
Nonlinear Gaussian Filtering
— Theory, Algorithms, and Applications —

HABILITATIONSSCHRIFT

zur Erlangung der Venia Legendi
für das Fach Informatik

vorgelegt der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

von

Dr.-Ing. Marco Huber

aus Kehl

Eingereicht am: 14.02.2014
Hauptgutachter: Prof. Dr.-Ing. Jürgen Beyerer
Zweitgutachter: Prof. Hugh Durrant-Whyte

Prof. Peter K. Willett

Statement of Authorship

I hereby declare that the work submitted for review is entirely of my own hand,
or, where produced in collaboration with others, has been clearly identified as
such. I further declare that I have labeled all material that has been taken with or
without modification from the work of others.

Weinheim, 14.02.2014 Dr.-Ing. Marco Huber

Acknowledgement

While preparing this thesis, I have worked for three different organizations. Ac-
cordingly, I met many people that contributed to this work the one way or the
other. I would like to spent the following lines to thank for the time, work, diver-
sion, and inspiration invested by the contributors.

The first contributions to this thesis were made at the Intelligent Sensor-Actuator-
Systems Laboratory (ISAS) of the Karlsruhe Institute of Technology (KIT). I would
like to thank Uwe D. Hanebeck, director of ISAS, for supporting this thesis from
the beginning. Also a big thank you to Frederik Beutler for his contributions
to the semi-analytic filtering stuff and for running the experiments with the
“Holodeck" as well as to Peter Krauthausen for his contributions to Gaussian
mixture reduction. But most importantly: for their friendship.

When I moved on to the Fraunhofer Institute of Optronics, System Technolo-
gies, and Image Exploitation (IOSB), I met Jürgen Beyerer, who is the director
of this institute. He actually motivated me for starting the whole habilitation
endeavor and took the responsibility of the official habilitation process at the
KIT. I can imaging that this work together with preparing a review of this thesis
was consuming a significant share of time. So, many thanks for this.

At IOSB and the associated Vision and Fusion Laboratory (IES) I worked with
many talented people. For the many fruitful discussions, barbecues, and for
other thrilling activities I would like to thank Christian Frese, Ioana Gheţa, Martin
Grafmüller, Robin Gruna, Michael Heizmann, Sebastian Höfer, Christian Kühnert,
Achim Kuwertz, Alexey Pak, Jennifer Sander, Michael Teutsch, Stefan Werling, and
last but not least Philipp Woock. Special thanks go to Masoud Roschani. Besides
being a strong author of one of the papers used for this thesis, he acted and
still acts as a very reliable contributor, organizer, and backup for my lecture

“Probabilistische Planung". I would also like to thank Gaby Gross, who is by far
more than a secretary for the IES. I enjoyed sharing work time and experiences
about traveling and football with her.

The last three and a half years I worked for AGT International in Darmstadt, which
was an interesting experience. I appreciate the time and space that was provided
and blocked by both Zachos Boufidis and Panayotis Kikiras. They were great
supporters of this thesis. I also have to thank Florian Zeiger for his intelligence,
insights, and most importantly his friendship. Working at AGT would have been
less fun without him. Finally, I would like to thank my students Tobias Dencker
and Jason Rambach for their great work.

Outside these three organizations I would like to thank Marc Deisenroth for his
ideas on Gaussian Processes and his bright mind in general. I’m also grateful
for the review work done by Hugh Durrant-Whyte and Peter Willett and for the
support that was given to this thesis by many computer science professors of the
KIT. Here, I would like to mention Rainer Stiefelhagen and Tamim Asfour among
many others.

Such a work not only needs to be backed from a professional side. Of at least the
same importance is the support and understanding from beloved. I’m grateful
for having Karin by my side. Life has become much more colorful with her and
with our kids Anna-Lena and Paul.

Weinheim, January 2015 Marco Huber

To Anna-Lena and Paul

Contents

I Background & Summary 1

1 Introduction 3
1.1 Nonlinear Bayesian Filtering . 4

1.1.1 Dynamic Models and Measurement Models 4
1.1.2 Recursive Filtering . 6
1.1.3 Closed-form Calculation . 8
1.1.4 Approximate Filtering: State of the Art 9

1.2 Research Topics . 12
1.3 Main Contributions . 14

1.3.1 Gaussian Filtering . 15
1.3.2 Gaussian Mixture Filtering 18
1.3.3 Gaussian Process Filtering . 19

1.4 Thesis Outline . 21

2 Gaussian Filtering 23
2.1 The Gaussian Distribution . 24

2.1.1 Importance of the Gaussian 24
2.1.2 Dirac Delta Distribution . 25
2.1.3 The Exponential Family . 26

2.2 Exact Gaussian Filtering and Approximations 27
2.2.1 General Formulation . 27
2.2.2 Linear Filtering . 29
2.2.3 Linearized and Extended Kalman Filter 31
2.2.4 Statistical Linearization . 32
2.2.5 Linear Regression Kalman Filters 33

i

ii Contents

2.3 Gaussian Smoothing . 39
2.3.1 General Formulation . 40
2.3.2 Linear Case . 41
2.3.3 Nonlinear Case . 42

2.4 Rao-Blackwellization . 42
2.5 Contributions . 43

2.5.1 Combining Rao-Blackwellization with Observed-
Unobserved Decomposition 43

2.5.2 Semi-Analytical Filtering . 47
2.5.3 Chebyshev Polynomial Kalman Filtering 52
2.5.4 Efficient Moment Propagation for Polynomials 55
2.5.5 Homotopic Moment Matching for Polynomial Measurement

Models . 63
2.6 Summary . 70

3 Gaussian Mixture Filtering 73
3.1 Gaussian Mixtures . 74
3.2 Nonlinear Filtering . 75

3.2.1 Individual Approximation . 76
3.2.2 Generic Gaussian Mixture Filter 78

3.3 Component Adaptation . 79
3.3.1 Weight Optimization . 80
3.3.2 Reduction . 80
3.3.3 Refinement . 84

3.4 Contributions . 86
3.4.1 Semi-Analytic Gaussian Mixture Filter 86
3.4.2 Adaptive Gaussian Mixture Filter 90
3.4.3 Curvature-based Gaussian Mixture Reduction 96

3.5 Summary . 103

4 Gaussian Process Filtering 105
4.1 Gaussian Processes . 106
4.2 Covariance Functions . 109

4.2.1 Examples . 109
4.2.2 Hyperparameter Learning . 111

4.3 Large Data Sets . 112
4.3.1 Active Set Approaches . 113
4.3.2 Local Approaches . 114
4.3.3 Algebraic Tricks . 114

Contents iii

4.3.4 Open Issues . 115
4.4 Nonlinear Filtering . 115
4.5 Contributions . 116

4.5.1 Gaussian Process Filtering . 116
4.5.2 Gaussian Process Smoothing 121
4.5.3 Recursive Gaussian Process Regression 124
4.5.4 On-line Hyperparameter Learning 129

4.6 Summary . 135

5 Applications 137
5.1 Range-based Localization . 137

5.1.1 Position Estimation . 139
5.1.2 Position and Orientation Estimation 144

5.2 Gas Dispersion Source Estimation 149
5.2.1 Atmospheric Dispersion Models 150
5.2.2 Parameter Estimation . 152

5.3 Active Object Recognition . 156
5.3.1 Object Classification . 157
5.3.2 Learning . 158
5.3.3 Estimation . 158
5.3.4 Planning . 160

5.4 Summary . 164

6 Concluding Remarks 165
6.1 Conclusions . 165
6.2 Future Work . 166

A Particle Filtering 169
A.1 Perfect Monte Carlo Sampling . 169
A.2 Importance Sampling . 170

A.2.1 Sequential Importance Sampling 171
A.2.2 Choice of Importance Function 172
A.2.3 Resampling . 172

B Performance Measures 175
B.1 Root Mean Square Error . 175
B.2 Mean Absolute Error . 176
B.3 Normalized Estimation Error Square 176
B.4 Negative Log-Likelihood . 177

iv Contents

C �adratic Programming 179

Bibliography 181

II Publications 201

A Gaussian Filtering using State Decomposition Methods 203
1 Introduction . 205
2 Problem Formulation . 207
3 The Gaussian Filter (GF) . 208
4 Decomposition Methods . 210

4.1 Case I: directly observed, indirectly observed 210
4.2 Case II: Linear, Nonlinear . 211

5 Estimation . 214
5.1 Prediction Step . 214
5.2 Filter Step . 215

6 Considered Example . 216
6.1 Prediction . 216
6.2 Filtering . 219

7 Results . 220
7.1 Simulation . 220
7.2 Experiment . 222

8 Conclusions . 224

B Semi-Analytic Gaussian Assumed Density Filter 227
1 Introduction . 229
2 Problem Formulation . 231

2.1 Bayesian Estimation . 231
2.2 Gaussian Assumed Density Filter 232

3 Analytic Gaussian Assumed Density Filter (AGF) 233
4 Sample-Based Gaussian Assumed Density Filter (SGF) 235
5 Semi-Analytic Gaussian Assumed Density Filter (SAGF) 237

5.1 General Solution . 239
5.2 Estimation . 240

6 Simulation Examples . 241
6.1 System Equation . 241
6.2 Case I: Linear Measurement Equation 242
6.3 Case II: Nonlinear Measurement Equation 242

Contents v

6.4 Simulation Results . 243
7 Discussion and Future Work . 246

C Chebyshev Polynomial Kalman Filter 249
1 Introduction . 251
2 Problem Formulation . 253
3 Chebyshev Polynomials . 255

3.1 Properties . 255
3.2 Chebyshev Series . 256
3.3 Approximate Series Expansion 257

4 Closed-Form Moment Propagation 258
4.1 Non-central Moments of a Gaussian 259
4.2 Efficient Mean Propagation 261
4.3 Efficient Variance Propagation 262

5 The Gaussian Estimator . 263
5.1 Approximation Interval . 263
5.2 Prediction . 264
5.3 Measurement Update . 264

6 Results . 266
6.1 Example I: Higher-Order Moments 266
6.2 Example II: Real-World Application 267
6.3 Example III: Time Series . 270

7 Discussion . 274
7.1 Strengths . 274
7.2 Limitations and Potential Extensions 275

8 Conclusions . 276
A State Decomposition . 276

D Gaussian Filtering for Polynomial Systems Based on Moment Ho-
motopy 283
1 Introduction . 285
2 Problem Formulation . 287
3 Exponential Densities . 288

3.1 Definition . 288
3.2 Recursive Moment Calculation 289

4 Gaussian Filtering . 290
4.1 Mean Propagation . 290
4.2 Variance Propagation . 291
4.3 Covariance Calculation . 292

vi Contents

4.4 Polynomial Kalman Filter . 292
4.5 Discussion . 294

5 Homotopic Bayesian Measurement Update 297
5.1 Parameterization . 298
5.2 System of Ordinary Differential Equations 299
5.3 Initialization and Solution . 300
5.4 Homotopic Polynomial Gaussian Filter 301

6 Results . 302
6.1 Moment Homotopy Examples 302
6.2 Chaotic Synchronization . 304

7 Conclusion and Future Work . 306

E (Semi-)Analytic Gaussian Mixture Filter 309
1 Introduction . 311
2 Problem Formulation . 313

2.1 Prediction Step . 313
2.2 Filter Step . 314

3 Gaussian Mixture Filter . 314
3.1 Prediction Step . 314
3.2 Filter Step . 316
3.3 Gaussian Mixture Noise . 317

4 Types of Linearization . 317
4.1 Classical Linearization . 318
4.2 Analytic Stochastic Linearization 319
4.3 Semi-Analytic Stochastic Linearization 320

5 Simulation Results . 323
5.1 System and Measurement Model 323
5.2 Estimator: A-GMF . 324
5.3 Estimator: SA-GMF . 325
5.4 Setup . 325
5.5 Results . 326

6 Conclusions . 328
A Analytic Expressions for A-GMF . 329

F Adaptive Gaussian Mixture Filter Based on Statistical Lineariza-
tion 333
1 Introduction . 335
2 Problem Formulation . 337

Contents vii

3 Statistical Linearization . 338
3.1 Classical Linearization . 339
3.2 Statistical Linear Regression 339
3.3 Calculating the Regression Points 340

4 Splitting Scheme . 342
4.1 Component Selection . 342
4.2 Splitting a Gaussian . 343
4.3 Splitting Direction . 346

5 Adaptive Gaussian Mixture Filter . 347
5.1 Prediction Step . 347
5.2 Filtering Step . 350

6 Simulation Results . 351
6.1 Shape Approximation . 351
6.2 Object Tracking . 352

7 Conclusions . 356

G Superficial Gaussian Mixture Reduction 359
1 Introduction . 361
2 Problem Statement . 364
3 Superficial Gaussian Mixture Reduction 365

3.1 Distance Measure . 366
3.2 Upper bound of Curvature 366
3.3 Algorithm . 367

4 Limitations . 369
5 Experiments . 370

5.1 1D Experiment . 372
5.2 2D Experiment . 374

6 Conclusion . 375

H Analytic Moment-based Gaussian Process Filtering 379
1 Introduction . 381
2 Model and Problem Statement . 383
3 Related Work . 385
4 Gaussian Processes . 386

4.1 Predictions for Uncertain Inputs 387
4.2 Multivariate Predictions . 388

5 GP-ADF: Assumed Density Filtering with Gaussian Processes . . . 389
5.1 Prediction Step . 390
5.2 Filter Step . 390

viii Contents

5.3 Assumptions and Computational Complexity 392
6 Results . 392

6.1 1D Example . 393
6.2 Recursive Filtering: Time-Series 395

7 Discussion . 397
8 Summary and Future Work . 398

I Robust Filtering and Smoothing with Gaussian Processes 401
1 Introduction . 404

1.1 Problem Formulation and Notation 405
1.2 Gaussian RTS Smoothing . 405

2 Gaussian Processes . 406
2.1 Expressiveness of the Model 407
2.2 Training via Evidence Maximization 409

3 Robust Smoothing in Gaussian Process Dynamic Systems 409
3.1 Marginal Distribution . 410
3.2 Cross-Covariance . 413

4 Simulations . 415
4.1 Filter Robustness . 415
4.2 Smoother Robustness . 419

5 Discussion and Conclusion . 420

J Recursive Gaussian Process Regression 425
1 Introduction . 427
2 Problem Statement . 428
3 Recursive Processing . 430

3.1 Inference . 431
3.2 Update . 433
3.3 Summary . 434

4 Discussion . 435
5 Simulation Examples . 436
6 Conclusions . 440
A Useful Lemmas . 440

K Recursive Gaussian Process: On-line Regression and Learning 445
1 Introduction . 447
2 Problem Formulation . 448
3 On-line Regression . 450

3.1 Inference . 451

Contents ix

3.2 Update . 452
4 On-line Learning . 453

4.1 Inference . 454
4.2 Update . 456

5 Discussion . 458
6 Results . 459

6.1 Synthetic Data . 460
6.2 Particulate Matter Data . 463

7 Conclusion and Future Work . 464

L Optimal Stochastic Linearization for Range-Based Localization 467
1 Introduction . 469
2 Problem Formulation . 471

2.1 Dynamics Model . 471
2.2 Measurement Models . 471

3 Recursive State Estimation . 472
3.1 Prediction Step . 472
3.2 Filter Step . 473

4 Analytic Moment Calculation (AMC) 474
4.1 Modified Measurement Equation 474
4.2 Moment Calculation . 475
4.3 Summary . 478
4.4 Computational Complexity 479

5 Experiments . 479
5.1 Simulation . 480
5.2 Experiment . 482

6 Conclusions . 483

M Semi-Analytic Stochastic Linearization for Range-Based Pose Track-
ing 487
1 Introduction . 489
2 Problem Formulation . 491

2.1 Measurement Equation . 491
2.2 System equation . 492
2.3 Recursive Gaussian State Estimation 493

3 Semi-Analytic Linearization . 495
3.1 Modified Measurement Equation 495
3.2 Decomposition . 496
3.3 Mean . 497

x Contents

3.4 Covariance . 498
3.5 Cross-Covariance . 499
3.6 Summary . 500
3.7 Computational Complexity 500

4 Simulation Results . 501
5 Conclusions . 502

N On-line Dispersion Source Estimation 505
1 Introduction . 507
2 Problem Formulation . 509

2.1 General Dispersion Model . 509
2.2 Gaussian Plume . 509

3 Recursive Estimation . 511
3.1 Bayesian Estimation . 511
3.2 Measurement Model . 512
3.3 Approximate Estimation . 513

4 Adaptive Gaussian Mixture Filter . 513
4.1 Statistical Linearization . 514
4.2 Splitting . 515
4.3 Filtering . 517
4.4 Reduction . 517

5 Results . 518
5.1 AGMF Parametrization . 518
5.2 Indianapolis Field Study . 519
5.3 Simulation . 521

6 Conclusion . 525

O Bayesian Active Object Recognition via Gaussian Process Regres-
sion 529
1 Introduction . 531
2 Problem Formulation . 533
3 Gaussian Process Regression . 535
4 Active Object Recognition . 536

4.1 Learning Object Models . 536
4.2 Bayesian Estimation . 537
4.3 Next-Best-View Planning . 539

5 Simulation Results . 542
5.1 General Simulation Setup . 542
5.2 Example I: Cups . 543

Contents xi

5.3 Example II: Toy Manikins . 545
6 Conclusion and Future Work . 547
A Gradient . 547

Notation

Conventions

x Scalar
x Column vector

x , x Random variable/vector
x̂, x̂ Realization of a random variable/vector
x̄, x̄ Nominal point/vector

nx Dimension of vector x
Lx , Nx Number of elements of type x

(·)p Predicted quantity (after prediction step)
(·)e A posteriori quantity (after measurement update)
(·)s Smoothed quantity (after smoothing)

(·)x , (·)x Quantity related to variable/vector x
(·)l , (·)n (Conditionally) linear and nonlinear substate
(·)o , (·)u Observed and unobserved substate

(·)k Quantity at discrete time step k
(·)0:k Time sequence of quantities

(
(·)0, (·)1, . . . , (·)k

)
˜(·) Approximate quantity

(·)∗ Optimal solution of an optimization problem
i : j Sequence of integers from i to j with i < j

· | · Conditioning, i.e., the left-hand quantity is conditioned
on the right-hand quantity

A Matrices are denoted by bold upper case letters
A Sets are denoted by calligraphic upper case letters

xiii

xiv Notation

Conventions (Cont’d)

g (X) Evaluation of function g :Rn →R for every column of

matrix X = [
x1 x2 . . . xm

]T with xi ∈Rn , i.e., the results

corresponds to vector
[
g
(
x1

)
g
(
x2

)
. . . g

(
xm

)]T ∈Rm

N Natural numbers
R Real numbers
� End of theorem

Operators

diag
(
x
)

Diagonal matrix with main diagonal elements according
to x

diag(A) Diagonal matrix with main diagonal elements taken
from the main diagonal of A

vec(A) Matrix vectorization, i.e., the columns of A are stacked
to form a vector

AT Matrix transpose
A−1 Matrix inverse

Tr(A) Matrix trace
|A| Matrix determinant

‖.‖p p-Norm, where p ∈N. For p = 2, it corresponds to the
L2 or Euclidean norm

, Definition
≡ Equivalent

¹,º Element-wise comparison of two vectors, i.e.,
x ¹ y iff xi ≤ yi for all elements xi , yi of x, y

∗ Convolution
ẋ Time derivative of quantity x
⊗ Kronecker product
¯ Hadamard (element-wise) product
∼ Distribution symbol
∝ Proportional

E{ · } Expected value
var{ · } Variance

Cov{· } Covariance
O(·) Complexity class (Big-O according to Landau notation)

Notation xv

Special Functions

N
(
x;µ,C

)
Multivariate Gaussian density function with

mean vector µ and covariance matrix C
N

(
µ,C

)
Multivariate Gaussian distribution

GP
(
µ,κ

)
Gaussian process with mean function µ(·) and
covariance function κ(· , ·)

δ
(
x
)

Dirac delta distribution
δi , j Kronecker delta function

D(.,.) Integrated squared difference (ISD)
G(.‖.) Kullback-Leibler divergence (KLD)

H(.) Shannon/differential entropy
I(.,.) Mutual information

Reserved Symbols

f (·), p(·) General symbols for probability density functions
g (·) General symbol for a nonlinear function

ak (·) System function
hk (·) Measurement function

x System state
z Measurement/observation

w System noise
v Measurement noise
θ (Hyper)parameter vector
µ Mean vector

C Covariance matrix
A System matrix
H Measurement matrix
K Kalman gain matrix or kernel matrix
J Smoothing gain matrix

In Identity matrix of dimension n ×n
0n Zero matrix of dimension n ×n
Xi Sample or sigma point
ωi Weighting coefficient
Ei Non-central moment of order i
D Data set

xvi Notation

Abbreviations

ADF Assumed density filter
ADM Atmospheric dispersion model

AGMF Adaptive Gaussian mixture filter
CPKF Chebyshev polynomial Kalman filter

CKF Cubature Kalman filter
EKF Extended Kalman filter
GPS Global positioning system

GHKF Gauss-Hermite Kalman filter
GP Gaussian process

HPGF Homotopic polynomial Gaussian filter
ISD Integrated squared difference

KLD Kullback-Leibler divergence
LRKF Linear Regression Kalman filter

mae Mean absolute error
MC Monte Carlo

MCMC Markov chain Monte Carlo
nees Normalized estimation error square

nll Negative log-likelihood
NN Neural network

ODE Ordinary differential equation
PF Particle filter

PKF Polynomial Kalman filter
QP Quadratic program

RGP Recursive Gaussian process regression
rmse Root mean square error
RTSS Rauch-Tung-Striebel smoother
SAGF Semi-analytic Gaussian filter

SAGMF Semi-analytic Gaussian mixture filter
SE Squared exponential

SGMR Superficial Gaussian mixture reduction
SIR Sequential importance resampling

SOGP Sparse on-line Gaussian process
SPGP Sparse pseudo-input Gaussian process
SVM Support vector machine
UKF Unscented Kalman filter

UT Unscented Transformation

Part I

Background &
Summary

1
Introduction

In the early 1960s, the researchers of the NASA Apollo program faced severe
problems with the navigation of their spacecraft. By observing external bodies
like earth, moon, and stars, the pilot had to estimate the position, orientation,
and velocity of the vehicle. These observations in combination with the high-
dimensional models describing the dynamics of the spacecraft should allow
correct guidance and trajectory following. At that point in time, the estimation
toolbox merely contained algorithms like weighted least-squares and the Wiener
filter. While the first one was computationally too complex for the on-board
computer of the spacecraft, the latter was mathematically very involved and
discrete-time measurements were not supported.

It was a lucky coincidence that at the same time Rudolf Kalman invented his fa-
mous recursive filtering approach, which is nowadays known as the Kalman filter.
As Rudolf Kalman gave a presentation of his novel approach to NASA researchers,
many of the open problems suddenly seemed to be solvable, even though a
direct application of the Kalman filter was not possible—it was designed for
linear problems, while spacecraft navigation is a nonlinear one. In addition, this
novel filtering technique raised new questions like “How to deal with numerical
instabilities or systematic measurement errors?”, which are always present when
it comes to a realization to practice. At the end the navigation problem was
solved and the rest of the story is well-known history. For more details see [122].

3

4 1 Introduction

The implementation of a modified version1 of the Kalman filter for spacecraft
navigation as part of the Apollo Guidance Computer was one of the first—if not
the first—technical realization of nonlinear Bayesian filtering theory, which is
the general topic of this thesis. Besides spacecraft navigation, nonlinear Bayesian
filtering appears in many technical fields like robotics, control, telecommuni-
cations, signal processing, data fusion, or machine learning, where one wants
to estimate the latent parameters or state2 of a nonlinear dynamic system from
noisy measurements and imperfect knowledge. It provides a general framework
in which all appearing uncertainties are represented by means of probability
distributions and the processing of these distributions occurs according to the
calculus of probability theory3.

1.1 Nonlinear Bayesian Filtering

The latent system state x ∈Rnx comprises the smallest set of variables, which
is necessary to completely describe the dynamic behavior of the considered
system at any time instant. In order to estimate the latent state, three main com-
ponents are required: First, a model of the system dynamics. Second, a model
of the sensor. Both include statistical models of the noise processes affecting
the system and the sensor. Third and finally, the actual Bayesian filtering algo-
rithm. The interactions of these three components are depicted in Figure 1.1 and
mathematical formulations of the components are introduced in the following.

1.1.1 Dynamic Models and Measurement Models
The temporal evolution of the latent system state is typically described by means
of differential equations in continuous time according to

ẋ(t) =φ(
x(t),u(t), w (t)

)
, (1.1)

1 Kalman-Schmidt filter, which is nowadays called the extended Kalman filter.
2 In this thesis, parameters and state are not distinguished if not stated explicitly. Thus, only the

notion of a latent state is used from now on.
3 This is in contrast to frequentist statistics, where the probability of an event reflects the proportion

of the event in an infinite number of trials. In the Bayesian viewpoint however, the probability
describes the uncertainty of an event in a single trial [19, 159].

1.1 Nonlinear Bayesian Filtering 5

Dynamic
System Sensor

Bayesian
Filter

State xk Measurement ẑkInput uk

State Estimate

System Noise Measurement Noise

Figure 1.1: Block diagram of a dynamic system incorporating a Bayesian filter for
estimating the latent state xk .

which models the system dynamics and thus, is denoted the dynamic model.
Here, ẋ(t) is the derivative of the system state x(t) with respect to time. For
realization on a computer, a discrete-time version of the dynamic model (1.1) is
required, which is given by

xk+1 = ak

(
xk ,uk , w k

)
, (1.2)

where the random vector xk is the system state at discrete time step k = 0,1, . . .
The time steps are related via tk+1 = tk +T , where T is the sampling time. The
state itself is represented by means of the probability density function f x

k

(
xk

)
at

time step k. Furthermore, ak (.) is the nonlinear system function, uk is the vector
of deterministic system inputs, and w k is the system noise. In the reminder of
this thesis, only discrete-time models are considered.

As the state is assumed to be latent, i.e., it cannot be directly observed, measure-
ments of a sensor are required to gather information about the system state. The
measurement model in discrete-time is given by

zk = hk

(
xk , v k

)
, (1.3)

with nonlinear measurement function hk (.), measurement noise v k , and mea-
surement zk . An actual measurement ẑk of the sensor is a realization of zk .

6 1 Introduction

An important special case of the general models in (1.2) and (1.3) is the additive
noise case. Here, the dynamic model and the measurement model are given by

xk+1 = ak

(
xk ,uk

)+w k ,

zk = hk

(
xk

)+v k ,
(1.4)

respectively. This special case simplifies Bayesian filtering significantly, as the
transition density and likelihood can be expressed analytically (see next sec-
tion), but still it is sufficient for modeling a large class of important estimation
problems [73].

The noise processes w k and v k in (1.2) and (1.3), respectively, account for typical
uncertainties affecting the dynamic and measurement model. Examples are
modeling uncertainties or external disturbances [73]. It is assumed that both
noise processes are white. That is, both noise terms at time k are independent of
the system state xk and independent of the noises at any other time step n 6= k.
Both noise processes are presented by means of the probability density functions
f w

k

(
wk

)
and f v

k

(
vk

)
, respectively.

1.1.2 Recursive Filtering

Given a sequence of measurements ẑ0:n = (
ẑ0, ẑ1, . . . , ẑK

)
, the estimation prob-

lem consists of determining an estimate of the system state xk based on ẑ0:K .
Depending on the relation between the time steps k and K , three particular esti-
mation tasks exist: if k > K , the estimation problem is called prediction, for k = K
it is called filtering or measurement update, and if k < K , it is called smoothing.
Predictions and measurement updates are typically performed on-line, while
smoothing is an off-line estimation task, as it aims for improving of past state
estimates given additional information.

According to Bayesian filtering theory, the result of each of the three estimation
tasks is given in form of a conditional probability density that represents the state
estimate. Assuming that the system state xk is a Markov process4, these densities
can be calculated in a recursive fashion commencing from a initial state density
f x

0

(
x0

)
at time step k = 0.

4 The state xk merely depends on the previous state xk−1, but not on older states x l with l < k −1.
This assumption automatically holds if the noise processes are white [92].

1.1 Nonlinear Bayesian Filtering 7

Prediction

In practical applications it is common that prediction and measurement up-
date are performed alternatingly. Thus, without loss of generality, only the
one-step prediction is considered here. Predictions over multiple time steps can
be achieved by recursively performing one-step predictions.

Given the conditional density f e
k

(
xk

)
, f x

k

(
xk | ẑ0:k ,u0:k−1

)
of the previous mea-

surement update, the density of the predicted state for time step k+1 is calculated
according to the so-called Chapman-Kolmogorov equation [92, 166]

f p
k+1

(
xk+1

)
, f x

k+1

(
xk+1| ẑ0:k ,u0:k

)= ∫
f
(
xk+1| xk ,uk

)
· f e

k

(
xk

)
dxk . (1.5)

Here, the conditional density f
(
xk+1| xk ,uk

)
is the transition density, which

depends on the dynamic model (1.2) and the system noise w k . For the additive
noise case (1.4), the transition density is given explicitly by

f
(
xk+1| xk ,uk

)= f w
k

(
xk+1 −ak

(
xk ,uk

))
, (1.6)

where f w
k

(
wk

)
is the density of the system noise w k .

Measurement Update

The measurement update incorporates the current measurement vector ẑk into
the predicted density f p

k

(
xk

)
. By employing Bayes’ theorem, the measurement

update results in the posterior density of the state given by

f e
k

(
xk

)= ck · f
(
ẑk | xk

)
· f p

k

(
xk

)
(1.7)

with normalization constant ck , 1/
∫

f (ẑk |xk)· f
p

k (xk)dxk . The term f
(
ẑk | xk

)
is

known as the likelihood of the measurement ẑk and depends on the measure-
ment model (1.3) and the measurement noise v k . For the additive noise case
(1.4), the likelihood can be expressed explicitly via

f
(
ẑk | xk

)= f v
k

(
ẑk −hk

(
xk

))
(1.8)

with f v
k

(
vk

)
being the density of the measurement noise v k .

In [215] it is shown that the measurement update (1.7) is optimal from an infor-
mation processing perspective, i.e., there is no loss or waste of information.

8 1 Introduction

Smoothing

While the measurement update utilizes the current measurement for calculating
the estimate, smoothing additionally incorporates future measurements. This
restricts the application of smoothing for non-real time tasks, but the resulting
estimate is more accurate as more information is used. The smoothed density
f s

k

(
xk

)
, f x

k

(
xk | ẑ0:K ,u0:K−1

)
of the state for any time step k < K is calculated

according the backward recursion5

f s
k

(
xk

)= f e
k

(
xk

)
·

∫
f
(
xk+1| xk ,uk

)
· f s

k+1

(
xk+1

)
f p

k+1

(
xk+1

) dxk+1 (1.9)

commencing from the posterior density f s
K

(
xK

)≡ f e
K

(
xK

)
. All ingredients in (1.9)

are already provided from the prediction and measurement update.

1.1.3 Closed-form Calculation
Estimating the latent state from a sequence of noisy measurements can be con-
sidered a statistical inverse problem (see for instance [41]), to which Bayesian
filtering provides an optimal solution by means of (1.5), (1.7), and (1.9). The
resulting conditional density functions of the system state form a basis for cal-
culating further statistics like the mean vector or the covariance matrix, which
are of practical use. The optimal solution, however, is of conceptional value only,
mainly for two reasons. Although the recursive nature of the Bayesian filtering
equations avoids calculating a joint distribution comprising the system states of
all time steps, the resulting conditional densities cannot be represented by means
of a finite number of parameters in general [26]. Furthermore, a closed-form
solution of the filtering equations is not possible in general due to the involved
integrals and multiplications of density functions.

Only for a few special cases, closed-form solutions can be found. An exception for
instance exists for linear models affected by Gaussian noise, where the famous
Kalman filter ([96] and Section 2.2.2) is optimal with closed-form expressions. In
case of a finite state space, the Wonham filter [211] provides a closed-form solu-
tion. For general nonlinear models (1.2) and (1.3), however, an approximation of
the optimal Bayesian solution is inevitable to obtain a feasible filter for practical

5 This recursion actually holds for fixed-interval smoothing. Fixed-lag and fixed-point smoothing
can be directly derived from it.

1.1 Nonlinear Bayesian Filtering 9

Density Model

N
o

n
-p

ar
am

et
ri

c
P

ar
am

et
ri

c Extended
Kalman filter

Linear Regression
Kalman filters

Linear Regression
Kalman filters

P
ar

ti
cl

e
fi

lt
er

s
P

ar
ti

cl
e

fi
lt

er
s

Point-mass
& Grid filters

Gaussian Mixture filtersGaussian Mixture filters

Assumed Density filtersAssumed Density filters

Approximation →

D
en

si
ty

re
p

re
se

n
ta

ti
o

n
→

Figure 1.2: Popular approximate nonlinear filtering approaches.

applications. The following section gives a brief overview of major streams in
approximate Bayesian filtering.

1.1.4 Approximate Filtering: State of the Art
In Figure 1.2, different groups of popular approximate filtering approaches are
depicted. To show the differences between these groups, they are arranged
regarding two approximation aspects:

1. The filtering approaches approximate the given nonlinear dynamic and
measurement models or they approximate directly the conditional densities
resulting from the optimal Bayesian filter.

2. For approximation purposes, a parametric (i.e., a fixed functional type) or
non-parametric density representation is used.

Approximation of Models

One of mostly employed approximate nonlinear filtering approaches is the ex-
tended Kalman filter (EKF), which relies on a first-order Taylor-series expansion

10 1 Introduction

of the dynamic and measurement models [92, 173]. The Taylor-series expansion
results in linear models, for which the Kalman filter equations can be employed.
The major strengths of this approach are its simplicity and computational effi-
ciency. Due to the linearization, the EKF is applicable only for mild nonlinearities.
The EKF is described in more detail in Section 2.2.3.

Instead of a linearization, point-mass and grid filters [14, 33, 108, 172] utilize a
discretization of the models, which leads to discrete version of Bayesian filtering
problem. In doing so, all integrals in (1.5), (1.7), and (1.9) become summations,
which are straightforward to evaluate. Point-mass and grid filters suffer from
the so-called curse of dimensionality [16], as the number of discrete states in-
creases exponentially with the dimension of the state space. Thus, these filtering
methods are only feasible for low-dimensional problems.

Non-parametric Density Representation

Figure 1.2 indicates that the majority of the filters rely on an approximation of
the density instead of the models. One explanation for this imbalance can be
found in [95], where the authors state:

“It is easier to approximate a probability distribution than it is to
approximate an arbitrary nonlinear function or transformation.”

Particle filters (PFs, see Appendix A) for instance utilize a weighted sample rep-
resentation of the conditional densities—the so-called particles. In contrast to
the point-mass and grid filters, where the discretization is performed determinis-
tically, the particles are drawn randomly. This discrete density representation
simplifies Bayesian filtering significantly, as prediction is simply performed by
propagating the samples through the dynamic model (1.2), while measurement
update and smoothing essentially boil down to adapting the particle weights.
This simplicity is one of the key factors, why particle filters a very popular. Fur-
thermore, PFs make no strong assumptions on the conditional densities. PFs
form a Monte Carlo approximation, for which convergence towards the opti-
mal Bayesian filtering solution with an increasing number of particles can be
proven [58].

Although the convergence analysis is independent of the state dimension, prac-
tice shows that also PFs suffer from the curse of dimensionality [48]. This can be
explained by the fact that with an growing state dimension also the volume to
be filled with particles growth exponentially. An additional problem with PFs is

1.1 Nonlinear Bayesian Filtering 11

sample depletion, i.e., over time most of the particles have zero-weight, which
limits the representation of multi-model densities. As countermeasure resam-
pling has to be employed. Also the choice of an appropriate proposal density
from which the samples are drawn is critical.

In the recent years, modified PF algorithms have been proposed, which are not
relying on a pure sample representation. To attenuate the aforementioned prob-
lems of PFs, these algorithms temporarily or even completely employ continuous
densities like Gaussian densities [105], hybrid sample-Gaussian representations
[200], or various mixture densities [1, 106, 128].

Parametric Density Representation

Thanks to their universal approximator property [121], Gaussian mixture den-
sities are a welcome choice for approximating the conditional densities of the
Bayesian filter. They provide an analytical and continuous representation that
theoretically can approach the true density arbitrarily well, depending on the
number of mixture components (see Section 3.1 for detailed introduction to
Gaussian mixtures). Relevant statistics like mean or covariance can be derived in
closed-form. In contrast to a single Gaussian density, determining the optimal
parameters of a Gaussian mixture typically requires solving very demanding
optimization problems. These optimization problems can be performed on-line
in order to directly approximate the true conditional densities [75] or off-line,
by replacing the transition density and likelihood by Gaussian mixtures [83, 86].
The latter case corresponds to the class of model approximating filters.

A more light-weight class of Gaussian mixture filters utilize multiple Gaussian
filters like the EKF or linear regression Kalman filters (see next section) simulta-
neously, i.e., for each component of the mixture, a Gaussian filter is employed
(see for example [7, 170] and Section 3). These filters combine the benefits of
both worlds: the simplicity of Gaussian filters and the approximation power of
Gaussian mixtures, but without sophisticated parameter optimization.

Alternatively to fitting the approximate density directly to the true density, as-
sumed density filters (ADFs) calculate the approximate density in such a way
that the moments of the true density are preserved—which is known as moment
matching. This approach at least guarantees the correctness of some important
statistics like mean and covariance, which might not be the case when directly
approximating the density. Furthermore, for some nonlinear filtering problems
the true conditional densities cannot be expressed analytically, but the moments

12 1 Introduction

are available in closed form (see for instance Section 2.5.2). For most filtering
problems, however, calculating the desired moments requires numerical inte-
gration, which is computationally demanding especially for high-dimensional
states. Typical density representations employed in ADFs are Gaussians [66, 120],
Edgeworth/Gram-Charlier series [38, 181, 182], or exponential densities [27, 29].

Linear Regression Kalman Filters

Basically, linear regression Kalman filters (LRKFs) like the famous unscented
Kalman filter [95, 205] calculate a Gaussian approximation of the true condi-
tional densities, whereas the parameters of the Gaussian density are obtained by
propagating samples through the nonlinear models (1.2) and (1.3). In contrast
to PFs, these samples are chosen in a deterministic fashion and capture the
mean and covariance of the prior density exactly. Although this deterministic
sampling clearly refers to a density approximation approach, there also exists an
alternative interpretation [112, 113]: the same Gaussian density can be obtained
by means of stochastic linearization of the models through the use of statistical
linear regression (a theoretical treatment can be found in Section 2.2.5).

In contrast to the EKF, LRKFs provide more accurate estimates, while the com-
putational complexity is almost the same. Furthermore, LRKFs are applicable
to a larger class of filtering problems, as no differentiability of the system and
measurement functions is required.

1.2 Research Topics

Especially with the advent of the LRKFs—besides the particle filters—significant
improvements in approximating the optimal Bayesian filter have been achieved
in the recent years. Motivated by the benefits of these Gaussian filters, in this
thesis three major research topics grouped around nonlinear Gaussian filtering
are covered. At first, further improvements of Gaussian filtering in general and
LRKFs in particular are proposed. These improvements are then used for the
two other research topics: filtering via Gaussian mixtures and Gaussian process
models. In the following, for each of the three topics, particular reasons are iden-
tified why dealing with Gaussians, Gaussian mixtures, and Gaussian processes
in the context of Bayesian filtering is reasonable and thus, worth for further
investigation. Also limitations of state-of-the-art approaches are exposed, which
are resolved in this thesis.

1.2 Research Topics 13

Why Gaussian Filtering?

Besides its optimality, a major reason of the wide application of the Kalman filter
is its simplicity; all calculations are performed on the basis of matrix calculus (see
Section 2.2.2). The EKF and LRKFs leverage the elegant Kalman filter equations
for nonlinear filtering problems by assuming that the optimal conditional densi-
ties can be sufficiently well approximated by Gaussians. Additionally, these filters
do not suffer from the curse of dimensionality as the number of parameters of a
Gaussian density, i.e., the number elements of the mean vector and covariance
matrix, merely grow quadratically with the state dimension. This is different
for many other approaches like PFs. Gaussian filters are especially useful in
applications where limited computational demand and memory usage is key,
but an essential consideration of uncertainty is necessary.

Current Gaussian filters are typically applied in a black-box fashion, i.e., without
a detailed analysis of the properties of the given dynamic and measurement
models. Hence, approximations are applied even in cases, where at least some
parts of the models do not require an approximate treatment. Furthermore,
the Gaussian assumption is not only applied for the filtering results, it is also
used for representing the joint distribution of state and measurement. This
assumption is necessary for exploiting the Kalman filtering equations, but for
many applications it is too strong and limits the quality of the approximation.

Why Gaussian Mixture Filtering?

Obviously, employing Gaussian densities to approximate the optimal Bayesian
results may not be sufficient for every filtering problem6. Especially in cases,
where the resulting densities are multimodal, heavily skewed, or have heavy tails,
extending Gaussian filters towards using Gaussian mixture densities is desirable.
Here, Gaussian filters benefit from the fact that this extension is straightforward
to obtain as they can be applied on each mixture component independently. With
an increasing number of components, it can be shown that Gaussian mixture
filters utilizing EKF or LRKFs converge towards the optimal result [4].

One critical part of Gaussian mixture filters is the increase of the number of
components. New components should only be introduced where the current ap-

6 In [190], it is illustrated that many natural and technical phenomena generate Gaussian distri-
butions, but especially sociological systems—these also include financial systems—cannot be
described with Gaussian statistics.

14 1 Introduction

proximation is not accurate enough. To limit the computation time and memory
consumption, it is also necessary the reduce the number of components from
time to time, especially when the number of components is disproportionate to
the complexity of the density’s shape.

Why Gaussian Process Filtering?

So far it was assumed that the dynamic and measurement models are known.
This assumption does not hold in applications, where it is too complicated or
even impossible to derive these models. These issues for instance may arise,
when the underlying real system consists of many interacting elements like in
robotics [130, 187], when the models cannot be calibrated sufficiently well like in
WiFi-based localization [64] or in calibrating metal oxide sensors [124], or when
the mapping between state and measurement is artificial like in classification
problems [87]. Here, the mathematical models can be substituted by means of
so-called Gaussian process (GP) models, which are non-parametric probabilistic
models learned from data and which are a popular tool in machine learning (see
Section 4.1 for a brief introduction to GPs).

Bayesian filtering with GP models so far has only been performed approximately.
Furthermore, due to the non-parametric nature of GPs, the model accuracy but
unfortunately also the model complexity increases with the size of data set used
for learning. Performing Bayesian filtering can become infeasible if the data set
grows over time.

1.3 Main Contributions

The research areas and questions posed in the previous section are covered
by edited versions of the papers forming the second part of this thesis. The
contributions of these 15 papers are summarized in this section. The papers
for each research area can be divided into two groups: one group proposes
theoretical findings and algorithms derived on the basis of these findings, while
the other group investigates a dedicated practical application. In Figure 1.3, the
papers contained in each of the three research areas as well as the dependencies
between the research areas are depicted.

1.3 Main Contributions 15

Chapter 1

Chapter 2

Paper A

Paper B

Paper C

Paper D

Paper L

Paper M

G
au

ss
ia

n
Fi

lt
er

in
g

Chapter 3

Paper E

Paper F

Paper G

Paper N

G
au

ss
ia

n
M

ix
tu

re
Fi

lt
er

in
g

Chapter 4

Paper H

Paper I

Paper J

Paper K

Paper O
G

au
ss

ia
n

P
ro

ce
ss

Fi
lt

er
in

g

Chapter 5

Figure 1.3: Structure of the thesis. Gray boxes indicate applications.

1.3.1 Gaussian Filtering

Gaussian Filtering using State Decomposition Methods

In Paper A,

F. Beutler, M. F. Huber, and U. D. Hanebeck. Gaussian Filtering
using State Decomposition Methods. In Proceedings of the 12th
International Conference on Information Fusion (FUSION), pages
579–586, Seattle, WA, USA, July 2009,

LRKFs are extended in such a way that the number of samples used can be
reduced significantly by exploiting special structures in both the dynamic model
and measurement model. For this purpose, the state vector is decomposed in two

16 1 Introduction

ways: First, it is exploited that only some parts of the state vector are observable
by measurements. Second, the models are decomposed in linear and nonlinear
parts, where merely the nonlinear part is treated approximately by means of
LRKFs. It shown by means of simulations and experiments that the estimation
performance of the decomposed filters is comparable to the full-state ones, but
the computation time is significantly reduced.

Semi-Analytic Gaussian Assumed Density Filter

The findings of Paper A are extended in Paper B,

Marco F. Huber, Frederik Beutler, and Uwe D. Hanebeck. Semi-
Analytic Gaussian Assumed Density Filter. In Proceedings of the 2011
American Control Conference (ACC), pages 3006–3011, San Francisco,
CA, USA, June 2011.

Instead of merely decomposing the models into linear and nonlinear substruc-
tures, a nonlinear-nonlinear decomposition is proposed, where one nonlinear
part is conditionally integrable in closed form. This property holds only for
special nonlinearities like polynomials, trigonometric functions, or squared
exponential functions. For the conditionally integrable nonlinear part, mean
vector and covariance matrix can be calculated analytically, if the filtering result
is assumed to be Gaussian distribution. The other nonlinear part is still approxi-
mated via LRKFs. Simulations show an improved filtering accuracy and reduced
computational demand.

Chebyshev Polynomial Kalman Filter

For polynomial nonlinearities closed-form moment propagation is possible, a
property that was also exploited in Paper B. Paper C,

M. F. Huber. Chebyshev Polynomial Kalman Filter. In Digital Signal
Processing, vol. 23, no. 5, pages 1620–1629, September 2013,

leverages this property for arbitrary nonlinear systems. Here, these systems
first are approximated by means of a Chebyshev polynomial series. The special
structure of these orthogonal polynomials is then exploited for deriving very
efficient closed-form vector-matrix expressions for mean and variance propaga-
tion. The superior performance of the resulting filter over the state-of-the-art is
demonstrated via simulations and a real-world application.

1.3 Main Contributions 17

Gaussian Filtering for Polynomial Systems Based on Moment Homotopy

All the algorithms proposed in Paper A–Paper C still rely on the assumption
that state and measurement are joint Gaussian distributed. This assumption is
relaxed in Paper D,

M. F. Huber and U. D. Hanebeck. Gaussian Filtering for Polynomial
Systems Based on Moment Homotopy. In Proceedings to the 16th
International Conference on Information Fusion (FUSION), pages
1080–1087, Istanbul, Turkey, July 2013,

for polynomial nonlinearities. This relaxation offers the opportunity of exactly de-
termining the posterior mean and variance. However, a closed-form calculation
is not possible and thus, a novel homotopy continuation method is proposed,
which yields almost exact posterior mean and variance.

Application: Range-Based Localization

As application scenario for Gaussian filtering range-based localization is consid-
ered in Paper L,

F. Beutler, M. F. Huber, and U. D. Hanebeck. Optimal Stochastic
Linearization for Range-Based Localization. In Proceedings of the
2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5731–5736, Taipei, Taiwan, October 2010,

and in Paper M,

F. Beutler, M. F. Huber, and U. D. Hanebeck. Semi-Analytic Stochas-
tic Linearization for Range-Based Pose Tracking. In Proceedings of
the 2010 IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems (MFI), pages 44–49, Salt Lake City,
UT, USA, September 2010.

In Paper L merely position and velocity of an object are estimated based on
range measurements, which allows Gaussian assumed density filtering with
closed-form calculation of mean and covariance. The orientation of an object is
additionally considered in Paper M, which no longer allows an analytical solution.
Instead, the nonlinear-nonlinear decomposition proposed in Paper B has to be
employed.

18 1 Introduction

1.3.2 Gaussian Mixture Filtering

(Semi-)Analytic Gaussian Mixture Filter

Closed-form mean and covariance calculation for special nonlinearities as well
as the nonlinear-nonlinear model decomposition are extended in Paper E,

M. F. Huber, F. Beutler, and U. D. Hanebeck. (Semi-)Analytic Gaus-
sian Mixture Filter. In Proceedings of the 18th IFAC World Congress,
pages 10014–10020, Milano, Italy, August 2011,

for Gaussian mixture filters. Both techniques can be employed component-wise
and the superiority over state-of-the-art Gaussian mixture filters is demonstrated
by means of simulations.

Adaptive Gaussian Mixture Filter Based on Statistical Linearization

Typically, Gaussian mixture filters based on the EKF or LRKFs assume a fixed
number of mixture components, but determining the appropriate number re-
quires to trade filtering performance off against computational load. In Paper F,

M. F. Huber. Adaptive Gaussian Mixture Filter Based on Statistical
Linearization. In Proceedings of the 14th International Conference on
Information Fusion (Fusion), Chicago, Illinois, July 2011,

an adaptive algorithm is proposed, which introduces new mixture components
via splitting existing components. Splitting is performed whenever the nonlin-
earity of the dynamic or measurement model is high, but the current number of
components is too low and thus, large (statistical) linearization errors are caused.
Simulations show that new components are actually introduced where needed,
while splitting at mild nonlinear or even linear parts of the models are avoided.

Superficial Gaussian Mixture Reduction

Due to adaptive splitting as in Paper F or due to the multiplication of Gaussian
mixtures—which occurs if the transition density (1.6) or the likelihood (1.8) are
also Gaussian mixtures—the number of mixture components grows unbounded.
To limit this growth, in Paper G,

1.3 Main Contributions 19

M. F. Huber, P. Krauthausen, and U. D. Hanebeck. Superficial Gaus-
sian Mixture Reduction. In INFORMATIK 2011 - the 41th Annual
Conference of the Gesellschaft für Informatik e.V. (GI), 6th Workshop
Sensor Data Fusion: Trends, Solutions, Applications (SDF), Berlin,
Germany, October 2011,

a reduction algorithm is proposed. It minimizes an upper bound of the curvature
of the Gaussian mixture. This minimization can be formulated as a quadratic
program that optimizes the component weights. The mixture is then reduced by
removing component with zero weight. The advantages are an automated deter-
mination of the necessary number of components and a computational efficient
implementation thanks to the plethora of solvers for quadratic programs.

Application: Gas Dispersion Source Estimation

The accurate and timely estimation of the location and strength of a gas release
into atmosphere is imperative in order to increase the effectiveness of counter
measures for protecting the public. In Paper N,

M. F. Huber. On-line Dispersion Source Estimation using Adap-
tive Gaussian Mixture Filter. In Proceedings of the 19th IFAC World
Congress, pages 1059–1066, Cape Town, South Africa, August 2014,

the adaptive Gaussian mixture filter proposed in Paper F is applied to this pa-
rameter estimation problem. In contrast to the Monte Carlo methods commonly
used in this field, the proposed filter allows on-line estimation of the source
parameters, while at the same time the estimation error is comparable or even
lower than the state-of-the-art.

1.3.3 Gaussian Process Filtering

Analytic Moment-based Gaussian Process Filtering

Assuming that both the dynamic model and the measurement model are repre-
sented by means of Gaussian processes, Paper H,

M. P. Deisenroth, M. F. Huber, and U. D. Hanebeck. Analytic Moment-
based Gaussian Process Filtering. In Proceedings of the 26th Interna-
tional Conference on Machine Learning (ICML), Montreal, Canada,
June 2009,

20 1 Introduction

derives closed-form expressions for prediction and measurement update. Be-
sides the joint Gaussian assumption of state and measurement, no additional
approximations are employed.

Robust Filtering and Smoothing with Gaussian Processes

The results of Paper H are extended in Paper I,

M. P. Deisenroth, R. D. Turner, M. F. Huber, U. D. Hanebeck, and
C. E. Rasmussen. Robust Filtering and Smoothing with Gaussian
Processes. In IEEE Transactions on Automatic Control, vol. 57, no. 7,
pages 1865–1871, July 2012,

for smoothing. Assuming GPs with squared exponential covariance function and
zero mean function, mean and covariance are derived analytically exactly and in
closed form. It is further shown that restricting to this particular type of GP is not
too restrictive as it corresponds to a universal function approximator.

Recursive Gaussian Process Regression

GPs are not well suited for applications, where data arrives during runtime. In
Paper J,

M. F. Huber. Recursive Gaussian Process Regression. In Proceedings
of the 38th International Conference on Acoustics, Sound, and Signal
Processing (ICASSP), pages 3362–3366, Vancouver, BC, Canada, May
2013,

an on-line GP regression algorithm is proposed, which determines GP models
recursively with a constant computation time. The key idea is to use a fixed-size
set of so-called basis vectors that store all information necessary for regression. It
is shown via synthetic and real-world data that this novel GP regression performs
better than other on-line approaches. The resulting GP models can be utilized in
the GP filtering algorithms proposed in Paper H and Paper I.

Recursive Gaussian Process: On-line Regression and Learning

In Paper J it is assumed that the hyperparameters of the GPs are known. This
assumption is not valid in many applications. Alternatively, one has to learn the
hyperparameters from data. Paper K,

1.4 Thesis Outline 21

M. F. Huber. Recursive Gaussian Process: On-line Regression and
Learning. Pattern Recognition Letters, vol. 45, pages 85–91, August
2014,

extends the recursive GP regression of Paper J with an on-line hyperparameter
learning capability, i.e., regression and learning are performed simultaneously
and during runtime. For this purpose, regression and learning are formulated as
a Bayesian filtering problem, where the hyperparameters introduce nonlineari-
ties. The nonlinear-nonlinear decomposition technique proposed in Paper B is
employed to allow closed-form estimation of the hyperparameters.

Application: Bayesian Active Object Recognition via Gaussian Process
Regression

In active object recognition, camera parameters like zoom or orientation are
adapted to improve object classification performance. Due to the abstract nature
of the mapping from object class—which corresponds to the system state—and
image features, in Paper O,

M. F. Huber, T. Dencker, M. Roschani, and J. Beyerer. Bayesian Active
Object Recognition via Gaussian Process Regression. In Proceedings
of the 15th International Conference on Information Fusion (Fusion),
pages 1718–1725, Singapore, July 2012,

this mapping is learned from data and represented by means of a GP. The clas-
sification task itself is formulated as a Bayesian filtering problem, for which
closed-form expressions are derived. The appropriate camera parameters re-
sult from solving a sequential optimization problem that maximizes the mutual
information between object class and image features.

1.4 Thesis Outline

This thesis consists of two parts: The first provides the background that is neces-
sary for understanding the second part, which comprises the edited versions of
the aforementioned papers. The first part also provides summaries of the results
of these papers. Please note that the background material and the summaries
are kept to a minimum in order to avoid unnecessary redundancy.

The structure of the thesis is depicted in Figure 1.3 on page 15. Chapter 2 briefly
introduces the Gaussian density function and its properties. Also state-of-the-art

22 1 Introduction

Gaussian filters like the Kalman filter, LRKFs, or moment matching are described
and summaries of the papers A–D are provided.

Gaussian mixture filtering is the content of Chapter 3. Besides the extension of
Gaussian filters to Gaussian mixtures, this chapter also introduces the problem
of increasing and reducing the number of mixture components. The chapter
closes with summaries of the papers E–G.

In Chapter 4, Gaussian process regression and the state-of-the-art of Bayesian
filtering with GP models is introduced. Furthermore, the complexity issues with
GPs are discussed. This chapter comprises the summaries of the papers H–K.

Chapter 5 provides an introduction to each application treated with the algo-
rithms developed in the papers A–K. It further summarizes the results of the
papers L–O.

The first part of the thesis closes with Chapter 6, which gives a conclusion and an
outlook to future work.

2
Gaussian Filtering

This chapter lays the foundation of the thesis. It first introduces the Gaussian
distribution and some of its important properties in Section 2.1. Based on this, a
general Gaussian filtering problem with focus on predictions and measurement
updates is formulated in Section 2.2.1. This general problem can only be solved
for some special cases, where the linear is the most prominent one (see Sec-
tion 2.2.2). Otherwise, approximations have to be applied, where Sections 2.2.3–
2.2.5 discuss the mostly utilized approximation techniques. In Section 2.3, the
smoothing problem is formulated. The same approximation techniques intro-
duced for prediction and measurement update can be applied here as well.

Many filtering problems, even though being nonlinear, comprise linear sub-
structures. This special situation has been exploited in the past by means of the
so-called Rao-Blackwellisation theorem. Section 2.4 provides a brief summary of
this theorem and its application to Gaussian filtering. This theorem is also the
starting point for the contribution made in this thesis for Gaussian filtering. The
key findings of the Papers A–D are summarized in Section 2.5.

23

24 2 Gaussian Filtering

2.1 The Gaussian Distribution

The central distribution employed in this thesis is the Gaussian or normal dis-
tribution. It is also the most widely used distribution in statistics, filtering, and
machine learning. Its probability density function is defined by

N
(
x;µ,C

)
, 1p|2πC|e

− 1
2

(
x−µ

)T
C−1

(
x−µ

)
(2.1)

with the parameters mean vector and covariance matrix

µ= E
{

x
}= ∫

Rnx
x ·N

(
x;µ,C

)
dx ,

C = Cov
{

x
}= E

{(
x −µ)(

x −µ)T
}

,

respectively. The dimension of the mean vector corresponds to the dimension of
x , which is nx . The covariance matrix is symmetric and positive semi-definite,

where the number of elements is the dimension of x squared. The term
√
|2πC|

in (2.1) is a normalization factor ensuring that the integral of the density is
equal to one. If a random vector x is Gaussian distributed, the term x ∼N

(
µ,C

)
expresses that x is Gaussian distributed with parameters µ and C, where N

(
µ,C

)
is the (cumulative) Gaussian distribution function. If x ∼N (0,1), x follows the
standard Gaussian distribution.

In Figure 2.1, the density functions of various Gaussian random variables are
depicted. It can be seen that the Gaussian density has only one single mode that
is located at the mean µ.

2.1.1 Importance of the Gaussian
The Gaussian distribution is a universal tool in many fields. Besides its appli-
cation in statistics and filtering as considered in this thesis, it is for example
important in statistical mechanics to describe energy fluctuations while in biol-
ogy it is used to describe population dynamics ([91], Ch. 7). Also in economics it is
the fundamental distribution, even though here the justification of applicability
is sometimes questionable [190].

The success of the Gaussian distribution has many reasons, where the most im-
portant ones are the following [91, 100, 127]: First, it has merely two parameters

2.1 The Gaussian Distribution 25

x y

f

(a) Density function of a bivariate
Gaussian.

x

f

-2 0 2

1
2

1

N (0,1)

N (0, 1/4)

N (−2, 1/9)

(b) Density functions of different
univariate Gaussians. The solid
curve corresponds to the stan-
dard Gaussian.

Figure 2.1: Various univariate and bivariate Gaussian densities. Characteristic of
Gaussian density functions is its bell shape.

and these are easy to interpret. These parameters at the same time correspond to
the first two moments, which are the most basic properties of a distribution. Sec-
ond, the number of parameters scales merely quadratically with the dimension
of the state space. Third, if merely the first two moments are given, the Gaussian
distribution makes the least assumptions about the true distribution according
to the maximum entropy principle [19] and it is closest to the true distribution if
the Kullback-Leibler divergence is considered as deviation measure [45, 73]. In
parameter estimation it minimizes the Fisher information. Forth, it has a simple
mathematical form, which allows closed-form calculations in many filtering
problems and results in straightforward implementations. Fifth, according to the
central limit theorem the sum of independent random variables approaches a
Gaussian distribution, which makes the Gaussian a preferred choice for modeling
residual errors and noise. Sixth, Gaussians are unimodal and thus, they possess a
single maximum. Such distributions are typical in many filtering problems like
single-target tracking [196].

2.1.2 Dirac Delta Distribution
The Gaussian distribution possesses an important limiting case. If the deter-
minant of the covariance matrix approaches zero, i.e., if |C| → 0, the Gaussian

26 2 Gaussian Filtering

becomes a “peak" centered around the mean. This distribution is known as the
Dirac delta distribution given by

δ
(
x −µ)={

undefined if x =µ
0 if x 6=µ

such that ∫
Rnx

δ
(
x
)

dx = 1 .

The value of the Dirac delta is zero everywhere except of x =µ. A useful property
that follows from this fact is the so-called sifting property∫

Rnx
g
(
x
)

·δ
(
x −µ)

dx = g
(
µ
)

(2.2)

that selects only a single value from an integration.

2.1.3 The Exponential Family
The Gaussian density itself is a special case of two families of very general density
functions: the Gaussian mixture densities and the exponential family. While
the first family is treated in more detail in Chapter 3, a brief introduction to the
second family is provided here.

A density function belongs to the exponential family if it is of the form

f
(
x
)= c

(
η
)

·h
(
x
)

· exp
(
ηT ·φ

(
x
))

, (2.3)

where η ,
[
η0 η1 . . . ηn

]T is a parameter vector, φ
(
x
)

is a vector of sufficient

statistics1 comprising a set of n functions

φ
(
x
)
,

[
φ0

(
x
)

φ1
(
x
) · · · φn

(
x
)]T

. (2.4)

The term c
(
η
)

is a normalization constant ensuring the probability mass being

one and h
(
x
)

is a scaling constant, often being one.

1 A statistic φ(D) is said to be sufficient for data D if f (x|D) = f (x|φ(D)), i.e., the statistic contains
all information about the data such that the data can be discarded without loss of information.

2.2 Exact Gaussian Filtering and Approximations 27

The exponential family comprises many well-known distributions as special
cases. Examples are the Bernoulli distribution, Poisson distribution, multinomial
distribution and of course the Gaussian distribution, which can be obtained from
(2.3) by choosing

η=
[

C−1 ·µ

− 1
2 C−1

]
, φ

(
x
)= [

x
x · xT

]
, c

(
η
)= 1p|2πC|e

− 1
2µ

TC−1µ , h
(
x
)= 1 . (2.5)

Furthermore, the exponential family is the only family of distributions with finite
dimensional sufficient statistics and for which conjugate priors exist, i.e., the
prior density has the same form as the likelihood, which simplifies Bayesian
filtering significantly. However, except of some special cases like the Gaussian
density, determining the moments of an exponential density in closed form is
not possible in general [73].

2.2 Exact Gaussian Filtering and Approximations

In order to provide a solution of the general Bayesian filtering problem stated
in Section 1.1, it is assumed in the following that the state vector x is Gaussian
distributed. Thus, the filtering task boils down to calculating the two parameters
mean vector and covariance matrix.

2.2.1 General Formulation
Various approaches have been proposed in the past for calculating the mean and
covariance in case of arbitrary nonlinear dynamic and measurement models. To
provide a unified overview of these approaches, the nonlinear transformation2

y = g
(
x
)+w , w ∼N

(
0,Cw

)
, (2.6)

is considered in the following, where the Gaussian state x ∼N
(
µ

x
,Cx

)
is mapped

to a Gaussian random vector y via an arbitrary nonlinear function g (.). The noise
w is independent of x . For predictions, the transformation g (.) corresponds to

2 Only the additive noise case is discussed here. For non-additive noise, the solutions derived next
can be directly applied if the state x is augmented with the noise w , i.e., g (.) then becomes a
function of both x and w .

28 2 Gaussian Filtering

the dynamic model ak (.,.) in (1.4) for a given input uk and y , w are replaced by
the predicted state xk+1 and the noise w k , respectively. In case of measurement
updates, g (.) becomes the measurement model hk (.), while y and w are replaced
by the measurement vector zk and noise v k , respectively.

For solving prediction and measurement update, the goal is to determine the
joint Gaussian distribution of x and y , which is given by[

x
y

]
∼N

(
µ,C

)
with µ,

[
µ

x
µ

y

]
, C,

[
Cx Cx y

CT
x y Cy

]
, (2.7)

where

µ
y
= E

{
g
(
x
)}=

∫
g
(
x
)

·N
(
x;µ

x
,Cx

)
dx ,

Cy = Cov
{

g
(
x
)}=

∫ (
g
(
x
)−µ

y

)(
g
(
x
)−µ

y

)T
· N

(
x;µ

x
,Cx

)
dx + Cw ,

Cx y = Cov
{

x , g
(
x
)}=

∫ (
x −µ

x

)(
g
(
x
)−µ

y

)T
· N

(
x;µ

x
,Cx

)
dx ,

(2.8)

are the unknown mean vector and covariance matrix of y as well as the unknown
cross-covariance matrix between x and y , respectively.

To perform a prediction, the respective parameters of the predicted Gaussian den-
sity can be retrieved from the first two lines of (2.8), namely the predicted mean
and covariance. In case of a measurement update, an additional calculation is
required as the posterior density is conditioned on the current measurement
(see (1.7)). Thus, by conditioning x on y the resulting density is given by (see e.g.
[143], Appendix A)

x | y ∼N
(
µ

x
+Cx y C−1

y ·
(

y −µ
y

)
,Cx −Cx y C−1

y CT
x y

)
, (2.9)

which corresponds to desired posterior density.

Due to the restriction that both x and y are assumed to be Gaussian, a Bayesian
filter calculating the exact joint Gaussian (2.7) is named a Gaussian assumed den-
sity filter. That is, although the true density is not Gaussian due to the nonlinear
transformation (2.6), at least the first two moments—mean vector and covari-
ance matrix—coincide with the true respective moments, why this approach
often is also named moment matching [120]. Unfortunately, the integrals in (2.8)
possess no analytic solution for arbitrary nonlinear functions g (.) in general and
thus, approximations are inevitable. The various approximations proposed in

2.2 Exact Gaussian Filtering and Approximations 29

the past for Gaussian filtering essentially differ in the way the integrals in (2.8)
are solved. Just for some special cases, closed-form expressions for (2.8) can be
found. The most prominent one is discussed next.

2.2.2 Linear Filtering
Assuming that the transformation in (2.6) is a linear one according to

y = G · x +w ,

where the matrix G corresponds to the nonlinear function g (.), the moment inte-
grals in (2.8) can be calculated in closed form. The mean vector and covariance
matrix of the joint Gaussian are then given by

µ=
[
µ

x
G ·µ

x

]
, C =

[
Cx Cx GT

GCx GCx GT +Cw

]
. (2.10)

This follows directly from exploiting the linearity of the expectation operator E{.}.
In doing so, the integrals in (2.8) are reduced to calculating the mean and covari-
ance of x .3

The Kalman Filter

Based on (2.10), the famous Kalman filter can be derived. For this purpose, linear
dynamic and measurement models according to

xk+1 = Ak · xk +w k , w k ∼N
(
0,Cw

k

)
zk = Hk · xk +v k , v k ∼N

(
0,Cv

k

) (2.11)

are assumed with system matrix Ak and measurement matrix Hk . Given the

posterior density f e
k

(
xk

)=N
(
xk ;µe

k
,Ce

k

)
of the system state, the prediction step

yields the predicted density f p
k+1

(
xk+1

)=N
(
xk+1;µp

k+1
,Cp

k+1

)
with parameters

µp
k+1

= Ak ·µe
k

,

Cp
k+1 = Ak Ce

k AT
k +Cw

k ,
(2.12)

3 For calculating Cx y the identity E
{

x · xT}= Cx +µ
x
µT

x
is required in addition.

30 2 Gaussian Filtering

where both the mean vector µp
k+1

and the covariance matrix Cp
k+1 can be ex-

tracted from the second row in (2.10) by replacing µ
x

, Cx , G, Cw with µe
k

, Ce
k , Ak ,

Cw
k , respectively.

For determining the measurement update of the Kalman filter, it is necessary
to exploit the conditioning (2.9) by replacing µ

x
, Cx , G, and Cw with µp

k
, Cp

k ,

Hk , and Cv , respectively. For a given measurement vector ẑk , the resulting
measurement update of the Kalman filter calculates the Gaussian posterior

density N
(
xk ;µe

k
,Ce

k

)
of the system state xk with mean vector and covariance

matrix according to

µe
k
=µp

k
+Kk ·

(
ẑk −Hk ·µp

k

)
,

Ce
k = Cp

k −Kk Hk Cp
k ,

(2.13)

where Kk = Cp
k HT

k

(
Hk Cp

k HT
k +Cv

k

)−1
is the so-called Kalman gain.

It is worth mentioning that R. Kalman used a different derivation in his paper [96].
Instead of the above approach, which is driven from a Bayesian perspective, he
exploited orthogonal projections on the vector space spanned by the measure-
ments. Both derivations are equivalent, where the Bayesian one makes the link
to nonlinear Gaussian filters more obvious [159].

Route to Nonlinear Approaches

The additional assumption that not only y but also the joint density of x and
y is Gaussian as in (2.7) is only satisfied for linear models. However, all non-
linear Gaussian filtering approaches introduced next follow either implicitly or
explicitly the same path that was utilized to derive the Kalman filter, i.e., con-
structing the joint Gaussian of x and y and conditioning on y . Thus, they all
form a Kalman filter like approximation for nonlinear filtering problems. This
approach is justified by the fact that by assuming both x and y being Gaussian,
there must exist a linear transformation from x to y (see e.g. [197]). Hence, by
providing an (approximate) solution to the integrals in (2.8), a linear transforma-
tion is constructed simultaneously that (implicitly) approximates the original
nonlinear transformation (2.6). By explicitly calculating this linear transforma-
tion, the above Kalman filter equations can be applied directly. Hence, the focus
in the next sections is mainly on how the approximation is achieved, while the

2.2 Exact Gaussian Filtering and Approximations 31

actual filtering equations can be directly extracted from the above Kalman filter
equations with appropriate substitution of the linear models (2.11).

Both approaches introduced next explicitly provide linear transformations for
approximating the nonlinear filtering problem. They belong to the group of
model approximating approaches depicted in Figure 1.2 on page 9. The filters in
Section 2.2.5 instead can be considered as density approximating as they aim for
the integrals in (2.8) in order to determine the joint Gaussian of x and y . A linear
model is merely calculated implicitly.

2.2.3 Linearized and Extended Kalman Filter
The motivation behind the linearized Kalman filter is that in case of mild nonlin-
earities it might be sufficient to linearize (2.6) about a nominal point through a
Taylor-series expansion. Let x̄ be this nominal point. The Taylor-series expansion
of the function g (.) is then given by

y = g
(
x
)+w = g

(
x̄
)+Gx

(
x̄
)

·∆x +Ox +w ,

where ∆x , x − x̄ ∼N
(
µ

x
− x̄,Cx

)
, Gx

(
x̄
)

is the Jacobian matrix of g (.) accord-

ing to

Gx
(
x̄
)
,
∂g

(
x
)

∂xT

∣∣∣∣
x=x̄

, (2.14)

and Ox is the remainder comprising all higher-order terms of the expansion. A
linear approximation of g (.) is obtained by neglecting the remainder term, which
yields

g
(
x
)≈ g

(
x̄
)+Gx

(
x̄
)

·∆x . (2.15)

Depending on the choice of the nominal point, different realizations of a lin-
earized Kalman filter are obtained. In case of the basic linearized Kalman filter as
described in [120] the nominal points are chosen in advance. In doing so, the lin-
earized model (2.15) and thus, the Kalman gains and covariance matrices of the
Kalman filter can be calculated off-line [209], which is desirable in applications
with low computation resources.

A famous variation known as the extended Kalman filter (EKF)—the nonlinear
filter used in the NASA Apollo program—is obtained when choosing the nominal
points as being equal with the current state mean vector. This filter is no longer

32 2 Gaussian Filtering

an off-line filter, but it is more adaptive to the current situation. This choice of
nominal points also has implications on the moments of the joint Gaussian (2.7)
as ∆x = x −µ

x
∼N

(
0,Cx

)
now has zero mean. The mean vector µ

y
for instance

is independent of the Jacobian Gx according to

µ
y
= E

{
g
(
x
)+w

}
≈ E

{
g
(
µ

x

)
+Gx

(
µ

x

)
∆x +w

}
= g

(
µ

x

)
,

i.e., for calculating the mean it is sufficient to merely evaluate the nonlinear
function g (.) at the nominal point µ

x
.

A major advantage of linearized Kalman filters compared to Gaussian filters
introduced below is their simplicity. Given the Jacobian matrix, they directly boil
down to a Kalman filter. As a consequence, they are one of the computationally
cheapest if not the cheapest Gaussian filters. However, differentiability of the
nonlinear function g (.) is required, which is not given in every application.

Many improvements of linearized Kalman filters, but especially for the EKF have
been suggested. The second-order EKF for instance utilizes a second-order
Taylor-series expansion [66]. The iterated EKF performs multiple iterations of
the measurement update for the same measurement value in order to linearize
not only about the predicted state, but about the most recent estimate. This
procedure converges faster to the exact solution than the EKF [92]. In [214] this
concept has been generalized from discrete iterations to a differential update.

2.2.4 Statistical Linearization
An alternative to a Taylor-series expansion for explicitly determining a linear
model is statistical linearization [66], where the nonlinear function g (.) is ap-
proximated via

g
(
x
)≈ G ·∆x +b

with ∆x , x −µ
x

. Here, the terms G and b are chosen in such a way that the

mean squared error

E

{(
g
(
x
)−G ·∆x −b

)T (
g
(
x
)−G ·∆x −b

)}
(2.16)

2.2 Exact Gaussian Filtering and Approximations 33

is minimized with respect to G and b. The solution to (2.16) yields

b = E
{

g
(
x
)}

, (2.17)

G = E
{

g
(
x
)

·∆x
}

C−1
x . (2.18)

There is an interesting relation between the linearized Kalman filter and statistical
linearization. Assuming that g (.) is differentiable, the expectation in (2.18) can
be reformulated to (see [159])

E
{

g
(
x
)

·∆x
}
= E

{
Gx

(
x
)}

Cx ,

where Gx is the Jacobian matrix (2.14). In this case, the statistical linearization be-
comes a Taylor-series based linearization, except that instead of directly utilizing
g (.) and the Jacobian Gx , their expected values are employed. This is beneficial in
the sense that statistical linearization exploits additional information about the
state x thanks to the expectation calculation, while for the Taylor-series expan-
sion merely the mean vector µ

x
is utilized. This comes at the expense that the

expected values (2.17) and (2.18) often cannot be calculated analytically, albeit
the Jacobian matrix may exist.

2.2.5 Linear Regression Kalman Filters
To overcome the flaws of statistical and Taylor-series based linearization, the
group of so-called linear regression Kalman filters (LRKFs) are based on a com-
pletely different approach. Instead of directly approximating the nonlinear
model (2.6), the Gaussian representing the state x is approximated by means
of a set of weighted samples Lx = {

ωi ,Xi
}
, i = 1. . .L, which are sometimes also

called sigma points. Given a sample representation of N
(
x;µ

x
,Cx

)
, the efficient

evaluation of the integrals in (2.8) is straightforward.

In order to see this, the focus is restricted in the following on the integral

E
{

g
(
x
)}=

∫
g
(
x
)

·N
(
x;µ

x
,Cx

)
dx . (2.19)

The solution method for this integral can be directly applied to all integrals
in (2.8). In order to obtain the sample representation independent of the current

34 2 Gaussian Filtering

mean vector and covariance matrix of the Gaussian density, a change of the
integration variable is employed for (2.19), which results in

E
{

g
(
x
)}=

∫
g
(
x
)

·N
(
x;µ

x
,Cx

)
dx =

∫
g

(
µ

x
+

√
Cx ·θ

)
·N

(
θ;0,I

)
dθ (2.20)

with
p

C being the matrix square root such that C =
p

C
(p

C
)T. This transforma-

tion allows determining the sample representation in advance for the multivari-
ate standard Gaussian N

(
θ;0,I

)
, while the adaptation to the actual Gaussian is

performed on-line via the transformation µ
x
+

√
Cx ·θ.

With a given sample set Lθ =
{
ωi ,θi

}
, i = 1. . .L, that approximates the standard

Gaussian N
(
θ;0,I

)≈∑L
i=1ωi ·δ

(
θ−θi

)
as a sum of weighted Dirac delta distri-

butions, the integral (2.20) can be solved according to

E
{

g
(
x
)}=

∫
g

(
µ

x
+

√
Cx ·θ

)
·N

(
θ;0,I

)
dθ

≈
∫

g
(
µ

x
+

√
Cx ·θ

)
·

(
L∑

i=1
ωi ·δ

(
θ−θi

))
dθ

=
L∑

i=1
ωi · g

(
µ

x
+

√
Cx ·θi︸ ︷︷ ︸

,Xi

)
, (2.21)

where the second line follows from substituting the standard Gaussian with its
approximate sample representation. The third line follows from exploiting the
sifting property (2.2).

The quantities Xi in (2.21) correspond to the transformed sample points with
corresponding weights ωi . The actual value of Xi depends on θi and the way the
matrix square root of Cx is determined. Also the weights ωi offer an additional
degree of freedom to the sample set. Various methods have been proposed in
the past for calculating ωi and θi . Main drivers for the calculation typically are
numerical quadrature techniques for solving Gaussian integrals or capturing
information of the standard Gaussian N

(
θ;0,I

)
like its mean and covariance.

Before the most popular of them are briefly introduced, it is worth mentioning
that even though LRKFs resemble Monte Carlo integration in (2.21), the sample
points are determined in a deterministic fashion. Monte Carlo methods like
particle filters instead employ random sampling.

2.2 Exact Gaussian Filtering and Approximations 35

Cubature Kalman Filter (CKF)

The cubature Kalman filter [11, 213] exploits the third-order spherical cubature
integration rule. According to this rule, the sample set consists of L = 2·nx points

θi =
{p

nx ·e i if i = 1. . .nx

−pnx ·e i−nx
, if i = nx +1. . .2nx

(2.22)

with weightsωi = 1/2nx for all i . In (2.22), e i = [0 0 1 0 0 · · ·0]T is the canonical unit
vector, where only element i is one. The CKF calculates (2.19) exactly if g (.) is a
linear combination of monomials of order up to three [10], while the covariance
Cx in (2.8) is determined exactly if g (.) is linear.

Unscented Kalman Filter (UKF)

As shown in [159], the CKF approach can be generalized to the so-called un-
scented transform proposed by [94], which forms the basis for the unscented
Kalman filter [205]. Therefore, instead of 2nx sample points, 2nx +1 points are
considered. The additional point is specially dedicated to the mean of x . The
sample points and the corresponding weights are given by

θi =

p

nx +κ ·e i if i = 1. . .nx

−pnx +κ ·e i−nx
if i = nx +1. . .2nx

0 if i = 2nx +1

,

ωi =

1

2(nx+κ) if i = 1. . .nx
1

2(nx+κ) if i = nx +1. . .2nx
κ

nx+κ if i = 2nx +1

,

with κ being a free parameter. The placement of these sample points is depicted
in Figure 2.2a on the next page. For κ= 0 the sample set is identical with the one
provided by the CKF.

Like for the CKF, it can be shown that the above sample set exactly captures the
mean and covariance of the multivariate standard Gaussian. Furthermore, (2.19)
is evaluated exactly if g (.) is a polynomial of order up to three.

36 2 Gaussian Filtering

0.96 1.0 1.04

r →

2π
3

π
2

π
3

φ
→

(a) Sample points of the UKF and
covariance ellipse corresponding to
the polar coordinates.

-0.8 -0.1 0.6

x →

1.1

1.0

0.9

0.8

y
→

(b) True mean (black cross) as well
as estimated mean and covariance
of EKF (diamond for mean, dashed
ellipse for covariance) and UKF (cir-
cle and solid gray ellipse).

Figure 2.2: Comparison of estimates of EKF and UKF. The gray dots forming a
“banana” shape in (b) correspond to a Monte Carlo estimate of the true density.

Example 1: UKF vs. EKF

To demonstrate the difference in estimation between the UKF and the EKF,
the nonlinear function[

x
y

]
= r ·

[
cos(φ)
sin(φ)

]
, with

[
r
φ

]
∼N

([
1
π
2

]
,

[
0.0004 0.001
0.001 0.0685

])
is considered (see [95]), which transforms the polar coordinates (r,φ) to
Cartesian coordinates (x,y). The true density of the Cartesian coordinates
is clearly not Gaussian as can be seen in Figure 2.2b. However, the UKF
almost exactly estimates the correct mean, while the estimate of the EKF is
biased and inconsistent, especially in y direction. Furthermore, the EKF
strongly underestimates the variance of the y coordinate.

