
Calibrating Generative Models: The Probabilistic
Chomsky-Schützenberger Hierarchy∗

Thomas F. Icard
Stanford University
icard@stanford.edu

December 14, 2019

1 Introduction and Motivation

Probabilistic computation enjoys a central place in psychological modeling and theory,
ranging in application from perception (Knill and Pouget, 2004; Orbán et al., 2016), at-
tention (Vul et al., 2009), and decision making (Busemeyer and Diederich, 2002; Wilson
et al., 2014) to the analysis of memory (Ratcliff, 1978; Abbott et al., 2015), categorization
(Nosofsky and Palmeri, 1997; Sanborn et al., 2010), causal inference (Denison et al., 2013),
and various aspects of language processing (Chater and Manning, 2006). Indeed, much of
cognition and behavior is usefully modeled as stochastic, whether this is ultimately due to
indeterminacy at the neural level or at some higher level (see, e.g., Glimcher 2005). Ran-
dom behavior may even enhance an agent’s cognitive efficiency (see, e.g., Icard 2019).

A probabilistic process can be described in two ways. On one hand we can specify
a stochastic procedure, which may only implicitly define a distribution on possible out-
puts of the process. Familiar examples include well known classes of generative mod-
els such as finite Markov processes and probabilistic automata (Miller, 1952; Paz, 1971),
Boltzmann machines (Hinton and Sejnowski, 1983), Bayesian networks (Pearl, 1988), topic
models (Griffiths et al., 2007), and probabilistic programming languages (Tenenbaum et al.,
2011; Goodman and Tenenbaum, 2016). On the other hand we can specify an analytical ex-
pression explicitly describing the distribution over outputs. Both styles of description are
commonly employed, and it is natural to ask about the relationship between them. The
question is one of definability or expressiveness: for a given class of generative models,
what kinds of distributions (analytically characterized) can those models implicitly define?

A prominent way of classifying models of computation, and generative procedures
in particular, is in terms of memory usage. In the classical non-probabilistic setting this
leads to the well known Chomsky hierarchy—also called the Chomsky-Schützenberger
hierarchy—of machines and grammars. At the bottom are finite-state automata (or equiva-
lently, regular grammars), which are limited to a fixed, finite memory; at the top are Turing
machines (equivalently, unrestricted grammars or “production systems”), which have un-
restricted access to an unbounded memory; and in between are various models of limited-
access memory such as stack automata and context-free grammars (see Figure 1). Much

∗Preprint. Forthcoming in Journal of Mathematical Psychology.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilPapers

https://core.ac.uk/display/287612003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
icard@stanford.edu

is known about the languages—that is, sets of strings over a finite alphabet—definable at
different levels of the hierarchy (see, e.g., Eilenberg 1974; Hopcroft and Ullman 1979).

The driving motivation for early theoretical work on formal grammars came from the
psychology of language, where the focus was on finding adequate frameworks for de-
scribing and explaining human grammatical competence (Chomsky, 1959, 1965; Chomsky
and Schützenberger, 1963). With increased emphasis on detailed processing, parsing, and
acquisition accounts, in addition to large-scale grammar induction from corpora in com-
putational linguistics, a considerable amount of applied work has explored probabilistic
grammars (see, e.g., Klein and Manning 2003; Levy 2008; Kim et al. 2019 for representative
examples), the straightforward result of adding probabilistic transitions to classical gram-
mar formalisms. Here again, much of the interest has been to find formalisms that are
powerful enough—but not too powerful—to capture relevant linguistic structure.

Aside from their prevalence in models of language processing, probabilistic grammars
have featured in numerous other psychological domains. For instance, they have recently
appeared in characterizations of abstract conceptual knowledge (Tenenbaum et al., 2006,
2011), in computational models of vision (Zhu and Mumford, 2007), and in accounts of
how people perceive randomness (Griffiths et al., 2018), among others. However, the psy-
chological interest of probabilistic grammars is not limited to these direct applications.

As in the classical setting, there is a systematic correspondence between probabilistic
grammar classes and machine models. For example, probabilistic regular grammars can be
shown expressively equivalent to hidden Markov models and probabilistic automata (see,
e.g., Smith and Johnson 2007) and to classes of artificial neural networks (MacKay, 1996);
probabilistic context-free grammars have been shown equivalent to branching processes
(Harris, 1963), probabilistic pushdown automata (Abney et al., 1999) and so called recur-
sive Markov chains (Etessami and Yannakakis, 2009), while also being powerful enough
to define tools like topic models (Johnson, 2010); and unrestricted probabilistic grammars
are equivalent to probabilistic Turing machines and indeed to any other Turing-complete
probabilistic programming language (Theorem 2 below). Meanwhile, probabilistic gram-
mars have even been invoked to calibrate and assess the capabilities of recurrent neural
networks (Lin and Tegmark, 2017), and they have also been assimilated to causal models
(Chater and Oaksford, 2013; Icard, 2017b). Studying the expressive capacity of probabilistic
grammars thus promises to illuminate that of many other important model classes. More
generally, the resulting probabilistic Chomsky-Schützenberger hierarchy offers a meaningful
classification of discrete probabilistic models, and serves as a useful target for understand-
ing the expressiveness of probabilistic models broadly.

As running examples, consider the following four common discrete distributions:

Example 1 (Poisson). The Poisson distribution, µ(k) = e−λ λk

k! , is ubiquitous in psychologi-
cal modeling, reaching even to the level of neural firing rates (Faisal et al., 2008). Given an
average rate λ of independent occurrences in an interval, µ(k) is the probability of observ-
ing exactly k occurrences in the interval.

Example 2 (Negative Binomial). Consider a measure µq,t(k) = (t+k
k)qt+1(1− q)k, for t ∈N

and q ∈ Q ∩ [0, 1], giving the probability that we will make k observations other than our
target observation by the time we see the t + 1st target. The negative binomial distribution
is often used in place of the Poisson distribution for probabilistic modeling. In fact, µq,t
converges to the Poisson distribution as t goes to infinity (Johnson et al., 2005).

2

Example 3 (Random Walk Hitting Time). Various kinds of random walks have appeared
in psychological modeling (see, e.g., Townsend and Ashby 1983; Abbott et al. 2015 for
very different examples). Consider the simplest symmetric 1/2-random walk on the non-
negative integers, starting at 1. The hitting time for first reaching 0 is given by a distribution
µ(2k + 1) = ck2−2k+1, where ck = (2k

k)
1

k+1 is the kth Catalan number.

Example 4 (Beta-Binomial). Hierarchical probabilistic models have generated a great deal
of interest in cognitive science (e.g., Griffiths et al. 2007; Liang et al. 2010; Gershman and
Blei 2012; Li et al. 2019). One of the most basic building blocks in these models is the Beta-
Binomial distribution (and its multidimensional generalization, the Dirichlet-Multinomial),
which defines a generative procedure for flipping coins with unknown weight. Consider
a measure defined by first drawing p from a Beta(α, β) distribution and then generating a
number k with probability (n

k)pk(1− p)n−k. The distribution on k is then:

µ(k) =

(
n
k

)
B(α + k, β + n− k)

B(α, β)

In fact, µ approximates a negative binomial as n and β increase (Johnson et al., 2005).

Our basic question is this: how high in the hierarchy do we need to ascend before we
can (implicitly) define probability distributions like these?

The aim of the present contribution is to present a picture, as comprehensive as possi-
ble, of the expressive capacity of probabilistic grammar formalisms across the Chomsky-
Schützenberger hierarchy, from probabilistic regular grammars to unrestricted grammars
(Figure 1). Our study draws from a wealth of previous work in different research tra-
ditions. Most prominently, we employ analytic techniques that date back to the begin-
ning of formal language and automata theory, to the pioneering algebraic approach of
Schützenberger (Schützenberger, 1961, 1965; Chomsky and Schützenberger, 1963), which
has in turn spawned a rich literature in theoretical computer science and analytic com-
binatorics (see Eilenberg 1974; Salomaa and Soittola 1978; Kuich and Salomaa 1986; Fla-
jolet 1987; Flajolet and Sedgewick 2001; Droste et al. 2009, among many others). Much
of this work is quite abstract, e.g., dealing with generalized notions of rational and alge-
braic power series. Probabilistic interpretations are often discussed as special cases (for
instance, as a possible semi-ring related to a weighted grammar or automaton, see Droste
et al. 2009), and some of the literature deals with languages defined by probabilistic au-
tomata with “cut-points” (Rabin, 1963; Salomaa and Soittola, 1978). However, extracting
lessons for probabilistic grammars specifically often requires further work.

Meanwhile, there have been a number of important results dealing with expressivity of
probabilistic grammars and machines per se, from mathematical psychology (e.g., Vitányi
and Chater 2017), mathematical linguistics (e.g., Chi 1999; Smith and Johnson 2007; Kornai
2008), statistics (e.g., O’Cinneide 1990), and other areas of computer science (e.g., de Leeuw
et al. 1956; Yao 1985). We draw on this body of work as well.

Our presentation and analysis of the probabilistic Chomsky-Schützenberger hierarchy
combines a number of old and new results, and is intended to be as streamlined and self-
contained as possible. Many of the observations are original, but we also aim to bring
together techniques and ideas from disparate areas in order to paint an expansive picture
of the hierarchy as a whole. We include proofs of all new results, as well as results whose
proofs might be difficult to find or reconstruct.

3

After formal preliminaries (§2), we characterize the class of all probabilistic grammars
showing that they define exactly the enumerable semi-measures (Theorem 3). An impor-
tant question pertinent to (especially Bayesian) cognitive modeling is whether a class of
distributions is closed under conditioning (a kind of counterpart to the notion of conjugacy
in statistics). We show that distributions defined by probabilistic grammars (or machines)
are not in general closed, even under conditioning with a finite set (Theorem 6). However,
the probabilistic grammars that almost-surely terminate are closed under conditioning on
any computable set whatsoever (Theorem 7).

Turning to the most restrictive class, the probabilistic regular grammars, we show that
they are capable of defining any finite-support rational-valued distribution (Corollary 9),
before giving a self-contained proof of the result that the probability generating function
for a probabilistic regular grammar is always rational (Theorem 15). We also show that
the distributions defined by probabilistic regular grammars are closed under conditioning
with arbitrary regular sets (Theorem 17).

Probabilistic context-free grammars are shown by several examples (13-17) to define
irrational generating functions; however, they are all still algebraic (Theorem 22). The re-
sult contrasts with the classical Chomsky-Schützenberger characterization (Chomsky and
Schützenberger, 1963), which requires restriction to unambiguous context-free grammars
(see §5.1). Perhaps surprisingly, when considering finite-support distributions—often cen-
tral to applications—probabilistic context-free grammars define no more distributions than
the regular grammars (Proposition 18). A consequence of this is that probabilistic context-
free grammars are not closed under conditioning, even with finite sets (Proposition 19).

We consider two grammar classes that are not part of the original hierarchy, situated
in between context-free and context-sensitive, namely indexed (Aho, 1968) and linear in-
dexed (Duske and Parchmann, 1984) grammars. Both have played a notable role in com-
putational linguistics (e.g., Gazdar 1988; Joshi et al. 1991; Kim et al. 2019). Probabilistic
indexed grammars are capable of defining distributions with transcendental generating
functions (Proposition 23). Even probabilistic linear indexed grammars—which possess
algebraic generating functions and whose (right-linear) restrictions are weakly equivalent
to context-free grammars (Aho, 1968)—can define finite-support irrational distributions,
thus surpassing the power of context-free in the probabilistic setting (Proposition 24).

Finally, it is shown that probabilistic context-sensitive grammars can also define distri-
butions with transcendental generating functions, including some that elude probabilistic
indexed grammars (Propositions 27 and 28). We demonstrate that, in some sense, prob-
abilistic context-sensitive grammars come quite close to arbitrary probabilistic grammars
(Proposition 29). In other ways, however, these grammars are unnatural from a probabilis-
tic perspective. For finite-support measures they again coincide with the regular gram-
mars, defining only rational-valued distributions; and unlike in the classical hierarchy, they
do not even extend context-free (Proposition 30).

The resulting hierarchy is summarized in Figure 1. Notably, the picture remains un-
changed when restricting attention to a one-letter alphabet, a restriction that is very natural
for many applications, viz. unary representations of positive integers (recall Examples 1-
4). It has been observed that Parikh’s Theorem (Parikh, 1966)—showing that the context-
free languages are “semi-linear” and thus coextensive with the regular languages for a
one-letter alphabet—does not extend to the probabilistic setting (Petre, 1999; Bhattiprolu
et al., 2017). We observe that this trend is widespread, applying also to the linear indexed
grammars (which are also semi-linear, see Duske et al. 1992). Another emerging theme
is that, while finite languages trivialize in the classical setting, finite-support distributions

4

Classical Hierarchy

C
ontext-Free

Li
near Indexed

IndexedContext-Sensitive

Unrestricted

Regular

Probabilistic Hierarchy

C
ontext-Free

Li

near Indexed

Indexed

Context-Sensitiv
e

Unrestricted

Regular

Figure 1: The classical and probabilistic hierarchies. The shaded region signifies that these
classes collapse into the regular languages when considering a one-element alphabet. No
such collapse occurs in the probabilistic hierarchy. Meanwhile, the probabilistic context-
sensitive grammars are incomparable with the probabilistic context-free grammars.

can reveal subtle and significant distinctions in the probabilistic setting.
In the concluding section (§8) we return to consider what repercussions this pattern of

results may have for psychology and cognitive science.

