRO1. The starting idea is the following. For each i ≥ 1, we construct the GTES
Pi using those instances of equations in E ∪ E−1 which are applied to compute
the set Ui. We improve this construction by defining Pi, i ≥ 2, as the set of all
instances of equations in E ∪ E−1 which can be applied to elements of { s ∈ TΣ |
p↔∗Pi−1

s } rather than to the elements of Ui−1. Furthermore, we define the GTES
Qi symmetrically. We give examples when procedure PRO3 is more efficient than
procedure PRO1.

Let E be a variable preserving TES over Σ, and let p, q ∈ TΣ. We define the
GTESs Pi and the reduced GTRSs Ri, i ≥ 1, over Σ as follows.

For each equation l ≈ r of E ∪ E−1 with l, r ∈ TΣ(Xm), m ≥ 0, and for
any u ∈ CΣ, u1, . . . , um ∈ TΣ, if p = u[l[u1, . . . , um]] then we put the equation
l[u1, . . . , um] ≈ r[u1, . . . , um] in P1. Applying Snyder’s algorithm we compute a
reduced GTRS R1 equivalent to the GTES P1, see Proposition 3.

Let i ≥ 1. (a) We put each element of Ri into Pi+1.
(b) For each equation l ≈ r of E ∪ E−1, l, r ∈ TΣ(Xm), m ≥ 0, for any

u1, . . . , um ∈ (sub(Ri) − lhs(Ri)) ∪ sub(p ↓Ri
), if Ri reaches p ↓Ri

starting from
l[u1, . . . , um]↓Ri attached to some context, and l[u1, . . . , um]↓Ri 6= r[u1, . . . , um]↓Ri ,
then we put the equation l[u1, . . . , um] ≈ r[u1, . . . , um] in Pi+1.

If Pi+1 = Ri, then let Ri+1 = Ri. Otherwise, applying Snyder’s algorithm, we
compute a reduced GTRS Ri+1 equivalent to the GTES Pi+1.

When misunderstanding may arise, we denote Ri as RPi
. We define the GTESs

Qi, i ≥ 1, symmetrically to the GTESs Pi, i ≥ 1. Applying Snyder’s algorithm, we
compute a reduced GTRS RPi∪Qi equivalent to the GTRS RPi ∪RQi for i ≥ 1.

We illustrate our concepts and results by the following example.

Example 9. Let Σ = Σ0∪Σ1∪Σ2, Σ0 = { $,# }, Σ1 = { e, f, g, h }, and Σ2 = { d }.
Let the TES E consist of the equations

# ≈ $, g$ ≈ h$, d(hx1, hx1) ≈ hx1, efhx1 ≈ hx1.
Observe that E is variable preserving. Let p = efg#, q = d(h#, h#).

First we compute the GTES Pi, i ≥ 1. GTES P1 consists of the equation # ≈ $.
Let Θ stand for↔∗P1

∩(sub(P1)×sub(P1)). Then sub(P1)/Θ = { {#, $ } } and { $ }
is a set of representatives for sub(P1)/↔∗P1

. GTRS R1 consists of the rule #→ $.
GTES P2 consists of the equations # ≈ $, g$ ≈ h$. Let Θ stand for

↔∗P2
∩(sub(P2) × sub(P2)). Then sub(P2)/Θ = { {#, $ }, { g#, g$, h#, h$ } } and

{ $, h$ } is a set of representatives for sub(P2)/↔∗P2
. GTRS R2 consists of the rules

#→ $, g$→ h$.
GTES P3 consists of the equations

# ≈ $, g$ ≈ h$, h$ ≈ d(h$, h$), h$ ≈ efh$.
Let Θ stand for ↔∗P3

∩(sub(P3)× sub(P3)). Then
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sub(P3)/Θ = { {#, $ }, { g#, g$, h#, h$, d(h$, h$), efh$}, { fh$ } }
and { $, h$, fh$ } is a set of representatives for sub(P3)/↔∗P3

. R3 consists of the
rules

#→ $, g$→ h$, d(h$, h$)→ h$, efh$→ h$.

P4 = R3 and R4 = R3. Furthermore, Pi = R3 and Ri = R3 for i ≥ 4.
Second, we compute the GTESs Qi, i ≥ 1. GTES Q1 consists of the equations

# ≈ $, d(h#, h#) ≈ h#. GTRS RQ1
consists of the rules #→ $, d(h$, h$)→ h$.

GTES Q2 consists of the equations # ≈ $, d(h$, h$) ≈ h$, efh$ ≈ h$.
GTRS RQ2 consists of the rules #→ $, d(h$, h$)→ h$, efh$→ h$.
Observe that RQ2 = Qi = RQi for i ≥ 3.

RP1∪Q1
= RP1

, RP2∪Q2
= RP2

∪RQ2
, and RP3∪Q3

= RP3
. Then

p↓RP1∪Q1
= efg$, q↓RP1∪Q1

= h$,
p↓RP2∪Q2

= h$, q↓RP2∪Q2
= h$.

We get the following result by direct inspection of the definition of the GTES
Pi, i ≥ 1.

Lemma 3. (a) For each i ≥ 1, ↔∗Pi
=↔∗Ri

⊆ ↔∗Pi+1
⊆ ↔∗E.

(b) If Ri = Pi+1 for some i ≥ 1, then Ri = Pj = Rj for j ≥ i+ 1.

Lemma 4. For each i ≥ 1, we can effectively construct the GTES Pi.

Proof. By induction on i.
Base Case: i = 1. Clearly, we can construct P1.
Induction Step: Let i ≥ 1. Assume that we have constructed Pi. By Proposition

3, we can construct Ri. Consider item (b) in the definition of Pi. By Proposition
5, we can effectively decide whether Ri reaches p↓Ri starting from l[u1 . . . , um]↓Ri

attached to some context. Hence we can construct Pi+1 as well.
�

We now present our semi-decision procedure.

Procedure PRO3 Input: A variable preserving TES E over the ranked alphabet
Σ and ground terms p, q ∈ TΣ.
Output: • ’yes’ if p↔∗E q,

• ’no’ if (p, q) 6∈ ↔∗E and the procedure halts,
• undefined if the procedure does not halt.

compute P1, RP1 , Q1, RQ1 , and RP1∪Q1 ;
if p↓RP1∪Q1

= q↓RP1∪Q1
, then begin output ’yes’; halt end;

i := 1;
1: i := i+ 1;
compute Pi, RPi , Qi, RQi , and RPi∪Qi ;
if p↓RPi∪Qi

= q↓RPi∪Qi
, then begin output ’yes’; halt end;

if RPi−1
= Pi or RQi−1

= Qi,
then begin output ’no’; halt end;
goto 1
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Example 10. We continue Example 9. Note that p↓RP1∪Q1
6= q ↓RP1∪Q1

. Hence
procedure PRO3 does not output anything and does not halt in the first step.
Observe that p↓RP2∪Q2

= q↓RP2∪Q2
. Hence procedure PRO3 outputs ’yes’ and halts

in the second step.

Example 11. We continue Example 5. Let n ≥ 1. We run procedure PRO3
on the TES E and the ground terms p = (bd)2n$, and q = (db)2n$. We com-
pute as follows. GTES P1 consists of the equation bd$ ≈ db$. Let Θ stand for
↔∗P1

∩(sub(P1)×sub(P1)). Then sub(P1)/Θ = { { b$ }, { d$ }, { bd$ } } and { bd$ } is
a set of representatives for sub(P1)/↔∗P1

. GTRS RP1 consists of the rule bd$→ db$.