Gaussian Estimator

The number of sample points of the CKF or UKF are restricted by the dimension
of the state, although there are approaches to extend the sample set (see e.g.

2.2 Exact Gaussian Filtering and Approximations 37

[192]). To allow an arbitrary number of samples, [88] proposed a sampling
scheme that incorporates additional information about the shape of the Gaussian
density function, besides merely capturing mean and covariance. The sample
points are therefore given by

θi =

µi ·e i if i = 1. . .m

µi−m ·e i−m if i = m +1. . .2m
...

µi−nx ·m ·e i−(nx−1) ·m if i = (nx −1) ·m +1. . .nx ·m

(2.23)

with weights ωi = 1/(nx ·m). Hence, the set of samples consists of L = nx ·m points,
where m is a free parameter allowing to increase or decrease the required number
of sample points. For each state dimension, the same parameters µi , i = 1. . .m,
in (2.23) are required, which are the roots of the set of nonlinear equations

1
2

(
1+erf

(
µip

2

))
− 2i−1

2m +λµi = 0 ,

m∑
j=1

µ2
j −m = 0 ,

where erf(.) is the Gaussian error function and λ is a Lagrangian multiplier. Find-
ing the roots is not possible in closed form and thus, requires a numerical so-
lution. The necessary computational overhead is uncritical, as the sample set
is determined for the multivariate standard Gaussian and can be transformed
on-line according to (2.21).

Gauss-Hermite Kalman Filter (GHKF)

As can be seen from (2.23), all sample points are placed along the coordinate axes,
while no points are placed in the quadrants. The same observation holds for CKF
and UKF. A more dense placement of sample points as a irregular grid results
when applying the Gauss-Hermite quadrature rule. Accordingly, the sample
points and corresponding weights are

θi =
[
θi1 θi2 · · · θinx

]T , ωi =
nx∏
j=1

m!(
m · Hm−1

(
θi j

))2 , (2.24)

38 2 Gaussian Filtering

with i ,
(
i1i2 . . . inx

)
being an index vector where each index i j takes values 1. . .m.

The j th element θi j , j = 1. . .nx , of the sample point θi is one of the m roots of

m-order Hermite polynomial

Hm(x) = x · Hm−1(x)− (m −1) · Hm−2(x) , m = 2,3, . . . (2.25)

whereas this recursion commences from H0(x) = 1 and H1(x) = x.

The LRKF employing the above set of sigma points is named Gauss-Hermite
Kalman Filter and was proposed in [13, 90]. Like the Gaussian estimator, the
number of sample points can be varied. However, while for the Gaussian estima-
tor the number of samples still scales linearly with the dimension of the state,
the number of samples of the GHKF scales exponentially due the grid placement
of the samples. This comes with the advantage that a GHKF using an m-order
Hermite polynomial is exact is for polynomials up to order 2m −1.

Implicit Linearization

Besides the discussed LRKFs, there exist further approaches like the central
difference filter [161] or the divided difference filter [133], which are not discussed
here in order to constrain the focus on the mostly used approaches. However,
all LRKFs share the property that they directly target the integrations (2.8). In
doing so, also a linear transformation approximating the nonlinear one in (2.6) is
constructed, although implicitly. As has been shown in [112, 203], LRKFs actually
perform weighted statistical linear regression by approximating g (.) according to

g
(
x
)≈ G · x +b , (2.26)

where G and b result from minimizing

L∑
i=1

ωi ·
(
g
(
Xi

)−G ·Xi −b
)T (

g
(
Xi

)−G ·Xi −b
)

.

The desired quantities are then given by

G = CT
x y C−1

x , b =µ
y
−G ·µ

x
,

2.3 Gaussian Smoothing 39

where

µ
x
=∑

i
ωi ·Xi , Cx =∑

i
ωi ·

(
Xi −µx

)(
Xi −µx

)T
,

µ
y
≈∑

i
ωi · g

(
Xi

)
, Cx y ≈

∑
i
ωi ·

(
Xi −µx

)(
g
(
Xi

)−µ
y

)T

are the sample means and covariances determined by means of the set of sample
points Lx = {

ωi ,Xi
}
.

The error of the linearization (2.26) is given by

e = g
(
x
)−G · x −b (2.27)

and depends on the nonlinear function g (.) as well as on the state x . Both are
main sources for linearization errors, which become large for strong nonlineari-
ties or when the covariance of the state and thus its spread is large. It was shown
in [112] that for LRKFs the error (2.27) has zero mean and a covariance matrix

Ce = Cy −GCx GT . (2.28)

The latter is a potential and easy to evaluate indicator of the linearization error.
If Ce is a zero matrix, the density of the error e corresponds to a Dirac delta
distribution [136] and the transformation g (.) is affine with g (x) = G · x +b. Ac-
cordingly, LRKFs are exact for linear/affine transformations and thus, degenerate
to a standard Kalman filter.

2.3 Gaussian Smoothing

So far, the focus was on performing predictions and measurement updates for
Gaussian filters. Now, the missing smoothing step is derived. According to (1.9),
smoothing is a backward recursion for incorporating not only the current but
also future measurements in the state density. For Gaussian filters it is assumed
that the smoothed density is Gaussian, i.e.,

f s
k

(
xk

)= f x
k

(
xk | ẑ0:K ,u0:K−1

)≈N
(
xk ;µs

k
,Cs

k

)
(2.29)

with appropriate mean vector µs
k

and covariance matrix Cs
k . The derivation of

the smoothing recursion for calculating (2.29) is based on the so-called Rauch-

40 2 Gaussian Filtering

Tung-Striebel smoother (RTSS, see [144]) for linear systems and follows loosely
[54, 84].

2.3.1 General Formulation

It is assumed that both the smoothed Gaussian N
(
xk+1;µs

k+1
,Cs

k+1

)
and the

posterior Gaussian N
(
xk ;µe

k
,Ce

k

)
are already given. As smoothing is an off-line

task that is usually performed after K ≥ 1 prediction and measurement update
steps, the assumption of a known smoothed Gaussian is valid since for the
time step K , the smoothed density coincides with the posterior Gaussian, i.e.,
f e

K

(
xk

)≡ f s
K

(
xk

)=N
(
xK ;µs

K
,Cs

K

)
and thus knowing N

(
xk+1;µs

k+1
,Cs

k+1

)
follows

by induction.

Similar to Section 2.2.1, the interest is in the joint Gaussian[
xk

xk+1

]
∼N

(
µ

x
,Cx

)
with µ

x
,

[
µs

k
µs

k+1

]
, Cx ,

[
Cs

k Ck|k+1

CT
k|k+1 Cs

k+1

]
, (2.30)

where the desired smoothed mean vector and covariance matrix for time step k
can be retrieved from the first row of (2.30). To obtain both quantities, the joint
Gaussian is rewritten as

N
([

xk , xk+1

]T ;µ
x

,Cx

)
=N

(
xk ;µ,C

)
·N

(
xk+1;µs

k+1
Cs

k+1

)
, (2.31)

which is the product of the known smoothed Gaussian and the conditional Gaus-
sian N

(
xk ;µ,C

)
, f

(
xk | xk+1, ẑ0:k

)
, where the latter is independent of the future

measurements ẑk+1:K due to conditioning on xk+1. However, the conditional
Gaussian is unknown, but it can be obtained from (2.9) when replacing x with
xk ∼N

(
µe

k
,Ce

k

)
, y with xk+1 ∼N

(
µp

k+1
,Cp

k+1

)
and the nonlinear transformation

g (.) with ak (.). Hence, the unknown mean vector and covariance matrix in (2.31)
are given by

µ=µe
k
+ Jk ·

(
xk+1 −µp

k+1

)
,

C = Ce
k − Jk CT

k|k+1 ,
(2.32)

2.3 Gaussian Smoothing 41

respectively, with gain matrix Jk = Ck|k+1
(
Cp

k+1

)−1
and cross-covariance matrix

Ck|k+1 according to

Ck|k+1 = Cov
{

xk , xk+1

}
=

∫ (
xk −µe

k

)(
ak

(
xk ,uk

)−µp
k+1

)T
·N

(
xk ;µe

k
,Ce

k

)
dxk . (2.33)

Substituting the mean and covariance of (2.32) into (2.31) and solving the prod-
uct4 leads to the desired joint Gaussian of (2.30), where the smoothed mean and
covariance at time step k are given by

µs
k
=µe

k
+ Jk ·

(
µs

k+1
−µp

k+1

)
,

Cs
k = Ce

k + Jk
(
Cs

k+1 −Cp
k+1

)
JT

k ,
(2.34)

respectively. It is obvious that all quantities in (2.34) except of the gain matrix
Jk are known from predictions and measurement updates or are calculated in
a previous smoothing step. The matrix Jk requires solving the integral in (2.33),
which is not possible in closed form in general due to the nonlinear system
function ak (.).

2.3.2 Linear Case
In case of linear dynamic and measurement models as in (2.11), a closed-form
expression of the integral (2.33) and thus of the smoothing recursion (2.34) can
be found. The resulting RTS smoother or sometimes Kalman smoother coincides
with (2.34), where the gain matrix is

Jk = Ce
k AT

k

(
Cp

k+1

)−1
(2.35)

and the predicted as well as the posterior parameters are

µp
k+1

= Ak ·µe
k

, µe
k
=µp

k
+Kk ·

(
ẑk −Hk ·µp

k

)
,

Cp
k+1 = Ak Ce

k AT
k +Cw

k , Ce
k = Cp

k −Kk Hk Cp
k .

The latter correspond to the Kalman filter predictions (2.12) and measurement
updates (2.13), respectively.

4 A detailed solution of this product can be found in Paper J, Section 3.1.

42 2 Gaussian Filtering

2.3.3 Nonlinear Case
Similar to the predictions and measurement updates in case of nonlinear mod-
els, it is sufficient for Gaussian smoothing to find a linear approximation of the
nonlinear system function ak (.) or to solve the integral (2.33). Hence, all the
nonlinear Gaussian filters discussed in Sections 2.2.3–2.2.5 can be employed, as
they explicitly or implicitly provide a linear approximation and solve (2.33), re-
spectively. Accordingly, for any of the nonlinear Gaussian filters a corresponding
nonlinear Gaussian smoother can be found that exploits the respective approxi-
mation technique of the filter for determining the required quantities in (2.34).
See for instance [8] for the extended Kalman smoother, [12] for the cubature
Kalman smoother, or [158, 171] for the unscented RTS smoother.

2.4 Rao-Blackwellization

The perspective of solving a given Bayesian filtering problem was so far very
coarse. Either the models were identified as being linear and the exact solution
can be found, or the models are nonlinear and one has to rely on approximations.
Actually, besides these black and white decisions, there are many gray scale
values in between.

Example 2: Linear Substructure

Consider the measurement model

z = h
(
xn

)+H
(
xn

)
· x l +v , (2.36)

where the measurement function comprises nonlinear parts denoted by
h(.) as well as linear substructures indicated by the matrix H(.). Accordingly,
the state x consists of two sub-states according to

x =
[

x l
xn

]
, (2.37)

where xn comprises the nonlinear state variables, while x l comprises all
state variables with conditionally linear dynamics, i.e., when conditioning
on xn , the model (2.36) becomes a linear model.

2.5 Contributions 43

By exploiting the linear substructure in the above example, it is possible to
solve some of the filtering equations analytically, while an approximation is
merely required for the nonlinear parts. The estimation performance gain of this
decomposed processing is stated by the following theorem.

Theorem 1 (Rao-Blackwell, [127], Ch. 24) Let x and y be dependent variables,

and g
(
x , y

)
be some scalar function. Then

varx,y

{
g
(
x , y

)}≥ varx

{
Ey

{
g
(
x , y

)∣∣∣x
}}

. 2

According to this so-called Rao-Blackwell theorem, a Bayesian filter utilizing this
decomposition will result in a lower variance than a filter without it. This idea
has been employed in many Bayesian filtering approaches like in particle filters
[9, 40, 165] or in LRKFs [125]. Even though these filters employ this theorem
mainly in case of linear-nonlinear substructures as in (2.36), it is important to
note that this theorem is not restricted to those.

2.5 Contributions

In this section, the main contributions of the Papers A–D are summarized. The
first two contributions in Section 2.5.1 and Section 2.5.2 exploited the aforemen-
tioned Rao-Blackwellization for Gaussian filtering. For Sections 2.5.3–2.5.5, it
is assumed that the nonlinear function g (.) is either given as a polynomial and
can be approximated by a polynomial. In doing so, efficient moment calculation
algorithms are proposed.

2.5.1 Combining Rao-Blackwellization with
Observed-Unobserved Decomposition

Measurement models with the same structure as in Example 2 are considered.
In addition it is assumed that the state not only comprises the nonlinear and
conditionally linear variables, but also contains state variables xu that are not
directly observable, i.e., there is no functional relation between the measurement

44 2 Gaussian Filtering

vector z and xu through the measurement model (2.36). Hence, the (predicted)
state vector has the form

x p =
[

x p
o

x p
u

]
∼N

([
µp

o
µp

u

]
,

[
Cp

o Cp
ou

Cp
uo Cp

u

])
, (2.38)

where the observed part comprises the nonlinear and conditionally linear vari-
ables

x p
o =

[
x p

n

x p
l

]
∼N

([
µp

n
µp

l

]
,

[
Cp

n Cp
nl

Cp
ln Cp

l

])
. (2.39)

Such kind of state compositions appear in many application, where one is exem-
plified next.

Example 3: Object Localization

Consider a filtering problem, where the pose—location and orientation—
and the corresponding velocities of an object in 3D are of interest. Sensors
typically used for such localization problems are inertial sensors like gyro-
scopes and absolute localization techniques based on for instance multi-
lateration. In such a situation, the system state may comprise the object

pose xn = [
x y z α β γ

]T, the translational velocities xu = [
ẋ ẏ ż

]T, and the

angular velocities x l =
[
α̇ β̇ γ̇

]T
(see e.g. [18]). Hence, even though the state

as a whole is propagated via a dynamics model reflecting the motion of the
object, the translational velocities cannot be observed directly.

Although there is no functional relation through the measurement model, the
unobserved state variables are still updated thanks to the correlation between
observed and unobserved states, which is reflected by the cross-covariance Cou .
However, due to the missing functional relation, it seems to be a waste of compu-
tations to utilizes the state as a whole for evaluating the integrals (2.8), especially
when the unobserved state is of high dimension. To reduce the computational
load, a two-step decomposition of the filtering problem is proposed:

1. Updating the directly observed state xo first with the current measure-
ment. In order to improve the estimation performance, the nonlinear and
conditionally linear structure in accordance with Rao-Blackwellization is
exploited.

2.5 Contributions 45

Separation

Separation

Approximation

Calculation

Update

Combination

µp , Cp

linearnonlinear

observed

indirectly observed

{
ωi ,Xi

}
for i = 1, . . . ,L

f
(
x l | xn

)
ẑ

µe
o

, Ce
o

µe , Ce

Figure 2.3: Information flow of the measurement update. The gray boxes indicate
components that can be reused for the prediction step.

2. Given the updated observed state, update the unobserved state xu by
exploiting the correlation between xo and xu .

The information flow of this two-step processing is depicted in Figure 2.3, which
corresponds to the decomposition

f e(x
)= f

(
x| ẑ) = f

(
xu , xo | ẑ

)= f
(
xu | xo

)
·f

(
xo | ẑ

)︸ ︷︷ ︸
= f (xe

o)= f
(
xe

n ,xe
l |ẑ

) (2.40)

of the conditional Gaussian (2.9).

46 2 Gaussian Filtering

Update of Observed State

Updating the observed state corresponds to calculating the conditional Gaussian
xe

o ∼N
(
µe

o
,Ce

o

)
according to (2.9), which requires to solve the integrals in (2.8).

The procedure for this is shown exemplary for the measurement mean vector µ
z

.

Given the measurement function in (2.36), the mean vector is given by

µ
z
=

∫ (
h
(
xn

)+H
(
xn

)
· x l

)
· f

(
xn , x l

)︸ ︷︷ ︸
= f (xl |xn)· f (xn)

dxo , (2.41)

where f
(
x l | xn

)=N
(
x l ;µ

l |n
(
xn

)
,Cl |n

)
with mean vector and covariance matrix

µ
l |n

(
xn

)=µp
l
+Cp

ln

(
Cp

n
)−1

(
xn −µp

n

)
, (2.42)

Cl |n = Cp
l −Cp

l n

(
Cp

n
)−1

Cp
nl ,

respectively. Hence, the mean of the conditional linear Gaussian f
(
x l | xn

)
is a

function of the nonlinear state.

Due to the nonlinear substate xn , solving the above integral in closed form is
not possible in general. To approximate the solution, the deterministic sam-
pling techniques of the LRKFs can be employed here. In doing so, the Gaus-
sian density f

(
xn

)
is approximated by a mixture of Dirac delta distributions∑

i ωi ·δ
(
xn −Xi

)
. Substituting this sample representation in (2.41) and utilizing

the sifting properties of the Dirac delta distributions leads to

µ
z
=

L∑
i=1

ωi ·
∫ (

h
(
Xi

)+H
(
Xi

)
· x l

)
· f

(
x l |Xi

)
dx l

=
L∑

i=1
ωi ·

(
h
(
Xi

)+H
(
Xi

)
·µ

l |n
(
Xi

)
︸ ︷︷ ︸

,µz
i

)
.

The second equation follows from (2.42) and corresponds to a Kalman predic-
tion thanks to the conditionally linear measurement function and the Gaussian

2.5 Contributions 47

density f
(
x l |Xi

)
. Similarly the desired covariance Cz and cross-covariance Czx

are obtained

Cz =
L∑

i=1
ωi ·

((
µz

i
−µ

z

)(
µz

i
−µ

z

)T +H
(
Xi

)
Cl |n H

(
Xi

)T
)

,

Coz =
L∑

i=1
ωi ·

([
O

Cl |n H
(
Xi

)T

]
+

([
Xi

µ
l |n

(
Xi

)]−µ
o

)(
µz

i
−µ

z

))
,

where again Kalman predictions have been used. Conditioning on the measure-
ment z according to (2.9) yields the desired updated observed state xe

o .

Update of Unobserved State

For updating the indirectly observed state, the mean vector µe
o

and covariance

matrix Ce
o of the posterior Gaussian f

(
xo | ẑ

)
are used. According to [113], the

mean vector of the unobserved state is updated via

µe
u
=µp

u
+ J ·

(
µe

o
−µp

o

)
(2.43)

with gain matrix J = Cp
uo

(
Cp

o
)−1

. The posterior covariance matrix of the unob-
served state and cross-covariance matrix between observed and unobserved
state are given by

Ce
u = Cp

u + J
(
Ce

o −Cp
o
)

JT , (2.44)

Ce
uo = JCe

o ,

respectively. By comparison with (2.34), it is apparent that the above update
equations coincide with an RTS smoother.

2.5.2 Semi-Analytical Filtering
The semi-analytical Gaussian filter (SAGF) introduced next takes Rao-Blackwell-
ization to its extremes. Instead of merely restricting the decomposition to linear
and nonlinear substructures, the SAGF exploits nonlinear-nonlinear decom-
positions, where for some nonlinear state variables an analytical solution of
the Gaussian filtering problem can be found. Nonlinear functions for which
analytical solutions exist are for example

48 2 Gaussian Filtering

• Monomials xi with i ∈N,

• Trigonometric functions sin(x) and cos(x),

• Squared exponential functions exp
(
cT ·φ

(
x
))

with c ∈R3

and φ
(
x
)
,

[
1 x x2]T

,

• and linear combinations of the above functions,

assuming that the state density is Gaussian. The next example demonstrates
the difference between a closed-form calculation of the moments in (2.8) for a
quadratic function and the solution of an LRKF.

Example 4: Quadratic Transformation

For the quadratic transformation y = x2 + v with x ∼N
(
µx ,σ2

x

)
and v ∼

N
(
0,σ2

v

)
the moments in (2.8) can be calculated exactly to

µy =µ2
x +σ2

x , σ2
y = 2σ2

x ·
(
σ2

x +2µ2
x

)+σ2
v , σx y = 2·σ2

x ·µx .

Using the UKF with parameter κ= 0 the same moments are calculated to

µy =µ2
x +σ2

x , σ2
y = 4σ2

x ·µ2
x +σ2

v , σx y = 2·σ2
x ·µx .

The mean µy is correct, which is not surprising as the unscented trans-
form is exact for monomials up to order three. As the variance calculation
for a quadratic function corresponds to an expectation calculation for a
monomials of order four, the UKF introduces an error. More precisely, the
varianceσ2

y is underestimated as the term 2σ4
x is missing and thus, the UKF

is overconfident in this example.

On the one hand, analytical moment matching provides exact solutions to (2.8),
but is restricted to a few nonlinear transformations, while on the other hand,
LRKFs are generally applicable but may introduce severe linearization errors.
The difference of LRKFs and analytical moment calculation from a linearization
perspective is depicted in Figure 2.4.

The key idea of the SAGF is to combine both worlds by means of Rao-Blackwelli-
zation. Only some dimensions of the state x are sampled via an LRKF and

2.5 Contributions 49

x

y

(a) Analytic Moment
Matching

x

y

(b) Sample-based lin-
earization (LRKF)

xµx

y

(c) Linearization via
Taylor-series (EKF)

Figure 2.4: Illustration of different Gaussian filtering approaches: the nonlinear
function (black) and its linearized versions (red dashed). Analytic moment matching
utilizes the entire density f

(
x
)

for (implicit) linearization, while the linearization of
an LRKF is based on an approximate sample representation of f

(
x
)
. Thus, although

the mean and covariance of x are captured exactly by the samples, the same is not
true for higher-order moment due to the finite number of samples. The EKF even
linearizes the nonlinear function only around a single nominal point.

thus, only some parts of the nonlinear transformation (2.6) have to be treated
approximately. For this purpose, the transformation is rearranged to the mapping

y = g
(
x a , x s

)+w , (2.45)

where the Gaussian state xT = [
xT

a xT
s

]
consists of the substates x a (analytically

integrable) and x s (sampled) with mean and covariance

µ
x
=

[
µ

a
µ

s

]
, Cx =

[
Ca Cas

Csa Cs

]
, (2.46)

respectively. As there exists no closed-form expression for the desired moments
(2.8), the decomposition into x a and x s is chosen in such a way that the mo-
ment integrals can be calculated analytically exactly for any given fixed value
of x s . Hence, the function g (.,.) is denoted to be conditionally integrable. For
determining a sample-based representation of x s , the sampling via LRKFs is
applied.

It is worth mentioning that analytic moment matching and LRKFs are extreme
cases of the SAGF: if x s is an empty vector, SAGF performs analytic moment
matching and if x a is empty, the SAGF degenerates to an LRKF.

50 2 Gaussian Filtering

For the transformation given by (2.45), the moment calculation is shown exem-
plary for the mean vector µ

y

µ
y
=

∫
g
(
xa , xs

)
· f

(
xa , xs

)
dx =

∫
g
(
xa , xs

)
· f

(
xa | xs

)
· f

(
xs

)
dx (2.47)

with the conditional Gaussian f
(
xa | xs

) =N
(
xa ;µ

a|s ,Ca|s
)

with mean and co-

variance

µ
a|s =µa

+Cas ·C−1
s ·

(
xs −µs

)
,

Ca|s = Ca −Cas ·C−1
s ·Csa .

(2.48)

By approximating the density f
(
xs

)
of the sub-state x s with a mixture of Dirac

delta distributions and by exploiting the sifting property, (2.47) simplifies to

µ
y
≈∑

i
ωi ·µy

i
with µy

i
=

∫
g
(
xa ,Xi

)
· f

(
xa |Xi

)
dxa .

It is important to note that this integral can be evaluated analytically as the
function g (· , ·) is conditionally integrable. Furthermore, solving these integrals
is an off-line task and the solution is characterized by a parametric representation
of the moments (2.48) and the sample points Xi for efficient on-line evaluation.

Example 5: Falling Body

To demonstrate improved estimation performance, the estimation of the
altitude αk , velocity βk , and constant ballistic coefficient γk of a falling
body is considered [93, 173]. The system equation is given by

xk+1 =
αk

βk
γk

+∆t ·

 −βk

−e−ρ ·αk ·
(
βk

)2 ·γk
0

+w k , (2.49)

where xk = [
αk βk γk

]T is the state vector, ∆t = 1 the time discretization
constant, ρ = 5·10−5 a constant factor. The noise w k is zero-mean Gaussian
with covariance matrix Cw

k = 0.1·I. The initial state of the falling body

2.5 Contributions 51

Table 2.1: Average rmse and its standard deviation over all simulation runs.

Altitude Velocity Ballistic coefficient

SAGF 12.6 ± 8.3 59.3 ± 143.7 0.016 ± 0.063
UKF 14.2 ± 7.9 100.1 ± 212.4 0.016 ± 0.058
GPF 100 p. 13.0 ± 8.0 60.2 ± 134.9 0.029 ± 0.098
GPF 1000 p. 12.7 ± 8.2 59.3 ± 142.1 0.019 ± 0.066

is xT
0 = [

3·105 2·104 10−3]. The initial mean and covariance of the
estimators for all simulation runs is set to be

µx =
3·105

2·104

10−5

 , Cx =
106 0 0

0 4·106 0
0 0 20

 .

The state variables can be decomposed into x a = [
βk γk

]T
and x s =αk . By

conditioning on x s , the model (2.49) becomes a polynomial of order two.

A linear measurement equation is considered, where the altitude is mea-
sured directly according to

zk =αk +v k , v k ∼N
(
0,σ2

v

)
.

Due to the linearity of the measurement equation, the measurement update
can be performed via the Kalman filter.

In Table 2.1, the average rmses of 1000 Monte Carlo simulation runs for
three Gaussian filters, namely the proposed SAGF, the UKF, and the Gaus-
sian particle filter (GPF, [105]), are listed. In case of the GPF 100 and 1000
particles are employed. The SAGF provides the most accurate estimate for
all three state variables. Only the GPF with 1000 particles can compete with
the SAGF, which however comes with a high computational load for the
GPF. In terms of run time, the SAGF is two times faster than the GPF with
100 particles and four times faster than the UKF.

52 2 Gaussian Filtering

2.5.3 Chebyshev Polynomial Kalman Filtering
As mentioned in the previous section, analytic moment matching is for instance
possible for polynomial nonlinearities. To apply this fact more generally, the
following contribution consists of a two-step approach to allow Gaussian fil-
tering for arbitrary nonlinear functions: First, the given nonlinear function is
expanded in a series of Chebyshev polynomials. In the second step, which is
discussed in more detailed in Section 2.5.4, exact expressions for the moment
integrals (2.8) are provided in a computationally efficient vector-matrix notation.
This approach named Chebyshev polynomial Kalman filter (CPKF) facilitates
function approximation and Bayesian filtering in a black-box fashion without
the need of manual operations or manual inspection similar to LRKFs, but with
a potentially higher estimation performance.

Chebyshev Polynomials

The key idea behind the CPKF is the approximation of the nonlinear function (2.6)
by means of a truncated Chebyshev series expansion according to

g (x) ≈
n∑

i=0
ci ·Ti (x) (2.50)

on the interval Ω, [−1,1], where Tn(x) are Chebyshev polynomials of the first
kind, which are defined compactly as

Tn(x) = cos(n · arccos x) , i = 0,1, . . .

or equivalently by means of the recursion

Tn(x) = 2x ·Tn−1(x)−Tn−2(x) , n = 2,3, . . . , (2.51)

with initial conditions
T0(x) = 1 , T1(x) = x . (2.52)

It is easy to deduce from (2.51) that the function Tn(x) is a polynomial of degree n.
If n is even (odd), then Tn(x) is a sum of even (odd) monomials, i.e., Tn(x) is of
the form

Tn(x) =
n∑

i=0
αn,i · xi =

bn/2c∑
j=0

αn,n−2 j · xn−2 j , (2.53)

2.5 Contributions 53

where αn,i is the Chebyshev coefficient of the i th monomial of the nth Chebyshev
polynomial. The coefficient αn,i is non-zero only if i is even (odd).

The quantities ci in (2.50) are the series coeffcients

ci =
〈g (x),Ti (x)〉
〈Ti (x),Ti (x)〉 ≈

2−δ0,n
n

n∑
m=1

g (xm) ·Ti (xm) (2.54)

for i = 0,1, . . . ,n. In (2.54) 〈g (x), f (x)〉, ∫
Ω

(
1− x2

)−1/2 · g (x) · f (x)dx. The right-
hand side follows from the discrete orthogonality property of the Chebyshev
polynomials, where xm = cos(π(m−0.5)/i) ∈ Ω, m = 1. . . i , are the zeros of the
Chebyshev polynomial Ti (x) and δi , j is the Kronecker delta.

Employing polynomial series expansions in Bayesian filtering is not completely
new. For instance higher-order Taylor-series expansion is employed for the
second-order EKF [159, 173] or Fourier-Hermite series is used in Gaussian fil-
tering in [160]. While the first approach is limited in terms of the order of the
polynomial series, the second approach still requires numerical integration for
moment calculation. Chebyshev series expansions are better suited for approx-
imating nonlinear functions in the context of Gaussian filtering thanks to the
following reasons:

• Chebyshev polynomials form a complete orthogonal system on Ω. As a
consequence, the series coefficients (2.54) can be calculated independent
of each other. This for instance is not true for Taylor-series expansions.

• In addition to the continuous orthogonality, Chebyshev polynomials are
also discrete orthogonal. This property allows a very efficient calculation
of the series coefficients by means of the well-known discrete cosine trans-
form [30], for which a plethora of efficient algorithms exists. Similar approx-
imate calculation schemes of series coefficients are typically not available
for other orthogonal polynomials series like the Fourier-Hermite series.

• A truncated Chebyshev series satisfies the near-minimax approximation
property, i.e., a truncated Chebyshev series of degree n is very close to the
best possible polynomial approximation of the same degree. While the
best polynomial representation of g (.) is typically difficult to obtain, the
Chebyshev series expansion is very close to the best solution and thanks to
the discrete orthogonality very easy to calculate.

54 2 Gaussian Filtering

Variable
transformation (2.55)

Inverse variable
transformation (2.56)

Moment
calculation (2.60)

Series coefficient
calculation (2.54)

Moment
propagation
(2.62)–(2.64)

Chebyshev
coefficient

calculation (2.68)

xmµx ,σ2
x

µx′ ,σ2
x′

[a,b]

g (x)

ciEi

µy ,σ2
y ,σx y

αi ,n

Figure 2.5: Flow chart of closed-form moment propagation for Chebyshev polyno-
mial Kalman filter.

More detailed information about Chebyshev polynomials and their properties
can be found for instance in [119].

Structure

The building blocks of the CPKF are depicted in Figure 2.5. The blocks on the
top are required due to the limitation that Chebyshev polynomials are only or-
thogonal on the intervalΩ, while the function g (.) can have an arbitrary support
[a,b] ⊆R. Thus, the function g (.) and the state x have to undergo first the affine
transformation

x ′ = 2
b−a · x − a+b

b−a , (2.55)

which yields a transformed Gaussian x ′ ∼N
(
µx ′ ,σ2

x′
)
. Furthermore, the zeros

xm required for calculating the series coefficients (2.54) have to be mapped to
the interval [a,b], which is carried out by the inverse transformation

x = b−a
2 · x ′+ a+b

2 . (2.56)

2.5 Contributions 55

of (2.55). By means of these transformations, arbitrary functions g (.) can be
treated by means of the CPKF.

The blocks “Moment calculation", “Moment propagation", and “Chebyshev
coefficient calculation" are explained in detail in the following section.

2.5.4 E�icient Moment Propagation for Polynomials
At first a general polynomial representation of the function g (.) according to

y = g (x)+w =
n∑

i=0
ci · x i +w (2.57)

is considered. Chebyshev polynomials are treated as a special case at the end of
this section.

General Solution

When propagating the Gaussian state x through the polynomial transformation
g (.) in (2.57), the mean of y can be expressed as

µy = E
{

g (x)
}= n∑

i=0
ci ·

∫
xi ·N

(
x;µx ,σ2

x

)
dx =

n∑
i=0

ci · E
{

x i }︸ ︷︷ ︸
,Ei

. (2.58)

Thus, the mean µy results in a weighted sum of non-central moments Ei = E
{

x i }
of order i = 0,1, . . . ,n. Formulae for calculating these moments of a Gaussian
random vector are well-know (see for instance [116]), but require the evaluation
of binomial coefficients, powers of the mean value, and weighted scalar products
of the coefficient vector η. Algebraically and computationally less demanding
moment calculations can be found, however, when considering a special member
of the exponential family in Section 2.1.3. By choosing the sufficient statistic to
consist only of monomials of order up to n, i.e.,

φ(x) = [
1 x x2 · · · xn]T

, (2.59)

56 2 Gaussian Filtering

the following recursion proposed in [28] can be exploited. Although the moments
of this special exponential density cannot be expressed in closed form, the i th
order moment follows the recursion

Ei =−
n∑

j=1

j

i +1
η j Ei+ j .

Thus, if the n lower-order moments ET
0:n−1 , [E0, . . . ,En−1] are given and the

moments up to Em , m ≥ n are of interest, solving the linear system of equations

Q
(
η
)

·E0:n−1 = R
(
η
)

·En:m (2.60)

gives the desired higher-order moments ET
n:m , [En . . . Em]. Here, Q

(
η
)

is an

rectangular matrix and R
(
η
)

is a lower triangular matrix with elements (see [73])

Qi , j =

1 if i = j
j−1

i η j−i if i < j

0 otherwise

, Ri , j =

1 if i − j = n
i− j−n

i ηn+ j−i if 0 ≤ i − j < n

0 otherwise

, (2.61)

respectively. Thus, the matrix R
(
η
)

is zero everywhere except of the main diag-
onal and the n diagonals below the main. Thanks to this special structure, the
linear system of equations (2.60) can be efficiently solved by means of forward
substitution.

The Gaussian density is a special case of (2.59) forφ(x) = [
1 x x2]T

where the first
two moments E0 = 1 and E1 =µx are known. Hence, by solving (2.60), the mean
calculation (2.58) becomes

µy = cT
n ·E0:n = cT

n ·

[
I2

L

]
·E0:1 , (2.62)

with L,
(
R

(
η
))−1Q

(
η
)

, where the parameter vector η comprises the parame-

ters of a (normalized) Gaussian density as defined in (2.5). Furthermore, cT
n ,

[c0 c1 . . . cn] is the vector of polynomial coefficients.

2.5 Contributions 57

In a similar fashion, the variance σ2
y of y and the covariance σx y between x and

y can be determined. The variance becomes

σ2
y =

(
cn ∗ cn

)T ·E0:2n −µ2
y +σ2

w

= (
T ·cn

)T ·E0:2n −µ2
y +σ2

w ,
(2.63)

where ∗ is the discrete convolution operator. The second equality indicates an
efficient matrix-vector realization of the convolution by means of the matrix
T with entries ti , j = ti+1, j+1 = ci− j if i ∈ [j , j +n] and ti , j = 0 otherwise, where
i = 1,2, . . . ,2n +1 and j = 1,2, . . . ,n +1. Hence, T is special type of matrix, namely
a triangular Toeplitz matrix with only the mean diagonal and n diagonals below
the main diagonal being non-zero and all elements on individual diagonals
being equal.

The covariance can be simplified to

σx y = cT
n ·E1:n+1 −µx ·µy , (2.64)

where µy is already known from (2.62). The first summand in (2.64) is almost
identical to the mean calculation in (2.58) except for the shift by one in the order
of the involved moments.

Given all the required moments, a Gaussian filter for polynomial nonlinearities
is complete and listed in Algorithm 1. It is important to note that the polynomial
order of the system function ak (.) and the measurement function hk (.) need
not to be the same. Accordingly, the coefficient vectors cp

np
corresponding to

the system function and ce
ne

corresponding to the measurement function are of
different dimension.

Example 6: Chaotic Synchronization

The proposed polynomial Kalman filter (PKF) is evaluated for the polyno-
mial system model

xk+1 = T4(xk)+w k (2.65)

as used in [116], where Ti (x) is the i th Chebyshev polynomial (2.51). It is
known that models as in (2.65) generate chaotic sequences [151], which
are of practical use in securing communication systems. The true initial
state x0 at time step k = 0 is assumed to be Gaussian with mean µx

0 = 0.3

and variance
(
σx

0

)2 = 0.25 .

58 2 Gaussian Filtering

Algorithm 1 Polynomial Kalman Filter (PKF)

. Prediction
1: Determine moment vector E0:2np

of posterior state xe
k−1 by solving (2.60)

2: Predicted mean: µp
k =

(
cp

np

)T
·E0:np

3: Predicted variance:
(
σ

p
k

)2 =
(
T ·cp

np

)T
·E0:2np

− (
µ

p
k

)2 + (
σw

k

)2

.Measurement Update
4: Determine moment vector E0:2ne

of predicted state x p
k by solving (2.60)

5: Measurement mean: µz
k =

(
ce

ne

)T
·E0:ne

6: Measurement variance:
(
σz

k

)2 =
(
T ·ce

ne

)T
·E0:2ne

− (
µz

k

)2 + (
σv

k

)2

7: Covariance: σxz
k =

(
ce

ne

)T
·E1:ne+1 −µp

k ·µz
k

8: Kalman gain: Kk =σxz
k

/(
σz

k

)2

9: Posterior mean: µe
k =µp

k +Kk ·
(
ẑk −µz

k

)
10: Posterior variance:

(
σe

k

)2 = (
σ

p
k

)2 −Kk ·σxz
k

Furthermore, a linear measurement model

zk = xk +v k (2.66)

is employed, with measurement noise variance (σv)2 = 10−2 · (σw)2 and
system noise variance being (σw)2 = 10−2 (high noise) or (σw)2 = 10−3 (low
noise). The PKF is compared against EKF, UKF, and a particle filter (PF) with
systematic resampling [36] and 500 samples. The latter is the only non-
Gaussian filter. For all filters, 50 Monte Carlo simulation runs with identical
noise sequences are performed, where the estimates are calculated for 50
time steps.

In Table 2.2, the average rmse, nees, and runtime over all Monte Carlo
runs are listed for all filters and for both noise cases. For high noise, the
proposed PKF outperforms all Gaussian filters in terms of rmse and nees,
i.e., its estimates are closest to the true system state (low rmse) and at the
same time the estimates are not overly confident (low nees). Furthermore,
the matrix-vector terms proposed for the PKF allow for a runtime being
close to the EKF, which is known to be the fastest Gaussian filter.

2.5 Contributions 59

Table 2.2: Average rmse, nees, and runtime for system model (2.65).

σ2
w = 10−2 σ2

w = 10−3

EKF UKF PF PKF EKF UKF PF PKF

rmse 0.410 0.336 0.292 0.316 0.148 0.118 0.268 0.118
nees 4.737 1.550 1.168 1.041 7.279 1.110 – 1.129

time 0.016 0.038 0.109 0.017 0.017 0.037 0.102 0.018

For the low noise case, UKF performs best in terms of estimation error, but
PKF is very close to it. PF occasionally suffers from particle depletion, i.e.,
most of the particles converge towards the same state, which coincides
with an overconfident estimate and thus an exceedingly high nees value.
Even significantly increasing the number of particles or using different
resampling techniques yields no improvement.

Special Case: Chebyshev Polynomials

For a truncated Chebyshev series expansion of an arbitrary nonlinear function
g (.) as in (2.50) the moments calculations (2.62)–(2.64) could be applied directly.
Therefore, the Chebyshev series has to be transformed into the standard poly-
nomial form as in (2.57), for which the so-called Clenshaw algorithm [44] can
be used. This procedure, however, has severe drawbacks: Evaluating Chebyshev
series in the standard form (2.57) requires significantly more algebraic opera-
tions as the sparse structure of the Chebyshev polynomials is no longer exploited.
Furthermore, the polynomial coefficients in (2.57) can be large numbers as they
are products of multiple Chebyshev polynomial coefficients, which by themself
already can be significant. For instance, the leading coefficient of Ti (x) is 2i−1.

To avoid these issues, it is recommended to reformulate (2.62)–(2.64) by exploit-
ing the recursive definition of the Chebyshev polynomials. The mean µy for
instance can be expressed as

µy = E
{

g (x)
}= ∫

g (x) ·N
(
x;µx ,σ2

x

)
dx

(2.50),(2.53)≈
n∑

i=0
ci

i∑
j=0

αi , j

∫
x j ·N

(
x;µx ,σ2

x

)
dx = cT

n ·An ·E0:n . (2.67)

60 2 Gaussian Filtering

In contrast to (2.62), cn , [c0 c1 . . . cn]T now is the vector of series coefficients
(2.54). Further, An is the (n+1)× (n+1) matrix of Chebyshev coefficients defined
by

An ,
[
α0,n α1,n . . . αn,n

]T
.

Here, αi ,n , [αi ,0 αi ,1 . . . αi ,n]T ∈Nn+1, i = 0,1, . . . ,n comprises all coefficients
of the i th Chebyshev polynomial up to and including the nth monomial. It is
calculated via the recursion

αi ,n = 2·
[

0 αT
i−1,i−1 0 . . . 0︸ ︷︷ ︸

n−i times

]T +
[
αT

i−2,i−2 0 . . . 0︸ ︷︷ ︸
n−i+2 times

]T
, (2.68)

where the recursion commences from

α0,n = [
1 0 . . . 0

]T
, α1,n = [

0 1 0 . . . 0
]T

and exploits the definition of the Chebyshev polynomials (2.51). According
to (2.53), the coefficients αi , j are zero for j > i . Thus, An is a sparse lower
triangular matrix, which significantly reduces the computations of the matrix-
vector products in (2.67).

Analogously, the variance σ2
y becomes

σ2
y ≈

(
cn ⊗ cn

)T ·P2n ·E0:2n −µ2
y +σ2

w , (2.69)

with ⊗ being the Kronecker product and P2n being an (n +1)2 × (2n +1) matrix
comprising the coefficients resulting from all possible products Ti (x) ·T j (x),
i , j = 0,1, . . . ,n of the Chebyshev series expansion of g (x) .

Finally the covariance between x and y is given by

σx y = cT
n ·A∗

n ·E0:n+1 −µx ·µy , (2.70)

where the (n +1)× (n +2) matrix A∗
n is given by

A∗
k,n ,

1
2

([
0 (b −a) ·An

]+ [
(a +b) ·An 0

])
.

This matrix includes the mapping back to the interval [a,b] by means of the
inverse variable transform (2.56).

2.5 Contributions 61

Example 7: TV Commercial Effectiveness

In this example, real-world data from monitoring the advertising effec-
tiveness of a TV commercial campaign for a single product is considered
[123, 208]. This data is obtained by means of weekly surveys, where a given
number of individuals from the population of TV viewers in UK is sampled
in order to count the number being aware of current or recent TV commer-
cials for the product. The result of each survey is measured in standardized
units known as television ratings (TVRs) denoted by uk .

The TVR measurements drive the nonlinear dynamics equation

xk+1 = a
(
xk +w k ,uk

)
, w k ∼N

(
0,0.03·Cx

k

)
,

with system function

a(x ,u) = [
x1 x2 x3 x4(x2 − x1)− (x2 − x1 − x3 · x5) · exp(−x4 ·u)

]T.

The state vector x ∈ R5 comprises the minimum level of awareness x1,
maximum level of awareness x2, memory decay rate x3, penetration x4, and
effect of TVR on the awareness x5 (for details see [208]). The measurement
equation is given by

zk = x1,k +x5,k +v k = H · xk +v k , v k ∼N (0,0.05)

with H, [1,0,0,0,1], where zk corresponds to the awareness proportion.

The initial state estimate is given by x0 ∼N
(
µx

0
;Cx

0

)
with mean vector and

covariance matrix

µx
0
=

0.10
0.85
0.90
0.02
0.30

 and Cx
0 =

6.25 6.25 0 0 0
6.25 406.25 0 0 0

0 0 1 0 0
0 0 0 2.25 0
0 0 0 0 100

 ,

respectively.

As the system state has dimension five, the nonlinear-nonlinear decom-
position proposed in Section 2.5.2 is employed with x a , x4 and xT

s ,
[x1 x2 x3 x5]. The sampled state x s is processed by means of the UKF. Ad-

62 2 Gaussian Filtering

0 15 30 45 60 75

week k →

missing data

true

CPKF

UKF

0

0.2

0.4

0.6
aw

ar
en

es
s

z k
→

Figure 2.6: Predicted awareness proportions of the CPKF (blue solid line) with 95%
confidence region (blue dashed) as well as the predictions of the UKF (red dotted).
The true awareness proportion values are indicated by the black dots. For the weeks
k = 42,43,44 no awareness measurements are available.

ditionally a UKF, where the unscented transform is applied to all five state
dimensions is used.

The predictions of the awareness proportion zk of the CPKF and UKF are
compared before updating the state estimates with the true awareness
value ẑk . The true awareness proportion values for performing the update
step are taken from [208]. It is important to note that for the weeks 42, 43,
and 44 no awareness measurements are available.

In Figure 2.6, the true and predicted awareness proportions are depicted. It
is obvious that the UKF behaves very unsteady and is heavily fluctuating.
The resulting awareness predictions are very inaccurate. This effect can be
explained by overly confident estimates, i.e., the covariance matrix of the
system state contains too small variances.

The behavior of the CPKF is different, which is surprising as the CPKF is
merely applied on exp(−x4 ·u), while the remaining parts of the system
equation are processed via the UKF. Thus, the CPKF has a stabilizing ef-
fect on the UKF resulting in awareness predictions that accurately follow
the ground truth. Furthermore, the CPKF is not overconfident as the pre-

dicted measurement variances
(
σz

k

)2 are sufficiently large to capture the

2.5 Contributions 63

true awareness proportions. Even for the weeks with missing data, the pre-
dictions of CPKF are meaningful as the variances grow and thus, indicate
an increasing uncertainty. Though, the trend is still correct.

2.5.5 Homotopic Moment Matching for Polynomial
Measurement Models

Every Bayesian filter discussed so far in this chapter makes two different Gaussian
assumptions. First, it assumes the predicted or posterior density to be Gaussian.
Second, in order to perform the measurement update, it assumes that the joint
density of state and measurement is Gaussian as well. The PKF for instance would
be an exact Gaussian assumed density filter if only the first Gaussian assumption
would be in place, as it performs moment matching, i.e., the mean and variance
calculated by PKF coincide with the true mean and variance. The additional
joint Gaussian assumption, however, can result in a poor approximation of
the true mean and variance, which may cause a significant loss in estimation
performance or even a divergence of the estimator.

Example 8: Joint Gaussian Flaw

To demonstrate the effect of the joint Gaussian assumption on the estima-
tion performance, the polynomial measurement model

z = x i +v (2.71)

is considered in the following, where i > 0 is even and the state is x ∼
N

(
0,σ2

x

)
. According to (2.62), (2.63), and (2.64), the mean µz , variance σ2

z ,
and covariance σxz are given by

µz = Ei , σ2
z = E2i −Ei +σ2

v , σxz = Ei+1 , (2.72)

respectively. Since x has zero mean, it follows that all even moments of x
are non-zero and all odd moments are zero, i.e., Ei 6= 0 and Ei+1 = 0 for all i
being even. Hence, the covariance σxz in (2.72) is zero. As a result, the state
x and measurement z are uncorrelated and the joint Gaussian of state and
measurement is axis-aligned. In Figure 2.7a, the joint Gaussian for i = 2,
σ2

x = 1, and σ2
v = 0.1 is depicted.

64 2 Gaussian Filtering

As the covariance σxz is zero, the Kalman gain K in line 8 of Algorithm 1
is zero as well and no update of the predicted state occurs, i.e., the pos-
terior state xe is identical to the predicted state x p . In this case, a given
measurement value has no impact on the estimation.

Without the joint Gaussian assumption the missing update will not occur. In
order to demonstrate this, the measurement update is now viewed from a full
Bayesian perspective. Here, the posterior state x is represented by the posterior
density f e (x) according to Bayes’ rule (recall (1.7))

f e (x) = f (z|x) · f p (x)

f (z)
= f (x,z)

f (z)
, (2.73)

with the predicted Gaussian density f p (x) =N
(
x;µp , (σp)2).

For the considered model (2.71) with a state x having zero mean, the joint Gaus-
sian assumption leads to a factorization of the joint density f (x,z) = f p (x) · f (z)
as x and z are uncorrelated, which is equivalent to independence for Gaus-
sian random variables. Hence, the Bayesian update in (2.73) degenerates to
f e (x) = f p (x). Actually, the joint density f (x,z) is an exponential density with
monomial sufficient statistics according to (2.59). This follows from the fact that
the likelihood f (z|x) =N

(
z; xi ,σ2

v

)
according to (1.8). The product of likelihood

and prior density leads to the exponential density

f (x,z) = f (z|x) · f (x) =N
(
z; xi ,σ2

v

)
·N

(
x;0,σ2

x

)
= exp

(
− log(2πσxσv)− 1

2σ2
v

·
(
z2 + σ2

v

σ2
x

x2 −2zxi +x2i)) .
(2.74)

This exponential joint density is depicted in Figure 2.7b for i =2. By comparing
Figure 2.7a with Figure 2.7b the difference between the true joint density and its
Gaussian approximation becomes apparent. Given a measurement value ẑ = 2,
Figure 2.7c depicts the posterior densities obtained for the Gaussian joint density
and the true exponential joint density. It can be seen that the true posterior
is bimodal, which only can be coarsely approximated by a Gaussian density.
Furthermore, due to the joint Gaussian assumption, the Gaussian posterior does
not even match the true posterior mean and variance.

2.5 Contributions 65

-3 0 3
x →

-2

0

2

4

6

8

z
→

(a) Gaussian approxima-
tion of the joint density.

-3 0 3
x →

-2

0

2

4

6

8

z
→

(b) True joint density.

-3 0 3
x →

-2

0

2

4

6

8

fe
(x

)→

True

Moment
Matching

(c) True posterior density
(black) and Gaussian ap-
proximations.

Figure 2.7: Joint density f (x,z) and posterior density f e (x) for i = 2, i.e., for a
quadratic polynomial. The red line indicates the measurement value ẑ = 2. In (c),
one Gaussian approximation is obtained based on the joint Gaussian assumption
(dotted) and the other via moment matching (dashed), i.e., its mean and variance
coincide with the true posterior moments.

Homotopy Continuation

To overcome the limitations of the joint Gaussian assumption, a new method
for directly calculating the moments of the posterior density for polynomial
measurement models h(x) =∑ne

i=0 ce
i · xi according to (2.57) will be introduced.

This method does not require the joint Gaussian assumption and provides almost
exact posterior mean and variance.

The key idea is to transform the known moments of the prior Gaussian density
continuously into the desired posterior moments. For this purpose, homotopy
continuation for calculating the moments of exponential densities as proposed
in [146] is exploited. By means of a so-called progression parameter γ ∈ [0 1] the
posterior density f e (x) is parameterized in such a way that for γ= 0 the posterior
density corresponds to prior Gaussian density f p (x) and for γ= 1 the posterior
density corresponds to the true exponential density. For the initial value γ= 0,
the moments are known as they coincide with the moments of the Gaussian prior.
Incrementing the progression parameter causes moment variations described by
means of a system of ordinary differential equations (ODEs). Solving this system
of ODEs for γ ∈ [0 1] gives the desired posterior moments.

66 2 Gaussian Filtering

To allow for homotopy continuation, the Bayesian measurement update is para-
metrized according to5

f e (x;γ) ∝ f
(
x,ẑ;η(γ)

)
, f (ẑ|x)γ · f p (x) (2.75)

for a given measurement value ẑ. The parametrized joint density f
(
x,ẑ;η(γ)

)=
exp

(
η(γ)T ·φ(x)

)
with φ(x) ∈R2ne+1 as in (2.59) is an exponential density similar

to (2.74). The parameter vector is defined as

η
(
γ
)
, ηp +γ ·ηl ∈R2ne+1

depending on γ . Here, ηp is the parameter vector of the Gaussian prior f p (x)

and ηl is the parameter vector of the likelihood f (ẑ|x).

In (2.75), f e (x;γ) is a parametrized version of the posterior density. For γ = 1,
this parametrized measurement update corresponds to the standard Bayes’ rule,
while for γ= 0, the prior density f p (x) is directly assigned to the posterior density,
i.e., no measurement update is performed.

System of Ordinary Di�erential Equations

By a continuous modification of the progression parameter γ, a continuous
variation of the parameter vector η(γ) is achieved. This in turn results in a varia-

tion of the moments Ei
(
η(γ)

)
, i = 0, . . . ,2ne −1, of the parametrized joint density

f (x,ẑ;η(γ)) . These moment variations depending on γ can be described by

means of a system of ODEs by calculating the partial derivatives Ėi , ∂Ei

(
η(γ)

)
/∂γ

for i = 0, . . . ,2ne −1 . The partial derivative of the i th-order moment is given by

Ėi =
∂Ei

(
η(γ)

)
∂γ

=
[

Ei
(
η(γ)

)
Ei+1

(
η(γ)

) · · · Ei+2ne

(
η(γ)

)]
·ηl , (2.76)

which relates the variation of the i th-order moment to moments of order up to

i +2ne . In the following, E(γ)
i , Ei

(
η(γ)

)
is used as shorthand term.

5 To simplify the following calculations merely the proportional relation is considered. The normal-
ization constant 1/E0 = 1/f (ẑ) can be incorporated ex post without any disadvantages.

2.5 Contributions 67

0 1
γ→

0

1

E
0:

3
→

E2

E0

E1

E3

(a) Quadratic model z = x2 +v .

0 1
γ→

0

1

2

3

E
0:

5
→

E4

E2 E0

E3

E5

E1

(b) Cubic model z = x3 +v .

Figure 2.8: Trajectories of posterior moments.

With the result in (2.76), the system of ODEs comprising the moment variations
of all moments up to order 2ne −1 is

Ė0:2ne−1 =
(
T

(
ηl

))T
·E(γ)

0:4ne−1 = Tl ·E(γ)
0:2ne−1 +Th ·E(γ)

2ne :4ne−1 ,

where T
(
ηl) = [

Tl Th
]T

is a Toeplitz matrix with entries ti , j = ti+1, j+1 = ηl
i− j if

i ∈ [
j , j +2ne

]
and ti , j = 0 otherwise, where i = 1,2, . . . ,4ne and j = 1,2, . . . ,2ne .

Besides the lower-order moments E(γ)
0:2ne−1, the system of ODEs also depends

on the higher-order moments E(γ)
2ne :4ne−1 . Fortunately, with the result of (2.60),

the dependence on the higher-order moments can be resolved. In doing so, the
system of ODEs can be reformulated into

Ė0:2ne−1 =
(
Tl +Th

(
R

(
η(γ)

))−1
Q

(
η(γ)

))
·E(γ)

0:2ne−1 (2.77)

with starting solution E(0)0:2ne−1 comprising the predicted moments. The matrices
R

(
η(γ)

)
and Q

(
η(γ)

)
corresponding to (2.61), which vary with γ as they depend

on the parameters of the parametrized joint density f
(
x,ẑ;η(γ)

)
.

The system of ODEs in (2.77) describes the moment variations caused by homo-
topy continuation of the Bayesian measurement update (2.75) in a very elegant
manner. For solving this system of ODEs, standard numerical solvers based on

68 2 Gaussian Filtering

Algorithm 2 Homotopic Polynomial Gaussian Filter (HPGF)

. Prediction
1: Determine moment vector E0:2np

of posterior state xe
k−1 by solving (2.60)

2: Predicted mean: µp
k =

(
cp

np

)T
·E0:np

3: Predicted variance:
(
σ

p
k

)2 =
(
T ·cp

np

)T
·E0:2np

− (
µ

p
k

)2 + (
σw

k

)2

.Measurement Update
4: Determine initial solution via first-order Taylor-series expansion aroundγ= 0
5: Solve system of ODEs (2.77) for γ ∈ [∆γ;1] with ∆γ¿ 1
6: Calculate posterior mean µe

k =α · E(1)
1

7: Calculate posterior variance
(
σe

k

)2 =α · E(1)
2 −(

µe
k

)2

the Runge-Kutta method [139] can be employed. The solution describes a trajec-

tory of the moments E(γ)
0:2ne−1 depending on different values of the progression

parameter γ. The desired moments of the posterior density f e (x) are obtained
for γ= 1, i.e., E(1)

0:2ne−1 comprises the result.

Example 9: Moment Trajectories

The polynomial measurement model of Example 8 is revisited, where now
merely the quadratic (order i = 2) and the cubic (order i = 3) case are
considered. Furthermore, the state x ∼N (0,1) is standard Gaussian dis-
tributed, the measurement value is ẑ = 1, and (σv)2 = 0.1 is the variance of
the measurement noise. In Figure 2.8 on the previous page, the trajecto-
ries of the posterior moments resulting from the homotopy continuation
are shown. It can be seen how the moments of the prior Gaussian are
transformed into the true posterior moments.

As mentioned above, the moments in E(1)
0:2ne−1 are unnormalized as merely the

proportional relation (2.75) was considered. Multiplying E(1)
0:2ne−1 with the nor-

malization constant
α, 1

f (ẑ) = 1
E(1)

0

yields the actual posterior moments. The entire Gaussian filter employing mo-
ment homotopy is listed in Algorithm 2 and is named homotopic polynomial

2.5 Contributions 69

-1.5

0

1.5

x k
→

1 10 20 30 40 50
k →

True HPGF PF

(a) Homotopic polynomial Gaussian filter (HPGF).

-1.5

0

1.5

x k
→

1 10 20 30 40 50
k →

(b) Particle filter (PF).

Figure 2.9: State trajectory (black, solid line) and the estimates of HPGF and PF
together with the corresponding 2-sigma confidence regions.

Gaussian filter (HPGF). The prediction step coincides with the prediction of
the PKF since the PKF provides the exact predicted mean and variance. Before
solving the ODE (2.77), a initialization step is required in line 4 as the matrix
R

(
η(γ)

)
is singular for γ = 0. Hence, the ODE is merely solved on the interval[

∆γ,1
]
, where ∆γ is a very small positive value. The posterior mean and variance

calculated in line 6 and 7, respectively, are almost exact.

70 2 Gaussian Filtering

Example 10: Chaos Synchronization (Cont’d)

The estimation problem of Example 6 is revisited, but instead of the linear
measurement model (2.66) the cubic measurement model

zk = x3
k

20 +v k , with v k ∼N
(
0,10−5)

is employed. Given this measurement model, it turns out that all Gaussian
filters relying on the joint Gaussian assumption diverge. The HPGF, how-
ever, is able to provide valid estimates. In Figure 2.9a on the previous page,
an exemplary state trajectory is depicted. The estimates of HPGF accu-
rately follow the true state. Furthermore, the true state is always within the
2-sigma confidence region of the estimates. The result of the PF depicted
in Figure 2.9b is less accurate and shows sample depletion from time step
k = 20 to k = 27.

2.6 Summary

In this chapter, the state-of-the-art in Gaussian filtering has been reviewed. Es-
sentially, all Gaussian filters aim at approximating three particular moment
integrals. Approximation techniques applied for this purpose are for instance
linearization via Taylor-series expansions or deterministic sampling. The in-
troduced approximation errors can be minimized by means of exploiting Rao-
Blackwellization. This is starting point for the contributions made in this chapter:

• Combining Rao-Blackwellization with decomposition of observed and un-
observed states: Unobserved state variables can be excluded from the ap-
proximation which reduces the computational load and the approximation
error.

• Rao-Blackwellization for nonlinear-nonlinear decomposition: Instead of
the commonly employed linear-nonlinear decomposition, a novel non-
linear-nonlinear decomposition is proposed. Therefore the concept of
conditionally integrable functions was introduced, i.e., functions that com-
prise a nonlinear substructure for which analytic moment expressions
exist.

2.6 Summary 71

• Approximation of arbitrary nonlinear models with Chebyshev polynomials:
Polynomials are one class of functions for which analytic moment match-
ing is possible. Chebyshev polynomials are well suited for transforming
arbitrary nonlinearities into polynomials thanks to their orthogonality,
sparseness, and efficient coefficient calculation procedure.

• Closed-form moment calculation for polynomial nonlinearities: Novel
matrix-vector expressions for analytical moment calculation for polyno-
mial dynamic and measurement models have been proposed. These ex-
pressions allow exact predictions for Gaussian filters.

• Almost exact posterior moments by homotopy continuation: For polynomial
measurement models the joint Gaussian assumption can be avoided. For
this purpose a homotopy continuation method was proposed that yields
almost optimal posterior moments.

Every contribution on its own can significantly improve the estimation perfor-
mance. A boosting in performance, however, can be obtained by exploiting the
strong interrelations between the several methods. For instance, after employing
the aforementioned decompositions there will remain nonlinear substructures
for which no analytic moment matching is possible. However, approximating
these nonlinearities with Chebyshev polynomials allows accurate Gaussian filter-
ing for the entire nonlinear model as shown in Example 7. Given a polynomial
measurement model—either polynomial by definition, generated via Chebyshev
series expansion, or as a resulting substructure after Rao-Blackwellization—the
novel moment homotopy can be employed.

3
Gaussian Mixture Filtering

Although Gaussian filters show a good estimation performance in many practical
applications, they are clearly limited when the true distribution of the state takes
a complex shape, e.g., multiple modes, strong skewness, or heavy tailes. Such
situations may for instance arise in multi-target tracking or financial forecasts.
To also provide a consistent filter in these applications, a natural extension of
Gaussian filtering is Gaussian mixture filtering. In this chapter, a brief introduc-
tion to Gaussian mixture densities is given at first. Then the extension of the
Gaussian filters discussed in Section 3.2 is derived. Due to the usage of multiple
Gaussians, Gaussian mixtures filters require additional operations regarding the
adaptation of the number of mixture components. A statement of this additional
problem is given in the Section 3.3. The contributions made by the Papers E–G
are summarized in Section 3.4.

73

74 3 Gaussian Mixture Filtering

x

f

-1 0 1 2

2

4

(a) Heavily skewed density consist-
ing of five components.

x

f

-2 20 4

0.4

(b) Multimodal density consisting of
four components.

Figure 3.1: Two exemplary Gaussian mixture densities. The individual Gaussian
components are plotted as dashed lines.

3.1 Gaussian Mixtures

A Gaussian mixture density is defined as a weighted sum of Gaussian densities
according to

f
(
x
)= L∑

i=1
ωi ·N

(
x;µ

i
,Ci

)
(3.1)

with non-negative weighting coefficients ωi that sum up to one. In Figure 3.1,
some examples of Gaussian mixture densities are shown. Sometimes this density
type is also called Gaussian sum density or mixture of Gaussians. Obviously, the
Gaussian density is a special case of (3.1) for L = 1. By defining the two vectors

ω,
[
ω1 . . . ωL

]T and f
(
x
)
,

[
N

(
x;µ

1
,C1

)
. . . N

(
x;µ

L
,CL

)]T, a more compact

version of (3.1) can be found via

f
(
x
)=ωT · f

(
x
)

. (3.2)

There are mainly three reasons for the widespread use of Gaussian mixtures in
Bayesian filtering: First, as they consist of multiple Gaussians, they possess a
straightforward parametrization by means of the weights ωi , mean vectors µ

i
and covariance matrices Ci of the individual Gaussian components. Second, the

3.2 Nonlinear Filtering 75

practically relevant moments mean and covariance of the Gaussian mixture can
be calculated in closed form by means of

µ
x
=

L∑
i=1

ωi ·µ
i

,

Cx =
L∑

i=1
ωi ·

(
Ci +µi

·µT
i

)
−µ

x
·µT

x
.

And finally, any continuous density function f̃
(
x
)

can be approximated by means
of a Gaussian mixture as closely as required with respect to the Lissack-Fu dis-
tance ∫ ∣∣∣ f̃

(
x
)− f

(
x
)∣∣∣dx

by increasing the number of components L and when Ci approaches the zero
matrix [7, 180]. Thus, a Gaussian mixture density can be considered as universal
approximator for density functions [121].

3.2 Nonlinear Filtering

For a Gaussian mixture filter it is assumed that both the predicted and the poste-
rior density of the state are represented as Gaussian mixtures according to

f •
k

(
xk

)= L•
k∑

i=1
ω•

k,i ·N
(
xk ; x̂•

k,i ,C•
k,i

)
, with • ∈ {e,p} , (3.3)

for every time step k, where L•
k is the number of mixture components. To

calculate the parameters of these densities, several approaches exist that can be
grouped in three major classes as depicted in Figure 3.2. In model approximating
approaches, the transition density (1.6) and the likelihood (1.8) are approximated
by means of a Gaussian mixture, which is typically done off-line, before the
actual filtering. For instance [83, 132] propose techniques for approximating the
transition density, while likelihood approximation is content of [5, 86, 191].

Density approximation approaches instead focus on directly approximating the
true predicted or posterior density by means of Gaussian mixtures. Here, one
can distinguish between joint approximation, where all Gaussian components

76 3 Gaussian Mixture Filtering

Gaussian
mixture filters

Model
approximation

Density
approximation

Individual Joint

Figure 3.2: Taxonomy for Gaussian mixture filters. The dashed classes are not
considered in this thesis.

and their respective parameters are calculated jointly, typically by solving an op-
timization problem as proposed in [75, 76]. In case of individual approximations,
each Gaussian component is processed separately through the prediction and
measurement update.

3.2.1 Individual Approximation
In this thesis, the focus is on individual approximation techniques as they al-
low a direct utilization of the Gaussian filtering algorithms discussed in the
previous chapter. In doing so, the calculation of the desired parameters of the
predicted and posterior Gaussian mixtures can be performed efficiently without
any demanding off-line approximations. In the following, the prediction and
measurement update of a generic Gaussian mixture filter based on individual
approximation are derived.

Prediction

For calculating the predicted density, the Gaussian mixture representing the
posterior distribution f e

k

(
xk

)
is plugged into (1.5), which yields

f p
k+1

(
xk+1

)= ∫
f
(
xk+1| xk ,uk

)
·

(Le
k∑

i=1
ωe

k,i ·N
(
xk ; x̂e

k,i ,Ce
k,i

))
dxk

3.2 Nonlinear Filtering 77

≈
Le

k∑
i=1

ωe
k,i ·

∫
f
(
xk+1| xk ,uk

)
·N

(
xk ; x̂e

k,i ,Ce
k,i

)
dxk︸ ︷︷ ︸

≈ N
(
xk+1;µ

p
k+1,i ,Cp

k+1,i

)
. (3.4)︸︷︷︸

≡
(
ω

p
k+1,i

with Lp
k ≡ Le

k . The integral cannot be solved in closed form except for the linear
case. To simplify the integration, for each individual component of the posterior
mixture the solution of the integral is approximated by means of the Gaussian
N

(
xk+1;µp

k+1,i
,Cp

k+1,i

)
. Thus, it remains to calculate the mean vector µp

k+1,i

and covariance matrix Cp
k+1,i . For this purpose any of the Gaussian filters of

Chapter 2 can be employed. The weights remain unchanged. The resulting
predicted density f p

k+1

(
xk+1

)
is then again a Gaussian mixture.

Measurement Update

In case of the measurement update, the predicted mixture (3.4) is substituted in
(1.7) according to

f e
k

(
xk

)= ck · f
(
ẑk | xk

)
·

 L
p
k∑

i=1
ω

p
k,i ·N

(
xk ;µp

k,i
,Cp

k,i

) (3.5)

Due to the nonlinearity of the measurement equation, the measurement update
cannot be solved analytically, i.e., the normalization constant as well as the
product of the likelihood with the predicted mixture possess no closed-form
expression in general.

The normalization constant ck = 1/f (ẑk) corresponds to the reciprocal probability
of the measurement. This probability can be approximated as in the prediction
step according to

f
(
ẑk

)= 1

ck
=

∫
f
(
ẑk | xk

)
·

 L
p
k∑

i=1
ω

p
k,i ·N

(
xk ;µp

k,i
,Cp

k,i

)dxk

≈
L

p
k∑

i=1
ω

p
k,i ·N

(
ẑk ;µz

k,i
,Cz

k,i

)
, (3.6)

where the parameters µz
k,i

Cz
k,i are determined individually by means of a Gaus-

sian filter.

78 3 Gaussian Mixture Filtering

To approximate the product between likelihood and predicted mixture in (3.5),
the equation is extended with the components N

(
ẑk ;µz

k,i
,Cz

k,i

)
from (3.6), which

results in

f e
k

(
xk

)≈ L
p
k∑

i=1
ck ·ωp

k,i ·N
(
ẑk ;µz

k,i
,Cz

k,i

)
·

f (ẑk |xk)·N
(
xk ;µ

p
k,i ,Cp

k,i

)
N

(
ẑ;µz

k,i
,Cz

k,i

)︸ ︷︷ ︸
≈ N

(
xk ;µe

k,i
,Ce

k,i

)
(3.7)︸ ︷︷ ︸

, ωe
k,i

with Lp
k ≡ Le

k . The fraction in (3.7) corresponds to a Bayesian measurement up-
date for each individual predicted Gaussian and is approximated with a Gaussian
density N

(
xk ;µe

k,i
,Ce

k,i

)
. The mean vector and covariance matrix of these indi-

vidual posterior Gaussian components are determined by means of a Gaussian
filter by employing the conditioning in (2.9). Therefore, the parameters µz

k,i
Cz

k,i

are required, which are already available from (3.6). Only the cross-covariance
matrices Cxz

k,i need to be calculated in addition.

3.2.2 Generic Gaussian Mixture Filter
Thanks to the individual approximation, both the prediction and measurement
update of the Gaussian mixture filter boil down to a bank of Gaussian filters,
where each individual Gaussian filter tracks the evolution of its assigned Gaus-
sian component. The Gaussian mixture in each estimation step is the linear
combination of the individual results [73].

Besides the pure estimation steps, a generic Gaussian mixture filter requires
additional operations for maintaining an accurate density approximation and an
adequate run-time. In Algorithm 3, these additional operations are listed for both
prediction and measurement update. The refinement replaces components of the
given Gaussian mixture with one or more new components. This might be nec-
essary to overcome strong nonlinearities in the system model or measurement
model. As all Gaussian filters either explicitly or implicitly perform a linearization,
the linearization error can be reduced by refining components [3, 63, 145].

The reapproximation comprises two operations: weight optimization and re-
duction. The individual weights of the posterior Gaussian components in (3.7)
are merely an approximation of the true weights. This observation follows from
the approximate calculation of the normalization in (3.6). The normalization is

3.3 Component Adaptation 79

Algorithm 3 Generic Gaussian mixture filter

1: Initialize state density f0
(
x
)

with a Gaussian mixture
2: for each time step k do
. Prediction

3: Refinement: Introduce additional components
4: Estimation: Compute predicted Gaussian mixture f p

k

(
xk

)
5: Reapproximation: Weight optimization and component reduction
.Measurement Update

6: Refinement: Introduce additional components
7: Estimation: Compute posterior Gaussian mixture f e

k

(
xk

)
8: Reapproximation: Weight optimization and component reduction
9: end for

one factor forming the posterior weights. To improve the weights, on additional
weight optimization can be performed after the measurement update.

The reduction step removes Gaussian components from the predicted and poste-
rior mixture. The need for this operation has many reasons: Components may
become negligible due to very low weights. Furthermore, due to the refinement,
the number of mixture components grows over time. This growth will become
a severe problem, when in addition the noise components w k and v k are itself
represented as Gaussian mixtures1. As the noise terms form the transition den-
sity and likelihood, respectively, the multiplication of f

(
xk+1| xk ,uk

)
with f e

k

(
xk

)
in the prediction step (3.4) and the multiplication of f

(
ẑk | x

)
with f p

k

(
xk

)
in the

measurement update (3.7) will lead to an exponential growth of the components.
Here, the reduction is a must to maintain a feasible algorithm.

3.3 Component Adaptation

In this section, a detailed overview of the refinement and reapproximation op-
erations appearing in Algorithm 3. At first, the two sub-operations weight opti-
mization and reduction of the reapproximation step are discussed. The weight

1 Even if the noise is Gaussian, an approximation of the noise by means of a Gaussian mixture
might be reasonable if the noise covariance is large. In case of a large covariance, the individual
processing considered above becomes prone to large linearization errors. An approximation of
the noise by a Gaussian mixture leads to components with lower covariances [7].

80 3 Gaussian Mixture Filtering

optimization part is kept short as it is not considered further in this thesis and
thus, it is merely mentioned for the sake of completeness.

3.3.1 Weight Optimization
The posterior weight calculation in (3.7) facilitates the individual processing of
the Gaussian components, but it is merely approximate as discussed above. To
minimize the deviation between the mixture and the true posterior density, [90]
proposed to adjust the weights by minimizing the norm

∫ ∥∥∥∥ f e
k

(
xk

)− Le
k∑

i=1
ωe

k,i ·N
(
xk ;µe

k,i
,Ce

k,i

)∥∥∥∥dxk . (3.8)

As the true posterior f e
k

(
xk

)
is not known and cannot be calculated analytically,

this norm is evaluated at so-called collocation points. A natural choice of these
collocation points are the mean vectors µe

k,i
of the posterior mixture. By this

choice of collocation points and by using the L2 norm in (3.8), the weight adjust-
ment becomes a least squares optimization problem.

At a first glance, the weights obtained after the prediction seem to be correct. No
approximation with respect to the weights is involved. However, no update of the
weights is performed in the prediction; they coincide with the posterior weights.
This procedure is optimal only for linear models, but becomes suboptimal when
performing individual linearizations by means of a bank of Gaussian filters,
especially when the covariances of the individual components is large and thus,
the components may have a large overlap. For this situation, [193, 194] proposed
a weight optimization procedure for the prediction step similar to the above
posterior weight optimization. Instead of collocation points to evaluate (3.8),
[193, 194] replace the true predicted density with the approximate posterior
mixture density of the previous measurement update.

3.3.2 Reduction
To bound the growth of the number of Gaussian mixture components, mixture
reduction aims at replacing a given Gaussian mixture f

(
x
)

with L components as
in (3.1) by a mixture f̃

(
x
)

with M components, where M is significantly smaller
than L, i.e., M ¿ L. At the same time, the deviation between the true and the
reduced mixture should kept at a minimum.

3.3 Component Adaptation 81

Deviation Measures

A very natural deviation measure between two densities from an information
theoretic perspective is the Kullback-Leibler divergence (KLD)

G
(

f
(
x
)∥∥ f̃

(
x
))
,

∫
f
(
x
)

· log
f
(
x
)

f̃
(
x
) dx . (3.9)

It can be interpreted as a quantification of the likelihood that data drawn from
the true density is spuriously considered as be drawn from the reduced mixture
and thus, it measures the difficulty of discriminating two densities. As discussed
in [155, 210], thanks to this maximum likelihood interpretation and its scale-
independence, the KLD should be the preferred choice for Gaussian mixture
reduction. Unfortunately, the KLD is not a distance measure or norm in a strict
sense as it is not symmetric. Furthermore, due to the logarithm in (3.9), the KLD
cannot be evaluated in closed form for Gaussian mixtures.

To overcome the restrictions of the KLD, the integrated squared difference (ISD)
is often employed as an alternative. It is defined as

D
(

f
(
x
)
, f̃

(
x
))
,

∫ (
f
(
x
)− f̃

(
x
))2

dx . (3.10)

Thus, the ISD is actually an L2 norm. In contrast to the KLD, it has a closed-form
expression for Gaussian mixtures, which is given by

D
(

f
(
x
)
, f̃

(
x
))= L∑

i=1

L∑
j=1

ωi ·ω j ·N
(
µ

i
;µ

j
,Ci +C j

)
+

L∑
i=1

M∑
j=1

ωi ·ω̃ j ·N
(
µ

i
; µ̃

j
,Ci + C̃ j

)
+

M∑
i=1

M∑
j=1

ω̃i ·ω̃ j ·N
(
µ̃

i
; µ̃

j
, C̃i + C̃ j

)
,

(3.11)

where the first term is called self-similarity of the true mixture, the second is the
cross-similarity between the true and the reduced mixture, and the last term is
the self-similarity of the reduced mixture [210].

82 3 Gaussian Mixture Filtering

State-of-the-Art

Depending on the optimization that is performed by a Gaussian mixture reduc-
tion algorithm, one can distinguish three basic classes: local, global, and pseudo-
global algorithms. In the following, the key features and typical approaches of
every class are discussed.

Local reduction algorithms typically perform an iterative merging of two or more
components to a single Gaussian until a pre-defined threshold on the maximum
allowed number of components is reached.

Example 11: Moment-preserving Merge

Let ωi ·N
(
x;µ

i
,Ci

)
and ω j ·N

(
x;µ

j
,C j

)
be the two Gaussians that are con-

sidered for merging. By merging these two components, it should in addi-
tion be ensured that the zeroth-order (probability mass), first-order (mean)
and second-order (covariance) moments of the entire mixture remain un-
changed. Given these constraints, a moment-preserving merge of the two
Gaussians yields the parameters

ω̃=ωi +ω j ,

µ̃= 1
ω̃ ·

(
ωi ·µ

i
+ω j ·µ

j

)
,

C̃ = 1
ω̃ ·

(
ωi ·Ci +ω j ·C j + ωi ·ω j

ω̃ ·
(
µ

i
−µ

j

)(
µ

i
−µ

j

)T
)

.

(3.12)

of the resulting single Gaussian ω̃ ·N
(
x; µ̃, C̃

)
.

The above moment-preserving merge can be easily extended for merging more
than two Gaussians. The major difference of the most local algorithms is the
criterion based on which components are selected for a merge. In [135, 157, 207]
for instance, the Mahalanobis distance between Gaussians is utilized, while [188]
employes a pair-wise version of the Hellinger metric and [39] a pair-wise version
of the ISD. All these criteria only measure some similarity between components
without consideration of the induced global deviation between the true and
reduced mixture due to the merge, i.e., neither the KLD nor the ISD are monitored.
Certainly, local algorithms are well-suited for real-time applications due to their
low computational overhead.

3.3 Component Adaptation 83

In contrast, global reduction algorithms directly aim at minimizing the KLD or the
ISD. In doing so, this class of algorithms tries to find the globally optimal reduced
mixture. The reduction method proposed in [89] optimizes the parameters of
the reduced mixture with respect to the ISD. This approach is constructive as
it begins with a single Gaussian and adds components at locations where the
deviation between the true and reduced mixture is too large. The algorithms
in [31, 201] utilize the KLD, where the first is an expectation-maximization like
approach and the second relies on variational Bayes. Merging components—
when not performed iteratively as done by the local algorithms—can also yield
globally optimal results as demonstrated in [46]. Here, all possible merges are
first calculated and then the optimal solution is selected, which directly gives
the reduced mixture. This procedure, however, is only feasible for L being a low
number. In general, global algorithms suffer from a high computational load.

A compromise between both worlds is the third class of pseudo-global reduction
algorithms. Here, iterative merging is performed as in local algorithms, but
at the same time the KLD or ISD is monitored. [210] for instance considers
that pair of Gaussians for a merge that introduces the smallest error into the
reduced mixture in an ISD sense. [155] instead employes an upper-bound of the
KLD and [167] uses only the cross-likeliness of the ISD. Because every possibly
merge is inspected before actually performing the merge, pair-wise merging
is globally optimal in a single step. Though, this does not guarantee global
optimality after multiple reduction steps. Global optimality is only achieved by
the aforementioned procedure proposed in [46]. To compensate this drawback,
some algorithms like those in [69, 162] perform a dedicated optimization after
merging, where the parameters of the reduced mixture are optimized with respect
to the ISD. Alternatively to pair-wise merging, clustering-based or k-means based
reductions perform iterated assignments of components of the true mixture to
clusters. When no improvement in terms of the KLD or ISD is gained anymore,
the components assigned to a cluster a merged which yields the reduced mixture.

Open Issues

Most of the aforementioned algorithms require a pre-defined threshold on the
resulting number of mixture components, where an appropriate choice is diffi-
cult for the user. If the threshold is chosen too high, the entire Gaussian mixture
filter becomes computationally demanding. A too low threshold may lead to
poor estimates or even to a diverging filter. Ideally, this so-called model selec-
tion problem should be solved by the reduction algorithm itself, which so far is

84 3 Gaussian Mixture Filtering

only achieved by [31, 89]. Both algorithms, however, are computationally and
algorithmically very complex. Reductions of these algorithms and also of other
global and pseudo-global approaches, are often more demanding than the actual
predictions and measurement updates.