2 Formal Preliminaries

2.1 Strings and Distributions

Our interest is in distributions over strings from a finite alphabet Σ. We construe strings as
lists, depicted by concatenation, and denote the empty string by ε. The length of a string
|σ| is defined so that |ε| = 0 and |aσ| = |σ|+ 1. Exponentiation is defined by σ0 = ε and
σn+1 = σnσ, so that |σn| = n|σ|.

We will make use of a canonical ordering on the set of substrings of a string. Given σ
and non-empty substrings σ1, σ2 of σ, we say σ1 has priority over σ2 if either (1) the left-most
symbol of σ1 is to the left in σ of the left-most symbol of σ2, or (2) their leftmost symbols
are identical, at the same index of σ, but σ2 is a proper substring of σ1.

A discrete semi-measure (or simply a distribution) on Σ is a function P : Σ∗ → [0, 1] such
that ∑σ∈Σ∗ P(σ) ≤ 1. When this sum is equal to 1 we call P a probability measure. We also
consider associated measure functions defined on positive integers µ : Z+ → [0, 1], such
that ∑n∈Z+ µ(n) ≤ 1, using the same nomenclature. When dealing with a one-element
alphabet we will often think of ak as a unary notation for k, so that each P will correspond
to an obvious function µ on integers, namely µ(k) = P(ak).

The support of a distribution is the set of strings that receive non-zero measure. We say
a distribution has finite support if its support is finite and omits the empty string.

Finally, given a set S ⊆ Σ∗, we define the conditional distribution P(σ | S) as follows:

P(σ | S) =
P(σ)

∑σ′∈S P(σ′)
(1)

5

when σ ∈ S, and P(σ | S) = 0 otherwise. As a special case, if S+ = {σ ∈ Σ∗ : P(σ) > 0} is
the support of P, then P(σ | S+) is a probability measure, the normalization of P. Given the
definition in (1), conditioning on the trivial proposition Σ∗ also produces the normalization:
P(σ | Σ∗) = P(σ | S+). More generally, for any S we have P(σ | S) = P(σ | S ∩ S+). Any
conditional distribution P(· | S) will be a probability measure, even if P is not.

2.2 Probability Generating Functions

From a semi-measure µ we derive a probability generating function (pgf) Gµ defined so that
Gµ(z) = ∑∞

k=0 µ(k)zk. Gµ essentially summarizes the distribution as a formal power series.
We say Gµ is algebraic if y = Gµ(z) is a solution to a polynomial equation 0 = Q(y, z). We
call Gµ rational when Q is of degree 1 in y, i.e., when there are polynomials Q0(z) and Q1(z)

such that Gµ(z) =
Q0(z)
Q1(z)

. For example, the pgf for a simple geometric function µ(k) = 2−k

is rational, equal to 1
2−z . Finally, a pgf is transcendental if it is not algebraic. For instance,

the pgf for a Poisson distribution (Example 1) is eλz−λ, easily shown to be transcendental.
For another notable example, consider a semi-measure µ such that µ(2k) = 2−k for

k > 0, and µ(n) = 0 for all other n. Let us write the pgf for µ as Gµ(z) = ∑∞
k=0 ckzk where

ck = k−1 if k is a power of 2, and ck = 0 otherwise. The Hadamard product of two power
series ∑∞

k=0 ckzk and ∑∞
k=0 dkzk is the power series ∑∞

k=0(ckdk)zk. One can show that the
Hadamard product of a rational and an algebraic power series must be algebraic (Jungen,
1931; Flajolet and Sedgewick, 2001). We thus obtain:

Lemma 1. The pgf Gµ(z) is transcendental.

Proof. It is known that the “lacunary” power series h(z) = ∑∞
k=1 z2k

is transcendental (e.g.,
Theorem 1.1.2 of Nishioka 1996). The power series g(z) = ∑∞

k=0 kzk = z/(z2 − 2z + 1) is
patently rational. However, the Hadamard product of Gµ(z) and g(z) gives exactly h(z).
Hence Gµ(z) cannot be algebraic.

When Σ = {a} we will slightly abuse terminology by speaking of the pgf for a distri-
bution on Σ∗ as being rational, algebraic, or transcendental, under the unary encoding.

2.3 Grammars and Probabilistic Grammars

A grammar is a quadruple G = (N , Σ, Π, X0), given by a finite set of non-terminal symbols
N , including a start symbol X0, an alphabet Σ, and a finite set Π of productions (α → β)
where α, β ∈ (N ∪ Σ)∗. We will refer to elements of Σ∗ as words.

The standard hierarchy is defined as in Chomsky (1959) (indexed grammars will be
introduced separately in §6):

• Regular (Type 3) Grammars: All productions are of the form (X → σY) or (X → σ),
with σ ∈ Σ∗, X, Y ∈ N .

• Context-Free (Type 2) Grammars: All production rules are of the form (X → α) with
X ∈ N and α ∈ (N ∪ Σ)∗.

• Context-Sensitive (Type 1) Grammars: Productions are of the form (αXβ → αγβ),
where X ∈ N , α, β, γ ∈ (N ∪ Σ)∗, and γ 6= ε; we also allow (X0 → ε) provided X0
does not occur on the right-hand-side of any production.

6

X0

a aX0

aa aaX0

aaa aaaX0

aaaa aaaaX0

aaaaa
...

aaaaaX0
...

X0

a aX0X0

aaX0

aaa aaaX0X0

aaaaX0

aaaaa
...

aaaaaX0X0
...

aaaaX0X0X0
...

aaX0X0X0

aaaX0X0

aaaaX0

aaaaa
...

aaaaaX0X0
...

aaaaX0X0X0
...

aaaX0X0X0X0
...

Figure 2: Partial parse trees for Examples 5 (left) and 6 (right).

• Unrestricted (Type 0) Grammars: No restrictions.

A probabilistic grammar is one with the following property: for each α ∈ (N ∪ Σ)∗ there

may be only 0, 1, or 2 distinct β with (α → β) ∈ Π. If there is 1 we write α
1→ β, with

the interpretation that α rewrites to β with probability 1; if there are 2 we will write α
1/2→ β

for each, with the interpretation that α rewrites to β with probability 1/2. Intuitively, when
rewriting α we imagine randomly choosing from among those productions with α on the
left-hand-side. In effect this means we are only considering probabilistic grammars with
production probabilities of 1/2. As far as definability is concerned, however, this implies
no loss relative to allowing arbitrary rational probabilities (Theorem 8 below).

It will often be convenient to refer to production probabilities, which we write as PG(α→
β)—or simply P(α→ β) when G is clear from context—always taking on value 0, 1, or 1/2.

A parse of a word σ from a string γ in a grammar G is a finite sequence ρ = 〈ρ0, . . . , ρn〉,
where ρ0 = γ, ρn = σ, and for all i < n: ρi+1 is obtained from ρi by replacing the substring
α of ρi with β, where (α → β) ∈ Π, and α is the highest priority substring of ρi with
an applicable production. The probability of the parse, PG(ρ), is given by the product of
probabilities of productions used in ρ. The probability of γ rewriting as a word σ is given
by the sum of probabilities of its parses: P

γ
G(σ) = ∑ρ:ρ0=γ,ρn=σ PG(ρ). We will write PG(σ)

for the distribution P
X0
G (σ) from the start symbol X0.

Example 5. Consider the following simple probabilistic regular grammar G1:

X0
1/2→ aX0 X0

1/2→ a

The tree in Figure 2 depicts all parses of the first five strings, showing that PG1(ak) = 2−k.

7

Example 6. The following is a probabilistic context-free grammar G2, only minimally more
complex than the regular G1 by allowing two non-terminals on the right:

X0
1/2→ aX0X0 X0

1/2→ a

As revealed in Figure 2, we have PG2(a) = 2−1 and PG2(a3) = 2−3, like in Example 5.
However, a5 has two parses, each with probability 2−5. Hence, PG2(a5) = 2−5 · 2 = 2−4.

G1 and G2 are also both context-sensitive grammars.

Example 7. Finally, we offer an example of a probabilistic unrestricted grammar G3, which
is not regular, context-free, or context-sensitive:

X0
1→WYaZ YZ

1/2→ U aV 1→ Va aU 1→ Ua

Ya 1→ aaY YZ
1/2→ VZ WV 1→WY WU 1→ ε

With probability 1, X0 rewrites to WaaYZ. Then, since YZ randomly rewrites to either U
or VZ, we have that WaaYZ rewrites to either WaaU or WaaVZ, each with probability
1/2. Following the sequence of productions, WaaU rewrites with probability 1 to aa, while
WaaVZ rewrites with probability 1 to WaaaaYZ. The latter string then again rewrites with
probability 1/2 to aaaa and with probability 1/2 to WaaaaaaaaYZ. In other words, this gram-
mar defines the distribution PG3(a2k

) = 2−k, shown above (Lemma 1) to be transcendental.

Example 7 also provides a simple instance of a conditional distribution, since we have
PG3(σ) = PG1(σ | {a

2k
: k > 0}).

3 Probabilistic Unrestricted Grammars

Similar to the classical case, probabilistic grammars in general correspond to probabilistic
Turing machines (de Leeuw et al., 1956), conceived as stochastic word generators. Such
models have arguably delineated the class of possible psychological models for as long as
the mind has been likened to a computing device (Turing, 1950; Putnam, 1967).

A probabilistic Turing machine (PTM) comes with an infinite one-way read-only ran-
dom bit tape with Bernoulli(1/2)-distributed binary variables, as well as a one-way infi-
nite read/write tape initially consisting of a special end symbol B followed by an infi-
nite list of blank symbols t. Given an alphabet Σ, a PTM consists of finitely many states
S = {s0, s1 . . . , sn, s#}, with a distinguished start state s0 and a distinguished end state s#,
and finitely many rules of the form:

〈si, a1, b, a2, d, sj〉

where si, sj ∈ S, a1, a2 ∈ Σ∪ {B,t}, b ∈ {0, 1}, d ∈ {L, R}. Such a rule is read: if in state si,
reading a1 on the read/write tape and b on the random bit tape, rewrite a1 as a2 and go left
(if d = L) or right (if d = R), entering state sj. We assume for each triple si, a1, b, there is at
most one triple a2, d, sj such that 〈si, a1, b, a2, d, sj〉 is a rule of T . That is, T is deterministic
given its random input. We also assume that a1 = B if and only if a2 = B; moreover, in
this case d = R. The machine begins reading B and halts upon reaching state s#. By a
familiar argument, we can assume that every PTM is in a normal form guaranteeing that,

8

upon halting, following the B symbol is some σ ∈ Σ∗, followed again by an infinite list of
blank symbols. The word σ is the official output.

We use PT to refer to the distribution effected by T . That is, PT (σ) is the probability
that T halts with σ as output on the tape. Clearly PT is a semi-measure. The proof of the
next proposition is similar to the non-probabilistic case (e.g., Chomsky 1959; Minsky 1967);
we include the details as later results (Propositions 27 and 29) will depend on them.

Proposition 2. Probabilistic unrestricted grammars and probabilistic Turing machines define the
same distributions.

Proof. We need to show that PT for any PTM T can be defined by some grammar G. If T
has states s0, s1, . . . , sn, sn+1(=s#), then G will have non-terminals X0, X1, . . . , Xn, Xn+1, in
addition to B and t, and one more “loop” non-terminal Λ having 0 productions. Our aim
is to mimic the behavior of T , step-by-step, using the non-terminals Xi to keep track of the
position of the read/write head. We begin with a rule (X0 → X0B) rewriting X as X0B.
Then, for each rule of the form 〈si, a1, b, a2, L, sj〉 of T we add to G production rules for all
a ∈ Σ ∪ {B,t}:

aXia1 → Xjaa2

If there is no rule for si, a1, 1− b then we also add:

aXia1 → Λ

For each rule 〈si, a1, b, a2, R, sj〉, we include a production:

Xia1 → a2Xj

When a1 = t we additionally include:

Xi → a2Xj

Given our priority order on substrings (§2.1), this production will only be used when Xi
occurs at the very end of the string. Again, for both of the previous we include productions
leading to Λ if there is no rule appropriate for si, a1, 1− b.

Finally, we include “clean-up” productions for the stage when we reach Xn+1, corre-
sponding to s#. For all a ∈ Σ:

aXn+1 → Xn+1a
BXn+1 → Xn+1

Xn+1a → aXn+1

Xn+1t → Xn+1

Xn+1 → ε

That is, (again, due to our priority order on substrings) Xn+1 moves along the string to the
left (which, given our PTM normal form, contains no blank symbols) until it hits B. After
erasing it, we move along the string to the right until reaching blank symbols, eliminate
them, and then Xn+1 rewrites to the empty string, giving us a word from Σ∗.

To show that a PTM can simulate any probabilistic grammar is routine (again similar to
the classical case, e.g., Minsky 1967).