Symmetrically, GTES Q1 consists of the equation db$ ≈ bd$. GTRS RQ1
con-

sists of the rule db$ → bd$. It is not hard to see, that GTRS RP1∪Q1
is equal to

GTRS RP1 . Observe that p↓RP1∪Q1
= q↓RP1∪Q1

, Hence procedure PRO3 outputs
’yes’ and halts in the first step.

We run procedure PRO3 on the TES E and the ground terms p = aaa$ and
q = bedb$. By our arguments in Example 5,

p↓RPi∪Qi
6= q↓RPi∪Qi

for i ≥ 1 .

Furthermore, PRO3 computes as follows.

RQ1
= { db$→ bd$, edb$→ de$ },

RQ2 = { db$→ bd$, edb$→ de$, bdde$→ dbde$ }, and

RQ2
= RQn+2

for n ≥ 1.

Consequently, Procedure PRO3 outputs ’no’ and then halts. Generalizing our ar-
guments, we can show the following.

Statement 1. Let p ∈ TΣ be arbitrary such that symbols a or c appear in p. Let
q ∈ TΣ such that a, c do not appear in q. Then procedure PRO3 outputs ’no’ and
halts on the input E, p, q.

By Propositon 6, for an arbitrary ground term q′ ∈ TΣ, the goal-directed com-
pletion procedure [13] may fail or may not halt on the TES E and the goal (aaa$, q′).
The following problem is open. For each goal (aaa$, q) such that q ∈ TΣ, and a, c
do not appear in q, is it true that the the goal-directed completion procedure does
not fail and halts on the TES E and the goal (aaa$, q).

It is open whether the goal-directed completion procedure does not fail and
halts on the TES E and any goal (aaa$, q) such that q ∈ TΣ, a, c do not appear in
q.

We now show the correctness of Procedure PRO3.

Lemma 5. For any i, n with 1 ≤ n ≤ i, and any t1, . . . , tn ∈ TΣ, if

p↔E t1↔E t2↔E · · ·↔E tn, then p↔∗Pi
t1↔∗Pi

t2↔∗Pi
· · ·↔∗Pi

tn.

Proof. We proceed by induction on i.

Base Case: i = 1. Then n = 1. By the definition of P1, we have p↔P1
t1.
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Induction Step: Let i ≥ 1, and assume that the statement holds for 1, 2, . . . , i.
We now show that the statement holds for i+ 1. To this end, assume that

p↔
E
t1↔

E
t2↔

E
· · ·↔

E
tn for some 0 ≤ n ≤ i+ 1 . (6)

By the induction hypothesis,

p
∗↔
Pi

t1
∗↔
Pi

t2
∗↔
Pi

· · · ∗↔
Pi

tn−1 . (7)

Hence

tn−1
∗→
Ri

p↓Ri
. (8)

By (6), there is an equation l ≈ r in E ∪E−1 with l, r ∈ TΣ(Xm), m ≥ 0 and there
are u ∈ CΣ, u1, . . . , um ∈ TΣ such that

tn−1 = u[l[u1, . . . , um]] and tn = u[r[u1, . . . , um]] . (9)

As Ri is convergent, by (8) and (9), u[l[u1, . . . , um] ↓Ri
]→∗Ri

p ↓Ri
. That is, Ri

reaches p ↓Ri
starting from l[u1, . . . , um] ↓Ri

attached to some context. By the
definition of Pi+1,

l[u1, . . . , um] ≈ r[u1, . . . , um] is in
∗↔
Pi

or Pi+1 . (10)

By Lemma 3, (7), (9), and (10),

p
∗↔

Pi+1

t1
∗↔

Pi+1

t2
∗↔

Pi+1

· · · ∗↔
Pi+1

tn−1
∗↔

Pi+1

tn .

�
By Lemma 3 and Lemma 5 we have the following result.

Lemma 6. Assume that Ri = Pi+1 for some i ≥ 1. Then p↔∗Pi+1
q if and only if

p↔∗E q.

Theorem 1. If p↔∗E q, then procedure PRO3 outputs ’yes’ and halts.

Proof. Assume that p = t1↔E t2↔E · · ·↔E tn = q for some n ≥ 1 and
t1, . . . , tn ∈ TΣ. By Lemma 5, p↔∗Pn

q. Let k be the least integer such that
p↔∗Pk∪Qk

q.
First assume that k = 1. Then p↔∗P1∪Q1

q. Hence p ↓RP1∪Q1
= q ↓RP1∪Q1

.
Consequently, procedure PRO3 outputs ’yes’ and halts in the first step.

Second assume that k ≥ 2. Then by the definition of k, (p, q) 6∈ ↔∗Pi∪Qi
for

2 ≤ i ≤ k − 1. Then by Lemma 6, RPi−1
⊂ Pi and RQi−1

⊂ Qi for 2 ≤ i ≤ k − 1.
Hence procedure PRO3 does not halt in the first k − 1 steps. By the definition of
the integer k, in the kth step procedure PRO3 outputs ’yes’ and halts.

�
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Theorem 2. If procedure PRO3 outputs ’yes’ and halts, then p↔∗E q. If procedure
PRO3 outputs ’no’ and halts, then (p, q) 6∈ ↔∗E.

Proof. Assume that procedure PRO3 outputs ’yes’ and halts in the kth step.
Then p↔∗Pk∪Qk

q. By Lemma 3, p↔∗E q.
Assume that procedure PRO3 outputs ’no’ and halts in the kth step. Then
(a) (p, q) 6∈ ↔∗Pk∪Qk

and
(b) Pk = RPk−1

or Qk = RQk−1
.

We now distinguish two cases.
Case 1: Pk = RPk−1

. By (a) and by Lemma 6, (p, q) 6∈ ↔∗E .
Case 2: Qk = RQk−1

. This case is symmetric to Case 2.
�

Theorems 1 and 2 imply the following.

Theorem 3. If p↔∗E q, then procedure PRO3 outputs ’yes’ and halts. Otherwise,
either PRO3 outputs ’no’ and halts, or PRO3 does not halt.

Example 12. We continue Example 3. We now run procedure PRO3 on the TES
E and the ground terms p, q. Then P1 = Q1 = {# ≈ $ }, RP1 = RQ1 = P1,
and RP1∪Q1 = P1. Observe that p↓RP1∪Q1

= q ↓RP1∪Q1
. Hence procedure PRO3

outputs ’yes’ and halts in the first step. By Proposition 2, we compute p↓RP1∪Q1

and q ↓RP1∪Q1
in linear time. We apply the rules of RP1∪Q1

n times. For this
example, PRO3 is faster than PRO1.

Example 13. We continue Example 6. We now run procedure PRO3 on the TES
E and the ground terms p and q. Then { a ≈ ffa } = P1 = RP1 = P1+i = RP1+i

for i ≥ 1. Furthermore, Q1 = { a ≈ ffa, fa ≈ fffa }, RQ1 = P1 = Q2 = RQ2 =
Q1+i = RQ1+i

for i ≥ 1.
Observe that p↓RP2∪Q2

6= q↓RP2∪Q2
. Hence procedure PRO3 outputs ’no’ and

halts in the second step.
It should be clear that for all ground terms p and q, PRO3 halts. It outputs

’yes’ if p↔∗E q. Otherwise it outputs ’no’.

Example 14. We now continue Example 2. We apply procedure PRO3 to the
TES E = { ffx ≈ gfx } and any terms p, q ∈ TΣ. Observe that height(ffx) =
2 = height(gfx).

Statement 2. For each i ≥ 0, and for each pair of terms, s, t ∈ TΣ(X), if (s, t) ∈
Pi, then height(s) = height(t) ≤ height(p).