3.3.3 Refinement
While reduction aims at removing components from the mixture, the refinement
step introduces new ones. The refinement becomes necessary when severe
linearization errors of the individual Gaussian filters threaten the estimation
performance.

Nonlinearity Measures

In order to avoid a blind adding of new components, the potential linearization
error or the “strength” of the nonlinearity needs to be quantified. For some
Gaussian filters, dedicated nonlinearity measures have been proposed in the past.
For a brief overview, the nonlinear transformation in (2.6) is revisited, where now
x and y are Gaussian mixtures as in (3.1).

If for instance an EKF is employed as Gaussian filter, [3, 92] propose the measure

N
(
µ

i
,Ci

)
,

√
Tr

(
Gxx

(
µ

i

)
Ci Gxx

(
µ

i

)
Ci

)
σw

,

where Gxx
(
x
)
, ∂2g(x)/∂x∂xT is the Hessian matrix of g (.). Unfortunately, this

measure is restricted to EKFs and to scalar y only. A measure based on the
KLD (3.9) that is not limited by the dimension of y is proposed in [145]. Here,
every mixture component of y is compared against the true density. As the true
density is not given in closed-form, numerical integration is necessary, which is
demanding for high dimensions.

For the UKF, [62] proposed the measure

ny∑
i=1

ηi , with ηi , 1
2

∥∥∥Yi +Ynx+i −Y2nx+1

∥∥∥2

2

that quantifies the goodness of fit of the propagated sample points Yi = g (Xi),
i = 1. . .nx , to a linear regression model. The measure is close to zero if g (.) is
approximately linear.

3.3 Component Adaptation 85

Adding New Components

By means of the nonlinearity measures it is possible to locate the Gaussian at the
strongest nonlinearity or linearization error. A typical action to attenuate the lin-
earization error is splitting, i.e., the identified Gaussian component ω ·N

(
x;µ,C

)
is replaced by a Gaussian mixture according to

ω ·N
(
x;µ,C

)
≈

L∑
i=1

ωi ·N
(
x;µ

i
,Ci

)
, (3.13)

where the components on the right-hand side possess smaller covariances than
the original component on the left-hand side, which is necessary for reducing
the linearization error.

It is worth mentioning that (3.13) has two interpretations. Reading the equation
from left to right corresponds to splitting, but reading the equation from right to
left is nothing else then mixture reduction. Hence, splitting can be considered
the dual operation to mixture reduction.

It can be easily verified that for L > 1, the number of free parameters on the
right-hand side of (3.13), i.e., weights, mean vectors, and covariance matrices, is
larger than the number of given parameters. Hence, splitting a Gaussian is an
ill-posed problem.

The solution to this problem proposed in [6] is based on the UKF for determining
sample points of the Gaussian that has to be split. The sample points with
corresponding weights are used as the mean vectors µ

i
and mixture weights ωi

in (3.13), respectively. The covariances Ci are chosen to be identical. In [7, 62],
the new Gaussians are placed as a regular grid with identical covariance matrices.

The weights are chosen to be ωi =N
(
µ

i
;µ,C

)
, i.e., the normalized probability

value of the original Gaussian at the means µ
i

of the new Gaussian. A so-called

splitting library is used in [75, 85], i.e., an off-line calculated approximation of a
standard Gaussian by a mixture of Gaussians. This approximation is adjusted
on-line by means of straightforward scaling operations.

Open Issues

The discussed nonlinearity measures are either restricted to very specific Gaus-
sian filters like the UKF and EKF or they are difficult to evaluate for arbitrary

86 3 Gaussian Mixture Filtering

models. Except of the splitting library all splitting approaches suffer from scal-
ability problems as the number of components scales with the dimension of
the state space. Furthermore, splitting is performed very “generous”, i.e., new
components are introduced at every dimension of the state space, although the
linearization error might affect only some state variables.

3.4 Contributions

The contributions made by the Papers E–G are discussed in the following sec-
tions. At first, the nonlinear-nonlinear state decomposition approach that was
proposed in Section 2.5.2 is extended to Gaussian mixture filters. In Section 3.4.2,
a new measure of the degree of nonlinearity and a new splitting approach are
proposed. Both together form the so-called adaptive Gaussian mixture filter.
Finally, a global Gaussian mixture reduction algorithm that exploits the ISD and
the curvature of the true density is introduced.

3.4.1 Semi-Analytic Gaussian Mixture Filter
As the generic Gaussian mixture filter in Algorithm 3 uses a bank of Gaussian
filters, the SAGF proposed in Section 2.5.2 can be directly applied in order to
obtain a semi-analytic Gaussian mixture filter (SAGMF). As in Section 2.5.2, the
conditionally integrable nonlinear transformation

y = g
(
x a , x s

)+w

is considered, where the state x comprises the conditionally integrable state x a
and the sampled state x s . The density of the state is

f
(
x
)= L∑

i=1
ωi ·N

(
x;µx

i
,Cx

i

)
with µx

i
=

[
µa

i
µs

i

]
, Cx

i =
[

Ca
i Cas

i
Csa

i Cs
i

]
. (3.14)

To obtain the Gaussian mixture density
∑L

i=1ωi ·N
(
y ;µy

i
,Cy

i

)
of y , it is necessary

to solve the moment integrals (2.8) for every component of (3.14). At first, for

3.4 Contributions 87

every component i = 1. . .L, a sample approximation of the marginal Gaussian
N

(
xs ;µs

i
,Cs

i

)
is calculated by means of an LRKF, which yields

N
(
xs ;µs

i
,Cs

i

)
≈

N∑
j=1

ωi j ·δ
(
xs −Xi j

)
,

where L = {
ωi j ,Xi j

}
for j = 1. . . N are the sample points of the i th Gaussian

component.

Based on this sample representation, it is now possible to determine the mean
and covariance of the i th component of y according to

µy
i
≈

N∑
j=1

ωi j ·µy
i j

, (3.15)

Cy
i ≈

N∑
j=1

ωi j ·

(
Cy

i j −µy
i j

(
µy

i

)T −µy
i

(
µy

i j

)T +µy
i

(
µy

i

)T
)

, (3.16)

with

µy
i j
=

∫
g

(
xa ,Xi j

)
· fi

(
xa |Xi j

)
dxa ,

Cy
i j =

∫
g

(
xa ,Xi j

)
· g

(
xa ,Xi j

)T · fi
(
xa |Xi j

)
dxa ,

(3.17)

where fi
(
xa |Xi j

)
,N

(
xa ;µa|s

i
,Ca|s

i

)
is the conditional density of the i th compo-

nent with mean and covariance as in (2.48). As g (.) is conditionally integrable,
the integrals in (3.17) can be solved analytically.

To obtain the cross-covariance Cx y
i = [

Cay
i Cs y

i

]T
it is more convenient to cal-

culate its sub-matrices separately according to

Cay
i =

N∑
j=1

ωi j ·

(
Cay

i j −µa|s
i j

(
µy

i

)T +µa
i

(
µy

i
−µy

i j

)T
)

,

Cs y
i =

N∑
j=1

ωi j ·
(
Xi j −µs

i

)
·
(
µy

i j
−µy

i

)T
,

(3.18)

with

Cay
i j =

∫
xa · g

(
xa ,Xi j

)T · fi
(
xa |Xi j

)
dxa ,

88 3 Gaussian Mixture Filtering

where µy
i j

is given by (3.17) and µa|s
i j

is calculated according to (2.48) with xs

being replaced by Xi j .

With the mean vectors (3.15), covariance matrices (3.16), and the sub-matrices
(3.18) of the cross-covariance matrix all ingredients are given that are neces-
sary for calculating the individual components of the predicted and posterior
Gaussian mixture densities.

Example 12: Tricycle Kinematics

A robot with tricycle kinematics has to be localized. The nonlinear kine-
matics model is defined as

p x
k+1 = p x

k +
(
uv

k +w v
k

)
· cos

(
φk +uα

k

)
,

p y
k+1 = p y

k +
(
uv

k +w v
k

)
· sin

(
φk +uα

k

)
,

φk+1 =φk +
(
uα

k +wα
k

)
,

with state xk = [
p x

k p y
k φk

]T
, where p x

k and p y
k describe the Cartesian po-

sition of the robot andφk its orientation. The initial position of the robot
at time step k = 0 is x0 = [5 3 0.2]T . The known control inputs are the
velocity uv

k = 0.1 and the turning angle uα
k = 0.1. w v

k and wα
k are noise pro-

cesses affecting the corresponding control inputs. They are assumed to be
zero-mean Gaussian with variances σ2

w v = 0.1 and σ2
wα = 0.01, respectively.

The state is decomposed into x a = [
p x p y w v wα]T

and xb =φ . Hence, by
conditioning on x s , the system model becomes linear and can be solved
via the prediction of the Kalman filter.

Range measurements to landmarks are performed for localizing the robot.
The measured range r k is defined by the nonlinear measurement model

r k =
√(

p x
k −Lx +v x

k

)2 + (
p y

k −Ly +v y
k

)2 ,

where L = [
Lx Ly]T

is the position of the landmark. Four landmarks at the
positions [

L1 L3 L3 L4

]= [
0 2 5 10
0 2 5 10

]
.

are given. The measurement noise v k = [
v x

k v y
k

]T
is zero-mean Gaussian

with covariance Cv =σ2
v ·I2. For the variance σ2

v , the three noise levels 0.5,

3.4 Contributions 89

Table 3.1: Average rmse and standard deviation for the different filters at different
noise levels and numbers of components.

Noise 0.5 64 8 1

FAGMF 2.02±1.34 3.17±1.98 3.76±2.01
SAGMF 2.03±1.34 3.16±1.99 3.76±2.09
UGMF 2.41±1.79 4.08±3.02 4.31±3.58
EGMF 2.64±1.86 4.08±4.99 6.40±9.64

Noise 1.0 64 8 1

FAGMF 2.05±1.36 3.16±1.97 3.70±2.07
SAGMF 2.06±1.35 3.15±1.97 3.70±2.07
UGMF 2.44±1.80 4.04±3.05 4.25±3.61
EGMF 2.95±1.73 4.40±4.43 6.72±8.71

Noise 2.0 64 8 1

FAGMF 2.16±1.35 3.22±2.02 3.78±2.16
SAGMF 2.16±1.36 3.22±2.02 3.78±2.16
UGMF 2.61±1.77 4.11±3.08 4.35±3.65
EGMF 3.42±1.55 4.95±4.14 7.21±7.60

1, and 2 are considered. The measurement step is performed analytically
by means of the closed-form solution derived in Section 5.1.

The proposed semi-analytic Gaussian mixture filter (SAGMF) is compared
against Gaussian mixture filters employing EKFs and UKFs. These Gaussian
mixture filters are denoted EGMF and UGMF in the following. Furthermore,
a fully analytical Gaussian mixture filter (FAGMF) is employed as a baseline
that performs component-wise moment matching for the prediction. All
GMFs are initialized with different numbers of components, namely 1, 8,
and 64 components. For each combination of noise level and number of
components, 1000 simulation runs are performed, where each run consists
of 50 time steps. The results are listed in Table 3.1.

The SAGMF clearly outperforms both EGMF and UGMF independent of
the noise level or the used number of components. Furthermore, the esti-
mation errors are almost identical with the baseline provided by the FAGMF.
In terms of run-time, EGMF and AGMF are the fastest filters, but SAGMF
is significantly faster than the UGMF, which suffers from the necessity of

90 3 Gaussian Mixture Filtering

calculating high-dimensional matrix square roots. Furthermore, it requires
a high number of on-line evaluations of the kinematics and measurement
model, while in case of the SAGMF the number of functions evaluations is
reduced significantly due to the small dimension of the sub-state x s .

It is important to point out that the outstanding performance of FAGMF is
limited to a small number of applications. The SAGMF instead is of greater
benefit as it is a general purpose filter, where both UGMF and FAGMF are
its limiting cases.

3.4.2 Adaptive Gaussian Mixture Filter
The estimation error of Gaussian mixture filters significantly depends on the
number of Gaussian components used. This number is typically defined by the
user. The novel adaptive Gaussian mixture filter (AGMF) depicted in Figure 3.3
on the next page adapts the number of components dynamically and on-line
and thus, directly tackles the refinement step of Algorithm 3. The nonlinear
system and measurement models are linearized locally by means of statistical
linear regression (see Section 2) at each component of the Gaussian mixture.
The induced linearization error is quantified by means of the linearization er-
ror covariance matrix (2.28). Based on this error, a novel moment-preserving
splitting procedure is proposed for introducing new mixture components. The
component causing the highest linearization error is selected, while splitting is
performed in direction of the strongest nonlinearity, i.e., the strongest deviation
between the nonlinear model and its linearized version. Both linearization and
splitting are independent of the used statistical linear regression method, which
makes the proposed filter versatilely applicable.

Component Selection

A straightforward way to select a Gaussian component for splitting is to con-
sider the weights ωi , i = 1. . .L. The component with the highest weight is then
split. This however does not take the nonlinearity of g (·) in the support of the
selected component into account. Since linearization is performed individually
and locally, a more reasonable selection would be to consider also the induced

3.4 Contributions 91

Linearization stop?

Splitting

Estimation Reduction

k → k −1

5

3f
(
x0

)

f
(
xk

)
f
(
xk−1

)

zk

Figure 3.3: Flow chart of the adaptive Gaussian mixture filter.

linearization error of each component. For this purpose, statistical linear regres-
sion already provides an appropriate measure of the linearization error in form
of the covariance matrix Ce in (2.28).

In order to easily assess the linearization error in the multi-dimensional case, the
trace operator is applied to Ce , which gives the measure

ε= Tr(Ce) ∈ [0,∞) . (3.19)

Geometrically speaking, the trace is proportional to circumference of the covari-
ance ellipsoid corresponding to Ce . The larger Ce and thus the linearization error,
the larger is ε. Conversely, the trace is zero, if and only if Ce is the zero matrix, i.e.,
ε= 0 ⇔ Ce = 0. Hence, (3.19) is only zero, when there is no linearization error.

Example 13: Quantified Linearization Error

The error measure in (3.19) is applied to both scalar functions

g (x) = cos(x) and g (x) = exp
(−x2) ,

where x ∼N
(
µ,1

)
has constant variance and the mean is moved along the

x-axis. The corresponding linearization error values for both functions
are depicted in Figure 3.4 on the next page. The measure approaches zero
whenever the function g (.) is almost linear. This is the case for cos(x) if
x = 0 and for exp

(−x2) if x =±p
2/2 and x →±∞.

92 3 Gaussian Mixture Filtering

x

ε, g

1 2

1

-1

(a) g (x) = cos(x)

x

ε, g

-1-3 1 3

1

(b) g (x) = exp
(
−x2

)
Figure 3.4: Two examples of the linearization error quantification by means of the
measures (3.19). The solid lines correspond to the function g (.), the dashed lines to
the measure (3.19), and the dotted lines indicate linearized versions of g (.)

Besides the linearization error, the contribution of a component to the nonlinear
transformation is important as well. That is, the probability mass of the com-
ponent, which is given by its weight ωi , has also to be taken into account. This
avoids splitting of irrelevant components. Both ingredients are combined in the
so-called selection criterion

i∗ = arg max
i=1...L

{si } , si ,ω
γ

i ·
(
1−exp(−εi)

)1−γ (3.20)

Here, the term 1−exp(−εi) normalizes the linearization measure (3.19) to the
interval [0,1]. For a geometric interpolation between weight and linearization
error of component i , the parameter γ ∈ [0,1] used. With γ = 0, selecting a
component for splitting only focuses on the linearization error, while γ = 1
considers the weight only.

Spli�ing

Once a component causing a large linearization error is identified, new com-
ponents are introduced by means of splitting the identified component. As
mentioned above, splitting is an ill-posed problem due to the high number of
free parameters. To reduce the degrees of freedom, splitting is performed given
the following constraints:

3.4 Contributions 93

1. Along principal axes of a Gaussian: This reduces the splitting problem of
a multivariate Gaussian to the one-dimensional case. Furthermore, split-
ting becomes computationally cheap and numerically stable compared to
arbitrary splitting directions.

2. Splitting into two components: Allows trading the reduction of the lin-
earization error off against the increase of mixture components.

3. Symmetric around the mean: This minimizes the error introduced by split-
ting a Gaussian.

4. Moment preserving: The mean vector and covariance matrix of the split
Gaussian and thus, of the entire mixture remains unchanged.

The restriction to split a Gaussian into two components is no limitation. As
splitting is performed recursively by the AGMF within a time step, the newly
introduced components can be split again in the next rounds if the linearization
error is still too high.

Let ω ·N (x;µ,C) be the component considered for splitting. It is replaced by two
components according to (3.13) with parameters

ω1 =ω2 = ω
2 ,

µ
1
=µ+

p
λ ·α · v , µ

2
=µ−

p
λ ·α · v ,

C1 = C2 = C−λ ·α · v vT ,

(3.21)

where α ∈ [−1,1] is a free parameter. The parametrization in (3.21) ensures
moment preservation, i.e., the original Gaussian component and its split coun-
terpart have the same mean and covariance. Furthermore, λ and v in (3.21) are a
particular eigenvalue and eigenvector, respectively, of C.

Spli�ing Direction

What remains an open question is the selection of an appropriate eigenvector
for splitting. A straightforward choice might be the eigenvector with the largest
eigenvalue as in [63, 85]. But since (3.20) determines the Gaussian component
that causes the largest linearization error, merely splitting along the eigenvector
with the largest eigenvalue does not take this error into account.

94 3 Gaussian Mixture Filtering

The key idea of the proposed criterion is to evaluate the deviation between the
nonlinear transformation g (.) and its linearized version (2.26) along each eigen-
vector. The eigenvector with the largest deviation is then considered for splitting,
i.e., the Gaussian is split in direction of the largest deviation in order to cover
this direction with more Gaussians, which will reduce the error in subsequent
linearization steps.

By means of the error term (2.27), the desired criterion for the splitting direction
is defined as

dl ,
∫
R

e
(
x l (ν)

)T ·e
(
x l (ν)

)
·N

(
x l (ν);µ,C

)
dν (3.22)

with x l (ν),µ+ν · v l , l = 1. . .nx , and v l being the l th eigenvector C. The integral
in (3.22) cumulates the squared deviations along the l th eigenvector under the
consideration of the probability at each point x l (ν). The eigenvector that max-
imizes (3.22) is then chosen for splitting. Unfortunately, due to the nonlinear
transformation g (·) this integral cannot be solved in closed-form in general. For
an efficient and approximate solution, the sample point calculation schemes
described in Section 2.2.5 are employed to approximate the Gaussian in (3.22) in
direction of v l by means of Dirac delta distributions. This automatically leads to
a discretization of the integral at a few but carefully chosen points.

Spli�ing Termination

As indicated in Figure 3.3, in every splitting round a stopping criterion is evaluated.
Splitting stops, if at least one of the three following thresholds is reached:

Error threshold: The value si in the selection criterion (3.20) drops below
smax ∈ [0,1] for every component.

Component threshold: The number of mixture components excels Lmax.

Deviation threshold: The deviation between the original mixture f
(
x
)

and the
mixture obtained via splitting f̃

(
x
)

excels dmax ∈ [0,1].

The deviation considered for the latter threshold is determined by means of the
normalized version of the ISD according to

D̄
(

f
(
x
)
, f̃

(
x
))
,

D
(

f (x), f̃ (x)
)∫

f (x)2 dx +∫
f̃ (x)2 dx

∈ [0,1] . (3.23)

3.4 Contributions 95

Since splitting always introduces an approximation error to the original mixture,
continuously monitoring the deviation limits this error.

Example 14: Shape Approximation

In order to demonstrate the effectiveness of splitting in direction of the
strongest nonlinearity, the nonlinear growth process

y = g
(
x
)= ξ

2
+5·

ξ

1+ξ2 +w

adapted from [101] is considered, where x = [ξ w]T ∼ N
(
[1,0]T,I2

)
. To

approximate the density of y , the Gaussian f (x) is split recursively into a
Gaussian mixture, where the number of components is always doubled
until a maximum of 64 components is reached. No mixture reduction and
no thresholds smax, dmax are used. The true density of y is calculated via
numerical integration.

Two different values for the parameter γ of the selection criterion (3.20)
are used: γ = 0.5, which makes no preference between the component
weight and the linearization error and γ= 1, which considers the weight
only. Furthermore, a rather simple selection criterion is considered for
comparison, where selecting a Gaussian for splitting is based on the weights
only (as it is the case for γ= 1), while the splitting is performed in direction
of the eigenvector with the largest eigenvalue.

Table 3.2 shows the KLD between the true density of y and the approxima-
tions obtained by splitting. The approximations of the proposed splitting
scheme are significantly better than the approximations of the largest eigen-
value scheme. This follows from the fact that the proposed scheme not only
considers the spread of a component. It also takes the linearization errors

Table 3.2: Approximation error (KLD × 10) for different splitting schemes and num-
bers of components.

splitting number of Gaussians
scheme 1 2 4 8 16 32 64

max. eigenvalue 2.01 0.77 0.64 0.47 0.39 0.21 0.26
γ= 1 2.01 0.77 0.59 0.34 0.20 0.12 0.07
γ= 0.5 2.01 0.77 0.40 0.22 0.07 0.03 0.02

96 3 Gaussian Mixture Filtering

-6 -4 -2 0 2 4 6 8

y →

0

0.1

0.2

0.3

0.4
f(

y)
→

True

Approx. L = 1

Approx. L = 2

Approx. L = 8

Approx. L = 32

Figure 3.5: True density function of y (black, dashed) and approximations with an
increasing number of mixture components for γ= 0.5.

into account. In doing so, the Gaussians are always split along the eigen-
vector corresponding to ξ, since this variable is transformed nonlinearly,
while w is not. This is different for the largest eigenvalue scheme, which
wastes nearly half of the splits on w .

The inferior approximation quality for γ = 1 compared to γ = 0.5 results
from splitting components, which may have a high importance due to their
weight but which do not cause severe linearization errors. Thus, splitting
these components will not improve the approximation quality much.

In Figure 3.5, the approximate density of y is depicted for different num-
bers of mixture components for γ = 0.5. With an increasing number of
components, the approximation approaches the true density very well.

3.4.3 Curvature-based Gaussian Mixture Reduction
Basically, the AGMF proposed above can operate with any Gaussian mixture re-
duction algorithm, but in order to maintain a high estimation performance, the
employed reduction algorithm should provide a very good approximation of the
original mixture. At the same time the reduction should be large enough in order

3.4 Contributions 97
f(

x
)→

x → 0

0.2

0.4

0.6

ω
i
→

i →
(a) Original Gaussian mixture consisting of 20 components.

f(
x

),
f̃(

x
)→

x → 0

0.2

0.4

0.6
ω

i
→

i →
(b) Reduced Gaussian mixture consisting of two components.

Figure 3.6: A Gaussian mixture and its reduced version. Left: original Gaussian
mixture (black), reduced mixture (dark gray), and the mixture components (light
gray, dashed). Right: the mixture weights.

to allow computationally feasible estimation. As mentioned in Section 3.3.2,
global and pseudo-global reduction algorithms can provide an accurate approxi-
mation, but they suffer from a high complexity. This drawback becomes even
more severe, when the number of mixture components is initially very large. This
situation, however, appears quite often in filtering applications, especially when
Gaussian mixtures are multiplied or when splitting adds many components due
to a high state dimension.

Especially in cases, where the number of components is large, it is possible to find
a reduced mixture merely by setting the weights ωi of many components to zero
and still, the reduced mixture approximates the original mixture sufficiently well.

98 3 Gaussian Mixture Filtering

Example 15: Weight Optimization

Consider a Gaussian mixture consisting of 20 components as depicted in
Figure 3.6a on the previous page. Intuitively one would guess that two to
three Gaussians should be sufficient to provide an approximation of the
original mixture that captures both modes. The remaining components
seem to be redundant. In Figure 3.6b the extreme case is depicted, where
the weights of all components except of two are set to zero. The weights
of the remaining two components are merely normalized such that their
sum is equal to one. The resulting reduced mixture captures both modes.
However, there is still room for improvement, e.g., by optimizing the weight
or by allowing one more component.

The superficial Gaussian mixture reduction (SGMR) introduced next is a global
reduction algorithm that is based on minimizing the curvature—maximizing the
smoothness—of the reduced mixture while keeping the ISD low. By means of
using the curvature it is possible to identify similar components globally and
to remove these components from the density. Carrying the idea that similar
components may be dropped a step further, the trade-off between curvature
and approximation error is minimized by merely optimizing the weights, i.e., as-
signing zero weights to reduced components. This approach is computationally
feasible as no other parameters of the mixture need to be optimized. It further
allows a simple and efficient implementation based on standard quadratic pro-
gram (QP) solvers. Additionally, this weight-only optimization alleviates the
model selection problem as the final number of components is automatically
derived from setting the trade-off between error and roughness. This hyperpa-
rameter may be automatically optimized as well. In cases where the resulting
number of components still is too large from a computational perspective, exist-
ing global reduction algorithm can be employed ex post. Thanks to the already
reduced mixture, the computational load of the global algorithm can be lowered
significantly.

�adratic Program

By focusing on the weights only, the mixture reduction problem can be formu-
lated as a quadratic program

min
ω̃

ω̃T Q ω̃−qTω̃ (3.24)

3.4 Contributions 99

s.t. 1T ·ω̃= 1 ,

0 ¹ ω̃ ,

0 =∑L
i=1µi

· (ωi − ω̃i) ,

where ω̃T, [ω̃1 . . . ω̃L] is the vector of all weights of f̃
(
x
)

to be optimized. The
symmetric matrix Q,D+λR comprises the positive semi-definite matrices D
and R, where D originates from the ISD and R is a roughness penalty measur-
ing the curvature of f̃ . The vector q , 2d , where d T , ω̃TD depends on the
ISD as well. The hyperparameter λ governs the trade-off between D and R. It
needs to be determined by means of generic model selection algorithms, see e.g.
[163]. For small values of λ, the ISD will be weighted relatively higher than the
curvature. This results in more components in the reduced mixture f̃ and less
approximation error. For large values of λ, the curvature will be weighted higher
enforcing more reduction and approximation error.

The constraints in the QP assert the integration of the probability mass to one,
the positivity of the density, and that f̃ and f have identical means.

It is important to note the number of components in f and f̃ is identical. After
solving (3.24), many weights will be zero or close to zero. Thus, the corresponding
components no longer contribute to the mixture and can be discarded.

The components of the ISD in (3.24) are obtained, when examining (3.11) for all
parameters but the weights of f̃ as fixed. It turns out that (3.11) merely consists
of linear and quadratic terms of the weights ω̃i . Thus, the ISD can be written as

D
(

f
(
x
)
, f̃

(
x
))= ω̃TDω̃−2d Tω̃+ c , (3.25)

where the matrix D corresponds to the self-similarity of f̃ , the vector d encodes
the cross-similarity between f and f̃ , and the constant c ,ωTDω corresponds
to the self-similarity of f .

The roughness of f̃ is interpreted as the curvature κ of the density’s surface.
Since the curvature (see e.g. [35]) is signed and a function of the position on the
surface, a quantification in terms of the integral squared curvature is sought. The
key idea is to derive an (approximate) upper bound of the squared curvature of
the mixture. The derivation is based on the point-wise squared curvature κ(x)
for a density f̃ , for which an upper bound κ̆(x) is determined, integrated over the

100 3 Gaussian Mixture Filtering

entire domain of x, i.e., R
(

f̃ (x)
)= ∫ κ̆(x)2 dx. For the 1D and 2D case, the upper

bounds are

κ̆(x)2,
(
ω̃T f̃

xx

)2
, κ̆

(
x
)2,

(
ω̃T f̃

xx
−2ω̃T f̃

x
ω̃T f̃

y
ω̃T f̃

x y
+ ω̃T f̃

y y

)2
,

where f̃
x

and f̃
x y

being the first-order and second-order derivatives of f̃ , with f̃

defined as in (3.2). These upper bounds of the integral squared mean curvature
are obtained by dropping the denominator and positive summands.

For the weight optimization, the upper bound of the curvature is formulated as a
quadratic form ω̃T R ω̃. The elements of R may be obtained as follows. For the

1D case the elements of R are given by Ri j = ∫R f̃ (i)
xx f (j)

xx dx , where f̃ (i) refers to
the i th mixture component of f̃ . For the 2D case, the following approximation is
used(

ω̃T f̃
xx

−2ω̃T f̃
x
ω̃T f̃

y
ω̃T f̃

x y
+ ω̃T f̃

y y

)2

≈
(
ω̃T

[
f̃

xx
−2 f̃

x
f̃

T

y
f̃

x y
+ f̃

y y

])2
,

which leads to the elements

Ri j =
∫
R2

(
f̃ (i)

xx −2 f̃ (i)
x f̃ (i)

y f̃ (i)
x y + f̃ (i)

y y

)
·
(

f̃ (j)
xx −2 f̃ (j)

x f̃ (j)
y f̃ (j)

x y + f̃ (j)
y y

)
dx . (3.26)

For the 1D curvature, the Ri j may be calculated in closed form. Note for a
2D density the curvature is not unique, as it is calculated from the minimum
and maximum curvature in the principal directions at each point x, which may
be multiplied (Gaussian curvature) or averaged (mean curvature) [35]. For ar-
bitrary Gaussian mixture densities, the terms in (3.26) may only be calculated
numerically or need to be approximated further.

Algorithm

The entire SGMR algorithm comprises three parts: the pre-processing of the com-
ponents of the quadratic forms and the hyperparameter, the weight optimization
by the solution of (3.24), and a fast post-optimization of the already reduced set
of weights from (3.24).

3.4 Contributions 101

The pre-processing consists of calculating the matrix D and vector d correspond-
ing to the ISD as well as the matrix R describing the curvature of the mixture’s
surface.

As the matrix Q is positive semi-definite, the QP is convex and can be solved
efficiently and globally optimal by any standard solver (see Appendix C). The
resulting weights are compared against a threshold ε¿ 1. This leads to reduced
weights ω̃+

i ≥ ε, i = 1. . . M ¿ L.

The purpose of the post-optimization is an adaptation of the already reduced
weights ω̃+, aimed at improving the accuracy, by neglecting the curvature and
only minimizing the ISD with respect to ω̃+. The corresponding QP is similar to
(3.24) but without the curvature matrix R.

Example 16: 1D Reduction

The proposed SGMR is compared against the following reduction algo-
rithms: Pruning [20] of all but the components with the highest weights,
West’s merging [207], Salmond’s clustering algorithm [157], Williams’ merg-
ing algorithm [210], Runnalls’ algorithm [155], and PGMR [89]. For SGMR,
two variants are considered, one with post-optimization and one without
post-optimization.

For evaluation, univariate Gaussian mixtures with a number of compo-
nents L ∈ {40,80,120,160,200} are used. The mixture parameters are drawn
uniformly at random from the intervals α̃ ∈ [0.05,0.5], µ̃ ∈ [0,3], and σ̃ ∈
[0.09,0.5]. For each number of components L, 50 Monte Carlo simulation
runs are performed. For SGMR, the hyperparameter λ is set to 500 and the
deletion threshold ε is 1e−4. The maximum error threshold of PGMR is set
to 1%.

Pruning, West, Salmond, Williams, and Runnalls require a user-defined
threshold on the number of components to which the given Gaussian
mixture has to be reduced. Since SGMR reduces a Gaussian mixture in
a completely different fashion and thus, to ensure a fair comparison, the
number of components resulting from SGMR with post-optimization is
used as threshold for these approaches. In order to quantify the reduction
error, the normalized ISD (3.23) is used.

In Figure 3.7, the average reduction errors and the average computation
times for all L are shown. It can be seen that SGMR provides the lowest
reduction error. Closest to SGMR is Williams’ algorithm, but this algorithm

102 3 Gaussian Mixture Filtering

SGMR w/o
SGMR

Pruning
Salmond

West
Runnalls

Williams
PGMR

40 80 120 160 200

L →

0.1

1

2

6
10
14

D
→

40 80 120 160 200

L →

10−3

10−2

10−1

100

101

102

ti
m

e
/

s
→

Figure 3.7: Reduction error (left) and runtime (right) of different reduction algo-
rithms for increasing number of components. The results are averages over 50 Monte
Carlo runs. The average reduction error is multiplied by 100 for better readability.

clearly suffers from its high computational demand. Salmond’s and West’s
methods perform similarly. Both are very fast, but their approximation
quality is the worst except of pruning. In terms of the reduction error, the
results of Runnalls’ method are in between of SGMR with and without post-
optimization. But for an increasing number of components L in the original
mixture it becomes computationally more expensive than both SGMR
methods. Overall, SGMR provides the best trade-off between reduction
error and computation time.

The reduction performance of SGMR improves with a larger number of
components in the original mixture. As listed in Table 3.3, SGMR reduces
to about 50% if the number of components of the original mixture is L = 40,
while for L = 200 only 22% of the components remain. Since SGMR merely
adapts the weights ω̃, a larger number of components is advantageous for
SGMR for a better exploitation of redundancies. This leads to a stronger
reduction by a simultaneously lower reduction error. Furthermore, the
comparison between SGMR and SGMR without post-optimization shows
that the post-optimization always lowers both the reduction error and the
number of components.

3.5 Summary 103

Table 3.3: Number of components in the reduced Gaussian mixture for different
reduction algorithms. The results are averages over 50 MC runs.

L SGMR w/o PGMR SGMR all others

40 21.66 7.34 20.54
80 30.88 7.42 29.5

120 37.18 7.58 35.86
160 42.86 6.78 41.8
200 45.68 6.7 44.98

For 1D mixtures, PGMR clearly is the best reduction algorithm. The reduc-
tion error is close to SGMR without post-optimization, but the number of
components in the reduced mixture is significantly lower (see Table 3.3).
However, a straightforward extension to multivariate mixtures is not pos-
sible as only axis-aligned Gaussian components can be utilized for repre-
senting the reduced mixture.

3.5 Summary

Three algorithms supporting the generic Gaussian mixture filtering as sketched in
Algorithm 3 have been proposed in this chapter, namely semi-analytic Gaussian
mixture filter (SAGMF), adaptive Gaussian mixture filter (AGMF), and superfi-
cial Gaussian mixture reduction (SGMR). These algorithms aggregate following
contributions:

• Component-wise Rao-Blackwellization for nonlinear-nonlinear decompo-
sition: The decomposition of conditionally integrable functions already
proposed for Gaussian filters can be applied straightforwardly in a mixture
setup.

• General linearization error measure for LRKFs: The proposed linearization
error measure exploits the error covariance that is provided as a side prod-
uct of statistical linear regression. Thus, the computational overhead for
quantifying the linearization error is low and the measure can be utilized
by any LRKF.

104 3 Gaussian Mixture Filtering

• Splitting along the strongest nonlinearity: New components are introduced
at the strongest nonlinearity in order to reduce linearization errors most
effectively.

• Scalable and moment-preserving splitting: Splitting is performed carefully
as components are only added where they are really required. This fa-
cilitates scaling with high state dimensions. In addition the mean and
covariance of the Gaussian mixture are preserved.

• Mixture reduction via weight-optimization: To lower the computational
demand of global mixture reduction but at the same to benefit from a low
reduction errors, components are removed by considering their weights
only. For this purpose, a novel QP compromising reduction error and
roughness has been proposed.

As with the contributions made for Gaussian filtering, the above contributions
and algorithms can and should be used in combination. The nonlinear sub-state
that cannot be treated analytically by the SAGMF, can be processed by means of
the AGMF, where the linearization error can be kept at a minimum. The newly
introduced components due to splitting have to be reduced from time to time in
order to keep the computational demand bounded. For this purpose, the SGMR
can be employed.

4
Gaussian Process Filtering

So far it was assumed that the nonlinear relation between the current state xk
and the next state xk+1 or the measurement zk are known. In many applications,
however, this assumption is no longer valid. Instead of a functional represen-
tation of these relations, only labeled data sets are given. Hence, at first the
functional representation has to be learned from the data before the actual fil-
tering can be performed. In this chapter, Gaussian process (GP) regression for
learning the nonlinear model from data is introduced1. A GP defines a Gaussian
prior density over functions, which can be turned into a posterior density over
functions using Bayesian inference when data is present. Evaluating the resulting
posterior model at a finite number of inputs yields a Gaussian distribution of
functions values.

A GP model is non-parametric2, which has the benefit that one has not to worry
about selecting the wrong model to fit the data. Key element of a GP is the

1 In geostatistics GP regression is known as kriging [56].
2 The term non-parameteric is a bit misleading. Non-parametric methods like GPs still have

parameters, but in contrast to parametric approaches, the learned model has no characteristic
structure and parameters. The structure/appearance of the model is derived from training
data [32].

105

106 4 Gaussian Process Filtering

so-called covariance function or kernel function, which specifies the correla-
tion between the data points. In contrast to other kernel methods like support
vector machines (SVMs, [164]) or kernel least squares [61] a GP in addition pro-
vides confidence intervals thanks to the density representation of the regression
result. Section 4.2 gives a short introduction to the most commonly used covari-
ance functions and how the parameters of these functions can be learned from
data. In Section 4.3, the major drawback of the non-parametric nature of GPs
is addressed: the high computational demand given large-scale data sets. The
state-of-the-art of Bayesian filtering given GP models is surveyed in Section 4.4.
The contributions to GP filtering and efficient learning made in Papers H–K are
summarized in Section 4.5.

4.1 Gaussian Processes

For GP regression, it is assumed that a set D = {(
x1, y1

)
, . . . ,

(
xn , yn

)}
of training

data is drawn from the nonlinear mapping

y = g
(
x
)+w , with w ∼N

(
0,σ2) (4.1)

where xi ∈Rnx are the inputs and yi ∈R are the observations or outputs, for i =
1. . .n. For brevity reasons, XD ,

[
x1 . . . xn

]
are all inputs and yT

D ,
[

y1 . . . yn
]

are the corresponding observations in the following.

A GP is used to infer the latent function g (.) from the data D. It is completely
defined by a mean function µ

(
x
)
, E

{
g
(
x
)}

, which specifies the expected output
value, and a positive semi-definite covariance functionκ

(
x,x ′), cov

{
g
(
x
)
, g

(
x ′)},

which specifies the covariance between pairs of inputs. In the following, the zero
mean function µ

(
x
) = 0 is considered, which is a reasonable assumption and

not a limitation in general [53, 138]. For a detailed discussion on covariance
functions see Section 4.2.

A GP forms a Gaussian distribution over functions and thus, one can write
g ∼ GP

(
µ
(
x
)
,κ

(
x,x ′)). Accordingly, for a finite data set D the resulting density

function of the outputs is a multivariate Gaussian

f
(
g |XD

)=N
(
0,K

)
(4.2)

4.1 Gaussian Processes 107

with g T ,
[

g
(
x1

)
. . . g

(
xn

)]
being the vector of latent function values at the

training data inputs. This density is the so-called GP prior with kernel matrix K,
κ
(
XD ,XD

)
comprising the elements

(
K

)
i j = κ

(
xi , x j

)
,∀xi ,x j ∈D. In Figure 4.1a

on the next page an exemplary GP prior is depicted.

The posterior density of g (.) for an arbitrary input x results from marginalizing
the latent function over the training set according to

f
(
g
(
x
)
| x,D

)= ∫
f
(
g
(
x
)
, g

∣∣∣x,D
)

dg . (4.3)

The integrand in (4.3) results from solving the Bayesian inference

f
(
g
(
x
)
, g

∣∣∣x,D
)
= c · f

(
yD

∣∣∣g
)

· f
(
g
(
x
)
, g

∣∣∣x,XD
)

, (4.4)

where f
(
g
(
x
)
, g

∣∣∣x,XD
)

is the GP prior as in (4.2), but extended with the input x.

The likelihood f
(

yD

∣∣∣g
)

is given by

f
(

yD

∣∣∣g
)
=

n∏
i=1

N
(

yi ; g
(
xi

)
,σ2

)
(4.5)

according to the model (4.1). Hence, all involved density functions are Gaussian
and thus, the inference in (4.4) as well as the marginalization in (4.3) can be
solved analytically. The desired posterior density in (4.3) is Gaussian with mean
and variance

µg
(
x
)= E

{
g
(
x
)}= kT ·K−1

y · yD , (4.6)

σ2
g

(
x
)= var

{
g
(
x
)}= κ(

x, x
)−kT ·K−1

y ·k , (4.7)

respectively, with kT, κ
(
x,XD

)= [
κ
(
x1, x

)
. . .κ

(
xn , x

)]
and Ky ,K+σ2 ·In .

Example 17: GP Posterior

The latent function is chosen to be g (x) = sin(2πx) and the noise variance
is σ2 = 0.022. As covariance function the squared exponential function in
(4.8) on page 109 is considered with hyperparameters α = 1 and λ = 0.1.
The training data comprises the inputs XD = [0.3 0.4 0.7] and outputs
yT
D = [0.96 0.59 − 0.93]. The corresponding posterior GP is depicted in

108 4 Gaussian Process Filtering

x

g (x)

10

2

-2

(a) Three sample functions drawn
from a GP prior.

x

g (x)

10

2

-2

(b) The posterior GP after observing
three data points. The solid line corre-
sponds to the posterior mean (4.6).

Figure 4.1: Gaussian process prior and posterior. The gray areas indicate 2-sigma
confidence regions.

Figure 4.1b. To obtain this plot, the GP is evaluated for 100 values of x ∈ [0 1],
where the 100 values are chosen to be equidistant.

It can be seen that near a data point the posterior mean (4.6) is almost
identical with the latent function and the posterior variance (4.7) is reduced
significantly. Appart from data, the mean goes back to zero and the variance
grows towards the value of the prior variance in Figure 4.1a. As a GP defines
a distribution over functions, there is an infinite number of functions that
can explain the data. Three of them are depicted in Figure 4.1b.

Based on (4.3), it is also possible to determine the density f
(
y | x,D

)
of the out-

put y . This density is also Gaussian with mean as in (4.6) and with variance

σ2
y =σ2

g +σ2 .

If instead of the zero mean function an arbitrary mean function µ
(
x
)

is used, the
posterior mean (4.6) changes to

µg
(
x
)=µ(

x
)+kT ·K−1

y ·
(
yD−m

)
with mT,

[
µ
(
x1

)
. . . µ

(
xn

)]
, while the posterior variance remains the same. For

further reading on GP regression please be referred to [143].

4.2 Covariance Functions 109

4.2 Covariance Functions

So far it was assumed, that the covariance function is known. In real-world appli-
cations however, this assumption is typically not valid. Selecting an appropriate
covariance function and determining its parameters is a crucial task. For a GP,
the covariance function is of same importance as the kernel function in a SVM. It
determines the relation between data points, characterizes the smoothness of the
(latent) function, and specifies the impact of a data point on the overall function.

Not every function mapping two vectors to the real line can be considered as a
covariance function. It has to be positive semi-definite and symmetric, i.e., the
resulting kernel matrix has to be positive semi-definite3 and symmetric matrix.
This constraint is important as the kernel matrix acts as the covariance matrix of
the Gaussian prior density (4.2).

4.2.1 Examples
In the following, some examplary covariance functions used throughout this the-
sis are introduced. Other commonly employed functions are discussed in [143].

Stationary Covariance Functions

Basically, covariance functions can be separated in two classes: stationary and
non-stationary functions. A covariance function is called stationary4 if it can be
written as a function of the deviation ∆x , x − x ′, i.e., κ

(
x, x ′)= κ(

∆x
)
, for two

arbitrary inputs x and x ′.

One of the most widely used covariance functions for GPs, but also in many other
kernel-based machine learning algorithms like SVMs or radial-basis networks, is
the squared exponential (SE)

κ
(
∆x

)=α2 · exp
(− 1

2 ·∆xTΛ−1∆x
)

. (4.8)

Here,Λ= diag
([
λ1 . . .λnx

])
is a diagonal matrix of the characteristic length-scales

λi for each input dimension i and α2 is the variance of the latent function g (.).

3 All eigenvalues of the matrix are non-negative.
4 The term stationary stems from stochastic process theory, where a process is called (weakly)

stationary if it possesses a constant mean function and a translation-invariant covariance func-
tion [99].

110 4 Gaussian Process Filtering

Such parameters of the covariance function are called the hyperparameters of
the GP.

Non-Stationary Covariance Functions

Covariance functions that directly depend on the two inputs x and x ′ are called
non-stationary. A widely used non-stationary kernel is the polynomial covariance
function

κ
(
x, x ′)=α2 ·

(
xT · x ′+ c

)p
, (4.9)

with degree p ∈N, bias c , and variance α2. Another popular covariance function
is the neural network (NN) kernel

κ
(
x, x ′)=α2 · sin−1

(
xTΛ−2x′p
φ(x)φ(x′)

)
, (4.10)

with φ
(
x
)
, 1+xTΛ−2x, variance α2, and the diagonal matrixΛ of characteristic

length-scales.

Constructing Covariance Functions

Covariance functions can be constructed from existing ones like the above men-
tioned. Let κ1

(
x, x ′) and κ2

(
x, x ′) be two covariance functions, the

• Sum of both covariance functions κ1
(
x, x ′)+κ2

(
x, x ′),

• Product of both covariance functions κ1
(
x, x ′) ·κ2

(
x, x ′), and

• Scaling φ
(
x
)

·κ1
(
x, x ′) ·φ

(
x ′) with a deterministic function φ

(
x
)

lead again to valid covariance functions.

Example 18: SE plus Noise

In many applications, the SE kernel (4.8) is augmented by the noise variance
of the model (4.1) according to

κ
(
∆x

)=α2 · exp
(− 1

2 ·∆xTΛ−1∆x
)+σ2 ·δ

(
∆x

)
. (4.11)

This allows treating the noise variance σ2 as an additional hyperparameter
to be learned from data (see next section).

4.2 Covariance Functions 111

x

g (x)

-8 -4 84

2

1

-2

-1

(a) θT = [1 0.5 0.1]

x

g (x)

-8 -4 84

2

1

-2

-1

(b) θT = [0.3 1.1 0.01]

x

g (x)

-8 -4 84

2

1

-2

-1

(c) θT = [3 1.2 0.9]

Figure 4.2: Posterior GPs for different hyperparameters θT = [α λ σ]. The data
points are indicated by the black circles.

4.2.2 Hyperparameter Learning

Each covariance function possesses several parameters, e.g., the variance α2 and
the length-scale matrixΛ in case of the SE function (4.8). As mentioned above,
these so-called hyperparameters need to be adjusted such that the covariance
function fits to the given application5. In case of GPs, the hyperparameters can
be determined or learned from the given training data D. In the following, θ
comprises all hyperparameters of a given covariance function.

Example 19: Varying Hyperparameters

The latent function is chosen to be g (x) = sin(x). 20 data points are drawn
from this model. Based on this training data, three different GPs with
covariance function (4.11) are learned. The resulting GPs are depicted in
Figure 4.2. The hyperparameters chosen for the GP in Figure 4.2a are close
to optimal. Accordingly, the GP approximates the latent function very well
and the posterior variances are adequate. In Figure 4.2b and Figure 4.2c,
however, the hyperparameters are not chosen appropriately. While the
GP in Figure 4.2b is clearly overfitting, the GP in Figure 4.2c provides an
oversmoothed result.

5 Hyperparameter learning is part of the model selection problem (recall Sections 3.3.2 and 3.4.3).

112 4 Gaussian Process Filtering

To determine appropriate hyperparameters, the standard approach proposed in
[117] is evidence maximization, which essentially tries to maximize the (positive)
log-likelihood (see Appendix B.4)

θ∗ = arg max
θ

{
log f

(
yD

∣∣∣g ,θ
)}

= arg max
θ

{
− 1

2 · yT
DK−1

y yD︸ ︷︷ ︸
data-fit

− 1
2 log|2πKy |︸ ︷︷ ︸

complexity

}
, (4.12)

where the likelihood f
(

yD

∣∣∣g ,θ
)

corresponds to (4.5) and Ky depends on θ. The

maximization in (4.12) yields a trade-off between fitting the data as good as
possible and obtaining a model of low complexity. Hence, this maximization is
a realization of the famous Occam’s razor6, which aims for the simplest model
possible that is consistent with the data.

Evidence maximization is a non-convex optimization problem, for which no
closed-form solution exists and which highly depends on the given training
data. However, practice showed that even though the global optimum might
not be found, the resulting GP based on suboptimal hyperparameters still ex-
plains the data well enough [51]. An alternative to evidence maximization is
cross-validation, which is typically employed in SVM training. Cross-validation
however is computationally demanding, requires MC simulation, and exploits
only a fraction of the entire training data.

4.3 Large Data Sets

The computational complexity for calculating the posterior mean (4.6) and vari-
ance (4.7) is mainly dominated by the inversion of the matrix Ky and evaluating
matrix-vector products. Inverting Ky or the more numerically robust alternative
of computing its Cholesky decomposition is in O

(
n3). Thus, for a large num-

ber of data points, this calculation becomes very demanding. Fortunately, the
Cholesky decomposition of Ky can be determined off-line if the entire data set is
given a priori. This, however is not the case for streaming data, where the data

6 “Pluralitas non est ponenda sine necessitate” (plurality should not be posited without necessity)
stated by William of Ockham (also spelt Occam), an English Franciscan friar and philosopher,
c. 1287–1347.

4.3 Large Data Sets 113

becomes available on-line during run-time. In this case, the matrix and thus
its Cholesky decomposition has to be updated. In order to avoid a complete
recalculation of the Cholesky decomposition, so-called rank-1 Cholesky updates
can be performed for introducing new data points [141].

Given the inverse or Cholesky decomposition of Ky , the complexity of the poste-
rior mean is in O

(
n

)
and of the posterior variance is in O

(
n2). For small data sets,

these computations are affordable, but for large problems—tens of thousands
data points—both storing Ky or its decomposition as well as solving the matrix-
vector products in (4.6) and (4.7) is prohibitive. To overcome this problem, many
approximate GP regression methods have been proposed, where some of the
most popular are briefly reviewed in the following.

4.3.1 Active Set Approaches
In [140] a unifying framework for so-called active set approaches has been de-
rived. Here, instead of processing the entire training data set, only a subset of the
data points—the active set with m ¿ n data points—is used. The matrix Ky is
replaced by a matrix that is based on the active set, which reduces the compu-
tational complexity to O

(
m2 ·n

)
for matrix computations, O

(
m

)
for calculating

the posterior mean, and O
(
m2) for the posterior variance.

Several active set approaches have been proposed independently, but by means
of the unifying framework in [140] it can be shown that all these approaches
merely differ on modifications of the original GP prior (4.2). The subset of re-
gressors approach [175, 204] is probably the simplest realization of an active set
method, where the active set is either chosen randomly from the training set or by
means of a greedy selection algorithm. The sparse on-line GP (SOGP) regression
proposed in [47] in addition allows adding and removing data points to the active
set at runtime, which is desirable when the training data set is not given entirely
a priori. The sparse pseudo-input GP (SPGP, [176]) is generally regarded as one
of the most effective active set approaches. In contrast to other methods, the
active set has not to be a subset of the training data: elements of the active set
can be located anywhere in the input domain. For this purpose, the active set is
optimized by means of evidence maximization (4.12).

114 4 Gaussian Process Filtering

4.3.2 Local Approaches
To speed up GP regression, local or partitioning approaches split the training
data into p data sets, where for each data set a separate (local) GP is learned.
For calculating the posterior mean and variance, the individual estimates of
the separate GPs are combined. In doing so, the complexity is O

(
p ·m3) for

matrix calculation, O
(
p ·m

)
for mean calculation, and O

(
p ·m2) for calculating

the variance, where m = p/n is the number of data points per set. In contrast to
active set methods, local approaches make use of the entire training data.

Two instances of a local approach are the Bayesian committee machine proposed
in [198] as well as the product of GP experts proposed in [?]. In both methods
partitioning is performed off-line. In contrast, the local GP [131] is an on-line
algorithm, where incoming data is assigned to the nearest data set. To update
the local kernel matrix, the above mentioned rank-1 updating is utilized.

4.3.3 Algebraic Tricks
Besides the above approximate regression approaches, there exist several approx-
imations that tackle the algebraic operations necessary to compute the posterior
mean and variances. This “algebraic tricks” can be used in combination with
the above methods in order to further speed up GP regression. Skilling’s method
[174] for instance is an iterative procedure to solve matrix-vector operations of
the kind K−1 · x, which appear in both (4.6) and (4.7). If this method is terminated
after k iterations, the complexity is O

(
k ·n2) instead of O

(
n3).

If the covariance function possesses as special structure, sparse versions of
the Matrix Ky can be obtained allowing for efficient matrix-operations. This
holds for covariance functions with compact support like the Matérn kernel.
In case of a compact support, the complexity of the aforementioned rank-1
update reduces from O

(
n2) down to O

(
n

)
[141]. In case of stationary covariance

functions, the function values merely depend on the distance between pairs of
inputs. By defining a distance threshold, only those pairs of training data points
are considered that are within the threshold [202]. In addition, the distance
dependency allows storing the training set in a kd-tree, which provides a rapid
access to the data [72, 202].

4.4 Nonlinear Filtering 115

4.3.4 Open Issues
Most of the proposed approximations for large data sets are not suitable for
streaming data, which requires performing GP regression on-line at runtime.
Among the on-line approaches, those utilizing rank-1 updating or partitioning
merely alleviate the complexity problem. They still suffer from an increasing
amount of data points, i.e., the computational and memory demand grows
over time.

4.4 Nonlinear Filtering

Given a GP model of the latent function g (.), it is so far possible to calculate
the mean and variance for a deterministic input x according to (4.6) and (4.7),
respectively. In order to perform Gaussian filtering, however, the input—more
precisely the state—has to be a random vector. Accordingly, one has to solve the
moment integral (2.8) for g ∼GP

(
µ,κ

)
. As g is a random vector, it is in addition

necessary to marginalize out the uncertainty over g (.) in order to obtain the
desired moments. Thus, for Gaussian filtering with GP models, the moment
integrals (2.8) become

µy =
Ï

g
(
x
)

·N
(
x;µ

x
,Cx

)
·N

(
g ;µg

(
x
)
,σ2

g

(
x
))

dg dx ,

σ2
y =

Ï (
g
(
x
)−µy

)(
g
(
x
)−µy

)T ·

N
(
x;µ

x
,Cx

)
·N

(
g ;µg

(
x
)
,σ2

g

(
x
))

dg dx +σ2 ,

σx y =
Ï (

x −µ
x

)(
g
(
x
)−µy

)T·N
(
x;µ

x
,Cx

)
·N

(
g ;µg

(
x
)
,σ2

g

(
x
))

dg dx ,

(4.13)

containing the additional integration over the latent function/GP g (.). Here, the
Gaussian density N

(
g ;µg

(
x
)
,σ2

g

(
x
))

is extracted from the GP, where the mean
and variance are according to (4.6) and (4.7), respectively.

The number of approaches for Gaussian filtering with GP models proposed so
far is limited. For arbitrary covariance functions, [68] proposed a first-order and
second-order Taylor-series expansion of the posterior mean (4.6) and variance
(4.7), respectively. Similarly, a first-order Taylor-series expansion of (4.6) was
used in [103], which yields the so-called GP extended Kalman filter (GP-EKF).
In [104], the unscented transform (see Section 2.2.5) is employed instead. The

116 4 Gaussian Process Filtering

sample points are propagated through (4.6) and the desired moments (4.13) are
then calculated by means of sample mean and variance, respectively. Accordingly,
the Gaussian filter is named GP unscented Kalman filter (GP-UKF). In [67] it is
shown, that for the SE covariance function, the mean µy and the variance σ2

y
can be determined analytically. But in contrast to [103, 104], no full Gaussian
filter that also involves a measurement update was provided. Furthermore, only
a scalar output y is supported.

4.5 Contributions

In Section 4.5.1 and Section 4.5.2, a novel GP filtering and smoothing algorithm is
proposed that is based on analytic moment matching, i.e., the moment integrals
are solved exactly given a GP representation of the latent function g (.). These
results are based on Paper H and Paper I. An approximate on-line GP regression
algorithm with on-line hyperparameter learning that was proposed in Paper J
and Paper K is summarized in Section 4.5.3 and Section 4.5.4, respectively.

4.5.1 Gaussian Process Filtering
So far, only one-dimensional outputs y have been considered. For real-world
applications however, the output is typically of higher dimension. Thus, in the fol-
lowing the focus is on a nonlinear transformation as in (2.6) with multivariate out-
put y ∈Rny and multivariate noise w ∼N

(
0,Cw

)
with Cw = diag

([
σ2

1 . . .σ2
ny

])
.

It is assumed that a separate GP GP
(
µa ,κa

)
is trained for each dimension a =

1. . .ny . For training of the ath GP, the training data set Da = {
XD , y

a

}
consisting

of n data points
(
xi , ya,i

)
, i = 1. . .n is used.

Mean Vector µ
y

To obtain a Gaussian filter in this setup, the moment integrals (4.13) have to be
solved. Due to the representation of the each dimension by means of a separate
GP, the calculation of the mean vector µ

y
is also performed dimension-wise. The

ath element µy,a of µ
y

is given by

µy,a =
∫
µg ,a

(
x
)

·N
(
x;µ

x
,Cx

)
dx =

n∑
i=1

βa,i ·
∫
κa

(
x, xi

)
·N

(
x;µ

x
,Cx

)
dx (4.14)

4.5 Contributions 117

with µg ,a(.) being the ath element of the posterior mean (4.6) and βa,i being

the i th element of the vector β
a
,

(
Ka +σ2

a ·In
)−1

· y
a

with kernel matrix Ka

consisting of the elements
(
Ka

)
e, f = κa

(
xe , x f

)
for all xe , x f ∈ XD. The second

equality in (4.14) follows from writing the posterior mean function µg ,a(.) as a
finite sum over the covariance functions [143].

In general the integral in (4.14) cannot be solved in closed form due to the
nonlinear covariance function, but if the covariance function belongs to one of
the function types listed in Section 2.5.2, an analytical solution is possible. This
holds for instance for the SE function (4.8) or the polynomial function (4.9). For
the SE covariance function with signal variance α2

a and matrix of characteristic
length-scalesΛa , (4.14) can be simplified to

µy,a =βT
a

· q
a

(4.15)

with q
a

comprising the elements

qa,i ,α
2
a ·

∣∣CxΛ
−1
a + I

∣∣− 1
2 · exp

(
− 1

2

(
xi −µx

)T(
Cx +Λa

)−1
(
xi −µx

))
, (4.16)

for i = 1. . .n. A similar solution can be obtained for the polynomial covariance
function (4.9).

Covariance Matrix Cy

For calculating the covariance Cy , again each element of the matrix is determined
individually. At first, the off-diagonal elements a,b = 1. . .ny with a 6= b of Cy , i.e.,
the cross-covariances, are considered. These elements are given by

σ2
y,ab =

∫
µg ,a

(
x
)

·µg ,b
(
x
)

·N
(
x;µ

x
,Cx

)
dx −µy,a ·µy,b

=
n∑

i=1

n∑
j=1

βa,i ·βb, j ·
∫
κa

(
x, xi

)
·κb

(
x, x j

)
·N

(
x;µ

x
,Cx

)
dx −µy,a ·µy,b ,

with µy,a and µy,b according to (4.15). For SE covariance functions, the cross-
covariance can be further simplified to

σ2
y,ab =βT

a
·Q ·β

b
−µy,a ·µy,b (4.17)

118 4 Gaussian Process Filtering

with elements of Q ∈Rn×n according to

Qi j =
exp

(
n2

i j

)
p|R| , (4.18)

n2
i j = log

(
α2

a

)+ log
(
α2

b

)− 1
2

(
ζT

i
Λ−1

a ζ
i
+ζT

j
Λ−1

b ζ
j
− zT

i j R−1Cx zi j

)
,

where R,Cx
(
Λ−1

a +Λ−1
b

)+ I, ζ
i
, xi −µx

, and zi j ,Λ
−1
a ζ

i
+Λ−1

b ζ
j
.

The diagonal elements (a = b) of Cy comprise in addition to (4.17) a term reflect-
ing the noise variance σ2

a and the uncertainty of the GP

α2
a −Tr

((
Ka +σ2

a I
)−1Q

)
+σ2

a . (4.19)

Hence, the desired elements of covariance matrix Cy are given by

σ2
y,ab =

{
Eq. (4.17)+Eq. (4.19) if a = b

Eq. (4.17) otherwise
. (4.20)

Cross-Covariance Matrix Cx y

It remains to compute the cross-covariance Cx y to fully determine a Gaussian
filter for GP models. Integrating out g , the cross-covariance can be simplified to

Cx y =
∫

x ·
(
µ

g

(
x
))T

·N
(
x;µ

x
,Cx

)
dx −µ

x
·µT

y
.

By writing µ
g

(
x
)

as a finite sum over covariance functions, the ath column of

Cx y , a = 1. . .ny can be written as

n∑
i=1

βa,i ·
∫

x ·κa
(
x, xi

)
·N

(
x;µ

x
,Cx

)
dx −µ

x
·µy,a . (4.21)

With a SE covariance function, this term can be solved analytically to

n∑
i=1

βa,i · qa,i ·Cx ·
(
Cx +Λa

)−1 ·
(
xi −µx

)
, (4.22)

4.5 Contributions 119

where the analytical solution (4.15) for µ
y,a

has been substituted and qa,i coin-

cides with (4.16).

The Gaussian filter for GP models based on the expressions (4.15), (4.20), and
(4.22) for calculating the moments in (4.13) is named GP assumed density filter
(GP-ADF) in the following.

Example 20: One Step Filtering

The nonlinear dynamic system

xk = xk−1
2 + 25 xk−1

1+x2
k−1

+w k , with w k ∼N
(
0,σ2

w = 0.22) , (4.23)

zk = 5· sin(xk)+v k , with v k ∼N
(
0,σ2

v = 0.22) , (4.24)

is considered, which is a modified version of the model used in [59, 101].
The standard deviation of the initial state is set to be σx

0 = 0.5, i.e., the
initial uncertainty is fairly high. The system and measurement noises are
relatively small considering the amplitudes of the system function and the
measurement function. For the numerical analysis, the mean values µx

0,i ,
i = 1. . .100, are placed equidistantly on the interval [−3,3]. Then, a single

(initial) state x0,i is sampled from N
(
µx

0,i ,
(
σx

0

)2
)
, i = 1. . .100.

For the dynamic system in (4.23)–(4.24), the performance of a single pre-
diction and measurement update of the EKF, the UKF, the CKF, the GP-UKF,
and the GP-ADF is compared against the ground truth, which is approxi-
mated by means of a near-optimal sampling-based Gaussian filter (denoted
as Gibbs-filter, [54]) as well as a PF with 200 particles. Compared to the
evaluation of longer trajectories, evaluating a single filtering step makes it
easier to analyze the estimates of individual filtering algorithms.

Table 4.1 summarizes the performances (rmse, mae, nll) of all filters for
estimating the latent state x . The results in the table are based on averages
over 1,000 test runs and 100 randomly sampled initial states per test run.
The table also reports the 95% standard error of the expected performances.

Table 4.1 indicates that the GP-ADF is the most robust filter and statistically
significantly outperforms all filters but the Gibbs-filter and the PF. Amongst
all other filters the GP-ADF is the closest Gaussian filter to the computation-
ally expensive Gibbs-filter [54]. Note that the PF is not a Gaussian filter and
is able to express multi-modality in densities. Therefore, its performance

120 4 Gaussian Process Filtering

Tab
le

4.1:
A

verage
p

erfo
rm

an
ces

(rm
se,m

ae,n
ll)

w
ith

stan
d

ard
erro

rs
(95%

co
n

fi
d

en
ce

in
terval)

an
d

p
-valu

es
testin

g
th

e
h

yp
o

th
esis

th
at

th
e

o
th

er
fi

lters
are

b
etter

th
an

th
e

G
P-A

D
F

u
sin

g
a

o
n

e-sid
ed

t-test.T
h

e
green

co
lo

r
h

igh
ligh

ts
th

e
n

ear-o
p

tim
alresu

lts
o

fth
e

G
ib

b
s-fi

lter
an

d
th

e
P

F.

rm
se

m
ae

n
ll

average
p

-valu
e

average
p

-valu
e

average
p

-valu
e

E
K

F
3.62±

0.212
4.1×

10 −
2

2.36±
0.176

0.38
3.05×

10
3±

3.02×
10

2
<

10 −
4

U
K

F
10.5±

1.08
<

10 −
4

8.58±
0.915

<
10 −

4
25.6±

3.39
<

10 −
4

C
K

F
9.24±

1.13
2.8×

10 −
4

7.31±
0.941

4.2×
10 −

4
2.22×

10
2±

17.5
<

10 −
4

G
P-U

K
F

5.36±
0.461

7.9×
10 −

4
3.84±

0.352
3.3×

10 −
3

6.02±
0.497

<
10 −

4

G
P-A

D
F

2.85±
0.174

—
2.17±

0.151
—

1.97±
6.55×

10 −
2

—
G

ib
b

s
2.82±

0.171
0.54

2.12±
0.148

0.56
1.96±

6.62×
10 −

2
0.55

P
F

1.57±
7.66×

10 −
2

1.0
0.36±

2.28×
10 −

2
1.0

1.03±
7.30×

10 −
2

1.0

4.5 Contributions 121

is typically better than the one of Gaussian filters. The difference between
the PF and a near-optimal Gaussian filter, the Gibbs-filter, is expressed in
Table 4.1. The performance difference essentially depicts how much is lost
by using a Gaussian filter instead of a particle filter.

The poor performance of the EKF is due to linearization errors. The filters
based on small sample approximations of densities (UKF, GP-UKF, CKF)
suffer from the degeneracy of these approximations, which is illustrated in
Figure 4.3 on the next page. Note that the CKF uses a smaller set of sample
points than the UKF (recall Section 2.2.5), which makes the CKF statistically
even less robust than the UKF.

4.5.2 Gaussian Process Smoothing
For an RTSS given a GP representation of the system and measurement function,
most of the ingredients are already derived by means of the above GP-ADF. The
only missing component is the cross-covariance matrix Ck|k+1 in (2.33). For its
calculation, one can follow the above derivation of the cross-covariance matrix
Cx y . According to (4.21), the ath column of Ck|k+1 can be written as

n∑
i=1

βa,i ·
∫

x ·κa
(
x, xi

)
·N

(
x;µe

k
,Ce

k

)
dx −µe

k
·µp

k,a , (4.25)

with N
(
x;µe

k
,Ce

k

)
being the posterior state density and µp

k,a
being the ath ele-

ment of the predicted mean µp
k

. For an SE covariance function, a closed-form

expression of (4.25) can be obtain given by

n∑
i=1

βa,i · qa,i ·Ce
k ·

(
Ce

k +Λa
)−1 ·

(
xi −µe

k

)
, (4.26)

with qa,i as in (4.16), but with Cx and µ
x

being substituted with Ce
k and µe

k
,

respectively.

Altogether, the GP Rauch-Tung-Striebel smoother (GP-RTSS) utilizes the GP-
ADF of the previous section for the forward sweep (prediction and measure-
ment update). For the actual smoothing, (4.26) is used for calculating the cross-

122 4 Gaussian Process Filtering

-10

0

10

0.1 0.05 0

← p(x1)

-10

0

10

x 1
→

-3 -2 -1 0 1

x0 →

-3 -2 -1 0 1
0

0.5

p
(x 0

) →

(a) UKF time update p
(
x1

∣∣;)
, which misses out substantial probability

mass of the true predictive distribution.

-5

0

5

10

1.5 1 0.5 0

← p(z1)

-5

0

5

10

z 1
→

-25 -20 -15 -10 -5 0

x1 →

-25 -20 -15 -10 -5 0
0

0.1

p
(x 1

) →

(b) UKF determines p
(
z1

∣∣;)
, which is too sensitive and cannot explain

the actual measurement z1 (black dot, left sub-figure).

Figure 4.3: Degeneracy of the unscented transformation (UT) underlying the UKF.
Input distributions to the UT are the Gaussians in the sub-figures at the bottom in
each panel. The functions the UT is applied to are shown in the top right sub-figures,
i.e, the transition mapping (4.23) in (a) and the measurement mapping (4.24) in (b).
Sigma points are marked by red dots. The predictive distributions are shown in the
left sub-figures of each panel. The true predictive distributions are the shaded areas;
the UT predictive distributions are the solid Gaussians. The predictive distribution
of the time update in (a) equals the input distribution at the bottom of (b).

4.5 Contributions 123

covariance Ck|k+1, which is required for determining the smoothed Gaussian
state according to (2.34).

The computational complexity of prediction, measurement update, and smooth-
ing (after training the GPs) is in O

(
K ·n2 ·

(
n3

x +n3
z

))
due to matrix inversions,

matrix multiplications, and the computation of the Q-matrix (4.18). For compar-
ison, Kalman filter and RTSS scale with O

(
K ·

(
n3

x +n3
z

))
.

Example 21: Pendulum Tracking

The pendulum tracking example taken from [52] is considered for compar-
ing the performances of four filters and smoothers: the EKF/EKS, the UK-
F/URTSS, the GP-UKF/GP-URTSS, the CKF/CKS, the Gibbs-filter/smoother,
and the GP-ADF/GP-RTSS. The pendulum has mass m = 1kg and length

l = 1m. The state x = [
ϕ̇ ϕ

]T
of the pendulum is given by the angle ϕ

(measured anti-clockwise from hanging down) and the angular velocity ϕ̇.
The pendulum can exert a constrained torque u ∈ [−5,5]Nm. A frictionless
system is assumed such that the system function a(.) is

a
(
xk ,uk

)= k+∆k∫
k

[
u(τ)−0.5ml g sin

(
ϕ(τ)

)
0.25ml 2+I
ϕ̇(τ)

]
dτ , (4.27)

where I is the moment of inertia and g the acceleration of gravity. Then,
the successor state

xk+1 = xk+∆k
= a

(
xk ,uk

)+w k , with w k ∼N
(
0,diag

(
0.52,0.12))

is computed using an ODE solver for (4.27) with a zero-order hold control
signal u(τ). The torque is sampled randomly according to u ∼U [−5,5]Nm
and implemented using a zero-order-hold controller. Every time increment
∆k = 0.2s, the state is observed according to

zk = arctan
(−1−l · sin(ϕk)

0.5−l · cos(ϕk)

)
+v k , with v k ∼N

(
0,0.052) . (4.28)

Trajectories of length K = 6s = 30 time steps are started from a state sam-

pled from N
(
µx

0
,Cx

0

)
with mean vector µx

0
= [

0 0
]T

and covariance matrix

Cx
0 = diag

(
0.012, (π/16)2). For each trajectory, GP models GPa (system func-

tion) and GPh (measurement function) were learned based on randomly
generated data using either 250 or 20 data points.

124 4 Gaussian Process Filtering

Table 4.2: Averaged filtering and smoothing performances with 95% confidence
intervals.

Filters nll Smoothers nll

EKF 1.6×102 ±29.1 EKS [120] 3.3×102 ±60.5
UKF 6.0±3.02 URTSS [158] 17.2±10.0
CKF 28.5±9.83 CKS [54] 72.0±25.1

GP-UKF250 4.4±1.32 GP-URTSS250 [53] 10.3±3.85
GP-ADF250 1.44±0.117 GP-RTSS250 1.04±0.204
GP-ADF20 6.63±0.149 GP-RTSS20 6.57±0.148

Table 4.2 reports the values of the nllmeasure for the EKF/EKS, the UKF/
URTSS, the GP-UKF/GP-URTSS, the GP-ADF/GP-RTSS, and the CKF/CKS,
averaged over 1,000 MC runs. The GP-RTSS is the only method that con-
sistently reduces the nll value compared to the corresponding filtering
algorithm. Increased nll values (red color in Table 4.2) occur when the state
density cannot explain the state/measurement. A detailed example of this
can be found in Paper I. Even with only 20 training points, the GP-ADF/GP-
RTSS outperforms the EKF/EKS, UKF/URTSS, CKF/CKS.

4.5.3 Recursive Gaussian Process Regression
As mentioned in Section 4.3, the complexity of GP regression scales cubically
with the number of training data points. This complexity can be reduced by
means of sparse approximations. Most of these approximations however only
work in an off-line mode, i.e., all training data has to be known a priori and
is processed in a batch. This is not suitable for streaming data. The recursive
Gaussian Process (RGP) regression approach introduced next allows for both
a sparse representation and on-line processing. For this purpose, the latent
function is represented by means of a finite set of so-called basis vectors.

Let X,
[
x1, x2, . . . , xm

]
be the matrix of locations of the basis vectors, where the

number of basis vectors m is significantly lower than the size n of D, i.e., m ¿ n.
Furthermore, g , g (X) are the (unkown) values of the latent function at the loca-
tions X. The basis vectors can be considered an active set allowing a sparse GP
representation. In contrast to most other active set approaches, the basis vectors

are updated on-line with new observations y
k

at inputs Xk ,
[

xk,1, xk,2, . . . , xk,nk

]

4.5 Contributions 125

x

g

? ?

?

(a)
x

g

? ?

?

(b)
x

g

(c)

Figure 4.4: (a) The black line indicates the latent function g , while the gray solid and
dotted lines represent the mean and variance of recursive GP. The circles indicate
the location of the basis vectors X (x-axis) and their mean values µg (y-axis). The
stars indicate new observations. (b) Inferring the mean and covariance of g at
the locations of the new observations from the current recursive GP estimate. (c)
Updating the GP with the new observations gives an improved estimate of the latent
function.

and time step k = 0,1, . . ., which facilitates to process streaming data. Hence, y
k

and Xk can be considered a subset of yD and XD, respectively, but where yD
and XD are not known completely a priori. Also off-line processing is possible by
presenting yD and XD in batches to the algorithm.

For all steps k = 0,1, . . . it is assumed that the basis vectors are fixed in num-
ber and location. Since g

(
x
)

is assumed to be a GP, the initial distribution

f0
(
g
) = N

(
g ;µg

0
,Cg

0

)
of g for k = 0 is Gaussian with mean vector µg

0
, µ

(
X
)

and covariance matrix Cg
0 , κ

(
X,X

)
according to (4.2).

The goal is now to calculate the posterior distribution f
(
g
∣∣∣y

1:k

)
recursively by

updating the prior distribution of g from the previous step k −1

fk−1, fk−1

(
g
∣∣∣y

1:k−1

)
=N

(
g ;µg

k−1
,Cg

k−1

)
(4.29)

with the new observations y
k

. For this purpose, the desired posterior distribution

is expanded according to

fk =
∫

ck · f
(

y
k

∣∣∣g , g
k

)
· f

(
g , g

k

∣∣∣ y
1:k−1

)
︸ ︷︷ ︸

= f
(
g ,g

k
| y

1:k

)
dg

k
(4.30)

126 4 Gaussian Process Filtering

by applying Bayes’ law and by integrating out g
k
, g

(
Xk

)
from the joint posterior

f
(
g , g

k

∣∣∣y
1:k

)
. Here, ck is a normalization constant. Based on (4.30), calculating

the posterior distribution can be performed in two steps: Inference, i.e., calcu-

lating the joint prior f
(
g , g

k

∣∣∣y
1:k−1

)
given the prior fk−1 in (4.29). Update, i.e.,

updating the joint prior with the observations y
k

and integrating out g
k

. The

interaction between both steps is depicted in Figure 4.4.

Inference

In order to determine the joint prior f
(
g , g

k

∣∣∣y
1:k−1

)
, it is important to emphasize

that the joint distribution f
(
g , g

k

)
is Gaussian with mean and covariance

µ=
[
µ
(
X
)

µ
(
Xk

)] and C =
[
κ
(
X,X

)
κ
(
X,Xk

)
κ
(
Xk ,X

)
κ
(
Xk ,Xk

)] , (4.31)

respectively. This follows from the fact that g (.) is a GP and any finite repre-
sentation of this GP yields a Gaussian distribution. Thus, the joint prior can be
written as

f
(
g , g

k

∣∣∣y
1:k−1

)
≈ f

(
g

k

∣∣∣g)
· fk−1 =N

(
g

k
;µp

k
,B

)
·N

(
g ;µg

k−1
,Cg

k−1

)
, (4.32)

with

µp
k
=µ(

Xk
)+ Jk ·

(
µg

k−1
−µ(

X
))

, (4.33)

B = κ(
Xk ,Xk

)− Jk ·κ
(
X,Xk

)
, (4.34)

Jk = κ(
Xk ,X

)
·κ

(
X,X

)−1 . (4.35)

The first equality in (4.32) follows from assuming that g
k

is conditionally in-

dependent of the past observations y
1:k−1

given g .7 Hence, the conditional

distribution f
(
g

k

∣∣∣g)
is Gaussian and results from the joint distribution f

(
g , g

k

)
in (4.31) by conditioning on g (see (2.9)), which results in the second equality.

7 This is true if all inputs X1:k−1 of the past observations are a subset of the basis vectors X, otherwise
it is an approximation.

4.5 Contributions 127

After some algebraic transformations, where some basic properties of Gaus-
sian distributions and the Woodbury formula are utilized, the product in (4.32)

yields the joint Gaussian f
(
g ,g

k

∣∣∣y
1:k−1

)
=N

(
q ;Q

)
of g and g

k
with mean and

covariance

q ,

[
µg

k−1
µp

k

]
and Q,

[
Cg

k−1 Cg
k−1JT

k
Jk Cg

k−1 Cp
k

]
, (4.36)

respectively, and with covariance Cp
k ,B+ Jk Cg

k−1JT
k . For a detailed derivation

see Paper J. A close inspection of the second row in (4.36) shows that it has the
same structure as an RTSS (see Section 2.3) and it coincides with the augmented
Kalman Smoother proposed in [148], but there no update step for basis vectors
as introduced next is derived.

Update

Given the result of the previous section that the joint prior in (4.32) is a Gaussian
N

(
q ,Q

)
, the next step is to perform the update and marginalization in (4.30).

For this purpose, (4.30) is rearranged to

= f
(

g ,g
k
| y

1:k−1

)︷ ︸︸ ︷
fk =

∫
ck · f

(
y

k

∣∣∣g
k

)
· f

(
g

k

∣∣∣y
1:k−1

)
︸ ︷︷ ︸

= f
(
g

k
| y

1:k

)
(Kalman filter)

· f
(
g
∣∣∣g

k
,y

1:k−1

)
dg

k
(4.37)

under consideration that g is not observed and thus, f
(

y
k

∣∣∣g
k

)
is independent

of g . Since f
(

y
k

∣∣∣g
k

)
= N

(
y

k
; g

k
,σ2I

)
according to (4.5) and f

(
g

k

∣∣∣y
1:k−1

)
=

N
(
g

k
;µp

k
,Cp

k

)
are both Gaussian, g

k
can be updated easily via a Kalman filter

update step. Updating g and integrating out g
k

is then performed simultane-

ously, which yields the desired posterior fk =N
(
g ;µg

k
,Cg

k

)
with

µg
k
=µg

k−1
+Gk ·

(
y

k
−µp

k

)
, (4.38)

Cg
k = Cg

k−1 −Gk Jk Cg
k−1 , (4.39)

Gk = Cg
k−1JT

k ·
(
Cp

k +σ2I
)−1

. (4.40)

128 4 Gaussian Process Filtering

Algorithm 4 Recursive Gaussian Process (RGP)

. Inference
1: Calculate gain matrix Jk according to (4.35)
2: Calculate mean µp

k
via (4.33) and covariance matrix Cp

k via (4.36)

.Update
3: Calculate gain matrix Gk according to (4.40)
4: Calculate mean µg

k
via (4.38) and covariance matrix Cg

k via (4.39)

Putting all together, at steps k = 1,2, . . . the proposed RGP recursively processes
observations y

k
at the inputs Xk as listed in Algorithm 4. This recursion com-

mences from the initial mean µg
0
=µ(

X
)

and covariance Cg
0 = κ(

X,X
)

.

