240 research outputs found

    Robotic Searching for Stationary, Unknown and Transient Radio Sources

    Get PDF
    Searching for objects in physical space is one of the most important tasks for humans. Mobile sensor networks can be great tools for the task. Transient targets refer to a class of objects which are not identifiable unless momentary sensing and signaling conditions are satisfied. The transient property is often introduced by target attributes, privacy concerns, environment constraints, and sensing limitations. Transient target localization problems are challenging because the transient property is often coupled with factors such as sensing range limits, various coverage functions, constrained mobility, signal correspondence, limited number of searchers, and a vast searching region. To tackle these challenge tasks, we gradually increase complexity of the transient target localization problem such as Single Robot Single Target (SRST), Multiple Robots Single Target (MRST), Single Robot Multiple Targets (SRMT) and Multiple Robots Multiple Targets (MRMT). We propose the expected searching time (EST) as a primary metric to assess the searching ability of a single robot and the spatiotemporal probability occupancy grid (SPOG) method that captures transient characteristics of multiple targets and tracks the spatiotemporal posterior probability distribution of the target transmissions. Besides, we introduce a team of multiple robots and develop a sensor fusion model using the signal strength ratio from the paired robots in centralized and decentralized manners. We have implemented and validated the algorithms under a hardware-driven simulation and physical experiments

    Event-chain Monte Carlo: foundations, applications, and prospects

    Full text link
    This review treats the mathematical and algorithmic foundations of non-reversible Markov chains in the context of event-chain Monte Carlo (ECMC), a continuous-time lifted Markov chain that employs the factorized Metropolis algorithm. It analyzes a number of model applications, and then reviews the formulation as well as the performance of ECMC in key models in statistical physics. Finally, the review reports on an ongoing initiative to apply the method to the sampling problem in molecular simulation, that is, to real-world models of peptides, proteins, and polymers in aqueous solution.Comment: 35 pages, no figure

    GENERALIZED DISTRIBUTED CONSENSUS-BASED ALGORITHMS FOR UNCERTAIN SYSTEMS AND NETWORKS

    Get PDF
    We address four problems related to multi-agent optimization, filtering and agreement. First, we investigate collaborative optimization of an objective function expressed as a sum of local convex functions, when the agents make decisions in a distributed manner using local information, while the communication topology used to exchange messages and information is modeled by a graph-valued random process, assumed independent and identically distributed. Specifically, we study the performance of the consensusbased multi-agent distributed subgradient method and show how it depends on the probability distribution of the random graph. For the case of a constant stepsize, we first give an upper bound on the difference between the objective function, evaluated at the agents' estimates of the optimal decision vector, and the optimal value. In addition, for a particular class of convex functions, we give an upper bound on the distances between the agents' estimates of the optimal decision vector and the minimizer and we provide the rate of convergence to zero of the time varying component of the aforementioned upper bound. The addressed metrics are evaluated via their expected values. As an application, we show how the distributed optimization algorithm can be used to perform collaborative system identification and provide numerical experiments under the randomized and broadcast gossip protocols. Second, we generalize the asymptotic consensus problem to convex metric spaces. Under minimal connectivity assumptions, we show that if at each iteration an agent updates its state by choosing a point from a particular subset of the generalized convex hull generated by the agents current state and the states of its neighbors, then agreement is achieved asymptotically. In addition, we give bounds on the distance between the consensus point(s) and the initial values of the agents. As an application example, we introduce a probabilistic algorithm for reaching consensus of opinion and show that it in fact fits our general framework. Third, we discuss the linear asymptotic consensus problem for a network of dynamic agents whose communication network is modeled by a randomly switching graph. The switching is determined by a finite state, Markov process, each topology corresponding to a state of the process. We address both the cases where the dynamics of the agents are expressed in continuous and discrete time. We show that, if the consensus matrices are doubly stochastic, average consensus is achieved in the mean square and almost sure senses if and only if the graph resulting from the union of graphs corresponding to the states of the Markov process is strongly connected. Fourth, we address the consensus-based distributed linear filtering problem, where a discrete time, linear stochastic process is observed by a network of sensors. We assume that the consensus weights are known and we first provide sufficient conditions under which the stochastic process is detectable, i.e. for a specific choice of consensus weights there exists a set of filtering gains such that the dynamics of the estimation errors (without noise) are asymptotically stable. Next, we develop a distributed, sub-optimal filtering scheme based on minimizing an upper bound on a quadratic filtering cost. In the stationary case, we provide sufficient conditions under which this scheme converges; conditions expressed in terms of the convergence properties of a set of coupled Riccati equations. We continue by presenting a connection between the consensus-based distributed linear filter and the optimal linear filter of a Markovian jump linear system, appropriately defined. More specifically, we show that if the Markovian jump linear system is (mean square) detectable, then the stochastic process is detectable under the consensus-based distributed linear filtering scheme. We also show that the optimal gains of a linear filter for estimating the state of a Markovian jump linear system, appropriately defined, can be used to approximate the optimal gains of the consensus-based linear filter