Proof. We proceed by induction on n.
Base Case: i = 1. By the definition of P1, for each equation s ≈ t in P1,

height(s) = height(t) ≤ height(p). Hence our statement holds.
Induction Step: Let n ≥ 1, and assume that the satement holds for 1, 2, . . . , n.

We now show that the satement holds for n+ 1. Consider an equation
l[u1, . . . , um] ≈ r[u1, . . . , um] in Pi+1. Then there exist
• an equation l ≈ r of E ∪ E−1, where l, r ∈ TΣ(Xm), m ≥ 0.
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• u1, . . . , um ∈ (sub(Ri)− lhs(Ri)) ∪ sub(p↓Ri).
such that Ri reaches p↓Ri

starting from l[u1, . . . , um]↓Ri
attached to some context,

and that
l[u1, . . . , um]↓Ri

6= r[u1, . . . , um]↓Ri
.

Consequently, there is a u ∈ CΣ such that u[l[u1, . . . , um]]→∗Ri
p. By (a) in

Lemma 3 and the induction hypothesis, height(u[l[u1, . . . , um]]) = height(p). Thus
height(l[u1, . . . , um]) ≤ height(p). By (a) in Lemma 3 and the induction hypothe-
sis, height(l) = height(r). Hence height(l[u1, . . . , um]) = height(r[u1, . . . , um]).

�
Observe that the set { (s, t) ∈ TΣ × TΣ | height(s) = height(t) ≤ height(p) } is

finite. By Lemma 3 and Statement 2, procedure PRO3 halts on E and any terms
p, q ∈ TΣ in finitely many steps.

The following result can be shown by generalizing the proof appearing in Ex-
ample 14.

Theorem 4. Let E be a variable preserving TES such that
• for any equation s ≈ t in E, height(s) = height(t), or
• for any equation s ≈ t in E, size(s) = size(t) and each variable appears the

same times in s and t.
Let p, q ∈ TΣ be arbitrary. Then procedure PRO3 halts on E and terms p, q.

6 Semi-decision procedure for the ground word
problem of TESs

We present the semi-decision procedure PRO4 for the ground word problem of
TESs, and show its correctness. We obtain it generalizing PRO3 taking into account
PRO2. The starting point to the definition of the GTESs Pi, i ≥ 1, is the same
as in Section 5. We define P1 as the set of all instances l′ → r′ of equations l ≈ r
in E ∪ E−1 which can be applied to p. We define Pi+1, i ≥ 1, as the set of all
instances l′ → r′ of equations l ≈ r in E ∪E−1 which can be applied to elements of
{ s ∈ TΣ | p↔∗Pi

s }. The question is what should we substitute for those variables
in the right-hand side r that do not appear in the left-hand side l. We now give
a simplified answer to this question. Applying Snyder’s algorithm we compute a
reduced GTRS Ri equivalent to the GTES Pi. When constructing the instance
l′ → r′ of l ≈ r, we substitute any term in (sub(Ri)− lhs(Ri))∪sub(p↓Ri

) or the Ri
normal form of any ground term of height less than or equal to i for each variable
in the right-hand side r that does not appear on the left-hand side l. Furthermore,
we define the GTESs Qi, i ≥ 1, symmetrically.

Let E be a TES over Σ, and let p, q ∈ TΣ. We now define the GTESs Pi and
the reduced GTRSs Ri, i ≥ 1, over Σ.

Let NORM0 = Σ0 ∪ sub(p). For each equation l ≈ r of E ∪ E−1 with
l ∈ TΣ(Xk+m), r ∈ TΣ(Xk ∪ X[k+m+1,k+m+`]) for some k,m, ` ≥ 0, if p =
u[l[u1, . . . , uk+m]] for some u ∈ CΣ, u1, . . . , uk+m ∈ TΣ, then for all
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vk+m+1, . . . , vk+m+` ∈ NORM0, we put the equation

l[u1, . . . , uk+m] ≈ r[u1, . . . , uk, vk+m+1, . . . , vk+m+`]

in P1. Applying Snyder’s algorithm we compute a reduced GTRS R1 equivalent to
the GTES P1, see Proposition 3.

Let i ≥ 1. Let
NORMi = sub(p↓Ri

) ∪ (sub(Ri)− lhs(Ri))∪
{ t↓Ri

| t ∈ NORMi−1 or t = f(t1, . . . , tm) for some f ∈ Σm and t1, . . . , tm ∈
NORMi−1 }.

(a) We put each rule of Ri into Pi+1.
(b) For each equation l ≈ r of E ∪ E−1 with l ∈ TΣ(Xk+m), r ∈ TΣ(Xk ∪

X[k+m+1,k+m+`]) for some k,m, ` ≥ 0, for any u1, . . . , uk+m ∈ (sub(Ri)− lhs(Ri))∪
sub(p↓Ri) and vk+m+1, . . ., vk+m+` ∈ NORMi, if Ri reaches p↓Ri starting from
l[u1, . . . , uk+m] ↓Ri attached to some context, and

l[u1, . . . , uk+m]↓Ri
6= r[u1, . . . , um, vk+m+1, . . . , vk+m+`]↓Ri

,
then we put the equation

l[u1, . . . , uk+m] ≈ r[u1, . . . , um, vk+m+1, . . . , vk+m+`]

in Pi+1.
If we do not put equations in Pi+1 in item (b), i.e. Pi+1 = Ri, then let Ri+1 =

Ri. Otherwise, applying Snyder’s algorithm, we compute a reduced GTRS Ri+1

equivalent to the GTES Pi+1.
When misunderstanding may arise, we denote Ri as RPi

. We define the GTESs
Qi, i ≥ 1, symmetrically to the GTESs Pi, i ≥ 1. Applying Snyder’s algorithm, we
compute a reduced GTRS RPi∪Qi

equivalent to the GTRS RPi
∪RQi

for i ≥ 1.
By Proposition 1 GTRSs RPi

, RQi
, and RPi∪Qi

are convergent.
We illustrate our concepts and results by two running examples, each of them

is presented as a series of examples.

Example 15. We continue Example 7. Let p = f(0, 1) and q = f(f(0, 1), 1).
Observe that for any u, v ∈ TΣ, if u↔∗E v, then the parity of the number of 1’s in
u equals to that in v. Hence

(p, q) 6∈ ∗↔
E
. (11)

We now construct the GTESs P1, P2, and P3. Then NORM0 = { 0, 1, f(0, 1) }.
P1 consists of the equations

0 ≈ f(0, 0), 0 ≈ f(1, 1), 0 ≈ f(f(0, 1), f(0, 1)),
1 ≈ f(0, 1), f(0, 1) ≈ 1, f(0, 1) ≈ f(0, f(0, 1)).

R1 consists of the rules
f(0, 0)→ 0, f(1, 1)→ 0, f(0, 1)→ 1.

NORM1 = { 0, 1, f(1, 0) }. P2 consists of the equations
f(0, 0) ≈ 0, f(1, 1) ≈ 0, f(0, 1) ≈ 1, 0 ≈ f(f(1, 0), f(1, 0)).

R2 consists of the rules
f(0, 0)→ 0, f(1, 1)→ 0, f(0, 1)→ 1, f(f(1, 0), f(1, 0))→ 0.
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NORM2 = { 0, 1, f(1, 0), f(0, f(1, 0)), f(1, f(1, 0)), f(f(1, 0), 0), f(f(1, 0), 1) }.
P3 consists of the equations

f(0, 0) ≈ 0, f(1, 1) ≈ 0, f(0, 1) ≈ 1, f(f(1, 0), f(1, 0)) ≈ 0,
0 ≈ f(f(0, f(1, 0)), f(0, f(1, 0))),
0 ≈ f(f(1, f(1, 0)), f(1, f(1, 0))),
0 ≈ f(f(f(1, 0), 0), f(f(1, 0), 0)),
0 ≈ f(f(f(1, 0), 1), f(f(1, 0), 1)).