Discussion

So far, it was assumed that the set of basis vectors is fixed. The inference step,
however, can also be utilized for introducing new basis vectors X′. This might
be of interest in locations where the current estimate of the latent function is
inaccurate. By replacing Xk with

[
X,X′], the inference step provides the initial

mean and covariance as well as the cross-covariance between the new basis
vectors and the old ones.

The computations of the inference step scale with O
(
m2 ·nk

)
due to calculating

Jk in (4.35), where nk is the number of observations at step k. Here, the inver-
sion of the kernel matrix κ

(
X,X

)
is computationally unproblematic, as it has to

be calculated only once at step k = 0 . Once the gain matrix Jk is calculated,
predictions for a single test input are in O(m) (mean) and O

(
m2) (covariance).

Assuming that all observations are processed at once, predictions of the RGP are
as complex as predictions of active set GP approaches. In contrast to most sparse
GP approaches, the proposed method can process new observations on-line.

The update step scales with O
(
nk ·m2), where the complexity results from matrix

multiplications for which more efficient algorithms exist, e.g., Strassen’s algo-
rithm [186]. The inversion in (4.40) again is not critical as the affected matrix is
of size nk ×nk , where typically nk ¿ m .

4.5 Contributions 129

4.5.4 On-line Hyperparameter Learning
In the following, the previous assumption of a-priori known hyperparameters is
relaxed. Instead, the goal is now to learn the hyperparameters θ ∈Rnθ simulta-
neously with estimating the values of the latent function g (.) at the basis vectors.
This is achieved by formulating the learning part as a recursive parameter es-
timation problem, which can be performed together with the function value
estimation. Similar to Section 4.5.3, this boils down to calculating a joint pos-

terior fk , f
(
ξ

k

∣∣∣ y
1:k

)
=N

(
ξ

k
;µξ

k
,Cξ

k

)
, where ξT

k
,

[
g T θT

k

]
is the joint hidden

state with mean and covariance

µξ
k
,

[
µg

k
µη

k

]
, Cξ

k ,
[

Cg
k Cgη

k
Cηg

k Cη

k

]
.

Starting point for this calculation is a joint prior f
(
ξ

k−1

∣∣∣ y
1:k−1

)
at step k − 1,

which is updated with the new observations y
k

. This requires the following

two operations: Inference, i.e., calculating a joint density f
(
ξ

k−1
, g

k

∣∣∣ y
1:k−1

)
by

exploiting the results of Section 4.5.3, and Update, i.e., incorporation of the new
observations y

k
and marginalization to obtain fk .

Inference

To incorporate the new inputs Xk , it is necessary to infer the latent function g (.)
at Xk . For this purpose, the intermediate result (4.36) is exploited. The part of
the mean q and the covariance Q regarding g

k
can alternatively be calculated by

employing a Kalman predictor on the linear state-space model

g
k
= Jk · g +w k , w k ∼N (b,B) , (4.41)

where b,m(Xk)−Jk ·m(X) and B is according to (4.34). In order to also correlate
g

k
with the hyperparameters, the model in (4.41) is extended to a state-space

model given by

[
ξ

k−1
g

k

]
=

 I 0
0 I

Jk
(
θk−1

)
0

 ·

[
g

θk−1

]
︸ ︷︷ ︸
ξ

k−1

+ w k , (4.42)

130 4 Gaussian Process Filtering

where the noise w k ∼N
(
µw

k
,Cw

k

)
is Gaussian with mean and covariance

µw
k
,

 0
0

b
(
θk−1

)
 , Cw

k ,

0 0 0
0 0 0
0 0 B

(
θk−1

)
 , (4.43)

respectively. Here, the dependence on the hyperparameters has been made
explicit. The first two rows in (4.42) and (4.43) are merely an identity mapping of
the given joint state ξ

k−1
, while the last row corresponds to (4.41).

Based on model (4.42), performing a prediction would yield the desired joint

distribution f
(
ξ

k−1
, g

k

∣∣∣ y
1:k−1

)
. As the model is nonlinear with respect to the hy-

perparameters θk−1, the prediction cannot be performed exactly in closed form.
Fortunately, the model is conditionally linear. Thus, the prediction can be ap-
proximated efficiently and accurately by means of the decomposition technique
proposed in Section 2.5.2, where the nonlinear part—the hyperparameters—are
sampled by means of an LRKF while the prediction of g can be performed exactly
via the Kalman predictor.

Update

In order to incorporate the new observations y
k

in a very computationally effi-

cient manner, the update is performed by means of the observed-unobserved
decomposition proposed in Section 2.5.1. The observed state ξo

k
comprises the

noise standard deviation σ as well as g
k

, while the unobserved state ξu
k

com-

prises g and θ−k being the vector of all hyperparameters excluding σ.

Updating the observed state can be performed in closed form by means of refor-
mulating the nonlinear mapping (4.1) to

y i = g (xi)+σ · v , v ∼N (0,1) , (4.44)

with v being uncorrelated withσ. For a deterministic noise standard deviationσ,
the model (4.44) is equivalent to (4.1) since w = σ · v with identical mean and
variance. Here, the standard deviation σ of the observation noise is made explic-
itly accessible. This simplifies the update, as the mean µy

k
and covariance Cy

k of

the observations as well as the cross-covariance Coy
k between observed state and

observations can be calculated exactly in closed form as shown in Paper K.

4.5 Contributions 131

Assuming that the observed state ξo
k

and the observations y
k

are jointly Gaussian

distributed, updating the observed state can be performed according to (2.9),

which yields the desired conditional density f
(
ξo

k

∣∣∣ y
1:k

)
≈N

(
µe

k
,Ce

k

)
with mean

µe
k

and covariance Ce
k according to (2.9).

By means of the updated observed state it is now possible to update the unob-

served part resulting in the Gaussian density f
(
ξu

k
|ξo

k

)
=N

(
µu

k
,Cu

k

)
with mean

µu
k

and covariance Cu
k according to (2.43) and (2.44), respectively.

To finalize the update step and thus, to obtain the desired joint posterior fk =
N

(
ξ

k
;µξ

k
,Cξ

k

)
with updated basis vectors and hyperparameters, the above results

are combined according to

µξ
k
=

[
µu

k
hT ·µe

k

]
, Cξ

k =
[

Cu
k Lk Ce

k h
hTCe

k LT
k hTCe

k h

]
(4.45)

with Lk ,Cuo
k

(
Co

k

)−1 and hT, [1,0,0, . . . ,0] . The first row in (4.45) corresponds
to marginalizing out g

k
.

Example 22: Synthetic Data

The performance of the RGP and the simultaneous regression and hyperpa-
rameter learning approach (denoted as RGP? in the following) is compared
with a full GP as well as with the sparse GP methods SOGP and SPGP. For
this purpose, data generated by means of two different synthetic functions
are considered. The first function

y = x
2 + 25 · x

1+x2 · cos(x)+w , w ∼N (0,0.1) (4.46)

is smooth but non-stationary. It is similar to the system model in (4.23).
At each step k, 40 input-observation pairs are selected randomly from the
interval [−10,10]. In total 100 steps are performed. The active sets (SOGP,
SPGP) and basis vectors (RGP, RGP?) comprise 50 elements, which are
placed equidistant on the interval [−10,10] . As second function

y =N (0.6,0.04)+N (0.15,0.0015)+4· H(0.3)+w , (4.47)

is considered, where H(.) is the Heaviside step function with H(a) = 0 if
x ≤ a and H(a) = 1 if x > a. This function has a discontinuity at x = 0.3

132 4 Gaussian Process Filtering

0 50 100
t →

0

2

4

θ
1
→

0 50 100
t →

4

6

8

10

θ
2
→

0 50 100
t →

0.26

0.28

0.3

θ
3
→

0 50 100
t →

0.4

0.6

0.8

1

θ
4
→

0 50 100
t →

10

20

30
θ

5
→

RGB?SE+NN

RGB?SE
true

training examples

(a) Evolution of the hyperparameters of RGP? with SE (blue, solid) and SE+NN
covariance function (red, dashed), where θ1 = l1 (length-scale), θ2 =α1 (signal
standard deviation), θ3 =σ (noise standard deviation) are the parameters of the
SE kernel and θ4 = l2 (length-scale), θ5 = β (signal standard deviation) are the
parameters of the NN kernel.

-10 -5 0 5 10

x →

-10

-5

0

5

10

g
(x

)→

(b) True function (black, dashed line), regression result by RGP?

with SE+NN covariance function together with 99% confidence
area, and the training examples of step t = 100 (black crosses).

Figure 4.5: Exemplary regression result of proposed approach for function (4.46).

4.5 Contributions 133

and was considered as a benchmark in [212]. The noise w has variance
σ2 = 0.16. A total of 70 steps are performed, with 50 data points per step
drawn from [−2,2]. On this interval, 30 active set elements and basis vectors
are placed equidistant.

The mean function of all GPs is zero and as covariance function two dif-
ferent ones are employed: the SE function (4.8) as well as the sum of SE
and NN function (see (4.10)), denoted as SE+NN in the following. The
hyperparameters for the full GP are optimized via evidence maximization
(4.12). These optimized hyperparameters are also used for the RGP.

In Figure 4.5a on the previous page, an exemplary regression result of
RGP? with SE+NN covariance function is depicted. The true function is
accurately reconstructed. As shown in Figure 4.5b, the hyperparameters
are adjusted over time and converge. This leads to improved regression
results compared to the other hyperparameter learning approaches SOGP
and SPGP as can be seen in Table 4.3 on the next page. This holds for both
covariance functions, whereas SE+NN yields better results as it is possible
to capture the non-stationarity thanks to the non-stationary NN kernel.
Compared to a full GP, RGP? is slightly inferior. The off-line hyperparameter
optimization (4.12) provides optimal results and RGP? cannot improve
further. With the optimal hyperparameters however, RGP performs close to
a full GP but with significantly lower runtime.

The results in Table 4.4 indicate that off-line hyperparameter optimization
(4.12) is not always optimal. Here, the hyperparameters learned by RGP?

result in better estimates compared to all other algorithms with at the same
time lower computational load. It is worth mentioning that RGP? is the
only sparse approach that really exploits the properties of the SE+NN kernel
resulting in an improved regression compared to the SE kernel.

Discussion

Directly modeling some of the hyperparameters by means of a Gaussian may not
be appropriate in some cases. For instance, the length-scale hyperparameters
of the SE covariance function in (4.8) have to be positive. To account for such
constraints, a standard trick in GP regression is to transform the hyperparameters
first and then to train the transformed parameters. After training, the inverse

134 4 Gaussian Process Filtering

Tab
le

4.3:A
verage

rm
se,n

ll,an
d

ru
n

tim
e

fo
r

fu
n

ctio
n

(4.46).

SE
SE

+N
N

rm
se

n
ll

tim
e

in
s

rm
se

n
ll

tim
e

in
s

Fu
llG

P
0.31±

0.02
0.25±

0.05
0.82

0.30±
0.02

0.24±
0.06

1.46
R

G
P

0.31±
0.02

0.26±
0.06

0.16
0.31±

0.03
0.24±

0.06
0.11

R
G

P
?

0.37±
0.02

0.41±
0.14

0.65
0.35±

0.05
0.34±

0.12
1.81

SO
G

P
1.18±

0.03
7.49±

0.4
0.93

0.44±
0.03

0.80±
0.13

2.58
SP

G
P

0.54±
0.02

1.15±
0.11

13.05
0.39±

0.02
0.51±

0.09
24.40

Tab
le

4.4:A
verage

rm
se,n

ll,an
d

ru
n

tim
e

fo
r

fu
n

ctio
n

(4.47).

SE
SE

+N
N

rm
se

n
ll

tim
e

in
s

rm
se

n
ll

tim
e

in
s

Fu
llG

P
1.38±

0.41
1.70±

0.33
0.92

1.04±
0.43

1.41±
0.35

2.57
R

G
P

1.40±
0.38

1.98±
0.40

0.45
1.12±

0.35
1.86±

0.19
0.48

R
G

P
?

0.98±
0.11

1.48±
0.23

0.38
0.88±

0.10
1.39±

0.15
1.14

SO
G

P
1.68±

0.07
2.89±

0.17
0.8

1.68±
0.07

2.88±
0.17

2.21
SP

G
P

1.63±
0.10

1.91±
0.06

5.6
1.65±

0.07
1.93±

0.05
10.85

4.6 Summary 135

transformation is applied in order to obtain the original hyperparameters. In case
of positive hyperparameters, the logarithm for transforming and the exponential
function as inverse transformation are common. RGP? can directly be used to
also train/estimate transformed hyperparameters.

Assuming Gaussian noise w in (4.1) is not reasonable for every application. Cap-
turing a non-Gaussian distribution by the proposed methods can for instance
be achieved via warping as proposed in [177]. Alternatively, fk could be repre-
sented by means of a Gaussian mixture allowing for the application of techniques
proposed in Section 3.4.

The computation and memory costs of RGP? for a single time step k scale

with O
(
s ·nk ·

(
m +nθ

)2 +n3
k

)
and with O

((
m +nθ

)2
)
, respectively, where s is

the number of samples of the employed LRKF, nk is the number of observations
at step k, m is the number of basis vectors, and nθ is the dimension of θ. If at
each step k the same number of observations is processed, than the compu-
tational and memory costs are constant for each step for both RGP and RGP?.
Furthermore and in contrast to a full GP the computational and memory costs do
not increase over time, i.e., when more and more observations become available.

4.6 Summary

Assuming that no analytical system and measurement models are available, but
GP representations of these models exist, the contributions made in this chapter
are concerned with performing analytic filtering and smoothing as well as on-line
learning of GP models:

• Analytic filtering and smoothing for GP models: For particular covariance
functions, Gaussian filtering and smoothing for GP system and measure-
ment models can be performed in closed-form, without the need of sam-
pling or linearization. Given a sufficient amount of training data, filtering
and smoothing are superior compared to many other Gaussian filters op-
erating on the analytical models.

• Recursive GP regression: Especially for streaming data, there is a lack of
sparse GP regression approaches in the state-of-the-art. The proposed
RGP allows regression with constant computational and memory demand.
This approach makes no restriction on the used mean and covariance
functions.

136 4 Gaussian Process Filtering

• On-line hyperparameter learning: RGP can be extended in such a way
that on-line hyperparameter learning for streaming data is possible. Here,
updating the basis vectors and hyperparameters with new data is treated
as a joint Gaussian filtering problem, which leads to a computationally
efficient and accurate GP regression approximation.

Generally, there are many machine learning techniques for learning system and
measurement models from data. GP regression however forms a Bayesian ap-
proach of this task, with close relationship to Gaussian filtering. This relationship
is the main purpose for allowing the above contributions, where it is possible to
benefit from the rich theoretical and algorithmic foundation of Gaussian filtering
introduced and extended in Chapter 2.

5
Applications

For every major distribution and filtering group introduced in the previous three
chapters a dedicated real-world application is studied in this chapter. These
applications are:

• Range-based localization: Estimating the position and orientation of a
moving object via Gaussian filtering (summarizes Papers L and M).

• Gas dispersion source estimation: Determining the location and strength of
a gas release into atmosphere using Gaussian mixture filtering (Paper N).

• Active Object recognition: Effectively utilizing a movable camera for fast
object recognition based on Gaussian process regression (Paper O).

This list already indicates that Bayesian filtering in general and the proposed
solutions in particular are applicable in a broad range of real-world estimation
problems.

5.1 Range-based Localization

In applications such as car navigation, mobile robot navigation, or telepresence,
the position of a moving object is often localized based on range/ distance

137

138 5 Applications

measurements between the object and known landmarks. These ranges can for
example be measured by times of arrival or field strengths [168].

Existing range-based localization algorithms can be divided into two classes.
Approaches of the first class assume exact (or almost exact) range measurements.
As long as this assumption is satisfied, closed-form localization approaches as
those in [15, 34, 42, 77, 118, 195], gradient descent algorithms [152], or methods
based on linearization via Taylor-series expansion [65] perform very well. How-
ever, these approaches merely allow for a static localization, i.e., at every time
step an independent location estimation is performed. Furthermore, accurate
range measurements require specialized and expensive hardware.

Dealing with inaccurate measurements that may arise for example from signal
strength information or ultrasonic range finders requires range-based localiza-
tion approaches from the second class. Based on probabilistic models that
capture measurement uncertainties—for instance arising from measurement
noise or modeling errors—the object’s position and velocity can be estimated
by means of a Bayesian filter in a recursive fashion. This allows for dynamic
localization, i.e., the combination of dead reckoning and static localization, for a
smoother and more robust localization. The maybe most prominent range-based
localization algorithm based on Bayesian filtering is used in GPS.

Example 23: GPS

The global positioning system (GPS) is the most widely used satellite-based
navigation system. The localization principle employed in GPS is based on
multilateration, i.e., measuring the distance between the object’s position
and several reference points or landmarks in 3D. In GPS the necessary
distances are determined by using time of arrival. Here, the satellites send
a signal to the receiver (the object) that includes information about the
exact time of its broadcast. If the time of the receiver is synchronized with
the system time of the satellites, which is the same for all satellites, the
receiver is now capable of calculating the duration of signal transmission.
By multiplying the duration of the transmission with the speed of light
the required distance is obtained. The receiver typically uses an EKF for
estimating its position and velocity based on the calculated distances and
the dynamics of the object [98].

5.1 Range-based Localization 139

object

trajectory

LM
LM

LM

range range

range

(a) Position estimation.

×
object

trajectory

LM
LM

LM

range
ranges

ranges

(b) Pose estimation.

Figure 5.1: Examples for range-based localization problems. Based on the measured
ranges between landmarks (LMs) at known positions and the unknown position
of the object, the object’s trajectory has to be estimated. In case of pose estima-
tion (b), the object possesses itself several landmarks (gray circles) to which range
measurements can be performed. The center of mass is indicated by the cross.

When assuming that the object can be considered as a point in space, the quan-
tities of interest are merely position, velocity and sometimes acceleration. GPS
for instance makes this assumption. In applications like telepresence however,
where the extent of the object is important, also the orientation and correspond-
ing angular velocities in 3D have to be estimated. For both problems—position
and pose estimation—dynamic range-based localization algorithms utilizing
Gaussian filtering are introduced in the following.

5.1.1 Position Estimation
At first it is assumed that the object can be considered a point as depicted in

Figure 5.1a. In this case, the state xT,
[

t T ṫ T
]

of the object consists of its position

t = [
x y z

]T and velocity ṫ = [
ẋ ẏ ż

]T.

Dynamic and Measurement Model

The dynamic behavior—the motion—of the object is described by means of the
linear discrete-time dynamic system

xk+1 = A · xk +w k , (5.1)

140 5 Applications

where the noise w k is assumed to be zero-mean white Gaussian. For a position
velocity model [206], the matrix A and the covariance of the process noise Cw are
given by

A =
[

I T ·I
0 I

]
, Cw =

 T 3

3 Cw
c

T 2

2 Cw
c

T 2

2 Cw
c T ·Cw

c

 , (5.2)

respectively, where T is the sampling time. Cw
c , diag

([
σ2

c,x σ2
c,y σ2

c,z
])

cor-
responds to the process noise covariance of the continuous time system model
with σ2

c,ξ being the variances of dimension ξ ∈ {x,y,z}.

Range measurements to N landmarks at the known positions Si ∈R3 with i =
1, . . . ,N are incorporated. The nonlinear relation between the object position and
the landmark position is given by

ρk,i =
∥∥Si − t k

∥∥
2 , (5.3)

where ρk,i is the Euclidean distance between object and landmark.

In a real scenario, the ranges cannot be measured exactly, i.e., measurement
uncertainty has to be considered, which is usually done by incorporating a noise
process into (5.3). Two possibilities arise for incorporation. In the first case,
which is the standard model

ρk,i =
∥∥Si − t k

∥∥
2 +v k,i , (5.4)

the noise process v k,i directly affects the range r k,i . In the second case

ρk,i =
∥∥∥Si − t k −v k,i

∥∥∥
2

, (5.5)

which is called noise before non-linearity [43], the noise process affects the differ-
ence between object and landmark position. This measurement model can be
interpreted such that the positions of the landmarks are uncertain. In both mea-
surement models, the noise process is assumed to be zero-mean white Gaussian.
In the following, the second model (5.5) is considered for mainly two reasons:
First, the standard model (5.4) is only appropriate in situations where the dis-
tance ρk,i is large compared to the variance of the noise v k,i . Otherwise, negative
ranges are possible, which is not true in reality. This problem cannot occur in the
second measurement model. Second, the model in (5.5) allows analytic moment
matching.

5.1 Range-based Localization 141

Analytic Moment Matching

Thanks to the linearity of the dynamic model (5.2), the standard Kalman filter
prediction step (2.12) can be employed for propagating the state from time step
k to time step k +1. To obtain also analytic expressions for the moment integrals
(2.8) in case of the measurement update, the measurement equation (5.5) is
squared, which yields

d i ,
(
ρi

)2 = (
Si − t

)T ·
(
Si − t

)−2·
(
Si − t

)T · v i +v T
i · v i , (5.6)

where d i is a squared range assumed to be calculated by d̂i = ρ̂2
i . Thus, the

modified measurement equation (5.6) can be described in short term via

d i = hi
(
t ,v i

)
(5.7)

for a single measurement to landmark i and via

d = h
(
t ,v

)
(5.8)

for measurements to all landmarks, where di and hi (.,.) are the i th element of
d and h(.,.), respectively. Hence, the vector of squared ranges d̂ is calculated
according to d̂ = r̂ ¯ r̂ . The measurement noise v in (5.8) is zero-mean with
covariance matrix

Cv =

Cv
1 . . . Cv

1, j . . . Cv
1,N

...
...

...
...

...
Cv

i ,1 . . . Cv
i , j . . . Cv

i ,N
...

...
...

...
...

Cv
N ,1 . . . Cv

N , j . . . Cv
N

 ,

where Cv
i , j is the 3×3 covariance matrix between the i th and j th landmark. By

assuming correlations between landmarks, an algorithm valid for many real-
world application can be derived. The case of uncorrelated landmarks is a special
case of the algorithm.

Due to the consideration of squared ranges, the measurement model in (5.6)
is a polynomial of order two allowing closed-form calculations of the moment

142 5 Applications

integrals (2.8). Hence, according to (2.9) the mean vector and covariance matrix
of the posterior state estimate xk ∼N

(
µe

k
,Ce

k

)
are calculated via

µe
k
=µp

k
+Cxd

k ·
(
Cd

k

)−1
·
(
d̂ k −µd

k

)
,

Ce
k = Cp

k −Cxd
k ·

(
Cd

k

)−1
·
(
Cxd

k

)T
,

(5.9)

respectively, where µd
k

(squared measurement mean), Cd
k (squared measure-

ment covariance matrix), and Cxd
k (cross-covariance between state and squared

measurement) are given by1

µd
k
= (V¯V)T ·1M +1N · Tr

(
P ·Cp

k ·PT)+OT · diag
(
Cv)

,

Cd
k = OT ·

(
4·

(
vec(V) ·vec(V)T)¯T+2·T¯T

)
·O ,

Cxd
k =−2·Cp

k ·PT ·V ,

(5.10)

respectively, with

S,
[
S1 . . . SN

]
,

P,
[
IM 0M

]
,

V, S− (
1N

)T ⊗ (
P ·µp

k

)
,

O, IN ⊗1M ,

T,Cv +1N ⊗ (
P ·Cp ·PT)

,

where vec(V) is the vectorized version of the matrix V, 1N is a vector of ones
of dimension N , and 1N is a one matrix. The variable M = 3 stands for the
three-dimensional space.

Example 24: Four Landmarks

The proposed analytical moment calculation (AMC) is compared against
the EKF and UKF. For this purpose four landmarks with positions

S = [
S1 . . . S4

]=
−2 −2 2 2
−2 2 −2 2
0 0 0 2

 m

1 A detailed derivation can be found in Paper L.

5.1 Range-based Localization 143

0 0.1 0.2 0.3

Noise level / m →

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

rm
se

/
m

→

EKF
UKF
AMC

(a) The average rmse and its stan-
dard deviation.

0 0.1 0.2 0.3

Noise level / m →

0

0.5

1

1.5

2
×10−6

d
et

er
m

in
an

t→

EKF
UKF
AMC

(b) Mean of the determinant of the
position covariance Ce

k,t .

Figure 5.2: Result of the three estimators AMC, UKF, and EKF for different noise
levels.

are considered. The measurement noise covariance matrix of each land-
mark i is assumed to be Cv

i = I ·σ2
n with σn = (n−1)/3 m where n = 1. . .10, i.e.,

ten different noise levels are investigated. For each noise level 1000 MC
runs are simulated, where each run consists of 100 measurement steps.

The initial state at time step k = 0 has zero mean and covariance C0 =
10·I6. The sampling time is T = 0.1s. The process noise covariance matrix
comprises the elements σ2

c,x =σ2
c,y = 0.01, and σ2

c,z = 0.0001.

In Figure 5.2a, the average rmse is depicted. For small noise, all three filters
perform similar. If the noise increases, the rmse of the EKF increases much
stronger compared to the other two filters. For a high noise level, the UKF
and the proposed approach present comparable results, where the average
rmses and the standard deviations of the AMC are slightly smaller.

The average determinant of the covariance matrix of the position estimate
t k of all test runs is shown in Figure 5.2b. Due to the linearization based on
first-order Taylor-series expansions, the determinant of the EKF is too small
and thus the EKF is too certain about its estimate. Hence, the estimation
results are inconsistent, which is often a problem when using an EKF. On
the other hand, LRKFs or analytic approaches as the AMC overcome this

144 5 Applications

problem. The determinant of the AMC is smaller compared to the determi-
nant of the UKF. Furthermore, as described before, the rmse of the AMC is
smaller as well. All together, the AMC is more informative compared to the
UKF.

The computational complexity of the above closed-form measurement update
is in O

(
M 3 +M 2 · N

)
for the mean µd

k
, in O

(
M 2 · N 3) for the covariance Cd

k , and

O
(
M 2 · N

)
for the cross-covariance Cxd

k , where typically M ¿ N . For calculating
the required moments in (5.10), only vector-matrix products and no additional
matrix inversions or roots are required. For comparison, already the computa-
tional complexity of calculating the matrix square root required for an LRKF is in
O

(
N 3 · M 3).

5.1.2 Position and Orientation Estimation
In the following, the previous localization problem is generalized in order to allow
the estimation of the pose—position and orientation—of an extended object in
3D. Hence, the object state is given by

x ,
[

t T ṫ T r T ωT
]T

where t and ṫ are the position and velocity in 3D, respectively, and ω is the
angular velocity in 3D . The orientation vector r ∈R3 is a so-called rotation vector
with norm

∥∥r
∥∥=π. Alternatives for describing the orientation are quaternions

[107] or Euler angles [129]. Quaternions however are not minimal as they consist
of four elements and the unit quaternions constraint can lead to inaccurate state
estimates. Euler angles suffer from singularities and are not intuitive in usage.
Rotation vectors instead are a minimal state representation. A further advantage
of rotation vectors is that the dynamic behavior can be described by means of a
nonlinear differential equation [22].

Dynamic Model

As the state now also comprises orientation related quantities, the dynamic
model consists of two separate motion models: one for the translation and the
second for the rotation. The translation model coincides with (5.1) and (5.2),

5.1 Range-based Localization 145

respectively. The temporal evolution of the rotation vector r k is described by
means of a nonlinear equation [17, 22]

r k+1 = r k +T ·
(
I+0.5·R

(
r k

)+a
(
r k

)
·R

(
r k

)
·R

(
r k

))︸ ︷︷ ︸
,Λ

(
r k

) ·ωk , (5.11)

with

a
(
r k

)
,

1−0.5 ·‖r k‖
‖r k‖2 ·cot

(‖r k‖
2

)
.

The system model for the angular velocityωk is assumed to be

ωk+1 =ωk +wω
k , (5.12)

where w w
k is the process noise that affects the angular velocity. The process noise

has zero mean and is Gaussian distributed with covariance Cω.

By combining (5.2), (5.11) and (5.12), the system model for the pose estimation
scenario can be written as

xk+1 =
A 0 0

0 I Λ
(
r k

)
0 0 I

 · xk +w k , (5.13)

where the covariance of the process noise w k comprises the covariances of
the process noises from the translation model Ct and the rotation model Cω

according to

Cw =
Ct 0 0

0 0 0
0 0 Cω

 .

Measurement Model

As depicted in Figure 5.1b, in range-based pose estimation the measured ranges
depend on known landmarks located on the extended object and on known
landmarks in a global coordinate system. Thus, the ranges depend on both
the unknown translation and rotation of the object with respect to the global
coordinate system.

146 5 Applications

(a) Sensors at a head-
mounted display.

(b) Sensors mounted at
a glove.

Figure 5.3: Deployment of sensors (marked by blue circles) for tracking the pose of
a user or of body parts in telepresence applications. Images taken from [110].

Example 25: Telepresence

An example application where knowing the pose is of interest is large-
scale telepresence [152]. Here, the pose of a human has to be tracked for
steering a robot. For tracking the pose of the user or the pose of several body
parts, several emitters are located at known positions in a global coordinate
system. They are emitting signals that are received by several sensors
attached to the user, e.g., at a head-mounted display (see Figure 5.3a) or at
gloves (see Figure 5.3b). Based on the emitted and received signals, ranges
between emitters and sensors can be determined.

The relationship between measured ranges, translation, and rotation is given by

ρk,i j =
∥∥∥L j −D

(
r k

)
· M i − t k −v k,i j

∥∥∥
2

, (5.14)

which resembles the noise before non-linearity range measurement model as
in (5.5). Here, L j is the position of the j th landmark with respect to the global
coordinate system and M i is the position of the i th landmark with respect to
the object coordinate system. v k,i j is the measurement noise between landmark
L j and landmark M i . The term ρk,i j is the measured range between these two
landmarks, while d k comprises all possible measurements between global and

5.1 Range-based Localization 147

object landmarks. The term D(·) is the rotation matrix parametrized by the
rotation vector r k

D
(
r k

)= I+ sin
(∥∥r k

∥∥)∥∥r k

∥∥ ·R
(
r k

)+ 1−cos
(∥∥r k

∥∥)∥∥r k

∥∥2 ·R
(
r k

)
·R

(
r k

)
,

known as Rodrigues formula, with

R
(
r k

)=
 0 −r z r y

r z 0 −r x

−r y r x 0

being a skew-symmetric matrix.

Semi-Analytic Moment Matching

The system model (5.13) is conditionally linear, i.e., if the rotation vector is set to
a fixed value, the system model becomes linear and the prediction for each value
can be performed by using the well-known Kalman predictor equation.

To facilitate an analytical solution of the measurement update in closed from,
the measurement equation (5.14) is squared as in Section 5.1.1, which yields

d k,i j ,
(
ρk,i j

)2 =
(
g

i j

(
r k

)− t k −v k,i j

)T
·
(
g

i j

(
r k

)− t k −v k,i j

)
, (5.15)

with

g
i j

(
r k

)
, L j −D

(
r k

)
· M i . (5.16)

But in contrast to the previous section, squaring the measurement model alone
is not sufficient due to the nonlinear term (5.16). By conditioning on r , however,
(5.16) becomes affine and the entire measurement model becomes quadratic.
Thus, the measurement model is conditionally integrable and the nonlinear-
nonlinear decomposition proposed in Section 2.5.2 can be applied. The analyti-

cally integrable system state comprises xT
a ,

[
t T ṫ T w T

]
, while the sampled

state is x s , r . For the latter, sampling via LRKFs can be employed. In doing so,
for every fixed sample value of the rotation vector, the closed-form solutions in
(5.10) for the moment integrals can be used with some minor modifications: the
state dimension is now nine instead of six and the number of measured ranges is
significantly higher as pair-wise measurements between object landmarks and
global landmarks are incorporated.

148 5 Applications

Example 26: Two-dimensional Localization

A two-dimensional coordinate system is considered containing four sen-
sors (global landmarks) and four emitters (object landmarks) with positions

M T
1

M T
2

M T
3

M T
4

=

−0.2 −0.2
−0.2 0.2
0.2 −0.2
0.2 0.2

m ,

LT

1
LT

2
LT

3
LT

4

=

−2 −2
−2 2
2 −2
2 2

m

with respect to the object coordinate system and the global coordinate sys-
tem, respectively. At different noise levels ranging from [0.000001, . . . ,0.3] m,
1000 random trajectories are generated, where the sampling time was
T = 0.1s. The noise process is assumed as isotropic.

The proposed SAGF is compared to the UKF. For the UKF a decomposition
into directly observed states t , r and indirectly observed states ṫ , ω as
proposed in Section 2.5.1 is used. Furthermore, due to the fact that the
measurement noise is mapped through the nonlinear transformation, it
has to be approximated with samples as well. In total 71 sample points are
required for the UKF. On the other hand, the proposed approach only has
to approximate the rotation by sample points.

For the 2D case, the system equation (5.13) becomes linear and thus, the
Kalman filter prediction can be using directly. The entries of the continuous
process noise covariance are set to be Ct

c = diag([0.1 0.1]) and Cω
c = 0.1.

The initial state has zero mean and its covariance matrix comprises Ct
0 =

diag([10 10]), Cṫ
0 = diag([10 10]), σ2

r,0 = 0.001, and σ2
ω,0 = 0.0001.

The estimation performance in terms of the rmse of both estimators is
almost identical. Regarding the computational effort, the proposed ap-
proach only has to determine sample points for one dimension, which can
be implemented very efficiently. On the other hand, the UKF calculates a
matrix square root of the covariance of the noise and the directly observed
state. This operations is computationally involved considering the size of
the combined covariance matrix, which is 35×35. In the simulation, the
proposed approach is three times faster than the standard approach.

5.2 Gas Dispersion Source Estimation 149

5.2 Gas Dispersion Source Estimation

If a hazardous gas has been released—either accidentally or deliberately—into
atmosphere, it is of paramount importance to gain knowledge of this event
at an early stage in order to increase the effectiveness of counter measures
for protecting the public and for mitigating the harmful effects. By means of
so-called atmospheric dispersion models (ADMs), it is possible to predict the
concentration spread of the released gas in space and time. These models,
however, merely provide reliable predictions, if the characteristics of the gas
source are known precisely. To determine or estimate the source characteristics
it necessary to solve an inverse problem, where one has to infer the location
and strength of the gas release from concentration measurements of spatially
distributed sensors.

In general, solution methods of the source estimation problem can be classi-
fied into forward and backward methods [142]. Forward methods employ an
forward-running ADM multiple times in order to find an estimate of the source
that best describes the given concentration measurements. Here, the mostly
used techniques are based on Bayesian inference in combination with Monte
Carlo sampling. Sequential Monte Carlo methods as described in [178, 216]
employ a set of samples or particles that forms the posterior probability dis-
tribution of the source parameters. This distribution is updated by means of
Bayes’ rule whenever new concentration measurements from sensors are avail-
able. In contrast to this online procedure, Markov chain Monte Carlo (MCMC)
methods process all acquired concentration measurements in a batch in order
to determine the posterior distribution. For this purpose, samples are drawn
from the posterior distribution by simulating a Markov chain that has the desired
posterior distribution as its stationary distribution. Given a properly constructed
Markov chain it can be shown that MCMC reaches the stationary distribution
after a typically large number of sampling steps, which is known as the burn-in
phase. Application of MCMC to source estimation can be found for instance in
[23, 79, 169].

Backward methods instead perform only one model run in the reverse direction
from the sensors to the source. Commonly used techniques are backtracking,
where an inverse version of an ADM is utilized (see e.g. [81]), and variational
methods, where a cost function between model predictions and concentration
measurements is optimized (see e.g. [154, 184]). The backward approach is

150 5 Applications

preferred over forward methods, when the number of sources is larger than the
number of sensors [142].

Most of the above state-of-the-art methods allow merely an off-line batch source
estimation. The AGMF proposed in Section 3.4.2, however, facilitates an on-
line estimation, where concentration measurements are processed continually.
In doing so, timely information about the source location and strength can be
provided allowing fast responses. For the AGMF, the so-called Gaussian plume
dispersion model is utilized as a forward model, which facilitates predicting the
gas dispersion in closed-form with low computational overhead.

5.2.1 Atmospheric Dispersion Models
In the following, c(x, t) is the concentration of the substance at position x =
[x y z]T ∈R3 and at time t ≥ 0. The concentration follows the advection-diffusion
equation

∂c
(
x, t

)
∂t

=∇ ·
(
D ·∇c

(
x, t

)− v ·c
(
x, t

))+ s
(
x,t

)
(5.17)

with ∇, [∂/∂x ∂/∂y ∂/∂z]T (see e.g. [80]). The term D ·∇c(x, t) describes the diffu-
sion according to Fick’s law with diffusion matrix D

(
x,t

)
and the term v ·c(x, t)

represents linear advection due to wind with velocity v
(
x,t

)
. Finally, s

(
x,t

)
is a

source or sink term.

Analytical solutions of (5.17), i.e., functions c(x,t) satisfying the equation, exist
merely for some special cases. One such special case employed for source estima-
tion in the following is the Gaussian plume dispersion model. In order to obtain
a closed-form solution, the Gaussian plume model requires several assumptions:

1. The substance is emitted at a constant rate q > 0 from a single point source
at location xs , [0 0 zs]T. Thus, the source term s

(
x,t

)
in (5.17) becomes

s
(
x,t

)= q ·δ(x) ·δ(y) ·δ(z − zs) .

2. The wind is constant with velocity v ≥ 0 and the wind direction is along
the x-axis. Hence, the velocity in (5.17) becomes v = [v 0 0]T.

3. The diffusion is a function of the downwind distance (positive x-axis) only.
Furthermore, it is assumed that the advection dominates the diffusion in

5.2 Gas Dispersion Source Estimation 151

x

y

0

z

q

wind direction

x y-plane

σz

z

y z-plane

σy

y

Figure 5.4: Ground level concentrations according to the Gaussian plume model,
where black indicates the highest concentration level. The dotted lines indicate the
profile of the plume when cutting through the plume in parallel with the x y-plane
and y z-plane.

wind direction. Thus, the diffusion along the x-axis can be neglected and
D = diag

([
0 Ky (x) Ky (x)

])
with eddy diffusion coefficients Ky ,Kz .

4. The terrain is flat and the ground cannot be penetrated by the substance.

5. The solution is steady state, i.e., time independent.

Based on these assumptions and additional boundary conditions that force
vanishing concentrations at infinite distance from the source and at upwind
distances, (5.17) has the time-invariant solution

c
(
x
)= q

2π ·v ·σyσz
· exp

(
− y2

2σ2
y

)
·
[

exp
(
− (z−zs)2

2σ2
z

)
+exp

(
− (z+zs)2

2σ2
z

)]
, (5.18)

which is the well-known Gaussian plume dispersion model (for a detailed deriva-
tion see [184]). Here, σy and σz are the so-called standard deviations of the
Gaussian concentration distribution. They depend on the stability of the atmo-
sphere and are both functions of x. They can be obtained via integrating Ky

and Kz in downwind direction or—more practically—can be determined via the
Pasquill-Gifford stability classification scheme [37, 137].

Example 27: Gaussian Gas Plume

Consider a source emitting a gas contaminant from a height of zs = 4m. The
wind velocity is v = 2 m/s. The atmospheric stability is of class D, which is

152 5 Applications

“neutral” according to the Pasquill-Gifford classification. The corresponding
ground level concentration is depicted in Figure 5.4. The gas plume spreads
along the x-axis (downwind) and its shape is that of a Gaussian in planes
normal to the x-axis.

The Gaussian plume model (5.18) is employed as it is widely used and suitable
for describing short range substance releases. Furthermore, being an analytical
model, it allows for an on-line and computationally light-weight estimation of
the unknown parameters. It can be extended for arbitrary wind directions φ and
arbitrary source location xs = [xs ys zs]T by means of straightforward translation
and coordinate rotation, which yields the model

c
(
x
)= q

2π ·v ·σyσz
· exp

(
− (1+2sin(φ)cos(φ)) · (y−ys)2

2σ2
y

)
·[

exp
(
− (z−zs)2

2σ2
z

)
+exp

(
− (z+zs)2

2σ2
z

)]
,

(5.19)

where σy and σz are now functions of xs , x, y , and φ. This model is employed in
the following.

5.2.2 Parameter Estimation
Estimating the source rate q and source location xs is a so-called parameter
estimation problem. That is, the quantities of interest are time-invariant; there
is no dynamical model driving the parameters over time. Instead, only data in
form of concentration measurements from a set of spatially distributed sensors
is available to determine the parameters. It is assumed that the measurements
become available sequentially over time, i.e., batch or off-line estimation is
impractical. Additional parameters like wind speed or direction are assumed to
be known, as they can be provided reliably from external sources like weather
stations.

In order to apply the AGMF, an appropriate measurement model is required
that relates the concentration measurements to the unknown source parameters
θT,

[
xT

s q
]
. The Gaussian plume model reflects this relations. Thus, suppose

5.2 Gas Dispersion Source Estimation 153

that the measurement ẑk is acquired by a sensor at location xr ,
[
xr yr zr

]T at
time step k, the resulting measurement models is given by

ẑk = c
(
xr ;θ

)+v k , v k ∼N
(
0,σ2

v

)
, (5.20)

where c
(
xr ;θ

)
is the true concentration value according to (5.19) and v k is the

sensor’s noise, which is assumed to be independent in time and space. It is worth
mentioning that in case of multiple sources, the concentration measurement
can be written as

ẑk =
L∑

i=1
ci

(
xr ;θi

)+v k , (5.21)

where the superposition of the concentration values ci
(
xr ;θi

)
of the sources

i = 1. . .L is exploited (see [184]).

Example 28: Indianapolis Field Study

To demonstrate the performance of the AGMF in estimating the source
parameters θ, the data acquired during the EPRI Indianapolis field study
is considered, where SF6 tracer gas was released from a zs = 83.8m stack
at a power plant in Indianapolis, Indiana, USA. Data was recorded by 160
ground-level sensors over 19 days in September and October 1985 for 8 to 9
hours every day. Details about the field study and the data can be found
in [78].

In Figure 5.5, the locations of the sensors and the sensors’ concentration
measurements of the 19th September 1985 are depicted. Even though all
sensor measure at a hourly rate, the measurements are processed sequen-
tially to demonstrate the on-line estimation capability of the AGMF.

The source is located at the origin and the emission rate of the tracer gas
is q = 0.0041 g/s. Information about wind speed, wind direction, and atmo-
spheric stability was made available by meteorological observations. The
initial estimate of the source at time step k = 0 is given by a single Gaussian
with mean vector and covariance matrix

θ̂0 = [2000 3000 102 0.033]T , C0 = diag
([

106 106 500 0.001
])

respectively. Figure 5.5 and Figure 5.6 show the convergence of the source
estimate towards the true source location over time and with increasing
number of concentration measurements, respectively. It is important to

154 5 Applications

-4000 -2000 0 2000 4000

x / m →

-1000

0

2000

4000

y
/

m
→

0

200

400

600

800

Figure 5.5: Trajectory of the estimated source location (red, dashed) and the true
location of the source (black cross). Circular markers denote the sensor locations
colored with the measured concentration in parts per trillion (ppt).

0 400 800 1200

no. measurements →

0

100

200

z
/

m
→

0 400 800 1200

no. measurements →

-0.1

0

0.1

z
/

m
→

Figure 5.6: Estimate of source height z and emission rate q with increasing number
of measurements. The shaded area denotes the 3-sigma confidence region and the
red line indicates the true value.

5.2 Gas Dispersion Source Estimation 155

q
z

y
x

x y z q

Figure 5.7: Bivariate posterior densities of the AGMF source estimate. The diagonal
plots are the univariate marginal densities. Red crosses indicate the true value, while
white and black circles, respectively, denote the mean of the respective density.

note that many sensor measurements (typically 60%-70%) provide a con-
centration measurement of almost zero as most of the sensor are outside
the gas plume, as can be seen in Figure 5.5. This explains the step-wise
convergence of the estimate and reduction of the variance in Figure 5.6.

The posterior density f e
k

(
θ
)

after all k = 1200 measurements is depicted in
Figure 5.7. It can be seen that the mean of the estimate is close to the true
source parameters. Slight deviation from the ground truth is only observed
for the emission rate, but still the true parameters are within the high
confidence region of the estimate. Thus, the AGMF is not overconfident.

156 5 Applications

5.3 Active Object Recognition

Research on computer vision mostly focuses on the object or scene observed by
the camera system. It is assumed that the parameters of the camera (e.g., position,
illumination, or focus) are given or determined off-line in a time-consuming
trial-and-error process involving human interaction. Particular operations are
then applied on the acquired images in order to solve the considered vision task
like recognizing an object. In such passive vision systems, the camera parameters
are not adapted on-line. This is in contrast to an active vision system, where the
next camera observation is carefully planned based on the previously acquired
images and prior information about the considered scene.

While various approaches for passive object recognition exist (see e.g. [189] and
references therein), active object recognition still is in its early stages. One of
the first approaches to active object recognition can be found in [21], where
the object models are learned via the eigenspace approach introduced in [126].
The planning algorithm greedily chooses the view that leads to the maximum
entropy reduction of the object hypotheses. In [55], from a finite set of views the
one maximizing the mutual information between observations and classes is
selected. The approach is designed for arbitrary features, but requires approxi-
mate mutual information calculation via Monte Carlo sampling, which prevents
a direct extension to continuous views. An upper bound of the Jeffrey divergence
is employed in [111]. Again, merely a finite set of viewpoints is considered. Re-
inforcement learning approaches for active object recognition are proposed in
[50, 134]. Here, learning the object models and planning is performed simultane-
ously. A comparison of some of the aforementioned approaches can be found
in [49].

The active object recognition method proposed in this thesis consists of two
parts as depicted in Figure 5.8. In the off-line learning part for each object a
so-called object model is created. For varying camera parameters, e.g., focus
or position, 2D images of each 3D object are generated. GP regression is then
applied on the sample images to learn the object models.

In the on-line recognition part, planning the next-best camera view and Bayesian
state estimation are performed alternately. For planning, mutual information is
maximized with respect to the camera parameters. Based on the chosen parame-
ter, the object estimate is updated via Bayesian estimation under consideration
of the learned object models.

5.3 Active Object Recognition 157

Learning — Section 5.3.2

Planning — Section 5.3.4

Estimation — Section 5.3.3

k → k −1

object models

action a∗
k

f e
k

(
x
)

f e
k−1

(
x
)

object class distribution f e
k

(
x
)

feature zk

off-line

on-line

Figure 5.8: Flow chart of the active object recognition system.

In contrast to prior art, the proposed method is very general as it is not restricted
to specific image features. Furthermore, camera parameters can be arbitrary and
continuous valued. All derivations hold for arbitrary GP covariance functions.

5.3.1 Object Classification
Object recognition can be considered a classification task where the state cor-
responds to the object class x ∈X , {

x1, x2, . . . xN
}⊂N, with N being the finite

number of possible object classes. For classification purposes, the state is repre-
sented by means of discrete random variable x ∈X . Based on a feature vector
zk ∈Z ⊆Rnz acquired from images at time/stage k = 0,1, . . ., the goal is to esti-
mate the true latent object class. The measurement model

zk = h
(
x , ak

)+v k (5.22)

relates the feature vector with the object class. The quantity ak ∈A⊆Rna is the
camera parameter that allows actively driving the classification process. Potential
camera parameters are position, orientation, focal length, or exposure time, just
to name a few. For active object recognition, an appropriate camera parameter
has to be chosen at every stage k in order to improve the recognition performance
and speed.

158 5 Applications

5.3.2 Learning
An analytical expression of the measurement model (5.22) is not available in gen-
eral as it describes a complex transformation of a potentially high-dimensional
feature vector to an abstract object class. To overcome this issue, a GP model
is learned to represent (5.22). As the feature is typically multi-dimensional, for
each dimension e = 1. . .nz of zk a separate GP is learned independently using

the same training inputs X but different training outputs ẑe ,
[
ẑe

1 . . . ẑe
n

]T. An
alternative to this procedure are so-called multi-output GPs [25].

Furthermore, learning the GPs for each feature vector dimension has to be per-
formed independently for each object class xi , i = 1. . . N . This results in N multi-
variate GPs hi (.) ∼ GP of dimension nz named object models in the following.
To learn an object model hi , samples al , l = 1. . .n of the parameter space A are
used as training inputs X. For each input sample al , an object of the class xi ∈X
is observed by the camera resulting in the feature vector ẑ l =

[
ẑ1

l ẑ2
l . . . ẑnz

l

]T

acting as training output. In total, for nz output dimensions and N object classes,
nz × N GPs are learned. Since learning these measurement models is an off-
line task (see Figure 5.8), the required computation time is independent of the
computation time for object recognition. Furthermore, for high-dimensional
features, which may be obtained for instance by means of the scale-invariant fea-
ture transform (SIFT, [115]), dimensionality reduction techniques like principal
component analysis [2] or GP latent variable models [199] can be employed in
order to reduce the number of GPs to be learned.

5.3.3 Estimation
To estimate the object class for a given camera parameter ak and feature vector
ẑk the Bayesian measurement update step (1.7) is employed2, where the density
f e

k (x) in the given object recognition task corresponds to a discrete distribution
modeled as a mixture of Kronecker deltas according to

f e
k (x) =

N∑
i=1

ωk,i ·δx,i . (5.23)

2 Due to the implicit assumption that the feature vectors zk for k = 0,1, . . . are conditionally inde-
pendent given x , this form of Bayesian classification/object recognition is known as naive Bayes
classifier [60]. Even though this assumptions might not be true, naive Bayes classifiers showed a
good classification performance in practice [57].

5.3 Active Object Recognition 159

As the state is static—the object does not change its class over time—no pre-
diction is performed and thus it holds that f p

k (x) ≡ f e
k−1(x). The weight ωk,i

represents the probability that object x belongs to class i . The weights are non-
negative and sum up to one. The measurement update boils down to updating
the weights whenever a new feature vector ẑk is available. Before providing the
weight update equation, it is first necessary to investigate the structure of the
likelihood.

Likelihood

In contrast to (1.7), the likelihood in the considered recognition task also depends
on the camera parameter. In case of a given object class x = i , the likelihood
f
(
ẑk | x = i , ak

)
corresponds to the GP hi . If in addition the camera parameter ak

is given, the likelihood becomes a Gaussian density N
(
ẑk ;µz

k,i
,Cz

k,i

)
with mean

vector and covariance matrix according to

µz
k,i

=
[
µ1

k,i µ
2
k,i . . . µnz

k,i

]T
,

Cz
k,i = diag

((
σ1

k,i

)2
,
(
σ2

k,i

)2
, . . . ,

(
σ

nz
k,i

)2)
,

(5.24)

respectively. The elements in (5.24) corresponding to dimension e = 1. . .nz are
calculated according to (4.6) and (4.7), respectively, with ak acting as test input
x and ẑe being the training output vector yD. Overall, the likelihood for a fixed

ak can be characterized by means of the conditional density

f
(
ẑk | x, ak

)= N∑
i=1

δx,i ·N
(
ẑk ;µz

k,i
,Cz

k,i

)
. (5.25)

It is important to note that for a fixed feature vector ẑk —as required for solving
Bayes’ equation—the conditional density in (5.25) becomes a weighted sum of
Kronecker deltas as in (5.23), because all Gaussian components are evaluated at
ẑk and thus, become scalar weighting coefficients.

Posterior Weights

Given the likelihood in (5.25), the measurement update can be evaluated analyti-
cally resulting in a weight update at stage k according to

ωk,i = ck ·ωk−1,i ·N
(
ẑk ;µz

k,i
,Cz

k,i

)

160 5 Applications

for object class i = 1. . . l , where ck =
(∑

i ωk−1,i ·N
(
ẑk ;µz

k,i
,Cz

k,i

))−1
is a normal-

ization constant and ωk−1,i are the weights of f e
k−1(x).

5.3.4 Planning
So far, the camera parameter ak was assumed to be given. But in active object
recognition, an action is chosen automatically by the imaging system itself for
acquiring high informative observations. For this purpose, the optimization
problem

a∗
k = arg max

ak

I
(
x , zk | ak

)
(5.26)

is formulated to determine the optimal action a∗
k to be applied at stage k. Since

solving (5.26) results in the camera parameters to be applied next, it is often
referred to as next-best-view planning (see e.g. [153]). As objective function in
(5.26), the mutual information

I
(
x , zk | ak

)=Ï
f
(
x, zk

)
· log

f
(
x, zk

)
f
(
x
)

· f
(
zk

) dx dzk (5.27)

between state and feature vector given a camera parameter is considered. This
measure quantifies the amount of information the knowledge of an observation
reveals about the state and vice versa. It is closely related to Shannon’s entropy
and zero only iff both variables are independent [45].

Unfortunately, an analytical calculation of the mutual information is not possible
as it requires evaluating the logarithm of a Gaussian mixture representing zk .
To obtain a computationally cheap and robust approximation, the alternative
formulation of the mutual information according to

I
(
x , zk | ak

)= H
(
zk | ak

)−H
(
zk | x , ak

)
(5.28)

is employed, where H(x) is the differential entropy

H(x) =−
∫

f (x) · log f (x) dx .

The second term in (5.28) has an analytical expression, while the first term can
be bounded from below as shown in [85].

5.3 Active Object Recognition 161

Figure 5.9: Cups with different labels.

The optimization problem in (5.26) neither is convex nor possesses it a closed-
form solution. To increase the probability of finding the optimal camera parame-
ter or at least to ensure finding a parameter that is very close to the optimal one,
so-called multi-start optimization is performed (see e.g. [179]). Here, optimiza-
tion is repeated from varying initial points. To cover the camera parameter space
A uniformly, the initial points form a regular grid on A.

Example 29: Recognizing Cups

The object to be recognized in this example are synthetically generated
cups as depicted in Figure 5.9. Eight different cups exist, all being identical
except for a label that is cut through the surface. The labels of six cups are
visible from the same perspective, one is visible from the opposite point of
view and one cup is not labeled at all.

For learning and recognition, 100×100 pixel normalized grayscale images
are generated from the cups, where zero-mean Gaussian noise with vari-
ance 14.7 is added. 1D and 2D features are extracted from the images. In
the 1D case, the mean gray value is considered. The eigenspace or prin-
cipal component decomposition approach proposed in [126] is used for
extracting 2D features, where the two largest eigenvalues are taken into
account.

By means of the camera parameter, the position can be changed in one
or two dimensions. In the 1D case, the camera moves on a circle that is
parallel to the horizontal plane and centered at the object. In the 2D case,
the camera position can be varied on a sphere centered at the object. Here,
the actions correspond to the azimuth and elevation angles.

To learn the GPs, each dimension of the action space is sampled regularly
in 10 decimal degree steps, i.e., for the one-dimensional circular action
space, this leads to 36 sample images.

162 5 Applications

For comparison, the following active object recognition approaches are
considered:

Planner The proposed approach, where 5 and 15 initial points for
optimization are exploited for the 1D and 2D action space,
respectively.

Grid An approach similar to [55], where at each stage the action
maximizing the mutual information is taken from a finite set.
Here, this finite set coincides with the set of initial points of
the Planner.

Random Actions are selected uniformly at random.

For each combination of feature and action space, 50 MC simulation runs
are performed, where the true cup is selected uniformly at random. The
initial distribution f e

0 (x) is uniform. A decision about the object type is
made if either the probability (weight) of one object class exceeds 0.95 or
after eight stages.

For the 2D action space, the mutual information surface for three cups is
plotted in Figure 5.10a. Here, the optimal action is indicated by the red
circle, which corresponds to an elevation angle of approximately 45o . For
this action, the corresponding views on the three cups are depicted in
Figure 5.10b–d. It can be seen that this view facilitates to look inside the
cups and thus, allows an easy discrimination of all three cups.

The average values over the 50 simulation runs in terms of recognition rate,
number of views, and maximum object probability are listed in Table 5.1.
It can be seen that the Planner performs best with respect to almost any
performance indicators. In comparison to Random, the number of stages
after which a recognition decision is made is significantly lower. Simultane-
ously, the certainty in this decision is much higher as the average maximum
object probability indicates. The performance of the Grid approach is of-
ten close to the proposed approach. But the significantly lower number
of views of the Planner shows the benefits of performing a continuous
optimization for next-best-view planning. In contrast to both Grid and
Random, the proposed Planner can take advantage of an increasing feature
and action dimension, i.e., with an increasing dimension the recognition
rate increases as well and the number of views decreases.

A high object probability not necessarily coincides with the best recognition
rate as seen in the case of the 1D action space and 2D feature space. While

5.3 Active Object Recognition 163

(b) (c) (d)

(a)

-0.2

0

0.5

1

1.5

I(
x

,z
)→

90

45

0

-45

-90

←
elevation / deg

0

90

180

270

360

azimuth / deg →

Figure 5.10: (a) Lower bound of mutual information with optimal view/action (red
circle). (b)–(d) View of three of the cups corresponding to the optimal action.

Table 5.1: Cup recognition. (a) recognition rate in percent, (b) average number of
views, (c) average maximum object probability.

Dim.
A /Z

Planner Grid Random
(a) (b) (c) (a) (b) (c) (a) (b) (c)

1 / 1 66 6.06 0.74 62 6.1 0.71 50 7.32 0.53
1 / 2 88 3.08 0.97 74 4.96 0.89 94 6.88 0.81

2 / 1 92 2.5 0.99 62 4.1 0.95 76 6.34 0.70
2 / 2 100 1.88 0.99 88 2.5 0.97 68 6.92 0.74

164 5 Applications

Random merely relies on the GP object models for estimation, Grid and
Planner additionally use the models for planning. Thus, a bootstrapping
effect can cause the decision maker to get stuck in a repetitive pattern. The
quality of the GP models is essential for the recognition process and thus,
under- and over-fitting require special attention.

5.4 Summary

For the applications considered in this chapter, not only the novel algorithms
proposed in the previous chapters of this thesis have been turned into practice.
Also several additional contributions have been suggested:

• (Semi-)Analytical measurement updates for position estimation and pose
estimation: By considering a squared range measurement equation a novel
computationally efficient closed-form position estimation is derived. In
case of pose estimation, this analytical solution can be exploited thanks to
the nonlinear-nonlinear decomposition proposed in Section 2.5.2.

• On-line source estimation based on Gaussian plume model: The state-
of-the-art focuses on off-line MCMC methods for source estimation. By
employing the Gaussian plume dispersion model as a measurement model
and by modeling the unknown source parameters as state vector with
Gaussian mixture density representation facilitates a computationally light-
weight but highly accurate source estimation.

• Gaussian process object models for active object recognition: Instead of a
discretization of the camera parameter space, which is common in the
state-of-the-art, the mapping from the latent object class to the feature
vector is learned by means of GP regression. This approach can be applied
in various recognition scenarios as it is not restricted to specific features,
camera parameters, or covariance functions.

• Efficient next-best-view planning based on lower bound approximation of
mutual information: The GP object models together with a novel lower
bound on the mutual information allow optimizing the camera parameters
on a fine-grained level and with low computational overhead.

6
Concluding Remarks

6.1 Conclusions

Gaussian filtering lays the foundation to all contributions made in this thesis.
In many real-world applications, the Gaussian assumption is valid and thus,
sufficient for accurate filtering. In addition, thanks to its algebraical simplicity,
Gaussian filtering can be performed in an efficient and scalable manner. The
contributions in this thesis exploit closed-form solutions that exist for particu-
lar nonlinear models, which leads to a further improvement of the estimation
performance and computational efficiency. By means of the proposed decom-
position techniques and polynomial approximation, these benefits can even be
utilized for problems that are not fully covered by any of the closed-form cases.
The experiments and simulations performed for position and pose estimation
provide evidence that the proposed Gaussian filtering techniques lead to an
improvement compared to state-of-the-art approaches like the EKF or the UKF.

For more complex filtering problems, where the Gaussian assumption no longer
holds, the contributions made for Gaussian filtering are not necessarily inappli-
cable. Quite the contrary, embedding Gaussian filtering into a Gaussian mixture
framework turns out to be a very powerful estimation tool. Most of the sim-
plicity of Gaussian filtering remains by this migration. Merely some additional

165

166 6 Concluding Remarks

“management” tasks have to be performed for Gaussian mixture filtering. The
contributions in this thesis serve these tasks, which are mainly concerned with
controlling the number of mixture components. Especially for the proposed
adaptive splitting scheme there is experimental evidence that by exploiting the
linearization error for introducing components leads to a significant improve-
ment of the estimation performance, while the number of additional compo-
nents can be kept on a low level. It has been shown that continually adding and
removing components is better than filtering with a constantly high number of
mixture components. Furthermore, all computations can be performed on-line,
which is beneficial over other accurate estimation techniques like MCMC, which
only allows off-line or batch processing.

In case of missing mathematical models that describe the system dynamics and
sensor characteristics, Gaussian process regression is suggested to learn proba-
bilistic models from data. Given such a GP model, filtering and smoothing can be
performed in closed form when restricting to Gaussian distributions. By means
of simulations it has been shown that the obtained estimation performance is
superior compared to state-of-the-art Gaussian filters, even in cases where these
filters utilize the exact model. To bound the computational complexity with
a growing data set, a recursive GP regression algorithm has been proposed in
addition. Here, the hyperparameters of the GP are learned by means of utilizing
the proposed Gaussian filtering techniques, which facilitates on-line learning.

Besides aiming for computationally efficient Bayesian filtering, the contribu-
tions made in this thesis lead to a lower user involvement. That is, many of the
proposed algorithms can be operated in a black-box fashion. Examples are the
automatic Chebyshev series expansion by means of the discrete cosine transform
(Section 2.5.3), adaptive Gaussian mixture splitting (Section 3.4.1), automatic
model selection in the mixture reduction (Section 3.4.3), or the on-line hyperpa-
rameter optimization for GPs (Section 4.5.4). In doing so, the application of these
algorithms to a given problem can be simplified, which reduces deployment time
and operational costs.

6.2 Future Work

In all three pillars considered in this thesis there is enough room for further
improvements and extensions. In the following, an outlook on future work is
provided.

6.2 Future Work 167

Gaussian Filtering

One of the contributions in this thesis that currently requires a significant amount
of manual inspection is the nonlinear-nonlinear decomposition in Section 2.5.2.
An expert has to investigate manually which parts of the state are analytically
integrable and which are not. To facilitate an automatic decomposition, one
idea is to utilize Risch’s algorithm1 [149, 150] together with a decomposition
exploration algorithm similar to the one proposed in [102].

The moment homotopy for polynomial nonlinearities in Section 2.5.5 is a first
step towards removing the joint Gaussian assumption between state and mea-
surement. In general, it is desirable to perform Gaussian filtering without this
assumption for arbitrary nonlinearities to improve the robustness and to reduce
the estimation error. First approaches in this direction can be found in [74, 105].

The measurement update of the Gaussian filter for polynomial nonlinearities
can naturally output a full exponential density representation. Maintaining this
representation also over the prediction, however, is more difficult as neither the
predicted density nor even the predicted moments can be expressed analytically.
Even if the predicted moments were available, determining an exponential den-
sity that matches the moments is also not possible in closed form. See [147] for a
first step to solve this issue.

The CPKF proposed in Section 2.5.3 is operational for one-dimensional states so
far. The next step is to extend it to multiple dimensions. While this is straight-
forward in terms of the Chebyshev series expansion, closed-form moment cal-
culation for Gaussians mapped through multi-dimensional polynomials is still
computationally demanding. The results in [97] already lowered the computa-
tions significantly compared to previous approaches, but the moment recursion
proposed in Section 2.5.4 might offer a way to a further reduction.

Gaussian Mixture Filtering

Thanks to the individual processing of the Gaussian components considered
in this thesis, Gaussian mixture filters directly benefit from any improvement
achieved for Gaussian filters. Thus, the outlook on future work for mixture
filters is mainly focused on the refinement and reapproximation operations of
Algorithm 3.

1 More precisely, a realization of this algorithm in modern computer algebra systems.

168 6 Concluding Remarks

The SGMR algorithm proposed in Section 3.4.3 so far is only applicable for one-
dimensional and two-dimensional mixtures due to the use of the curvature
as roughness penalty. Thus, future work is dedicated to explore and propose
curvature measures for higher dimensions.

Splitting a Gaussian component into many as discussed in Section 3.4.2 takes
the linearization error into account. This procedure is generally applicable, but
can be enhanced by application-specific criteria. For instance, for the source
estimation application considered in Section 5.2, it might be beneficial to also
take the distance between sensor location and component mean into account.
This avoids situations where no component is split due to large distances—the
Gaussian plume model is then approximately linear. In this case, the AGMF de-
generates to a simple Gaussian mixture filter with a fixed number of components.

The source estimation application gives room for further improvements. Cur-
rently it is assumed that the number of sources is known a priori, but actually
new sources might appear spontaneously or an existing source might disappear
over time. Such birth and death processes being common in multiple target
tracking (see e.g. [185]) should be incorporated.

Gaussian Process Filtering

For the GP-ADF and GP-RTSS proposed in Section 4.5.1 and Section 4.5.2, re-
spectively, it is assumed that training data of the state is given, but as this state
is hidden, this assumption is impractical for many applications. The GP for the
system and the measurement model has to be learned without the need of direct
access to the hidden states. This can be achieved by means of Expectation Maxi-
mization since both GP-ADF and GP-RTSS allow for gradient-based parameter
optimization.

The number and placement of the basis vectors required for the RGP in Sec-
tion 4.5.3 has not been discussed. The algorithm supports adding and removing
basis vectors on-line, which allows correcting an insufficient initial selection of
basis vectors. However, a criterion that facilitates a good choice of new basis
vectors is left for future work. Techniques used in active learning [109] or sensor
planning [82] for instance can be utilized for this purpose.

Rather straightforward to extend is the on-line hyperparameter learning pro-
posed in Section 4.5.4. Instead of restricting to a Gaussian representation of the
hyperparameters, also Gaussian mixtures can be used by means of exploiting the
techniques proposed in Chapter 3.

A
Particle Filtering

Monte Carlo (MC) methods for solving the integrals appearing in Bayesian filter-
ing became popular from the 1980s on, with the advent of cheap but powerful
micro-processors. In contrast to the previously popular Kalman filtering meth-
ods and its derivatives, MC methods make no assumptions regarding the models
or density functions. In the following, a brief introduction to particle filters is
given, which are a popular form of MC approximations to Bayesian filtering.

A.1 Perfect Monte Carlo Sampling

MC methods rely on a non-parametric representation of the density function
f
(
x | ẑ0:k

)
by means of a set of n independent and identically distributed samples

x(i), i = 1. . .n. These samples are often named particles, which led to the naming
particle filters. Given the sample set, the density function can be approximated
as a sum of Dirac delta distributions according to

f
(
x | ẑ0:k

)≈ 1
n

n∑
i=1

δ
(
x −xi

)
. (A.1)

169

170 A Particle Filtering

For an arbitrary nonlinear function g
(
x
)

:Rnx →Rny , this representation leads
to a perfect MC approximation of the expectation calculation

E
{

g
(
x
)}=

∫
g
(
x
)

· f
(
x | ẑ0:k

)
dx

(A.1)≈ 1
n

n∑
i=1

g
(
x(i)) . (A.2)

The central limit theorem guarantees that the MC approximation converges
with an increasing number of particles, regardless of the dimension of x . This
dimensionless property is unique to MC methods compared to other (determin-
istic) numerical integration methods, at least from a theoretical point of view
[58]. However, practice shows that the number of required particles also grows
exponentially with the dimension of x (see e.g. [48]).

Despite the nice theoretical properties of MC approximation, sampling from
f
(
x | ẑ0:k

)
is often very difficult as the density typically has a complicated func-

tional form and is only known up to a normalization constant. A solution to this
issue is importance sampling.

A.2 Importance Sampling

The key idea of importance sampling is to use an approximation densityπ
(
x | ẑ0:k

)
called importance function instead of f

(
x | z1:k

)
. Samples can be drawn much

easier from the importance function [183]. If it holds that π
(
x | ẑ0:k

)> 0 whenever
f
(
x | ẑ0:k

)> 0 then the expectation in (A.2) can be decomposed to

E
{

g
(
x
)}=

∫ (
g
(
x
) f

(
x | ẑ0:k

)
π

(
x | ẑ0:k

))
π
(
x | ẑ0:k

)
dx = E

{
g
(
x
)

·ω
(
x
)}

,

with weight ω
(
x
)
,

f (x|ẑ0:k)
π(x|ẑ0:k) . By now drawing samples xi from the importance

function and not from the density f
(
x | ẑ0:k

)
, the expectation in (A.2) can be

approximated as

E
{

g
(
x
)}=

n∑
i=1

ω(i) · g
(
x(i))

with normalized weights

ω(i) = ω
(
x(i)

)∑n
i=1ω

(
x(i)

) (A.3)

A.2 Importance Sampling 171

Thus, the set of particles now comprises the particles itself and the corresponding
weights (A.3). Accordingly, the density is approximated by means of a weighted
sum of Dirac delta distributions

f
(
x | ẑ0:k

)≈ n∑
i=1

ω(i) ·δ
(
x −x(i)) .

A.2.1 Sequential Importance Sampling
Importance sampling as introduced above does not allow for recursive filtering
as required for models of the form

xk ∼ f
(
xk | xk−1

)
,

zk ∼ f
(
zk | xk

)
,

where the state xk varies with the time k. Instead, one would have to recalculate
the weights whenever new measurements become available, which leads to a
growing computational demand with an increasing number of measurements
and time, respectively. The main reason of this drawback lays in the definition
of the importance function. For recursive processing, the importance function
itself has to follow a recursion according to

π
(
x0:k | ẑ0:k

)=π(
xk | x0:k−1, ẑ0:k

)
·π

(
x0:k−1| ẑ0:k−1

)
,

which leads to a recursive expression for the weights

ω(i)
k ∝

f
(
ẑk | x(i)

k

)
· f

(
x(i)

k | x(i)
k−1

)
π

(
x(i)

k | x(i)
0:k−1, ẑ0:k

) ·
f
(
x0:k−1| ẑ0:k−1

)
π

(
x(i)

0:k−1| ẑ0:k−1

)
︸ ︷︷ ︸

∝ω(i)
k−1

. (A.4)

This recursion follows from the observation that the samples x(i)
0:k−1 have already

been drawn from the importance function π
(
x0:k−1| ẑ0:k−1

)
and the weightsω(i)

k−1

have already been calculated in the time step k −1. Thus, the samples x(i)
0:k can

been obtained from π
(
x0:k | ẑ0:k

)
by drawing x(i)

k from π
(
xk | x(i)

0:k−1, ẑ0:k

)
. This

efficient MC approximation of drawing samples and calculating the weights

172 A Particle Filtering

according to (A.4) is called sequential importance sampling (SIS), which leads to
the approximation

f e
k

(
xk

)≈ n∑
i=1

ω(i)
k ·δ

(
xk −x(i)

k

)
(A.5)

of the posterior density of the state xk .

A.2.2 Choice of Importance Function
The SIS is still formulated quite generally as the concrete choice of the impor-
tance function leaves many degrees of freedom. A common further very practical
restriction made is to apply the Markov assumption, which leads to

π
(
xk | x0:k−1, ẑ0:k

)=π(
xk | xk−1, ẑ0:k

)
.

In doing so, it is no longer necessary to store the whole particle trajectory x(i)
0:k ,

but only the current particles x(i)
k . It can be shown, that the optimal importance

function minimizing the variance of the weights ω(i)
k is given by

π
(
xk | xk−1, ẑ0:k

)= f
(
xk | xk−1, ẑk

)
,

but unfortunately the optimal importance function is typically not given in ana-
lytic form and drawing samples from it is not possible [59]. One approximation
often applied to circumvent this issue is it utilize Gaussian filtering techniques
like linearization (see Section 2.2.3) or linear regression (see Section 2.2.5), which
leads for instance to the extended particle filter or unscented particle filter [200].

Another variation of SIS is the employ the transition density f
(
xk | xk−1

)
as im-

portance function. This choice leads to the bootstrap filter [70] allowing a very
simple implementation as drawing the particles x(i)

k corresponds to evaluating

the system function ak (.) on the given particles x(i)
k−1 and samples from the sys-

tem noise w k . The drawback of the bootstrap filter is that no measurement

information is used for drawing x(i)
k , which typically leads to a very large number

of particles for accurate estimates.

A.2.3 Resampling
By applying SIS it easily happens that over time almost all particles have a weight
of (nearly) zero, which effectively reduces the number of particles. To overcome

A.2 Importance Sampling 173

i = 1. . .n = 10 particles {
x(i)

k−1, 1/n

}

{
x(i)

k−1,ω(i)
k−1

}
{

x̃(i)
k−1, 1/n

}
{

x(i)
k , 1/n

}

{
x(i)

k ,ω(i)
k

}

Update

Resampling

Prediction

Update

Figure A.1: SIR starts with a particle set
{

x(i)
k−1, 1/n

}
at time step k −1. The weight of

each particle is updated given the current measurement value ẑk−1, which results in

the particle set
{

x(i)
k−1,ω(i)

k−1

}
representing the posterior f e

k−1

(
xk

)
. The resampling

step duplicates the particles with high weights. The resulting particle set
{

x̃(i)
k−1, 1/n

}
still represents the posterior f e

k−1

(
xk

)
. Drawing the particles x(i)

k from the impor-
tance function, which corresponds to the prediction step, leads to the particle set{

x(i)
k , 1/n

}
representing the predicted density f

p
k

(
xk

)
. (Image adapted from [58])

this sample degeneration problem a so-called resampling step has to be applied
in addition. Here, after performing the weight update according to (A.4), n new
particles are drawn from the posterior (A.5) that replace the current particle set.
The new particles all have the same weight 1/n.

Over the years many resampling methods have been proposed (see e.g. [36,
101, 114]). The key idea of any resampling is to remove particles with small

174 A Particle Filtering

weights and duplicate those with a large weight. MC methods with an additional
resampling step are called sequential importance resampling (SIR), which are
more known under the term particle filter (PF). In Figure A.1 the steps of a PF are
depicted.

B
Performance Measures

In this chapter, some measures quantifying the estimation performance of
Bayesian filtering algorithms are briefly introduced.

B.1 Root Mean Square Error

Generally, the error between the estimated mean µx
k

and the true state xk is

defined as
ek , xk −µx

k
, (B.1)

which is a vector of dimension-wise errors ek,i = xk,i −µx
k,i for i = 1. . .nx . A

standard performance measure for Bayesian filters depending on the error (B.1)
is the root mean square error (rmse) defined by

rmsei ,

√√√√ 1

K

K∑
k=1

e2
k,i

for dimension i = 1. . .nx , where K is the number of time steps.

175

176 B Performance Measures

In this thesis, MC simulations are used besides real data in order to evaluate the
performance of a filter. In case of MC simulations, the rmse for each time step
over the different simulations can be evaluated. Hence, the rmse for time step k
and dimension i is given by

rmseMC
i ,

√
1

nMC

nMC∑
m=1

(
em

k,i

)2

where em
k,i is the estimation error of dimension i for the mth MC simulation run

and nMC is the number of MC simulation runs.

B.2 Mean Absolute Error

A performance measure very similar to the rmse is the mean absolute error (mae),
which is defined as

maei ,
1

K

K∑
k=1

∣∣ek,i
∣∣ (B.2)

for dimension i = 1. . .nx .

B.3 Normalized Estimation Error Square

The rmse and mae merely takes the mean of the estimated state into account.
The normalized estimation error square (nees) considers the uncertainty of the
estimation in addition. It is defined as

neesk ,
(
xk −µx

k

)T (
Cx

k

)−1
(
xk −µx

k

)
,

which corresponds to a weighted Euclidean distance of the state errors at time
step k, where the weight is given by the inverse state covariance matrix. Due
to incorporating the inverse covariance matrix, a large estimation error has a
small contribution to the nees if the covariance is large and conversely, a large
estimation error contributes more in case of a small covariance. Thus, this
measure allows indicating a consistent filter.

B.4 Negative Log-Likelihood 177

In contrast to the rmse, the nees is a dimensionless quantity. It is χ2-distributed
with nx degrees of freedom if the state estimate is Gaussian [71]. The nees is also
known as Mahalanobis distance.

B.4 Negative Log-Likelihood

An alternative to the nees that is often used in machine learning is the negative
log-likelihood (nll)

(filtering) nllk ,− log f x
k

(
xk

)
,

(learning) nll,−
n∑

i=1
log f

(
ẑi | x

)
,

(B.3)

where the first term is used for performance measurement in filtering, while the
second term is used in a model learning context e.g. via GPs in this thesis. The
dependence of the latter definition on the likelihood f

(
ẑ| x

)
explains the naming

of this performance measure. In general, the nll quantifies how well a realization
(true state or measurement value) can be explained by the given (estimated or
learned) density function.

In case of a Gaussian state density, the first nll term in (B.3) can be formulated to

nllk = log
√∣∣2πCx

k

∣∣+ 1
2

(
xk −µx

k

)T (
Cx

k

)−1
(
xk −µx

k

)
.

The second term in (B.3) can be resolved similarly. It can be see that the nll con-
sists of the nees and a term that penalizes a too large covariance matrix, which
allows discovering of overestimation.

C
�adratic Programming

Optimization problems with quadratic objective function and affine constraints
are called quadratic programs (QPs). Hence, a quadratic program is defined as

min
x

1
2 · xTQx +qT · x + c

s.t. G · x ¹ h

A · x = b ,

(C.1)

where Q is a symmetric matrix and c is a constant. Solving a QP generally is
NP-hard [156]. However, if the matrix Q is in addition positive definite, a QP
becomes a special case of a convex optimization problem and thus, any locally
optimal solution to (C.1) is also globally optimal. This optimal solution can be
determined in polynomial time for instance by means of an ellipsoid method.
For further reading on QP and convex optimization in general see [24].

179

Bibliography

[1] Fahed Abdallah, Amadou Gning, and Philippe Bonnifait. Box Particle Fil-
tering for Nonlinear State Estimation using Interval Analysis. Automatica,
44(3):807–815, March 2008.

[2] Hervé Abdi and Lynne J. Williams. Principal Component Analysis. In
Wiley Interdisciplinary Reviews: Computational Statistics, volume 2, pages
433–459. Wiley, New York, July 2010.

[3] Simo Ali-Löytty. Efficient Gaussian Mixture Filter for Hybrid Positioning. In
Proceedings of the IEEE/ION Position, Location and Navigation Symposium,
pages 60–66, Monterey, CA, May 2008.

[4] Simo Ali-Löytty. Gaussian Mixture Filters in Hybrid Positioning. PhD thesis,
Tampere University of Technology, Tampere, Finland, August 2009.

[5] Simo Ali-Löytty and Niilo Sirola. Gaussian Mixture Filter in Hybrid Naviga-
tion. In Proceedings of the European Navigation Conference, pages 831–837,
May 2007.

[6] Simo Ali-Löytty and Niilo Sirola. Gaussian Mixture Filters for Hybrid Posi-
tioning. In Proceedings of the 20th International Technical Meeting of the
Satellite Devision of the Institute of Navigation (ION GNSS), pages 562–569,
Fort Worth, TX, September 2007.

[7] Daniel L. Alspach and Harold W. Sorenson. Nonlinear Bayesian Estimation
using Gaussian Sum Approximation. IEEE Transactions on Automatic
Control, 17(4):439–448, August 1972.

[8] Brian D. O. Anderson and John B. Moore. Optimal Filtering. Dover Publi-
cations, 2005.

181

182 Bibliography

[9] Christophe Andrieu and Arnaud Doucet. Particle filtering for partially
observed Gaussian state space models. Journal of the Royal Statistical
Society: Series B, 64(4):827–836, 2002.

[10] Ienkaran Arasaratnam. Cubature Kalman Filtering: Theory & Applications.
PhD thesis, McMaster University, April 2009.

[11] Ienkaran Arasaratnam and Simon Haykin. Cubature Kalman Filters. IEEE
Transactions on Automatic Control, 54(6):1254–1269, June 2009.

[12] Ienkaran Arasaratnam and Simon Haykin. Cubature Kalman Smoothers.
Automatica, 47(20):2245–2250, October 2011.

[13] Ienkaran Arasaratnam, Simon Haykin, and Robert J. Elliott. Discrete-
Time Nonlinear Filtering Algorithms Using Gauss–Hermite Quadrature.
Proceedings of the IEEE, 95(5):953–977, 2007.