9

These distributions can be given a precise formulation. Call a semi-measure P (com-
putably) enumerable if it is approximable from below (Zvonkin and Levin, 1970); that is, if
for each σ ∈ Σ∗ there is a computably enumerable weakly increasing sequence q0, q1, q2, . . .
of rational numbers, such that lim

i→∞
qi = P(σ). Enumerable semi-measures have been ar-

gued to constitute a useful idealized inductive target for psychological learning models
(Vitányi and Chater, 2017). PT and (by Theorem 2) PG are always guaranteed to be enu-
merable: consider the set Bi of binary strings β with |β| ≤ i, such that T accesses (exactly)
the bits of β before terminating with output σ. Letting qi = ∑β∈Bi

2−|β|, it is then evident
that lim

i→∞
qi = PT (σ). In fact, we have the converse as well.

Theorem 3 (Icard 2017a). Probabilistic grammars (equivalently, probabilistic Turing machines)
define exactly the enumerable distributions.

Proof. Let P be an enumerable semi-measure on Σ∗. That is, for each word σ ∈ Σ∗, there
is a computably enumerable weakly increasing sequence q0, q1, q2, . . . of rational numbers
such that lim

i→∞
qi = P(σ). Assume without loss that q0 = 0. Note then that P(σ) =

∑∞
i=0(qi+1 − qi). Our aim is to show that P = PT for some PTM T .

Let 〈 , 〉 : N×N → N be a fixed (computable) bijective pairing function with first
projection π1(n) = k when n = 〈k, i〉. Let σ0, σ1, σ2, . . . be a fixed enumeration of Σ∗, each
with a fixed enumeration of approximating rationals qk

0, qk
1, . . . converging from below to

P(σk). We define a sequence of rational (thus computable) numbers as follows:

r0 = q0
0

rn+1 = rn +
(
qk

i+1 − qk
i
)

where we assume 0 = 〈0, 0〉 and n + 1 = 〈k, i〉.
Our PTM T works in stages, observing a random sequence of bits b0, . . . , bj−1—which

we can think of as ever closer approximations to some random real number—while pro-
ducing an enumeration r0, . . . , rj−1. At each stage j, we observe a bit bj and add a rational
rj, then check whether, for any n with 0 ≤ n < j, the following condition (2) is satisfied:

rn <
j

∑
i=0

bi2−i − 2−j and rn+1 >
j

∑
i=0

bi2−i + 2−j (2)

That is, where p̃ = ∑
j
i=0 bi2−i is the rational generated so far, we know our randomly

generated real number will lie somewhere in the interval (p̃− ε, p̃ + ε), and (2) tells us that
this interval sits inside the interval (rn, rn+1). If this holds, output σπ1(n+1). Otherwise,
move on to stage j + 1.

Each word σ has its mass P(σ) distributed across different intervals in [0, 1]:

P(σk) = ∑
n:π1(n+1)=k

rn+1 − rn

=
∞

∑
i=0

(qk
i+1 − qk

i).

The procedure generates approximations p̃ = ∑
j
i=0 bi2−i to a random real number, and

as soon as we are guaranteed that this random number is in one of our intervals between

10

rn and rn+1 = rn + (qk
i+1 − qk

i), i.e., that no further bits will take us out of that interval
(condition (2) above), we halt and output the string σk corresponding to the interval, with
k = π1(n + 1). The probability of outputting σ is exactly P(σ), and the probability of not
halting at all is 1−∑σ P(σ).

More restrictive than the class of enumerable semi-measures is the class of computable
semi-measures (de Leeuw et al., 1956), namely those for which P(σ) can also be com-
putably approximated from above. To be computable we additionally require a weakly
decreasing sequence of rationals converging to P.

Lemma 4. Every semi-computable probability measure is also computable.

Proof. Since ∑σ∈Σ∗ P(σ) = 1, we can approximate from below the sum ∑σ′ 6=σ P(σ′) by
dovetailing through approximating sequences for all strings other than σ. This gives us
a sequence q1 ≤ q2 ≤ q3, . . . converging from below to ∑σ′ 6=σ P(σ′). Thus, the sequence
1− q1 ≥ 1− q2 ≥ 1− q3, . . . converges from above to P(σ).

Theorem 3, together with Lemma 4, gives us the following known corollary (see, e.g.,
Dal Lago and Zorzi 2012; Freer et al. 2014):

Corollary 5. Almost-surely terminating grammars define the computable probability measures.

As in the classical case, determining almost-sure termination is algorithmically unde-
cidable. In fact, in the present setting it is even more difficult than the classical halting
problem (Kaminski and Katoen, 2015). So there can obviously be no computably defined
subclass of grammars or machines corresponding exactly to the computable distributions.
To give a sense of how subtle the boundary between almost-sure termination and possible
non-termination can be, consider the following example:

Example 8 (Icard 2017a). Imagine a race between a tortoise and a hare. Where flip(1/4) is
a procedure that returns 1 with probability 1/4 and Unif(1,7) returns an integer between
1 and 7 uniformly, consider the following simulation pseudocode:

t := 1; h := 0

while (h < t)
t := t + 1

if flip(1/4) then h := h + Unif(1,7)

return t-1

Whereas this program would almost-surely halt, a small change to the program (e.g., in-
crementing the tortoise’s pace by ε) would lead to positive probability of not halting.

Theorem 3 tells us, perhaps unsurprisingly, that probabilistic grammars are capable of
defining essentially all of the discrete measures that have been considered in the literature
(e.g., all of those surveyed in Johnson et al. 2005), and even encompasses procedures pro-
ducing values with uncomputable (but enumerable) probabilities, such as Chaitin’s famous
“halting probability” (Chaitin, 1975). Of course, converting an analytical description into
an appropriate procedure can be far from trivial, as illustrated by the following example:

11

Example 9 (Flajolet et al. 2011). The following pseudocode, compilable into probabilistic
Turing machine code, outputs 1 with probability exactly 1/π:

x1, x2 := Geom(1/4)

t := x1 + x2

if flip(5/9) then t := t + 1

for j = 1, 2, 3
draw 2t fair coin flips

if #Heads 6= #Tails then return 0
return 1

The verification depends on an identity for 1/π due to Ramanujan.

Theorem 3 and Corollary 5 delineate our subject matter, giving an upper bound on the
types of discrete distributions probabilistic grammars and machines can possibly represent.

3.1 Conditioning probabilistic grammars

One of the most important operations on probability distributions is conditioning, typically
used to encode the effect of updating the distribution with some observation. Our first
result about conditioning is negative (cf. Wood et al. 2011 for a related result in the context
of so called Solomonoff induction):

Theorem 6. The class of distributions defined by probabilistic grammars (equivalently, probabilis-
tic Turing machines) is not closed under conditioning, even with finite sets.

Proof. Take any computably enumerable (but not computable) real number p and rational
number r such that p + r < 1. By Theorem 3 there is a grammar G that terminates with
probability p + r, such that PG(a) = p and PG(aa) = r. Consider the support S+ = {a, aa}
of PG . We claim that the normalization PG(σ | S+) is not computably enumerable. If it
were, it would also be computable (Lemma 4). In particular, there would be a computable
sequence q1 ≥ q2 ≥ q3 . . . converging from above to PG(a | S+) = p

p+r . But from this

we can obtain another sequence t1
t1+r ≥

t2
t2+r ≥

t3
t3+r . . . converging to p

p+r , such that the
sequence t1, t2, t3 . . . converges from above to p, which by hypothesis is impossible.

At the same time, we obtain a positive closure result by restricting attention to those
grammars or machines that almost-surely terminate, or slightly more generally to those
that define computable distributions. In fact, as Freer et al. (2014) describe, there is a single
probabilistic Turing machine that takes as input (the code of) a machine T and (the code
of) a computable predicate S, and then produces strings σ with probabilities PT (σ | S). In
the present setting, all this machine must do is implement a kind of “rejection sampling”
procedure, repeatedly running T until it outputs some σ ∈ S, at that point returning σ.

Theorem 7. The computable semi-measures are closed under conditioning with computable sets.

4 Probabilistic Regular Grammars

We turn now to the most restrictive class of grammars, the probabilistic regular grammars
(PRGs). These grammars have received relatively little direct attention. However, due

12

to their equivalence with probabilistic finite state automata (see, e.g., Smith and Johnson
2007), which are in turn equivalent in expressive power to discrete hidden Markov models
(Dupont et al., 2005) as well as so called discrete phase-type distributions (O’Cinneide,
1990), much is already known about them. Such models furthermore have a long history
in psychology and cognitive science (Miller, 1952).

As above, we deal with the special case of only 1/2 production probabilities, which
would correspond to 1/2 transition probabilities in probabilistic automata.

4.1 Expressing Rational Probabilities

A first observation is that, had we begun with any real-valued probabilities q and 1− q, we
would nonetheless be able to simulate 1/2 productions. In this sense the assumption that
we do have 1/2 productions is with no loss. The trick goes back to von Neumann (1951)

and can in fact be carried out with PRGs. For example, if we wanted X
1/2→ Y1 and X

1/2→ Y2,
we could simply add two new non-terminals, Z1, Z2, and define:

X
q→ Z1 Z1

q→ X Z2
1−q→ X

X
1−q→ Z2 Z1

1−q→ Y1 Z2
q→ Y2

Perhaps more impressively, PRGs are able to produce strings with arbitrary rational prob-
abilities using only 1/2. (This basic idea can be traced back at least to Knuth and Yao 1976.)

Example 10. To simulate X
1/3→ Y1, X

1/3→ Y2 and X
1/3→ Y3 we again add just two new non-

terminals and define:

X
1/2→ Z1 Z1

1/2→ X Z2
1/2→ Y2

X
1/2→ Z2 Z1

1/2→ Y1 Z2
1/2→ Y3

The probability of X rewriting to each is ∑n>0 1/22n = 1/3.

Indeed, consider any rational number q, guaranteed to have a periodic binary expan-

sion 0.b1 . . . bkbk+1 . . . bk+m. To simulate productions (X
q→ Y1), (X

1−q→ Y0), we use non-
terminals X1(= X), X2, . . . , Xk+m and introduce productions:

Xi
1/2→ Ybi

for each i ≤ k + m

Xi
1/2→ Xi+1 for each i < k + m

Xk+m
1/2→ Xk+1

X rewrites to Y1 with probability q and to Y0 with probability 1− q. The intuition is similar
to the proof of Theorem 3: we are effectively generating ever closer approximations to a
random real number, and once we definitively undershoot q (by generating an nth bit 0
when the nth bit of q is 1) or overshoot q (generating 1 when the corresponding bit of q is
0) we know which of Y1 and Y0 to choose.

Repeating this procedure finitely many times gives us:

Theorem 8. Let P1, . . . , Pn be PRG-definable distributions. For any rational numbers q1, . . . , qn,
with ∑i≤n qi ≤ 1, the semi-measure P given by P(σ) = ∑i≤n qiPi(σ) is also PRG-definable.

13

From now on we will freely label rules with rational probabilities, with the understand-
ing that they can be rewritten using only 1/2, perhaps by adding further non-terminals.

Corollary 9. Probabilistic regular grammars define all finite-support rational-valued distributions.

This already captures an extraordinarily wide variety of distributions, including many
that are of central importance in psychological modeling such as (rational parameter val-
ued) Bayesian networks (Pearl, 1988). We also have:

Example 11 (Beta-Binomial). Recall Example 4. As long as α, β ∈ Z+, the (finitely many
non-zero) probability values will always be rational, which by Corollary 9 means we can
define it with a PRG. The more general Dirichlet-Multinomial can likewise be expressed,
again provided we restrict to positive-integer-valued parameters.

In addition, PRGs can define many important infinite-support distributions, following
again from Theorem 8. Recall Example 2:

Example 12 (Negative Binomial). Let us introduce t + 1 non-terminals N = {X0, . . . , Xt}
with productions for each n < t:

Xn
1−q→ aXn Xn

q→ Xn+1 Xt
1−q→ aXt Xt

q→ ε

This easily defines the negative binomial distribution µq,t from Example 2.

Any discrete probability can of course be arbitrarily well approximated by rational-
valued distributions, and the same is even true for continuous measures: the finite-support
rational-valued distributions are everywhere dense in the space of Borel probability mea-
sures (under the weak topology, see Billingsley 1999). Moreover, this extends to the setting
of computable probability spaces, where we additionally require approximating sequences
to be uniformly computable (Gács, 2005; Ackerman et al., 2019). Thus, concerning pure
expressivity, if we accept mere approximation (which we must in the continuous setting
anyway), probabilistic regular grammars with 1/2-productions suffice in principle.

4.2 Normal Form and Matrix Representation

We would nonetheless like to understand the expressive limitations of PRGs, and in this
direction it will be convenient to assume a normal form for them.

In the following lemma let us say that a non-terminal Y is transient if either there are are
no productions for Y at all, or there is α ∈ Σ∗ such that (Y → α) ∈ Π. In other words, Y fails
to be transient just when it rewrites with probability 1 to another non-terminal. Say that Y
is reachable from X if either X = Y or there is some sequence (X → Z1), . . . , (Zn → Y).

Lemma 10 (PRG normal form). Every PRG-definable distribution can be expressed by a PRG
with the following properties:

1. In all productions (X → σY) and (X → σ) we have |σ| ≤ 1, i.e., either σ ∈ Σ or σ = ε.

2. X0 does not appear on the right-hand-side of any production, and there are only productions
of the form (X0 → Y) with Y a non-terminal.