R3 consists of the rules
f(0, 0)→ 0, f(1, 1)→ 0, f(0, 1)→ 1, f(f(1, 0), f(1, 0))→ 0,
f(f(0, f(1, 0)), f(0, f(1, 0)))→ 0,
f(f(1, f(1, 0)), f(1, f(1, 0)))→ 0,
f(f(f(1, 0), 0), f(f(1, 0), 0))→ 0,
f(f(f(1, 0), 1), f(f(1, 0), 1))→ 0.

Continuing in this manner we get that

RPi
⊂ RPi+1

for i ≥ 1 . (12)

We now compute the GTESs Q1, Q2, and Q3.
NORM0 = { 0, 1, f(0, 1), f(f(0, 1), 1) }.
Q1 consists of the equations

0 ≈ f(0, 0), 0 ≈ f(1, 1), 0 ≈ f(f(0, 1), f(0, 1)),
0 ≈ f(f(f(0, 1), 1), f(f(0, 1), 1)),
1 ≈ f(0, 1), f(0, 1) ≈ f(0, f(0, 1)), f(f(0, 1), 1) ≈ f(0, f(f(0, 1), 1)).

RQ1 consists of the rules
f(0, 0)→ 0, f(1, 1)→ 0, f(0, 1)→ 1.

NORM1 = { 0, 1, f(1, 0) }.
Q2 consists of the equations

f(0, 0) ≈ 0, f(1, 1) ≈ 0, f(0, 1) ≈ 1, 0 ≈ f(f(1, 0), f(1, 0)).
RQ2 consists of the rules

f(0, 0)→ 0, f(1, 1)→ 0, f(0, 1)→ 1, f(f(1, 0), f(1, 0))→ 0.
NORM2 = { 0, 1, f(1, 0), f(0, f(1, 0)), f(1, f(1, 0)), f(f(1, 0), 0), f(f(1, 0), 1) }.

Q3 consists of the equations
f(0, 0) ≈ 0, f(1, 1) ≈ 0, f(0, 1) ≈ 1, 0 ≈ f(f(1, 0), f(1, 0)),
0 ≈ f(f(0, f(1, 0)), f(0, f(1, 0))), 0 ≈ f(f(1, f(1, 0)), f(1, f(1, 0))),
0 ≈ f(f(f(1, 0), 0), f(f(1, 0), 0)), 0 ≈ f(f(f(1, 0), 1), f(f(1, 0), 1)).

RQ3
consists of the rules

f(0, 0)→ 0, f(1, 1)→ 0, f(0, 1)→ 1, f(f(1, 0), f(1, 0))→ 0,
f(f(0, f(1, 0)), f(0, f(1, 0)))→ 0, f(f(1, f(1, 0)), f(1, f(1, 0)))→ 0,
f(f(f(1, 0), 0), f(f(1, 0), 0))→ 0, f(f(f(1, 0), 1), f(f(1, 0), 1))→ 0.

Continuing in this manner we get that

RQi
⊂ RQi+1

for i ≥ 1 . (13)

Let RP1∪Q1 = RP1 , RP2∪Q2 = RP2 , and RP3∪Q3 = RP3 ∪RQ3 .
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Example 16. Let Σ = Σ0∪Σ1, Σ0 = { 0, 1 }, and Σ1 = { g, h }. Let TES E consist
of the equations

gx1 ≈ x1, hx1 ≈ hx2.
Let p = 0 and q = 1.

We now construct the GTESs P1, P2, and P3. Then NORM0 = { 0, 1 }. P1

consists of the equation 0 ≈ g0.
R1 consists of the rule g0→ 0.
NORM1 = { 0, 1, g1, h0, h1 }.
P2 = R1 and R2 = P2.
NORM2 = { 0, 1, g1, h0, h1, gg1, hg1, gh0, hh0, gh1, hh1 }.
P3 = R2 and R3 = P3.

We now construct the GTESs Q1, Q2, and Q3. Then NORM0 = { 0, 1 }. Q1

consists of the equation 1 ≈ g1.
RQ1

consists of the rule g1→ 1.
NORM1 = { 0, 1, g0, h0, h1 }.
Q2 = RQ1 and RQ2 = Q2.
NORM2 = { 0, 1, g0, h0, h1, gg0, hg0, gh0, hh0, gh1, hh1 }.
Q3 = RQ2

and RQ3
= Q3.

RP1 ∪RQ1 = RP1∪Q1 = RP2∪Q2 = RP3∪Q3 .

We get the following result by direct inspection of the definition of the GTES
Pi and GTRS Ri, i ≥ 1.

Statement 3. For each i ≥ 1, ↔∗Pi
⊆ ↔∗Pi+1

⊆ ↔∗E.

We can show the following result similarly to Lemma 4.

Lemma 7. For each i ≥ 1, we can effectively construct the GTES Pi.

Lemma 8. For each i ≥ 1, sub(p↓RPi
)∪(sub(RPi

)−lhs(RPi
))∪{ t↓RPi

| height(t) ≤
i } ⊆ NORMi.

Proof. By induction on i.
�

We now present our semi-decision procedure.

Procedure PRO4 Input: A variable preserving TES E over the ranked alphabet
Σ and ground terms p, q ∈ TΣ.
Output: • ’yes’ if p↔∗E q,
• ’no’ if (p, q) 6∈ ↔∗E and the procedure halts,
• undefined if the procedure does not halt.
compute P1, RP1

, Q1, RQ1
, and RP1∪Q1

;
if p↓RP1∪Q1

= q↓RP1∪Q1
, then begin output ’yes’; halt end;

i := 1;
1: i := i+ 1;
compute Pi, RPi

, Qi, RQi
, and RPi∪Qi

;
if p↓RPi∪Qi

= q↓RPi∪Qi
, then begin output ’yes’; halt end;
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if i = 2, then goto 1;
if RPi−2 = RPi−1 = Pi, or RQi−2 = RQi−1 = Qi,
then begin output ’no’; halt end;
goto 1

Example 17. We continue Example 15. By Statement 3 and (11), p ↓RPi∪Qi
6=

q ↓RPi∪Qi
for i ≥ 1. Hence procedure PRO4 does not output ’yes’. By (12) and

(13), procedure PRO4 does not output ’no’. Hence procedure PRO4 does not
output anything and does not halt at all.

Example 18. We continue Example 16. Observe that
p↓RP1∪Q1

= 0 6= 1 = q↓RP1∪Q1
,

p↓RP2∪Q2
= 0 6= 1 = q↓RP2∪Q2

,
p↓RP3∪Q3

= 0 6= 1 = q↓RP3∪Q3
, and

RP1
= RP2

= P3.
Hence procedure PRO4 outputs ’no’ and halts in the third step.

Example 19. Let Σ = Σ0 ∪ Σ1 ∪ Σ2, Σ0 = { $,# }, Σ1 = { f, g }, Σ2 = {h }.
Consider the TES E = { ffx1 ≈ gfx1, h(x1, x1) ≈ $ }. As in Example 2, we
can show that the basic Knuth-Bendix completion procedure runs forever on this
example. Moreover, it is still open whether the goal-directed completion procedure
halts on the TES E and any goal.