[14] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A
Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking. IEEE Transactions on Signal Processing, 50(2):174–188, February
2002.

[15] S. Bancroft. An Algebraic Solution of the GPS Equations. IEEE Transactions
on Aerospace and Electronic Systems, AES-21(1):56–59, January 1985.

[16] Richard E. Bellman. Dynamic Programming. Princeton University Press,
1957.

[17] Frederik Beutler, Marco F. Huber, and Uwe D. Hanebeck. Instantaneous
Pose Estimation using Rotation Vectors. In Proceedings of the 34th Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pages 3413–3416, Taipei, Taiwan, April 2009.

[18] Frederik Beutler, Marco F. Huber, and Uwe D. Hanebeck. Semi-Analytic
Stochastic Linearization for Range-Based Pose Tracking. In Proceedings
of the 2010 IEEE International Conference on Multisensor Fusion and In-
tegration for Intelligent Systems (MFI), pages 44–49, Salt Lake City, Utah,
September 2010.

[19] Jürgen Beyerer. Verfahren zur quantitativen statistischen Bewertung von
Zusatzwissen in der Messtechnik. VDI Fortschritt-Berichte, Reihe 8, Num-
mer 783, 1999.

Bibliography 183

[20] Samuel S. Blackman. Multiple-Target Tracking with Radar Applications.
Norwood, MA: Artech House, 1986.

[21] Hermann Borotschnig, Lucas Paletta, Manfred Prantl, and Axel Pinz.
Appearance-Based Active Object Recognition. Image and Vision Com-
puting, 18:715–727, 2000.

[22] John E. Bortz. A New Mathematical Formulation for Strapdown Inertial
Navigation. IEEE Transactions on Aerospace and Electronic Systems, AES-
7(1):61–66, January 1971.

[23] Mieczyslaw Borysiewicz, Anna Wawrzynczak, and Piotr Kopka. Bayesian-
Based Methods for the Estimation of the Unknown Model’s Parameters in
the Case of the Localization of the Atmospheric Contamination Source.
Foundations of Computing and Decision Sciences, 37(4):253–270, 2012.

[24] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

[25] Philipp Boyle and Marcus Frean. Dependent Gaussian Processes. In
Lawrence K. Saul, Yair Weiss, and Leon Bottou, editors, Advances in Neural
Information Processing Systems 17, pages 217–224. MIT Press, 2005.

[26] Kai P. Briechle. Nichtlineare Filterverfahren mit Anwendung auf
Lokalisierungsprobleme. PhD thesis, Technische Universität München,
March 2003.

[27] Damiano Brigo and Francois Le Gland. A Finite Dimensional Filter with Ex-
ponential Density. In Proceedings of the 1997 IEEE Conference on Decision
and Control (CDC), volume 2, pages 1643–1644, San Diego, CA, 1997.

[28] Damiano Brigo, Bernard Hanzon, and Francois Le Gland. A Differential
Geometric Approach to Nonlinear Filtering: the Projection Filter. Tech-
nical Report 2598, Insitut National De Recherche en Informatique et en
Automatique, June 1995.

[29] Damiano Brigo, Bernard Hanzon, and Francois Le Gland. Approximate
Nonlinear Filtering by Projection on Exponential Manifold of Densities.
Bernoulli, 5(3):495–534, June 1999.

[30] Vladimir Britanak, Patrick C. Yip, and Kamisetty R. Rao. Discrete Cosine
and Sine Transforms: General Properties, Fast Algorithms and Integer Ap-
proximations. Academic Press, 2006.

184 Bibliography

[31] Pierrick Bruneau, Marc Gelgon, and Fabien Picarougne. Parsimonious
reduction of Gaussian mixture models with a variational-Bayes approach.
Pattern Recognition, 43:850–858, 2010.

[32] Lucian Buşoniu, Robert Babuska, Bart De Schutter, and Damien Ernst.
Reinforcement Learning and Dynamic Programming Using Function Ap-
proximators. CRC Press, 2010.

[33] Richard S. Bucy and Kenneth D. Senne. Digital synthesis of non-linear
filters. Automatica, 7(3):287–298, May 1971.

[34] James J. Caffery, Jr. A New Approach to the Geometry of TOA Location.
In Proceedings of 55th IEEE Vehicular Technology Conference, pages 1942–
1949, 2000.

[35] Manfredo Do Carmo. Differential Geometry of Curves and Surfaces.
Prentice-Hall, Englewood Cliffs, NJ, 1976.

[36] James Carpenter, Peter Clifford, and Paul Fearnhead. Improved parti-
cle filter for nonlinear problems. In IEE Proceedings Radar, Sonar and
Navigation, volume 146, pages 2–7, February 1999.

[37] M. D. Carrascal, M. Puigcerver, and P. Puig. Sensitivity of Gaussian plume
model to dispersion specifications. In Theoretical and Applied Climatology,
volume 48, pages 147–157. Springer, 1993.

[38] Subhash Challa, Yaakov Bar-Shalom, and Vikram Krishnamurthy. Nonlin-
ear Filtering via Generalized Edgeworth Series and Gauss-Hermite Quadra-
ture. IEEE Transactions on Signal Processing, 48(6):1816–1820, June 2000.

[39] K. C. Chang and Wei Sun. Scalable Fusion with Mixture Distributions
in Sensor Networks. In Proceedings of the 11th International Conference
Control, Automation, Robotics and Vision, pages 1252–1256, Singapore,
December 2010.

[40] Rong Chen and Jun S. Liu. Mixture Kalman Filters. Journal of the Royal
Statistical Society: Series B, 62(3):493–508, 2000.

[41] Zhe Chen. Bayesian Filtering: From Kalman Filters to Particle Filters,
and Beyond. Technical report, Adaptive Systems Laboratory, McMaster
University, 2003.

Bibliography 185

[42] Kwok-Wai Cheung and Hing Cheung So. A Multidimensional Scaling
Framework for Mobile Location Using Time-of-Arrival Measurements.
IEEE Transactions on Signal Processing, 53(2):460–470, February 2005.

[43] Martin Clark and Richard Vinter. A New Class of Moment Matching Filters
for Nonlinear Tracking and Estimation Problems. In 2006 IEEE Nonlinear
Statistical Signal Processing Workshop, pages 108–112, September 2006.

[44] C. W. Clenshaw. A note on the summation of Chebyshev series. Mathemat-
ical Tables and other Aids to Computation, 9(51):118–120, 1955.

[45] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
John Wiley & Sons, Inc., 1991.

[46] David F. Crouse, Peter Willett, Krishna Pattipati, and Lennart Svensson. A
Look At Gaussian Mixture Reduction Algorithms. In Proceedings of the 14th
International Conference on Information Fusion, Chicago, IL, July 2011.

[47] Lehel Csató and Manfred Opper. Sparse on-line Gaussian processes. Neu-
ral Computation, 14(3):641–668, March 2002.

[48] Fred Daum and Jim Huang. Curse of Dimensionality and Particle Filters.
In Proceedings of the 2003 IEEE Aerospace Conference, volume 4, pages
1979–1993, March 2003.

[49] Guido de Croon, Ida G. Sprinkhuizen-Kuyper, and Eric O. Postma. Com-
paring Active Vision Models. Image and Vision Computing, 27:374–384,
March 2009.

[50] Frank Deinzer, Joachim Denzler, and Heinrich Niemann. Viewpoint Selec-
tion - Planning Optimal Sequences of Views for Object Recognition. In In
International Conference on Computer Vision, pages 65–73. Springer, 2003.

[51] Marc P. Deisenroth. Efficient Reinforcement Learning Using Gaussian
Processes. PhD thesis, Karlsruhe Institute of Technology, 2010.

[52] Marc P. Deisenroth, Marco F. Huber, and Uwe D. Hanebeck. Analytic
Moment-based Gaussian Process Filtering. In 26th International Confer-
ence on Machine Learning (ICML), pages 225–232, Montreal, Canada, June
2009.

186 Bibliography

[53] Marc P. Deisenroth, Ryan Turner, Marco F. Huber, Uwe D. Hanebeck, and
Carl E. Rasmussen. Robust Filtering and Smoothing with Gaussian Pro-
cesses. IEEE Transactions on Automatic Control, 57(7):1865–1871, July
2012.

[54] Marc Peter Deisenroth and Henrik Ohlsson. A General Perspective on
Gaussian Filtering and Smoothing: Explaining Current and Deriving New
Algorithms. In Proceedings of the American Control Conference 2011, pages
1807–1812, San Francisco, CA, June 2011.

[55] Joachim Denzler and Christopher M. Brown. Information Theoretic Sensor
Data Selection for Active Object Recognition and State Estimation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(2):145–157,
February 2002.

[56] Peter J. Diggle and Paulo J. Ribeiro, Jr. Model-Based Geostatistics. Springer
Series in Statistics. Springer, 2007.

[57] Pedro Domingos and Michael Pazzani. On the Optimality of the Simple
Bayesian Classifier under Zero-One Loss. Machine Learning, 29:103–130,
1997.

[58] Arnaud Doucet, Nando de Freitas, and Neil Gordon. Sequential Monte
Carlo Methods in Practice. Statistics for Engineering and Information
Science. New York: Springer-Verlag, 2001.

[59] Arnaud Doucet, Simon J. Godsill, and Christophe Andrieu. On Sequen-
tial Monte Carlo Sampling Methods for Bayesian Filtering. Statistics and
Computing, 10:197–208, 2000.

[60] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification.
Wiley & Sons, 2nd edition, 2000.

[61] Yaakov Engel, Shie Mannor, and Ron Meir. The Kernel Recursive Least-
Squares Algorithm. IEEE Transactions on Signal Processing, 52(8):2275–
2285, August 2004.

[62] Friedrich Faubel and Dietrich Klakow. An Adaptive Level of Detail Ap-
proach to Nonlinear Estimation. In Proceedings of the 2010 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3958–3961, 2010.

Bibliography 187

[63] Friedrich Faubel, John McDonough, and Dietrich Klakow. The Split and
Merge Unscented Gaussian Mixture Filter. IEEE Signal Processing Letters,
16(9):786–789, September 2009.

[64] Brian Ferris, Dirk Hähnel, and Dieter Fox. Gaussian Processes for Signal
Strength-Based Location Estimation. In Proceedings of Robotics Science
and Systems, 2006.

[65] Wade Foy. Position-Location Solutions by Taylor-Series Estimation. IEEE
Transactions on Aerospace and Electronic Systems, AES-12(2):187–194,
March 1976.

[66] Arthur Gelb. Applied Optimal Estimation. MIT Press, 1974.

[67] Agathe Girard, Carl E. Rasmussen, Joaquin Quiñonero-Candela, and Rod-
erick Murray-Smith. Gaussian Process PriorsWith Uncertain Inputs Ap-
plication to Multiple-Step Ahead Time Series Forecasting. In Advances in
Neural Information Processing Systems 15, 2003.

[68] Agathe Girard, Carl Edward Rasmussen, and Roderick Murray-Smith. Gaus-
sian Process priors with Uncertain Inputs: Multiple-Step-Ahead Prediction.
Technical Report TR-2002-119, University of Glasgow, Department of Com-
puting Science, October 2002.

[69] Jacob Goldberger and Sam Roweis. Hierarchical Clustering of a Mixture
Model. In Proceedings of Neural Information Processing Systems (NIPS),
pages 505–512, 2005.

[70] Neil J. Gordon, David J. Salmond, and Adrian F. M. Smith. Novel approach
to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings on
Radar and Signal Processing, 140(2):107–113, April 1993.

[71] Karl Granström. Extended target tracking using PHD filters. PhD thesis,
Linköping University, 2012.

[72] Alexander G. Gray and Andrew W. Moore. ‘N-Body’ Problems in Statistical
Learning. In Advances in Neural Information Processing Systems 13, 2001.

[73] Uwe D. Hanebeck. Nonlinear Methods for State Estimation in Stochastic
Dynamical Systems – A Concise Introduction. Habilitation treatise, Tech-
nische Universität München, 2002.

188 Bibliography

[74] Uwe D. Hanebeck. PGF 42: Progressive Gaussian Filtering with a Twist. In
Proceedings of the 16th International Conference on Information Fusion,
Istanbul, Turkey, July 2013.

[75] Uwe D. Hanebeck, Kai Briechle, and Andreas Rauh. Progressive Bayes: A
New Framework for Nonlinear State Estimation. In Proceedings of SPIE,
AeroSense Symposium, volume 5099, pages 256–267, Orlando, Florida, May
2003.

[76] Uwe D. Hanebeck and Olga Feiermann. Progressive Bayesian Estimation
for Nonlinear Discrete-Time Systems: The Filter Step for Scalar Measure-
ments and Multidimensional States. In Proceedings of the 2003 IEEE Con-
ference on Decision and Control, pages 5366–5371, Maui, Hawaii, USA,
December 2003.

[77] Uwe D. Hanebeck and Günther Schmidt. Closed-Form Elliptic Location
with an Arbitrary Array Topology. In Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages
3070–3073, 1996.

[78] Steven Hanna, Joseph Chang, and Helge R. Olesen. Indianapolis Tracer
Data and Meteorological Data, May 1997.

[79] Bill Hirst, Philip Jonathan, Fernando G. del Cueto, David Randell, and
Oliver Kosut. Locating and quantifying gas emission sources using re-
motely obtained concentration data. Atmospheric Environment, 74:141–
158, August 2013.

[80] Ekkehard Holzbecher. Environmental Modeling. Springer, 2nd edition,
2012.

[81] Frédéric Hourdin and Olivier Talagrand. Eulerian backtracking of at-
mospheric tracers. I: Adjoint derivation and parametrization of subgrid-
scale transport. Quarterly Journal of the Royal Meteorological Society,
132(615):567–583, January 2006.

[82] Marco Huber. Probabilistic Framework for Sensor Management. PhD thesis,
Universität Karlsruhe (TH), April 2009.

[83] Marco Huber, Dietrich Brunn, and Uwe D. Hanebeck. Closed-Form Pre-
diction of Nonlinear Dynamic Systems by Means of Gaussian Mixture
Approximation of the Transition Density. In Proceedings of the 2006 IEEE

Bibliography 189

International Conference on Multisensor Fusion and Integration for In-
telligent Systems (MFI), pages 98–103, Heidelberg, Germany, September
2006.

[84] Marco F. Huber. Recursive Gaussian Process Regression. In Proceedings of
the 38th International Conference on Acoustics, Sound, and Signal Process-
ing (ICASSP), pages 3362–3366, Vancouver, BC, Canada, May 2013.

[85] Marco F. Huber, Tim Bailey, Hugh Durrant-Whyte, and Uwe D. Hanebeck.
On Entropy Approximation for Gaussian Mixture Random Vectors. In
Proceedings of the 2008 IEEE International Conference on Multisensor Fu-
sion and Integration for Intelligent Systems (MFI), pages 181–188, Seoul,
Republic of Korea, August 2008.

[86] Marco F. Huber, Dietrich Brunn, and Uwe D. Hanebeck. Efficient Nonlin-
ear Measurement Updating based on Gaussian Mixture Approximation
of Conditional Densities. In Proceedings of the 2007 American Control
Conference (ACC), pages 4425–4430, New York, New York, July 2007.

[87] Marco F. Huber, Tobias Dencker, Masoud Roschani, and Jürgen Beyerer.
Bayesian Active Object Recognition via Gaussian Process Regression. In
Proceedings of the 15th International Conference on Information Fusion
(Fusion), July 2012.

[88] Marco F. Huber and Uwe D. Hanebeck. Gaussian Filter based on Deter-
ministic Sampling for High Quality Nonlinear Estimation. In Proceedings
of the 17th IFAC World Congress, pages 13527–13532, Seoul, Republic of
Korea, July 2008.

[89] Marco F. Huber and Uwe D. Hanebeck. Progressive Gaussian Mixture
Reduction. In Proceedings of the 11th International Conference on Infor-
mation Fusion (Fusion), Cologne, Germany, July 2008.

[90] Kazufumi Ito and Kaiqi Xiong. Gaussian Filters for Nonlinear Filtering
Problems. IEEE Transactions on Automatic Control, 45(5):910–927, May
2000.

[91] Edwin T. Jaynes. Probability Theory. Cambridge University Press, 2003.

[92] Andrew H. Jazwinski. Stochastic Processes and Filtering Theory. Dover
Publications, Inc., 2007.

190 Bibliography

[93] Simon Julier, Jeffrey Uhlmann, and Hugh F. Durrant-Whyte. A New Method
for the Nonlinear Transformation of Means and Covariances in Filters and
Estimators. IEEE Transactions on Automatic Control, 45(3):477–482, 2000.

[94] Simon J. Julier and Jeffrey K. Uhlmann. A New Extension of the Kalman
Filter to Nonlinear Systems. In International Symposium on Aerospace/De-
fence Sensing, Simulation and Control, 1997.

[95] Simon J. Julier and Jeffrey K. Uhlmann. Unscented Filtering and Nonlinear
Estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[96] Rudolf E. Kalman. A new Approach to Linear Filtering and Prediction
Problems. Transactions of the ASME, Journal of Basic Engineering, 82
(Series D)(1):35–45, 1960.

[97] Raymond Kan. From Moments of Sum to Moments of Product. Journal of
Multivariate Analysis, 99(3):542–554, March 2008.

[98] Elliott D. Kaplan and Christopher Hegarty. Understanding GPS: Principles
and Applications. Artech House, 2nd edition, 2005.

[99] Uwe Kiencke and Ralf Eger. Meßtechnik. Springer, 6th edition, 2001.

[100] Kiseon Kim and Georgy Shevlyakov. Why Gaussianity? IEEE Signal Pro-
cessing Magazine, pages 102–113, March 2008.

[101] Genshiro Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian
Nonlinear State Space Models. Journal of Computational and Graphical
Statistics, 5(1):1–25, 1996.

[102] Vesa Klumpp, Frederik Beutler, Uwe D. Hanebeck, and Dietrich Fränken.
The Sliced Gaussian Mixture Filter with Adaptive State Decomposition
Depending on Linearization Error. In Proceedings of the 13th International
Conference on Information Fusion, Edinburgh, United Kingdom, July 2010.

[103] Jonathan Ko and Dieter Fox. GP-BayesFilters: Bayesian Filtering using
Gaussian Process Prediction and Observation Models. Autonomous Robots,
27(1):75–90, 2009.

[104] Jonathan Ko, Daniel J. Klein, Dieter Fox, and Dirk Haehnel. GP-UKF: Un-
scented Kalman Filters with Gaussian Process Prediction and Observation
Models. In Proceedings of the 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1901–1907, San Diego, CA, October-
November 2007.

Bibliography 191

[105] Jayesh H. Kotecha and Petar M. Djurić. Gaussian Particle Filtering. IEEE
Transactions on Signal Processing, 51(10):2592–2601, 2003.

[106] Jayesh H. Kotecha and Petar M. Djurić. Gaussian Sum Particle Filtering.
IEEE Transactions on Signal Processing, 51(10):2602–2612, 2003.

[107] Edgar Kraft. A Quaternion-Based Unscented Kalman Filter for Orientation
Tracking. In Proceedings of the Sixth International Conference of Informa-
tion Fusion, volume 1, pages 47–54, 2003.

[108] Stuart C. Kramer and Harold W. Sorenson. Recursive Bayesian estimation
using piece-wise constant approximations. Automatica, 24(6):789–801,
November 1988.

[109] Andreas Krause and Carlos Guestrin. Nonmyopic Active Learning of Gaus-
sian Processes: An Exploration-Exploitation Approach. In Proceedings of
the 24 th International Conference on Machine Learning, pages 449–456,
Corvallis, OR, 2007.

[110] Peter Krauthausen. Learning Dynamic Systems for Intention Recognition in
Human-Robot-Cooperation. PhD thesis, Karlsruhe Institute of Technology
(KIT), 2012.

[111] Catherine Laporte and Tal Arbel. Efficient Discriminant Viewpoint Selec-
tion for Active Bayesian Recognition. International Journal of Computer
Vision, 68:267–287, July 2006.

[112] Tine Lefebvre, Herman Bruyninckx, and Joris De Schutter. Comments on
“A New Method for the Nonlinear Transformation of Means and Covari-
ances in Filters and Estimators”. IEEE Transactions on Automatic Control,
45(8):1406–1408, 2002.

[113] Tine Lefebvre, Herman Bruyninckx, and Joris De Schutter. Nonlinear
Kalman Filtering for Force-Controlled Robot Tasks. Springer Berlin, 2005.

[114] Jun S. Liu and Rong Chen. Blind Deconvolution via Sequential Imputations.
Journal of the American Statistical Association, 90(430):567–576, June 1995.

[115] David G. Lowe. Object recognition from local scale-invariant features.
In Proceedings of the 7th International Conference on Computer Vision,
volume 2, pages 1150–1157, Kerkyra, Greece, September 1999.

192 Bibliography

[116] Mihai Bogdan Luca, Stéphane Azou, Gilles Burel, and Alexandru Ser-
banescu. On Exact Kalman Filtering of Polynomial Systems. IEEE Trans-
actions on Circuits and Systems—I: Regular Papers, 53(6):1329–1340, June
2006.

[117] David J. C. MacKay. Comparison of Approximate Methods for Handling
Hyperparameters. Neural Computation, 11(5):1035–1068, 1999.

[118] Dimitris E. Manolakis. Efficient Solution and Performance Analysis of 3-D
Position Estimation by Trilateration. IEEE Transactions on Aerospace and
Electronic Systems, 32(4):1239–1248, October 1996.

[119] John C. Mason and David C. Handscomb. Chebyshev Polynomials. Chap-
man & Hall/CRC, 2003.

[120] Peter Maybeck. Stochastic Models, Estimation, and Control, Volume 2.
Academic Press, 1982.

[121] Vladimir Maz’ya and Gunther Schmidt. On approximate approximations
using gaussian kernels. IMA Journal of Numerical Analysis, 16:13–29, 1996.

[122] Leonard A. McGee and Stanley F. Schmidt. Discovery of the Kalman Filter
as a Practical Tool for Aerospace and Industry. Technical memorandum
86847, NASA, 1985.

[123] H. S. Migon and P. J. Harrison. An application of non-linear Bayesian
forecasting to television advertising. In J. M. Bernardo, M. H DeGroot,
D. V. Lindley, and A. F. M. Smith, editors, Bayesian Statistics 2. Valencia
University Press, 1985.

[124] Javier G. Monroya, Achim J. Lilienthalc, Jose-Luis Blancob, Javier Gonzalez-
Jimeneza, and Marco Trincavelli. Probabilistic Gas Quantification with
MOX Sensors in Open Sampling Systems - A Gaussian Process Approach.
Sensors and Actuators B: Chemical, 188:298–312, November 2013.

[125] Mark R. Morelande and Bill Moran. An Unscented Transformation for Con-
ditionally Linear Models. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages III–1417–III–1420, April 2007.

[126] Hiroshi Murase and Shree K. Nayar. Visual learning and recognition of 3-D
objects from appearance. International Journal Computer Vision, 14:5–24,
January 1995.

Bibliography 193

[127] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press,
2012.

[128] Christian Musso, Nadia Oudjane, and Francois Le Gland. Improving Regu-
larised Particle Filters. In A. Doucet, N. de Freitas, and N. Gordon, editors,
Sequential Monte Carlo Methods in Practice, chapter 12. New York: Springer
Verlag, 2001.

[129] A. Nemra and N. Aouf. Robust INS/GPS Sensor Fusion for UAV Localization
Using SDRE Nonlinear Filtering. IEEE Sensors Journal, 10(4):789–798, April
2010.

[130] Duy Nguyen-Tuong and Jan Peters. Local Gaussian Processes Regression
for Real-time Model-based Robot Control. In Proceeding of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
380–385, 2008.

[131] Duy Nguyen-Tuong, Matthias Seeger, and Jan Peters. Real-Time Local
GP Model Learning. In Olivier Sigaud and Jan Peters, editors, From Mo-
tor Learning to Interaction Learning in Robots, volume 264 of Studies in
Computational Intelligence, pages 193–207. Springer-Verlag, 2010.

[132] Daniel Nikovski and Matthew Brand. Non-Linear Stochastic Control in
Continuous State Spaces by Exact Integration in Bellman’s Equations. In
Proceedings of the 2003 International Conference on Automated Planning
and Scheduling, pages 91–95, 2003.

[133] Magnus Nørgaard, Niels K. Poulsen, and Ole Ravn. New Developments in
State Estimation for Nonlinear Systems. Automatica, 36(11):1627–1638,
November 2000.

[134] Lucas Paletta and Axel Pinz. Active Object Recognition By View Integration
and Reinforcement Learning. Robotics and Autonomous Systems, 31:71–86,
2000.

[135] Lucy Y. Pao. Multisensor Multitarget Mixture Reduction Algorithms for
Tracking. AIAA Journal of Guidance, Control and Dynamics, 17:1205–1211,
1994.

[136] Kalyanapuram R. Parthasarathy. Probability Measures on Metric Spaces.
American Mathematical Society, new edition, 2005.

[137] Frank Pasquill. The estimation of the dispersion of windborne material.
The Meteorological Magazine, 90(1063):33–49, 1961.

194 Bibliography

[138] Fernando Pérez-Cruz, Steven Van Vaerenbergh, Juan José Murillo-Fuentes,
Miguel Lázao-Gredilla, and Ignacio Santamaría. Gaussian Processes for
Nonlinear Signal Processing. IEEE Signal Processing Magazine, 30(4):40–50,
July 2013.

[139] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes: The Art of Scientific Computing, chapter
17: Integration of Ordinary Differential Equations. Cambridge University
Press, 3rd edition, 2007.

[140] Joaquin Quiñonero-Candela and Carl E. Rasmussen. A Unifying View of
Sparse Approximate Gaussian Process Regression. Journal of Machine
Learning Research, 6:1939–1959, 2005.

[141] Ananth Ranganathan, Ming-Hsuan Yang, and Jeffrey Ho. Online Sparse
Gaussian Process Regression and Its Applications. IEEE Transactions on
Image Processing, 20(2):391–404, February 2011.

[142] K. Shankar Rao. Source estimation methods for atmospheric dispersion.
Atmospheric Environment, 41:6964–6973, 2007.

[143] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, 2006.

[144] H. E. Rauch, F. Tung, and C. T. Striebel. Maximum Likelihood Estimates of
Linear Dynamic Systems. AIAA Journal, 3(8):1445–1450, August 1965.

[145] Andreas Rauh, Kai Briechle, and Uwe D. Hanebeck. Nonlinear Measure-
ment Update and Prediction: Prior Density Splitting Mixture Estimator. In
Proceedings of the 2009 IEEE International Conference on Control Applica-
tions (CCA), July 2009.

[146] Andreas Rauh and Uwe D. Hanebeck. Calculating Moments of Exponential
Densities Using Differential Algebraic Equations. IEEE Signal Processing
Letters, 10(5):144–147, May 2003.

[147] Andreas Rauh and Uwe D. Hanebeck. Moment-Based Prediction Step for
Nonlinear Discrete-Time Dynamic Systems Using Exponential Densities.
In Proceedings of the 44th IEEE Conference on Decision and Control and
European Control Conference, pages 1923–1928, Sevilla, Spain, December
2005.

Bibliography 195

[148] Steven Reece and Stephen Roberts. An Introduction to Gaussian Processes
for the Kalman Filter Expert. In Proceedings of the 13th International
Conference on Information Fusion, Edinburgh, UK, 2010.

[149] Robert H. Risch. The problem of integration in finite terms. Transactions
of the American Mathematical Society, 139:167–189, May 1969.

[150] Robert H. Risch. The solution of the problem of integration in finite terms.
Bulletin of the American Mathematical Society, 76:605–608, 1970.

[151] Theodore Rivlin. Chebyshev Polynomials. New York: Wiley, 1990.

[152] Patrick Rößler, Frederik Beutler, Uwe D. Hanebeck, and Norbert Nitzsche.
Motion Compression Applied to Guidance of a Mobile Teleoperator. In
Proceedings of the 2005 IEEE International Conference on Intelligent Robots
and Systems (IROS), pages 2495–2500, 2005.

[153] Sumantra Dutta Roy, Santanu Chaudhury, and Subhashis Banerjee. Active
recognition through next view planning: a survey. Pattern Recognition,
37(3):429–446, March 2004.

[154] Alison Rudd, Alan G. Robins, Jason J. Lepley, and Stephen E. Belcher. An
Inverse Method for Determining Source Characteristics for Emergency
Response Applications. Boundary-Layer Meteorology, 144(1):1–20, July
2012.

[155] Andrew R. Runnalls. Kullback-Leibler Approach to Gaussian Mixture Re-
duction. IEEE Transactions on Aerospace and Electronic Systems, 43(3):989–
999, July 2007.

[156] Sartaj Sahni. Computationally Related Problems. SIAM Journal on Com-
puting, 3(4):262–279, 1974.

[157] David J. Salmond. Mixture reduction algorithms for target tracking in
clutter. In Proceedings of SPIE Signal and Data Processing of Small Targets,
volume 1305, pages 434–445, October 1990.

[158] Simo Särkkä. Unscented rauch-tung-striebel smoother. IEEE Transactions
on Automatic Control, 53(3):845–849, 2008.

[159] Simo Särkkä. Bayesian Filtering and Smoothing. Cambridge University
Press, 2013.

[160] Juha Sarmavuori and Simo Särkkä. Fourier-Hermite Kalman Filter. IEEE
Transactions on Automatic Control, 57(6):1511–1515, June 2012.

196 Bibliography

[161] Tor S. Schei. A finite difference method for linearizing in nonlinear estima-
tion algorithms. Automatica, 33(11):2051–2058, November 1997.

[162] Dennis Schieferdecker and Marco F. Huber. Gaussian Mixture Reduction
via Clustering. In Proceedings of the 12th International Conference on
Information Fusion (Fusion), pages 1536–1543, Seattle, Washington, July
2009.

[163] Bernhard Schölkopf and Alexander Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. Adaptive
computation and machine learning series. MIT Press, Cambridge, Mas-
sachusetts, 2002.

[164] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and Beyond. MIT
Press, 2002.

[165] Thomas Schön, Fredrik Gustafsson, and Per-Johan Nordlund. Marginal-
ized Particle Filters for Mixed Linear/Nonlinear State-Space Models. IEEE
Transactions on Signal Processing, 53(7):2279–2287, July 2005.

[166] Fred C. Schweppe. Uncertain Dynamic Systems. Prentice–Hall, 1973.

[167] David W. Scott and William F. Szewczyk. From Kernels to Mixtures. Tech-
nometrics, 43(3):323–335, 2001.

[168] Fernando Seco, Antonio R. Jiménez, Carlos Prieto, Javier Roa, and Katerina
Koutsou. A Survey of Mathematical Methods for Indoor Localization. In
IEEE International Symposium on Intelligent Signal Processing, pages 9–14,
August 2009.

[169] Inanc Senocak, Nicolas W. Hengartner, Margaret B. Short, and W. Brent
Daniel. Stochastic Event Reconstruction of Atmospheric Contaminant Dis-
persion Using Bayesian Inference. Atmospheric Environment, 42(33):7718–
7727, October 2008.

[170] Miroslav Simandl and Jindrich Duník. Sigma point gaussian sum filter
design using square root unscented filters. In Proceedings of the 16th IFAC
World Congress, Prague, Czech Republic, July 2005.

[171] Miroslav Simandl and Jindrich Duník. Design of derivative-free smoothers
and predictors. In Proceedings of the 14th IFAC Symposium on System
Identification, pages 1240–1245, Australia, 2006.

Bibliography 197

[172] Miroslav Simandl, Jakub Královeca, and Torsten Söderström. Advanced
point mass method for nonlinear state estimation. Automatica, 42(7):1133–
1145, July 2006.

[173] Dan Simon. Optimal State Estimation: Kalman, H-Infinity, and Nonlinear
Approaches. Wiley & Sons, 1st edition, 2006.

[174] John Skilling. Bayesian Numerical Analysis. In W. T. Grandy, Jr. and P. W.
Milonni, editors, Physics and Probability, pages 207–222. Cambridge Uni-
versity Press, 1993.

[175] Alex J. Smola and Peter Bartlett. Sparse Greedy Gaussian Process Regres-
sion. In Advances in Neural Information Processing Systems 13, pages
619–625. MIT Press, 2001.

[176] Ed Snelson and Zoubin Ghahramani. Sparse Gaussian processes using
pseudo-inputs. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances
in Neural Information Processing Systems 18, pages 1259–1266. The MIT
Press, 2006.

[177] Edward Snelson, Carl Edward Rasmussen, and Zoubin Ghahramani.
Warped Gaussian Processes. In Advances in Neural Information Processing
Systems 16. The MIT Press, 2004.

[178] Michael D. Sohn, Pamela Reynolds, Navtej Singh, and Ashok J. Gadgil.
Rapidly Locating and Characterizing Pollutant Releases in Buildings. Jour-
nal of the Air & Waste Management Association, 52(12):1422–1432, 2002.

[179] Francisco J. Solis and Roger J-B. Wets. Minimization by Random Search
Techniques. Mathematics of Operations Research, 6(1):19–30, February
1981.

[180] Harold W. Sorenson and Daniel L. Alspach. Recursive bayesian estimation
using gaussian sums. Automatic, 7(4):465–479, July 1971.

[181] Harold W. Sorenson and Allen R. Stubberud. Non-linear filtering by ap-
proximation of the a posteriori density. International Journal of Control,
8(1):33–51, 1968.

[182] Krishnaswamy Srinivasan. State Estimation by Orthogonal Expansion of
Probability Distributions. IEEE Transactions on Automatic Control, 15(1):3–
10, February 1970.

198 Bibliography

[183] Rajan Srinivasan. Importance Sampling: Applications in Communications
and Detection. Springer, 2002.

[184] John M. Stockie. The Mathematics of Atmospheric Dispersion Modelling.
SIAM Review, 53(2):349–372, 2011.

[185] Lawrence D. Stone, Roy L. Streit, Thomas L. Corwin, and Kristine L. Bell.
Bayesian Multiple Target Tracking. Artech House, 2nd edition, 2014.

[186] Volker Strassen. Gaussian Elimination is not Optimal. Numerische Mathe-
matik, 13(4):354–356, August 1969.

[187] Jürgen Sturm. Approaches to Probabilistic Model Learning for Mobile Ma-
nipulation Robots. PhD thesis, Albert-Ludwigs-Universität Freiburg im
Breisgau, 2011.

[188] Hsi Guang Sung. Gaussian Mixture Regression and Classification. PhD
thesis, Rice University, May 2004.

[189] Richard Szeliski. Computer Vision: Algorithms and Applications, chapter
14 – Recognition. Springer London, 2010.

[190] Nassim N. Taleb. The Black Swan: The Impact of the Highly Improbable.
Random House Trade, 2nd edition, 2010.

[191] Wing Ip Tam, K.N. Plataniotis, and D. Hatzinakos. An adaptive Gaussian
sum algorithm for radar tracking. Signal Processing, 77:85–104, 1999.

[192] D. Tenne and T. Singh. The Higher Order Unscented Filter. In Proceedings
of the American Control Conference, pages 2441–2446, June 2003.

[193] Gabriel Terejanu, Puneet Singla, Tarunraj Singh, and Peter D. Scott. A
Novel Gaussian Sum Filter Method for Accurate Solution to Nonlinear
Filtering Problem. In Proceedings of the 11th International Conference on
Information Fusion, 2008.

[194] Gabriel Terejanu, Puneet Singla, Tarunraj Singh, and Peter D. Scott. Un-
certainty Propagation for Nonlinear Dynamic Systems Using Gaussian
Mixture Models. Journal of Guidance, Control, and Dynamics, 31(6):1623–
1633, November–December 2008.

[195] Federico Thomas and Lluís Ros. Revisiting trilateration for robot localiza-
tion. IEEE Transactions on Robotics, 21:93–101, 2005.

Bibliography 199

[196] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics.
The MIT Press, 2005.

[197] Petr Tichavský, Carlos H. Muravchik, and Arye Nehorai. Posterior Cramér-
Rao Bounds for Discrete-Time Nonlinear Filtering. IEEE Transactions on
Signal Processing, 46(5):1386–1396, May 1998.

[198] Volker Tresp. A Bayesian Committee Machine. Neural Computation,
12(11):2719–2741, 2000.

[199] Raquel Urtasun and Trevor Darrell. Discriminative Gaussian Process La-
tent Variable Model for Classification. In Proceedings ot the 24th Interna-
tional Conference on Machine Learning, Corvallis, OR, 2007.

[200] Rudolph van der Merwe, Arnaud Doucet, Nando de Freitas, and Eric Wan.
The Unscented Particle Filter. In Advances in Neural Information Process-
ing Systems, volume 12, pages 666–672. MIT Press, 2000.

[201] Nuno Vasconcelos. Image Indexing with Mixture Hierarchies. In Proceed-
ings of the IEEE Conference in Computer Vision and Pattern Recognition,
2001.

[202] Shrihari Vasudevan, Fabio Ramos, Eric Nettleton, and Hugh Durrant-
Whyte. Gaussian Process Modeling of Large-Scale Terrain. Journal of
Field Robotics, 26(10):812–840, 2009.

[203] Tom Vercauteren and Xiaodong Wang. Decentralized Sigma-Point Infor-
mation Filters for Target Tracking in Collaborative Sensor Networks. IEEE
Transactions on Signal Processing, 53(8):2997–3009, August 2005.

[204] Grace Wahba, Xiwu Lin, Fangyu Gao, Dong Xiang, Ronald Klein, and Bar-
bara Klein. The Bias-Variance Tradeoff and the Randomized GACV. In
Advances in Neural Information Processing Systems 11, pages 620–626. MIT
Press, 1999.

[205] Eric A. Wan and Rudolph van der Merwe. The Unscented Kalman Filter. In
Simon Haykin, editor, Kalman Filtering and Neural Networks, chapter The
Unscented Kalman Filter, pages 221–280. John Wiley & Sons, Inc., 2001.

[206] Greg Welch, B. Danette Allen, Adrian Ilie, and Gary Bishop. Measurement
Sample Time Optimization for Human Motion Tracking/Capture Systems.
In Proceedings of Trends and Issues in Tracking for Virtual Environments,
Workshop at the IEEE Virtual Reality 2007 Conference, 2007.

200 Bibliography

[207] Mike West. Approximating Posterior Distributions by Mixtures. Journal of
the Royal Statistical Society: Series B, 55(2):409–422, 1993.

[208] Mike West and Jeff Harrison. Bayesian Forecasting and Dynamic Models,
chapter 14: Exponential Family Dynamic Models, pages 534–555. Springer,
1997.

[209] Jason L. Williams. Information Theoretic Sensor Management. PhD thesis,
Massachusetts Institute of Technology, February 2007.

[210] Jason L. Williams and Peter S. Maybeck. Cost-Function-Based Hypothesis
Control Techniques for Multiple Hypothesis Tracking. In Proceedings of
SPIE Signal and Data Processing of Small Targets, volume 5428, April, 2004.

[211] W. Murray Wonham. Some Applications of Stochastic Differential Equa-
tions to Optimal Nonlinear Filtering. Journal of the Society for Industrial
and Applied Mathematics, Series A: Control, 2(3):347–369, 1964.

[212] Sally A. Wood, Wenxin Jian, and Martin Tanner. Bayesian mixture of splines
for spatially adaptive nonparameteric regression. Biometrika, 89(3):513–
528, 2002.

[213] Yuanxin Wu, Dewen Hu, Meiping Wu, and Xiaoping Hu. A Numerical-
Integration Perspective on Gaussian Filters. IEEE Transactions on Signal
Processing, 54(8):2910–2921, August 2006.

[214] Renato Zanetti. Recursive Update Filtering for Nonlinear Estimation. IEEE
Transactions on Automatic Control, 57(6):1481–1490, June 2012.

[215] Arnold Zellner. Optimal Information Processing and Bayes’s Theorem. The
American Statistician, 42(4):278–280, 1988.

[216] Yong Zhang and Li Wang. Particle Filtering Method for Source Localiza-
tion in Wireless Sensor Network. In Advanced Technology in Teaching:
Selected papers from the 2012 International Conference on Teaching and
Computational Science (ICTCS 2012), volume 163, pages 517–523. Springer,
2013.

Part II

Publications

Paper A
Gaussian Filtering using State

Decomposition Methods

Authors: Frederik Beutler, Marco F. Huber, and Uwe D. Hanebeck

Edited version of the paper:

F. Beutler, M. F. Huber, and U. D. Hanebeck. Gaussian Filtering using
State Decomposition Methods. In Proceedings of the 12th International
Conference on Information Fusion (Fusion), pages 579–586, Seattle, WA,
USA, July 2009.

Gaussian Filtering using State
Decomposition Methods

Frederik Beutler, Marco F. Huber, and Uwe D. Hanebeck

Intelligent Sensor-Actuator-Systems Laboratory (ISAS)
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

{beutler|marco.huber|uwe.hanebeck}@ieee.org

Abstract
State estimation for nonlinear systems generally requires approxi-
mations of the system or the probability densities, as the occurring
prediction and filtering equations cannot be solved in closed form.
For instance, Linear Regression Kalman Filters like the Unscented
Kalman Filter or the considered Gaussian Filter propagate a small
set of sample points through the system to approximate the poste-
rior mean and covariance matrix. To reduce the number of sample
points, special structures of the system and measurement equation
can be taken into account. In this paper, two principles of system
decomposition are considered and applied to the Gaussian Filter.
One principle exploits that only a part of the state vector is directly
observed by the measurement. The second principle separates the
system equations into linear and nonlinear parts in order to merely
approximate the nonlinear part of the state. The benefits of both
decompositions are demonstrated on a real-world example.

1 Introduction

Estimation is applied to problems, where the state of a dynamical system has to
be calculated based on noisy observations and where uncertainties in modeling
have to be taken into account. In case of linear systems with additive Gaussian
noise, the well-known Kalman filter provides optimal estimates of the system
state in form of first and second moments. All required calculations can be

206 Paper A Gaussian Filtering using State Decomposition Methods

performed in closed form. The same is not true when nonlinearities arise in
the measurement and system equation. Here, approximation has to be applied,
where two different approximation approaches can be found in literature. The
first one relies on approximating the system equations as done by the extended
Kalman filter. In the second approach, the probability density representing the
state estimate is approximated instead. Here, sample-based approaches like
particle filters [1] are common. A drawback of particle filters is that sampling
is performed randomly and thus, many particles have to be used to achieve
accurate results. Moreover, particle filters suffer from the curse of dimension-
ality, i.e., the number of particles increases exponentially with the number of
dimensions [4].

Another class of sample-based estimators are linear regression Kalman filters
(LRKFs), like the well-known unscented Kalman filter (UKF) [6], the divided
difference filter [10], the central difference filter [13], or the Gaussian filter [5].
Here, it is assumed that the state estimate can be sufficiently characterized by
its first two moments, i.e., mean and covariance matrix. The regression points
(sample points) for exactly capturing these moments can be easily determined in
a deterministic fashion. Propagating the regression points through the nonlinear
system equations and calculating the first two moments of the posterior estimate
implicitly linearizes the nonlinear equations. For this procedure, only a small
number of regression points is required and the number of regression points
grows only linearly with the dimension of the state space.

In this paper, the latest LRKF, the so-called Gaussian filter introduced in [5], is
extended in such a way that the number of regression points can be reduced
without a noticeable effect on the estimation quality. For this purpose, two dif-
ferent approaches for state decomposition are discussed. The first one relies
on Rao-Blackwellization [14], which is often applied to particle filters for atten-
uating the curse of dimensionality and which has been firstly applied to the
unscaled version of the UKF in [9]. Here, the equations are separated into a linear
and nonlinear substructure, where only the nonlinear part is processed in an
approximate fashion.

The second decomposition is described in [8] for the Kalman filter. Transferred
to LRKFs, only the directly observed state needs to be represented by means
of regression points and updated with the current measurement. Based on the
correlation between the observed and the indirectly observed part, the indirectly
observed state can be updated after the filter step without further approximations.

2 Problem Formulation 207

Although both approaches are derived for the Gaussian Filter, they can be directly
applied to any estimator belonging to the class of LRKFs.

In Section 2, a brief problem formulation is given. The considered Gaussian
filter is explained in Section 3. Both decomposition approaches are content of
Section 4, while in Section 5, the estimator equations for both decompositions
are derived. In Section 6, the example application employed for simulations
and experiments is introduced. Here, tracking an object based on reference
signals for a large-scale telepresence scenario as described in [12] is considered.
Furthermore, a mathematical formulation of the considered example is given.
In Section 7, the decomposed case and the full state case are compared in a
simulation and an experiment. The paper closes with conclusions.

2 Problem Formulation

A nonlinear discrete-time dynamic system is given by

xk+1 = ak

(
xk ,uk , w k

)
,

y
k
= hk

(
xk , v k

)
,

where the functions ak (·) and hk (·) are known. The vector xk is the state of the
system, y

k
is the measurement vector, and uk is a known system input at the

discrete time k. The measurement and process noise are characterized by v k
and w k , respectively. Based on the measurements y

k
, the density of the system

state xk has to be estimated by using filtering and prediction techniques.

Filtering and prediction for nonlinear systems typically cannot be realized in
closed form. To achieve an efficient estimation scheme, the exact density or the
system equations have to be approximated in an adequate manner. If the ap-
proximation is based on the density, the number of parameters, i.e., the number
of regression or sample points1, for approximating the state density has to be
constant for efficient state estimation. Furthermore, the approximation quality
should be adjustable in order to improve the estimation accuracy if required.

In many cases, however, parts of the estimation problem can be solved in closed
form. Hence, only a part of the density has to be represented by a set of re-

1 Throughout this paper, the terms regression points and sample points are used interchangeably.

208 Paper A Gaussian Filtering using State Decomposition Methods

gression points. By exploiting the structure of the underlying system, several
decomposition methods can be applied for this purpose.

3 The Gaussian Filter (GF)

In contrast to most of the LRKFs like the famous UKF [6], the Gaussian filter [5]
considered in this paper allows varying the number of sample points. In doing
so, more information of the nonlinear system model is captured by increasing
the number of sample points and thus, one can trade estimation quality for
computational demand. Moreover, information of higher-order moments can be
explicitly incorporated into the estimation process. But still, as typical for LRKFs,
the number of regression points grows only linearly with the dimension of the
state space.

The determination of the sample points for the Gaussian filter relies on efficiently
solving an optimization problem, where a certain distance measure between the
Gaussian density representing the state estimate and the Dirac mixture density
representing the sample points is minimized. An additional constraint ensures
that mean and covariance matrix of the state are captured exactly. In order to
calculate the parameters, i.e., the weights and the positions of the regression
points, a two step procedure is employed.

In the computationally demanding first step, which can be performed off-line,
the samples for an univariate standard Gaussian density are calculated [5]. In
this paper, the number of sample points D is assumed to be odd, because in
this case one sample point is always located at the mean. In Table 1, the sample
points with negative positions for various numbers of samples D are given. The
mean point as well as the positive positions are calculated according to

µD+1
2

= 0 , µi =−µD+1−i for i = D+3
2 , . . . ,D .

In the second step, for on-line approximating an arbitrary N -dimensional Gaus-

sian density f
(
x
)=N

(
x −µx ,Cx,x

)
, N sets of D sample points are placed along

the N coordinate axes. By means of affine operations, these sample points are
transformed for exactly capturing the mean µx and the covariance matrix Cx,x .
The transformed sample points are calculated via

µx
i
=µx +V ·

p
D ·Si for i = 1, . . . ,L , (1)

3 The Gaussian Filter (GF) 209

Table 1: Sample positions for several numbers of samples.

D µ1 µ2 µ3

3 -1.2247 - -
5 -1.4795 -0.5578 -
7 -1.6346 -0.8275 -0.3788

where V and D is the matrix of eigenvectors and diagonal matrix of eigenvalues,
respectively, with Cx,x = V ·D · (V)T. Furthermore, L = N · (D −1)+1 is the total
number of sample points, Si is the i -th column of the matrix

S =
[

1·µD+1
2

IN ,N ⊗
[
µ1, . . . ,µD−1

2
,µD+3

2
, . . . ,µD

]]
︸ ︷︷ ︸

=0

and ⊗ is the Kronecker product.

For calculating the mean µx by means of set of sample points µx
i

, the same

sample weight

ω= 1
L (2)

is used for all sample points. A different weight is required for ensuring that the
sample covariance matrix coincides with given covariance matrix Cx,x . Here, the
weight ωs = 1/D has to be used instead of ω, (2). This is shown in the following.

PROOF To prove that the weight for calculating the sample covariance matrix
has to be different, the sample covariance matrix for the N -dimensional Gaussian
density is considered

L∑
i=1

ωs ·
(
µx −µx

i

)
·
(
µx −µx

i

)T ≡ Cx,x .

Using (1) results in

Cx,x =
L∑

i=1
ωs ·

(
V ·

p
D ·Si

)
·
(
V ·

p
D ·Si

)T

210 Paper A Gaussian Filtering using State Decomposition Methods

=
(
V
p

D
)(L∑

i=1
ωs · Si ·

(
Si

)T︸ ︷︷ ︸
=
(
µx

i

)2
· IN ,N

)(
V
p

D
)T

.

The sum has to be equal to one so that the sample covariance matrix corre-
sponds to the given covariance matrix. Furthermore, the sample points are
point-symmetric regarding to the mean of the Gaussian density, which results in

L∑
i=1

ωs ·
(
µx

i

)2 ≡ 1 and
(D−1)/2∑

i=1
ωs ·2 ·

(
µx

i

)2 ≡ 1 .

From [5], one nonlinear equation from the optimization problem is given by

(D−1)/2∑
i=1

(
µx

i

)2 − D
2 = 0 .

Based on this relationship, the weight must be ωs = 1
D . �

4 Decomposition Methods

4.1 Case I: directly observed, indirectly observed
Often, only a part of the state is observed through the measurement model.
Based on stochastic dependency, the indirectly observed part is updated. The
filter step

f
(
x|y)= f

(
y |xo

)
f (x)

f
(

y
)

can be written in the from

f
(
x|y)= f

(
xu |xo)

·
f
(

y |xo
)

f (xo)

f
(

y
) = f

(
xu |xo)

· f
(
xo |y)

,

where the state vector is decomposed into an observed and an indirectly observed
part

x =
[

xo

xu

]
.

4 Decomposition Methods 211

The measurement equation can be linear or nonlinear. In the nonlinear case

y = h
(
xo , v

)
,

the directly observed state xo is estimated by using a linear regression Kalman
filter and after that the indirectly observed state is updated. In the linear re-
gression Kalman filter, the state vector x is Gaussian distributed with mean and
covariance matrix

µx =
[
µo

µu

]
, Cx,x =

[
Co,o Co,u

Cu,o Cu,u

]
.

To update the indirectly observed state, the estimated mean µo
e

and estimated

covariance matrix Co,o
e of the density f (xo |y) are used. According to [8], the mean

vector of the indirectly observed state is updated by

µu
e
=µu

p
+L ·

(
µo

e
−µo

p

)
, (3)

the cross-covariance matrix Cu,o
e and the covariance matrix Cu,u

e are calculated
according to

Cu,o
e = L ·Co,o

e , (4)

Cu,u
e = Cu,u

p −L ·
(
Co,o

p −Co,o
e

)
· (L)T , (5)

respectively, with the matrix L = Cu,o
p ·

(
Co,o

p

)−1
.

4.2 Case II: Linear, Nonlinear
Similar to [14], [9], and [7], conditionally linear models

y = g
(
xn)+H

(
xn)

· x l

are considered. For the Gaussian filter, the joint density f
(
x,y

)
has to be approxi-

mated by a multivariate Gaussian density, where the joint density is

f
(
x,y

)= δ(
y − g

(
xn)+H

(
xn)

· x l
)

· f
(
xn ,x l

)
.

212 Paper A Gaussian Filtering using State Decomposition Methods

The state is decomposed into a nonlinear and linear part

x =
[

xn

x l

]
and the density of the state is Gaussian distributed with mean and covariance
matrix

µx =
[
µn

µl

]
, Cx,x =

[
Cn,n Cn,l

Cl ,n Cl ,l

]
.

The density of the state is separated by using Bayes’ law

f
(
xn ,x l

)
= f

(
x l |xn

)
· f

(
xn)

.

The conditional density is given by

f
(
x l |xn

)
=N

(
x l −µ(

xn)
,Cl |n

)
with mean and covariance matrix

µ
(
xn)=µl +Cl ,n ·

(
Cn,n)−1 ·

(
xn −µn

)
Cl |n = Cl ,l −Cl ,n ·

(
Cn,n)−1 ·Cn,l .

The density for the nonlinear part f
(
xn)

is approximated with a Dirac mixture
density based on the deterministic sampling scheme from Section 3

f
(
xn)≈ f̃

(
xn ,η

)
=

L∑
i=1

ω ·δ
(
xn −µn

i

)
,

with L = N · (D −1)+1. The approximated joint density f̃
(
x,y

)
is given by

f̃
(
x,y

)= δ(
y − g

(
xn)+H

(
xn)

· x l
)

·N
(
x l −µ(

xn)
,Cl |n

)
·

L∑
i=1

ω ·δ
(
xn −µn

i

)
.

For the Gaussian filter, the joint density is approximated with a Gaussian density
according to

f̃
(
x,y

)≈N
([

x
y

]
−

[
µx

µy

]
,

[
Cx,x Cx,y

Cy,x Cy,y

])
.

4 Decomposition Methods 213

For calculating the mean µy , the covariance matrix Cy,y and the cross-covariance

matrix Cx,y first the approximated density f̃
(
y
)

depending on y is calculated

f̃
(
y
)= ∫
R

∫
R

f̃
(
x,y

)
dx l dxn

=
L∑

i=1
ω

∫
δ

(
y − g

(
µn

i

)
+H

(
µn

i

)
· x l

)
·N

(
x l −µ

(
µn

i

)
,Cl |n

)
dx l ,

which results in a Gaussian mixture

f̃
(
y
)= L∑

i=1
ω ·N

(
y −µy

i
,Cy,y

i

)
,

with mean and covariance matrix

µy
i
= g

(
µn

i

)
+H

(
µn

i

)
·µ

(
µn

i

)
,

Cy,y
i = H

(
µn

i

)
·Cl |n ·

(
H

(
µn

i

))T
,

respectively. The first and the second moments are approximated by

µy =ω ·
L∑

i=1
µy

i
, (6)

Cy,y =
L∑

i=1

(
ω ·Cy,y

i +ωs ·
(
µy

i
−µy

)
·
(
µy

i
−µy

)T
)

, (7)

respectively, where the covariance matrix consists of the sample covariance
matrix and the covariance matrix of the linear part. The cross-covariance matrix
is approximated with

Cx,y =
∫
R

∫
R

(
x −µx

)
·
(

y −µy
)T

· f̃
(
x,y

)
dx dy

=
L∑

i=1

(
ω ·

[
0

Cl |n H
(
µn

i

)T

]
+ ωs ·

([
µn

i

µ
(
µn

i

)]−µx

)
·
(
µy

i
−µy

)T
)

. (8)

214 Paper A Gaussian Filtering using State Decomposition Methods

Separation

Approximation

Calculation

Combination

µX
e

, CX ,X
e

linearnonlinear

µn
i

for i = 1, . . . ,L

µX
i ,p

, CX ,X
i ,p for i = 1, . . . ,L

µX
p

, CX ,X
p

Figure 1: Information flow of the prediction step.

5 Estimation

5.1 Prediction Step
The information flow for the prediction step is shown Figure 1. First, the state
has to be separated into a nonlinear and linear part. Then, the system equation
has to be converted into the form

xk+1 = g
k

(
xn

k ,uk , w n
k

)+Hk
(
xn

k ,uk , w n
k

)
·

[
x l

k
w l

k

]
,

where the system state is augmented with the noise variable X k = [
xT

k w T
k

]T
to

consider additive and/or multiplicative noise. The mean and covariance matrix
is then given by

µX
e
=

[(
µx

e

)T
0T

]T
, CX ,X

e =
[

Cx,x
e 0
0 Cw,w

k

]
.

5 Estimation 215

Separation

Separation

Approximation

Calculation

Update

Combination

µx
p

, Cx,x
p

linearnonlinear

observed

indirectly observed

µn
i

for i = 1, . . . ,L

f̃ (·)measurement ŷ

µo
e

, Co,o
e

µx
e

, Cx,x
e

Figure 2: Information flow of the filter step. The gray boxes indicate components
that are identical with the prediction step.

In the second step, the sample points for the nonlinear part are calculated based
on the scheme described in Section 3. For calculating the predicted mean and
covariance matrix, equations (6) and (7) are used, where the components of the
Gaussian Mixture are used.

5.2 Filter Step
In a first step, the directly observed and the indirectly observed state are sepa-
rated. Then the measurement equation has to be converted, as in the prediction
step and the sample points for the nonlinear state are determined. Then, the

216 Paper A Gaussian Filtering using State Decomposition Methods

covariance matrix (7), cross-covariance matrix (8), and the predicted measure-
ment (6) are calculated. Based on the approximated joint density, mean and
covariance matrix are estimated according to the conditional density f

(
x|ŷ)

for
a given measurement ŷ

µo
e
=µo

p
+Cx,y ·

(
Cy,y)-1 ·

(
ŷ −µy

)
,

Co,o
e = Co,o

p −Cx,y ·
(
Cy,y)-1 ·

(
Cx,y)T .

After the mean and the covariance matrix of the directly observed state is updated,
the indirectly observed state is calculated based on (3), (4) and (5). In Figure 2,
the information flow for the filter step is shown.

6 Considered Example

The proposed algorithm is evaluated in a pose tracking scenario. Based on the
observation of two different sensors, the translation and the rotation of an object
is estimated. The estimation for the pose with respect to a global coordinate
system is performed by known reference signals. Several loudspeakers emit
signals, which are received by microphones attached to the tracked object.

The other type of sensors measures the inertial angular velocity of the object
with respect to the object coordinate system.

The state vector consists of the translation, the rotation, the translation velocity,
and the angular velocity in three-dimensional space. Based on the proposed
principles, the twelve-dimensional state vector is decomposed to reduce the
computational effort. In this example, the sensors only observe a part of the state
vector. Furthermore, the kinematics of the object is described by a nonlinear
system equation, which can be separated into a linear and a nonlinear part.

6.1 Prediction
The system model describes the evolution of the state over time. For the consid-
ered example, the dynamic behavior of the translation and the rotation has to be
characterized in a adequate manner.

6 Considered Example 217

Translation

For the translation, a constant velocity model is assumed. This model is given by
a linear differential equation, which is represented in discrete time as

w k+1 = A · w k +w
z
k , with A =

[
I3,3 T ·I3,3

0 I3,3

]
,

and w k consists of the translation T k and the velocity v k . T is the sampling time.

The process noise w
z
k is assumed to be white, zero-mean, and Gaussian with

covariance matrix

Qw
z
k
=

[
T 3

3 ·q T 2

2 ·q
T 2

2 ·q T ·q

]
, with q = diag

([
q2

wV ,x
q2

wV ,y
q2

wV ,z

]T
)

.

Rotation

The rotation is described by a rotation vector [2]. In a tracking scenario, the
rotation vector is typically time-variant. This dynamic behavior can be described
by a nonlinear differential equation [3]

ṙ (t) =
{

a(r (t)) ·ω(t) for
∥∥r (t)

∥∥ ∈]0,π]

ω(t) for
∥∥r (t)

∥∥= 0
, (9)

which depends on the angular velocity ω(t). The matrix a(·) is given by

a(r (t)) = I3,3 + 1
2 ·C(r (t))+

1− 1
2 ·‖r (t)‖ · cot

(‖r (t)‖
2

)
‖r (t)‖2 C(r (t)) ·C(r (t)) ,

where cot(·) is the cotangent and the matrix C(r (t)) is a skew-symmetric matrix

C(r (t)) =
 0 −rz (t) ry (t)

rz (t) 0 −rx (t)
−ry (t) rx (t) 0

 .

The nonlinear differential equation (9) is discretized by the Euler formula

ṙ (t) ≈ r k+1−r k
T

218 Paper A Gaussian Filtering using State Decomposition Methods

and the resulting discrete-time difference equation is

r k+1 = r k +T ·a(r k) ·ωk .

In (9), the range of the norm of the rotation vector lies in the interval zero to π.
To achieve this constraint in the estimation procedure, a forward inference is
performed by

r k,new = r k ·
(
1− 2π

‖r k‖
)

,

if the norm of the rotation vector is higher than π. The forward inference can be
calculated by a prediction step, where no process noise is assumed. The angular
velocity is modeled as a random walk according to

ωk+1 =ωk +w
ω

k ,

where the process noise w
ω

k is white, zero-mean, and Gaussian with covariance
matrix

Qwω = diag

([
q2

wω,x
q2

wω,y
q2

wω,z

]T
)

.

System Equation

In this example, the nonlinear part depends on the rotation vector. In the linear
part of the state x l

k , the translation, the velocity, and the angular velocity is
considered. The system equation is written in the form r k+1

ωk+1
w k+1

=
r k

0
0

︸ ︷︷ ︸
g (r k)

+
T ·a(r k) 0

I3,3 0
0 A

︸ ︷︷ ︸

H(r k)

[
ωk
w k

]
︸ ︷︷ ︸

x l
k

+w k ,

where the covariance matrix of the noise w k is given by

Q =

0 0 0
0 Qwω 0
0 0 Qw

z
n

 .

6 Considered Example 219

6.2 Filtering

Inertial Sensors

The inertial sensors measure the angular velocity with respect to the object
coordinate system. The measurement equation is modeled by a linear equation

y
ω

k = kG ·A ·ωk +b +v
ω

k ,

where kG is a sensor specific factor, A is a misalignment matrix, b is the sensor
offset, and v

ω

k is the measurement noise. If a measurement is available, the
filtering step can be performed by using the Kalman filter equation, because the
measurement equation is linear and the state is approximated with a Gaussian
distribution.

Acoustic Sensor

The second sensor measures the wave field. The measurement equation depends
on the translation and rotation. The directly observed state is estimated by using
the Gaussian filter. Based on the estimated mean and covariance matrix, the
indirectly observed state is updated. The nonlinear measurement equation is
given by

y j
k =

N∑
i=1

1

4π ·
∥∥∥D(r k)· p̃ j +T k−xi

∥∥∥ ·
k∑

m=0
si

m · sinc

(
(k −m) ·π−

∥∥∥D(r k)· p̃ j +T k−xi
∥∥∥

c ·T

)
+v j

k ,

where D
(
r k

)
is the rotation matrix

D
(
r k

)= I3,3 + sin(‖r k‖)
‖r k‖ C

(
r k

)+ 1−cos(‖r k‖)
‖r k‖2 C

(
r k

)
C

(
r k

)
.

The measurement equation describes the wave propagation of the N sources to
the j th microphone. The signal of each source is characterized by the symbols
si

m , where m is the discrete time of the source and k of the sensor. The sinc-
interpolation [11] is used to get a continuous time signal in order to achieve

subsample resolution. T is the sampling interval, c the velocity of sound, and v j
k

the measurement noise of the sensor j .

220 Paper A Gaussian Filtering using State Decomposition Methods

7 Results

The proposed approach is evaluated in a simulation and in an experiment.

7.1 Simulation
In the simulation setup, a moving target object is considered. The trajectory of
the object is simulated by piecewise constant translational and angular velocities.
Four microphones are attached to the target, which are receiving multi carrier-
code division multiple access (MC-CDMA) signals from four loudspeakers in
order to achieve a distinguishable mapping. For the simulation, the signals
are delayed depending on the time-variant distance between microphone and
loudspeaker. Furthermore, an inertial measurement unit consisting of three
gyroscopes measures the angular velocity with respect to the target coordinate
system. The measurement frequency of the microphones and the gyroscopes
are 48,000 Hz and 480 Hz, respectively. The signals received by the microphones
are corrupted with noise. This noise is generated by mirror image sources in
order to model reverberations. The signals emitted by the four loudspeakers are
reflected at walls of the room, which is modeled by 24 mirror image sources. The
attenuation factor of the walls is set to be 0.5, which results in an SNR of 4.247 dB.
The angular velocity is corrupted by additive zero-mean Gaussian noise with
covariance matrix Rvω = I3,3 ·10−4.

In the simulation, a constant position model is used due to the fact that the
simulated velocity has points of discontinuity. The initial states and covariance
matrices are set to

µr
0
= [

0 −0.0245 0
]T

, Cr,r
0 = I3,3 · (10−3 ·π/180)2 ,

µT
0
= [−0.9535 −0.9969 2

]T
, CT,T

0 = I3,3 ·10−6 ,

µω
0
= [

0 −0.6911 0
]T

, Cω,ω
0 = I3,3 ·10−3 ,

and the process and measurement noise covariance matrices to

Qwω = I3,3 ·5.1404·10−5 , Qw
z
n
= diag

[
5.0·10−7 5.0·10−7 5.0·10−8] ,

Rv = I4,4 ·10−3 , Rvω = I3,3 ·10−4 .

7 Results 221

0 1 2 3
time / s →

1
2
3
4
5
6
7
8

x 10−3

rm
se

/
ra

d
→

(a) rmse of the rotation vector.

0 1 2 3
time / s →

1

2
3

4

5

6

7

8
x 10−3

rm
se

/
m

→
(b) rmse of the translation vector.

Figure 3: Rmse of the rotation and translation vector, where the black points repre-
sent the decomposed algorithm and the red points result from the full state case.

For the approximation, five sample points for each dimension are used. In
the first simulation run, no decomposition is performed. Furthermore, the
measurement and process noise is augmented in the state vector. In this case, a
total of 89 sample points are used for approximation.

The second simulation run takes advantages of the structure of the system and
measurement equation in order to reduce the computational effort. For the
prediction step, the state vector is separated into the linear and nonlinear part,
where only 13 sample points are used. For the filtering step, the Kalman filter
equations are used when measurements from the inertial measurement unit are
available. In the other case, when the microphones measures the wave field, the

Table 2: Average and standard deviation values of the rmse for the rotation and
translation. The Gaussian filter is compared to the UKF.

Translation in 10−4 m Rotation in 10−4 rad

GF (decomposed) 19±9.8515 11±17
GF (full state) 19±9.9196 12±16
UKF (decomposed) 19±10.3126 20±35
UKF (full state) 18±10.0988 19±14

222 Paper A Gaussian Filtering using State Decomposition Methods

state vector is separated into the directly observed and indirectly observed part,
which results in an approximation with 25 sample points.

The computation time decreases by a factor of four compared to the first simula-
tion run. Furthermore, regarding the rotation, the root mean square error (rmse)
of the decomposed GF is lower compared to full state algorithms (GF, UKF) . How-
ever, the accuracy may decrease for the rotation vector when the change of the
angular velocity is high. The average rmses of rotation and translation are shown
in Table 2. The rmses of rotation and translation for an example simulation run
are shown in Figure 3.

7.2 Experiment
An object is moved ten times from a starting point to an end point on a straight
line. The experimental setup is similar to the simulation, where in the experi-
ment a constant velocity model is assumed. Furthermore, five loudspeakers are
periodically emitting the signals and the sampling frequency of the gyroscopes
are 200 Hz. The initial state and covariance matrix is set to

µr
0
= [

0 0 π/2
]T

, Cr,r
0 = I3,3(1 ·π/180)2 ,

µT
0
= [−0.05 −0.75 1.16

]T
, CT,T

0 = I3,3 ·10−4 ,

µω
0
=µV = [

0 0 0
]T

, Cω,ω
0 = CV ,V

0 = I3,3 ·9 ·10−6 ,

respectively. The covariance matrix of process and measurement noise was

Qwω = I3,3 ·6.3462·10−6 ,

Qw x
n
= Qw

y
n
=

[
3.014·10−14 2.170·10−10

2.170·10−10 2.083·10−6

]
,

Qw z
n
= Qw

y
n

·10−4 , RM = I4,4 ·0.09 , Rω = I3,3 ·0.01 .

In Figure 4, the results for the five test runs are shown. The measured end point
and the distance between start and end point is given in Table 3. In addition, the
average over the ten test runs and the standard deviation is listed.

7 Results 223

Table 3: The average results of GF from ten test runs.

End point
Distance

x in m y in m z in m

True -0.05 1.33 1.16 2.08
Full state 0.016 ± 0.019 1.310 ± 0.022 1.048 ± 0.040 2.066 ± 0.019
Decomp. 0.016 ± 0.017 1.306 ± 0.026 1.036 ± 0.055 2.062 ± 0.025

-0.2 -0.1 0 0.1 0.2

x / m →

-1

-0.5

0

0.5

1

1.5

y
/

m
→

X

end point

Figure 4: Results from five test runs. The solid lines are the estimates from the full
state case. The dashed lines are the results from the decomposed case.

224 Paper A Gaussian Filtering using State Decomposition Methods

8 Conclusions

In this paper, two principles for reducing the computational effort for state esti-
mation in nonlinear systems are discussed and exploited for the Gaussian filter.
These decompositions exploit the structure of the nonlinear system equations
and facilitate to reduce the number of sample points for approximating the state
density. In doing so, the computation time can be significantly decreased with-
out significantly affecting the estimation quality. The advantages are shown in
simulations and experiments.

In contrast to a comparable linear/nonlinear decomposition approach presented
in [9] for the unscaled version of the UKF, the proposed approaches are more
generally applicable. For instance, scaling the sample points can be consid-
ered, which is essential for very high-dimensional problems. Furthermore, the
decomposition into directly/indirectly observed states is also taken into account.

References

[1] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A
Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking. IEEE Transactions on Signal Processing, 50(2):174–188, February
2002.

[2] Frederik Beutler, Marco F. Huber, and Uwe D. Hanebeck. Instantaneous
Pose Estimation using Rotation Vectors. In IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Taipei, Taiwan, April
2009.

[3] J. E. Bortz. A New Mathematical Formulation for Strapdown Inertial Naviga-
tion. IEEE Transactions on Aerospace and Electronic Systems, AES-7(1):61–
66, Januar 1971.

[4] Fred Daum and Jim Huang. Curse of Dimensionality and Particle Filters.
In Proceedings of the 2003 IEEE Aerospace Conference, volume 4, pages
1979–1993, March 2003.

[5] Marco F. Huber and Uwe D. Hanebeck. Gaussian Filter based on Deter-
ministic Sampling for High Quality Nonlinear Estimation. In Proceedings
of the 17th IFAC World Congress, Seoul, Republic of Korea, July 2008.

References 225

[6] Simon J. Julier and Jeffrey K. Uhlmann. Unscented Filtering and Nonlinear
Estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[7] Vesa Klumpp, Felix Sawo, Uwe D. Hanebeck, and Dietrich Fränken. The
Sliced Gaussian Mixture Filter for Efficient Nonlinear Estimation. In Pro-
ceedings of the 11th International Conference on Information Fusion (Fu-
sion 2008), pages 1–8, Cologne, Germany, July 2008.

[8] Tine Lefebvre, Herman Bruyninckx, and Joris De Schutter. Nonlinear
Kalman Filtering for Force-Controlled Robot Tasks. Springer, 2005.

[9] Mark R. Morelande and Bill Moran. An Unscented Transformation for Con-
ditionally Linear Models. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages III–1417–III–1420, April 2007.

[10] Magnus Nørgaard, Niels K. Poulsen, and Ole Ravn. New Developments in
State Estimation for Nonlinear Systems. Automatica, 36(11):1627–1638,
November 2000.

[11] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-time
Signal Processing. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2nd
edition, 1999.

[12] Patrick Rößler, Frederik Beutler, Uwe D. Hanebeck, and Norbert Nitzsche.
Motion Compression Applied to Guidance of a Mobile Teleoperator. In
Proceedings of the 2005 IEEE International Conference on Intelligent Robots
and Systems (IROS), pages 2495–2500, 2005.

[13] Tor S. Schei. A finite difference method for linearizing in nonlinear estima-
tion algorithms. Automatica, 33(11):2051–2058, November 1997.

[14] Thomas B. Schön, Fredrik Gustafsson, and Per-Johan J. Nordlund.
Marginalized Particle Filters for Mixed Linear/Nonlinear State-Space Mod-
els. IEEE Transactions on Signal Processing, 53(7):2279–2289, July 2005.

Paper B
Semi-Analytic Gaussian Assumed

Density Filter

Authors: Marco F. Huber, Frederik Beutler, and Uwe D. Hanebeck

Edited version of the paper:

Marco F. Huber, Frederik Beutler, and Uwe D. Hanebeck. Semi-Analytic
Gaussian Assumed Density Filter. In Proceedings of the 2011 American
Control Conference (ACC), pages 3006–3011, San Francisco, CA, USA, June
2011.

Semi-Analytic
Gaussian Assumed Density Filter

Marco F. Huber∗, Frederik Beutler∗∗, and Uwe D. Hanebeck∗∗

∗ Variable Image Acquisition and
Processing Research Group

Fraunhofer Institute of Optronics, System
Technologies and Image Exploitation IOSB

Karlsruhe, Germany
marco.huber@ieee.org

∗∗ Intelligent Sensor-Actuator-Systems
Laboratory (ISAS)

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{beutler|uwe.hanebeck}@ieee.org

Abstract
For Gaussian Assumed Density Filtering based on moment match-
ing, a framework for the efficient calculation of posterior moments
is proposed that exploits the structure of the given nonlinear system.
The key idea is a careful discretization of some dimensions of the
state space only in order to decompose the system into a set of non-
linear subsystems that are conditionally integrable in closed form.
This approach is more efficient than full discretization approaches.
In addition, the new decomposition is far more general than known
Rao-Blackwellization approaches relying on conditionally linear sub-
systems. As a result, the new framework is applicable to a much
larger class of nonlinear systems.

1 Introduction

In Bayesian estimation, the hidden internal state of arbitrary systems has to be
estimated based on measured input and output sequences that are typically
corrupted by noise. For linear systems affected with Gaussian noise, the Kalman
Filter [8] is the best estimator and allows a closed-form calculation. In case of
nonlinearities in the system and measurement equation, however, estimation
cannot be performed analytically in general. Instead, approximate state estima-
tors have to be employed. Popular estimators for nonlinear systems make use

230 Paper B Semi-Analytic Gaussian Assumed Density Filter

of the Gaussian assumption for representing the posterior density of the state.
Examples are sample-based “black box” approaches utilizing random sampling
such as the Gaussian Particle Filter [9], deterministic sampling [2], or statistical
linear regression [3, 7, 10, 12]. Alternatively to sampling, analytic approaches
may be applicable, where analytic moment calculation [13] leads to closed form
formulas of the required first two moments. However, this requires carefully
performed derivations and thus, is impractical for high-dimensional systems. If
the first two moments cannot be calculated in closed form, an nth-order Taylor
series expansion can be used to approximate the underlying system and mea-
surement equation for calculating the moments, which is used in the extended
Kalman filter (EKF, [15]) or the Gaussian second-order filter [5]. On the other
hand, if the system exhibits conditionally linear substructures, sample-based
approaches can exploit this fact by using Rao-Blackwellization [14] in order to
calculate the required moments more efficiently [1, 11].

In this paper, a combination of sample-based estimation and analytic moment
calculation for Gaussian assumed density filters is proposed by using a very
general form of Rao-Blackwellization. Instead of merely exploiting linear sub-
structures, the new approach relies on an intelligent decomposition of the system
and measurement equation into nonlinear subsystems that are conditionally
integrable in closed form by means of discretizing some dimensions of the state
space. Thus, given a discretization of some dimensions, moment calculation
of the remaining dimensions of the state space can be performed analytically
and exactly, which improves the overall estimation accuracy and reduces the
computational burden.

The structure of the paper is as follows. In Section 2, a problem formulation
is given, providing a brief introduction into Bayesian estimation and Gaussian
assumed density filtering. If the moments can be calculated in closed form, we
come up with the analytic Gaussian assumed density filter (AGF) as described in
Section 3. The class of sample-based Gaussian assumed density filters (SGFs) is
explained in Section 4. The proposed combination of analytic moment calcula-
tion and the sample-based approach, named semi-analytic Gaussian assumed
density filter (SAGF), is part of Section 5. The performance of the SAGF is shown
by means of simulation examples in Section 6. A final discussion and an outlook
to future research work are part of Section 7.

2 Problem Formulation 231

2 Problem Formulation

A nonlinear discrete-time dynamic system is given by

xk+1 = ak

(
xk ,uk , w k

)
, (1)

y
k
= hk

(
xk , v k

)
, (2)

where the functions ak (· , · , ·) and hk (· , ·) are known. The vector xk is the state of
the system, y

k
is the measurement vector, and uk is a known system input at the

discrete time step k. The terms v k and w k represent zero-mean measurement
and process noise, respectively. Measurement values ŷ

k
are realizations of the

measurement process (2).

2.1 Bayesian Estimation
In Bayesian estimation, two alternating steps, i.e., prediction and filtering, are
performed for estimating the system state xk . In the prediction step, the result

f e (xk), f (xk |ŷ1:k
) of the previous filter step is propagated from time step k to

k +1 by means of

f p (
xk+1

)
, f

(
xk+1|ŷ1:k

)
=

∫
f
(
xk+1|xk

)
· f e (

xk

)
dxk , (3)

where f
(
xk+1|xk

)
is the transition density defined by (1). ŷ

1:k
=

(
ŷ

1
, . . . , ŷ

k

)
summarizes all measurement values up to and including time step k. In the filter
step, the current measurement value ŷ

k
is used for updating the result of the

prediction step f p (xk) according to Bayes’ rule

f e (
xk

)
, f

(
xk |ŷ1:k

)
= 1

ck
· f

(
ŷ

k
|xk

)
· f p (

xk

)
, (4)

where ck =
∫

f
(

ŷ
k
|xk

)
· f p (

xk

)
dxk is a normalization constant and f

(
ŷ

k
|xk

)
is

the likelihood defined by (2).

For both prediction and filtering, closed-form solutions of the occurring integrals
are not available in general and thus, appropriate approximations have to be
applied. In this paper, we restrict attention to Gaussian assumed density filters
[4], i.e., the densities in (3) and (4) are assumed to be Gaussian. Furthermore, the

232 Paper B Semi-Analytic Gaussian Assumed Density Filter

parameters of these Gaussian densities are calculated by moment matching. In
doing so, filtering and prediction boils down to the efficient calculation of the
mean vector and the covariance matrix.

2.2 Gaussian Assumed Density Filter
For deriving a Gaussian assumed density filter, it is sufficient to concentrate on
the nonlinear transformation

y = g
(
x
)

(5)

of the Gaussian random vector x with density function f
(
x
) =N

(
x;µx ,Cx)

to

the random vector y with density f
(
y
)
.

Forward Inference

In the forward inference, the random vector x is propagated through the nonlin-
ear transformation (5) in order to calculate the first two moments of y , i.e., mean

µy and covariance Cy . This type of inference occurs in the prediction step, where
the nonlinear transformation (5) corresponds to the system function (1) and the
density of x is given by f e(x

)
with mean µe

k
and covariance Ce

k . Furthermore, µy

and Cy correspond to the predicted mean µp
k+1

and predicted covariance Cp
k+1,

respectively. Analogously, forward inference is employed for calculating the
predicted measurement, which is required for backward inference as described
next.

Backward Inference

The goal of the backward inference is to determine the conditional density f
(
x|y)

,

i.e., the conditional mean µx|y and covariance Cx|y . For this purpose, the joint

density f
(
x, y

)
is determined first. By additionally assuming that this joint den-

sity is Gaussian1, we need to compute the cross-covariance Cx,y of the joint
covariance block matrix

C =
[

Cx Cx,y(
Cx,y)T Cy

]
.

1 This assumption is common in Gaussian assumed density filtering (as in the EKF or the UKF) and
is only true for linear systems affected with Gaussian noise. Otherwise it is an approximation.

3 Analytic Gaussian Assumed Density Filter (AGF) 233

Given the cross-covariance, the desired mean and covariance are then given by

µx|y =µx +Cx,y ·
(
Cy)-1 ·

(
ŷ −µy

)
,

Cx|y = Cx −Cx,y ·
(
Cy)-1 ·

(
Cx,y)T ,

(6)

where µy and Cy result from a forward inference step and ŷ is a realization of y .