3. From every X some transient Y is reachable.

14

Proof. To show 1, it is enough to observe that whenever we have a production (X → abY)
where a, b ∈ Σ, we can simply introduce a new non-terminal Z and replace it with two
new productions (X → aZ) and (Z → bY). By induction we can always replace any such
(X → σY) with |σ| new productions.

To guarantee 2, introduce a new non-terminal Z, replace X0 with Z everywhere in the
grammar, and add (X0 → Z).

For 3, consider the set X of non-terminals reachable from X. If X contains no transient
elements, then for every Z ∈ X there are Z1, Z2 ∈ X with (Z → σ1Z1), (Z → σ2Z2) ∈ Π
(possibly Z1 = Z2). Since the elements of X thus always rewrite to one another, the dis-
tribution on words would not change if we simply removed all productions with elements
of X on the left-hand-side. This immediately guarantees all elements of X are transient. If
X = ∅ then X itself is transient.

From here on let us assume that G is in normal form, satisfying 1-3 of Lemma 10. We
can represent G using (substochastic) matrices. WhereN = {X0, . . . , Xm} let L be an m×m
matrix (indexed 1, . . . , m), with entries determined by G:

L[i, j] = P(Xi → Xj)

Similarly for each a ∈ Σ we define an m×m matrix A:

A[i, j] = P(Xi → aXj)

To summarize the remaining productions we define a (row) vector v and (column) vectors
w and a (one for each a ∈ Σ), all of length m, defined so that:

v[i] = P(X0 → Xi)

w[i] = P(Xi → ε)

a[i] = P(Xi → a)

The probability of a word σ = a1 . . . an can thus be represented:

PG(σ) = ∑
k1,...,kn+1≥0

vLk1 A1 . . . Lkn AnLkn+1 w + ∑
k1,...,kn≥0

vLk1 A1 . . . Lkn an

= v
(

∑
k≥0

Lk)A1 . . .
(

∑
k≥0

Lk)An
(

∑
k≥0

Lk)w + v
(

∑
k≥0

Lk)A1 . . .
(

∑
k≥0

Lk)an

The fact that G is in normal form guarantees that these infinite sums can be eliminated from
the equation. Specifically:

Lemma 11. lim
k→∞

Lk = 0.

Proof. The statement is equivalent to the spectral radius of L (largest absolute value of its
eigenvalues) being strictly less than 1 (see, e.g., Kress 1998). Because L is a contraction (e.g.,
with respect to l1 norm) we know the spectral radius is less than or equal to 1, so it remains
only to show that it cannot be 1.

If 1 were an eigenvalue of L then we would have Lx = x for some non-zero x. Thus,
for each index i of x one of the following must hold: (1) x[i] = 0, (2) x[i] = 1

2 x[j] for some
j, (3) x[i] = 1

2 x[j] + 1
2 x[k] for some j, k, or (4) x[i] = x[j] for some j. Note that those i

corresponding to transient non-terminals Xi will never satisfy (3) or (4). Consider the set

15

I = {i : the absolute value of x[i] is maximal}. Since x is non-zero, no i ∈ I can satisfy (1)
or (2). Moreover, for no such i do we have x[i] = x[j] with j /∈ I. By condition 3 of Lemma
10 (normal form), for some i we must therefore have x[i] = 1

2 x[j] + 1
2 x[k] for some j, k, at

least one of which must not be in I. But this too is impossible.

Lemma 12. ∑k≥0 Lk = (I− L)−1

Proof. The proof is standard, but we give it for completeness. We want to show that the
matrix product (I− L)(∑k≥0 Lk) is equal again to the identity matrix I.

(I− L)(∑
k≥0

Lk) = lim
n→∞

(
(I− L)(∑

n≥k≥0
Lk)
)

= lim
n→∞

(
∑

n≥k≥0
Lk − ∑

n≥k≥0
Lk+1

)
= lim

n→∞

(
L0 − Ln+1)

= lim
n→∞

(
I− Ln+1)

But because lim
n→∞

Ln+1 = 0, this limit is in fact equal to I.

By Lemma 12, and abbreviating (I− L)−1 as M, we have:

PG(σ) = vMA1 . . . MAnMw + vMA1 . . . Man

= vMA1 . . . M(AnMw + an) (3)

Because multiplying and taking inverses of matrices never leads to irrational numbers, Eq.
(3) establishes a sort of converse of Corollary 9:

Proposition 13. For any PRG G and any word σ, the probability PG(σ) is a rational number.

4.3 Rational Generating Functions

Theorem 8 and Proposition 13 tell us about the kinds of probability values specific words
can take. But we would also like to understand the overall structure of the distribution
produced by a PRG. In the present section we restrict attention to Σ = {a}, which we
interpret as providing unary notations for positive integers. In this case Eq. 3 can be written
even more simply. Abbreviating MA by N we have:

PG(ak+1) = vNk(NMw + Ma
)

In other words, there are fixed vectors v and u such that:

PG(ak+1) = vNku (4)

Eq. 4 leads to the following result (cf. Paz 1971):

Lemma 14. There are fixed constants c1, . . . , cm, such that for every k ∈N:

PG(ak+m+1) =
m

∑
i=1

ci PG(ak+i).

16

Proof. By the Cayley-Hamilton Theorem, N satisfies its own characteristic equation, i.e.:

Nm = c1I + c2N + · · ·+ cmNm−1

for constants c1, . . . , cm. Multiplying each term on the left by vNk and on the right by u:

vNk+mu = c1vNku + c2vNk+1u + · · ·+ cmvNk+m−1u.

In other words, PG(ak+m+1) = c1 PG(ak+1) + c2 PG(ak+2) + · · ·+ cm PG(ak+m).

A quick, high-level derivation of this next result from Lemma 14 can be found, e.g., in
Theorem 4.1.1 of Stanley (2011). We give an explicit proof here.

Theorem 15. The probability generating function for any PRG on Σ = {a} is a rational function.

Proof. The aim is to show there are polynomials Q0(z) and Q1(z) such that GG(z) =
Q0(z)
Q1(z)

.
In other words we want Q0(z)−Q1(z)GG(z) = 0. We leave off the subscript G from GG and
from PG . Define Q1(z) to be the m-degree polynomial −c1zm +−c2zm−1 + · · ·+−cmz + 1:

Q0(z)−Q1(z)G(z) = Q0(z) + c1zmG(z) + · · ·+ cmzG(z)−G(z)

Setting this equal to 0 we can solve for Q0(z). We would like Q0(z) such that:

G(z) = Q0(z) + c1zmG(z) + · · ·+ cmzG(z)
∞

∑
k=0

P(ak)zk = Q0(z) +
∞

∑
k=0

c1P(ak)zk+m + · · ·+
∞

∑
k=0

cmP(ak)zk+1

By Lemma 14 we have ∑∞
k=m P(ak)zk equal to:

∞

∑
k=0

c1P(ak)zk+m + · · ·+
∞

∑
k=m−1

cmP(ak)zk+1.

Thus, setting Q0(z) equal to the m− 1-degree polynomial

P(ε) +
(
P(a)− cmP(ε)

)
z + · · ·+

(
P(am−1)−

(
c2P(ε) + c3P(a) + · · ·+ cmP(am−2)

))
zm−1

gives us the desired equality.

A version of Theorem 15 can be traced back to observations of Schützenberger (1961)
(see also Eilenberg 1974; Salomaa and Soittola 1978; Kuich and Salomaa 1986; Flajolet and
Sedgewick 2001; Kornai 2008; Bhattiprolu et al. 2017). It is known that probabilistic au-
tomata and the closely related discrete phase-type distributions (and therefore also PRGs)
do not define all probability distributions with rational pgfs, even if we were to allow arbi-
trary positive real number weights (Eilenberg, 1974; Soittola, 1976; O’Cinneide, 1990). The
reason is that any generating function for one of these devices must be a merge of rational
functions possessing unique poles of minimal modulus (i.e., there can only be one zero of
the denominator with minimal absolute value). See §VIII Example 6.1 of Eilenberg (1974).

Note that it is important for Theorem 15 that positive integers be represented in unary.
If we instead used a binary representation, for example, then as 10k is the binary represen-
tation of 2k, we could define a distribution whose pgf is transcendental (Lemma 1).

17

4.4 Conditioning with a Regular Set

Given the previous results we can show that PRG-definable distributions are closed under
conditioning with regular sets of words. In that direction we first show the following useful
closure result (cf. Nederhof and Satta 2003):

Lemma 16 (Normalization). Given a PRG G, consider the set S+
G = {σ ∈ Σ∗ : PG(σ) > 0} of

words with positive probability. There is a PRG G+ such that PG+(σ) = PG(σ | S+
G) for all σ.

Proof. Given G, for each non-terminal Xi define:

ν(Xi) = ∑
σ∈Σ∗

P
Xi
G (σ)

to be the probability that Xi rewrites to a word. We claim that ν(Xi) is always a rational
number. Consider the grammar G now with Xi as the start symbol, and assume with-
out loss that this grammar is in normal form (so in particular Xi satisfies condition (2) of
Lemma 10). Define row vector v, matrix T, and column vector f so that:

v[j] = PG(Xi → Xj)

T[j, k] = ∑
σ∈Σ∪{ε}

PG(Xj → σXk)

f[j] = ∑
σ∈Σ∪{ε}

PG(Xj → σ)

Evidently, ν(Xi) = v
(

∑k≥0 Tk)f, so it remains only to show that ∑k≥0 Tk is rational. As
G is in normal form, the same argument as in Lemma 11 establishes that lim

k→∞
Tk = 0, and

hence that ∑k≥0 Tk = (I− T)−1 (Lemma 12), implying that ν(Xi) is indeed rational.
To obtain the “normalized” grammar G+ we simply multiply each rule probability by

a certain rational number, with Theorem 8 guaranteeing that we can always construct such
a grammar. Specifically, each rule (X → σ) is now in G+ given probability

PG(X → σ)

ν(X)

and each rule (X → σY) is now given probability

PG(X → σY) · ν(Y)
ν(X)

.

To show that PG+(σ) = PG(σ | S+
G) we establish a slightly stronger claim, namely that for

every non-terminal X and every parse ρ = 〈X, . . . , σ〉, with σ ∈ Σ∗, we have

PG+(ρ) =
PG(ρ)
ν(X)

. (5)

We show (5) by induction on the length of ρ, with the base case being ρ = 〈X, σ〉 and
σ ∈ Σ ∪ {ε}. Then PG+(〈X, σ〉) = PG+(X → σ) = PG(X → σ)/ν(X) = PG(〈X, σ〉)/ν(X).

18

For the inductive case, consider ρ = 〈X, σ0Y, . . . , σ〉, where σ0 ∈ Σ ∪ {ε} and σ = σ0σ1:

PG+(〈X, σ0Y, . . . , σ〉) = PG+(X → σ0Y) · PG+(〈Y, . . . , σ1〉)

=
PG(X → σ0Y) · ν(Y)

ν(X)
· PG(〈Y, . . . , σ1〉)

ν(Y)

=
PG(X → σ0Y) · PG(〈Y, . . . , σ1〉)

ν(X)

=
PG(ρ)
ν(X)

.

Taking X = X0 and summing over all parses of σ, this establishes the main claim.

Recall a non-deterministic finite-state automaton (NFA) is a tuple D = (Q, Σ, ∆, q0, q f)
consisting of a set Q of states, an alphabet Σ, a transition relation ∆ ⊆ Q × Σ × Q, and
distinguished start q0 and final q f states (see, e.g., Hopcroft and Ullman 1979). D accepts
a word σ ∈ Σ∗ if there is some sequence of transitions starting in state q0, successively
reading the symbols of σ, and ending in q f . NFAs accept exactly the regular sets of words.

We now show how to construct, from PRG G and some NFA D accepting a regular set
R, a grammar G ⊗ D with the property that PG⊗D(σ | S+

G⊗D) = P(σ | R). Lemma 16 in
turn guarantees that this distribution can itself be defined by a PRG, which will prove:

Theorem 17. The class of distributions definable by probabilistic regular grammars is closed under
conditioning with regular sets.

Proof. The non-terminals of G ⊗ D are all pairs 〈Xi, Q〉, with Xi a non-terminal of G and
Q ⊆ Q a non-empty set of states of D. We also include a “loop” non-terminal Λ. The
productions of G ⊗D are obtained from G and D. As before assume G is in normal form.

1. For each (Xi → Xj) and Q, add a production (〈Xi, Q〉 → 〈Xj, Q〉).

2. For each (Xi → ε) and Q containing q f , add a production (〈Xi, Q〉 → ε).

3. For each (Xi → a) and Q containing a q with (q, a, q f) ∈ ∆, add (〈Xi, Q〉 → a).

4. For each (Xi → aXj) and Q, if Q′ = {q′ : (q, a, q′) for some q ∈ Q} is non-empty, then
add the production (〈Xi, Q〉 → 〈Xj, Q′〉).