    Distributed Multi-Robot Learning using Particle Swarm Optimization

    Get PDF
    This thesis studies the automatic design and optimization of high-performing robust controllers for mobile robots using exclusively on-board resources. Due to the often large parameter space and noisy performance metrics, this constitutes an expensive optimization problem. Population-based learning techniques have been proven to be effective in dealing with noise and are thus promising tools to approach this problem. We focus this research on the Particle Swarm Optimization (PSO) algorithm, which, in addition to dealing with noise, allows a distributed implementation, speeding up the optimization process and adding robustness to failure of individual agents. In this thesis, we systematically analyze the different variables that affect the learning process for a multi-robot obstacle avoidance benchmark. These variables include algorithmic parameters, controller architecture, and learning and testing environments. The analysis is performed on experimental setups of increasing evaluation time and complexity: numerical benchmark functions, high-fidelity simulations, and experiments with real robots. Based on this analysis, we apply the distributed PSO framework to learn a more complex, collaborative task: flocking. This attempt to learn a collaborative task in a distributed manner on a large parameter space is, to our knowledge, the first of such kind. In addition, we address the problem of noisy performance evaluations encountered in these robotic tasks and present a %new distributed PSO algorithm for dealing with noise suitable for resource-constrained mobile robots due to its low requirements in terms of memory and limited local communication

    Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications

    Get PDF
    By restricting to Gaussian distributions, the optimal Bayesian filtering problem can be transformed into an algebraically simple form, which allows for computationally efficient algorithms. Three problem settings are discussed in this thesis: (1) filtering with Gaussians only, (2) Gaussian mixture filtering for strong nonlinearities, (3) Gaussian process filtering for purely data-driven scenarios. For each setting, efficient algorithms are derived and applied to real-world problems

    Active Calculus 2.1

    Get PDF
    Active Calculus is different from most existing calculus texts in at least the following ways: the text is freely readable online in HTML format and is also available for in PDF; in the electronic format, graphics are in full color and there are live links to java applets; there are live WeBWorK exercises in each chapter, which are fully interactive in the HTML format and included in print in the PDF; the text is open source, and interested users can gain access to the original source files on GitHub; the style of the text requires students to be active learners — there are very few worked examples in the text, with there instead being 3-4 activities per section that engage students in connecting ideas, solving problems, and developing understanding of key calculus concepts; each section begins with motivating questions, a brief introduction, and a preview activity, all of which are designed to be read and completed prior to class; following the WeBWorK exercises in each section, there are several challenging problems that require students to connect key ideas and write to communicate their understanding. For more information, see the author\u27s website and blog.https://scholarworks.gvsu.edu/books/1018/thumbnail.jp

    Dynamical Systems

    Get PDF
    Complex systems are pervasive in many areas of science integrated in our daily lives. Examples include financial markets, highway transportation networks, telecommunication networks, world and country economies, social networks, immunological systems, living organisms, computational systems and electrical and mechanical structures. Complex systems are often composed of a large number of interconnected and interacting entities, exhibiting much richer global scale dynamics than the properties and behavior of individual entities. Complex systems are studied in many areas of natural sciences, social sciences, engineering and mathematical sciences. This special issue therefore intends to contribute towards the dissemination of the multifaceted concepts in accepted use by the scientific community. We hope readers enjoy this pertinent selection of papers which represents relevant examples of the state of the art in present day research. [...

    Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, part 1

    Get PDF
    The proceedings of the workshop are presented. Some areas of discussion are as follows: modeling, systems identification, and control of flexible aircraft, spacecraft, and robotic systems
    • …
    corecore