3 Analytic Gaussian Assumed Density
Filter (AGF)

At first, we demonstrate that the mean µy and covariance Cy for forward infer-

ence as well as the cross-covariance Cx,y for backward inference can be deter-
mined analytically and exactly in special cases. Thus, the prediction step (3) and
filter step (4) can be calculated in closed form. In order to calculate the mean µy ,
it can be utilized that

µy = E
{

y
}= ∫

y · f
(
y
)

dy =
Ï

y · f
(
x, y

)
dx dy (7)

holds. With (5) and Bayes’ rule, the joint density function f
(
x, y

)
of x and y can

be written according to

f
(
x, y

)= f
(
y |x)

· f (x) = δ(
y − g (x)

)
· f (x) , (8)

where δ
(
x −µ)

is the Dirac delta distribution at position µ. Plugging (8) into (7)
and utilizing the sifting property of the Dirac delta distribution results in

µy =
∫

g (x) · f (x)dx . (9)

Hence, the mean of y can be calculated directly based on the nonlinear function
g (·) and the density of x . With (8), the covariance of y can be derived in a similar
manner, which leads to

Cy =
Ï (

y −µy)
·
(
y −µy)T · f

(
x, y

)
dx dy

=
∫

g (x) · g (x)T · f (x)dx −µy ·
(
µy)T . (10)

234 Paper B Semi-Analytic Gaussian Assumed Density Filter

For the filter step, the cross-covariance Cx,y is required. Similar to the covariance
Cy , the cross-covariance Cx,y is calculated by

Cx,y =
Ï (

x −µx)
·
(
y −µy)T · f

(
x, y

)
dx dy

=
∫

x · g (x)T · f (x)dx −µx ·
(
µy)T . (11)

Again, merely g (·) and f (x) are necessary for calculating the covariance. Un-
fortunately, analytically solving the integrals in (9), (10), and (11) is not possible
in general. For special function types such as polynomials or trigonometric
functions and their combination, however, a closed-form solution is available. If
the moments can be calculated in closed form, the resulting estimator is called
analytic Gaussian assumed density filter (AGF).

Example 1: Quadratic Transformation

In this example, the nonlinear transformation

y = x2 (12)

is considered. For this simple polynomial transformation, equations (9)–
(11) can be solved analytically exactly. The mean µy , the variance C y , and
the cross-variance C x,y are given by

µy = (
µx)2 +C x ,

C y = 2·C x ·
(
C x +2·

(
µx)2

)
,

C x,y = 2·C x ·µx ,

(13)

respectively.

It is worth mentioning that for linear transformations y = A · x , forward and
backward inference correspond to the prediction and filter step of the well-known
Kalman filter. That is, the Kalman filter is a special case of an AGF.

4 Sample-Based Gaussian Assumed Density Filter (SGF) 235

4 Sample-Based Gaussian Assumed Density
Filter (SGF)

For nonlinear functions g (·) that prevent a closed-form solution, the so-called
linear regression Kalman filters (LRKFs) or sample-based Gaussian assumed
density filters (SGFs) allow approximately calculating the first two moments of y .
Examples for LRKFs/SGFs are the well-known unscented Kalman filter (UKF) [7],
the Divided Difference Filter [12], or the Gaussian Filter [3]. These filters utilize a
sample representation of x given by the Dirac mixture

f (x) ≈
L∑

i=1
wi ·δ

(
x −µ

i

)
, (14)

where L is the number of samples, wi are non-negative weighting factors, and µ
i

are the sample positions. The Dirac mixture (14) exactly captures the mean µx

and the covariance Cx of x . Propagating the samples through (5) corresponds to
approximating (9) and (10) by a weighted sample mean and sample covariance,
respectively. In case of the mean µy , replacing the density f (x) in (9) by the Dirac
mixture (14) leads to

µy ≈
∫

g (x) ·

(∑
i

wi ·δ
(
x −µ

i

))
dx =∑

i
wi · g

(
µ

i

)
. (15)

The quality of this mean approximation (and similarly of the covariance ap-
proximation) depends on both the function g (x) and the quality of the sample
representation of f (x) in (14). Especially in cases of strong nonlinearities and a
small number L of sample points, (15) provides a poor approximation of the true
mean µy .

236 Paper B Semi-Analytic Gaussian Assumed Density Filter

x

y

(a) Analytic stochastic
linearization (AGF)

x

y

(b) Sample-based stoch-
astic linearization (SGF)

xµx

y

(c) Taylor-series based
linearization (EKF)

Figure 1: Illustration of the different linearization approaches: the nonlinear func-
tion (black) and its linearized versions (red dashed). (a) AGF propagates the entire
density f (x) for linearization. (b) The linearization of an SGF is based on an approxi-
mate sample representation of f (x). (c) The EKF linearizes the nonlinear function
around a single point.

Example 2: Quadratic Transformation (cont’d)

We again consider the quadratic transform (12) of Example 1. The density
f (x) is approximately represented by the samples

µ1 =µx +
p

C x , µ2 =µx −
p

C x , w1 = w2 = 0.5 ,

which exactly capture the mean µx and variance C x . Propagating the sam-
ples through the quadratic transformation and calculating the weighted
mean and variance yields

µy = (
µx)2 +C x ,

C y = 0.5
2∑

i=1

((
µi

)2 −µy
)2 = 4·C x ·

(
µx)2 ,

C x,y = 2·C x ·µx .

Comparison with (13) shows that the sample-based variance C y is not
exact.

Calculating the mean and covariance of y corresponds to a linearization of the

nonlinear transformation g (·) as the density functions f (x) and f
(
y
)

are both

5 Semi-Analytic Gaussian Assumed Density Filter (SAGF) 237

assumed to be Gaussian (see Figure 1). In case of the AGF, linearization is per-
formed implicitly under consideration of the entire Gaussian density f (x). In
contrast to this, SGFs merely propagate a sample-based approximation of f (x).
Even if the mean and covariance of x are captured exactly by the samples, the
same is not true for (all) higher-order moments due to the finite number of sam-
ples. But again, linearization is performed implicitly due to the calculation of
the sample mean and sample covariance (see for example equation (15)). The
extended Kalman filter (EKF, [15]) is an example of a Gaussian filter, where lin-
earization is done explicitly by first-order Taylor-series expansion of g (·) around

the mean µx . Here, linearization is only performed at a single point (the mean
of x) and no uncertainty information about x is considered. This typically leads
to an inferior performance in comparison with SGFs or the AGF. Merely in case
of a linear transformation, AGF, SGF, and EKF provide identical results. The same
is true in case of AGF and SGF, if an infinite number of samples is used.

5 Semi-Analytic Gaussian Assumed Density
Filter (SAGF)

To attenuate the drawbacks of a purely sample-based approximation of the mean
and covariance, the key idea of the proposed semi-analytic Gaussian assumed
density filter (SAGF) is to combine the sample-based Gaussian assumed density
filter (SGF) and the analytic Gaussian assumed density filter (AGF) such that only
some dimensions of the random vector x are discretized by means of a sample
representation. Thus, only some parts of the nonlinear transformation (5) have
to be evaluated approximately. For this purpose, we rearrange the nonlinear
equation (5) to

y = g
(
x a , xb)

, (16)

where the Gaussian random vector x =
[(

x a)T,
(
xb)T

]T
consists of the substates

x a and xb with mean and covariance

µx =
[
µa

µb

]
, Cx =

[
Ca Ca,b

Cb,a Cb

]
.

238 Paper B Semi-Analytic Gaussian Assumed Density Filter

Generally, there exists no closed-form expression for the desired moments. How-
ever, the decomposition into x a and xb is chosen in such a way that the integrals

in (9)–(11) can be calculated in closed form for any given fixed value of xb . Hence,
we say that g (· , ·) is conditionally integrable. For determining a sample-based

representation of xb , the sampling techniques of the SGFs are applied.

Example 3: Conditionally Integrable Nonlinear Transformation

In the following, two example transformations are discussed. At first, a
nonlinear transformation with conditionally linear function g (· , ·) is given
by

y = e−xb
1 ·

(
xb

2

)2
· x a .

To see this, we replace the substate xb = [
xb

1 , xb
2

]T
with a single sample

point µ= [
µ1,µ2

]T
, which leads to y = c · x a , where c , e−µ1 ·

(
µ2

)2. Hence,
given the sample point µ, the first two moments of y can be calculated via
the Kalman predictor. The scope of this paper is even more general. Also
decompositions into conditionally integrable nonlinear transformations
g (· , ·) are covered. For the example equation

y = e−xb
·
(

x a
1

)2
· x a

2 ,

the function g
(
x a ,µ

)= c ·
(

x a
1

)2
· x a

2 with c , e−µ is now nonlinear when re-

placing xb by a sample pointµ. However, g (· ,µ) is polynomial and thus, the
moments can be calculated analytically since x a is Gaussian distributed.

The AGF (Section 3) and SGF (Section 4) are extreme cases of the SAGF: if xb

is an empty vector, SAGF becomes an AGF and if x a is an empty vector, SAGF
degenerates to an SGF.

5 Semi-Analytic Gaussian Assumed Density Filter (SAGF) 239

5.1 General Solution
For the general transformation given by (16), the desired moments of y can be

calculated as follows. At first, the joint density f
(
x, y

)
is separated by employing

Bayes’ rule

f
(
x, y

)= δ(
y − g

(
xa , xb))

︸ ︷︷ ︸
= f

(
y |x

) · f
(
xa |xb)

· f
(
xb)︸ ︷︷ ︸

= f (x)

,

where the density f (x) is replaced by f
(
xa |xb)

· f
(
xb)

and the conditional density

f
(
xa |xb)=N

(
xa ;µa|b ,Ca|b)

is (conditionally) Gaussian with mean and covari-
ance

µa|b =µa +Ca,b ·
(
Cb

)−1
·
(
xb −µb

)
,

Ca|b = Ca −Ca,b ·
(
Cb

)−1
·Cb,a .

(17)

For determining the mean µy in (9), the density f
(
xb)

of the substate xb is
represented by means of a Dirac mixture as in (14) in order to allow applying an
SGF. To integrate over xb , the sifting property of the Dirac delta distribution is
exploited. Hence, the mean of y is given by

µy ≈∑
i

wi ·µy
i

with µy
i
=

∫
g
(
xa ,µ

i

)
· f

(
xa |µ

i

)
dxa . (18)

Analogously, the covariance of y results in

Cy ≈∑
i

wi ·

(
Cy

i −µy
i

(
µy)T −µy

(
µy

i

)T +µy (
µy)T

)
,

Cy
i =

∫
g
(
xa ,µ

i

)
· g

(
xa ,µ

i

)T
· f

(
xa∣∣µ

i

)
dxa .

(19)

It is important to note that the integrals in (18) and (19) can be evaluated analyti-
cally as the function g (· , ·) is chosen to be conditionally integrable. Furthermore,
solving these integrals is an off-line task and the solution is characterized by a
parametric representation for efficient on-line evaluation.

240 Paper B Semi-Analytic Gaussian Assumed Density Filter

5.2 Estimation
With the results of the previous section, a complete SAGF consisting of a predic-
tion and a filter step is now derived.

Prediction Step

In the prediction step, the predicted mean µp
k+1

and covariance Cp
k+1 of f p(

xk+1

)
for time step k +1 have to be calculated. For this purpose, the system function
(1) can be directly mapped to the nonlinear transformation (16) according to

xk+1 = ak

(
xk ,uk ,w k

)= g
(
x a

k , xb
k

)
.

Here, the (deterministic) system input uk becomes a part of the function g (· , ·)

and the substates x a
k , xb

k are augmented with the noise variables w a
k , w b

k , where

w T
k = [

(w a
k)T, (w b

k)T]
, in order to consider additive and/or multiplicative noise.

The sample points of substate xb are calculated based on the sampling scheme
of the used SGF. For the mean µp

k+1
and covariance Cp

k+1 of xk+1, (18) and (19)

are employed.

Filter Step

The measurement equation (2) is mapped to the nonlinear transformation (16)
according to

y
k
= hk (xk , v k) = g

(
x a

k , xb
k

)
,

where the measurement noise v k is part of the substates x a
k , xb

k . It is worth
mentioning that the decomposition of xk into the substates for the filter step is
independent of the decomposition of the prediction step.

The goal of the filter step is to determine the mean µe
k

and covariance Ce
k of

the estimated density f e(xk

) = N
(
xk ;µe

k
,Ce

k

)
by using (6), where µy

k
and Cy

k

of y
k

correspond to (18) and (19), respectively. The cross-covariance Cx,y =[
Ca,y ,Cb,y]T

in (6) consists of

Ca,y =∑
i

wi ·

(
Ca,y

i −µa|b
i

(
µy

)T +µa
(
µy −µy

i

)T
)

,

6 Simulation Examples 241

Cb,y =∑
i

wi ·
(
µ

i
−µb

)
·
(
µy

i
−µy

)T
,

with

Ca,y
i =

∫
xa ·

(
g
(
xa ,µ

i

))T
· f

(
xa∣∣µ

i

)
dxa .

Here, µy
i

results from (18) and µa|b
i

is calculated according to (17) by replacing

xb with µ
i
.

6 Simulation Examples

The proposed approach is now compared with two sample-based estimators,
i.e., the unscented Kalman filter (UKF, [7]) and the Gaussian particle filter (GPF,
[9]). The UKF makes use of a deterministic sampling method and assumes that
state and measurement are jointly Gaussian. The GPF is a special sequential
importance sampling Particle Filter. Here, after each prediction and filtering, the
randomly drawn samples are used for determining the mean and the covariance
of the state. Thus, a Gaussian representation is provided after each step and
no resampling is necessary. As any Particle Filter, the GPF does not require the
assumption of a jointly Gaussian state and measurement.

6.1 System Equation
In the simulations, the estimation of the altitudeαk , velocity βk , and constant
ballistic coefficientγk of a falling body is considered [6, 15]. The system equation
is given by

xk+1 =
αk

βk
γk

+∆t

 −βk
−e−ρ ·αk · (βk)2 ·γk

0

+

wα
k

wβ

k
wγ

k

 ,

where xk = [αk ,βk ,γk]T is the state vector, ∆t the discretization constant, ρ a

constant factor, and wα
k , wβ

k , wγ

k are process noise. The discretization constant

∆t is set to 1 and the constant factor ρ is 5·10−5. The noises wα
k , wβ

k , wγ

k are
zero-mean Gaussian with joint covariance matrix Q = 0.1·I3, where In is the n×n

242 Paper B Semi-Analytic Gaussian Assumed Density Filter

identity matrix. The initial state of the falling body is xT
0 = [

3·105, 2 ·104, 10−3].
The initial mean and covariance of the estimators for all simulation runs is set to

µx =
3·105

2·104

10−5

 , Cx =
106 0 0

0 4·106 0
0 0 20

 .

The state variables can be decomposed into x a
k = [

βk ,γk

]T
and xb

k = αk . If

the density of the variable xb
k is represented by a Dirac mixture, the remaining

moment integrals in (18) and (19) can be calculated in closed form due to the
remaining polynomial system function (see Example 3).

6.2 Case I: Linear Measurement Equation
In the first case, a linear measurement equation is considered, where the altitude
is measured directly according to

r k =αk +v k ,

where v k is zero-mean Gaussian measurement noise with variance R = 103. Due
to the linearity of the measurement equation, all three estimators (SAGF, UKF,
and GPF) are solving the filter step via the Kalman corrector equations.

6.3 Case II: Nonlinear Measurement Equation
In the second case, a radar measures the altitude, where the measurement equa-
tion is given by

r k =
√

M 2 + (αk −H)2 + (v k)2 . (20)

M = 104 is the horizontal range and H = 104 is the altitude of the radar. The
measurement noise v k is Gaussian distributed with the variance R = 103.

In order to allow a closed-form solution of the filter step in case of the SAGF,
squared ranges are considered. Thus, the measurement equation becomes
polynomial according to

r 2
k = M 2 + (αk −H)2 + (v k)2 , (21)

6 Simulation Examples 243

and can now be used in the AGF formalism. In doing so, the measurement ŷ in

equation (5) is given by ŷ = r̂ 2
k , where r̂k is the measured altitude value.

6.4 Simulation Results
For each case, 1000 simulation runs are performed. In the first case (linear
measurement equation), the SAGF is compared with the UKF as well as with the
GPF with 100 and 1000 particles. In the second case (nonlinear measurement
equation), the SAGF is compared with the UKF. The GPF is omitted, as it provides
no reliable estimates in this scenario due to the non-additive noise term in (20).

Case I

In Figure 2, the root mean square error (rmse) over the 1000 simulation runs
is shown. It is obvious that the proposed SAGF converges faster than the UKF.
Compared to the GPF with 100 particles, the SAGF has a smaller error in the
altitude. Furthermore, the average rmses of the SAGF and GPF are smaller than
the error of the UKF (see Table 1). In terms of run time, the SAGF is two times
faster than the GPF with 100 particles and four times faster than the UKF.

Case II

The differences between the two estimators, SAGF and UKF, significantly increase
if the altitude is measured according to the nonlinear measurement equation
(20). In Figure 3 the rmses are shown. At 10 seconds, the error for the altitude and
the velocity is increasing due to the drag of the nonlinear motion [6]. This can be
also seen in the average rmse in Table 2. It is important to note that applying the
UKF to measurement equation (20) or its modified version (21) has no notable
impact on the results.

244 Paper B Semi-Analytic Gaussian Assumed Density Filter

SAGF
UKF
GPF

1 10 20 30 40 50

time / s →

5

10

20

30

40

rm
se

al
ti

tu
d

e
/

m
→

(a) Altitude.

1 10 20 30 40 50

time / s →
0

200

400

600

700

rm
se

ve
lo

ci
ty

/
m

/s
→

(b) Velocity.

1 10 20 30 40 50

time / s →

10−6

10−4

10−2

rm
se

co
ef

fi
ci

en
t→

(c) Ballistic coefficient.

1 10 20 30 40 50

time / s →

10−10

100

1010

av
g.

d
et

er
m

in
an

t→

(d) Covariance determinant.

Figure 2: Rmse over 1000 test runs for case I. For GPF 100 particles are used.

Table 1: Average rmse and its standard deviation over all test runs for case I.

Altitude Velocity Ballistic coefficient

SAGF 12.6 ± 8.3 59.3 ± 143.7 0.016 ± 0.063
UKF 14.2 ± 7.9 100.1 ± 212.4 0.016 ± 0.058
GPF 100 p. 13.0 ± 8.0 60.2 ± 134.9 0.029 ± 0.098
GPF 1000 p. 12.7 ± 8.2 59.3 ± 142.1 0.019 ± 0.066

6 Simulation Examples 245

SAGF
UKF

1 10 20 30 40 50

time / s →
0

50

100

150

200

250

rm
se

al
ti

tu
d

e
/

m
→

(a) Altitude.

1 10 20 30 40 50

time / s →
0

400

800

1200

rm
se

ve
lo

ci
ty

/
m

/s
→

(b) Velocity.

1 10 20 30 40 50

time / s →

10−8

10−6

10−4

10−2

rm
se

co
ef

fi
ci

en
t→

(c) Ballistic coefficient.

1 10 20 30 40 50

time / s →

10−30

10−20

10−10

100

av
g.

d
et

er
m

in
an

t→

(d) Covariance determinant.

Figure 3: Rmse over 1000 test runs for case II.

Table 2: Average rmse and its standard deviation over all test runs for case II.

Altitude Velocity Ballistic Coefficient

SAGF 0.7 ± 2.2 36.5 ± 128.5 0.0126 ± 0.052
UKF 11.7 ± 47.7 102.5 ± 258.9 0.0127 ± 0.051

246 Paper B Semi-Analytic Gaussian Assumed Density Filter

7 Discussion and Future Work

A new framework for the efficient calculation of posterior moments in the context
of Gaussian assumed density filtering based on moment matching has been
proposed, which exploits the structure of the given nonlinear system. For this
purpose, the system is decomposed into a set of nonlinear subsystems that are
conditionally integrable in closed form by means of discretizing some dimensions
of the state space.

For systems of moderate complexity, a suitable decomposition can typically be
found by inspection. For large systems, however, automatic methods for the op-
timal decomposition according to some predefined quality measure are required
and will be pursued in future research. Quality measures might include i) the
minimum number of samples or ii) the minimum total number of computations
for a given estimation accuracy.

References

[1] Frederik Beutler, Marco F. Huber, and Uwe D. Hanebeck. Gaussian Fil-
tering using State Decomposition Methods. In Proceedings of the 12th
International Conference on Information Fusion, Seattle, WA, USA, July
2009.

[2] Uwe D. Hanebeck, Marco F. Huber, and Vesa Klumpp. Dirac Mixture
Approximation of Multivariate Gaussian Densities. In Proceedings of the
2009 IEEE Conference on Decision and Control (CDC), Shanghai, China,
December 2009.

[3] Marco F. Huber and Uwe D. Hanebeck. Gaussian Filter based on Deter-
ministic Sampling for High Quality Nonlinear Estimation. In Proceedings
of the 17th IFAC World Congress, volume 17, Seoul, Korea, July 2008.

[4] Kazufumi Ito and Kaiqi Xiong. Gaussian Filters for Nonlinear Filtering
Problems. IEEE Transactions on Automatic Control, 45(5):910–927, May
2000.

[5] Andrew H. Jazwinski. Filtering for Nonlinear Dynamical Systems. IEEE
Transactions on Automatic Control, 11(4):765–766, October 1966.

References 247

[6] Simon Julier, Jeffrey Uhlmann, and Hugh F. Durrant-Whyte. A New Method
for the Nonlinear Transformation of Means and Covariances in Filters and
Estimators. IEEE Transactions on Automatic Control, 45(3):477–482, 2000.

[7] Simon J. Julier and Jeffrey K. Uhlmann. Unscented Filtering and Nonlinear
Estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[8] Rudolf E. Kalman. A new Approach to Linear Filtering and Prediction
Problems. Transactions of the ASME, Journal of Basic Engineering, 82
(Series D)(1):35–45, 1960.

[9] Jayesh H. Kotecha and Petar M. Djurić. Gaussian Particle Filtering. IEEE
Transactions on Signal Processing, 51(10):2592–2601, October 2003.

[10] Tine Lefebvre, Herman Bruyninckx, and Joris De Schutter. Nonlinear
Kalman Filtering for Force-Controlled Robot Tasks. Springer, 2005.

[11] Mark R. Morelande and Bill Moran. An Unscented Transformation for Con-
ditionally Linear Models. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages III–1417–III–1420, April 2007.

[12] Magnus Nørgaard, Niels K. Poulsen, and Ole Ravn. New Developments in
State Estimation for Nonlinear Systems. Automatica, 36(11):1627–1638,
November 2000.

[13] Athanasios Papoulis and S. Unnikrishna Pillai. Probability, Random Vari-
ables and Stochastic Processes. McGraw-Hill, 4th edition, 2002.

[14] Thomas Schön, Fredrik Gustafsson, and Per-Johan Nordlund. Marginal-
ized Particle Filters for Mixed Linear/Nonlinear State-Space Models. IEEE
Transactions on Signal Processing, 53(7):2279–2289, July 2005.

[15] Dan Simon. Optimal State Estimation: Kalman, H-Infinity, and Nonlinear
Approaches. John Wiley & Sons, Inc., 1st edition, 2006.

Paper C
Chebyshev Polynomial

Kalman Filter

Authors: Marco F. Huber

Edited version of the paper:

M. F. Huber. Chebyshev Polynomial Kalman Filter. In Digital Signal Pro-
cessing, vol. 23, no. 5, pages 1620–1629, September 2013.

Chebyshev Polynomial Kalman Filter

Marco F. Huber

AGT International
Darmstadt, Germany

marco.huber@ieee.org

Abstract
A novel Gaussian state estimator named Chebyshev Polynomial
Kalman Filter is proposed that exploits the exact and closed-form
calculation of posterior moments for polynomial nonlinearities. An
arbitrary nonlinear system is at first approximated via a Chebyshev
polynomial series. By exploiting special properties of the Chebyshev
polynomials, exact expressions for mean and variance are then pro-
vided in computationally efficient vector-matrix notation for predic-
tion and measurement update. Approximation and state estimation
are performed in a black-box fashion without the need of manual
operation or manual inspection. The superior performance of the
Chebyshev Polynomial Kalman Filter compared to state-of-the-art
Gaussian estimators is demonstrated by means of numerical simula-
tions and a real-world application.

1 Introduction

Closed-form solutions for recursive Bayesian state estimation are merely avail-
able in some special cases. For linear systems affected by Gaussian noise, the
famous Kalman filter [17] is optimal and allows Bayesian estimation in a very
efficient manner. In case of a discrete state space with a finite number of states,
the grid-based filters are optimal [5]. For nonlinear non-Gaussian estimation
problems being typical in many technical fields, e.g., localization, robotics, or
signal processing, closed-form recursive Bayesian estimation is not possible and
thus, approximations are inevitable.

252 Paper C Chebyshev Polynomial Kalman Filter

A common approximation is the so-called Gaussian assumed density filtering,
where the system state is restricted to be Gaussian [30]. Here, the approximation
is performed in such a way that the exact mean and variance of the state distri-
bution are preserved via moment matching. This however, requires the solution
of expectation integrals, which are not available in closed form in general. Be-
sides computationally expensive numerical integration, many fast approximate
Gaussian assumed density filters utilizing the Kalman filter equations have been
developed in the past. The extended Kalman filter (EKF, [15, 28]) for instance em-
ploys linearization via first-order Taylor series expansion, while the second-order
EKF additionally considers the Hessian for improved estimation performance
[28]. However, differentiability of the considered nonlinear functions is required
and no uncertainty information of the system state for the approximation is taken
into account. The unscented Kalman filter (UKF, [16, 31]) instead propagates a
finite set of the so-called sigma-points that captures the mean and variance of the
prior density. This idea is also exploited for the cubature Kalman filter [3] or the
Gauss-Hermite Kalman filter [4, 14], both utilizing quadrature integration points.
In [13], the sigma-points are determined based on a shape approximation of the
Gaussian distribution, which allows a variable number of sigma-points. Though,
all these approximations are rather coarse as only a small set of sigma-points
is typically employed. It is not possible to capture higher-order information of
the prior density or the nonlinear functions, since only a point representation is
propagated instead of the entire Gaussian distribution.

An alternative branch for solving nonlinear estimation problems is the discretiza-
tion of the state space as done in grid filters or particle filters [5]. Theoretically,
these estimation techniques allow approaching the true statistics of the state
with arbitrary accuracy. This however comes with the expense of an applicabil-
ity to low-dimensional problems only as the computational complexity growth
exponentially with the dimension of the state space. To attenuate this com-
putational burden, sophisticated techniques like adaptive discretization [9] or
Rao-Blackwellization [26] have to be applied. In order to avoid the sample de-
pletion problem of particle filters, the so-called Gaussian particle filter [20] has
been proposed, which links sampling-based estimation with Gaussian filtering.

The novel Gaussian estimator proposed in this paper named Chebyshev Polyno-
mial Kalman Filter relies on a recent finding that for polynomial nonlinearities,
mean and variance can be determined exactly in closed form [12, 22]. In order to
apply this finding, a given nonlinear system is in a first step expanded in a series
of Chebyshev polynomials as proposed in [33]. This specific type of orthogonal
polynomials is well suited for approximation purposes for two reasons. Firstly,

2 Problem Formulation 253

the series coefficients can be determined efficiently by means of the discrete
cosine transform. Secondly, a Chebyshev series approximation is typically very
close to the best approximating polynomial, whereas the best polynomial is hard
to find in general.

Given the Chebyshev series expansion of the system, closed-form solutions for
moment propagation are derived and expressed in vector-matrix notation, which
allows a computationally efficient implementation. These moment propagation
expressions are then employed in a Kalman filter framework in order to obtain
a recursive Gaussian estimator. Thus, the contributions of this paper are three-
fold: (1) Accurate approximation of arbitrary nonlinear models by means of
Chebyshev polynomial series expansion. This approximation can be performed
automatically and computationally cheap via the discrete cosine transform. (2)
Closed-form and exact calculation of the non-central moments of a Gaussian
distribution propagated through polynomials. The entire probability mass of
the distribution is taken into account to allow for accurate results. (3) Compu-
tationally efficient mean and variance propagation for Chebyshev polynomial
series by means of exploiting the recursive and sparse structure of Chebyshev
polynomials.

The paper is structured as follows. The next section formulates the considered
recursive Gaussian state estimation problem. In Section 3, a brief introduction
to Chebyshev polynomials and series expansions is provided. Section 4 is con-
cerned with closed-form moment calculation. These results are then employed
in Section 5 for deriving the complete Gaussian estimator. This estimator is
compared against state-of-the-art estimators based on numerical simulations
and a real-world application in Section 6. A discussion on strengths, limitations,
and potential extensions of the proposed approach is part of Section 7. The
paper closes with a conclusion.

In the following, lower-case bold font letters indicate random variables, upper-
case bold font letters indicate matrices, and underlined letters indicate vectors.

2 Problem Formulation

In this paper, the nonlinear discrete-time system with dynamics equation

xk+1 = ak (xk ,uk)+w k (1)

254 Paper C Chebyshev Polynomial Kalman Filter

and measurement equation

zk = hk (xk)+v k (2)

is considered, where ak (.,.) and hk (.) are the known time-variant system function
and measurement function, respectively. The scalar random variable xk is the
system state at time step k and zk is the scalar measurement, where an actual
measurement value ẑk is a realization of the random variable zk . The terms w k

and v k are the zero-mean white Gaussian system noise and measurement noise,
respectively. The system input uk is assumed to be known.

In Bayesian estimation, two alternating steps, i.e., prediction and measurement
update, are performed for estimating the system state xk . In prediction, the
current estimate of xk is propagated to time step k +1 by means of the dynamics
equation (1). In the measurement update, a given measurement value ẑk is in-
corporated for updating xk under the consideration of the measurement relation
(2).

For both steps, closed-form solutions are not available for arbitrary functions
ak (.,.), hk (.) and arbitrary distributed random variables. Instead, appropriate
approximations have to be applied for practical use. In order to facilitate a
computationally efficient approximation, the focus in this paper is on Kalman
filter like calculations. For this purpose it is sufficient to consider a nonlinear
transformation

y = g (x) , (3)

where the goal is to find the mean and variance of the random variable y from
propagating the Gaussian random variable x ∼N

(
x;µx ,σ2

x

)
with mean µx and

variance σ2
x . In the prediction step y corresponds to the prediction xk+1, while

for filtering y coincides with the measurement zk .

For arbitrary nonlinear transformations (3) but Gaussian x , a closed-form calcu-
lation of the desired moments of y is still not possible in general. An exception
are polynomial transformations. Thus, the key idea is to approximate an arbi-
trary nonlinear transformation (3) by means of a polynomial series and then, to
perform the moment calculations of y in closed form. For this purpose, a highly
accurate approximation based on Chebyshev polynomials is considered next.

3 Chebyshev Polynomials 255

3 Chebyshev Polynomials

In this paper, the focus is on the Chebyshev polynomials of the first kind1, which
are defined compactly via (see [23])

Tn(x) = cos(n · arccos x) , n = 0,1, . . .

or equivalently by means of the recursion

Tn(x) = 2x ·Tn−1(x)−Tn−2(x) , n = 2,3, . . . , (4)

with initial conditions
T0(x) = 1 , T1(x) = x . (5)

It is easy to deduce from (4) that the function Tn(x) is a polynomial of degree n.
If n is even (odd), then Tn(x) is a sum of even (odd) monomials, i.e., Tn(x) is of
the form

Tn(x) =
n∑

i=0
αn,i · xi =

bn/2c∑
j=0

αn,n−2 j · xn−2 j , (6)

where αn,i is the Chebyshev coefficient of the i -th monomial of the n-th Cheby-
shev polynomial. The coefficient αn,i is non-zero only if i is even (odd).

3.1 Properties
Besides many other important properties (a detailed description can be found for
example in [23]), the product of two Chebyshev polynomials Ti , T j is of particular
interest in this paper. This product can be expressed by means of the sum of two
other Chebyshev polynomials according to

Ti (x) ·T j (x) = 1
2

(
Ti+ j (x)+T|i− j |(x)

)
. (7)

Furthermore, the zeros for x ∈Ω, [−1,1] of Tn(x) are

x = xm = cos(θm) , (8)

1 The results presented in this paper can easily be applied to Chebyshev polynomials of the second,
third, and forth kind.

256 Paper C Chebyshev Polynomial Kalman Filter

with

θm ,
π(m− 1

2)
n

for m = 1, . . . ,n. All Chebyshev polynomials Ti (x), i = 0,1, . . . form a complete
orthogonal system on the intervalΩwith respect to the weight

w(x) = (
1−x2)− 1

2 .

Thus, they satisfy

〈Ti (x),T j (x)〉,
1∫

−1

w(x) ·Ti (x) ·T j (x)dx (9)

=

0 , i 6= j
π
2 , i = j 6= 0

π , i = j = 0

. (10)

An orthogonal system of polynomials is beneficial especially when employed for
approximating a nonlinear function as described next.

3.2 Chebyshev Series
Expanding a given function g (x) by a series of Chebyshev polynomials onΩ gives

g (x) ≈
n∑

i=0
ci ·Ti (x) , ∀x ∈Ω (11)

with the series coefficients

ci =
〈g (x),Ti (x)〉
〈Ti (x),Ti (x)〉 . (12)

As any series expansion based on orthogonal polynomials, the series coefficients
can be calculated independent of each other. Furthermore, since the system
of Chebyshev polynomials is complete, the corresponding series converges for
n →∞ with regard to the L2-norm if g (x) is a piece-wise continuous or an L2-
integrable function, which implies cn → 0 for n →∞ . By a change of variables, a
Chebyshev series can be transformed into a Fourier cosine series and thus, the
well-known theory of Fourier series also applies to Chebyshev series.

3 Chebyshev Polynomials 257

3.3 Approximate Series Expansion
For practical implementations, it is only possible to expand a given function g (x)
in a finite number of series components n <∞ , which results in the so-called
truncated Chebyshev series. Of course, a truncated expansion merely provides
an approximate representation of the function g (x) . Fortunately, it can be shown
that a truncated Chebyshev series yields a near-minimax approximation, i.e., a
truncated Chebyshev series of degree n is very close to the best possible polyno-
mial approximation of the same degree (see e.g. Chapter 5.5 in [23]). Compared
to other orthogonal polynomial systems, a series expansion based on Chebyshev
polynomials benefits from the fact that all Ti (x), i = 0, . . . ,n are bounded between
±1 and are oscillatory functions inΩ . Thus, the error that results from neglecting
components of degree higher than n is spread smoothly over the interval Ω . For
instance, if the function g (x) has r +1 continuous derivatives on Ω, then the
approximation error is with O(n−r) for all x ∈Ω and thus, the error decreases
rapidly with the degree n. Here, O(.) is the big O in Landau notation. Further-
more, if g (x) is a polynomial function with degree r , then a truncated Chebyshev
series is optimal, i.e., without approximation error, if n = r .

For many functions g (x), the series coefficients (12) cannot be calculated in
closed form due to the integration in the numerator. In such cases, one can
exploit that Chebyshev polynomials Ti (x), i = 0, . . . ,n −1 are also orthogonal in a
discrete sense on the zeros xm , m = 1, . . . ,n of Tn(x) (see (8)), i.e.,

n∑
m=1

Ti (xm) ·T j (xm) =

0 , i 6= j
n
2 , i = j 6= 0

n , i = j = 0

.

This discrete orthogonality property leads to a very efficient numerical calculation
of (12) by means of

ci ≈
2−δ0,n

n

n∑
m=1

g (xm) ·Ti (xm) (13)

for i = 0,1, . . . ,n, where δi , j is the Kronecker delta being one only if i = j and
zero otherwise. By plugging the zeros (8) in the definition (4) of the Chebyshev
polynomials, it follows Ti (xm) = cos(i ·θm) and thus, the approximate calculation
(13) coincides with the well-known discrete cosine transform (see e.g. [7]) used
in image and video compression, for which a plethora of efficient algorithms is
available. Similar approximate calculation schemes of the series coefficients are

258 Paper C Chebyshev Polynomial Kalman Filter

typically not available for other orthogonal polynomial series expansions like the
Fourier-Hermite series.

It can be shown that a truncated Chebyshev series of degree n with approximate
series coefficients (13) exactly interpolates g (x) in the zeros (8) of Tn(x). Further-
more, it still satisfies the near-minimax property (see e.g. Chapter 6.5 in [23]).
While the best polynomial representation of g (x) is typically difficult to obtain,
the approximate Chebyshev series is very close to the best solution and thanks to
(13) very easy to calculate.

4 Closed-Form Moment Propagation

The numerical calculation (13) of the series coefficients facilitates a polynomial
representation (11) of a given nonlinear function g (x) on the intervalΩ in a black-
box fashion, i.e., without any user interaction. The restriction on the intervalΩ is
uncritical. By means of the affine transformation

x ′ = 2
b−a · x − a+b

b−a , (14)

any function g (x) defined on an arbitrary interval [a,b] can be mapped on the
interval Ω (see [27]). In doing so, the Gaussian random variable x has to be
transformed as well, which yields the transformed mean and variance

µx′ = 2
b−a ·µx − a+b

b−a ,

σ2
x′ =

(2
b−a

)2
·σ2

x ,

respectively. Furthermore, for the calculation of the series coefficients by means
of the discrete cosine transform (13), the zeros xm defined on Ω (see (8)) have to
be mapped to the interval [a,b]. This can be achieved by inverting (14), which
yields

x = b−a
2 · x ′+ a+b

2 . (15)

Thus, in the following it is sufficient to assume that g (x) is defined on Ω and a
Chebyshev series representation of g (x) is given. The next step towards a Kalman
filter like estimator is the derivation of closed-form calculations of the mean µy

and variance σ2
y of random variable y given a Gaussian random variable x . The

whole process of moment calculation is summarized in Figure 1 and detailed in
the following sections.

4 Closed-Form Moment Propagation 259

Variable
transformation (14)

Inverse variable
transformation (15)

Moment
calculation (17)

Series coefficient
calculation (13)

Moment
propagation (18), (21)

Chebyshev
coefficient

calculation (19)

xmµx ,σ2
x

µx′ ,σ2
x′

[a,b]

g (x)

ciEi

µy ,σ2
y

αi ,n

Figure 1: Flow chart of proposed closed-form moment propagation.

4.1 Non-central Moments of a Gaussian
When propagating a Gaussian x through a Chebyshev series representation of
g (x), calculating the mean µy can be formulated as

µy = E{g (x)}

=
∫

g (x) ·N
(
x;µx ,σ2

x

)
dx

(11)≈
n∑

i=0
ci

∫
Ti (x) ·N

(
x;µx ,σ2

x

)
dx

(6)=
n∑

i=0
ci

i∑
j=0

αi , j

∫
x j ·N

(
x;µx ,σ2

x

)
dx︸ ︷︷ ︸

=E{x j },E j

, (16)

i.e., it requires a closed-form calculation of all non-central moments E j of a
Gaussian random variable up to order n . It is important to note that integrating
over the entire real line instead of integrating over Ω in the above equation is
only valid, ifΩ contains almost the complete support of the Gaussian x . This can

260 Paper C Chebyshev Polynomial Kalman Filter

be ensured if the interval [a,b] used in the aforementioned transformation (15)
is chosen sufficiently wide (for a detailed discussion see Section 5.1).

In the following, a computationally very efficient scheme for a closed-form
calculation of all moments up to order n is proposed, which exploits the well-
known fact that the moments of order three and higher of a Gaussian random
variable merely depend on its first two moments. For the j -th non-central
moment, the recursion

E j =
∫

x j ·N
(
x;µx ,σ2

x

)
dx

=
∫

x j 1p
2πσx

exp

(
−

(
x −µx

)2

2σ2
x

)
dx

(a)= x j+1

j +1
·N

(
x;µx ,σ2

x

)∣∣∣∞
−∞︸ ︷︷ ︸

=0

−
∫

x j+1

j +1

(
η1 +η2 · x

)
·N

(
x;µx ,σ2

x

)
dx

(b)= − 1

j +1
η1 E j+1− 1

j +1
η2 E j+2 ,

holds, with η1,
µx

σ2
x

and η2,− 1
σ2

x
. In detail, (a) follows from partial integration

and in (b) the linearity of the expected value and the moment definition is
exploited.

Thus, by commencing the recursion from E0 = 1 and E1 = µx , calculating all
higher-order moments from E2 up to En can be described by means of the linear
system of equations

R ·

E2
...

En

= [
E0+η1 · E1 , E1, 0, . . . , 0︸ ︷︷ ︸

n−3 times

]T , (17)

where R is an (n −1)× (n −1) matrix with entries

Ri j =

− 1

i η2 , i = j

− 1
i η1 , i = j +1

1 , i = j +2

0 , otherwise

,

4 Closed-Form Moment Propagation 261

i.e, the matrix R is triangular with zeros everywhere except of the main diagonal
and the two diagonals below the main diagonal. Thanks to this specific structure
of R, the linear system of equations (17) can be solved efficiently by means of
forward substitution with complexity O(n).

It is worth mentioning that the proposed efficient calculation of all higher-order
moments is universally valid and thus, can be employed directly for any polyno-
mial series expansion.

4.2 E�icient Mean Propagation
Given the solution of (17), the desired meanµy of a propagated Gaussian random
variable in (16) can be easily calculated via

µy ≈ cT
n ·An ·En , (18)

where En , [E0,E1, . . . ,En]T is the vector of non-central moments up to and

including order n and cn , [c0,c1, . . . ,cn]T is the vector of series coefficients.
Further, An is the (n +1)× (n +1) matrix of Chebyshev coefficients defined by

An ,
[
α0,n α1,n . . . αn,n

]T
.

Here, αi ,n , [αi ,0,αi ,1, . . . ,αi ,n]T ∈Nn+1, i = 0,1, . . . ,n comprises all coefficients
of the i -th Chebyshev polynomial up to and including the n-th monomial. It is
calculated via the recursion

αi ,n = 2·
[

0 αT
i−1,i−1 0 . . . 0︸ ︷︷ ︸

n−i times

]T +
[
αT

i−2,i−2 0 . . . 0︸ ︷︷ ︸
n−i+2 times

]T
, (19)

where the recursion commences from

α0,n = [
1 0 . . . 0

]T
, α1,n = [

0 1 0 . . . 0
]T

and exploits the definition of the Chebyshev polynomials (4). According to (5),
the coefficientsαi , j are zero for j > i . Thus, An is a sparse lower triangular matrix,
which significantly reduces the computations of the matrix-vector products
in (18).

262 Paper C Chebyshev Polynomial Kalman Filter

4.3 E�icient Variance Propagation

In order to determine the variance σ2
y of the propagated random variable y , the

relation

σ2
y = E

{
(y −µy)2}= E

{
(g (x)−µy)2}

= E
{

g (x)2}−µ2
y (20)

is exploited, where the propagated mean µy is already known from the previous
section. It remains to evaluate the first term in (20). Assuming again that g (x)
is approximated by means of a Chebyshev series according to (11), evaluating
the expectation can be boiled down to calculating multiple expected values
over products of Chebyshev polynomials. For an efficient computation, the
relation (7) is utilized. In doing so, the expectation E

{
g (x)2} can be determined

according to

E
{

g (x)2}= ∫
g (x) · g (x) ·N

(
x;µx ,σ2

x

)
dx

≈
n∑

i=0

n∑
j=0

ci ·c j ·
∫

Ti (x) ·T j (x) ·N
(
x;µx ,σ2

x

)
dx

= (
cn ⊗ cn

)T ·P2n ·E2n , (21)

with ⊗ being the Kronecker product, E2n comprising all non-central moments
up to order 2n calculated according to (17), and P2n being an (n +1)2 × (2n +1)
matrix

P2n , 1
2 ·

(
α0,2n +α0,2n

)T(
α1,2n +α1,2n

)T

...(
αi+ j ,2n +α|i− j |,2n

)T

...(
α2n,2n +α0,2n

)T

comprising the coefficients resulting from all possible products Ti (x) ·T j (x),
i , j = 0,1, . . . ,n of the Chebyshev series expansion of g (x) .

5 The Gaussian Estimator 263

5 The Gaussian Estimator

Based on the previous derivations, the next step is to present a Gaussian filter
based on Chebyshev series expansions of the dynamics model (1) and measure-
ment model (2).

5.1 Approximation Interval
Since both the system function and the measurement function can be defined
on arbitrary intervals, it is necessary to transform them on the interval Ω via
(14) prior to performing the Chebyshev series expansion and the prediction or
measurement update. For this purpose, the interval [a,b] has to be determined.
One option is to keep this interval fixed for all times steps. This for example is
reasonable if it is known a priori that the system state xk will remain within [a,b]
for all times. Here, for time-invariant systems, the series coefficients ci have to be
determined initially only once and remain constant for all times. Admittedly, the
interval [a,b] and thus, the number of series components n can be large, which
may cause high computational loads for state estimation.

Another option is to determine the interval [a,b] dynamically at each time step
based on the current result of the prediction x p

k and measurement update xe
k ,

respectively. Given the estimate x•
k ∼N

(
xk ;µ•

k , (σ•
k)2), the interval borders can

be determined according to

a•
k =µ•

k − l ·σ•
k , b•

k =µ•
k + l ·σ•

k ,

with l ∈N+ and • ∈ {e,p}. In doing so, the interval [a•
k ,b•

k] corresponds to the
l -sigma bound of the state estimate x•

k . Typical choices for l are three and higher.
This ensures that 99.7% and more of the probability mass of the estimate x•

k are
within [a•

k ,b•
k].

The dynamic determination of the interval allows performing the Chebyshev
series expansion on the support of the Gaussian estimate only, which reduces to
number of series components compared to the aforementioned fixed interval
selection. On the other hand, the series expansion has to be performed for any
prediction and measurement update. For the simulations in this paper, the
dynamic interval calculation is utilized, where l is set to four.

264 Paper C Chebyshev Polynomial Kalman Filter

5.2 Prediction

Predicting the estimate xe
k ∼N

(
xk ;µe

k , (σe
k)2) of the previous measurement up-

date from time step k to k +1 requires the calculation of the predicted mean and
variance according to

µ
p
k+1 = E{ak (xk ,uk)} ,(

σ
p
k+1

)2 = E
{(

ak (xk ,uk)−µp
k+1

)2
}
+ (
σw

k

)2 ,

where
(
σw

k

)2 is the variance of the system noise w k . Assuming that the sys-
tem function ak (.,uk) for a given system input uk is represented by means of a
Chebyshev series with n components, the mean and variance can be calculated
via

µ
p
k+1 =

(
ca

k,n

)T ·An ·Ee
k,n , (22)(

σ
p
k+1

)2 = (
ca

k,n ⊗ ca
k,n

)T ·P2n ·Ee
k,2n − (

µ
p
k+1

)2 + (
σw

k

)2 , (23)

respectively. Here, (22) coincides with (18), where Ee
k,n is the vector of non-

central moments of the current estimate xe
k transformed to the intervalΩ (see

(16)) and ca
k,n is the vector of series coefficients resulting from approximating

ak (.,uk) at time step k . In contrast, the matrix of Chebyshev coefficients An

remains constant for all time steps unless the number of components n is varied
over time. Similarly, (23) follows directly from (20) and (21), with matrix P2n

being constant at all times.

5.3 Measurement Update

For the measurement updates, the goal is to update the prediction x p
k given the

latest measurement value ẑk . Therefor, it is assumed that x p
k and zk are jointly

Gaussian2, which requires to compute the joint mean vector and joint covariance
matrix

µxz
k

=
[
µ

p
k
µz

k

]
, Cxz

k =
[(
σ

p
k

)2
σxz

k

σxz
k

(
σz

k

)2

]
,

2 This assumption is common in Kalman filtering (as in the EKF or the UKF) and is only true for
linear systems affected with Gaussian noise. Otherwise it is an approximation.

5 The Gaussian Estimator 265

respectively. Given both, the updated mean and variance are then calculated
according to

µe
k =µp

k +Kk ·
(
ẑk −µz

k

)
,(

σe
k

)2 = (
σ

p
k

)2 −Kk ·σxz
k ,

which coincides with the well-known Kalman filter update step, where Kk ,
σxz

k /
(
σz

k

)2 is the Kalman gain. The update step requires determining the mean

µz
k and variance

(
σz

k

)2 of the measurement zk as well as the calculation of the
covariance σxz

k of state and measurement.

Measurement Mean and Variance

The calculation of µz
k and

(
σz

k

)2 requires a prediction based on the measure-
ment model (2). Analogously to the prediction of the system state described in
Section 5.2, the desired moments result to

µz
k = (

ch
k,n

)T ·An ·Ep
k,n ,(

σz
k

)2 = (
ch

k,n ⊗ ch
k,n

)T ·P2n ·Ep
k,2n − (

µ
p
k

)2 + (
σv

k

)2 ,
(24)

where Ep
k,n comprises all non-central moments up to order n of the prediction

x p
k transformed to interval Ω and ch

k,n is the vector of series coefficients of the
Chebyshev series expansion of hk (.) . Both matrices An and P2n are independent
of the measurement function hk (.) and thus, can be used in both the prediction
and the measurement update. It is worth mentioning that the degree n of the
series expansion needs not to be identical for the prediction and measurement
update.

Covariance of State and Measurement

The remaining unknown parameter is the covariance σxz
k of state and measure-

ment. Similar to (20), the covariance can be formulated to

σxz
k = E{(xk −µp

k)(zk −µz
k)}

= E{xk ·hk (xk)}−µp
k ·µz

k .

Here, the first term cannot be evaluated in closed form for arbitrary measure-
ment functions, but given the Chebyshev approximation of hk (.), evaluating the

266 Paper C Chebyshev Polynomial Kalman Filter

expectation boils down to calculating the expectation of a product of a linear
function (xk) with a Chebyshev series. This again can be easily calculated in
matrix-vector fashion according to

σxz
k =

(
ch

k,n

)T
·A∗

k,n ·Ep
k,n −µp

k ·µz
k ,

where the (n +1)× (n +2) matrix A∗
k,n is given by

A∗
k,n ,

1
2

([
0 (bp

k −ap
k) ·An

]+ [
(ap

k +bp
k) ·An 0

])
. (25)

This matrix comprises the Chebyshev coefficients resulting from the multiplica-
tion of the Chebyshev series with xk and simultaneously transforms the result
of this multiplication back to the interval [ap

k ,bp
k] by means of the inverse vari-

able transform (15). The multiplication increases the degree of any involved
Chebyshev polynomial by one, which coincides with shifting the coefficients one
column to the right. This can be easily seen by setting ap

k =−1 and bp
k = 1, where

(25) becomes A∗
k,n = [

0 An
]

.

6 Results

Two numerical simulations (Sections 6.1 and 6.3) as well as a real-world applica-
tion example (Section 6.2) are conducted for evaluating the performance of the
proposed estimator.

6.1 Example I: Higher-Order Moments
In the first simulation example, the transformation

y = |x |

is considered, where x has mean µx = 0.5 and variance σ2
x = 1. The resulting

random variable y is non-Gaussian and the odd moments are non-zero [29].
Furthermore, the transformation is non-smooth and thus, not ideally suited of a
polynomial series expansion.

Monte Carlo (MC) integration with 10 million samples is performed to deter-
mine the true (non-central) moments of y . The results are shown in Table 1

6 Results 267

Table 1: Calculation of the moments of the random variable y = |x |.
Moments

1 2 3 4 5

MC 0.896 1.25 2.206 4.562 10.619
UKF 0.983 1.25 1.879 3.063 5.165

CPKF, n = 2 0.747 1.25 3.795 13.563 50.348
CPKF, n = 5 0.997 1.25 1.987 4.563 15.775

CPKF, n = 10 0.932 1.25 2.198 4.563 10.630
CPKF, n = 15 0.882 1.25 2.209 4.563 10.623

together with the estimates of the unscented Kalman filter (UKF3, [16, 31]) and
the proposed estimator (denoted as CPKF). For the CPKF, the number of series
components n is varied. For n = 2, the number of series components is three
and thus, identical with the number of sigma-points of the UKF. In this case, the
UKF is closer to the true moments of y than the CPKF. But with an increasing
number of components n, CPKF approximates the moments of y with increasing
accuracy. Further, the CPKF is now also able to accurately capture moments
of order three and higher, while the UKF cannot provide accurate estimates of
these moments. The main reason for this can be found in the way moments
are calculated by the UKF. While the CPKF approximates the transformation
and then propagates the entire density of x , the UKF captures the density of x
merely by a small set of sigma-points. This set cannot capture and propagate
higher-order information with sufficient accuracy.

6.2 Example II: Real-World Application
In this example, real-world data from monitoring the advertising effectiveness of
a TV commercial campaign for a single product is considered [25, 32]. This data
is obtained by means of weekly surveys, where a given number of individuals
from the population of TV viewers in UK is sampled in order to count the number
being aware of current or recent TV commercials for the product. The result of
each survey is measured in standardized units known as television ratings (TVRs).

3 The Matlab implementation of the UKF available at http://www.cs.ubc.ca/~nando/
software.html is used. The parameters of the UKF are set to α= 1, β= 0 and κ= 0.5.

http://www.cs.ubc.ca/~nando/software.html
http://www.cs.ubc.ca/~nando/software.html

268 Paper C Chebyshev Polynomial Kalman Filter

0 15 30 45 60 75
week k →

0

2

4

6

8
T

V
R

m
ea

su
re

m
en

ts
→

Figure 2: Weekly TVR measurements forming the input uk .

Let uk denote the TVR measurement for week k. In Figure 2, TVR measurements
for 75 weeks are depicted.

The TVR measurements drive the nonlinear five-dimensional dynamics equation

xk+1 = a(xk +w k ,uk) , w k ∼N
(
wk ;0,0.03·Cx

k

)
,

with Cx
k being the covariance matrix of xk and system function

a(x ,u) = [
x1 x2 x3 x4 (x2 −x1)− (x2 −x1 −x3 · x5) · exp(−x4 ·u)

]T
. (26)

The state vector x comprises the minimum level of awareness x1, maximum level
of awareness x2, memory decay rate x3, penetration x4, and effect of TVR on the
awareness x5 (for details see [32]). The measurement equation is given by

zk = x1,k +x5,k +v k = H · xk +v k (27)

with H, [1,0,0,0,1], where zk corresponds to the awareness proportion and the
noise v k has standard deviation σv

k = 0.05. The initial state estimate is given by

6 Results 269

0 15 30 45 60 75
week k →

missing data

true

CPKF

UKF

0

0.2

0.4

0.6
aw

ar
en

es
s

z k
→

Figure 3: Predicted awareness proportions of the CPKF (blue solid line) with 95%
confidence region (blue dashed) as well as the predictions of the UKF (red dotted).
The true awareness proportion values are indicated by the black dots. For the weeks
k = 42,43,44 no awareness measurements are available.

x0 ∼N
(
x0;µx

0
;Cx

0

)
with mean vector and covariance matrix

µx
0
=

0.10
0.85
0.90
0.02
0.30

 and Cx
0 =

6.25 6.25 0 0 0
6.25 406.25 0 0 0

0 0 1 0 0
0 0 0 2.25 0
0 0 0 0 100

 ,

respectively.

As the system state has dimension five, the proposed CPKF is merely applied on
the one-dimensional nonlinear mapping exp(−x4 ·u) in (26). The reaming four
states are processed by means of the UKF. A more detailed derivation of this state
decomposition can be found in Appendix A. The CPKF is compared with the UKF,
where the unscented transform is applied to all five state dimensions. For both
estimators, the measurement update step is performed via a Kalman filter, as the
measurement equation (27) is linear. The true awareness proportion values for
performing the update step are taken from [32] and are depicted in Figure 3. It is
important to note that for the weeks 42, 43, and 44 no awareness measurements
are available.

270 Paper C Chebyshev Polynomial Kalman Filter

In the following the predictions of the awareness proportion zk of the CPKF and
UKF are compared before updating the state estimates with the true awareness
value ẑk . These predictions are calculated as a by-product of the measurement
update step (see (24)). In Figure 3, the predicted awareness proportions are
depicted. It is obvious that the UKF behaves very unsteady and is heavily fluctu-
ating. Thus, the resulting awareness predictions are very inaccurate. This effect
can be explained by overly confident estimates, i.e., the covariance matrix of the
system state contains too small variances.

The behavior of the CPKF is different, which is surprising as the CPKF is merely
applied on exp(−x4 ·u), while the remaining parts of the system equation are pro-
cessed via the UKF. Thus, the CPKF has a stabilizing effect on the UKF resulting
in awareness predictions that accurately follow the ground truth. Furthermore,
the CPKF is not overconfident as the predicted measurement variances (σz

k)2 are
sufficiently large to capture the true awareness proportions. Even for the weeks
with missing data, the predictions of CPKF are meaningful as the variances grow
and thus, indicate an increasing uncertainty. Though, the trend is still correct.

6.3 Example III: Time Series
In the following numerical simulation example, the non-stationary growth model
with nonlinear dynamics equation

xk+1 =
xk

2
+25·

xk

1+x2
k

+8· cos(1.2·k)+w k

and nonlinear measurement equation

zk = x2
k

20
+v k

is considered. Due to its highly nonlinear and bimodal nature, this example has
often been utilized before for comparing the performance of state estimators
[10, 19, 20]. The bimodality follows from the quadratic measurement equation,
which possesses a bimodal likelihood in case of positive measurement values,
i.e., for zk > 0.

For simulation purposes, the parameters for the noise terms and initial system

state are chosen as follows. The system noise w k has variance
(
σw

k

)2 = 10 and

the variance of the measurement noise v k is
(
σv

k

)2 = 1 . The initial state estimate
at time step k = 0 is x0 ∼N (x0;0,10), the true system state x0 is sampled from x0.

6 Results 271

Besides the proposed CPKF, the following estimators are considered for compari-
son:

UKF Unscented Kalman filter with two and three sigma-points.
GHKF Gauss-Hermite Kalman filter [4, 14] allows an arbitrary number of

sigma-points.
CKF Cubature Kalman filter [3] operates with two sigma-points.
EKF Extended Kalman filter is based on first-order Taylor series expansion.
PF Particle filter with residual resampling [8].

The CPKF is applied with two (n = 1), three (n = 2), and ten (n = 9) series com-
ponents. In doing so, for low n the performance of the CPKF can be compared
with the UKF and CKF with a corresponding number of sigma-points. Both
numbers of sigma-points are also employed for the GHKF4, but in addition a
GHKF with ten sigma-points is used as well. The PF is the only non-Gaussian
state estimator and thus, ideally suited for the nonlinearities considered in this
simulation example. The number of particles is chosen in such a way that the
runtime of the PF is close to the runtime of the CPKF. On this account, PFs with
10, 20, and 100 particles are applied. Their runtimes correspond to CPKFs with
two, three, and ten series components, respectively.

The simulation is performed for 100 Monte Carlo runs, where each run com-
prises 50 time steps with alternating predictions and measurement updates. The
performance of all estimators is evaluated by means of two measures, the root
mean square error (rmse) and the negative log-likelihood of the state estimate
(see for instance [21])

Lx , log
(p

2πσe
k

)
+ 1

2

(
xk−µe

k
σe

k

)2
.

For both, lower values indicate a better performance. While the rmse merely
penalizes the deviation of the estimated state xe

k from the true state xk , the log-
likelihood penalizes both inconsistency and uncertainty. The log-likelihood has
high values in case of a strong error between state and estimate as well as in case

of an overestimation (variance
(
σe

k

)2 is too high) or underestimation (variance(
σe

k

)2 is too low) of the error.

4 For both the GHKF and CKF the Matlab implementation available at http://becs.aalto.fi/
en/research/bayes/ekfukf/ is used.

http://becs.aalto.fi/en/research/bayes/ekfukf/
http://becs.aalto.fi/en/research/bayes/ekfukf/

272 Paper C Chebyshev Polynomial Kalman Filter

0

10

20

30

rm
se

x
→

CPKF UKF GHKF CKF EKF PF
0

20
40

60
80

100

L
x
→

CPKF UKF GHKF CKF EKF PF

(a) Two series components/sigma-points for CPKF, UKF, GHKF, CKF as well as ten
particles for PF.

0

10

20

30

rm
se

x
→

CPKF UKF GHKF CKF EKF PF
0

20
40

60
80

100
L

x
→

CPKF UKF GHKF CKF EKF PF

(b) Three series components/sigma-points for CPKF, UKF, and GHKF as well as 20
particles for PF. CKF is identical with (a) and (c), as it only operates with two sigma-
points.

0

10

20

30

rm
se

x
→

CPKF UKF GHKF CKF EKF PF
0

20
40

60
80

100

L
x
→

CPKF UKF GHKF CKF EKF PF

(c) Ten series components/sigma-points for CPKF and GHKF as well as 100 particles
for PF. UKF is identical with (b), as the maximum number of sigma-points is three.

Figure 4: Median (red line), lower and upper quantiles (blue box), and spread (black
lines) of rmse (left row) and negative log-likelihood (right row) of all estimators. Red
crosses indicate outliers. The results of the EKF are identical for (a), (b), and (c).

In Figure 4, the rmse and negative log-likelihood over all simulation runs for
different numbers of series components/sigma-points are depicted. It can be
seen that the CPKF—together with the GHKF—provides the lowest log-likelihood

6 Results 273

0

1

2

3

4
ru

n
ti

m
e

in
m

s
→

CPKF UKF GHKF CKF EKF PF

2
3
10

20
100

Figure 5: Average runtime of all estimators for different number of series coefficients,
sigma-points, and particles, respectively.

values, i.e., the estimates of the CPKF are the most consistent ones without being
overly uncertain. In terms of the rmse, CPKF outperforms all other Gaussian
estimators clearly for two series components/sigma-points (see Figure 4b). Here,
UKF, GHKF and CKF provide almost identical results, as the sigma-points of
CKF and GHKF are identical and very close to the sigma-points of the UKF. The
approximation approach of the CPKF is completely different to these Gaussian
estimators, as it relies on a function approximation instead of a point-based
approximation of the state distribution. Thus, CPKF provides different estimates.
The EKF often loses track of the true state without being aware of it—the EKF
on average has the lowest rmse and at the same time the lowest variances of all
Gaussian estimators and thus, is too confident.

For a higher number of components, the rmse of the CPKF is comparable to UKF
and GHKF, but in terms of the log-likelihood merely the GHKF is comparable
to CPKF. There is a clear gain of estimation performance when the number of
series components is increased, but since CPKF is still a Gaussian estimator, this
performance improvement is bounded and spending too many components will
have no visible impact. Instead, merely the computational demand will increase.
This holds for any (approximate) Gaussian assumed density filter.

If the runtime (see Figure 5) is also taken into account as a performance criterion,
it becomes obvious that the CPKF has a good estimation accuracy/runtime ratio.
The runtime is close to the runtime of the fastest sigma-point approaches. This
low runtime is due to the sparse and computationally efficient matrix-vector
notation of all CPKF estimation steps. The GHKF for instance, which is very close

274 Paper C Chebyshev Polynomial Kalman Filter

to the CPKF in terms of estimation performance, is by far the slowest Gaussian
estimator. On the other hand, the EKF is the fastest estimator as the linearization
is performed off-line, but its estimates are inaccurate.

As mentioned above, the number of particles of the PF is chosen such that the
runtime is similar to the runtime of the CPKF. As the PF is not a Gaussian esti-
mator, it can provide estimates that are much closer to the true state compared
to the Gaussian estimators. However, the PF underestimates its error and thus,
the log-likelihood values are the worst of all estimators as the variance of the
particles is by far too low. Only by spending many particles—significantly more
than 100—the PF estimates become consistent. But this in turn comes at the
expense of a higher computational load.

7 Discussion

In the following strengths and limitations of the proposed approach as well as
potential extensions are discussed.

7.1 Strengths
The currently most prominent state estimation techniques rely on sampling.
This is done for instance by means of deterministic sigma-point calculation as in
the UKF or by means of random sampling as in particle filters. Given the sample
representation, prediction and the calculation of statistics is fairly simple, as
the samples merely have to be propagated through the nonlinearity. The main
drawback of such techniques is that only a partial representation of the state
distribution is considered. This is different to the proposed CPKF. Here, the
entire distribution is propagated through the nonlinearity. The approximation
is applied on the given nonlinear function instead. Thanks to the Chebyshev
polynomial series, this approximation is typically very accurate.

The EKF and its derivatives form a class of estimators that also propagates the
entire distribution. However, the approximation of nonlinearity is much coarser
compared to the CPKF as merely a linear approximation in case of the EKF is
employed. Furthermore, the EKF relies on a priori calculation of derivatives of
the nonlinearity, which requires manual operations. The CPKF instead operates
fully automated, i.e., all approximations are performed on-line without any user
interaction.

7 Discussion 275

In [22], a Gaussian estimator for polynomial nonlinearities has been proposed.
Here, all moment propagations rely on Taylor-series expansions. In doing so, the
resulting prediction and measurement update steps involve non-sparse matrices
with elements requiring complex computations. The computational complexity
of the CPKF is low as merely matrix-vector operations with sparse matrices are
involved. For instance, the complexity of the mean propagation (18) and variance
propagation (21) are in O(n2) and O(n3), respectively. But this is just the worst-
case consideration. As the involved matrices An and P2n are sparse, an even
lower computational complexity can be achieved.

Utilizing Chebyshev polynomials for approximating nonlinear systems in the
context of Gaussian filtering has firstly been proposed in [33]. The authors
demonstrated the superior prediction performance compared to the EKF and
UKF. In contrast to [33], in the proposed approach the given nonlinear system
can be defined over arbitrary intervals. While [33] merely supports the predic-
tion step, the proposed approach additionally performs measurement updates.
Finally, [33] leverages the moment propagations from [22], which are exact but
computationally more demanding than the proposed ones (see above).

7.2 Limitations and Potential Extensions
All the aforementioned Gaussian estimators, including the CPKF, rely on an ad-
ditional approximation for the measurement update step, which is the joint
Gaussian assumption of the measurement and the state. This assumption is only
valid for a linear mapping and a good approximation for nonlinear functions as
long as the measurement density is unimodal and close to a Gaussian density. In
case of multi-modal or heavily skewed densities, the joint Gaussian assumption
is inappropriate and thus, a Gaussian estimator is expected to provide inaccurate
estimation results or even may completely diverge. One potential solution of this
limitation is the extension towards Gaussian mixture estimators [2, 11]. Here,
instead of a single Gaussian, a sum of Gaussians is propagated. As Gaussian mix-
tures are universal function approximators [24], convergence towards the exact
estimate is possible [1], but comes at the expense of an increased computational
burden.

By increasing the degree of the Chebyshev series, the approximation quality of
the true nonlinear function increases as well. Unfortunately, due to numerical
instabilities resulting from the calculation of the Chebyshev coefficients and
the series coefficients, series of a high degree—typically n > 20—can result in a

276 Paper C Chebyshev Polynomial Kalman Filter

worse estimation performance compared to a series with a much lower degree.
To avoid this issue, a piece-wise approximation of the nonlinear function with a
set of Chebyshev series of low degree should be applied instead.

So far, the CPKF is merely applicable to one-dimensional states. The extension
towards the multi-dimensional case requires a multi-variate Chebyshev polyno-
mial series expansion and multi-variate moment calculation for polynomials.
The first step is straightforward, as the Chebyshev series expansion can be ap-
plied dimension-wise. The resulting polynomial approximation consists of the
product of one-dimensional Chebyshev series. The multi-variate moment calcu-
lation, however, is still a not fully solved issue. There exists a promising solution
proposed in [18], which still requires a significant amount of computations. An
alternative approach is the extension of the closed-form moment calculation
proposed in Section 4.1 to the multi-variate case.

8 Conclusions

The proposed Chebyshev Polynomial Kalman Filter allows analytical predictions
and measurement updates in a black-box fashion. This is achieved firstly by
expanding nonlinear functions in Chebyshev polynomial series, where no deriva-
tives are required and the computationally efficient discrete cosine transform
can be employed. And secondly by closed-form moment calculation and propa-
gation, where all operations can be formulated in computationally cheap and
sparse vector-matrix expressions. This allows for a runtime that is in the same or-
der of magnitude as the runtime of Gaussian estimators relying on sigma-points
like the unscented Kalman filter or the cubature Kalman filter. But in contrast
to these estimators, the proposed approach exploits the entire distribution for
moment propagation, which yields more accurate estimation results.

A State Decomposition

The real-world example exploited in Section 6.2 utilizes a five-dimensional sys-
tem state xk . As the CPKF is so far just applicable to one-dimensional states,
state decomposition techniques developed in [6] have to be employed. Here, the
state is decomposed into the four-dimensional sub-state x a , [x1, x2, x3, x5]T ∼

A State Decomposition 277

N
(
xa ;µa ,Ca

k

)
and the one-dimensional sub-state xb , x4 ∼N

(
xb ;µb ,

(
σb)2

)
. In

doing so, the calculation of the predicted mean is given by

µp
k+1

= E{a(x ,u)}

=
∫

a
(
xk ,uk

)
·N

(
xk ;µx

k
,Cx

k

)
dxk

=
∫

a
(
xa

k , xb
k ,uk

)
·N

(
xb

k ;µb|a
k ,

(
σb|a

k

)2
)

·N
(
xa

k ;µa
k

,Ca
k

)
dxk , (28)

with a(.,.) according to (26) as well as conditional mean and variance (see for
instance Chapter 2.6 in [15])

µb|a
k =µb

k +Gk ·
(
xa

k −µa
k

)
,(

σb|a
k

)2 =
(
σb

k

)2 −Gk Cba
k ,

respectively, where G , Cab
k

(
Ca

k

)−1 and Cab
k =

(
Cba

k

)T
is the cross-covariance

matrix between x a
k and xb

k . The sub-state x a
k is processed via the UKF, i.e., a set

of s sigma-points Xi , i = 1, . . . ,s, with weights ωi is drawn from the Gaussian
N

(
xa

k ;µa
k

,Ca
k

)
. By substituting the Gaussian density with the sigma-points, (28)

becomes

µp
k+1

≈
∫

a
(
xa

k , xb
k ,uk

)
·N

(
xb

k ;µb|a
k ,

(
σb|a

k

)2
)

·

(
s∑

i=1
ωi ·Xi

)
dxk

=
s∑

i=1
ωi ·

∫
a

(
Xi , xb

k ,uk

)
·N

(
xb

k ;µb|a
k ,

(
σb|a

k

)2
)

dxb
k ,

where the remaining one-dimensional part can now be processed by means
of the CPKF. The calculation of the predicted covariance matrix Cp

k+1 is done
analogously.

278 Paper C Chebyshev Polynomial Kalman Filter

References

[1] Simo Ali-Löytty. Gaussian Mixture Filters in Hybrid Positioning. PhD thesis,
Tampere University of Technology, Tampere, Finland, August 2009.

[2] Daniel L. Alspach and Harold W. Sorenson. Nonlinear Bayesian Estimation
using Gaussian Sum Approximation. IEEE Transactions on Automatic
Control, 17(4):439–448, August 1972.

[3] Ienkaran Arasaratnam and Simon Haykin. Cubature Kalman Filters. IEEE
Transactions on Aut, 54(6):1254–1269, June 2009.

[4] Ienkaran Arasaratnam, Simon Haykin, and Robert J. Elliott. Discrete-
Time Nonlinear Filtering Algorithms Using Gauss-Hermite Quadrature.
Proceedings of the IEEE, 95(5):953–977, 2007.

[5] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A
Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking. IEEE Transactions on Signal Processing, 50(2):174–188, February
2002.

[6] Frederik Beutler, Marco F. Huber, and Uwe D. Hanebeck. Gaussian Fil-
tering using State Decomposition Methods. In Proceedings of the 12th
International Conference on Information Fusion (Fusion), pages 579–586,
Seattle, Washington, July 2009.

[7] Vladimir Britanak, Patrick C. Yip, and Kamisetty R. Rao. Discrete Cosine
and Sine Transforms: General Properties, Fast Algorithms and Integer Ap-
proximations. Academic Press, 2006.

[8] James Carpenter, Peter Clifford, and Paul Fearnhead. Improved parti-
cle filter for nonlinear problems. In IEE Proceedings Radar, Sonar and
Navigation, volume 146, pages 2–7, February 1999.

[9] Kerim Demirbaş. A novel real-time adaptive suboptimal recursive state esti-
mation scheme for nonlinear discrete dynamic systems with non-Gaussian
noise. Digital Signal Processing, 22(4):593–604, July 2012.

[10] Simon J. Godsill, Arnaud Doucet, and Mike West. Monte Carlo Smoothing
for Nonlinear Time Series. Journal of the American Statistical Association,
99(465):156–168, March 2004.

References 279

[11] Marco F. Huber. Adaptive Gaussian Mixture Filter Based on Statistical
Linearization. In Proceedings of the 14th International Conference on
Information Fusion (Fusion), Chicago, Illinois, July 2011.

[12] Marco F. Huber, Frederik Beutler, and Uwe D. Hanebeck. Semi-Analytic
Gaussian Assumed Density Filter. In Proceedings of the 2011 American
Control Conference (ACC), San Francisco, California, June 2011.

[13] Marco F. Huber and Uwe D. Hanebeck. Gaussian Filter based on Deter-
ministic Sampling for High Quality Nonlinear Estimation. In Proceedings
of the 17th IFAC World Congress, Seoul, Republic of Korea, July 2008.

[14] Kazufumi Ito and Kaiqi Xiong. Gaussian Filters for Nonlinear Filtering
Problems. IEEE Transactions on Automatic Control, 45(5):910–927, May
2000.

[15] Andrew H. Jazwinski. Stochastic Processes and Filtering Theory. Dover
Publications, Inc., 2007.

[16] Simon J. Julier and Jeffrey K. Uhlmann. Unscented Filtering and Nonlinear
Estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[17] Rudolf E. Kalman. A new Approach to Linear Filtering and Prediction
Problems. Transactions of the ASME, Journal of Basic Engineering, 82
(Series D)(1):35–45, 1960.

[18] Raymond Kan. From Moments of Sum to Moments of Product. Journal of
Multivariate Analysis, 99(3):542–554, March 2008.

[19] Genshiro Kitagawa. Monte Carlo filter and smoother for non-Gaussian
nonlinear state space models. Journal of Computational and Graphical
Statistics, 5(1):1–25, 1996.

[20] Jayesh H. Kotecha and Petar M. Djurić. Gaussian Particle Filtering. IEEE
Transactions on Signal Processing, 51(10):2592–2601, 2003.

[21] Miguel Lázaro-Gredilla, Joaquin Quiñonero-Candela, Carl Edward Ras-
mussen, and Aníbal R. Figueiras-Vidal. Sparse Specturm Gaussian Process
Regression. Journal of Machine Learning Research, 11:1865–1881, June
2010.

280 Paper C Chebyshev Polynomial Kalman Filter

[22] Mihai Bogdan Luca, Stéphane Azou, Gilles Burel, and Alexandru Ser-
banescu. On Exact Kalman Filtering of Polynomial Systems. IEEE Trans-
actions on Circuits and Systems—I: Regular Papers, 53(6):1329–1340, June
2006.

[23] John C. Mason and David C. Handscomb. Chebyshev Polynomials. Chap-
man & Hall/CRC, 2003.

[24] Vladimir Maz’ya and Gunther Schmidt. On approximate approximations
using gaussian kernels. IMA J. Numer. Anal., 16:13–29, 1996.

[25] H. S. Migon and P. J. Harrison. An application of non-linear Bayesian
forecasting to television advertising. In J. M. Bernardo, M. H DeGroot,
D. V. Lindley, and A. F. M. Smith, editors, Bayesian Statistics 2. Valencia
University Press, 1985.

[26] Kevin Murphy and Stuart Russel. Rao-Blackwellised Particle Filtering for
Dynamic Bayesian Networks. In Arnaud Doucet, Nando de Freitas, and
Neil Gordon, editors, Sequential Monte Carlo Methods in Practice. Springer,
2001.

[27] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes: The Art of Scientific Computing, chapter 6:
Evaluation of Functions. Cambridge University Press, 3rd edition, 2007.

[28] Dan Simon. Optimal State Estimation: Kalman, H-Infinity, and Nonlinear
Approaches. John Wiley & Sons, Inc., 1st edition, 2006.

[29] Dirk Tenne and Tarunray Singh. The Higher Order Unscented Filter. In
Proceedings of the American Control Conference, pages 2441–2446, June
2003.

[30] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics.
The MIT Press, 2005.

[31] Eric A. Wan and Rudolph van der Merwe. The Unscented Kalman Filter. In
Simon Haykin, editor, Kalman Filtering and Neural Networks, chapter The
Unscented Kalman Filter, pages 221–280. John Wiley & Sons, Inc., 2001.

[32] Mike West and Jeff Harrison. Bayesian Forecasting and Dynamic Models,
chapter 14: Exponential Family Dynamic Models, pages 534–555. Springer,
1997.

References 281

[33] Moussa Yahia, Pascal Acco, and Malek Benslama. Estimation of Nonlinear
Systems via a Chebyshev Approximation Approach. International Journal
of Control, Automation, and Systems, 9(6):1021–1027, 2011.

Paper D
Gaussian Filtering for

Polynomial Systems Based on
Moment Homotopy

Authors: Marco F. Huber and Uwe D. Hanebeck

Edited version of the paper:

M. F. Huber and U. D. Hanebeck. Gaussian Filtering for Polynomial Systems
Based on Moment Homotopy. In Proceedings to the 16th International
Conference on Information Fusion (Fusion), pages 1080–1087, Istanbul,
Turkey, July 2013.

Gaussian Filtering for Polynomial
Systems Based on Moment Homotopy

Marco F. Huber∗ and Uwe D. Hanebeck∗∗

∗AGT International
Darmstadt, Germany

marco.huber@ieee.org

∗∗ Intelligent Sensor-Actuator-Systems
Laboratory (ISAS)

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{beutler|uwe.hanebeck}@ieee.org

Abstract
This paper proposes Gaussian filters for polynomial systems with
efficient solutions for both the prediction and the filter step. For
the prediction step, computationally efficient closed-form solutions
are derived for calculating the exact moments. In order to achieve a
higher estimation quality, the filter step is solved without the usual
additional assumption that state and measurement are jointly Gaus-
sian distributed. As this significantly complicates the required mo-
ment calculation, a homotopy continuation method is employed
that yields almost optimal results.

1 Introduction

Closed-form recursive Bayesian state estimation can only be performed for a few
special systems, such as linear continuous systems or systems with finite state
and measurement spaces. The famous Kalman filter is the best linear estimator,
being optimal for the linear Gaussian case. For finite state and measurement
spaces, grid-based filters are optimal [2]. For arbitrary nonlinearities, however,
that are typical in real-world applications such as target tracking, financial fore-
casting, medical surveillance, or robotics, recursive Bayesian state estimation
requires approximate solutions.

A practical approximation known as Gaussian assumed density filtering restricts
the state estimate to be Gaussian distributed [12]. Preserving the mean and

286 Paper D Gaussian Filtering for Polynomial Systems Based on Moment Homotopy

variance of the state via moment matching requires the solution of expectation
integrals. Since closed-form expectation calculation is not possible in general
and numerical integration is computationally infeasible, many fast approximate
Gaussian assumed density filters utilizing the Kalman filter equations have been
developed in the past. Employing first-order Taylor-series expansion to linearize
the given system and measurement models leads to the extended Kalman filter
[7]. This fast filter is only applicable to mild nonlinearities and requires dif-
ferentiability. To cover also stronger nonlinearities, so-called linear regression
Kalman filters have become popular in the recent years, where the approxima-
tion relies on deterministic sampling. Part of this group of Gaussian filters are
the unscented Kalman filter [13], the cubature Kalman filter [1], or the Gaussian
estimator [6].

Compared to these generic Gaussian filters, improved estimation performance
can be achieved by focusing on a particular type of nonlinearity. In this paper,
the focus is on polynomial nonlinearities. First results on Bayesian estimation
for polynomial dynamics but linear measurement models can be found in [3].
The more general case is treated in [8], where exact moment calculation for the
prediction step is derived based on Taylor-series expansion.