Finally, if in G there were two productions with Xi on the left hand side, and for some Q we
have added fewer than two productions for 〈Xi, Q〉, add a production (〈Xi, Q〉 → Λ). This
guarantees, in the resulting grammar G ⊗D, that every parse of every word has the same
probability as it did in G. In other words, PG(σ) = PG⊗D(σ) for every σ. However, the
words that receive positive measure in G ⊗D are exactly those in R that received positive
measure in G. That is to say, R ∩ S+

G = S+
G⊗D . In addition, PG(σ | R) = PG(σ | R ∩ S+

G).
Hence, PG⊗D(σ | S+

G⊗D) = P(σ | R), as desired.

5 Probabilistic Context-Free Grammars

Probabilistic context-free grammars (PCFGs) are undoubtedly the most thoroughly studied
of probabilistic grammars. Due to their ability to capture hierarchical structure in language,

19

and the existence of good learning models, PCFGs have been ubiquitous in computational
approaches to language and grammar (see, e.g., Klein and Manning 2003; Levy 2008; Kim
et al. 2019). But they have also seen many applications in other areas of psychology, for ex-
ample, as encoding a probabilistic hypothesis space for concepts (Tenenbaum et al., 2011).

As mentioned above, by results of Abney et al. (1999) and Etessami and Yannakakis
(2009), PCFGs express the same class of distributions as pushdown automata and recursive
Markov chains. (However, see the discussion below in §5.1 for qualification.)

Example 13 (Symmetric Random Walk). Recall the symmetric 1/2-random walk on the non-
negative integers (Example 3). The hitting time for first reaching 0 is a random variable
with the same distribution as that defined by the simple grammar G2 in Example 6:

X0
1/2→ aX0X0 X0

1/2→ a

In the analytic expression from Example 3, the kth Catalan number ck counts the number
of parses of a2k+1, while each parse has probability 2−2k+1.

The next four examples reveal irrational word probabilities:

Example 14. Consider the grammar:

X0
1/4→ X0X0 X0

1/4→ a X0
1/2→ ε

Then, for instance, P(ε) is a solution to the equation x = 1
4 x2 + 1

2 , equal to 2−
√

2.

Example 15 (Olmedo et al. 2016). The following grammar is quite simple:

X0
1/2→ X0X0X0 X0

1/2→ ε

Yet, P(ε) is a solution to x = 1
2 x3 + 1

2 , equal to 1/ϕ, where ϕ is the golden ratio.

Example 16 (Etessami and Yannakakis 2009). This grammar is also quite simple.

X0
1/6→ X0X0X0X0X0 X0

1/2→ a X0
1/3→ ε

However, P(ε) is a solution to x = 1
6 x5 + 1

3 , which is is not even solvable by radicals.

The last three examples involve distributions assigning positive probability to the empty
string. This is not essential for producing irrational probability values:

Example 17. Consider the grammar:

X0
1/2→ aY X0

1/2→ a Y
1/4→ YY Y

1/4→ a Y
1/2→ ε

Then P(ε) = 0, but, for instance, P(a) = 3−
√

2
2 .

However, it might also be noticed that these distributions all maintain infinite support,
or assign positive probability to the empty string. It turns out that this is essential:

Proposition 18. For distributions with finite support, PCFGs generate all and only the rational-
valued semi-measures.

20

Proof. Suppose a PCFG G has finite support S+
G = {ak1 , . . . , akn} with all ki > 0, and let

m = max(k1, . . . , kn). If X0 rewrites to some intermediate string α ∈ (N ∪Σ)∗ with positive
probability and |α| > m, then |α| −m of the non-terminals in α cannot rewrite to a positive-
length word with any positive probability. Otherwise the grammar would assign positive
measure to a word longer than m. Revise G by removing each non-terminal Y such that
PY
G(ε) = 1, and replacing Y with the empty string anywhere it appears on the right-hand

side of a rule. Thus, in the revised grammar X0 rewrites with positive probability to only
finitely many intermediate strings α that may eventually rewrite to a word. Let A be the
set of such α (including X0 itself), and let L be the set of those intermediate strings that
loop with probability 1.

Define a probabilistic regular grammar G? using a non-terminal Xα for each α ∈ A, in
addition to a special non-terminal Λ. For each pair α1, α2 ∈ A, if there is a production
in G that would rewrite α1 as α2, add to G? a production (Xα1 → Xα2). Likewise, if G
has α rewrite in one step to a string in L, include a production (Xα → Λ). Finally, add a
production (Xaki → aki) for each aki ∈ S+

G .
G? clearly generates the same distribution on S+

G as the original grammar G. By Propo-
sition 13 we know that every such value PG(aki) = PG?(aki) must be rational.

Using Proposition 18 we can also show that PCFGs, as we have defined them, are not
in general closed under conditioning (though see Nederhof and Satta 2003 for a proof that
PCFGs are closed under conditioning with regular sets if we allow irrational weights):

Proposition 19. PCFGs are not closed under conditioning, even with finite sets.

Proof. Consider the distribution in Example 17 together with the finite set {a, aa}. Evi-
dently, P(a | {a, aa}) = 20−2

√
2

21 , which is not a rational number. Because this distribution
has finite support, Proposition 18 shows it cannot be defined by a PCFG.

5.1 Algebraic Generating Functions

The probabilities in Examples 13-17 are all algebraic numbers. This is an instance of a more
general result about the pgf for any PCFG G. Assume Σ = {a} and N = {X0, . . . , Xn}.
We will define a polynomial equation xi = Qi(z, x0, . . . , xn) in n + 2 variables for each non-
terminal Xi. For a string α ∈ (N ∪ Σ)∗ let α̂ be the result of replacing a with z, and Xi with

xi for each non-terminal Xi (and let α̂ = 1 if α = ε). Suppose in G we have both Xi
1/2→ α1

and Xi
1/2→ α2. Then our equation for Xi is:

xi =
1
2

α̂1 +
1
2

α̂2 (6)

with concatenation interpreted as multiplication. Likewise, if G has Xi
1→ α, then the

equation for Xi is simply xi = α̂. G thus produces a system of n + 1 polynomial equations:x0
...

xn

 =

Q0(z, x0, . . . , xn)
...

Qn(z, x0, . . . , xn)

 (7)

21

Example 18. Returning to Examples 3, 13, we obtain equation:

x =
1
2

x2z +
1
2

z

Solving for x gives an expression for the pgf, G(z) =
(
1−
√

1− z2
)
/z.

By Theorem 15, even though the distribution in Example 3 only involves rational prob-
ability values, we have (see Kornai 2008; Bhattiprolu et al. 2017 for related observations):

Proposition 20. The symmetric random walk distribution from Examples 3 and 13 cannot be
defined by any probabilistic regular grammar.

Toward a similar general limitative result for PCFGs, denote by gi the generating func-
tion G

Xi
G (z) = ∑∞

k=0 P
Xi
G (ak)zk corresponding to the probability function P

Xi
G , and let g be

the vector (g0, . . . , gn)T . Lemma 21 now follows by a routine verification. (We leave off the
subscript G in what follows.)

Lemma 21. The vector g is a solution to the system of equations in (7); in other words, gi =
Qi(z, g0, . . . , gn) for all i ≤ n.

Proof. Suppose there is a single production for Xi, rewriting to a string with j occurrences
of a and non-terminals Xj0 , . . . , Xjm (with possible repetitions). First note that:

PXi (aj+k) = ∑
(l1+···+lm=k)

∏
t≤m

P
Xjt (alt)

This implies that

GXi (z) =
∞

∑
k=0

PXi (aj+k)zj+k

=
∞

∑
k=0

(
∑

(l1+···+lm=k)
∏
t≤m

P
Xjt (alt)

)
zj+k

= zj
∞

∑
k=0

(
∑

(l1+···+lm=k)
∏
t≤m

P
Xjt (alt)

)
zk

= zj ∏
t≤m

(∞

∑
k=0

P
Xjt (ak)zk)

= zj ∏
t≤m

GXjt (z)

But zjxj0 . . . xjm is the exactly the monomial Qi. Similarly, if Xi has two productions, each
with probability 1/2, a very similar argument goes through by appeal to Eq. 6.

In particular, the first component g0 = GG(z) is the pgf for G overall. Lemma 21 does
not quite show that g0 is an algebraic function in the sense of §2.2. We need to show that
there is a polynomial equation 0 = Q(y, z) in variables y and z such that y = g0 is a
solution. However, it is known from elimination theory that for any system like (7) there is
such a polynomial Q(y, z) such that the first component of any solution to (7) is also a root
of Q(y, z). See the Elimination Theorem on p. 16 of Cox et al. (2000). (See also the closely
related discussions in Kuich and Salomaa 1986; Flajolet and Sedgewick 2001; Panholzer
2005.) Thus, we have the following result (cf. Booth and Thompson 1973; Yao 1985):

22

Theorem 22. The probability generating function for any PCFG on Σ = {a} is algebraic.

In particular this means that there is no PCFG encoding a Poisson distribution (Ex-
ample 1). The fact that PCFGs cannot represent all algebraic pgfs of course follows from
Proposition 18 (cf. Proposition 24 below).

Note that Theorem 22 is importantly different from the classic Chomsky-Schützenberger
Theorem for non-probabilistic grammars (see Chomsky and Schützenberger 1963; Kuich
and Salomaa 1986). The latter concerns word length counts, and states that the associ-
ated generating functions are algebraic for unambiguous context-free grammars. Indeed,
the fact that context-free languages may possess transcendental generating functions is a
useful tool for showing inherent ambiguity of a context-free language (Flajolet, 1987). By
contrast, Theorem 22 applies to all PCFGs.

At the same time, it has been shown that ambiguity is necessary for PCFGs to go be-
yond the power of PRGs for a one-letter alphabet: any distribution represented by a PCFG
that is merely polynomially ambiguous—meaning that the number of parses for each word is
bounded by a fixed polynomial in the word’s length—can be represented by a PRG (Bhat-
tiprolu et al., 2017), and hence will possess a rational probability generating function. It of
course follows that the distributions in Examples 13-17 are all exponentially ambiguous.

Finally, observe that essentially the same method used here to prove Theorem 22 could
provide an alternative method of proof for Theorem 15, since for a PRG the system in (7)
would be one of linear equations, and Gaussian elimination would produce a polynomial
equation of degree 1.

6 Probabilistic Indexed Grammars

Many grammar formalisms in between context-free and context-sensitive have been ex-
plored in computational linguistics (see, e.g., Kallmeyer 2010 for an overview covering
many of them, including probabilistic extensions), and some of these have featured in psy-
chological models of language processing (e.g., Levy 2008; Nelson et al. 2017). Yet there has
been almost no study of their expressive capacity for defining probability distributions.

Among the most well studied in the non-probabilistic setting are the indexed grammars,
due to Aho (1968). The presentation here is a variation on that in Hopcroft and Ullman
(1979). To N and Σ we add a finite set I of indices. Non-terminals are associated with a
stack of indices and can pass on this stack to other non-terminals, in addition to pushing
and popping indices from the stack at each step. Productions apply now to a pair X[l] of
non-terminal together with a topmost index l ∈ I ∪ {ε} (which may be empty) on its stack.
Productions may be of three types, where the third is relevant only when l 6= ε:

1. X[l]→ α[l] (copy indices to all non-terminals in α)

2. X[l]→ α[kl] (push index k and copy the result)

3. X[l]→ α (pop index l and copy the rest)

In a parse, each non-terminal is tagged with a stack of indices, with the start symbol X0
initially carrying the empty index stack. The stack attached to the non-terminal on the left is
then copied to all of the non-terminals appearing on the right-hand-side of the production,
modulo a pop or push, while elements of Σ do not carry index stacks.

23

As in §2.3, a probabilistic indexed grammar satisfies the restriction that each pair of a non-
terminal X and a top index l ∈ I ∪ {ε} appears on the left of 0, 1, or 2 productions, again
with the usual probabilistic interpretation. All of the other definitions from §2.3 similarly
remain unchanged. The main point about these grammars is the following:

Proposition 23. Probabilistic indexed grammars can define distributions with transcendental pgfs.

Proof. Here is a grammar defining P(a2k
) = 2−k:

X0[]
1→ Y[l] Y[l]

1/2→ Y[ll] Y[l]
1/2→ Z[l] Z[l] 1→ ZZ Z[] 1→ a

We observed in Lemma 1 that its pgf is transcendental.

This shows that we have gone beyond the expressive capacity of PCFGs, even for a
one-letter alphabet. There are still relatively simple distributions that probabilistic indexed
grammars cannot define. For example, the factorial language {ak! : k > 0}, while context-
sensitive, has been shown beyond the capability of indexed grammars (Hayashi, 1973).
A fortiori no probabilistic indexed grammar can define a distribution with this set as its
support. Before moving to probabilistic context-sensitive grammars we first consider a
natural and important restriction.

6.1 Probabilistic (Right-)Linear Indexed Grammars

A notable proper subclass of the indexed grammars are the linear indexed grammars (Duske
and Parchmann, 1984; Gazdar, 1988), where we assume—similar to a regular grammar
(§2.3)—that at most one non-terminal appears on the right-hand-side of a production.
This is an example of a mildly context-sensitive formalism, weakly equivalent to other well
studied grammatical formalisms like tree-adjoining grammar and combinatory catego-
rial grammar (Joshi et al., 1991). Despite the restriction, it is straightforward to show
that the these grammars also extend PCFGs (see Duske and Parchmann 1984 for the non-
probabilistic case). That they do so properly is the next result.