Let n ≥ 1. Let p = h(fn$, gfn−1$) and q = $. We raise the problem whether
p↔∗E q. We now apply procedure PRO4 to the TES E and the terms p, q.
GTRS RP1 consists of the rules

f i$→ gf i−1$ for 2 ≤ i ≤ n,
h($, $)→ $,
h(#,#)→ $.

GTRS RQ1
consists of the rules

h($, $)→ $,
h(#,#)→ $.

GTRS RP2 consists of the rules
f2gf$→ gf$,
h($, $)→ $,
h(#,#)→ $.
h(f$, f$)→ $,
h(f#, f#)→ $.
h(g$, g$)→ $,
h(g#, g#)→ $.

GTRS RQ2
consists of the rules

h($, $)→ $,
h(#,#)→ $,
h(f$, f$)→ $,
h(f#, f#)→ $.
h(g$, g$)→ $,
h(g#, g#)→ $.
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Clearly,
p↓RP2∪Q2

= q↓RP2∪Q2
.

Hence procedure PRO4 outputs ’yes’ and halts in the second step.

We now show the correctness of Procedure PRO4.

Lemma 9. Assume that Ri−1 = Ri = Pi+1 and NORMi−1 ⊂ NORMi for some
i ≥ 2. Then for each equation l ≈ r of E ∪ E−1 with l ∈ TΣ(Xk+m), r ∈
TΣ(Xk ∪X[k+m+1,k+m+`]), k,m ≥ 0, ` ≥ 1, and for any u1, . . . , uk+m ∈ sub(p↓Ri

) ∪ (sub(Ri) − lhs(Ri)), Ri does not reach p↓Ri starting from l[u1, . . . , uk+m] ↓Ri

attached to some context.

Proof. By contradiction. Assume that there is an equation l ≈ r of E ∪ E−1

with l ∈ TΣ(Xk+m), r ∈ TΣ(Xk ∪X[k+m+1,k+m+`]), k,m ≥ 0, ` ≥ 1, and there are
u1, . . . , uk+m ∈ sub(p↓Ri

)∪ (sub(Ri)− lhs(Ri)) such that Ri reaches p↓Ri
starting

from l[u1, . . . , uk+m] ↓Ri
attached to some context. By Ri = Pi+1, we do not put

equations in Pi+1 in item (b) of its definition. Consequently, for any vk+m+1, . . .,
vk+m+` ∈ NORMi,

l[u1, . . . , uk+m]↓Ri= r[u1, . . . , um, vk+m+1, . . . , vk+m+`]↓Ri .

Hence by our indirect assumption, Ri reaches p↓Ri
starting from

r[u1, . . . , um, vk+m+1, . . . , vk+m+`]↓Ri
attached to some context. Hence there is a

u ∈ CΣ such that

u[r[u1, . . . , um, vk+m+1, . . . , vk+m+`]↓Ri
]
∗→
R
p↓Ri

.

Then u[r[u1, . . . , um, vk+m+1↓Ri , vk+m+2, . . . , vk+m+`]]→∗Ri

u[r[u1, . . . , um, vk+m+1, . . . , vk+m+`]↓Ri ]→∗Ri
p↓Ri . By Lemma 2, vk+m+1↓Ri∈

sub(p↓Ri
) ∪ (sub(Ri)− lhs(Ri)). Since Ri−1 = Ri,

vk+m+1↓Ri−1
∈ sub(p↓Ri−1

) ∪ (sub(Ri−1)− lhs(Ri−1)) ⊆ NORMi−1.
By definition, vk+m+1 is an arbitrary element of NORMi. Consequently, we have
NORMi ⊆ NORMi−1. This is a contradiction.

�

Lemma 10. Let i ≥ 2. If Ri−1 = Ri = Ri+1 and NORMi−1 = NORMi, then
NORMi = NORMi+1.

Proof. First we show that NORMi ⊆ NORMi+1. Let s ∈ NORMi be ar-
bitrary. If s ∈ sub(p↓Ri) ∪ (sub(Ri) − lhs(Ri)) ∪ { t↓Ri | t ∈ NORMi−1 }, then
s ∈ sub(p↓Ri+1

) ∪ (sub(Ri+1) − lhs(Ri+1)) ∪ { t↓Ri+1
| t ∈ NORMi }. Hence t ∈

NORMi+1. If s = f(t1, . . . , tm)↓Ri
for some f ∈ Σm and t1, . . . , tm ∈ NORMi−1,

then s = f(t1, . . . , tm) ↓Ri+1
with f ∈ Σm and t1, . . . , tm ∈ NORMi. Hence

t ∈ NORMi+1.
We now show that NORMi+1 ⊆ NORMi. Let s ∈ NORMi+1 be arbitrary.

If s ∈ sub(p ↓Ri+1) ∪ (sub(Ri+1) − lhs(Ri+1)) ∪ { t ↓Ri+1 | t ∈ NORMi }, then
s ∈ sub(p↓Ri

)∪ (sub(Ri)− lhs(Ri))∪ { t↓Ri
| t ∈ NORMi−1 }. Hence t ∈ NORMi.
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If s = f(t1, . . . , tm)↓Ri+1 for some f ∈ Σm and t1, . . . , tm ∈ NORMi, then s =
f(t1, . . . , tm)↓Ri for f ∈ Σm and t1, . . . , tm ∈ NORMi−1. Hence t ∈ NORMi.

�

Lemma 11. For each i ≥ 2, if Ri−1 = Ri = Pi+1, then Ri = Ri+1 = Pi+2.

Proof. By the assumption Ri = Pi+1 and the definition of Ri+1, we have

Ri = Ri+1 . (14)

We now distinguish two cases.
Case 1: NORMi−1 = NORMi. By Lemma 10,

NORMi = NORMi+1 . (15)

By (14) and (15), Pi+1 = Pi+2. By the assumption Ri = Pi+1 and (14), we have
Ri = Ri+1 = Pi+2.

Case 2: NORMi−1 ⊂ NORMi. Then by Lemma 9, for each equation l ≈ r of
E ∪ E−1 with l ∈ TΣ(Xk+m), r ∈ TΣ(Xk ∪X[k+m+1,k+m+`]), k,m ≥ 0, ` ≥ 1, and
for any u1, . . . , uk+m ∈ (sub(Ri) − lhs(Ri)) ∪ sub(p↓Ri

), Ri does not reach p↓Ri

starting from l[u1, . . . , uk+m] ↓Ri attached to some context. Then by (14), we do
not put equations in Pi+2 in item (b) in the definition of Pi+2. Hence Ri+1 = Pi+2.
By (14) the proof is complete.

�
Lemma 11 implies the following.

Lemma 12. For each i ≥ 1, if Ri−1 = Ri = Pi+1, then for each k ≥ 1, Ri =
Ri+k = Pi+k+1.

We now show the correctness of Procedure PRO4.

Lemma 13. For any n ≥ 1, t1, . . . , tn ∈ TΣ, if p↔E t1↔E t2↔E · · ·↔E tn, then
there is i ≥ 1 such that p↔∗Pi

t1↔∗Pi
t2↔∗Pi

· · ·↔∗Pi
tn.