In Section 4 of this paper, special properties of exponential densities with poly-
nomial exponents are exploited to efficiently calculate the moments after a
polynomial transformation. Compared to [8], this leads to a simplified and
computationally cheaper calculation of moments after a prediction step. A
straightforward application of these insights to the measurement step requires
the assumption of a jointly Gaussian distributed state and measurement, which
is a typical assumption in Gaussian filtering. For polynomial nonlinearities, how-
ever, the posterior density is an exponential density and thus, it is a conjugate
density to the prior Gaussian density. Unfortunately, exponential densities al-
low no closed-form calculation of the moments in general, which is necessary
for Gaussian filtering. To overcome this limitation, a homotopy continuation
approach for calculating the posterior moments is proposed in Section 5. The
continuation starts with the known moments of the Gaussian prior, while the like-
lihood, which depends on the polynomial nonlinearity, is gradually introduced
into the measurement update step. This causes a continuous transformation of
the prior moments towards the posterior moments. The transformation can be
expressed via a system of first-order ordinary differential equations, for which a
plethora of efficient numerical solvers exists.

2 Problem Formulation 287

The proposed Gaussian filters for polynomial nonlinearities are compared to
the state-of-the-art by means of numerical simulations in Section 6. The paper
closes with a conclusion and an outlook to future work.

2 Problem Formulation

In this paper, nonlinear discrete-time system and measurement equations

xk+1 = ak (xk)+w k , (1)

zk = hk (xk)+v k , (2)

are considered, where xk is the scalar system state at time step k = 0,1, . . . and zk

is the scalar measurement. An actual measurement value ẑk is a realization of
the random variable zk . Both w k and v k are white zero-mean Gaussian noise
processes with variance

(
σw

k

)2 and
(
σv

k

)2, respectively.

In Bayesian estimation, two alternating steps, i.e., prediction and measurement
update, are performed for estimating the system state xk . The latest estimate
of xk−1 is propagated to time step k by means of the system equation (1) in the
prediction step. In the measurement update, a given measurement value ẑk is
exploited for updating xk under consideration of the measurement equation (2).

Exact closed-form solutions for the prediction and the measurement update are
not available for arbitrary ak (.), hk (.) and arbitrarily distributed random variables.
This paper is restricted to polynomial system and measurement functions ak (.)
and hk (.), respectively. It is further assumed, that the system state xk can be
represented by means of Gaussian distributions for all time steps k. Thus, it is
sufficient to investigate polynomial transformations of the form

y = g (x)+w =
n∑

i=0
ci · x i +w , (3)

where a Gaussian x ∼N
(
x;µx ,σ2

x

)
with mean µx and variance σ2

x is mapped
to a random variable y . In case of a prediction, y corresponds to xk+1, while
for a measurement update, y is the measurement zk . The transformation is
affected by zero-mean Gaussian noise w ∼N

(
w ;0,σ2

w

)
, which is assumed to be

uncorrelated with x .

288 Paper D Gaussian Filtering for Polynomial Systems Based on Moment Homotopy

The goal now is two-fold: (i) calculating the mean and variance of y for prediction
purposes and (ii) incorporation of a realization ŷ of y to perform a measurement
update.

3 Exponential Densities

At first, a brief introduction to the so-called family of exponential densities with
polynomial exponents is provided. Their properties regarding recursive moment
calculation play a significant role for solving the problem at hand.

3.1 Definition
An unnormalized one-dimensional exponential density is defined as

f (x) = exp

(
n∑

i=0
ηi · xi

)
= exp

(
ηT · x

)
,

with parameter vector ηT ,
[
η0,η1, . . . ,ηn

]
and xT ,

[
1, x, x2, . . . , xn]

being the
vector of monomials. To ensure that the exponential density is non-negative
for all x ∈R and has finite moments, the maximum degree n ∈Nmust be even
and the highest-order coefficient ηn must be negative, i.e., ηn < 0. If desired, the
exponential density can be normalized by adding a term log

(
c(η)

)
to the first

coefficient η0, where c(η) is a normalization constant.

An important special case of the family of exponential densities is the (unnor-
malized) Gaussian density

f (x) = exp

(
− 1

2

(
x−µx
σx

)2
)
= exp

(
η0 +η1 · x +η2 · x2) ,

with η0 = −µ2
x /(2σ2

x), η1 = µx /σ2
x , and η2 = −1/

(
2σ2

x

)
. To obtain a normalized

Gaussian density, the first coefficient is modified according to η0 =−µ2
x /(2σ2

x)+
log

(
c(η)

)
with c(η) = 1/

p
2πσx , while η1 and η2 remain unchanged1.

1 The term N
(
x;µx ,σ2

x
)

always refers to a normalized Gaussian density in this paper.

3 Exponential Densities 289

3.2 Recursive Moment Calculation
In general, no analytic expressions for the (non-central) moments

Ei , E
{

xi }= ∫
xi · f (x)dx (4)

of an exponential density for i ∈N0 exist, not even for the zeroth-order moment
E0, which is required for determining the normalization constant c(η). Only
for some special cases like the Gaussian density, it is possible to derive analytic
expressions. However, if at least the first n moments E0,E1, . . . ,En−1 are given,
all higher-order moments can be determined recursively. As shown in [4, 10],
integrating (4) by parts with respect to x yields

Ei =
(

xi+1

i +1
f (x)

)∣∣∣∣∞
−∞︸ ︷︷ ︸

=0

−
∫

xi+1

i +1

∂ f (x)

∂x
dx

=−
∫

xi+1

i +1

(n∑
j=1

j ·η j · x j−1
)

· f (x)dx ,

which finally gives

Ei =−
n∑

j=1

j

i +1
η j Ei+ j . (5)

Thus, if the n lower-order moments ET
0:n−1 , [E0, . . . ,En−1] are given and the

moments up to Em , m ≥ n are of interest, solving the linear system of equations

Q(η) ·E0:n−1 = R(η) ·En:m (6)

gives the desired higher-order moments ET
n:m , [En , . . . ,Em]. The linear system

of equations in (6) follows from rearranging the result in (5), where the matrices

Q(η),
[

A(η)
]

0:n−1
and R(η),−

[
A(η)

]
n:m

are based on the (m −n +1)× (m +1)

matrix A(η) in (7). Here, [A]n:m indicates the columns n to m, n ≤ m, of matrix A.
The matrix R(η) is triangular with zeros everywhere except of the main diagonal
and the n diagonals below the main diagonal. Thus, (6) can be efficiently solved
by means of forward substitution.

It is worth mentioning that it is not possible in general to deduce the parameter
vector η from given moments E0:n−1. Again, the Gaussian density is an exception
from this general statement.

290 Paper D Gaussian Filtering for Polynomial Systems Based on Moment Homotopy

A(η) =

1 i = j
j−i

i η j−i i < j ≤ i +n

0 otherwise

(7)

=

︸ ︷︷ ︸
=Q(η)

︸ ︷︷ ︸
=−R(η)

1 1

1η1
2
1η2 · · · n

1 ηn 0 0 · · · 0
0 1 1

2η1
2
2η2 · · · n

2 ηn 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 · · · 0 1 1

m−nη1
2

m−nη2 · · · n
m−nηn 0

0 · · · 0 0 1 1
m−n+1η1

2
m−n+1η2 · · · n

m−n+1ηn

4 Gaussian Filtering

Based on the properties of exponential densities, it is now possible to derive
closed-form and computationally efficient expressions for the mean and variance
of the transformed random variable y .

4.1 Mean Propagation
When propagating the Gaussian random variable x through the polynomial
transformation g (.) in (3), the mean µy of y can be expressed as

µy = E{g (x)+w } = E{g (x)} =
n∑

i=0
ci ·

∫
xi ·N

(
x;µx ,σ2

x

)
dx =

n∑
i=0

ci · E
{

xi }︸ ︷︷ ︸
=Ei

. (8)

Thus, the mean µy results in a weighted sum of non-central moments of a Gaus-
sian random variable. Given the first two moments E0 = 1 and E1 = µx of x , all
remaining moments up to order n can be calculated by means of solving (6). In
doing so, (8) can be expressed as

µy = cT
n ·E0:n = cT

n ·

[
I2

L

]
·E0:1 , (9)

4 Gaussian Filtering 291

with L,
(
R(η)

)−1Q(η) , where the parameter vector η comprises the parameters

of a (normalized) Gaussian density as defined in Section 3.1. Furthermore, cT
n ,

[c0,c1, . . . ,cn] is the vector of polynomial coefficients and In is the n ×n identity
matrix.

It is important to note that the second equation in (9) is merely of formal use.
From a computational and numerical point of view, it is recommended to first
determine the missing higher-order moments E2:n as described in Section 3.2 by
solving the linear system of equations (6) via forward substitution. In a second
step, the solution for E2:n is applied to the first equation in (9).

4.2 Variance Propagation

In a similar fashion as before, the variance σ2
y of y can be determined. For this

purpose, the relation

σ2
y = E

{
(y −µy)2}= E

{
(g (x)+w −µy)2}= E

{
g (x)2}−µ2

y +σ2
w (10)

is exploited, where both the noise variance σ2
w and the propagated mean µy are

known. Merely the first term (10) has to be determined, which yields

E
{

g (x)2}= ∫
g (x) · g (x) ·N

(
x;µx ,σ2

x

)
dx

=
n∑

i=0

n∑
j=0

ci ·c j ·
∫

xi+ j ·N
(
x;µx ,σ2

x

)
dx︸ ︷︷ ︸

=Ei+ j

.

Thus, in order to calculate the varianceσ2
y , it is necessary to consider all moments

up to order 2n. Given these moments and exploiting the fact that the product
of two polynomials corresponds to a discrete convolution of the polynomials’
coefficients, the variance calculation can be compactly written as

σ2
y =

(
cn ∗ cn

)T ·E0:2n −µ2
y +σ2

w

= (
T ·cn

)T ·E0:2n −µ2
y +σ2

w ,
(11)

where ∗ is the discrete convolution operator. The second equality indicates an
efficient matrix-vector realization of the convolution by means of the matrix
T with entries ti , j = ti+1, j+1 = ci− j if i ∈ [j , j +n] and ti , j = 0 otherwise, where

292 Paper D Gaussian Filtering for Polynomial Systems Based on Moment Homotopy

i = 1,2, . . . ,2n +1 and j = 1,2, . . . ,n +1. Hence, T is special type of matrix, namely
a triangular Toeplitz matrix with only the mean diagonal and n diagonals below
the main diagonal being non-zero and all elements on individual diagonals
being equal.

4.3 Covariance Calculation
For exploiting the ability of calculating moments of nonlinear mappings, a com-
mon assumption for performing the measurement update in Gaussian filtering
is to assume that the state and the measurement are jointly Gaussian distributed.
This only requires the calculation of the covariance between state and mea-
surement, which coincides with the covariance σx y between x and y for the
considered generic transformation (3). Similar to (10), the covariance can be
formulated as

σx y = E{(x −µx) · (y −µy)} = E{x · g (x)}−µx ·µy , (12)

where the expected value corresponds to

E{x · g (x)} =
∫

x · g (x) ·N
(
x;µx ,σ2

x

)
dx

=
n∑

i=0
ci ·

∫
xi+1 ·N

(
x;µx ,σ2

x

)
dx︸ ︷︷ ︸

=Ei+1

.

This is almost identical to the mean calculation in (8) except for the shift by one
in the order of the involved moments. Thus, the covariance is given by

σx y = cT
n ·E1:n+1 −µx ·µy , (13)

where µy is already known from (9).

4.4 Polynomial Kalman Filter
The results derived in the previous sections allow the formulation of a Gaussian
state estimator for polynomial nonlinearities. For this purpose, the well-known
structure of the Kalman filter is exploited. The resulting polynomial Kalman filter
(PKF) is listed in Algorithm 1 and described in detail in the following paragraphs.

4 Gaussian Filtering 293

Algorithm 1 Polynomial Kalman Filter (PKF)

. Prediction
1: Determine moment vector E0:2np

of posterior state xe
k−1 by solving (6)

2: Predicted mean: µp
k = cp

np
·E0:np

3: Predicted variance:
(
σ

p
k

)2 = (
T ·cp

np

)T ·E0:2np
− (
µ

p
k

)2 + (
σw

k

)2

.Measurement Update
4: Determine moment vector E0:2ne

of predicted state x p
k by solving (6)

5: Measurement mean: µz
k = ce

ne
·E0:ne

6: Measurement variance:
(
σz

k

)2 =
(
T ·ce

ne

)T
·E0:2ne

− (
µz

k

)2 + (
σv

k

)2

7: Covariance: σxz
k =

(
ce

ne

)T
·E1:ne+1 −µp

k ·µz
k

8: Kalman gain: Kk =σxz
k /

(
σz

k

)2

9: Calculate posterior mean µe
k according to (14)

10: Calculate posterior variance
(
σe

k

)2 according to (15)

Prediction

Given the posterior state estimate xe
k−1 ∼ f e

k−1

(
xk−1

)
,N

(
xk−1;µe

k−1,
(
σe

k−1

)2) of
the previous measurement update, the prediction from the previous time step
k −1 to the current time step k requires the calculation of the predicted mean µp

k

and variance
(
σ

p
k

)2
. As the system function ak (.) is assumed to be a polynomial

of degree np ∈Nwith coefficient vector cp
np

, equation (9) and (11) can be directly
applied in order to determine the desired predicted moments.

Measurement Update

The measurement update aims at updating the predicted state x p
k ∼ f p

k

(
xk

)
,

N
(
xk ;µp

k ,
(
σ

p
k

)2) with the latest measurement value ẑk . To allow for a closed-
form and computationally efficient update, a common assumption in nonlinear
Kalman filtering—as in the extended Kalman filter or the unscented Kalman
filter—is that the state x p

k and the measurement zk are jointly Gaussian. The

294 Paper D Gaussian Filtering for Polynomial Systems Based on Moment Homotopy

implication of this so-called joint Gaussian assumption is discussed in Section 4.5.
It requires to compute the joint mean vector and joint covariance matrix

µxz
k

=
[
µ

p
k
µz

k

]
, Cxz

k =
[(
σ

p
k

)2
σxz

k

σxz
k

(
σz

k

)2

]
,

respectively. The posterior mean and variance are then calculated according to

µe
k =µp

k +Kk ·
(
ẑk −µz

k

)
, (14)(

σe
k

)2 = (
σ

p
k

)2 −Kk ·σxz
k , (15)

which coincides with the well-known Kalman filter update step, where Kk ,
σxz

k /
(
σz

k

)2 is the Kalman gain. This measurement update requires determining

the measurement mean µz
k and variance

(
σz

k

)2 as well as the covariance σxz
k

of state and measurement. Given that the measurement function hk (.) is a
polynomial of degree ne ∈Nwith coefficient vector ce

ne
, all three values can be

calculated by means of (9), (11), and (13), respectively. Thanks to these closed-
form expressions and the simple Kalman filter equations, the measurement
update is straightforward to realize and computationally undemanding.

4.5 Discussion
When comparing the PKF with the approach proposed in [8], it becomes ap-
parent that both approaches are equivalent regarding the calculated mean and
variance values. However, the PKF has the following benefits. First, the involved
matrices for calculating the desired moments are straightforward to determine.
For instance, the matrices Q(η) and R(η) merely depend linearly on the parame-
ters of the Gaussian density. In [8], however, the involved matrices depend on
binomials coefficients, powers of the mean value, and weighted scalar products
of the coefficient vector. This leads to a high computational load for determining
the matrices and may cause numerical instability. Second, also the worst-case
complexity is higher. While calculating the variance (13) can be performed in
O(n · logn) if the convolution is realized via fast Fourier transform, the variance
calculation in [8] scales with O

(
n2), where O(.) is the big O in Landau nota-

tion. This difference is especially of importance in case of polynomials with a
high degree.

4 Gaussian Filtering 295

-3 0 3
x →

-2

0

2

4

6

8

z
→

(a) Gaussian approxima-
tion of the joint density.

-3 0 3
x →

-2

0

2

4

6

8

z
→

(b) True joint density.

-3 0 3
x →

-2

0

2

4

6

8

fe
(x

)→

True

Moment
Matching

(c) True posterior density
(black) and Gaussian ap-
proximations.

Figure 1: Joint density f (x,z) and posterior density f e (x) for i = 2, i.e., for a quadratic
polynomial. The red line indicates the measurement value ẑ = 2. In (c), one Gaussian
approximation is obtained based on the joint Gaussian assumption (dotted) and the
other via moment matching (dashed), i.e., its mean and variance coincide with the
true posterior moments.

The PKF makes two different Gaussian assumptions. First, it assumes the pre-
dicted or posterior density to be Gaussian. Second, in order to perform the
measurement update, it assumes that the joint density of state and measurement
is Gaussian as well. If only the first Gaussian assumption would be in place, the
PKF would be an exact Gaussian assumed density filter as it performs moment
matching, i.e., the mean and variance calculated by PKF coincide with the true
mean and variance. The additional joint Gaussian assumption, however, can
result in a poor approximation of the true mean and variance, which may cause a
significant loss in estimation performance or even a divergence of the estimator.

To demonstrate the effect of the joint Gaussian assumption on the estimation
performance, the polynomial model

z = x i +v (16)

is considered in the following, where i > 0 is even and the state is x ∼N
(
x;0,σ2

x

)
.

According to (8), (10), and (12), the mean µz , variance σ2
z , and covariance σxz

are given by
µz = Ei , σ2

z = E2i −Ei +σ2
v , σxz = Ei+1 , (17)

296 Paper D Gaussian Filtering for Polynomial Systems Based on Moment Homotopy

respectively. Since x has zero mean, it follows that η1 = 0 . Thus, the matrix Q(η)
has only two non-zero elements q11 = q22 = 1, where qi j is the element at row
i and column j of matrix Q. Furthermore, the matrix R(η) is zero everywhere
except on the main diagonal and the second diagonal below the main diagonal.
This special structure of Q(η) and R(η) leads to the conclusion that all even
moments of x are non-zero and all odd moments are zero, i.e., Ei 6= 0 and Ei+1 = 0
for all i being even. Hence, the covariance σxz in (17) is zero. As a result, state
x and measurement z are uncorrelated and the joint Gaussian of state and
measurement is axis-aligned. In Figure 1a, the joint Gaussian for i = 2, σ2

x = 1,
and σ2

v = 0.1 is depicted.

As the covariance σxz is zero, the Kalman gain K in (14) and (15) is zero as
well and no update of the predicted state occurs, i.e., the posterior state xe is
identical to the predicted state x p . In this case, a given measurement value has
no impact on the estimation. This, however, is not the case, if the joint Gaussian
assumption is not made. In order to demonstrate this, the measurement update
is now treated from a strict Bayesian perspective. Here, the posterior state xe is
represented by the conditional density f e (x), f (x|z) resulting from Bayes’ rule

f e (x) = f (z|x) · f (x)

f (z)
= f (x,z)

f (z)
, (18)

where f (z|x) is the likelihood and f (x) is the prior density of x , which corre-
sponds to the predicted Gaussian density f p (x) =N

(
x;µp , (σp)2) in case of the

considered recursive state estimation.

For the considered model (16) with a state x having zero mean, the joint Gaussian
assumption leads to a factorization of the joint density f (x,z) = f (x) · f (z) as
x and z are uncorrelated, which is equivalent to independence for Gaussian
random variables. Hence, the Bayesian update in (18) degenerates to f e (x) =
f (x) = f p (x). Actually, the joint density f (x,z) is an exponential density for
polynomial nonlinearities. This follows from the fact that the likelihood f (z|x) is
defined as

f (z|x),
∫
δ
(
z −xi − v

)
· f (v)dv =N

(
z; xi ,σ2

v

)
, (19)

where δ(.) is the Dirac delta distribution and the second equality results from
exploiting the sifting property of the Dirac delta distribution. The product of

5 Homotopic Bayesian Measurement Update 297

likelihood and prior density leads to the exponential density

f (x,z) = f (z|x) · f (x) =N
(
z; xi ,σ2

v

)
·N

(
x;0,σ2

x

)
= exp

(
− log(2πσxσv)− 1

2σ2
v

·
(
z2 + σ2

v

σ2
x

x2 −2zxi +x2i)) .
(20)

This exponential joint density is depicted in Figure 1b for i =2. By comparing
Figure 1a with Figure 1b the difference between the true joint density and its
Gaussian approximation becomes apparent. Given a measurement value ẑ = 2,
Figure 1c depicts the posterior densities obtained for the Gaussian joint density
and the true exponential joint density. It can be seen that the true posterior
is bimodal, which only can be coarsely approximated by a Gaussian density.
Furthermore, due to the joint Gaussian assumption, the Gaussian posterior does
not even match the true posterior mean and variance.

The true posterior is an exponential density, since the joint density f (x,z = ẑ) is
exponential and f (ẑ) is merely a normalization constant for a given measurement
value ẑ. Thus, the posterior is a conjugate density of the prior density in the
case of polynomial nonlinearities. Unfortunately, a general exponential density
is not well suited for recursive processing for mainly two reasons: First, the
prediction step as described above requires the availability of the moments
E0:2i−1, but for exponential densities the calculation of these moments cannot
be performed in closed form. Second, even if the moments were available, the
prediction step itself merely provides the predicted moments and no analytic
density representation. Determining an exponential density that matches given
moments is also not possible in closed form. To overcome these limitations, a
novel approach for accurately determining the true posterior mean and variance
is proposed in the next section. In doing so, a computationally efficient, recursive
Gaussian filter without the joint Gaussian assumption is obtained.

5 Homotopic Bayesian Measurement Update

In this section, a new method for directly calculating the moments of the poste-
rior density will be introduced that does not require the joint Gaussian assump-
tion and that provides a much higher estimation quality.

The key idea is to transform the known moments of the prior Gaussian density
continuously into the desired posterior moments. For this purpose, homotopy
continuation for calculating the moments of exponential densities as proposed

298 Paper D Gaussian Filtering for Polynomial Systems Based on Moment Homotopy

in [10] is exploited. By means of a so-called progression parameter γ ∈ [0;1] the
posterior density f e (x) is parameterized in such a way that for γ= 0 the posterior
density corresponds to prior Gaussian density f p (x) and for γ= 1 the posterior
density corresponds to the true exponential density. For the initial value γ= 0,
the moments are known as they coincide with the moments of the Gaussian prior.
Incrementing the progression parameter causes moment variations described by
means of a system of ordinary differential equations (ODEs). Solving this system
of ODEs for γ ∈ [0;1] gives the desired posterior moments.

5.1 Parameterization
To allow for homotopy continuation, the Bayesian measurement update in (18)
is parameterized according to

f e (x;γ) =
(

1
f (ẑ) · f (ẑ|x)

)γ
· f p (x) (21)

for a given measurement value ẑ, with likelihood f (ẑ|x) = N
(
ẑ;h(x),σ2

v

)
ac-

cording to (19) for a polynomial measurement model (2). Further, f e (x;γ) is a
parameterized version of the posterior density. For γ = 1, this parameterized
measurement update corresponds to the standard Bayes’ rule, while for γ= 0,
the prior density f p (x) is directly assigned to the posterior density, i.e., no mea-
surement update is performed.

In order to simplify the following calculations, the normalization constant 1/f (ẑ)

in (21) is ignored, which is without any disadvantages. Since the zeroth-order
moment E0, which is reciprocal to the normalization constant, will be calculated
as well, ex post division of all higher-order moments by E0 leads to the correct
results (see Section 5.3).

Due to ignoring the normalization constant, merely the proportional relation

f e (x;γ) ∝ f
(
x,ẑ;η(γ)

)
, f (ẑ|x)γ · f p (x) (22)

is considered instead of (21), where the parameterized joint density f
(
x,ẑ;η(γ)

)=
exp

(
η(γ)T · x

)
is an exponential density similar to (20) with parameter vector

η(γ), ηp +γ ·ηl ∈R2ne+1

5 Homotopic Bayesian Measurement Update 299

depending on γ . Here, ηp is the parameter vector of the Gaussian prior f p (x)

and ηl is the parameter vector of the likelihood f (ẑ|x) according to

ηl =

− log

(p
2πσv

)− ẑ2

2σ2
v

ẑ

σ2
v

·ce
ne

0

− 1
2σ2

v
·
(
ce

ne
∗ ce

ne

)
,

with ce
ne

being the coefficient vector of the measurement function h(.) and 0
being a vector of zeros of appropriate dimension. The parameter vector η(γ)
directly reflects the continuation in (22).

It is worth mentioning that the parameterized joint density always is a valid
exponential density for each γ ∈ [0;1] . As it directly depends on the Gaussian
measurement noise v and the Gaussian prior f p (x), the highest-order monomial
in x is even and the last element in ηl is negative.

5.2 System of Ordinary Di�erential Equations
By a continuous modification of the progression parameter γ, a continuous
variation of the parameter vector η(γ) is achieved. This in turn results in a

variation of the moments Ei
(
η(γ)

)
, i = 0, . . . ,2ne −1, of the parameterized joint

density f (x,ẑ;η(γ)) . These moment variations depending on γ can be described

by means of a system of ODEs by calculating the partial derivatives Ėi ,
∂Ei

(
η(γ)

)
∂γ

for i = 0, . . . ,2ne −1 . The partial derivative of the i th-order moment is given by

Ėi =
∂Ei

(
η(γ)

)
∂γ

=
[
∂Ei

∂η

∣∣∣
η=η(γ)

]T

·
∂η(γ)

∂γ

=
(
∂η(γ)

∂γ

)T

·
∫

xi ·
∂ f

(
x,ẑ;η

)
∂η

∣∣∣∣
η=η(γ)

dx

=
(
∂η(γ)

∂γ

)T

·
∫

xi

1
x
...

x2ne

exp
(
η(γ)T · x

)
dx

=
[

Ei
(
η(γ)

)
Ei+1

(
η(γ)

) · · · Ei+2ne

(
η(γ)

)]
·ηl , (23)

300 Paper D Gaussian Filtering for Polynomial Systems Based on Moment Homotopy

which relates the variation of the i th-order moment to moments of order up to

i +2ne . In the following, E(γ)
i , Ei

(
η(γ)

)
is used as shorthand term.

With the result in (23), the system of ODEs comprising the moment variations of
all moments up to order 2ne −1 is

Ė0:2ne−1 =
(
T

(
ηl

))T
·E(γ)

0:4ne−1 = Tl ·E(γ)
0:2ne−1 +Th ·E(γ)

2ne :4ne−1 ,

where T
(
ηl) is a Toeplitz matrix with entries ti , j = ti+1, j+1 = ηl

i− j if i ∈ [
j , j +2ne

]
and ti , j = 0 otherwise, where i = 1,2, . . . ,4ne and j = 1,2, . . . ,2ne . The 2ne ×2ne

matrices Tl and Th are sub-matrices of T
(
ηl

)
according to T

(
ηl

)
=

[
Tl Th

]T
.

Besides the lower-order moments E(γ)
0:2ne−1, the system of ODEs also depends

on the higher-order moments E(γ)
2ne :4ne−1 . Fortunately, with the result of (6), the

dependence on the higher-order moments can be resolved. In doing so, the
system of ODEs can be reformulated into

Ė0:2ne−1 =
(
Tl +Th

(
R

(
η(γ)

))−1
Q

(
η(γ)

))
·E(γ)

0:2ne−1 (24)

with matrices R
(
η(γ)

)
and Q

(
η(γ)

)
according to (7), which vary with γ as they

depend on the parameters of the parameterized joint density f
(
x,ẑ;η(γ)

)
.

5.3 Initialization and Solution
The system of ODEs in (24) describes the moment variations caused by homo-
topy continuation of the Bayesian measurement update (22) in a very elegant
manner. For solving this system of ODEs, standard numerical solvers based on
the Runge-Kutta method [9] can be employed. The solution describes a trajec-

tory of the moments E(γ)
0:2ne−1 depending on different values of the progression

parameter γ. The desired moments of the posterior density f e (x) are obtained
for γ= 1, i.e., E(1)

0:2ne−1 comprises the result. As mentioned above, the moments

in E(1)
0:2ne−1 are unnormalized as merely the proportional relation (22) was consid-

ered. Multiplying E(1)
0:2ne−1 with the normalization constant

α, 1
f (ẑ) = 1

E(1)
0

(25)

yields the actual posterior moments.

5 Homotopic Bayesian Measurement Update 301

Please note that the matrix R
(
η(γ)

)
in (24) is singular for γ = 0. To avoid an

inversion of this matrix for γ = 0, an initialization procedure is proposed that

determines an initial solution E(∆γ)
0:2ne−1 for the first solution step, with ∆γ being a

small positive step value2. Based on the initial solution E(∆γ)
0:2ne−1, the system of

ODEs in (24) is then solved in a standard fashion for γ ∈ [∆γ;1] .

To determine the initial solution, the moment calculation (4) is expanded around
γ= 0 via a first-order Taylor-series according to

E(∆γ)
i ≈ E(0)

i +∆γ ·
∂E(γ)

i

∂ηT
·
∂η

∂γ

∣∣∣∣
η=η(γ),γ=0

= Ei

(
ηp

)
+∆γ ·

∂Ei

(
η
)

∂η

∣∣∣
η=ηp

T

·ηl (26)

for each moment i , where Ei
(
ηp)

are the moments of the predicted Gaussian

state x p ∼ f p (x) =N
(
x;µp , (σp)2). The second summand in (26) is given by (23)

for η(γ) = ηp . This derivative merely depends on the Gaussian prior density

f p (x) . Thus, all higher-order moments in (23) can be determined via solving the
moment recursion in (6).

5.4 Homotopic Polynomial Gaussian Filter
The novel homotopic polynomial Gaussian filter (HPGF) for polynomial non-
linearities is summarized in Algorithm 2. The prediction step coincides with
the prediction of the PKF as proposed in Section 4. The measurement update
utilizing homotopy continuation for calculating the posterior moments consists
of three operations for each time step k: First, initialization as proposed in the
previous section. Second, solving the system of ODEs (24). Finally, calculating
the posterior mean and variance by correcting the ODE solution E(1)

0:2ne−1 with
the normalization constant (25) according to

µe
k =α · E(1)

1 , (27)(
σe

k

)2 =α · E(1)
2 − (

µe
k

)2 , (28)

which yields the desired posterior state estimate xe
k ∼ f e

k (xk) =N
(
xk ;µe

k , (σe
k)2).

2 In the simulations in Section 6, ∆γ= 10−7 is used.

302 Paper D Gaussian Filtering for Polynomial Systems Based on Moment Homotopy

Algorithm 2 Homotopic Polynomial Gaussian Filter (HPGF)

. Prediction
1: Determine moment vector E0:2np

of posterior state xe
k−1 by solving (6)

2: Predicted mean: µp
k = cp

np
·E0:np

3: Predicted variance:
(
σ

p
k

)2 = (
T ·cp

np

)T ·E0:2np
− (
µ

p
k

)2 + (
σw

k

)2

.Measurement Update
4: Determine initial solution according to (26)
5: Solve system of ODEs (24) for γ ∈ [∆γ;1]
6: Calculate posterior mean µe

k according to (27)

7: Calculate posterior variance
(
σe

k

)2 according to (28)

6 Results

In the following, both Gaussian filters the PKF and the HPGF proposed in this
paper are compared to state-of-the-art filters by means of numerical simulations.

6.1 Moment Homotopy Examples
For the first simulation, the polynomial measurement model (16) is revisited,
where now merely the quadratic (order i = 2) and the cubic (order i = 3) case are
considered. Furthermore, the state estimate x ∼N (x;0,1) is standard Gaussian
distributed, the measurement value is ẑ = 1, and (σv)2 = 0.1 is the variance of the
measurement noise.

In Table 1, the posterior moments calculated by the proposed HPGF and PKF
are compared with the true moments and the results obtained by means of
the extended Kalman filter (EKF). The true moments have been calculated via
numerical integration. It can be seen that the results of the HPGF coincide with
the true moments. Compared with numerical integration, the HPGF has the
benefits of a significantly lower computational burden and that no integration
interval needs to be determined. In Figure 2, the trajectories of the posterior
moments resulting from the homotopy continuation are shown. It can be seen
how the moments of the prior Gaussian are transformed into the true posterior
moments.

6 Results 303

0 1
γ→

0

1

E
0:

3
→

E2

E0

E1

E3

(a) Quadratic model z = x2 +v .

0 1
γ→

0

1

2

3

E
0:

5
→

E4

E2 E0

E3

E5

E1

(b) Cubic model z = x3 +v .

Figure 2: Trajectories of posterior moments.

Table 1: Comparison of the posterior moments calculated via different approaches
for the quadratic and cubic model.

Quadratic Cubic

True HPGF EKF PKF True HPGF EKF PKF

E0 0.2664 0.2664 – – 0.0932 0.0932 – –
E1 0.0 0.0 0.0 0.0 0.9113 0.9113 0.0 0.1987
E2 0.8820 0.8820 1.0 1.0 0.8760 0.8760 1.0 0.4434
E3 0.0 0.0 – – 0.8526 0.8525 – –
E4 – – – – 0.8442 0.8442 – –
E5 – – – – 0.8457 0.8456 – –

EKF and PKF both rely on the joint Gaussian assumption. Thus, the moments of
both filters differ significantly from the true moments (see Table 1). As discussed
in Section 4.5, for i = 2 no update of the state estimate can be performed. For the
cubic case, however, an update should be available, which is true for the PKF. The
EKF, however, suffers from the linearization, which results in a zero Kalman gain.
Thus, no update is performed at all. This example clearly shows the benefits of
avoiding the joint Gaussian assumption.

304 Paper D Gaussian Filtering for Polynomial Systems Based on Moment Homotopy

6.2 Chaotic Synchronization
In this example, the polynomial system model

xk+1 = T4(xk)+w k (29)

as used in [8] is considered, where Ti (x) = 2x ·Ti−1(x)−Ti−2(x) for i = 2,3, . . . is
the i th Chebyshev polynomial, with T0(x) = 1 and T1(x) = x. It is known that
models as in (29) generate chaotic sequences [11], which is of practical use in
securing communication systems. The true initial state x0 a time step k = 0 is

assumed to be Gaussian with mean µx
0 = 0.3 and variance

(
σx

0

)2 = 0.25 .

At first, a linear measurement model

zk = xk +v k (30)

is employed, with measurement noise variance (σv)2 = 10−2 · (σw)2 and system
noise variance being (σw)2 = 10−2 (high noise) or (σw)2 = 10−3 (low noise). As
the measurement model is linear, the joint Gaussian assumption is correct. Thus,
the HPGF does not need to be considered here. PKF is compared against EKF,
unscented Kalman filter (UKF), and a particle filter (PF) with systematic resam-
pling [5] and 500 samples. The latter is the only non-Gaussian filter. For all filters,
50 Monte Carlo simulation runs with identical noise sequences are performed,
where the estimates are calculated for 50 time steps. As performance indicators,
the root mean square error (rmse), the normalized estimation error squared
(nees), and the runtime for 50 time steps are employed.

In Table 2, the average rmse, nees, and runtime over all Monte Carlo runs are
listed for all filters and for both noise cases. For high noise, the proposed PKF
outperforms all Gaussian filters in terms of rmse and nees, i.e., its estimates are

Table 2: Average rmse, nees, and runtime for the chaotic system model (29) and the
linear measurement model (30).

σ2
w = 10−2 σ2

w = 10−3

EKF UKF PF PKF EKF UKF PF PKF

rmse 0.410 0.336 0.292 0.316 0.148 0.118 0.268 0.118
nees 4.737 1.550 1.168 1.041 7.279 1.110 – 1.129
time 0.016 0.038 0.109 0.017 0.017 0.037 0.102 0.018

6 Results 305

-1.5

0

1.5

x k
→

1 10 20 30 40 50
k →

True HPGF PF

(a) Homotopic polynomial Gaussian filter (HPGF).

-1.5

0

1.5

x k
→

1 10 20 30 40 50
k →

(b) Particle filter (PF).

Figure 3: State trajectory (black, solid line) and the estimates of HPGF and PF
together with the corresponding 2-sigma confidence regions.

closest to the true system state (low rmse) and at the same time the estimates are
not overly confident (low nees). Furthermore, the matrix-vector terms proposed
for the PKF allow for a runtime being close to the EKF, which is known to be the
fastest Gaussian filter.

For the low noise case, UKF performs best in terms of estimation error, but PKF
is very close to it. PF occasionally suffers from particle depletion, i.e., most of the
particles converge towards the same state, which coincides with an overconfident
estimate and thus an exceedingly high nees value. Even significantly increas-
ing the number of particles or using different resampling techniques yields no
improvement.

306 Paper D Gaussian Filtering for Polynomial Systems Based on Moment Homotopy

If a cubic measurement model zk = x3
k

20 + v k with measurement noise v k ∼
N

(
vk ;0,10−5) instead of the linear model (30) is utilized, it turns out that all

Gaussian filters relying on the joint Gaussian assumption diverge. The HPGF,
however, is able to provide valid estimates. In Figure 3a, an exemplary state
trajectory is depicted. The estimates of HPGF accurately follow the true state.
Furthermore, the true state is always within the 2-sigma confidence region of the
estimates. The result of the PF depicted in Figure 3b is less accurate and shows
sample depletion from time step k = 20 to k = 27.

7 Conclusion and Future Work

Two methods for the efficient calculation of moments have been introduced in
this paper. The first method named polynomial Kalman filter (PKF) efficiently
calculates the moments of a polynomial mapping of a Gaussian random variable.
When applied to the prediction step, the moment calculation is exact. For the
filter step, this method leads to a superior estimation performance compared to
existing Gaussian filters. However, the typical additional Gaussian assumption
for the joint density of state and measurement is required that can cause highly
inaccurate or even diverging estimates. Hence, in order to avoid this assumption,
a second method named homotopic polynomial Gaussian filter (HPGF) for the
almost exact calculation of the posterior moments in the filter step is introduced.
This method is based on a homotopy continuation for polynomial nonlineari-
ties. Combining both methods results in a Gaussian assumed density filter for
polynomial nonlinearities that can compete even with non-Gaussian filters.

Future work is devoted to extend the proposed Gaussian filters to the multi-
dimensional case. Furthermore, resolving the second limitation mentioned at
the end of Section 4.5 allows an extension towards a full exponential filter.

References 307

References

[1] Ienkaran Arasaratnam and Simon Haykin. Cubature Kalman Filters. IEEE
Transactions on Automatic Control, 54(6):1254–1269, June 2009.

[2] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A
Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking. IEEE Transactions on Signal Processing, 50(2):174–188, February
2002.

[3] Michael Basin. Optimal Filtering for Partially Measured Polynomial System
States. In Proceedings of the 2005 American Control Conference (ACC),
pages 4022–4027, Portland, OR, USA, June 2005.

[4] Damiano Brigo, Bernard Hanzon, and Francois Le Gland. A Differential
Geometric Approach to Nonlinear Filtering: the Projection Filter. Tech-
nical Report 2598, Insitut National De Recherche en Informatique et en
Automatique, June 1995.

[5] James Carpenter, Peter Clifford, and Paul Fearnhead. Improved parti-
cle filter for nonlinear problems. In IEE Proceedings Radar, Sonar and
Navigation, volume 146, pages 2–7, February 1999.

[6] Marco F. Huber and Uwe D. Hanebeck. Gaussian Filter based on Deter-
ministic Sampling for High Quality Nonlinear Estimation. In Proceedings
of the 17th IFAC World Congress, Seoul, Republic of Korea, July 2008.

[7] Andrew H. Jazwinski. Stochastic Processes and Filtering Theory. Dover
Publications, Inc., 2007.

[8] Mihai Bogdan Luca, Stéphane Azou, Gilles Burel, and Alexandru Ser-
banescu. On Exact Kalman Filtering of Polynomial Systems. IEEE Trans-
actions on Circuits and Systems—I: Regular Papers, 53(6):1329–1340, June
2006.

[9] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes: The Art of Scientific Computing, chapter
17: Integration of Ordinary Differential Equations. Cambridge University
Press, 3rd edition, 2007.

[10] Andreas Rauh and Uwe D. Hanebeck. Calculating Moments of Exponential
Densities Using Differential Algebraic Equations. IEEE Signal Processing
Letters, 10(5):144–147, May 2003.

308 Paper D Gaussian Filtering for Polynomial Systems Based on Moment Homotopy

[11] Theodore Rivlin. Chebyshev Polynomials. New York: Wiley, 1990.

[12] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics.
The MIT Press, 2005.

[13] Eric A Wan and Rudolph van der Merwe. The Unscented Kalman Filter. In
Simon Haykin, editor, Kalman Filtering and Neural Networks, chapter The
Unscented Kalman Filter, pages 221–280. John Wiley & Sons, Inc., 2001.

Paper E
(Semi-)Analytic

Gaussian Mixture Filter

Authors: Marco F. Huber, Frederik Beutler, and Uwe D. Hanebeck

Edited version of the paper:

M. F. Huber, F. Beutler, and U. D. Hanebeck. (Semi-)Analytic Gaussian
Mixture Filter. In Proceedings of the 18th IFAC World Congress, pages 10014–
10020, Milano, Italy, August 2011.

(Semi-)Analytic Gaussian Mixture Filter

Marco F. Huber∗, Frederik Beutler∗∗, and Uwe D. Hanebeck∗∗

∗ Variable Image Acquisition and
Processing Research Group

Fraunhofer Institute of Optronics, System
Technologies and Image Exploitation IOSB

Karlsruhe, Germany
marco.huber@ieee.org

∗∗ Intelligent Sensor-Actuator-Systems
Laboratory (ISAS)

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{beutler|uwe.hanebeck}@ieee.org

Abstract
In nonlinear filtering, special types of Gaussian mixture filters are a
straightforward extension of Gaussian filters, where linearizing the
system model is performed individually for each Gaussian compo-
nent. In this paper, two novel types of linearization are combined
with Gaussian mixture filters. The first linearization is called ana-
lytic stochastic linearization, where the linearization is performed
analytically and exactly, i.e., without Taylor-series expansion or ap-
proximate sample-based density representation. In cases where a
full analytical linearization is not possible, the second approach de-
composes the nonlinear system into a set of nonlinear subsystems
that are conditionally integrable in closed form. These approaches
are more accurate than fully applying classical linearization.

1 Introduction

Determining the internal state of a dynamic system is essential in many appli-
cations, e.g., target tracking or simultaneous localization and mapping (SLAM).
Due to disturbances in the measurement process and imperfect system models,
the Bayesian estimation framework is often applied in order to deal with these
uncertainties. For linear systems affected with Gaussian noise, the Kalman filter
is the optimal estimator and Bayesian estimation can be performed in closed
form. In case of nonlinearities and/or non-Gaussian noise, the Kalman filter is

312 Paper E (Semi-)Analytic Gaussian Mixture Filter

no longer optimal or even not applicable. In order to achieve an estimate for the
internal state of the system, approximate state estimators have to be employed.

A common restriction of approximate state estimators is to assume a (jointly)
Gaussian representation of the system state and the measurement. Estimators
corresponding to these so-called Gaussian filters are for example the Extended
Kalman Filter (EKF), the Unscented Kalman Filter (UKF, [8]), analytic approaches
(AGF, [3]), and semi-analytic approaches (SAGF, [5]). Due to the Gaussian as-
sumption, a linearization of the nonlinear system models is performed, which
can be explicit (EKF) or implicit (UKF, AGF, SAGF) as discussed in Section 4.1.
Obviously, in problems with strong nonlinearities that cause non-Gaussian den-
sities, e.g., multi-modal or heavily skewed densities, the estimation accuracy of
Gaussian filters is limited. But on the other hand, the computational complexity
is only polynomial with the dimension of the state space.

Estimators especially designed for nonlinear non-Gaussian problems are for
instance the grid filter or the particle filters [2], which make no specific assump-
tions about the shape of the density function. Hence, these approaches can be
arbitrarily accurate, but their complexity is exponential.

A trade-off between both worlds are the so-called Gaussian mixture filters (GMFs,
see Section 3), which are often applied to SLAM [9, 11]. Gaussian mixtures are
very convenient for filtering purposes as with an increasing number of mixture
components, a Gaussian mixture can approximate any density function with
arbitrary accuracy [12]. GMFs utilize a weighted sum of Gaussian densities and
typically rely on individual linearizations for each Gaussian component. By
applying a bank of EKFs, individual linearization is achieved via component-
wise first-order Taylor-series expansion [1]. A bank of UKFs corresponds to a
sample-based stochastic linearization [13] for each component.

In this paper, two novel types of linearization are utilized for GMFs. For some
classes of nonlinear functions, e.g., polynomial or trigonometric functions or
combinations of them, stochastic linearization can be performed analytically
and exactly (see Section 4.2). Instead of a sample point representation, the whole
Gaussian density is propagated through the nonlinear function for lineariza-
tion. The resulting filter is named the analytic Gaussian mixture filter (A-GMF).
For arbitrary nonlinearities, the semi-analytic Gaussian mixture filter (SA-GMF)
introduced in Section 4.3 utilizes a linearization approach that relies on a decom-
position of the nonlinear system into integrable substructures such that one part
of the problem can be solved analytically and for the remaining part a sample-
based stochastic linearization is employed. This decomposition is much more

2 Problem Formulation 313

general than the usual decomposition into conditional linear subsystems via Rao-
Blackwellization. Since both GMFs at least partly rely on analytic linearization,
much better local approximations and thus, more accurate estimation results
are achieved compared to GMFs proposed by [1] or [13]. This is demonstrated
via simulations in Section 5, where a robot with tricycle kinematics is considered
that measures distances to landmarks.

2 Problem Formulation

A nonlinear dynamic system is described by its system and measurement equa-
tion according to

xk+1 = ak

(
xk ,uk , w k

)
, (1)

y
k
= hk

(
xk , v k

)
, (2)

where xk is the internal state, w k and v k are the white system and measurement
noise processes, y

k
is the measurement process, and uk a known control input.

The known function ak (· , · , ·) describes the evolution of the system over time
and the known function hk (· , ·) the mapping between the internal state and
the output of the system. Please note that actual measurement values ŷ

k
are

realizations of y
k

.

The random variables, e.g., xk , are denoted be bold font letters and are described
by probability density functions f (·). For recursive estimation, the Bayesian
estimation framework is applied, which consists of the prediction and filter step.
In the following, a short overview of the Bayesian estimation framework is given.

2.1 Prediction Step

In the prediction step, the estimated density of the state f e (
xk

)
is propagated to

the next time step k +1 by means of the Chapman-Kolmogorov equation

f p (
xk+1

)=Ï
f
(
xk+1|xk , wk

)︸ ︷︷ ︸
δ(xk+1−ak (xk ,uk ,wk))

f e (
xk

)
f
(
wk

)
dxk dwk , (3)

where δ(·) is the Dirac delta distribution and f p (
xk+1

)
is the predicted density

of the state.

314 Paper E (Semi-)Analytic Gaussian Mixture Filter

2.2 Filter Step
In the filter step, the predicted density f p (xk) from the last prediction step is
updated based on Bayes’ rule

f e (
xk

)= 1
ck

f
(

ŷ
k
|xk

)
f p (

xk

)
, (4)

where ck =
∫

f
(

ŷ
k
|xk

)
f p (

xk

)
dxk is a normalization constant and f

(
ŷ

k
|xk

)
is

the Likelihood function given by

f (ŷ
k
|xk) =

∫
f
(

ŷ
k
|xk ,vk

)
︸ ︷︷ ︸
δ
(

ŷ
k
−hk (xk ,vk)

)
f
(
vk

)
dvk .

The function f
(
ŷ

k
|xk ,vk

)
depends on the nonlinear function in (2) and the

current measurement value ŷ
k

.

For simplicity and brevity, the time index k is omitted and for the prediction step,
the variables xk and xk+1 are replaced by xe and xp , respectively.

3 Gaussian Mixture Filter

The basic idea behind a GMF is to apply linearization individually to each Gaus-
sian component of a given Gaussian mixture for approximate prediction and
filtering.

3.1 Prediction Step
In the prediction step, it is assumed that the result of the previous filter step is
represented by means of the Gaussian mixture

f e (
xe)= L∑

i=1
ωe

i ·N
(
xe ;µe

i
,Ce

i

)
, (5)

3 Gaussian Mixture Filter 315

where ωe
i are non-negative weighting factors summing up to one and N (x;µ,C)

is a Gaussian density with mean vector µ and covariance matrix C. L is the
number of components. The mixture in (5) is used in (3), which results in

f p(
xp)≈ L∑

i=1
ω

p
i · f p

i

(
xp)

, (6)

where the weighting factors1 are ωp
i =ωe

i and f p
i

(
xp)

is the predicted density

f p
i

(
xp)=Ï

f
(
xp |xe , w

)
·N

(
xe ;µe

i
,Ce

i

)
· f (w)dxe dw (7)

of the i th component. In general, the integral in (7) cannot be solved in closed
form. To simplify this problem, the predicted density of each component is
individually approximated by a Gaussian density f p

i

(
xp)≈N

(
xp ;µp

i
,Cp

i

)
. Thus,

it remains to calculate the moments µp
i

and Cp
i via moment matching. The mean

µp
i

of the i th component for instance is

µp
i
=

∫
xp · f p

i

(
xp)

dxp . (8)

Using (7) in (8) and exploiting the sifting property of the Dirac delta distribution,
the mean results in

µp
i
=

Ï
a(xe ,u, w) ·N

(
xe ;µe

i
,Ce

i

)
· f (w)dxe dw . (9)

Similar to the mean, the covariance matrix is given by

Cp
i =

Ï (
a(xe ,u, w)−µp

i

)(
a(xe ,u, w)−µp

i

)T
·N

(
xe ;µe

i
,Ce

i

)
· f (w)dxe dw . (10)

But still, the integrals in (9) and (10) cannot be solved analytically in general.
A famous exception is the case, where a(· , · , ·) is linear and thus, the Kalman
predictor can be applied individually for each component.

1 This weight update is exact only for linear system models, otherwise it is an approximation. For
an improved weight update, see for example [14].

316 Paper E (Semi-)Analytic Gaussian Mixture Filter

3.2 Filter Step
In the filter step, the Gaussian mixture (6) of the predicted state is used in (4),
which results in

f e (x) = 1

c
· f

(
ŷ |x)

·
L∑

i=1
ω

p
i ·N

(
x;µp

i
,Cp

i

)
. (11)

Due to the nonlinear measurement equation (2), the filter step cannot be solved
analytically. For applying individual approximations in (11), the equation is
extended with N (ŷ ;µy

i
,Cy

i), which results in

f e (x) = 1

c

L∑
i=1

w p
i ·N

(
ŷ ;µy

i
,Cy

i

)
·

f
(
ŷ |xp

)
·N

(
xp ;µp

i
,Cp

i

)
N

(
ŷ ;µy

i ,Cy
i

)
≈

L∑
i=1

we
i ·N

(
x;µe

i
,Ce

i

)
,

where the fraction is approximated with a Gaussian distribution N
(
x;µe

i
,Ce

i

)
and

the weights for the estimated density are given by

we
i =

w p
i ·N

(
ŷ ;µy

i
,Cy

i

)
∑L

i=1 w p
i ·N

(
ŷ ;µy

i ,Cy
i

) .

For calculating the estimated mean µe
i

and covariance Ce
i for each component

i , it is assumed that the state and the measurement are jointly Gaussian. This
assumption is typical for Gaussian filters and is only true for linear systems
affected with Gaussian noise. Otherwise, it is an approximation. In doing so, the
desired moments are

µe
i
=µp

i
+Cx,y

i

(
Cy

i

)−1
(

ŷ −µy
i

)
,

Ce
i = Cp

i −Cx,y
i

(
Cy

i

)−1 (
Cx,y

i

)T
,

(12)

which depend on the current measurement value ŷ . To calculate the required pa-

rameters Cx,y
i ,Cy

i , and µy
i

in (12), moment calculations similar to the prediction

step are applied. The predicted measurement µy
i

, the covariance of the measure-

4 Types of Linearization 317

ment process Cy
i , and the cross-covariance Cx,y

i between state and measurement
can then be calculated via

µy
i
=

Ï
h(x, v) ·N

(
x;µp

i
,Cp

i

)
· f (v)dx dv , (13)

Cy
i =

Ï (
h(x, v)−µy

i

)
·
(
h(x, v)−µy

i

)T
·N

(
x;µp

i
,Cp

i

)
· f (v)dx dv , (14)

Cx,y
i =

Ï (
x −µp

i

)
·
(
h(x, v)−µy

i

)T
·N

(
x;µp

i
,Cp

i

)
· f (v)dx dv . (15)

Unfortunately, these integrals cannot be solved in closed form in general. Thus,
approximations in form of linearizations have to be applied, which are described
in Section 4.

3.3 Gaussian Mixture Noise
So far, not much attention has been paid to the noise densities f (v) and f (w). If
the noise is Gaussian, it can be processed jointly with the individual Gaussian
components of the state density. One way to deal with arbitrary noise densities
is to approximate them by means of a Gaussian mixture. In doing so, the noise
can still be processed component-wise and the overall estimation procedure
remains similar to the single Gaussian noise case. However, the calculation of the
weighting factors differs, since the weighting factors of the noise mixture have to
be considered as well. Furthermore, the number of components representing the
Gaussian mixture of the state increases exponentially with the time. To bound
this growth, Gaussian mixture reduction algorithms such as the one proposed in
[7] have to be employed.

4 Types of Linearization

For an approximate solution of the moment integrals in (9), (10) and (13)–(15),
GMFs rely on individually linearizing the nonlinear functions a(· , · , ·) and h(· , ·)
for each component. Thus, the estimation performance of a GMF significantly
depends on the quality of these linearizations. In the following, common types
of linearization are briefly described. Then, two novel linearization approaches
are proposed, namely the analytic stochastic linearization and the semi-analytic
stochastic linearization.

318 Paper E (Semi-)Analytic Gaussian Mixture Filter

For introducing the different linearization approaches, it is sufficient to restrict
the focus on an abstract nonlinear transformation

y = g (x) . (16)

Here, the Gaussian random vector x ∼N
(
x;µx ,Cx)

is mapped to the random
vector y . The nonlinear transformation g (·) can be replaced by a(· , · , ·) in the
prediction step and by h(· , ·) in the filter step.

4.1 Classical Linearization
Generally, linearization approaches can be separated into explicit and implicit
linearization. Classical linearizations that fall into these two classes are as follows.

Explicit Linearization

For an explicit linearization, the nonlinear function g (·) is linearized by applying

a first-order Taylor-series expansion around the mean µx as in the EKF. Thus, the
linearized function is given by

g (x) ≈ g
(
µx)+∇x g

(
µx)

·
(
x −µx)

,

where ∇x is the gradient with respect to x. Employing this type of linearization
in a GMF corresponds to a bank of EKFs and the resulting GMF is called the
Gaussian sum filter proposed in [1].

Implicit Linearization

In case of the implicit linearization, the nonlinear function in (16) remains un-
touched. Here, the word implicit indicates that if the mean µy and covariance Cy

of y can be calculated, there exists an equivalent linear transformation

y = g (x) ≈ A · x +b (17)

that produces exactly the same mean and covariance of y given a Gaussian
random vector x .

4 Types of Linearization 319

x

y

(a) Analytic stochastic
linearization

x

y

(b) Sample-based lineari-
zation

xµx

y

(c) Linearization via
Taylor-series expansion

Figure 1: Illustration of the different linearization approaches: the nonlinear func-
tion (black) and its linearized version (red dashed). (a) For the analytic stochastic
linearization the entire Gaussian is propagated. (b) Sample-based linearization uti-
lizes a sample representation of the Gaussian. (c) Taylor-series expansion linearizes
the nonlinear function around a single point.

A straightforward approach for implicit linearization is to approximate the Gaus-
sian x via a sample-based representation

N
(
x;µx ,Cx)≈ N∑

j=1
w j ·δ

(
x −µ

j

)
, (18)

which exactly captures the mean µx and covariance Cx . Here, w j is the weight
of the j th sample point located at µ

j
. In the following, the index j is used for

indicating sample points, while the index i is used for components of a Gaussian
mixture. The samples can be easily propagated through (16). Calculating the
weighted sample mean and sample covariance for the propagated samples then
allows approximately solving the moment integrals (9), (10) and (13)–(15). The
linear transformation in (17)—if desired—can be obtained via least squares
optimization as described in [10].

Several methods exist for calculating the sample representation in (18), e.g., the
unscented transform [8] or the deterministic sampling scheme [6]. Combining
the unscented transform with a GMF for instance, corresponds to a bank of UKFs
and is described in detail in [13].

4.2 Analytic Stochastic Linearization
Special nonlinear functions for g (·) facilitate to solve the moment integrals
analytically and exactly, e.g., polynomials, trigonometric functions, and their

320 Paper E (Semi-)Analytic Gaussian Mixture Filter

combinations. In this case, the results of the moment integrals can be derived
in an analytic form, as it is shown in the simulation example in Section 5. Thus,
linearization is performed implicitly under the consideration of the entire Gaus-
sian density of x . This is in contrast to the previously described sample-based
linearization, which merely propagates a sample-based approximation of the
Gaussian. Even more extreme is the explicit linearization used in the EKF, where
linearization is only performed on the basis of the single point, that is the mean
of the Gaussian. These differences are depicted in Figure 1.

In the following, the combination of analytic stochastic linearization with a GMF
is named analytic Gaussian mixture filter (A-GMF).

4.3 Semi-Analytic Stochastic Linearization
In order to extend the principle of analytic stochastic linearization to a wider
class of nonlinear functions, the semi-analytic stochastic linearization approach
is proposed. Here, sampled-based linearization is combined with the analytic
stochastic linearization such that only some dimensions of the random vector x
are discretized by means of a sample representation. Thus, only some parts of the
nonlinear transformation (16) have to be evaluated approximately for moment
calculation.

For this purpose, the nonlinear equation (16) is rearranged according to

y = g
(
x a , xb)

, (19)

where the Gaussian random vector xT =
[(

x a)T,
(
xb)T

]
consists of the substates

x a , xb with mean and covariance

µx =
[
µa

µb

]
, Cx =

[
Ca Ca,b

Cb,a Cb

]
.

As mentioned above, there exists no closed-form expression for the desired
moments in general. However, the decomposition into x a and xb is chosen in
such a way that the moment integrals can be calculated in closed form for any
given fixed value of xb . Hence, g (· , ·) is denoted to be conditionally integrable if
such a decomposition exists. For determining a sample-based representation of
xb , the sampling techniques mentioned in Section 4.1 are applied.

4 Types of Linearization 321

The analytic stochastic linearization and sampled-based linearization are ex-
treme cases of the semi-analytic stochastic linearization: if xb has no entries,
the semi-analytic stochastic linearization becomes an analytic stochastic lin-
earization and if x a has no entries, the semi-analytic stochastic linearization
degenerates into a sample-based linearization.

General Solution

For the general transformation in (19), the desired moments of y can be calcu-

lated as follows. At first, the joint density f
(
x, y

)
is separated by employing Bayes’

rule

f
(
x, y

)= δ(
y − g

(
xa , xb))

︸ ︷︷ ︸
= f

(
y |x

) · f
(
xa∣∣xb)

· f
(
xb)︸ ︷︷ ︸

= f (x)

.

The conditional density f
(
xa |xb)=N

(
xa ;µa|b ,Ca|b)

is (conditionally) Gaussian
with mean and covariance

µa|b =µa +Ca,b ·
(
Cb

)−1
·
(
xb −µb

)
,

Ca|b = Ca −Ca,b ·
(
Cb

)−1
·Cb,a .

(20)

To determine the mean µy , the Gaussian density f
(
xb)

of the substate xb is
represented by means of a sample density as in (18), which allows a sample-
based linearization. For integrating over xb , the sifting property of the Dirac
delta distribution is exploited. This gives rise to

µy ≈
N∑

j=1
w j ·µy

j
with µy

j
=

∫
g

(
xa ,µb

j

)
· f

(
xa∣∣µb

j

)
dxa (21)

for the mean of y and analogously, the covariance of y is approximated via

Cy ≈
N∑

j=1
w j ·

(
Cy

j −µy
j

(
µy)T −µy (

µy
j

)T +µy (
µy)T

)
,

Cy
j =

∫
g

(
xa ,µb

j

)
· g

(
xa ,µb

j

)T
· f

(
xa∣∣µb

j

)
dxa .

(22)

322 Paper E (Semi-)Analytic Gaussian Mixture Filter

It is worth mentioning that the integrals in (21) and (22) can be evaluated ana-
lytically as the function g (· , ·) is chosen to be conditionally integrable. Solving
these integrals is an off-line task and the solution is represented in parametric
form for an efficient on-line evaluation.

Gaussian Estimation

By putting it all together, prediction and filtering for the i th Gaussian component
of the Gaussian mixture can now be derived.

In the prediction step, the predicted mean µp
i

(9) and covariance Cp
i (10) of

f p
i (xp) have to be calculated. For this purpose, the system function (1) can be

directly mapped to the nonlinear transformation (19) according to

x p = a
(
xe ,u,w

)= g
(
x a , xb)

.

Here, the system input u becomes a part of the function g (· , ·) and the substates

x a and xb are augmented with the noise variables w a and w b , where w T =[
(w a)T, (w b)T]

, in order to consider additive and/or multiplicative noise. For

calculating the mean µp
i

and covariance Cp
i , (21) and (22) are used, respectively.

In the filter step, the measurement equation (2) is mapped to the nonlinear
transformation (19) according to

y = h(x , v) = g
(
x a , xb)

,

where the measurement noise v is spread across the substates x a , xb . It is worth
mentioning that the decomposition of x into the substates for the filter step is
independent of the decomposition of the prediction step.

For determining the mean µe
i

and covariance Ce
i in (12) for the i th Gaussian

component, the moments µy
i

, Cy
i and Cx,y

i in (13)–(15) are required. According

to (18), the density of the substate xb is approximated by the sample density

N
(
xb ;µb

i
,Cb

i

)
≈

N∑
j=1

wi j ·δ
(
xb −µb

i j

)
.

5 Simulation Results 323

By means of this sample representation, µy
i

and Cy
i can be calculated as in (21)

and (22), respectively. The cross-covariance Cx,y
i needs further derivations. The

cross-covariance Cx,y
i =

[
Ca,y

i ,Cb,y
i

]T
consists of

Ca,y
i =

N∑
j=1

wi j ·

(
Ca,y

i j −µa|b
i j

(
µy

i

)T +µa
i

(
µy

i
−µy

i j

)T
)

,

Cb,y
i =

N∑
j=1

wi j ·
(
µb

i j
−µb

i

)
·
(
µy

i j
−µy

i

)T
,

with

Ca,y
i j =

∫
xa · g

(
xa ,µb

i j

)T
· f

(
xa∣∣µb

i j

)
dxa ,

where µa|b
i j

is calculated according to (20) with xb replaced by µb
i j

and µy
i j

results

from solving the integral in (21).

The combination of semi-analytic stochastic linearization with a GMF is named
semi-analytic Gaussian mixture filter (SA-GMF) in the following.

5 Simulation Results

In the simulations, a localization scenario is considered. A robot with tricycle
kinematics measures the distance to one out of four landmarks per time step.
The landmark considered for measurement is selected randomly with equal
probability. The proposed A-GMF and SA-GMF are compared with the EKF-GMF
(a.k.a. Gaussian sum filter, [1]) and the UKF-GMF [13] for different numbers of
components and measurement noise levels.

5.1 System and Measurement Model
The nonlinear kinematics model of the robot is given by

p x
k+1 = p x

k +
(
uv

k +w v
k

)
· cos

(
φk +uα

k

)
,

p y
k+1 = p y

k +
(
uv

k +w v
k

)
· sin

(
φk +uα

k

)
,

φk+1 =φk +
(
uα

k +wα
k

)
,

(23)

324 Paper E (Semi-)Analytic Gaussian Mixture Filter

with state xk = [
p x

k p y
k φk

]T
, where p x

k and p y
k describe the Cartesian position

of the robot and φk its orientation. The known control inputs are the velocity
uv

k and the turning angle uα
k . w v

k and wα
k are noise processes affecting the

corresponding control inputs. They are assumed to be zero-mean Gaussian with
variances Qv and Qα, respectively.

The measured range r k is given by the nonlinear measurement model

r k =
√(

p x
k −Lx +v x

k

)2 + (
p y

k −Ly +v y
k

)2 ,

where L = [
Lx Ly]T

is the position of the landmark, and v k = [
v x

k v y
k

]T
is the

measurement noise. The noise is assumed to be zero-mean Gaussian with
covariance Cv .

5.2 Estimator: A-GMF
The prediction step can be solved analytically as the model (23) consists of linear,
bilinear, and polynomial functions. The predicted mean of the i th Gaussian
component is

µp
i

(1) =µe
i (1)+uv ·e · cos(β) ,

µp
i

(2) =µe
i

(2)+uv ·e · sin(β) ,

µp
i

(3) =µe
i

(3)+uα ,

where µp
i

(j) is the j th element of the vector µp
i

and Ce
i (m,n) is the element of

the matrix Ce
i at row m and column n. The variables β and e are given by

β= uα+µe
i

(3) and e = exp
(− 1

2 ·Ce
i (3,3)

)
,

respectively. The analytic expressions of the predicted covariances can be found
in Appendix A.

For an analytic moment calculation in the filter step, the measurement model
needs to be squared, where the resulting new measurement is denoted by y k ,
(r k)2. Based on the new squared measurement model, which now is polynominal,
the required quantities in (13)-(15) are

µ
y
i = AT · A+ trace(T) , Cx,y

i =−2·Cp
i ·PT · A ,

5 Simulation Results 325

C y
i = 1T

2 · (4 · (A · AT)◦T+2T◦T) ·12 ,

where ◦ is the element-wise product, 12 = [1 1]T, and

P =
1 0 0

0 1 0
0 0 0

 , T = Cv +P ·Cp
i ·PT , A = L−µp

i
.

The measurement value ŷ is replaced by (r̂)2.

5.3 Estimator: SA-GMF
Even if the prediction step can be performed in closed form, the system model is
written in conditionally linear form according to

xk+1 =
uv

k · cos
(
φk +uα

k

)
uv

k · sin
(
φk +uα

k

)
φk +uα

k

+
1 0 cos

(
φk +uα

k

)
0

0 1 sin
(
φk +uα

k

)
0

0 0 0 1

 · x a
k ,

in order to demonstrate to performace of the SA-GMF. Here, x a = [
p x p y w v wα]T

and xb =φ . By approximating the orientationφ by means of the sample-based
representation, the nonlinear system model becomes a conditionally linear one.
Thus, given a sample point µb

j
, the prediction step with respect to x a for each

Gaussian component can be solved via the Kalman predictor. The filter step is
performed as in the A-GMF.

5.4 Setup

The initial position of the robot at time step k = 0 is x0 = [5 3 0.2]T . Furthermore,
the known control inputs are constant and selected as uv = 0.1 and uα = 0.1. The
variances of the noise processes are Qv = 0.1 and Qα = 0.01.

The measurement noise is isotropic, i.e., the covariance is Cv = (σv)2 ·I2 with I2

being the 2×2 identity matrix. For the variance (σv)2, the three noise levels 0.5,
1, and 2 are considered. The positions Li , i = 1, . . . ,4 of the four landmarks are

[
L1 L3 L3 L4

]= [
0 2 5 10
0 2 5 10

]
.

326 Paper E (Semi-)Analytic Gaussian Mixture Filter

Table 1: Average rmse and standard deviation for the different estimators at different
noise levels and numbers of components.

Noise 0.5 64 8 1

A-GMF 2.02±1.34 3.17±1.98 3.76±2.01
SA-GMF 2.03±1.34 3.16±1.99 3.76±2.09

UKF-GMF 2.41±1.79 4.08±3.02 4.31±3.58
EKF-GMF 2.64±1.86 4.08±4.99 6.40±9.64

Noise 1.0 64 8 1

A-GMF 2.05±1.36 3.16±1.97 3.70±2.07
SA-GMF 2.06±1.35 3.15±1.97 3.70±2.07

UKF-GMF 2.44±1.80 4.04±3.05 4.25±3.61
EKF-GMF 2.95±1.73 4.40±4.43 6.72±8.71

Noise 2.0 64 8 1

A-GMF 2.16±1.35 3.22±2.02 3.78±2.16
SA-GMF 2.16±1.36 3.22±2.02 3.78±2.16

UKF-GMF 2.61±1.77 4.11±3.08 4.35±3.65
EKF-GMF 3.42±1.55 4.95±4.14 7.21±7.60

The GMFs are initialized with different numbers of components, namely 1, 8,
and 64 components. This initialization is performed via the splitting procedure
proposed in [4], where the Gaussian used for splitting has the covariance matrix
C = diag([1000 1000 30]) and a mean sampled from the Gaussian N (x; x0,C). For
each combination of noise level and number of components, 1000 simulation
runs are performed, where each run consists of 50 time steps.

5.5 Results
In Table 1, the average root mean square error (rmse) with respect to the robot’s
position and the standard deviation of the average rmse of all estimators for
all noise levels and all numbers of components are listed. The A-GMF and the
SA-GMF outperform the UKF-GMF and the EKF-GMF under all conditions. The
rmse for the noise level (σv)2 = 1 is shown in Figure 2. A-GMF and SA-GMF
converge significantly faster compared to other two estimators and provide the
lowest estimation errors.

5 Simulation Results 327

1 10 20 30 40 50
k →

0

5

10

15

20

rm
se

/
m

→

EKF-GMF
UKF-GMF
SA-GMF
A-GMF

(a) 64 components

1 10 20 30 40 50
k →

0

5

10

15

20

rm
se

/
m

→

EKF-GMF
UKF-GMF
SA-GMF
A-GMF

(b) 8 components

1 10 20 30 40 50
k →

0

5

10

15

20

rm
se

/
m

→

EKF-GMF
UKF-GMF
SA-GMF
A-GMF

(c) 1 component

Figure 2: The rmse and its standard deviation over the 1000 trajectories at noise
level 1 for different numbers of Gaussian components.

328 Paper E (Semi-)Analytic Gaussian Mixture Filter

In this simulation, A-GMF and SA-GMF perform almost identical as both use
the same filter step and a sample-based representation in case of the SA-GMF is
merely necessary for one dimension.

The EKF-GMF provides the worst estimation results in this scenario. This can
be explained by the fact that the underlying linearization does not consider any
uncertainty information and thus, the linearization error is neglected. Thanks to
the sample-based linearization of the UKF-GMF, uncertainty information can be
incorporated, which leads to a superior linearization and estimation compared to
the EKF-GMF. However, only a finite number of sample points is used for moment
calculation. In the A-GMF instead, the linearization is performed implicitly
under the consideration of the entire Gaussian density. This further improves
estimation performance.

Furthermore, the computational complexity of the A-GMF and SA-GMF is lower
compared to the UKF-GMF. This can be explained by the necessity of calculating
matrix square roots for determining a sample-based representation of a Gaussian.
This operation has cubic complexity and has to be applied in the UKF-GMF on
the whole covariance matrix of each Gaussian component. It is not required
for the A-GMF and in case of the SA-GMF, the covariance matrix is of reduced
dimension as some dimensions of the state space are processed analytically. A
further reason for the higher computational load of the UKF-GMF is the high
number of on-line evaluations of the functions (1) and (2). In case of the A-GMF,
all function evaluations are performed off-line, while for the SA-GMF the number
of function evaluations is reduced due to the small dimension of the substate xb .

6 Conclusions

This paper introduces two novel Gaussian mixture filters, which combine analytic
stochastic linearization techniques with a Gaussian mixture density represen-
tation. The purely analytic stochastic linearization approach is designed for
nonlinear filtering problems, where the integrals for calculating the mean and
covariance can be solved in closed form. Semi-analytic linearization extends this
approach to a wider class of filtering problems, where only some parts of the
system model need to be analytically integrable. Thanks to the combination of
these linearization approaches with a Gaussian mixture representation of the
state density, the estimation performance is improved compared to Gaussian
filters, especially in problems with severe nonlinearities. In the simulation it is

A Analytic Expressions for A-GMF 329

shown that the proposed filter outperforms Gaussian mixture filters employing
standard linearization techniques concerning estimation error and convergence.

A Analytic Expressions for A-GMF

The analytic expressions of the elements of the predicted covariance matrix of
the A-GMF are

Cp
i (1,1) = 1

2 (uv)2 +Ce
i (1,1)− (

uv ecos(β)
)2

+ 1
2

(
uv)2e4 cos(2β)−2uv esin(β) ·Ce

i (1,3)

+Qv 1
2

(
1+e4 cos(2β)

)
,

Cp
i (2,2) = 1

2 (uv)2 +Ce
i (2,2)− (

uv esin(β)
)2

− 1
2

(
uv)2e4 cos(2β)+2uv ecos(β) ·Ce

i (2,3)

+Qv 1
2

(
1−e4 cos(2β)

)
,

Cp
i (3,3) = Ce

i (3,3)+Qα

Cp
i (1,2) = Ce

i (1,2)−uv ·e ·Ce
i (1,3)cos(β)−uv ·e ·Ce

i (2,3) · sin(β)

+ (uv ·e)2 cos(β)sin(β)(e2 −1)+Qv e4

2 sin(2β) ,

Cp
i (1,3) = Ce

i (1,3)−uv ·Ce
i (3,3) ·e · sin(β) ,

Cp
i (2,3) = Ce

i (2,3)+uv ·Ce
i (3,3) ·e · cos(β) ,

Cp
i (2,1) = Cp

i (1,2) , Cp
i (3,1) = Cp

i (1,3) , Cp
i (3,2) = Cp

i (2,3) .

330 Paper E (Semi-)Analytic Gaussian Mixture Filter

References

[1] Daniel L. Alspach and Harold W. Sorenson. Nonlinear Bayesian Estimation
using Gaussian Sum Approximation. IEEE Transactions on Automatic
Control, 17(4):439–448, August 1972.

[2] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A
Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking. IEEE Transactions on Signal Processing, 50(2):174–188, February
2002.

[3] Frederik Beutler, Marco F. Huber, and Uwe D. Hanebeck. Optimal Stochas-
tic Linearization for Range-based Localization. In Proceedings of the 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Taipei, Taiwan, October 2010.

[4] Marco F. Huber, Tim Bailey, Hugh Durrant-Whyte, and Uwe D. Hanebeck.
On Entropy Approximation for Gaussian Mixture Random Vectors. In
Proceedings of the 2008 IEEE International Conference on Multisensor Fu-
sion and Integration for Intelligent Systems (MFI), pages 181–188, Seoul,
Republic of Korea, August 2008.

[5] Marco F. Huber, Frederik Beutler, and Uwe D. Hanebeck. Semi-Analytic
Gaussian Assumed Density Filter. In Proceedings of the 2011 American
Control Conference (ACC), San Francisco, California, June 2011.

[6] Marco F. Huber and Uwe D. Hanebeck. Gaussian Filter based on Deter-
ministic Sampling for High Quality Nonlinear Estimation. In Proceedings
of the 17th IFAC World Congress, Seoul, Republic of Korea, July 2008.

[7] Marco F. Huber and Uwe D. Hanebeck. Progressive Gaussian Mixture
Reduction. In Proceedings of the 11th International Conference on Infor-
mation Fusion (Fusion), Cologne, Germany, July 2008.

[8] Simon Julier, Jeffrey Uhlmann, and Hugh F. Durrant-Whyte. A New Method
for the Nonlinear Trannsformation of Means and Covariances in Filters
and Estimators. IEEE Transactions on Automatic Control, 45(3):477–482,
2000.

[9] Ngai M. Kwok, Gamini Dissanayake, and Quang P. Ha. Bearing-only SLAM
Using a SPRT Based Gaussian Sum Filter. In Proceedings of the 2005 IEEE

References 331

International Conference on Robotics and Automation (ICRA), pages 1109–
1114, Barcelona, Spain, April 2005.

[10] Tine Lefebvre, Herman Bruyninckx, and Joris De Schutter. Nonlinear
Kalman Filtering for Force-Controlled Robot Tasks. Springer Berlin, 2005.

[11] Thomas Lemaire, Cyrille Berger, Il-Kyun Jung, and Simon Lacroix. Vision-
Based SLAM: Stereo and Monocular Approaches. International Journal of
Computer Vision, 74(3):343–364, 2007.

[12] Vladimir Maz’ya and Gunther Schmidt. On approximate approximations
using gaussian kernels. IMA J. Numer. Anal., 16:13–29, 1996.

[13] Miroslav Simandl and Jindrich Duník. Sigma Point Gaussian Sum Filter
Design using Square Root Unscented Filters. In Proceedings of the 16th
IFAC World Congress, pages 1000–1005, Prague, Czech Republic, 2005.

[14] Gabriel Terejanu, Puneet Singla, Tarunraj Singh, and Peter D. Scott. A
Novel Gaussian Sum Filter Method for Accurate Solution to the Nonlinear
Filtering Problem. In Proceedings of the 11th International Conference on
Information Fusion (Fusion), Cologne, Germany, July 2008.

Paper F
Adaptive Gaussian Mixture Filter
Based on Statistical Linearization

Authors: Marco F. Huber

Edited version of the paper:

M. F. Huber. Adaptive Gaussian Mixture Filter Based on Statistical Lin-
earization. In Proceedings of the 14th International Conference on Informa-
tion Fusion (Fusion), Chicago, Illinois, July 2011.

Adaptive Gaussian Mixture Filter
Based on Statistical Linearization

Marco F. Huber

Variable Image Acquisition and Processing Research Group
Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB

Karlsruhe, Germany

marco.huber@ieee.org

Abstract
Gaussian mixtures are a common density representation in nonlin-
ear, non-Gaussian Bayesian state estimation. Selecting an appropri-
ate number of Gaussian components, however, is difficult as one has
to trade of computational complexity against estimation accuracy.
In this paper, an adaptive Gaussian mixture filter based on statis-
tical linearization is proposed. Depending on the nonlinearity of
the considered estimation problem, this filter dynamically increases
the number of components via splitting. For this purpose, a mea-
sure is introduced that allows for quantifying the locally induced
linearization error at each Gaussian mixture component. The devia-
tion between the nonlinear and the linearized state space model is
evaluated for determining the splitting direction. The proposed ap-
proach is not restricted to a specific statistical linearization method.
Simulations show the superior estimation performance compared
to related approaches and common filtering algorithms.

1 Introduction

Bayesian state estimation for nonlinear systems requires an efficient approxi-
mation for practical applications as closed-form solutions are not available in
general. A common approximation technique is the discretization of the state
space as done in grid filters or particle filters [3]. Theoretically, these techniques
facilitate to approach the true statistics of the state with arbitrary accuracy. But

336 Paper F Adaptive Gaussian Mixture Filter Based on Statistical Linearization

they are only applicable to low-dimensional problems since their computational
complexity increases exponentially with the dimension of the state space.

A famous exception that exhibits an analytic solution is the linear Gaussian case.
Here, the famous Kalman filter provides optimal results in an efficient manner
[12]. So-called Gaussian filters try to adapted the Kalman filter equations to
nonlinear problems by assuming that the density function of the state can be
represented by a Gaussian density. The extended Kalman filter [22] applies first-
order Taylor series expansion for linearization. The unscented Kalman filter
[11, 24] or the Gaussian estimator [8] offer higher order accuracy by employing
statistical linearization. But in general a single Gaussian density is typically not
a sufficient representation for the true density function, which may be skew or
multimodal. Thanks to their universal approximator property, Gaussian mixtures
[15] are a much better approach for approximating complex density functions.
Examples for Gaussian mixture filters applied to nonlinear estimation are in
[1, 21].

The estimation accuracy of Gaussian mixture filters significantly depend on the
number of Gaussian components used. This number is typically defined by the
user. In this paper, a novel Gaussian mixture filter is proposed, which adapts
the number of components dynamically and on-line. The nonlinear system and
measurement models are linearized locally by means of statistical linearization
at each component of the Gaussian mixture. The induced linearization error is
quantified by means of the linearization error covariance matrix. Based on this
error, a novel moment-preserving splitting procedure is proposed for introducing
new mixture components. The component causing the highest linearization
error is selected, while splitting is performed in direction of the strongest nonlin-
earity, i.e., the strongest deviation between the nonlinear model and its linearized
version. Both linearization and splitting are independent of the used statistical
linearization method, which makes the proposed filter versatilely applicable.