Proposition 24. Probabilistic linear indexed grammars can represent distributions that cannot be
expressed by PCFGs.

Proof. The following grammar defines a distribution with finite support, but also with ir-
rational probabilities.

X0[]
1/2→ a Y[l]

1/4→ Y[ll] Y[l]
1/2→ Y

X0[]
1/2→ aY[l] Y[l]

1/4→ a Y[] 1→ ε

With 1/2 probability X0 rewrites to aY[l], while Y[l] in turn rewrites to ε with irrational
probability 2−

√
2 (recall Examples 14 and 17). Thus, P(a) = 3−

√
2

2 , while P(aa) =
√

2−1
2 .

By Proposition 18, P cannot be defined by any PCFG.

In fact, this grammar is not only linear, it is even right-linear, meaning that any non-
terminal on the right-hand-side appears to the right of all terminal symbols (as in our def-
inition of regular grammars from §2.3—in that case, right-linearity is not a substantive re-
striction; see Hopcroft and Ullman 1979). In the non-probabilistic setting, such grammars
define exactly the context-free languages (Aho, 1968). But in the probabilistic setting they
are evidently more expressive. As another example of a probabilistic right-linear indexed
grammar, recall the tortoise and hare program defined earlier in Example 8:

24

Example 19 (Tortoise & Hare). We can mimic this program as follows:

X0[]
1→ Y[l] Y[l]

1/6→ aY[l] Y[l]
1/6→ aZ Y[] 1→ ε

Y[l]
1/2→ aY[ll] Y[l]

1/6→ aY Z[l] 1→ Y Z[] 1→ ε

The probability that X0[] rewrites to ak is exactly the probability that the program in Ex-
ample 8 returns k, i.e., that the hare catches up in k steps. Although the distribution is
rational-valued, we conjecture that it is not PCFG-definable.

Given aforementioned results from the literature, Proposition 24 may seem surprising.
Right-linear indexed grammars can be seen as grammatical versions of counter or push-
down automata (Duske et al., 1992), and there are several proofs implying that probabilis-
tic pushdown automata and PCFGs are equally expressive (Abney et al. 1999; Chi 1999;
see also the discussion in Smith and Johnson 2007). The apparent tension is resolved by
observing that the proofs in Abney et al. (1999) and Chi (1999) require solutions to non-
linear equations in order to define the requisite probabilities in the corresponding equiva-
lent PCFG. Proposition 18 simply shows that this cannot always be done if we only have
recourse to rational weights. The correspondence thus breaks down in our setting. Proba-
bilistic right-linear indexed grammars may therefore provide a better match to probabilistic
pushdown automata or the equivalent (“multi-exit”) recursive Markov chains.

Linear indexed grammars are unable to define the language {a2k
: k > 0} (they de-

fine only semi-linear languages in the sense of Parikh 1966; see Duske and Parchmann
1984); a fortiori probabilistic (right-)linear indexed grammars cannot define the distribution
P(a2k

) = 2−k, and thus fall short of general indexed grammars. In fact, following from
their correspondence with pushdown automata (Duske et al., 1992), and drawing on ex-
isting results for the latter (Kuich and Salomaa, 1986, Theorem 14.15), these grammars can
also be associated with algebraic generating functions.

7 Probabilistic Context-Sensitive Grammars

Grammars applied to natural language have typically been less powerful than the indexed
grammars, and certainly less powerful than context-sensitive. In fact, over the decades
there have been numerous explicit arguments that context-sensitive grammars are too com-
plex (Chomsky, 1959; Savitch, 1987; Joshi et al., 1991). Probabilistic context-sensitive gram-
mars (PCSGs) have rarely been considered, although they have occasionally appeared, e.g.,
in vision (Zhu and Mumford, 2007) and planning (Pynadath and Wellman, 1998). Proposi-
tions 29 and 30 below, together offer some further explanation for this relative absence.

In the classical hierarchy, context-sensitive grammars properly extend the indexed gram-
mars (Aho, 1968), even in the case of a one-letter alphabet, witness the factorial language
{ak! : k > 0} (Hayashi, 1973). Correspondingly, there are distributions definable by PCSGs
that elude any probabilistic indexed grammar, as shown below in Proposition 28. To gain
a better understanding of PCSGs, a helpful first observation is that, as in the classical case
(Hopcroft and Ullman, 1979), the requirement on PCSGs given in §2.3 is equivalent to the
intuitive stipulation that |α| ≤ |β|whenever (α→ β) ∈ Π. Such a non-contracting grammar
may also include X0 → ε if X0 does not appear on the right-hand-side of any production.

Lemma 25. Any distribution defined by a non-contracting probabilistic grammar G1 can also be
defined by a PCSG G0.

25

Proof. For each a ∈ Σ include a new non-terminal Xa and add production Xa → a to G0.
Replace a throughout G1 with Xa. For each production in G1 of the form (Y1 . . . Yn →
Z1 . . . Zm) with 2 ≤ n ≤ m, add n non-terminals W1, . . . , Wn, and 2n productions to G0:

Y1Y2 . . . Yn−1Yn → W1Y2 . . . Yn−1Yn

W1Y2 . . . Yn−1Yn → W1W2 . . . Yn−1Yn

...
W1 . . . Wn−1Yn → W1 . . . Wn−1WnZn+1 . . . Zm

W1 . . . WnZn+1 . . . Zm → Z1 . . . Wn−1WnZn+1 . . . Zm

...
Z1 . . . WnZn+1 . . . Zm → Z1 . . . ZnZn+1 . . . Zm

The PCSG G0 thus defines the same distribution as G1.

Lemma 25 suggests a natural class of PTMs corresponding to PCSGs, namely those that
never write a blank symbol t, so called non-erasing PTMs. The non-probabilistic version
of these machines was studied early on by Wang (1957) (see also Minsky 1967), though the
connection to context-sensitive grammars seems not to have been noted in the literature.

In this section we allow using one more symbol C, and assume the convention for a
PTM to output σ is having BσC on the tape followed by an infinite sequence of blank
symbols. It is evident that nothing from §3 will be affected by this.

Theorem 26. PCSGs and non-erasing PTMs are equivalent.

Proof. The proof of Proposition 2 nearly already shows that any non-erasing PTM can be
emulated by a PCSG. Since a non-erasing PTM will never write t, we require only a slight
modification of the construction so that Xn+1 moves to the right of the string and finally
rewrites to C. All rules in this modified construction are non-contracting.

For the other direction, we need to show that a non-erasing PTM can identify the high-
est priority substring, flip a coin to determine whether to rewrite it and what to rewrite it
as, and then finally to rewrite it, possibly moving the remainder of the string to the right
in case the rewrite is longer. Identifying the highest priority substring α can be done with-
out changing the string at all, provided we are always writing C at the end. When a rule
(α → β) is identified the machine enters a fixed subroutine which involves going to the
end of α and checking whether that is also the end of the string. If it is, we move C over
|β| − |α| places and then easily perform the fixed rewrite. If it is not the end, then we first
replace the last symbol of α with another C; then we start shifting all of the extra symbols
to the right |β| − |α| places until we hit C to the left. At that point we know we are |α|
places to the right of the start of α, so we return to the beginning of α and simply write out
β, finally returning to the beginning of the string.

Proposition 27. PCSGs can define transcendental pgfs.

Proof. There is a PCSG defining the distribution P(a2k
) = 2−k, which we know by Lemma

1 has a transcendental pgf. This could be shown in two ways. First, we could explicitly de-
fine the PCSG, for instance by massaging the grammar in Example 7 into context-sensitive
form (cf. Example 9.5 in Hopcroft and Ullman 1979). Alternatively, we can describe a non-
erasing PTM that defines P(a2k

) = 2−k and appeal to Theorem 26. The machine first writes

26

aa. From this point it iteratively flips a coin and every time we see heads we double the
string. This latter operation can be done without ever writing t: rewrite the first a as C
and then move to the right until seeing t, rewriting it too as C. Write a to the right of C
and then go back until seeing the first a. If the next symbol to the left of that a is also an
a, then repeat, rewriting it as C and moving to the end of the string writing another a. But
if the next symbol to the left of the a is C, then we know we are done, in which case we
rewrite each C as a and move back to the B symbol. Enter s# upon seeing a first tails.

Invoking Theorem 26 again, it is also straightforward to show that a Turing machine can
copy a sequence of 1s an increasing number of times, continuing again until witnessing a
tails, without ever erasing any symbols. This means that there is a PCSG defining the
measure P(ak!) = 2−k for k > 0, which implies:

Proposition 28. PCSGs can define distributions that elude probabilistic indexed grammars.

PCSGs can thus define complex distributions. The following proposition gives a further
sense of how complex they can be. The statement is similar to an earlier result on non-
probabilistic context-sensitive grammars due to Savitch (1987):

Proposition 29. Consider any computably enumerable semi-measure P : Σ∗ → [0, 1]. There
is a PCSG (equivalently, non-erasing PTM) on augmented vocabulary Σ ∪ {C} defining a semi-
measure P̃ such that P(σ) = ∑n P̃(σCn) for all σ ∈ Σ∗.

Proof Sketch. In the construction of a probabilistic grammar from a (possibly erasing) PTM
in the proof of Theorem 2, whenever the PTM would write a t, instead write a C.

That is, the probability that a PTM returns σ is exactly the same as the probability that
the PCSG returns σ together with some extra “dummy” symbols tacked on to the end.
Despite the fact that PCSGs in some sense encompass all of the complexity of enumerable
semi-measures, there is another sense in which they are even weaker than PCFGs.

Proposition 30. For every PCSG F and every word σ, the probability PG(σ) is a rational number.

Proof. We again invoke Theorem 26 to prove the result. Suppose we are given a non-erasing
PTM T . We show that PT (σ) is rational for every σ. The critical observation is that any
non-erasing PTM T that produces a string BσC will only ever write to |σ|+ 2 tape cells,
on any possible successful execution. So we can consider the finite set C of all possible
configurations [s, η, i] leading up to BσC being on the tape in state s# while reading B.
Here, s is the current state, η is the string written on the |η| = |σ|+ 2 many tape cells, and
i < |σ|+ 2 is the index of the symbol currently being read.

From this description we can naturally define a PRG over alphabet {a} as follows. In-
clude a non-terminal Xc for each configuration c ∈ C other than the final one, and let X0
correspond to the initial configuration [s0,Bt|σ|+1, 0]. If configuration c2 follows configura-
tion c1 when T is reading random bit 0, then—unless c2 is the final configuration—include
a rule Xc1 → Xc2 ; and likewise when T is reading random bit 1. If in either case c2 is the
final configuration, then include a rule Xc1 → a. Evidently, PT (σ) = PG(a), and so the
result follows from Proposition 13.

Proposition 30 may seem perplexing in light of the fact that the context-sensitive lan-
guages properly extend the context-free languages, and even the indexed languages. The
crux of the matter is the treatment of the empty string. Going back to Chomsky (1959),

27

the context-sensitive languages only extend the context-free provided we stipulate that we
can always add the empty string to a language, e.g., by allowing (X0 → ε) when X0 never
occurs on the right-hand-side of any production. Examples 14-17 from §5 and Proposition
30 together show that this maneuver reverberates in a serious way once we turn to the
probabilistic setting. Perhaps unintuitively, PCSGs cannot even define the seemingly sim-
ple distributions in Examples 14 and 17, for instance. Thus, while it may be that “almost
any language one can think of is context-sensitive” (Hopcroft and Ullman, 1979), this is
evidently not true of distributions defined by probabilistic context-sensitive grammars.

From Corollary 9 and Propositions 13, 18, and 30 we obtain:

Corollary 31. PRGs, PCFGs, and PCSGs all define exactly the same finite-support distributions,
namely the rational-valued finite-support distributions.

By this point we have substantiated all of the qualitative relationships in the probabilis-
tic hierarchy depicted in Figure 1. The fact that there are distributions defined by prob-
abilistic linear indexed grammars but by neither PCSGs nor PCFGs follows from Propo-
sitions 24 and 30. Perhaps less obviously, we also now know that there are distributions
defined by probabilistic indexed grammars that elude both their linear variant and PCSGs.
To see this, let G4 be a probabilistic indexed grammar with PG1(a2k

) = 2−k for k > 1 (easily
definable by a variation on the construction in the proof of Proposition 23), and let G5 be the
grammar presented in the proof of Proposition 24. Define a new grammar G6 employing a
new start symbol that rewrites to the start symbols of G4 and G5, each with probability 1/2.
Evidently PG6 assigns probability 3−

√
2

4 to a, probability
√

2−1
4 to aa, and probability 1/2k+1

to every string a2k
, k > 1. Clearly PG6 cannot be defined using a linear indexed grammar

or by any PCSG. Furthermore we require only a one-letter alphabet.