Proof. We proceed by induction on n.
Base Case: n = 1. Assume that p↔E t1. Then there is an equation l ≈ r of

E ∪ E−1 with l ∈ TΣ(Xk+m), r ∈ TΣ(Xk+m+`), k,m, ` ≥ 0, and there is u ∈ CΣ,
u1, . . . , uk+m, vk+m+1, . . . , vk+m+` ∈ TΣ such that

p = u[l[u1, . . . , uk+m]] (16)

and t1 = u[r[u1, . . . , uk, vk+m+1, . . . , vk+m+`]].
Let i = max{height(vk+1), . . . , height(vk+m+`) }. By Lemma 8, vk+m+1↓Ri

, . . . ,
vk+m+`↓Ri

are in NORMi. By (16), Ri reaches p↓Ri
from l[u1↓Ri

, . . . , uk+m↓Ri
]↓Ri

attached to some context. By the definition of Pi+1, the equation

l[u1↓Ri , . . . , uk+m↓Ri ] ≈ r[u1↓Ri , . . . , uk↓Ri , vk+m+1↓Ri , . . . , vk+m+`↓Ri ]

is in ↔∗Pi
or Pi+1. Hence, by the definition of Ri and Statement 3,



542 Sándor Vágvölgyi

p = u[l[u1, . . . , uk+m]]↔∗Pi+1
u[l[u1↓Ri , . . . , uk+m↓Ri ]]↔∗Pi+1

u[r[u1↓Ri
, . . . , uk↓Ri

, vk+m+1↓Ri
, . . . , vk+m+`]↓Ri

]↔∗Pi

u[r[u1, . . . , uk, vk+m+1, . . . , vk+m+`]] = t1.
Then we have p↔∗Pi+1

t1.
Induction Step: Let n ≥ 1, and assume that the satement holds for 1, 2, . . . , n.

We now show that the satement holds for n+ 1. To this end, assume that

p↔
E
t1↔

E
t2↔

E
· · ·↔

E
tn+1 . (17)

By the induction hypothesis, there is j ≥ 1 such that

p
∗↔
Pj

t1
∗↔
Pj

t2
∗↔
Pj

· · · ∗↔
Pj

tn . (18)

Hence
tn
∗→
Ri

p↓Ri
. (19)

By (17), there is an equation l ≈ r in E ∪ E−1 with l ∈ TΣ(Xk+m), r ∈ TΣ(Xk ∪
X[k+m+1,k+m+`]) for some k,m, ` ≥ 0, and there are u ∈ CΣ,
u1, . . . , uk+m, vk+m+1, . . . , vk+m+` ∈ TΣ such that

tn = u[l[u1, . . . , uk+m]] and tn+1 = u[r[u1, . . . , uk, vk+m+1, . . . , vk+m+`]] . (20)

Let i = max{ j, height(vk+m+1), . . . , height(vk+m+`) }. By Lemma 8, vk+m+1↓Ri

, . . . , vk+m+` ↓Ri
are in NORMi. Clearly, l[u1 ↓Ri

, . . . , uk+m ↓Ri
]→∗Ri

l[u1 ↓Ri

, . . . , uk+m↓Ri ]↓Ri . Then by (19) and (20), Ri reaches p↓Ri starting from l[u1↓Ri

, . . . , uk+m↓Ri ]↓Ri attached to some context. By the definition of Pi+1, the equation
l[u1↓Ri

, . . . , uk+m↓Ri
] ≈ r[u1↓Ri

, . . . , uk↓Ri
, vk+m+1↓Ri

, . . . , vk+m+`↓Ri
]

is in ↔∗Pi
or Pi+1. Hence, by the definition of Ri and Statement 3,

tn = u[l[u1, . . . , uk+m]]↔∗Pi+1
u[l[u1↓Ri

, . . . , uk+m↓Ri
]]↔Pi+1

u[r[u1↓Ri
, . . . , uk↓Ri

, vk+m+1↓Ri
, . . . , vk+m+`↓Ri

]]↔∗Pi+1

u[r[u1, . . . , uk, vk+m+1, . . . , vk+m+`]] = tn+1.
By (18), p↔∗Pi+1

t1↔∗Pi+1
t2↔∗Pi+1

· · ·↔∗Pi+1
tn↔∗Pi+1

tn+1.
�

By Statement 3, Lemma 12, and Lemma 13 we have the following result.

Lemma 14. For each i ≥ 2, if Ri−1 = Ri = Pi+1, then for each q′ ∈ TΣ, p↔∗Pi
q′

if and only if p↔∗E q′.

We can show the following in the same way as Theorem 1.

Theorem 5. If p↔∗E q, then procedure PRO4 outputs ’yes’ and halts.

We can show the following in the same way as Theorem 2.

Theorem 6. If procedure PRO4 outputs ’yes’ and halts, then p↔∗E q. If procedure
PRO4 outputs ’no’ and halts, then (p, q) 6∈ ↔∗E.

Theorems 5 and 6 imply the following.

Theorem 7. If p↔∗E q, then procedure PRO4 outputs ’yes’ and halts. Otherwise,
either PRO4 outputs ’no’ and halts, or PRO4 does not halt at all.
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7 Comparison with the Knuth-Bendix completion
procedure

We now compare procedures PRO3 and PRO4 with the basic Knuth-Bendix com-
pletion procedure (see Section 7.1 in [1]), the improved version of the Knuth-Bendix
completion procedure described by a set of inference rules (see Section 7.2 in [1]),
the goal-directed completion procedure based on SOUR graphs [13, 14], and the
unfailing Knuth-Bendix completion procedure [2]. In contrast to all versions of
the Knuth-Bendix procedure, Procedures PRO3 and PRO4 do not compute any
critical pairs and do not use a reduction order. They do not attempt to construct
a convergent TRS equivalent to E. When PRO3 and PRO4 run a congruence
closure algorithm for the TES E over the subterm graph of E [4, 15], they com-
pute and then process only finitely many ground instances (s, t) of finitely many
elements (s, t) of the relation ↔∗E , where s, t may contain variables. Here (s, t)
need not be a critical pair computed by the basic Knuth-Bendix completion pro-
cedure. In fact, the ground instances (s, t) are elements of the equivalence relation
↔∗E ∩(sub(E)× sub(E)). Procedures PRO3 and PRO4 compute a representative r
of s and t for the equivalence relation ↔∗E ∩(sub(E)× sub(E)). The representative
r becomes the normal form of s and t for the rewrite relation induced by the con-
structed reduced GTRS. Hence, PRO3 and PRO4 do not compare the normal forms
of s and t via any reduction order. In contrast, the basic Knuth-Bendix completion
procedure reduces the terms in each critical pair to their normal forms. Then tries
to orient the normal forms into a rewrite rule. In this way the procedure orients all
instances of these terms as well. The improved version of the Knuth-Bendix com-
pletion procedure described by a set of inference rules (see Section 7.2 in [1]) also
processes each critical pair and also orients the obtained pair, and hence all of its
instances. The unfailing Knuth-Bendix completion procedure [2] applies orientable
instances of equations in E with respect to a reduction order >.

To illustrate the efficiency of the goal-directed completion procedure, Lynch [13]
presented the following example. Let the ranked alphabet Σ consist of the unary
symbols f , g and the nullary symbols $, #. Consider the variable preserving TES
E = { ffx ≈ gfx }. We raise the problem whether $↔∗E #. On the one hand, the
basic Knuth-Bendix completion procedure runs forever on this example [13]. On
the other hand, the goal-directed completion procedure does not generate any rule
applicable to $ or #. Therefore, the goal-directed completion procedure outputs
’no’ and halts [13]. Lynch and Strogova [14] said that “the goal-directed comple-
tion procedure compiles the TES E and the goal (p, q). After the compilation is
finished, we cannot apply a schematization of an equation in the completed system.
Therefore, the goal-directed completion procedure outputs ’no’ and halts. This is
an example where the goal-directed completion procedure is superior to the basic
Knuth-Bendix algorithm.” It is still open whether the goal-directed completion
procedure halts on the TES E and any goal [13]. As for the above example, PRO3
gives the correct answer and then halts on the TES E and any terms p, q ∈ TΣ.