8 Conclusion and Further Issues

The hierarchy of expressible distributions that emerges in Figure 1 reveals how much the
probabilistic setting can differ from the classical setting of formal language theory. Proper
inclusions going up the hierarchy mirroring the classical case might have been expected;
yet we reach incomparability already between the context-sensitive and context-free distri-
butions, a pattern that continues through the indexed languages. Furthermore, grammar
classes that are classically equivalent—such as the context-free and right-linear indexed
grammars—come apart in the probabilistic setting. And unlike in the classical setting, all
of these relationships can be observed even with distributions on one-letter alphabets, pace
Parikh’s theorem. A third theme is the significance of finite-support distributions. Proba-
bilistic context-free grammars define algebraic probability generating functions and prob-
abilistic context-sensitive grammars can define transcendental pgfs; yet when it comes to
finite-support distributions they both collapse into the rational-valued measures, already
definable by probabilistic regular grammars. Of the grammars studied here, only proba-
bilistic (right-linear) indexed (and of course unrestricted) grammars can define irrational-
valued measures with finite support.

8.1 Outstanding Mathematical Questions

Despite clarifying all of the inclusion/exclusion relationships among the classes in Figure
1, and establishing a partial correspondence between the probabilistic grammar hierarchy

28

and the analytical hierarchy (rational, algebraic, transcendental pgfs), a number of funda-
mental open questions remain. Some of the most significant technical questions include:

1. We have provided a full characterization of the distributions defined by probabilistic
grammars and by almost-surely terminating grammars in general. But is it possible
to provide full and informative characterizations any of the proper subclasses?

2. In particular, are the distributions defined by PRGs with rational weights exactly the
rational-valued distributions with rational pgfs?

3. What (proper) subclass of algebraic pgfs do PCFGs define?

4. Are the distributions defined by probabilistic right-linear indexed grammars exactly
the algebraic-number-valued distributions with algebraic pgfs? Or is there another
class of grammars that would define this class of distributions?

5. Which subclasses of transcendental pgfs do PCSGs and indexed grammars define?
Can we show that distributions like that in Example 8 cannot be defined by PCFGs?

6. What other closure results for conditioning can be obtained, aside from Theorems 6,
7, and 17, and Proposition 19?

7. Do we obtain more interesting distributions by going beyond the indexed languages
to higher levels of the so called hierarchy of indexed languages (Maslov, 1976)?

8. How high in the hierarchy do we need to go in order to define a Poisson distribution
(Example 1), or the distribution in Example 9, among others?

9. What other natural operations defined on grammars make sense in the context of
probabilistic modeling? For instance, suppose we added a special primitive non-
terminal P that produces a string ak with probability given by a Poisson distribution?
What would be obtain by adding this to the probabilistic regular grammars, or to
other grammar classes?

10. Which distributions can be defined by adding probabilities in the so called subregular
hierarchy, including classes that do not correspond to any natural grammar notions
(Schützenberger, 1965; Jäger and Rogers, 2012)?

11. What can be said about classes between regular and context-free grammars, such as
the linear or the “simple” context-free grammars (Hopcroft and Ullman, 1979)?

12. How might the results reported here shed light on questions about how tractably
distributions at one level of the hierarchy can be approximated by distributions defined
at lower levels? (See, e.g., Mohri and Nederhof 2000 for some results on this.)

To be sure, one can imagine many more natural questions still to be answered.

8.2 Generative Models in Psychology

Conceptually, what does the pattern of results reported here mean for psychological mod-
eling? Questions about the tradeoff between expressivity and complexity, along various
dimensions, of psychological models are quite familiar in the study of natural language, at

29

least since Chomsky (1959, 1965). But they are also of interest in nearly every other psy-
chological domain. A guiding methodological principle is to give special attention to the
simplest candidate models—those that require least of the agent being modeled—among
those that adequately capture the phenomena of interest (see, e.g., Feldman 2016). Human
learning is assumed to abide by a similar maxim, preferring the simplest hypotheses that
account for observed patterns (Chater and Vitányi, 2003).

The (probabilistic) Chomsky-Schützenberger hierarchy highlights a salient notion of
complexity, one that harmonizes well with other independent and potentially relevant
notions of complexity (e.g., the computational cost of parsing; see Pratt-Hartmann 2010).
Parts of the hierarchy have furthermore been used to explain differences in the processing
of quantifier expressions in natural language (Szymanik and Zajenkowski, 2010), and have
even been claimed to demarcate a meaningful boundary between human and non-human
thought (e.g., Berwick et al. 2011; for a dissenting view see, for instance, Jackendoff 2011).

It is often asserted that we essentially know without any further ado that the human
mind can at most be a (probabilistic) finite-state machine, if only because the brain itself is
finite (see, e.g., Eliasmith 2010; Petersson et al. 2012 for different expressions of this view).
On this picture the entire hierarchy collapses into the finite-state/regular. At the other
extreme we see claims to the effect that the phenomena force us to the top of the hierarchy:

Formalizing the full content of intuitive theories appears to require Turing-
complete compositional representations, such as probabilistic first-order logic
and probabilistic programming languages (Tenenbaum et al., 2011, p. 1284).

Our study lends support to both of these positions. On the one hand, Theorem 3 shows
definitively that the class of all probabilistic grammars—which also express exactly the dis-
tributions defined by Turing-complete probabilistic programming languages—can encode
virtually any discrete distribution that has ever been used for modeling, including those
that strictly elude lower levels in the hierarchy. On the other hand, Corollary 9 shows that
the much simpler probabilistic regular grammars can already define a number of promi-
nent distributions, and are capable in principle of providing effective approximations to any
distribution whatsoever; this is noteworthy insofar as approximation is inevitable when
encoding continuous distributions anyway (recall the discussion in §4.1). Furthermore,
both of these classes of distributions are closed under conditioning with the corresponding
natural classes of events (Theorems 7 and 17).

Needless to say, for many purposes neither extreme may be apt. Feasible finite-state dis-
tributions may provide too poor approximations for targets of interest, whereas the enu-
merable semi-measures—perhaps learnable in theory (Chater and Vitányi, 2003; Vitányi
and Chater, 2017)—may form too large a class for tractable learning. In between the two
extremes are natural classes capturing useful and intuitive distributions such as those as-
sociated with random walks (Examples 3, 8) or those associated with complex but con-
strained grammatical phenomena in natural language (Chomsky, 1965; Joshi et al., 1991).

A recent trend has been to construe much of learning, even outside the domain of lan-
guage, as a matter of inducing stochastic procedures, formalized as grammars or programs
(see, e.g., Lake et al. 2015). Here the tradeoff between expressivity and tractability becomes
especially poignant: some bias toward simpler programs is highly desirable, but it should
not be so strong that it frustrates discovery of a good enough probabilistic model. Results
like those reported here help us understand one side of this essential tradeoff.

At the same time, from a skeptical viewpoint, the pattern of results may cast doubt on
whether the framework overall is appropriate for capturing the most important computa-

30

tional distinctions in cognition. As mentioned at the outset, the instantaneous firing rate of
cortical neurons is assumed to be approximately Poisson distributed. Thus, in some sense,
the Poisson distribution appears at what is plausibly a very basic level of cortical compu-
tation. In sharp contrast, this distribution evades expression until only the top level of the
probabilistic Chomsky-Schützenberger hierarchy. The source of this discrepancy is not the
restriction to rational parameters either, for instance, to be addressed by adding e−λ as a
production weight; rather, the issue is structural (Theorem 15, Proposition 22).

To be sure, there are a variety of computational frameworks founded on more brain-
like temporal and network dynamics (e.g., Maass et al. 2002, among many others). Such
frameworks may ultimately carve the space of computational models along different di-
mensions. However, even within these research programs some of the most pressing ques-
tions concern how such frameworks might plausibly encode probabilistic generative mod-
els (Buesing et al., 2011) and other combinatorial generative mechanisms (Dehaene et al.,
2015; Nelson et al., 2017). For much of psychology and cognitive science, theorizing in
terms of generative models is intuitive, simple, and productive. We would like a compre-
hensive theoretical understanding of the capabilities and limitations of these models.

Acknowledgements

Part of this work was supported by the Center for the Study of Language and Information,
Stanford University. The author would like to thank audiences at the Chennai Institute of
Mathematical Sciences, Indiana University, Stanford University, and the Center for Brains,
Minds, and Machines at MIT. Thanks especially to the editors and reviewers at Journal of
Mathematical Psychology, and to Johan van Benthem, Roger Levy, Alex Lew, Larry Moss,
Milan Mosse, R. Ramanujam, and Josh Tenenbaum for helpful comments and questions.

References

Abbott, J. T., Austerweil, J. L., and Griffiths, T. L. (2015). Random walks on semantic net-
works can resemble optimal foraging. Psychological Review, 122(3):558–569.

Abney, S., McAllester, D. A., and Pereira, F. (1999). Relating probabilistic grammars and
automata. In Proceedings of the 37th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 542–549.

Ackerman, N. L., Freer, C. E., and Roy, D. M. (2019). On the computability of conditional
probability. Journal of the ACM, 66(3):1–40.

Aho, A. (1968). Indexed grammars—an extension of context-free grammars. Journal of the
ACM, 15(4):647–671.

Berwick, R. C., Okanoya, K., Backers, G. J., and Bolhuis, J. J. (2011). Songs to syntax: the
linguistics of birdsong. Trends in Cognitive Sciences, 15(3):113–121.

Bhattiprolu, V., Gordon, S., and Viswanathan, M. (2017). Parikh’s Theorem for weighted
and probabilistic context-free grammars. In Bertrand, N. and Bortolussi, L., editors,
Quantitative Evaluation of Systems (QEST 2017). Lecture Notes in Computer Science, vol
10503. Springer.

31

Billingsley, P. (1999). Convergence of Probability Measures. Wiley Series in Probability and
Mathematical Statistics, 2 edition.

Booth, T. L. and Thompson, R. A. (1973). Applying probability measures to abstract lan-
guages. IEEE Transactions on Computers, C-22(5):442–450.

Buesing, L., Bill, J., Nessler, B., and Maass, W. (2011). Neural dynamics as sampling: A
model for stochastic computation in recurrent networks of spiking neurons. PLoS Com-
putational Biology, 7(11).

Busemeyer, J. R. and Diederich, A. (2002). Survey of decision field theory. Mathematical
Social Sciences, 43:345–370.

Chaitin, G. J. (1975). A theory of program size formally identical to information theory.
Journal of the ACM, 22(3):329–340.

Chater, N. and Manning, C. D. (2006). Probabilistic models of language processing and
acquisition. Trends in Cognitive Sciences, 10(7):335–344.

Chater, N. and Oaksford, M. (2013). Programs as causal models: Speculations on mental
programs and mental representation. Cognitive Science, 37(6):1171–1191.

Chater, N. and Vitányi, P. (2003). Simplicity: a unifying principle in cognitive science?
Trends in Cognitive Sciences, 7(1):19–22.

Chi, Z. (1999). Statistical properties of probabilistic context-free grammars. Computational
Linguistics, 25(1):131–160.

Chomsky, N. (1959). On certain formal properties of grammars. Information & Control,
2:137–167.

Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT Press.

Chomsky, N. and Schützenberger, M. P. (1963). The algebraic theory of context-free lan-
guages. In Hirschberg, D. and Braffort, P., editors, Computer Programming and Formal
Systems, pages 118–161. North-Holland.

Cox, D., Little, J., and O’Shea, D. (2000). Ideals, Varieties, and Algorithms. Springer Verlag.

Dal Lago, H. and Zorzi, M. (2012). Probabilistic operational semantics for the lambda
calculus. RAIRO - Theoretical Informatics and Applications, 46(3):413–450.

Dehaene, S., Meyniel, F., Wacongne, C., Wang, L., and Pallier, C. (2015). The neural repre-
sentation of sequences: from transition probabilities to algebraic patterns and linguistic
trees. Neuron, 88:2–19.

Denison, S., Bonawitz, E., Gopnik, A., and Griffiths, T. L. (2013). Rational variability in
children’s causal inferences: the sampling hypothesis. Cognition, 126:285–300.

Droste, M., Kuich, W., and Vogler, H., editors (2009). Handbook of Weighted Automata.
Springer.

Dupont, P., Denis, F., and Esposito, Y. (2005). Links between probabilistic automata and
hidden Markov models: probability distributions, learning models and induction algo-
rithms. Pattern Recognition, 38:1349–1371.

32

Duske, J., Middendorf, M., and Parchmann, R. (1992). Indexed counter languages. Theoret-
ical Informatics & Applications, 26(1):93–113.

Duske, J. and Parchmann, R. (1984). Linear indexed languages. Theoretical Computer Science,
32:47–60.

Eilenberg, S. (1974). Automata, Language, and Machines. Academic Press.

Eliasmith, C. (2010). How we ought to describe computation in the brain. Studies in History
& Philosophy of Science Part A, 41(3):313–320.

Etessami, K. and Yannakakis, M. (2009). Recursive Markov chains, stochastic grammars,
and monotone systems of nonlinear equations. Journal of the ACM, 65(1):1–66.

Faisal, A. A., Selen, L. P. J., and Wolpert, D. M. (2008). Noise in the nervous system. Nature
Reviews Neuroscience, 9:292–303.

Feldman, J. (2016). The simplicity principle in perception and cognition. Wiley Interdisci-
plinary Reviews: Cognitive Science, 7(5):330–340.

Flajolet, P. (1987). Analytic models and ambiguity of context-free languages. Theoretical
Computer Science, 49:283–309.