We conjecture that there are variable preserving TES E and ground terms p, q
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such that Conditions (a)-(c) hold.
(a) The basic Knuth-Bendix completion procedure runs forever on E.
(b) There is a goal (p, q) such that the goal-directed completion procedure does

not stop on E and (p, q).
(c) Procedure PRO3 gives the correct answer and then halts on the TES E and

any terms p, q ∈ TΣ.
Let TES E be as in Example 11. We conjecture that there is q ∈ TΣ such that the
symbols a, c do not appear in q and that the goal-directed completion procedure
does not halt on the TES E and the goal (aaa$, q). On the other hand, let q ∈ TΣ

be arbitrary such that the symbols a, c do not appear in q. On the input E, aaa$,
q, Procedure PRO3 outputs ’no’, the correct answer, and then halts, see Example
11.

Procedures PRO3 and PRO4 attempt to construct the reduced GTRSs RP and
RQ, rather than a convergent term rewrite system equivalent to E, such that
• RP ∪RQ ⊆ ↔∗E ,
• p↔∗RP

q or ↔∗RP
∩({ p } × TΣ) =↔∗E ∩({ p } × TΣ), and

• p↔∗RQ
q or ↔∗RQ

∩({ q } × TΣ) =↔∗E ∩({ q } × TΣ).
Thus RP and RQ need not be equivalent to E. By contrast, all versions of the
Knuth-Bendix completion procedure attempt to transform a given TES E into
an equivalent convergent term rewrite sytem. Since Snyder’s ground completion
algorithm does not apply orderings, procedures PRO3 and PRO4 do not apply any
orderings as well.

We now present three examples where procedures PRO3 and PRO4 compute
efficiently, probably more efficiently than all versions of the Knuth-Bendix comple-
tion procedure.

Example 20. [8, 16] Gallier et al [8] and Plaisted and Sattler-Klein [16] presented
the following problem to illustrate that reducing a ground term to its normal form
can take exponential time if a proper strategy is not used. Let Σ = Σ0 ∪ Σ1,
Σ0 = { $ }, and Σ1 = { f, g }. Let n ≥ 2. Let the GTRS R consist of the following
rules:

f$→ g$,
fg$→ gf$,
fg2$→ gf2$,
. . .
fgn$→ gfn$.

Plaisted and Sattler-Klein observed the following on page 156 in [16]. Although
GTRS R is convergent, the right-hand sides can be further rewritten. An unskilful
choice of rewrites can lead to an exponential time of process. The straightforward
reduction of the term gfn$ can take a number of rewrite steps exponential in n.
However, if we apply the rules in order of size, smallest first, to all other rules, the
whole TRS can be rewritten to a reduced GTRS in a polynomial number of steps.

We form the TES E by adding the equation

fgn+1x ≈ gfn+1x
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to the set R. We now run procedure PRO3 on the variable preserving TES E and
the ground terms p = fn+2$ and q = gn+2$. Then

{ f$ ≈ g$ } = P1 = RP1
= Q1 = RQ1

, p↓RP1∪Q1
6= q↓RP1∪Q1

= q.

R1 ∪ { fg$ ≈ g2$ } = P2 = RP2
= Q2 = RQ2

, p↓RP2∪Q2
6= q↓RP2∪Q2

= q.

R2 ∪ { fg2$ ≈ g3$ } = P3 = RP3
= Q3 = RQ3

, p↓RP3∪Q3
6= q↓RP3∪Q3

= q.

. . .

RPn
∪ { fgn$ ≈ gn$ } = Pn = RPn

= Qn = RQn
, p↓RPn+1∪Qn+1

6= q↓RPn+1∪Qn+1
.

RPn+1 ∪ { fgn+1$ ≈ gn+1$ } = Pn+2 = RPn+2 = Qn+2 = RQn+2 .

Pn+2 = RPn+3
= Qn+2 = RQn+3

.

Observe that p↓RPn+2∪Qn+2
= q↓RPn+2∪Qn+2

= q. Hence procedure PRO3 outputs

’yes’ and halts in the (n+ 2)nd step. The number of computation steps is polyno-
mial. It should be clear that for all ground terms p and q, PRO3 halts. It outputs
’yes’ if p↔∗E q. Otherwise it outputs ’no’.

Consider the lexicographic path order >lpo induced by the order f > g > $
[1]. We now run the basic Knuth-Bendix completion procedure on the TES E
and the reduction order >lpo. In the initialization phase, the basic Knuth-Bendix
completion procedure orients the equations of E. We obtain the TRS S consisting
of the following rules:

f$→ g$,

fg$→ gf$,

fg2$→ gf2$,

. . .

fgn$→ gfn$,

fgn+1x→ gfn+1x.

Similarly to the first part of the example we have the following. The TRS S
has no critical pairs. Hence the basic Knuth-Bendix procedure outputs S. The
straightforward reduction of the term fn+2$ to gn+2$ by S takes a number of
rewrite steps exponential in n. The improved Knuth-Bendix completion procedure
reduces the right-hand sides of the first n rules as in the first part of the example.
We obtain the TRS S′ consisting of the following rules:

f$→ g$,

fg$→ gf$, fg$→ gg$,

fg2$→ gf2$, fg2$→ gfg$, fg2$→ g3$,

. . .

fgn$→ gfn$, fgn$→ gfn−1g$, . . ., fgn$→ gn+1$,

fgn+1x→ gfn+1x.

In the best case, the reduction of the term fn+2$ to gn+2$ applies the rules

f$→ g$,

fg$→ gg$,

fg2$→ g3$,

. . .

fgn$→ gn+1$,

fgn+1x→ gfn+1x.
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In the worst case, S′ applies only the rules of S in the reduction of the term fn+2$
to gn+2$. Hence it takes a number of rewrite steps exponential in n as in the first
part of the example. The goal-directed completion procedure computes fast on E
and the goal (p, q). For experimental results, see the line of the problem Counter5
in Table 1 in Section 7 in [14].

Example 21. We now modify an example of Plaisted and Sattler-Klein [16] and
Lynch and Strogova [14].

Let n ≥ 2, Σ = Σ0 ∪ Σ2, Σ0 = { $1, $2, . . . , $n,#1,#2, . . . ,#n }, and Σ2 =
{ f, g }. Let the TES E consist of the following equations:

f([, [) ≈ f(#0, $0),
$0 ≈ f($1,#1),
#0 ≈ g(#1, $1),
$1 ≈ f($2,#2),
#1 ≈ g(#2, $2),
. . .
$n−1 ≈ f($n,#n),
#n−1 ≈ g(#n, $n),
$n ≈ #n,
f(x1, x1) ≈ g(x1, x1).
We now run procedure PRO3 on the variable preserving TES E and the ground

terms p = f($0,#0) and q = g(#0,#0). Then
{ f($1,#1) ≈ $0, g(#1, $1) ≈ #0 } = P1 = RP1

,
{ g(#1, $1) ≈ #0, f(#0,#0) ≈ g(#0,#0) } = Q1 = RQ1 ,
RP1
∪ { f($2,#2) ≈ $1, g(#2, $2) ≈ $1 } = P2 = RP2

,
RQ1

∪ { f($1,#1) ≈ $0, f($2,#2) ≈ $1, g(#2, $2) ≈ #1 } = Q2 = RQ2
,

. . .
RPn−1

∪ { f($n,#n) ≈ $n−1, g(#n, $n) ≈ #n−1 } = Pn = RPn
,

RQn−1
∪ { f($n−1,#n−1) ≈ $n−2, g(#n, $n) ≈ #n−1 } = Qn = RQn

.
RPn

consists of the following rules:
f($1,#1)→ $0,
g(#1, $1)→ #0,
f($2,#2)→ $1,
g(#2, $2)→ #1,
. . .
f($n,#n)→ $n−1,
g(#n, $n)→ #n−1,
RPn ∪ { $n ≈ #n } = Pn+1.