Flajolet, P., Pelletier, M., and Soria, M. (2011). On Buffon machines and numbers. In Pro-
ceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2011),
pages 172–183.

Flajolet, P. and Sedgewick, R. (2001). Analytic combinatorics: Functional equations, ratio-
nal and algebraic functions. Technical Report RR4103, INRIA.

Freer, C. E., Roy, D. M., and Tenenbaum, J. B. (2014). Towards common-sense reasoning
via conditional simulation: Legacies of Turing in artificial intelligence. In Downey, R.,
editor, Turing’s Legacy. ASL Lecture Notes in Logic.

Gács, P. (2005). Uniform test of algorithmic randomness over a general space. Theoretical
Computer Science, 2005:91–137.

Gazdar, G. (1988). Applicability of indexed grammars to natural languages. In Reyle, U.
and Rohrer, C., editors, Natural Language Parsing and Linguistic Theories. Springer Verlag.

Gershman, S. J. and Blei, D. M. (2012). A tutorial on Bayesian nonparametric models.
Journal of Mathematical Psychology, 56(1):1–12.

Glimcher, P. W. (2005). Indeterminacy in brain and behavior. Annual Review of Psychology,
56:25–56.

Goodman, N. D. and Tenenbaum, J. B. (2016). Probabilistic Models of Cognition. http:

//probmods.org/v2. Accessed: 2019-8-5.

Griffiths, T. L., Daniels, D., Austerweil, J. L., and Tenenbaum, J. B. (2018). Subjective ran-
domness as statistical inference. Cognitive Psychology, 103:85–109.

Griffiths, T. L., Steyvers, M., and Tenenbaum, J. B. (2007). Topics in semantic representation.
Psychological Review, 114(2):211–244.

33

http://probmods.org/v2
http://probmods.org/v2

Harris, T. E. (1963). The Theory of Branching Processes. Springer.

Hayashi, T. (1973). On derivation trees of indexed grammars. Publications of the Research
Institute for Mathematical Sciences, 9(1):61–92.

Hinton, G. E. and Sejnowski, T. J. (1983). Optimal perceptual inference. In Proceedings of the
IEEE Conference on Computer Vision & Pattern Recognition, pages 448–453.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1st edition.

Icard, T. (2019). Why be random? Mind. DOI: 10.1093/mind/fzz065.

Icard, T. F. (2017a). Beyond almost-sure termination. In Proceedings of the 39th Annual
Meeting of the Cognitive Science Society.

Icard, T. F. (2017b). From programs to causal models. In Cremers, A., van Gessel, T., and
Roelofsen, F., editors, Proceedings of the 21st Amsterdam Colloquium, pages 35–44.

Jackendoff, R. (2011). What is the human language faculty? Two views. Language, 87:586–
624.

Jäger, G. and Rogers, J. (2012). Formal language theory: Refining the Chomsky hierarchy.
Philosophical Transactions of the Royal Society B, 367:1956–1970.

Johnson, M. (2010). PCFGs, topic models, adaptor grammars and learning topical colloca-
tions and the structure of proper names. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics (ACL), pages 1148–1157.

Johnson, N. L., Kemp, A. W., and Kotz, S. (2005). Univariate Discrete Distributions. Wiley
Series in Probability and Statistics, 3rd edition.

Joshi, A. K., Vijay-Shanker, K., and Weir, D. J. (1991). The convergence of mildly context-
sensitive grammar formalisms. In Sells, P., Shieber, S. M., and Wasow, T., editors, Foun-
dational Issues in Natural Language Processing. MIT Press.

Jungen, R. (1931). Sur les séries de Taylor n’ayant que des singularités algébrico-
logarithmiques sur leur cercle de convergence. Commentarii Mathematici Helvetici, 3:226–
306.

Kallmeyer, L. (2010). Parsing Beyond Context-Free. Springer Verlag.

Kaminski, B. L. and Katoen, J.-P. (2015). On the hardness of almost-sure termination. In
Mathematical Foundations of Computer Science, pages 307–318.

Kim, Y., Dyer, C., and Rush, A. M. (2019). Compound probabilistic context-free grammars
for grammar induction. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 2369–2385.

Klein, D. and Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings of the
41st Meeting of the Association for Computational Linguistics (ACL), pages 423–430.

Knill, D. C. and Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural
coding and computation. Trends in Neurosciences, 27(12):712–719.

34

Knuth, D. E. and Yao, A. C. (1976). The complexity of nonuniform random number gener-
ation. In Algorithms and Complexity, pages 357–428. Academic Press.

Kornai, A. (2008). Mathematical Linguistics. Springer Verlag.

Kress, R. (1998). Numerical Analysis. Springer.

Kuich, W. and Salomaa, A. (1986). Semirings, Automata, Languages. Springer Verlag.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338.

de Leeuw, K., Moore, E. F., Shannon, C. E., and Shapiro, N. (1956). Computability by
probabilistic machines. In Automata Studies, pages 183–212. Princeton University Press.

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition, 106:1126–1177.

Li, Y., Schofield, E., and Gönen, M. (2019). A tutorial on Dirichlet process mixture modeling.
Journal of Mathematical Psychology, 91:128–144.

Liang, P., Jordan, M. I., and Klein, D. (2010). Probabilistic grammars and hierarchical
Dirichlet processes. In O’Hagan, T. and West, M., editors, The Handbook of Applied
Bayesian Analysis, pages 776–822. Oxford University Press.

Lin, H. W. and Tegmark, M. (2017). Critical behavior in physics and probabilistic formal
languages. Entropy, 19(299).

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing without sta-
ble states: A new framework for neural computation based on perturbations. Neural
Computation, 14:2531–2560.

MacKay, D. J. C. (1996). Equivalence of linear Boltzmann chains and hidden Markov mod-
els. Neural Computation, 8(1):178–181.

Maslov, A. N. (1976). Multilevel stack automata. Problemy peredachi informatsii, 12(1):55–62.

Miller, G. A. (1952). Finite Markov processes in psychology. Psychometrika, 17(2).

Minsky, M. (1967). Computation: Finite and Infinite Machines. Prentice Hall.

Mohri, M. and Nederhof, M.-J. (2000). Regular approximation of context-free grammars
through transformation. In Junqua, J.-C. and van Noord, G., editors, Robustness in Lan-
guage and Speech Technology, pages 252–261. Kluwer.

Nederhof, M.-J. and Satta, G. (2003). Probabilistic parsing as intersection. In Proceedings of
the 8th International Conference on Parsing Technologies.

Nelson, M. J., El Karoui, I., Giber, K., Yang, X., Cohen, L., Koopman, H., Cash, S. S., Nac-
cache, L., Hale, J. T., Pallier, C., and Dehaene, S. (2017). Neurophysiological dynamics of
phrase-structure building during sentence processing. Proceedings of the National Academy
of Sciences, 114(18):3669–3678.

Nishioka, K. (1996). Mahler Functions and Transcendence. Springer Verlag.

35

Nosofsky, R. M. and Palmeri, T. J. (1997). An exemplar-based random walk model of
speeded classification. Psychological Review, 104(2):266–300.

O’Cinneide, C. A. (1990). Characterization of phase-type distributions. Communications in
Statistics. Stochastic Models, 6:1–57.

Olmedo, F., Kaminski, B. L., Katoen, J.-P., and Matheja, C. (2016). Reasoning about recur-
sive probabilistic programs. In Proceedings of the 31st Annual IEEE Symposium on Logic in
Computer Science (LICS), pages 672–681.

Orbán, G., Berkes, P., Fiser, J., and Lengyel, M. (2016). Neural variability and sampling-
based probabilistic representations in the visual cortex. Neuron, 92:530–543.

Panholzer, A. (2005). Gröbner bases and the defining polynomial of a context-free grammar
generating function. Journal of Automata, Languages & Combinatorics, 1:79–97.

Parikh, R. (1966). On context-free languages. Journal of the ACM, 13(4):570–581.

Paz, A. (1971). Introduction to Probabilistic Automata. Academic Press.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann.

Petersson, K.-M., Folia, V., and Hagoort, P. (2012). What artificial grammar learning reveals
about the neurobiology of syntax. Brain & Language, 120:83–95.

Petre, I. (1999). Parikh’s theorem does not holds for multiplicities. Journal of Automata,
Languages, & Combinatorics, 4(3):17–30.

Pratt-Hartmann, I. (2010). Computational complexity in natural language. In Clark, A.,
Fox, C., and Lappin, S., editors, The Handbook of Computational Linguistics and Natural
Language Processing, pages 43–73. Blackwell.

Putnam, H. (1967). Psychological predicates. In Capitan, W. H. and Merrill, D. D., editors,
Art, Mind, and Religion. Pittsburgh University Press.

Pynadath, D. V. and Wellman, M. P. (1998). Generalized queries on probabilistic context-
free grammars. IEEE Transactions on Pattern Analysis & Machine Intelligence, 20(1):65–77.

Rabin, M. O. (1963). Probabilistic automata. Information & Control, 6(3):230–245.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2):59–108.

Salomaa, A. and Soittola, M. (1978). Automata-Theoretic Aspects of Formal Power Series.
Springer.

Sanborn, A. N., Griffiths, T. L., and Navarro, D. J. (2010). Rational approximations to
rational models: Alternative algorithms for category learning. Psychological Review,
117(4):1144–1167.

Savitch, W. J. (1987). Context-sensitive grammar and natural language syntax. In Savitch,
W. J., Bach, E., Marsh, W., and Safran-Naveh, G., editors, The Formal Complexity of Natural
Language, pages 358–368. Springer (Studies in Linguistics and Philosophy).

36

Schützenberger, M. P. (1961). On the definition of a family of automata. Information &
Control, 4:245–270.

Schützenberger, M. P. (1965). On finite monoids having only trivial subgroups. Information
& Control, 8:190–194.

Smith, N. A. and Johnson, M. (2007). Weighted and probabilistic context-free grammars
are equally expressive. Computational Linguistics, 33(4):477–491.

Soittola, M. (1976). Positive rational sequences. Theoretical Computer Science, 2:313–321.

Stanley, R. P. (2011). Enumerative Combinatorics, volume 1. Cambridge University Press.

Szymanik, J. and Zajenkowski, M. (2010). Comprehension of simple quantifiers: Empirical
evaluation of a computational model. Cognitive Science, 34(3):521–532.

Tenenbaum, J. B., Griffiths, T. L., and Kemp, C. (2006). Theory-based Bayesian models of
inductive learning and reasoning. Trends in Cognitive Sciences, 10(7):309–318.

Tenenbaum, J. T., Kemp, C., Griffiths, T., and Goodman, N. D. (2011). How to grow a mind:
Statistics, structure, and abstraction. Science, 331:1279–1285.

Townsend, J. T. and Ashby, F. G. (1983). The Stochastic Modeling of Elementary Psychological
Processes. Cambridge University Press.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59:433–460.

Vitányi, P. M. B. and Chater, N. (2017). Identification of probabilities. Journal of Mathematical
Psychology, 76(A):13–24.

von Neumann, J. (1951). Various techniques used in connection with random digits. Journal
of Research of the National Bureau of Standards, Applied Mathematics Series, 12:36–38.

Vul, E., Hanus, D., and Kanwisher, N. (2009). Attention as inference: Selection is prob-
abilistic; responses are all-or-none samples. Journal of Experimental Psychology: General,
138(4):546–560.

Wang, H. (1957). A variant to Turing’s theory of computing machines. Journal of the ACM,
4(1):63–92.

Wilson, R. C., Geana, A., White, J. M., Ludwig, E. A., and Cohen, J. D. (2014). Humans
use directed and random exploration to solve the explore-exploit dilemma. Journal of
Experimental Psychology: General, 143(6):2074–2081.

Wood, I., Sunehag, P., and Hutter, M. (2011). (Non-)equivalence of universal priors. In
Dowe, D., editor, Solomonoff 85th Memorial Conference, pages 417–425. Springer LNCS.

Yao, A. C. (1985). Context-free grammars and random number generation. In Apostolico,
A. and Galil, Z., editors, Combinatorial Algorithms on Words, volume 12, pages 357–361.
Springer.

Zhu, S.-C. and Mumford, D. (2007). A stochastic grammar of images. Foundations & Trends
in Computer Graphics & Vision, 2(4):259–362.

Zvonkin, A. K. and Levin, L. A. (1970). The complexity of finite objects and the develop-
ment of the concepts of information and randomness by means of the theory of algo-
rithms. Uspekhi Matematicheskikh Nauk, 25(6):85–127.

37

	Introduction and Motivation
	Formal Preliminaries
	Strings and Distributions
	Probability Generating Functions
	Grammars and Probabilistic Grammars

	Probabilistic Unrestricted Grammars
	Conditioning probabilistic grammars

	Probabilistic Regular Grammars
	Expressing Rational Probabilities
	Normal Form and Matrix Representation
	Rational Generating Functions
	Conditioning with a Regular Set

	Probabilistic Context-Free Grammars
	Algebraic Generating Functions

	Probabilistic Indexed Grammars
	Probabilistic (Right-)Linear Indexed Grammars

	Probabilistic Context-Sensitive Grammars
	Conclusion and Further Issues
	Outstanding Mathematical Questions
	Generative Models in Psychology