RPn+1
consists of the following rules:

f($0,#0)→ $0,
f($1, $1)→ $0,
f($2, $2)→ $1,
. . .
g($n, $n)→ $n−1,
#0 → $0,
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#1 → $1,
#2 → $2,
. . .
#n → $n.
RQn

∪ { f($n,#n) ≈ $n−1, $ ≈ # } = Qn+1,
RQn+1

= RPn+1
∪ { f(#0,#0)→ g(#0,#0) }.

Pn+2 = RPn+3
= Qn+2 = RQn+3

.
Clearly, p↓RPn+1

= q↓RPn+1
. Consequently, procedure PRO3 outputs ’yes’ and halts

in the (n+ 1)st step. The number of computation steps is polynomial.
Consider the lexicographic path order >lpo induced by the order

[ > $0 > $1 > · · · > $n > #0 > #1 > · · · > #n > f > g.

We now run the basic Knuth-Bendix completion procedure on the TES E and the
reduction order >lpo. In the initialization phase, the basic Knuth-Bendix comple-
tion procedure orients the equations of E. We obtain the TRS S consisting of the
following rules:

$0 → f($1,#1),
#0 → g(#1, $1),
$1 → f($2,#2),
#1 → g(#2, $2),
. . .
$n−1 → f($n,#n),
#n−1 → g(#n, $n),
$n → #n,
f([, [)→ f(#0, $0),
f(x1, x1)→ g(x1, x1).

The last two rules yield the critical pair 〈f(#0, $0), g([, [)〉. Observe that f(#0, $0)
has a unique →S normal form, and that size(f(#0, $0) ↓S) = 2n+1. Thus the
completed system contains a rule with a left-hand side of size 2n+1. The improved
Knuth-Bendix completion procedure also yields the TRS S and the above critical
pair. Again, the completed system contains a rule with a left-hand side of size 2n+1.
The goal-directed completion procedure based on SOUR graphs [13, 14] stores the
term f(#0, $0)↓S in linear space in n.

Example 22. Let Σ = Σ0 ∪ Σ1, Σ0 = { $ }, and Σ1 = { a, b }. Let the GTES F
consist of the equation abbax1 ≈ x1. Furthermore, let the GTES E consist of the
equations

abbax1 ≈ x1, a$ ≈ $, b$ ≈ $.
It is well-known that there is no convergent TRS R equivalent to F , see Theorem
4.2.18 in [10]. Hence there is no convergent TRS R equivalent to E either. Con-
sequently, the basic Knuth-Bendix completion procedure (see Section 7.1 in [1]),
the improved version of the Knuth-Bendix completion procedure described by a
set of inference rules (see Section 7.2 in [1]) cannot produce a convergent TRS R
equivalent to E.
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Let p, q ∈ TΣ be arbitrary. First, we run the procedure PRO3 on the input
E, p, q. Procedure PRO3 outputs ’yes’ and halts in the first or second step. The
resulting reduced GTRS is a subset of

{ a$→ $, b$→ $ }.
Second, we run the goal-directed completion procedure on the input E, (p, q). It
computes all critical pairs and then processes them. Then it applies the resulting
rules. The goal-directed completion procedure takes more time on E and the goal
(p, q) than procedure PRO3 on the input E, p, q.

8 Conclusion

We recalled the well known trivial semi-decision procedure PRO1 for the ground
word problem of variable preserving TESs and its straightforward generalization,
the trivial semi-decision procedure PRO2 for the ground word problem of TESs. On
the basis of PRO1, we gave the semi-decision procedure PRO3 for the ground word
problem of variable preserving TESs. We gave examples when procedure PRO3
was more efficient than procedure PRO1. Then we presented the semi-decision
procedure PRO4 for the ground word problem of term equation systems. We ob-
tained it generalizing PRO3 taking into account PRO2. We showed the correctness
of PRO3 and PRO4. We compared the procedures PRO3 and PRO4 with the basic
Knuth-Bendix completion procedure and the goal-directed completion procedure
based on SOUR graphs [13, 14].

Procedures PRO3 or PRO4 compute in a different way than all versions of the
Knuth-Bendix completion procedure. To some instances of the ground word prob-
lem of a TES E, they give an answer sooner than all versions of the Knuth-Bendix
completion procedure or it is open whether some version of the Knuth-Bendix com-
pletion procedure gives an answer at all. Assume that, given a TES E and ground
terms p, q, we want to decide whether p↔∗E q. The ground word problem is unde-
cidable even for variable-preserving TESs. Consequently, we have no upper bound
on the running time of any type of the Knuth-Bendix completion procedure on the
input TES E any reduction order > and the ground terms p, q. However, we assume
beforehand that the basic Knuth-Bendix completion procedure or the goal-directed
completion procedure or the nonfailing Knuth-Bendix completion procedure will
stop on E, >, and p, q, and estimate its running time. We base our time estimate
on the size of the input and the experimental results by the various implementations
[7, 9, 12, 20] of all versions of the Knuth-Bendix completion procedure on inputs
of similar size. Then we carry out the following steps. Simultaneously, we start all
implementations of all versions of the Knuth-Bendix completion procedure on E
and p, q. We wait for the estimated running time. If none of the procedures stop
within this time, then they do not stop at all, or we underestimated the running
time. Then we start the procedure PRO3 or PRO4 depending on whether TES E
is variable preserving. In some cases PRO3 or PRO4 might give an answer sooner
than all implementations of all versions of the Knuth-Bendix completion procedure.

We presented ad hoc examples when procedure PRO3 was probably more ef-
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ficient than the goal-directed completion procedure [13, 14]. However, to justify
the introduction of procedures PRO3 and PRO4, we need further evidence for the
efficiency of the procedures PRO3 and PRO4. We should present implementa-
tion results and theoretical arguments. We now raise questions on the efficiency of
PRO3 and PRO4 compared to the various versions of the Knuth-Bendix completion
procedure.

Question 1. Is it true that for most instances of the ground word problem of a
TES E, a correctly chosen version of the Knuth-Bendix completion procedure is
more efficient than PRO3 or PRO4?

Question 2. For which instances of the ground word problem of a TES E, is a
correctly chosen version of the Knuth-Bendix completion procedure more efficient
than PRO3 or PRO4?

Question 3. Is it decidable for an instance of the ground word problem of a TES
E, whether a correctly chosen version of the Knuth-Bendix completion procedure is
more efficient than PRO3 or PRO4?

Question 4. Is there an instance of the ground word problem of a TES E, such that
no version of the Knuth-Bendix completion procedure halts, and PRO3 or PRO4
halts?

We can reduce an instance of the word problem for a TES E to an instance of
the ground word problem for E over a larger alphabet ∆. Let E be a TES and
p, q arbitrary terms over a ranked alphabet Σ. Assume that exactly the variables
x1, . . . , xm appear in p or q. We now define the ranked alphabet ∆. It contains
each element of Σ. Furthermore, for each i = 1, . . . ,m, we add a new constant #i

to ∆. We define p′ from p and q′ from q by replacing each occurrence of xi with
#i for i = 1, . . . ,m. Then p↔∗E q over Σ if and only if p′↔∗E q′ over ∆. Thus if we
can decide whether p′↔∗E q′ over ∆, then we can also decide whether p↔∗E q over
Σ.
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