The paper is structured as follows: The Bayesian state estimation problem is
formulated in the next section. In Section 3, a brief introduction in statistical
linearization is given. The novel splitting scheme is derived in Section 4. Based
on this, Section 5 describes the complete adaptive Gaussian mixture filter with
all major components. Numerical evaluation by means of simulations is part of
Section 6. The paper closes with concluding remarks.

2 Problem Formulation 337

2 Problem Formulation

In this paper, discrete-time nonlinear dynamic systems

xk+1 = ak

(
xk ,uk , w k

)
, (1)

zk = hk

(
xk , v k

)
(2)

are considered. Here, (1) is the dynamics model with the known time-variant
nonlinear system function ak (·), which propagates the system state xk ∈Rnx

at time step k to time step k +1, given the current system input uk ∈Rnu and
the process noise w k ∈Rnw . The measurement model is given by (2), where
hk (·) is the known time-variant nonlinear measurement function, zk ∈Rnz is
the measurement vector, and v k ∈Rnv is the measurement noise. Note that an
actual measurement value zk is a realization of the random vector zk in (2).

Both noise processes w k and v k are assumed to be independent and white. The
probability density functions of w k and v k are denoted by f w

k

(
wk

)
and f v

k

(
vk

)
,

respectively. It is assumed that these density functions are Gaussian mixtures

f w
k

(
wk

)= Lw
k∑

i=1
ωw

k,i ·N
(
wk ; ŵk,i ,Cw

k,i

)
, (3)

f v
k

(
vk

)= Lv
k∑

i=1
ωv

k,i ·N
(
vk ; v̂k,i ,Cv

k,i

)
, (4)

where Lw
k , Lv

k are the numbers of mixture components,ωw
k,i ,ωv

k,i are non-negative

weights that sum up to one, and N
(
w ; ŵ ,Cw)

is a Gaussian density with mean
vector ŵ and covariance matrix Cw . The initial density function f x

0 (x0) of the
system state at time step k = 0 is also assumed to be given as a Gaussian mixture.

Estimating the system state from noisy measurements is done according to
the Bayesian framework. Here, two steps are performed alternately, namely
the prediction step and the filtering step. In the prediction step, the density
f e

k

(
xk

)
:= f x

k

(
xk |u0:k ,z0:k

)
of the previous filtering step is propagated to the next

time step according to

f p
k+1

(
xk+1

)
:= f x

k+1

(
xk+1|u0:k , z0:k

)
=

∫
f
(
xk+1|xk ,uk , wk

)︸ ︷︷ ︸
δ
(

xk+1−ak (xk ,uk ,wk)
) · f e

k

(
xk

)
· f w

k

(
wk

)
dxk dwk , (5)

338 Paper F Adaptive Gaussian Mixture Filter Based on Statistical Linearization

where z0:k = (
z0,z1, . . . ,zk

)
denotes the measurements up to and including time

step k, f
(
xk+1|xk ,uk , wk

)
is the transition density depending on the dynamics

model (1), and δ(·) is the Dirac delta distribution.

The filtering step determines the posterior density f e
k

(
xk

)
of the system state xk

based on all acquired measurement values according to Bayes’ law

f e
k

(
xk

)= ck · f
(
zk |xk

)
· f p

k

(
xk

)
,

where ck is a normalization constant and f
(
zk |xk

)
is the likelihood function

given by

f
(
zk |xk

)= ∫
δ

(
zk −hk

(
xk , vk

))
· f v

k

(
vk

)
dvk

and the measurement model (2).

In general, for arbitrary nonlinear systems with arbitrarily distributed random
vectors, there exist no analytical solutions of the prediction step and filtering step.
Thus, for efficient estimation, it is inevitable to apply an approximate solution.
In the following, an adaptive approximation scheme is proposed, where the
predicted and posterior state densities are represented by means of Gaussian
mixtures

f •
k

(
xk

)= L•
k∑

i=1
ω•

k,i ·N
(
xk ; x̂•

k,i ,C•
k,i

)
, with • ∈ {e,p} , (6)

where the number L•
k of mixture components is variable and adapted on-line by

the proposed Gaussian mixture filter.

3 Statistical Linearization

Substituting the Gaussian mixtures representing the noise and the state density
into the prediction step and the filtering step, it can be easily seen that estimation
can be performed component-wise. For example in case of the prediction, using
(3) and (6) with • = e in (5) gives rise to

f p
k+1

(
xk+1

)= Le
k∑

i=1

Lw
k∑

j=1
ωe

k,i ·ωw
k, j ·

(∫
f
(
xk+1|xk ,uk , wk

)
·

N
(
xk ; x̂e

k,i ,Ce
k,i

)
·N

(
wk ; ŵk, j ,Cw

k, j

)
dxk dwk

)
. (7)

3 Statistical Linearization 339

Thus, it is sufficient to focus in the following on the simplified nonlinear transfor-
mation

y = g (x) , (8)

which maps the Gaussian random vector x with density N
(
x; x̂,Cx)

to the ran-
dom vector y . This nonlinear transformation can be replaced by ak (·) in the
prediction step and by hk (·) in the filtering step, while the Gaussian random
vector x in (8) represents the joint Gaussian of the state and noise.

3.1 Classical Linearization
Calculating the density or the statistics of y cannot be carried out in closed
form. Hence, directly processing the density or the moments is computationally
demanding and imprecise, or even impossible. An exception are linear trans-
formations, where the Kalman filter [12] provides analytic expressions of the
Bayesian estimation problem. To apply the Kalman filter equations to nonlinear
transformations, a typical way is to linearize the nonlinear transformation, which
results in the extended Kalman filter [22]. Here, it is assumed that the nonlinear
transformation can be approximated by a linear transformation through a first-
order Taylor series expansion around the mean x̂. In case of mild nonlinearities
the linearization error of this approximation is acceptable. However, for this type
of linearization the spread of x , i.e., the covariance matrix Cx is not taken into
account and there is no measure which allows to quantify the linearization error.

3.2 Statistical Linear Regression
To overcome these flaws, deterministic sampling techniques are employed in-
stead, which allow for propagating the mean and the covariance of x through
the nonlinear transformation (8). In doing so, linearizing the transformation
by so-called statistical linear regression or statistical linearization is possible
[14, 23]. More precisely, statistical linearization calculates a matrix G and a vector
b such that

y = g (x) ≈ G · x +b , (9)

where the error term
e = g (x)−G · x −b (10)

describes the deviation of the nonlinear transformation and its linear approxi-
mation. To determine G and b, the nonlinear transformation g (·) is evaluated

340 Paper F Adaptive Gaussian Mixture Filter Based on Statistical Linearization

at a set of weighted regression points
{
αi , xi

}
i=1...L with non-negative weights αi

with
∑

i αi = 1, which results in points y
i
= g

(
xi

)
for i = 1. . .L. This set of points

is chosen in such a way that the mean x̂ and covariance Cx of x are captured
exactly, that is

x̂ =
L∑

i=1
αi · xi and Cx =

L∑
i=1

αi ·
(
xi − x̂

)
·
(
xi − x̂

)T .

Then G and b are determined by minimizing the weighted sum of squared errors

{G,b} = argmin
G,b

(
L∑

i=1
αi ·eT

i ·e i

)
(11)

with e i = y
i
− (G · xi +b). The solution of (11) is given by

G = (
Cx y)T (

Cx)−1 and b = ŷ −G · x̂ , (12)

where the set of propagated points {αi , y
i
}i=1...L is used to approximate the mean,

covariance, and cross-covariance of y according to

ŷ ≈
L∑

i=1
αi · y

i
, Cy ≈

L∑
i=1

αi ·
(
y

i
− ŷ

)
·
(
y

i
− ŷ

)T ,

Cx y ≈
L∑

i=1
αi ·

(
xi − x̂

)
·
(
y

i
− ŷ

)T .

The linearization error is characterized by the error term (10) and has zero-mean
and the covariance matrix

Ce = Cy −GCx GT . (13)

Thus, by means of the covariance Ce it is possible to quantify the linearization
error. If Ce is a zero matrix, the density of the error e corresponds to a Dirac delta
distribution[16] and the transformation g (·) is affine with g (x) = G · x +b.

3.3 Calculating the Regression Points
Many approaches for calculating the set of regression points have been proposed
in the recent years. They differ in the number of regression points L and the way

3 Statistical Linearization 341

these points are chosen. In the following example, both selection schemes used
in this paper are briefly introduced.

Example 1: Regression Points

In the simulations described in Section 6 the famous unscented transform
[11] and the Gaussian estimator [8] are considered. For both, the calculation
of the sigma points xi ∈Rnx can be summarized as

x1 = x̂ ,

xi = x̂ +ν j ·Pl , i = l +1+ (j −1) ·nx ,

where Pl , l = 1. . .nx is the l th column of the matrix P =
p

Cx and ν j , j =
1. . . N are scaling factors. This results in a number of L = nx · N+1 regression
points. The type of the matrix root, the scaling factors, and the weights αi

of the regression points depend on the considered selection scheme.

In case of the unscented transform, the Cholesky decomposition is chosen
as matrix root. For the scaling factors holds N = 2 and ν1 =

p
nx +κ=−ν2,

where κ is a scaling parameter. The weights are α1 = κ
nx+κ and αi = 1

2(nx+κ) ,
for i > 1.

The Gaussian estimator utilizes the eigenvalue decomposition for calcu-
lating the matrix root. The number of scaling factors N and thus the total
number L of regression points can be varied. Since the scaling factors result
from solving a optimization problem, there is no closed-form expression.
For N = 2 and N = 4, the scaling factors can be calculated to

N = 2 : ν j ∈ {−1.2245,1.2245} ,

N = 4 : ν j ∈ {−1.4795,−0.5578,0.5578,1.4795} . (14)

The regression points are equally weighted with ∀i :αi = 1/L .

It is important to note that the proposed adaptive Gaussian mixture filter is not
restricted to these two selection schemes. In fact, any selection scheme for statis-
tical linearization including those described in [2, 10, 20] can be used, depending
on the considered application as well as the desired estimation performance and
computational demand.

342 Paper F Adaptive Gaussian Mixture Filter Based on Statistical Linearization

4 Spli�ing Scheme

Given a random vector x , whose density function f x (x) is a Gaussian mixture
with Lx components according to (6), it is possible to linearize the nonlinear
transformation g (·) for each component of f x (x). This kind of component-wise
or local linearization leads to an improved approximation of the true density
function f y (

y
)

of y compared to a single, global linearization. To further im-
prove the approximation, especially in case of strong nonlinearities and/or large
variances of some components, the idea is to select a component of f x (x) and
split it into several components with reduced weights and covariances. It was
demonstrated for example in [1] that the filtering accuracy of local linearization
approaches benefits from this decrease of the covariances and simultaneous
increase of the number of Gaussians.

4.1 Component Selection
A straightforward way to select a Gaussian component for splitting is to consider
the weights ωx

i , i = 1. . .Lx . The component with the highest weight is then split.
This however does not take the nonlinearity of g (·) in the support of the selected
component into account. Since linearization is performed component-wise
and locally, a more reasonable selection would be to consider also the induced
linearization error of each component. For this purpose, statistical linearization
already provides an appropriate measure for the linearization error in form of
the covariance matrix Ce in (13).

In order to easily assess the linearization error in the multi-dimensional case, the
trace operator is applied to Ce , which gives the measure

ε= Tr
(
Ce) ∈ [0,∞) . (15)

Geometrically speaking, the trace is proportional to circumference of the covari-
ance ellipsoid corresponding to Ce . The larger Ce and thus the linearization error,
the larger is ε. Conversely, the trace is zero, if and only if Ce is the zero matrix, i.e.,
ε= 0 ⇔ Ce = 0. Hence, (15) is only zero, when there is no linearization error, that
is, the nonlinear transformation g (·) is affine in the support of the considered
Gaussian component.

Besides the linearization error, the contribution of a component to the nonlin-
ear transformation is important as well. That is, the probability mass of the

4 Spli�ing Scheme 343

component, which is given by its weight ωx
i , has also to be taken into account.

This avoids splitting irrelevant components. Putting all together the criterion for
selecting a component i for splitting is defined as

si =
(
ωx

i

)γ ·
(
1−exp(−εi)

)1−γ ∈ [0,1] (16)

for i = 1. . .Lx , where 1−exp(−εi) normalizes the linearization measure (15) into
the interval [0,1]. For a geometric interpolation between weight and linearization
error of component i , the parameter γ ∈ [0,1] used. With γ = 0, selecting a
component for splitting only focuses on the linearization error, while γ = 1
considers the weight only.

Component selection criteria for splitting have also been proposed in [5, 17]. The
criterion in [5] is designed for the unscented transform only, while the criterion
in [17] can only be calculated analytically in some special cases. The proposed
criterion instead is generally applicable.

4.2 Spli�ing a Gaussian
Assume that according to the selection criterion (16), the Gaussian component
ω ·N

(
x; x̂,Cx)

is chosen. Splitting this Gaussian into many can be formulated as
replacing the Gaussian by a Gaussian mixture according to

ω ·N
(
x; x̂,Cx)≈ L∑

j=1
ω j ·N

(
x; x̂ j ,C j

)
. (17)

It can be easily verified that for L > 1, the number of free parameters, i.e., weights,
mean vectors and covariance matrices, is larger than the number of given param-
eters. More precisely, splitting a Gaussian is an ill-posed problem. In order to
reduce the degrees of freedom and to not introduce errors concerning the mean
and covariance, splitting is performed in a moment-preserving fashion. Thus, it
must hold that

ω=
L∑

j=1
ω j , x̂ =

L∑
j=1

ω j

ω · x̂ j , Cx =
L∑

j=1

ω j

ω ·
(
C j + x̂ j x̂T

j

)
− x̂ x̂T . (18)

To further simplify the problem, splitting is restricted in direction of the eigenvec-
tors of Cx , which is computationally cheap and numerically stable. Furthermore,
it reduces the problem to splitting a univariate standard Gaussian.

344 Paper F Adaptive Gaussian Mixture Filter Based on Statistical Linearization

Univariate standard Gaussian

A moment-preserving split of a univariate standard Gaussian N (x;0,1) into
a mixture with L components requires to determine 3·L free parameters. By
forcing symmetry, i.e., the means x̂ j are placed symmetrically around the mean
x̂ with symmetrically chosen weights and for the variances holds ∀ j : σ2

j = σ,
the number of free parameters is reduced to L+1. In [7], a splitting library with
symmetric components is proposed. Unfortunately, preserving the moments
is not guaranteed. Instead, the following split into two components is used
throughout this paper.

Example 2: Splitting into Two Components

Following the approach proposed in [6], the univariate standard Gaussian
is split into the mixture 1/2 ·N

(
x; x̂,σ2)+ 1/2 ·N

(
x;−x̂,σ2) . The moment-

preserving constraints of splitting (18) lead to the dependency σ2 = 1− x̂2

between x̂ and σ, where x̂ is now the only free parameter. This equation is
valid for x̂ ∈ [−1,1] and contains the trivial solution x̂ = 0. Generally, x̂ may
be determined dynamically by minimizing the resulting linearization error.
But throughout this paper, x̂ is set to 0.5 for simplicity.

To determine the parameters of more than two components, additional con-
straints, e.g., capturing higher order moments like the skewness or the kurtosis
have to be considered additionally. Since splitting is performed recursively in
this paper (see Section 5), the new introduced components can be split in the
subsequent splitting step if the local linearization error may not be reduced suffi-
ciently. Splitting into two components is a good compromise between reducing
the linearization error on the one hand and controlling the growth of the number
of components and the computational load on the other hand.

Multivariate Gaussian

Applying univariate splitting to the multivariate case requires the eigenvalue
decomposition of the covariance matrix Cx = VDVT, with V being the matrix of
eigenvectors and D being the diagonal matrix of eigenvalues according to

V = [
v1 v2 . . . vnx

]
, D = diag

(
λ1,λ2, . . . ,λnx

)
,

4 Spli�ing Scheme 345

where v i ∈Rnx are the (orthonormal) eigenvectors and λi are the eigenvalues. V
is a rotation matrix and the eigenvalue decomposition of Cx corresponds to the
transformation

x = V · z (19)

of a Gaussian random vector z with density

f z (z) =N (z; ẑ,D) =
nx∏

i=1
N

(
zi ; ẑi ,λi

)
, (20)

where ẑ = VT · x̂, to a Gaussian random vector x with density N
(
x; x̂,Cx)

. Since
the Gaussian f z (z) has a diagonal covariance matrix, the eigenvectors are parallel
to the axes of the coordinate system. Thus, univariate splitting can be easily
applied along the eigenvectors by replacing a univariate Gaussian on the right-
hand side of (20) by a Gaussian mixture.

Assume that eigenvector v l is chosen for splitting and let
∑L

j=1ω
′
j ·N

(
zl ; ẑ ′

j ,σ2
j

)
be the Gaussian mixture that approximates a univariate standard Gaussian as
described above. As this mixture approximates a standard Gaussian, its com-
ponents have to be shifted by adding ẑl and scaled by multiplying with

√
λl in

order to match the mean ẑl and the variance λl , respectively. These operations
result in

N (zl ; ẑl ,λl) ≈
L∑

j=1
ω′

j ·N
(
zl ; ẑl +

√
λl ẑ ′

j ,λlσ
2
j

)
. (21)

Plugging (21) into (20) leads to

N (z; ẑ,D) ≈
L∑

j=1
ω′

j ·N
(
zl ; ẑl +

√
λl ẑ ′

j ,λlσ
2
j

)
·

nx∏
i=1
i 6=l

N (zi ; ẑi ,λi) .

Transforming this mixture via (19) gives the desired splitting result (17) with the
weights, means, and covariance matrices

ω j =ω ·ω′
j , x̂ j = x̂ +

√
λl · ẑ ′

j · v l , C j = Cx +λl · (σ2
j −1) · v l vT

l , (22)

respectively, for j = 1. . .L.

It is worth mentioning that the calculation of the parameters in (22) is inde-
pendent of the number of components L and does not necessarily require a
symmetric, moment-preserving splitting. Thus, arbitrary splitting methods of

346 Paper F Adaptive Gaussian Mixture Filter Based on Statistical Linearization

univariate standard Gaussians besides those described in this paper, can be used
with these formulae.

4.3 Spli�ing Direction
So far, no criterion for selecting an appropriate eigenvector for splitting is defined.
A straightforward criterion may be the eigenvector with the largest eigenvalue
as in [6, 7]. But since (16) determines the Gaussian component that causes the
largest linearization error, merely splitting along the eigenvector with the largest
eigenvalue does not take this error into account.

The key idea of the proposed criterion is to evaluate the deviation between the
nonlinear transformation (8) and its linearized version (9) along each eigenvec-
tor. The eigenvector with the largest deviation is then considered for splitting,
i.e., the Gaussian is split in direction of the largest deviation in order to cover
this direction with more Gaussians, which will reduce the error in subsequent
linearization steps.

By means of the error term (10), the desired criterion for the splitting direction is
defined as

dl ,
∫
R

e
(
x l (ν)

)T ·e
(
x l (ν)

)
·N

(
x l (ν); x̂,Cx)

dν (23)

with x l (ν) := x̂ +ν · v l , l = 1. . .nx , and v l being the l th eigenvector Cx . The inte-
gral in (23) cumulates the squared deviations along the l th eigenvector under
the consideration of the probability at each point x l (ν). The eigenvector that
maximizes (23) is then chosen for splitting. Unfortunately, due to the nonlinear
transformation g (·) in (10), this integral cannot be solved in closed-form in gen-
eral. For an efficient and approximate solution, the regression point calculation
schemes described in Section 3.3 are employed to approximate the Gaussian in
(23) in direction of v l by means of a Dirac mixture. This automatically leads to a
discretization of the integral at a few but carefully chosen points.

5 Adaptive Gaussian Mixture Filter 347

Linearization stop?

Splitting

Prediction Reduction

Reduction Filtering

Splitting

stop? Linearization

k +1 → k

5
3

f p
k+1

3

5

f e
k

f p
k

f x
0

zk

Prediction step

Filtering step

Figure 1: Flow chart of the proposed adaptive Gaussian mixture filter. Both the
prediction and filtering step employ splitting and reduction for adapting the number
of mixture components.

5 Adaptive Gaussian Mixture Filter

Based on the statistical linearization described in Section 3 and the splitting
procedure proposed in Section 4, the complete adaptive Gaussian mixture filter
(AGMF) is now derived. The key idea of AGMF is to dynamically increase the
number of Gaussians of a given mixture at regions with large linearization errors.
The number is reduced after each prediction and filtering in order to limit the
computational and memory demand.

5.1 Prediction Step
The major operations to be performed in the prediction step are illustrated in the
upper part of Figure 1. The following paragraphs provide detailed descriptions
of these operations.

Linearization

As shown in (7) the prediction step can be performed component-wise. Therefore,
the nonlinear system function is linearized statistically at the weighted joint Gaus-

348 Paper F Adaptive Gaussian Mixture Filter Based on Statistical Linearization

sian ωk,s ·N
(
X k ; X̂ k,s ,CX

k,s

)
with X k = [

xT
k , w T

k

]T
, s = (i −1)·Lw

k + j = 1. . .Le
k ·Lw

k ,
ωk,s =ωe

k,i ·ωw
k, j , and

X̂ k,s =
[

x̂e
k,i

ŵk, j

]
, CX

k,s =
[

Ce
k,i 0
0 Cw

k, j

]
.

With (12), the linearization results in

xk+1 =
[
Ak,s Bk,s

]︸ ︷︷ ︸
=Gk,s

· X k +bk,s . (24)

Spli�ing

Due to the nonlinearity of the system function ak (·), some of the mixture compo-

nents ωk,s ·N
(
X k ; X̂ k,s ,CX

k,s

)
may locally cause severe linearization errors. These

errors are quantified by means of the selection criterion (16). The component
maximizing (16) will be split in direction of the largest deviation between the non-
linear function ak (·) and its linearized version (24) as described in Section 4.3.
After splitting this Gaussian, linearization is performed for the newly introduced
mixture components. The linearization need not to be repeated for the remaining
mixture components as they are not affected by the splitting.

Splitting Gaussians and the subsequent linearization is repeated until a stop-
ping criterion is satisfied. This stopping criterion combines three user-defined
thresholds:

1. For each component the value of the selection criterion (16) shall drop
below the error threshold εmax ∈ [0,1].

2. The number of Gaussians shall not grow beyond the component thresh-
old Lmax.

3. The deviation between the original Gaussian mixture f (x) and the mix-
ture obtained via splitting f̃ (x) shall remain below a deviation threshold
dmax ∈ [0,1].

In the latter case, the deviation is determined by means of the normalized integral
squared distance measure [9]

D
(

f (x), f̃ (x)
)= ∫ (

f (x)− f̃ (x)
)2 dx∫

f (x)2 dx +∫
f̃ (x)2 dx

∈ [0,1] .

5 Adaptive Gaussian Mixture Filter 349

Since splitting always introduces an approximation error to the original mixture
f (x), tracking the deviation during splitting and keeping the deviation below the
threshold dmax avoids that errors introduced by splitting neutralize the gain in
linearization. Splitting stops, if at least one threshold is reached.

Prediction

Letωk,s̃ ·N
(
X k ; X̂ k,s̃ ,CX

k,s̃

)
be the Gaussians resulting from the splitting step, with

s̃ = 1. . . L̃p
k and L̃p

k À Le
k ·Lw

k . Based on these Gaussians and their corresponding
locally linearized system models (24), the parameters of each component of
the predicted Gaussian mixture f p

k+1

(
xk+1

)
can be calculated by means of the

Kalman predictor according to

ω
p
k+1,s̃ =ωk,s̃ ,

x̂p
k+1,s̃ = Ak,s̃ · x̂e

k,s̃ +Bk,s̃ · ŵk,s̃ +bk,s̃ ,

Cp
k+1,s̃ = Ak,s̃ Ce

k,s̃ AT
k,s̃ +Bk,s̃ Cw

k,s̃ BT
k,s̃ +Ck,s̃ ,

where Ck,s̃ is the linearization error covariance (13).

Reduction

The number of components L̃p
k in f p

k+1

(
xk+1

)
grows due to the multiplication

of the Gaussian mixtures f e
k

(
xk

)
and f w

k

(
wk

)
for prediction and due to split-

ting. It is necessary to bound this growth in order to reduce the computational
and memory demand of subsequent prediction and filtering steps. For this
purpose, one can exploit the redundancy and similarity of Gaussian compo-
nents. Furthermore, many components will have weights close to zero, thus they
can be removed without introducing significant errors. To reduce a Gaussian
mixture, many algorithms have been proposed in the recent years (see for ex-
ample [9, 18, 19, 25]). Most of these algorithms require a reduction threshold
Lp

k+1—typically much smaller than Lmax—to which the number of components
of the given Gaussian mixture has to be reduced. In the simulations, Runnalls’
reduction algorithm [18] is employed as it provides a good trade-off between
computational demand and reduction errors.

With the reduction to Lp
k+1 components, the calculation of the predicted Gaus-

sian mixture f p
k+1

(
xk+1

)
in (6) is finished.

350 Paper F Adaptive Gaussian Mixture Filter Based on Statistical Linearization

5.2 Filtering Step
The operations to be performed for the filtering step are almost identical to the
prediction step (see Figure 1). Thus, only linearization and filtering are described
in the following. Splitting and reduction coincide with the prediction step.

Linearization

Linearization and filtering are also performed component-wise. In the following,
letωk,s ·N

(
X k , X̂ k,s ,CX

k,s

)
be the joint Gaussian comprising the i th component of

the predicted mixture f p
k

(
xk

)
and the j th component of the measurement noise

mixture (4), where s = (i −1) ·Lv
k + j = 1. . .Lp

k ·Lv
k . The corresponding linearized

measurement model is

zk = [
Hk,s Dk,s

]
· X k +bk,s (25)

with joint state X k = [
xT

k , v T
k

]T
.

Filtering

Let ωk,s̃ ·N (X k ; X̂ k,s̃ ,CX
k,s̃) be the Gaussians resulting from splitting, with s̃ =

1. . . L̃e
k and L̃e

k À Lp
k ·Lv

k . Given the current measurement value zk , the Kalman
filter update equations applied on these Gaussians and their corresponding
locally linearized measurement models (25) give rise to the parameters of each
component of the posterior Gaussian mixture f e

k

(
xk

)
ωe

k,s̃ = ck ·ωk,s̃ ·N
(
zk ; ẑk,s̃ ,Sk,s̃

)
,

x̂e
k,s̃ = x̂p

k,s̃ +Kk,s̃

(
zk − ẑk,s̃

)
,

Ce
k,s̃ = Cp

k,s̃ −Kk,s̃ Hk,s̃ Cp
k,s̃ ,

(26)

with predicted measurement ẑk,s̃ = Hk,s̃ · x̂p
k,s̃ + Dk,s̃ · v̂k,s̃ + bk,s̃ , Kalman gain

Kk,s̃ = Cp
k,s̃ HT

k,s̃ S−1
k,s̃ , innovation covariance Sk,s̃ = Hk,s̃ Cp

k,s̃ HT
k,s̃ +Dk,s̃ Cv

k,s̃ DT
k,s̃ +

Ck,s̃ , and Ck,s̃ being the linearization error covariance (13). The calculation of
the weight ωe

k,s̃ in (26) is adapted from [1, 21], where ck = 1/∑
s̃ ωk,s̃ ·N

(
zk ;ẑk,s̃ ,Sk,s̃

)
is

a normalization constant.

After the reduction to Le
k components, the posterior Gaussian mixture f e

k

(
xk

)
in

(6) is completely determined.

6 Simulation Results 351

6 Simulation Results

Two numerical simulations are conducted in order to demonstrate the perfor-
mance of the proposed AGMF.

6.1 Shape Approximation
In the first simulation, the nonlinear growth process

y = g (x) = ξ

2
+5·

ξ

1+ξ2 +w

adapted from [13] is considered, where x = [ξ, w]T ∼ f x (x) = N
(
x; [1,0]T,I2

)
with In being the n ×n identity matrix. To approximate the density of y , the
Gaussian f x (x) is split recursively into a Gaussian mixture, where the number of
components is always doubled until a maximum of 64 components is reached.
No mixture reduction and no thresholds εmax, dmax are used. The Gaussian
estimator with 4 scaling factors according to (14) is employed for statistical
linearization. The true density of y is calculated via numerical integration.

Two different values for the parameter γ of the selection criterion (16) are used:
γ = 0.5, which makes no preference between the component weight and the
linearization error and γ= 1, which considers the weight only. Furthermore, a
rather simple selection criterion is considered for comparison, where selecting
a Gaussian for splitting is based on the weights only (as it is the case for γ= 1),
while the splitting is performed in direction of the eigenvector with the largest
eigenvalue.

Table 1 shows the Kullback-Leibler divergence (KLD, [4]) between the true density
of y and the approximations obtained by splitting. The approximations of the
proposed splitting scheme are significantly better than the approximations of the
largest eigenvalue scheme. This follows from the fact that the proposed scheme
not only considers the spread of a component. It also takes the linearization
errors into account. In doing so, the Gaussians are always split along the eigen-
vector that is closest to ξ, since this variable is transformed nonlinearly, while w
is not. This is different for the largest eigenvalue scheme, which wastes nearly
half of the splits on w .

The inferior approximation quality for γ = 1 compared to γ = 0.5 results from
splitting components, which may have a high importance due to their weight but

352 Paper F Adaptive Gaussian Mixture Filter Based on Statistical Linearization

Table 1: Approximation error (KLD × 10) for different splitting schemes and numbers
of components.

splitting number of Gaussians
scheme 1 2 4 8 16 32 64

max. eigenvalue 2.01 0.77 0.64 0.47 0.39 0.21 0.26
γ= 1 2.01 0.77 0.59 0.34 0.20 0.12 0.07
γ= 0.5 2.01 0.77 0.40 0.22 0.07 0.03 0.02

which do not cause severe linearization errors. Thus, splitting these components
will not improve the approximation quality much.

In Figure 2, the approximate density of y is depicted for different numbers of
mixture components for γ= 0.5. With an increasing number of components, the
approximation approaches the true density very well.

6.2 Object Tracking
For the second simulation example, a object tracking scenario is considered. The
kinematics of the mobile object are modeled by means of the bicycle model

xk+1,

xk+1

y k+1
φk+1

= xk +
cos(φk)

sin(φk)
uk

+w k ,

where the system state xk comprises the position [xk , y k]T and the orientationφk
of the bicycle. At time step k = 0, the initial estimate of the state x0 is represented

by a Gaussian density with mean x̂0 = [100 m,100 m,0 rad]T and covariance
matrix Cx

0 = diag
(
102,102,π2). The system input uk := tan(αk) with αk being the

steering angle, is chosen randomly and uniformly distributed from the interval
[−0.2,0.2] at each time step. The system noise w k is zero-mean Gaussian with
covariance matrix Cw

k = diag
(
0.12,0.12,0.012).

A radar sensor with measurement model

zk =
[√

x2
k + y 2

k
arctan

(
y k /xk

)]+v k

6 Simulation Results 353

-6 -4 -2 0 2 4 6 8
y →

0

0.1

0.2

0.3

0.4
f

y
→

True
Approx. L = 1
Approx. L = 2
Approx. L = 8
Approx. L = 32

Figure 2: True density function of y (black, dashed) and approximations with an
increasing number of mixture components.

is employed for observing the object, where the measurement noise v k is mod-
eled as unimodal glint noise [26] with density f v

k

(
vk

)= (1−β) ·N
(
vk ;0,Cv

k,1

)+
β ·N

(
vk ;0,Cv

k,2

)
with covariances Cv

k,1 = diag
(
12,0.12) and Cv

k,2 = diag
(
22,0.22).

The parameter β refers to the glint noise probability. Six probability values
β = {0,0.2, . . . ,1} are exploited for simulation. By increasing β it is possible to
investigate the performance of the filters for stronger noise, which is also heavily
tailed for β 6= 0 and β 6= 1.

For this simulation setup, AGMF is applied with parameter γ= 0.5, error thresh-
old εmax = 0.05, deviation threshold dmax = 1, and component threshold Lmax =
128 for both prediction and filtering. Three values of reduction thresholds are
used, Lp

k = Le
k = 2,8,32. For comparison, a Gaussian mixture filter (denoted

as MWE) employing the simple largest-weight-largest-eigenvalue-criterion as
described in the previous section is considered. Further, the adaptive level of
detail (ALD) Gaussian mixture filter proposed in [6] is employed as well. Since
ALD is only designed for the unscented transform (see Example 1), this statistical
linearization method is also used for AGMF to allow a fair comparison. The scal-
ing parameter κ of the unscented transform is set to 0.5, i.e., all regression points
are equally weighted. MWE and ALD use the same parameters as AGMF, except
that MWE always splits until Lmax is reached since it exploits no linearization
errors.

354 Paper F Adaptive Gaussian Mixture Filter Based on Statistical Linearization

0 0.2 0.4 0.6 0.8 1

β→
0

5

10

15

20

25

av
g.

rm
se

p
o

s
/

m
→

AGMF 2 AGMF 8 AGMF 32 UKF

ALD 2 ALD 8 ALD 32 PF
MWE 2 MWE 8 MWE 32

(a) Average rmse over all simulation runs.

0 0.2 0.4 0.6 0.8 1

β→
0

50

100

150

200

av
g.

ru
n

ti
m

e
/

s
→

(b) Average runtime per simulation run.

Figure 3: Average rmseand runtime for different β values.

6 Simulation Results 355

AGMF 2 AGMF 8 AGMF 32
0

10

20

30

40
av

g.
n

u
m

b
er

o
fs

p
li

ts
→

β= 0

β= 0.2

β= 0.4

β= 0.6

β= 0.8

β= 1

Figure 4: Average number of splits performed per prediction or filtering step of the
AGMF for each β value.

Besides these Gaussian mixture filters, a particle filter (PF) with residual resam-
pling and 10,000 samples as well as the unscented Kalman filter (UKF, [24]) with
κ= 0.5 are also applied.

For each glint probability and each reduction threshold, 50 Monte Carlo simu-
lation runs are performed, where the object is observed for 100 time steps. In
Figure 3, the average root means square error (rmse) of the position and the
average runtime per simulation run are depicted. The AGMFs with 8 and 32
components provide the best tracking performance. The PF is close to AGMF,
but with a significantly higher runtime. Conversely, the UKF is by far the fastest
algorithm, but leads to diverging estimates.

The splitting criterion used for ALD selects components that exhibit a high
degree of nonlinearity. But splitting is performed merely in direction of the
largest eigenvalue. This explains the relative poor tracking performance of ALD.

Even if MWE is allowed to split until Lmax is reached, the performance of MWE is
always inferior to AGMF. This is due to wasting many splits, e.g., in the prediction
step only one quarter and less of the splits is used forφk , which is the only non-
linearly transformed variable. Here, AGMF is much more effective thanks to the
novel splitting criterion. Besides splitting mainly in direction of the nonlinearity,
it does not require all available splits as shown in Figure 4. The maximum number

356 Paper F Adaptive Gaussian Mixture Filter Based on Statistical Linearization

of splits is Lmax −Lp
k in the prediction step and analogously in the filtering step.

But at most 40 splits are performed in case of the strongest noise and when the
state mixture is reduced to two components. If more components are allowed to
represent the state density, the number of splits decreases as the approximation
before splitting is already of high quality. This also reduces the runtime as can
be seen when comparing for example AGMF 32 with AGMF 2. Here, the time
consuming splitting operation has to be performed less often and the reduction
operation has to reduce a mixture with an already low number of components.

7 Conclusions

In this paper, a novel adaptive Gaussian mixture filter has been proposed. It is
based on statistical linearization, which allows quantifying the induced lineariza-
tion errors in terms of a linearization error covariance matrix. A criterion based
on this covariance matrix is used for selecting Gaussian components for splitting,
while the direction of the split is performed in direction of the eigenvalue with the
strongest linearization errors. Compared to other splitting criteria, the proposed
one reliably detects strong nonlinearities and keeps the number of splits on a
low level. Furthermore, arbitrary approaches for statistical linearization can be
employed.

References

[1] Daniel L. Alspach and Harold W. Sorenson. Nonlinear Bayesian Estimation
using Gaussian Sum Approximation. IEEE Transactions on Automatic
Control, 17(4):439–448, August 1972.

[2] Ienkaran Arasaratnam and Simon Haykin. Cubature Kalman Filters. IEEE
Transactions on Automatic Control, 54(6):1254–1269, June 2009.

[3] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A
Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking. IEEE Transactions on Signal Processing, 50(2):174–188, February
2002.

[4] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
John Wiley & Sons, Inc., 1991.

References 357

[5] Friedrich Faubel and Dietrich Klakow. An Adaptive Level of Detail Ap-
proach to Nonlinear Estimation. In Proceedings of the 2010 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3958–3961, 2010.

[6] Friedrich Faubel, John McDonough, and Dietrich Klakow. The Split and
Merge Unscented Gaussian Mixture Filter. IEEE Signal Processing Letters,
16(9):786–789, September 2009.

[7] Marco F. Huber, Tim Bailey, Hugh Durrant-Whyte, and Uwe D. Hanebeck.
On Entropy Approximation for Gaussian Mixture Random Vectors. In
Proceedings of the 2008 IEEE International Conference on Multisensor Fu-
sion and Integration for Intelligent Systems (MFI), pages 181–188, Seoul,
Republic of Korea, August 2008.

[8] Marco F. Huber and Uwe D. Hanebeck. Gaussian Filter based on Deter-
ministic Sampling for High Quality Nonlinear Estimation. In Proceedings
of the 17th IFAC World Congress, Seoul, Republic of Korea, July 2008.

[9] Marco F. Huber and Uwe D. Hanebeck. Progressive Gaussian Mixture
Reduction. In Proceedings of the 11th International Conference on Infor-
mation Fusion (Fusion), Cologne, Germany, July 2008.

[10] Kazufumi Ito and Kaiqi Xiong. Gaussian Filters for Nonlinear Filtering
Problems. IEEE Transactions on Automatic Control, 45(5):910–927, May
2000.

[11] Simon J. Julier and J. K. Uhlmann. Unscented Filtering and Nonlinear
Estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[12] Rudolf E. Kalman. A new Approach to Linear Filtering and Prediction
Problems. Transactions of the ASME, Journal of Basic Engineering, 82
(Series D)(1):35–45, 1960.

[13] Genshiro Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian
Nonlinear State Space Models. Journal of Computational and Graphical
Statistics, 5(1):1–25, 1996.

[14] Tine Lefebvre, Herman Bruyninckx, and Joris De Schutter. Nonlinear
Kalman Filtering for Force-Controlled Robot Tasks. Springer Berlin, 2005.

[15] Vladimir Maz’ya and Gunther Schmidt. On approximate approximations
using gaussian kernels. IMA J. Numer. Anal., 16:13–29, 1996.

358 Paper F Adaptive Gaussian Mixture Filter Based on Statistical Linearization

[16] Kalyanapuram R. Parthasarathy. Probability Measures on Metric Spaces.
American Mathematical Society, new edition, 2005.

[17] Andreas Rauh, Kai Briechle, and Uwe D. Hanebeck. Nonlinear Measure-
ment Update and Prediction: Prior Density Splitting Mixture Estimator. In
Proceedings of the 2009 IEEE International Conference on Control Applica-
tions (CCA), July 2009.

[18] Andrew R. Runnalls. Kullback-Leibler Approach to Gaussian Mixture Re-
duction. IEEE Transactions on Aerospace and Electronic Systems, 43(3):989–
999, July 2007.

[19] David J. Salmond. Mixture reduction algorithms for target tracking in
clutter. In Proceedings of SPIE Signal and Data Processing of Small Targets,
volume 1305, pages 434–445, October 1990.

[20] Tor S. Schei. A finite difference method for linearizing in nonlinear estima-
tion algorithms. Automatica, 33(11):2051–2058, November 1997.

[21] Miroslav Simandl and Jindrich Duník. Sigma point gaussian sum filter
design using square root unscented filters. In Proceedings of the 16th IFAC
World Congress, Prague, Czech Republic, July 2005.

[22] Dan Simon. Optimal State Estimation: Kalman, H-Infinity, and Nonlinear
Approaches. Wiley & Sons, 1 edition, 2006.

[23] Tom Vercauteren and Xiaodong Wang. Decentralized Sigma-Point Infor-
mation Filters for Target Tracking in Collaborative Sensor Networks. IEEE
Transactions on Signal Processing, 53(8):2997–3009, 2005.

[24] Eric A. Wan and Rudolph van der Merwe. The Unscented Kalman Fil-
ter for Nonlinear Estimation. In Adaptive Systems for Signal Processing,
Communications, and Control Symposium 2000, pages 153–158, 2000.

[25] Mike West. Approximating Posterior Distributions by Mixtures. Journal of
the Royal Statistical Society: Series B, 55(2):409–422, 1993.

[26] Weng-Rong Wu. Target Tracking with Glint Noise. IEEE Transactions on
Aerospace and Electronic Systems, 29(1):174–185, 1993.

Paper G
Superficial Gaussian

Mixture Reduction

Authors: Marco F. Huber, Peter Krauthausen, and Uwe D. Hanebeck

Edited version of the paper:

M. F. Huber, P. Krauthausen, and U. D. Hanebeck. Superficial Gaussian
Mixture Reduction. In INFORMATIK 2011 - the 41th Annual Conference of
the Gesellschaft für Informatik e.V. (GI), 6th Workshop Sensor Data Fusion:
Trends, Solutions, Applications (SDF), Berlin, Germany, October 2011.

Superficial Gaussian Mixture Reduction

Marco F. Huber∗, Peter Krauthausen∗∗, and Uwe D. Hanebeck∗∗

∗AGT International
Darmstadt, Germany

marco.huber@ieee.org

∗∗ Intelligent Sensor-Actuator-Systems
Laboratory (ISAS)

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

peter.krauthausen@kit.edu,
uwe.hanebeck@ieee.org

Abstract
Many information fusion tasks involve the processing of Gaussian
mixtures with simple underlying shape, but many components. This
paper addresses the problem of reducing the number of components,
allowing for faster density processing. The proposed approach is
based on identifying components irrelevant for the overall density’s
shape by means of the curvature of the density’s surface. The key
idea is to minimize an upper bound of the curvature while main-
taining a low global reduction error by optimizing the weights of the
original Gaussian mixture only. The mixture is reduced by assigning
zero weights to reducible components. The main advantages are an
alleviation of the model selection problem, as the number of com-
ponents is chosen by the algorithm automatically, the derivation of
simple curvature-based penalty terms, and an easy, efficient imple-
mentation. A series of experiments shows the approach to provide a
good trade-off between quality and sparsity.

1 Introduction

Gaussian mixtures as a weighted sum of Gaussian densities are an often used
function system in various information fusion applications, such as Bayesian
filtering [1, 8], multi-target tracking [2], density estimation [16], or machine
learning [5], just to name a few. Since the space of Gaussian densities forms a
complete basis system, Gaussian mixtures can approximate every function with

362 Paper G Superficial Gaussian Mixture Reduction

arbitrary accuracy [10]. Unfortunately, the number of Gaussian components of a
Gaussian mixture tends to grow exponentially when processed recursively. To
control this growth and thus, to bound computational and memory demands,
Gaussian mixture reduction algorithms have to be applied continually.

In recent years, many reduction algorithms have been proposed. Most of them
employ a top-down approach: Two or more components of the Gaussian mix-
ture with strong similarity are merged or components that do not contribute
much to the mixture are deleted. These operations are performed recursively in
a greedy fashion. The reduction stops as soon as an user-defined threshold on
the number of components is reached. To quantify the similarity between com-
ponents, local distance measures such as the Mahalanobis distance as in [13, 17]
or global distance measures such as the integral squared distance as in [14, 18]
and the Kullback-Leibler divergence as in [12] are used. Compared to local ap-
proaches, the deviation from the original Gaussian mixture when applying global
optimization is typically much lower, at the expense of a higher computational
load. Merging components is performed in a moment-preserving way, i.e., the
mean and the covariance of the mixture remain unchanged. Independent of the
used distance measure, top-down approaches have two severe drawbacks. First,
merging and deleting components is performed greedily without considering the
global effect in successive reduction steps. The second drawback results from the
user-defined threshold on the final number of components. From a statistical
point of view, the choice of this threshold corresponds to a model selection. The
reduction algorithm has to reduce the mixture even if the resulting model is
inappropriate, which for example leads to oversmoothed modes.

To overcome these drawbacks, a bottom-up approach named progressive Gaus-
sian mixture reduction has recently been proposed [9]. Here, a Gaussian mixture
is successively constructed to approximate the original mixture with far less com-
ponents. Starting with a single Gaussian, new components are added at regions
of strong deviation. Thus, the number of components is chosen automatically by
the algorithm, which avoids the bias introduced by a predefined threshold. Un-
fortunately, PGMR is only able to construct mixtures with axis-aligned Gaussian
components. It further requires a complex implementation.

In this paper, a global optimization approach named superficial Gaussian mixture
reduction (SGMR) is proposed, which is based on minimizing the curvature of
the reduced Gaussian mixture while keeping the integral squared distance (ISD)
low. This top-down approach allows for the reduction of arbitrary Gaussian
mixtures while preserving the mean. As illustrated in Figure 1, the curvature

1 Introduction 363

x →0

1.5

f(
x

)→

(a) Gaussian mixture with three
components.

x →0

1.5

f2 x
x

(x
)→

(b) Pointwise upper bound of the
squared curvature (normalized) of
the mixture in (a).

x →0

1.5

f(
x

)→

(c) The mixture in (a) reduced to
the middle Gaussian.

x →0

1.5

f2 x
x

(x
)→

(d) Pointwise upper bound of the
squared curvature (normalized)
for the single Gaussian.

Figure 1: Two different Gaussian mixtures and their curvatures.

captures “small bumps" in densities with an overall simple shape, i.e., with clear
modes. Using the curvature it is possible to identify similar components globally
and remove these components from the density. Carrying the idea that similar
components may be dropped a step further, the trade-off between curvature and
approximation error is minimized by merely optimizing weights, thus assigning
zeros weights to reduced components. This approach is computationally feasible
and allows a simple and efficient implementation based on standard quadratic
program (QP) solvers. Additionally, this weight-only optimization alleviates the

364 Paper G Superficial Gaussian Mixture Reduction

model selection problem, as the final number of components is automatically
derived from setting the trade-off between error and roughness.

The next section gives a brief introduction to the Gaussian mixture reduction
problem. The rest of the paper is structured as follows: The theoretical back-
ground of the proposed SGMR algorithm is described in Section 3. Here, an
upper bound of the curvature is derived, which acts as a roughness penalty. In
Section 4, limitations of the proposed approach are discussed. By means of
numerical experiments, SGMR is compared to state-of-the-art mixture reduction
algorithms in Section 5.

2 Problem Statement

Given is a random vector x ∈RN with probability density function f̃ (x). This
density function is assumed to be represented as a Gaussian mixture

f̃ (x) = α̃T · f (x) =
L∑

i=1
α̃i ·N

(
x; µ̃

i
, C̃i

)
, (1)

with α̃= [
α̃1 . . . α̃L

]T
and f (x) =

[
N

(
x; µ̃

1
, C̃1

)
. . . N

(
x; µ̃

L
, C̃L

)]T
. Here, L is the

number of mixture components, α̃i ≥ 0, i = 1. . .L are weights that sum up to one,
and N

(
x;µ,C

)
is a Gaussian density with mean vector µ and covariance matrix C.

In typical fusion tasks such as recursive filtering, the number of mixture compo-
nents L grows exponentially with the number of processing steps. To keep this
growth bounded, it is necessary to compute a reduced Gaussian mixture with
the number of components being significantly lower than L. Additionally, the
deviation between the reduced mixture and the original mixture has to be as
small as possible.

To solve this apparent conflict of goals, one can make use of the following obser-
vation: Although the number of components is large, the shape of the density
functions in typical estimation tasks is often rather simple, i.e., the number
of modes is low and the smoothness is high. Especially in recursive filtering
tasks, the density function of the hidden state often becomes unimodal or even
Gaussian-like after a transient phase. Thus, a Gaussian mixture with a consider-
ably smaller number of components can typically be found without causing a
strong deviation from the original mixture.

3 Superficial Gaussian Mixture Reduction 365

In the following, reducing the number of components is achieved by adapting
the weights α̃ j only, while the remaining parameters of the mixture, i.e., mean
vectors and covariance matrices, remain untouched. The Gaussian mixture to be
adapted is given by

fα(x) =αT · f (x) =
L∑

j=1
α j ·N

(
x; µ̃

j
, C̃ j

)
, (2)

with the vector of weights α = [
α1 . . . αL

]T
. The proposed mixture reduction

method will assign weights close to zero to redundant mixture components.
These components can be easily removed in a subsequent processing step. The
remaining components, however, compensate this loss in representing the shape
of f̃ (x) just by weight adaption. For the sake of brevity and clarity, only univariate
and bivariate mixtures are considered from now on.

3 Superficial Gaussian Mixture Reduction

The Gaussian mixture reduction problem is formulated as a weight optimization
problem

min
α

D
(

f̃ , fα
)+λ ·R

(
fα

)
(3)

s.t. 1T ·α= 1 ,

0 ¹α ,

0 =∑L
i=1 µ̃i

(αi − α̃i) ,

where the parameter λ governs the trade-off between a distance D
(

f̃ , fα
)

of the

true density f̃ to its reduction fα and a roughness penalty R
(

fα
)
, measuring

the curvature of fα. The constraints in the optimization problem assert the
integration of the probability mass to one, the positivity of the density, and that
f̃ and fα have identical means.

366 Paper G Superficial Gaussian Mixture Reduction

3.1 Distance Measure
A key requirement for any reduction algorithm is that the distance of the reduced
fα to the true density f̃ is small over the entire state space. Therefore, the ISD is
employed and reformulated as a function of the mixture weights α

D
(

f̃ , fα
)= 1

2

∫
R2

(
f̃ (x)− fα(x)

)2
dx =αT Dα −2d Tα + c , (4)

with matrix D = ∫ f (x) · f (x)T dx corresponding to the self-similarity of fα, the

vector d T = α̃T D encoding the cross-similarity between fα and f̃ , as well as

constant c = α̃T D α̃ corresponding to the self-similarity of f̃ . The quadratic form
in (4) is obtained by expanding the binomial, exploiting the linearity, and solving
the obtained integrals. Note that the same vector of Gaussians f (x) is used for

both fα and f̃ .

3.2 Upper bound of Curvature
The roughness of fα is interpreted as the curvature κ of the probability density
function’s surface. Since the curvature (see e.g. [4]) is signed and a function of
the position on the surface, a quantification in terms of the integral squared
curvature (ISC) is sought. For the sake of brevity, the notation fm , ∂

∂m f (x) and

fx y := ∂2

∂x∂y f (x) is used for the derivatives at point x. For a Gaussian mixture den-

sity f (x) =αT · f (x), f (i)
m = ∂

∂mN
(
x;µ

i
,Ci

)
denotes the i -th component’s partial

derivative w.r.t. m and f
m

the vector of all components’ partial derivatives. The

key idea is to derive an (approximate) upper bound of the squared curvature of
the mixture density function. The derivation is based on the pointwise squared
curvature κ(x) for a probability density function f , for which an upper bound
κ̆(x) is determined, integrated over the entire domain of x, i.e., Rx = ∫ κ̆(x)2 dx.
For the 1D and 2D case, the upper bounds are

κ̆(x)2,
(
αT f

xx

)2
, κ̆(x)2,

(
αT f

xx
−2αT f

x
αT f

y
αT f

x y
+αT f

y y

)2
.

For the weight optimization, the upper bound of the curvature is formulated as a
quadratic form R(α) =αT Rx α. The elements of Rx may be obtained as follows.

3 Superficial Gaussian Mixture Reduction 367

For the 1D case, one may simplify the upper bound of the squared curvature [11]∫
R

(
αT f

xx

)2
dx =

∫
R
αT f

xx
f T

xx
α dx

and use the linearity of the integral to obtain the expression for the elements
of Rx

R
x
i j =

∫
R

f (i)
xx f (j)

xx dx .

For the 2D case, the following approximation is used

(
αT f

xx
−2αT f

x
αT f

y
αT f

x y
+αT f

y y

)2 ≈ c ·
(
αT

[
f

xx
−2 f

x
f T

y
f

x y
+ f

y y

])2
,

where c is neglected, as it is considered independent of α. One obtains

R
x
i j =

∫
R2

(
f (i)

xx −2 f (i)
x f (i)

y f (i)
x y + f (i)

y y

)
·
(

f (j)
xx −2 f (j)

x f (j)
y f (j)

x y + f (j)
y y

)
dx . (5)

For the 1D curvature, the R
x
i j may be calculated in closed form. Note for a

2D probability density function, the curvature is not unique, as it is calculated
from the minimum and maximum curvature in the principal directions at each
point x, which may be multiplied (Gaussian curvature) or averaged (mean curva-
ture) [4]. The above upper bound of the integral squared mean curvature was
obtained by dropping the denominator and positive summands. For arbitrary
Gaussian mixture densities, the terms in (5) may only be calculated numerically
or need to be approximated further. In the following algorithm, the property that
the exact upper bound of the 1D curvature and the approximate upper bound
of the 2D curvature of the probability density functions as well as the distance
measure may be represented as quadratic forms will be exploited.

3.3 Algorithm
The overall algorithm of the SGMR comprises three parts: the pre-processing
of the components of the quadratic forms and the hyperparameter, the weight
optimization by the solution of (3) in form of a quadratic program (QP), and a
fast post-optimization of the already reduced set of weights from (3). The pre-
processing consists of calculating the matrix D and vector d corresponding to the
distance of the densities in D(f̃ , fα). The matrix R describing the curvature of

368 Paper G Superficial Gaussian Mixture Reduction

the surface has to be calculated depending on the type of density. Subsequently,
the QP may be composed, i.e.,

αT Dα −2d Tα +λαT Rα=αT Qα−qTα ,

with

Q,D+λR , q , 2d .

The matrix Q of the quadratic form is symmetric. Furthermore, the matrices D
and R are positive semi-definite since the inequalities

αT Dα=αT
(∫

f f T dx

)
α=

∫ (
αT f

)2
dx ≥ 0 (6)

and

αT Rα=αT
(∫

T (f)T (f)T dx

)
α=

∫ [
αTT (f)

]2
dx ≥ 0 (7)

hold for all α ∈RL . The differential operator T depends on the respective upper
bound κ̆(x)2 used. Thus, Q is positive semi-definite and the optimization prob-
lem is a convex QP. Using the mass and positivity constraints, one obtains a QP
that may be solved by any standard solver. For the experiments in this paper, the
freely available CVX optimization library [6] was used.

The purpose of the post-optimization is an adaptation of the already reduced
weights components α+ aimed at improving the accuracy, by neglecting the
curvature and only minimizing the ISD w.r.t. α+ , where, e.g.,α+

i ≥ εwith ε= 1e−4,
in the experiments presented in Sec. 5. The resulting QP is

min
α+

(
α+)T (

D+) (
α+) −2

(
d+)T (

α+)
s.t. 0 ¹α+ ,

1Tα+ = 1 ,∑
i α

+
i µ

+
i
=∑

i α̃i µ̃i
.

This optimization problem for the reduced weights consists of the quadratic
form of the ISD as a target function and the positivity, mass, and mean constraint
w.r.t. to the reduced mixture’s components. This QP may be solved with any
standard solver. The obtained weights α∗ will be reduced again by removing
components with almost zero weights, i.e., αi < ε. The overall algorithm is

4 Limitations 369

Algorithm 1 Superficial Gaussian Mixture Reduction

1: Input: f̃
. Preprocessing

2: Calculate distance terms D,d , roughness penalty matrix R, and λ
3: Compose Quadratic Program QP(D,d ,R,λ)

4: α+ ← REDUCE(SOLVE QP(D,d ,R,λ)) .Quadratic Program
5: α∗ ← REDUCE(OPTIMIZEWEIGHTS(D+,d+,α+)) . Post-Optimization

6: function OPTIMIZEWEIGHTS(D+,d+,α+)
7: Compose Quadratic Program QP(D+,d+)
8: α++ ← REDUCE(SOLVE QP(D+,d+))
9: end function

10: function REDUCE(α′)
11: α′′ ←α′ ≥ ε
12: end function

13: Output: f ∼ GMM
{
α∗,

{
µ

i
,Ci

}∗ }
. L∗ ¿ L

given in Algorithm 1. Note, that the hyperparameter λ in Algorithm 1, which
governs the trade-off between the distance D(f̃ , fα) and the curvature term R(fα),
needs to be determined by means of generic model selection algorithms, cf.
[15]. For small values of λ, the ISD will be weighted relatively higher than the
curvature. This results in more components in the reduced mixture f and less
approximation error. For large values of λ, the curvature will be weighted higher
enforcing more reduction and approximation error.

4 Limitations

The computational complexity for both optimization steps is polynomial in the
number of mixture components. The cost for the post-optimization is smaller, as
only components with α+

i ≥ ε are considered, which may be significantly fewer.
The underlying major assumption of this approach is that f̃ consists of a large
number of components. As will be shown in the experiments, the quality of
the results depends on the number of components to be reduced. Therefore,
the reduction of f̃ with very few components–actually not needing a reduction–
will result in a low quality reduction fα as only α is optimized, but no mixture

370 Paper G Superficial Gaussian Mixture Reduction

means or covariances. The initially given set of means is identical to the set the
means used in fα. Note that even though this reduces the theoretical reduction

capability, any f̃ with an insufficient number of components will not require a
reduction at all.

5 Experiments

In the following, SGMR is compared to six established reduction methods: The
simplest reduction is a pruning of all but the components with the highest
weights, [3]. Top-down and local reduction algorithm, denoted by West, employ
the Mahalanobis distance and merge two components at each reduction step
[17]. Salmond’s approach is similar to West’s approach, but merges complete
clusters of mixture components of size two and more [13]. A top-down and global
reduction algorithm based on the ISD (4) is proposed by Williams [18], where
two components are merged per step and irrelevant components are additionally
deleted. Runnalls’ algorithm offers a compromise of local and global reduction
algorithms, as it considers a localized upper bound of the (global) Kullback-
Leibler divergence [12]. Merging is performed for two components. PGMR is a
bottom-up approach employing the ISD (4) [9].

For SGMR, two variants are considered, one with post-optimization and one
without post-optimization. The first four top-down approaches and the pruning
method require a user-defined threshold on the number of components to which
the given Gaussian mixture has to be reduced. Since SGMR reduces a Gaussian
mixture in a completely different fashion and thus, to ensure a fair comparison,
the number of components resulting from SGMR with post-optimization is used
as threshold for these approaches. In order to quantify the reduction error, the
normalized ISD

D
(

f̃ , fα
)=

√√√√ ∫
RN

(
f̃ (x)− fα(x)

)2
dx∫

RN f̃ (x)2 dx +∫
RN f̃α(x)2 dx

∈ [0,1] (8)

is employed [7]. It ranges between zero, which is the case if f̃ (x) and fα(x) are
identical, and one, when both mixtures are absolutely non-overlapping. The
algorithms are implemented in Matlab 7.8.0 (R2009a) and run on an office PC
(Intel Core2 Duo P9600).

5 Experiments 371

-2 0 2 4 6

x →
0

0.2

0.4

0.6
f(

x
)→

(a) True Gaussian mixture (black) and the reduced Gaussian
mixture for the different reduction algorithms.

1 1.5 2 2.5

x →
0.3

0.4

0.5

f(
x

)→

PGMR
Williams
Salmond
West
Runnalls
Pruning
SGMR w/o
SGMR
True

(b) Zoom of the Gaussian mixture in (a) and the respective
reduced mixtures.

Figure 2: Result of several reduction algorithms for a exemplary Gaussian mixture.
Note, that the results of PGMR, Williams, Runnalls, and SGMR are almost identical
to the true Gaussian mixture.

372 Paper G Superficial Gaussian Mixture Reduction

5.1 1D Experiment
At first, univariate Gaussian mixtures with L ∈ {40,80,120,160,200} components
are used for evaluation. The mixture parameters are drawn uniformly at random
from the intervals α̃ ∈ [0.05,0.5], µ̃ ∈ [0,3], and σ̃ ∈ [0.09,0.5]. For each number
of components L, 50 Monte Carlo simulation runs are performed. For SGMR,
the hyperparameter λ is set to 500 and the deletion threshold ε is 1e−4. The
maximum error threshold of PGMR is set to 1%.

In Figure 3a, the average reduction errors and the average computation times
for all L are shown. It can be seen that SGMR provides the lowest reduction
error. Closest to SGMR is Williams’ algorithm, but this algorithm clearly suffers
from its high computational demand. Salmond’s and West’s methods perform
similarly. Both are very fast, but their approximation quality is the worst except
for pruning. In terms of the reduction error, the results of Runnalls’ method are
in between of SGMR with and without post-optimization. But for an increasing
number of components L in the original mixture it becomes computationally
more expensive than both SGMR methods. Overall, SGMR provides the best
trade-off between reduction error and computation time.

The reduction performance of SGMR improves with a larger number of compo-
nents in the original mixture. As listed in Table 1, SGMR reduces to about 50%
if the number of components of the original mixture is L = 40, while for L = 200
only 22% of the components remain. Since SGMR merely adapts the weights α̃, a
larger number of components is advantageous for SGMR for a better exploitation
of redundancies. This leads to a stronger reduction by a simultaneously lower
reduction error. Furthermore, the comparison between SGMR and SGMR with-
out post-optimization shows that the post-optimization always lowers both the
reduction error and the number of components.

In Figure 2, the reduction results for an exemplary Gaussian mixture with L = 120
components is depicted. SGMR, PGMR, Runnalls’, and Williams’ algorithm are
capable of almost exactly capturing the shape of the original mixture, while
West’s and Salmond’s algorithm show the tendency to oversmooth modes. The
result of SGMR without post-optimization is in between. There is an obvious
deviation to the original mixture, but the shape–especially the single modes–
are captured very well. The inferior results of pruning can be explained by its
simplicity. Components are only deleted on the basis of the value of their weights.
No distance measure is used to quantify the loss of a component.

5 Experiments 373

SGMR w/o
SGMR

Pruning
Salmond

West
Runnalls

Williams
PGMR

40 80 120 160 200
L →

0.1

1

2

6
10
14

D
→

40 80 120 160 200
L →

10−3

10−2

10−1

100

101

102

ti
m

e
/

s
→

(a) Results for 1D Gaussian mixtures.

40 80 120 160 200
L →

0.5

1

2

4
6

12

D
→

40 80 120 160 200
L →

10−3

10−2

10−1

100

101

102

ti
m

e
/

s
→

(b) Results for 2D Gaussian mixtures.

Figure 3: Reduction error (left) and runtime (right) of different reduction algorithms
for increasing number of components. The results are averages over 50 Monte Carlo
runs. The average reduction error is multiplied by 100 for better readability.

For 1D mixtures, PGMR clearly is the best reduction algorithm. The reduction er-
ror is close to SGMR without post-optimization, but the number of components
in the reduced mixture is significantly lower (see Table 1). However, a straight-
forward extension to multivariate mixtures is not possible as only axis-aligned
Gaussian components can be utilized for representing the reduced mixture. For
this reason, PGMR is not considered in the following 2D experiment.

374 Paper G Superficial Gaussian Mixture Reduction

5.2 2D Experiment
In this experiment, randomly generated bivariate Gaussian mixtures are con-
sidered. The weights α̃ and the elements c of the covariance matrices of the
original mixture are drawn from the intervals α̃ ∈ [0.05,0.5] and c ∈ [0.1,1], re-
spectively. 25% of the mean vectors are drawn from µ̃ ∈ [0,0.75]× [0,1.5] and
the remaining mean vectors are sampled from µ̃ ∈ [1.5,3]× [0,1.5]. Due to this
placement of the Gaussian components, bimodality is forced in the true mixture.
Again, 50 Monte Carlo simulation runs are performed for each number of com-
ponents L ∈ {40,80,120,160,200}. The hyperparameter λ of SGMR is set to 0.04
and ε= 1e−4.

Figure 3b gives the reduction error and the average computation time. In com-
parison to the 1D experiment, it becomes more obvious that SGMR is the ideal
method for reducing a Gaussian mixture with a large number of components.
From L = 160 on, SGMR outperforms all other algorithms with respect to the
reduction error. Furthermore, the benefit of the post-optimization is more sig-
nificant than in the 1D case. Besides a lower reduction error, the number of
components can be reduced much stronger as shown in Table 1. This benefit
comes with a low computational overhead.

In contrast to the 1D experiment, the computation time of SGMR now signif-
icantly increases with the number of components. Most of the time is used
for calculating the roughness penalty matrix R, which requires numerical in-
tegration in the 2D case. It is expected that an improved problem-adequate
implementation of the numerical integration will reduce the computational
demand drastically.

Table 1: Number of components in the reduced Gaussian mixture for different
reduction algorithms. The results are averages over 50 Monte Carlo runs.

1D
-E

xp
er

im
en

t L SGMR PGMR SGMR &
w/o all others

40 21.66 7.34 20.54
80 30.88 7.42 29.5

120 37.18 7.58 35.86
160 42.86 6.78 41.8
200 45.68 6.7 44.98

2D
-E

xp
er

im
en

t L SGMR SGMR &
w/o all others

40 18.92 16.68
80 26.76 22.88

120 40.32 33.32
160 52.72 42
200 61.8 43.16

References 375

6 Conclusion

In this paper, a curvature-based reduction algorithm for Gaussian mixtures was
presented. The key idea is the formulation of the reduction problem as an op-
timization problem. The optimization balances the integral squared distance
between true and reduced density with the reduction in approximate shape cur-
vature. The arising problem is solved for the weights of the Gaussian mixture only,
i.e., reduced components are assigned a weight of zero, allowing a formulation
as a quadratic program. The main contributions are the alleviation of the model
selection problem, as the number of components is chosen by the algorithm
automatically and an easy as well as efficient implementation. The experiments
show the high quality and low number of components of the approach’s results.

As future work it remains to derive an analytic upper bound for the n-dimensional
curvature and to improve the numerical calculations. For very large reduction
problems, more efficient algorithms could be obtained from exploiting the local-
ity of Gaussian mixtures.

References

[1] Daniel L. Alspach and Harold W. Sorenson. Nonlinear Bayesian Estimation
using Gaussian Sum Approximation. IEEE Transactions on Automatic
Control, 17(4):439–448, August 1972.

[2] Yaakov Bar-Shalom and Xiao-Rong Li. Multitarget-multisensor Tracking:
Principles and Techniques. YBS Publishing, Storrs, CT, 1995.

[3] Samuel S. Blackman. Multiple-Target Tracking with Radar Applications.
Norwood, MA: Artech House, 1986.

[4] Manfredo Do Carmo. Differential Geometry of Curves and Surfaces.
Prentice-Hall, Englewood Cliffs, NJ, 1976.

[5] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active Learn-
ing with Statistical Models. Journal of Artificial Intelligence Research, 4:129–
145, March 1996.

[6] Michael C. Grant and Stephen P. Boyd. Graph implementations for nons-
mooth convex programs. In V. Blondel, S. Boyd, and H. Kimura, editors,

376 Paper G Superficial Gaussian Mixture Reduction

Recent Advances in Learning and Control, Lecture Notes in Control and
Information Sciences, pages 95–110. Springer-Verlag Limited, 2008.

[7] Uwe D. Hanebeck, Kai Briechle, and Andreas Rauh. Progressive Bayes: A
New Framework for Nonlinear State Estimation. In Proceedings of SPIE,
AeroSense Symposium, volume 5099, pages 256–267, Orlando, Florida, May
2003.

[8] Marco Huber, Dietrich Brunn, and Uwe D. Hanebeck. Closed-Form Pre-
diction of Nonlinear Dynamic Systems by Means of Gaussian Mixture
Approximation of the Transition Density. In Proceedings of the 2006 IEEE
International Conference on Multisensor Fusion and Integration for In-
telligent Systems (MFI), pages 98–103, Heidelberg, Germany, September
2006.

[9] Marco F. Huber and Uwe D. Hanebeck. Progressive Gaussian Mixture
Reduction. In Proceedings of the 11th International Conference on Infor-
mation Fusion (Fusion), pages 1–8, Cologne, Germany, July 2008.

[10] Vladimir Maz’ya and Gunther Schmidt. On approximate approximations
using gaussian kernels. IMA Journal of Numerical Analysis, 16(1):13–29,
1996.

[11] Jim Ramsay and Bernard Silverman. Functional Data Analysis. Springer
Series in Statistics. Springer, New York, Berlin, Heidelberg, 1997.

[12] Andrew R. Runnalls. Kullback-Leibler Approach to Gaussian Mixture Re-
duction. IEEE Transactions on Aerospace and Electronic Systems, 43(3):989–
999, July 2007.

[13] David J. Salmond. Mixture reduction algorithms for target tracking in
clutter. In Proceedings of SPIE Signal and Data Processing of Small Targets,
volume 1305, pages 434–445, October 1990.

[14] Dennis Schieferdecker and Marco F. Huber. Gaussian Mixture Reduction
via Clustering. In Proceedings of the 12th International Conference on
Information Fusion (Fusion), pages 1536–1543, Seattle, Washington, July
2009.

[15] Bernhard Schölkopf and Alexander Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. Adaptive
computation and machine learning series. MIT Press, Cambridge, Mas-
sachusetts, 2002.

References 377

[16] Bernard W. Silverman. Density Estimation for Statistics and Data Analysis.
Monographs on Statistics and Applied Probability ; 26. CRC Press, Boca
Raton, 1998.

[17] Mike West. Approximating Posterior Distributions by Mixtures. Journal of
the Royal Statistical Society: Series B, 55(2):409–422, 1993.

[18] Jason L. Williams and Peter S. Maybeck. Cost-Function-Based Gaussian
Mixture Reduction for Target Tracking. In Proceedings of the Sixth In-
ternational Conference of Information Fusion (Fusion), volume 2, pages
1047–1054, Cairns, Australia, July 2003.

Paper H
Analytic Moment-based

Gaussian Process Filtering

Authors: Marc P. Deisenroth, Marco F. Huber, and Uwe D. Hanebeck

Edited version of the paper:

M. P. Deisenroth, M. F. Huber, and U. D. Hanebeck. Analytic Moment-
based Gaussian Process Filtering. In Proceedings of the 26th International
Conference on Machine Learning (ICML), Montreal, Canada, June 2009.

Analytic Moment-based
Gaussian Process Filtering

Marc P. Deisenroth∗, Marco F. Huber∗∗, and Uwe D. Hanebeck∗∗

∗Department of Engineering
University of Cambridge

Cambridge, UK
mpd37@cam.ac.uk

∗∗ Intelligent Sensor-Actuator-Systems
Laboratory (ISAS)

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{marco.huber|uwe.hanebeck}@ieee.org

Abstract
We propose an analytic moment-based filter for nonlinear stochastic
dynamic systems modeled by Gaussian processes. Exact expressions
for the expected value and the covariance matrix are provided for
both the prediction step and the filter step, where an additional Gaus-
sian assumption is exploited in the latter case. Our filter does not
require further approximations. In particular, it avoids finite-sample
approximations. We compare the filter to a variety of Gaussian filters,
that is, the EKF, the UKF, and the recent GP-UKF proposed by [7].

1 Introduction

Recursively estimating the internal state of a nonlinear dynamic system from
noisy observations is a common problem in many technical applications, for
instance, in sensor networks, robotics, or signal processing. Exact Bayesian
solutions in closed form, however, can be found only in a few special cases. For
example, for linear Gaussian systems, the Kalman filter [4] is exact.

For most nonlinear cases, approximate methods are required to obtain efficient
analytic/closed-form solutions. A variety of approximate Gaussian filters has
been proposed in the past. For example, the Extended Kalman Filter (EKF) lin-
earizes the transition and measurement functions by means of a Taylor series
expansion and applies the Kalman filter to propagate full densities through
them [15]. Instead of approximating functions, the Unscented Kalman Filter

382 Paper H Analytic Moment-based Gaussian Process Filtering

(UKF) by [3] uses a deterministic sampling approach to approximate distribu-
tions, while using the original nonlinear functions to propagate them. This
approach is considered equivalent to stochastic linearization [9].

Both the EKF and the UKF employ a known parametric model of the transition
dynamics and the measurement function. However, lack of modeling accuracy as
well as difficulties in the identification of the noise and the model parameters are
typically ignored. Instead of a parametric description, [7] and [6] derive the GP-
EKF and the GP-UKF by incorporating probabilistic non-parametric Gaussian
process (GP) models of the transition dynamics and the measurement function
into the EKF and UKF. Model uncertainty can explicitly be incorporated into the
prediction and the filtering processes, which is usually not the case for filtering
approaches based on a parametric model. Moreover, they train the GP models
offline using ground truth of the hidden states.

In this paper, we derive a Gaussian filter algorithm for nonlinear dynamic sys-
tems, where the transition dynamics and the observation map are described by
GP models. In contrast to finite-sample approximations (UKF, GP-UKF) of the
prior and the predictive distribution, we propagate full densities by exploiting
specific properties of GP models. Furthermore, we approximate the predictive
distribution by a Gaussian with the exact mean and the exact covariance matrix,
which can be computed analytically using results from [12]. This approximation,
on which our filter is based, is known as moment matching. Hence, the proposed
filter, which we call GP-ADF, is an efficient form of an Assumed Density Filter
(ADF) [10].

The paper is organized as follows: In Section 2, the models under consideration
are reviewed and the prediction and filtering problems are stated. A survey
of related work is given in Section 3. In Section 4, we provide background on
prediction with GP models. The GP-ADF itself is derived in Section 5. Simulation
results are presented in Section 6. In Section 7, we discuss properties of the filter
algorithm. Section 8 summarizes the paper and gives a survey of future work.

2 Model and Problem Statement 383

f (·)

g (·)

· · · · · ·xkxk−1 xk+1

ykyk−1 yk+1

Figure 1: Graphical model of a nonlinear dynamic system. The shaded nodes y
i

are

observed variables, the other nodes are latent variables. The dependencies between
variables are given by the arrows. The dashed nodes represent functions f and g ,
which can either be observed or latent depending on the model used.

2 Model and Problem Statement

We consider discrete-time dynamic systems with transition dynamics given by

xk = f
(
xk−1

)+w , (1)

where f is a possibly nonlinear function and w ∼ N
(
0,Cw

)
is white, addi-

tive Gaussian system noise with uncorrelated dimensions. The D-dimensional
continuous-valued state is denoted by x, and k is a discrete time index. Further-
more, we consider observations/measurements

y
k
= g

(
xk

)+ v , (2)

where g is a (non)linear function, y
k

is the E-dimensional observation, and

v ∼N
(
0,Cv

)
is white, additive Gaussian measurement noise with uncorrelated

dimensions.

Figure 1 is a graphical model of the considered nonlinear dynamic system. We
included dashed “function nodes” for f and g . The function node is shaded if
and only if the function is explicitly known.

384 Paper H Analytic Moment-based Gaussian Process Filtering

We assume a prior on x0 and aim to determine probability distributions of
the hidden state xk based on all observations y

1:k
. We distinguish between

prediction (moving from xk−1 to xk) and filtering (going from y
k

to xk). Typically,

prediction and filtering alternate.

Prediction Step

When we predict, we determine the distribution p
(
xk

∣∣y
1:k−1

)
of the hidden state

xk , where the result p
(
xk−1

∣∣y
1:k−1

)
of the previous filter update serves as the

prior. Bayes’ law yields

p
(
xk

∣∣y
1:k−1

)
=

∫
p

(
xk |xk−1

)
p

(
xk−1

∣∣y
1:k−1

)
dxk−1 (3)

by averaging over xk−1. Often, the involved integral and the multiplication
cannot be solved analytically and require approximate methods.

Filter Update

The filter update determines the distribution p
(
xk

∣∣y
1:k

)
of the hidden state xk

based on collected observations from all previous and the current time steps.
Bayes’ law yields the filter update

p
(
xk

∣∣y
1:k

)
=

p
(

y
k

∣∣xk

)
p

(
xk

∣∣y
1:k−1

)
p

(
y

k

∣∣y
1:k−1

) . (4)

The likelihood p
(

y
k

∣∣xk

)
is defined through the measurement equation (2), the

prior p
(
xk

∣∣y
1:k−1

)
is the result of the preceding prediction step (3). Often, the

filter update (4) does not admit a closed-form solution since the integral in the
normalization constant

p
(

y
k

∣∣y
1:k−1

)
=

∫
p

(
y

k

∣∣xk

)
p

(
xk

∣∣y
1:k−1

)
dxk

and the density multiplication in the numerator in equation (4) cannot be com-
puted exactly.

3 Related Work 385

3 Related Work

Table 1 classifies the Gaussian filter methods discussed in this paper. We present
density representation against knowledge of the parameterization of the transi-
tion dynamics f and the observation function g .

The UKF by [3] deterministically chooses sigma points that capture the moments
of the state distribution and maps them using a known parameterization of the
original nonlinear functions f and g , respectively. The transformed sigma points
provide a finite-sample approximation of the true predictive distribution. The
UKF is not moment preserving.

[7] and [6] propose GPs to model the transition and observation functions f and
g . GPs are incorporated into standard filters, such as the UKF. The resulting GP-
UKF maps the UKF sigma points through the GP models instead of the parametric
functions f and g . Like in the UKF, all considered distributions are described by
a finite number of samples and the GP-UKF is not moment preserving. In the
limit of perfect GP models, that is, the posterior mean functions match the latent
functions f and g and the posterior uncertainty is zero, both the UKF and the
GP-UKF are equivalent.

Like [7], we utilize GPs to model f and g . In contrast to both the UKF and the GP-
UKF, our proposed GP-ADF does not propagate samples from a Gaussian, but the
full Gaussian density. Our GP-ADF heavily exploits the fact that the true moments
of the GP predictive distribution can be computed in closed form. The predictive
distribution is approximated by a Gaussian with the exact predictive mean and
the exact predictive covariance (moment matching). Therefore, GP-ADF is a
form of Assumed Density Filtering (ADF), which has previously been introduced
by [10], [1], and [11]. Furthermore, to compute the first two predictive moments,
GP-ADF takes the uncertainty about the latent functions f ,g into account. GP-
ADF is moment preserving.

Table 1: Classification of Gaussian filter methods.

samples full density

f ,g : known UKF EKF
f ,g : unknown GP-UKF GP-ADF

386 Paper H Analytic Moment-based Gaussian Process Filtering

The UKF propagates samples through known or directly accessible functions,
that is, the nodes for f and g in Figure 1 are shaded. A classical ADF and the
EKF propagate entire densities, but they also require known functions f and g .
GP-UKF and GP-ADF are based on probabilistic models of the latent functions.
Hence, the nodes f ,g in Figure 1 are unshaded. The filters differ in the propaga-
tion method: GP-UKF propagates a finite-sample approximation of a Gaussian,
whereas GP-ADF propagates the full Gaussian.

[2] discuss the EKF for nonlinear dynamic systems, where the transition dy-
namics and the measurement function are modeled by a radial basis function
network, a parametric approximation with limited expressiveness.

4 Gaussian Processes

Following the book by [14], we briefly introduce the notation and standard pre-
diction models for Gaussian processes, which are used to infer a latent function h
from (noisy) observations yi = h(xi)+ε, ε∼N (0,σ2

ε). A GP is completely specified
by a mean function m(·) and a positive semidefinite covariance function k(· , ·),
also called a kernel. We write h ∼ GP if the latent function h is GP distributed.
Throughout this paper, we consider the squared exponential (SE) kernel

k(x,x ′) =α2 exp
(− 1

2 (x −x ′)TΛ−1(x −x ′)
)

, (5)

whereΛ is a diagonal matrix of the characteristic length-scales of the SE kernel,
and α2 is the variance of the latent function h. The posterior predictive distribu-
tion of the function value h∗ = h(x∗) for an arbitrary test input x∗ is Gaussian
with mean and variance

mh(x∗) = Eh{h∗} = kT
∗
(
K+σ2

εI
)−1 y = kT

∗β , (6)

σ2
h(x∗) = varh{h∗} = k∗∗−kT

∗
(
K+σ2

εI
)−1k∗ , (7)

respectively, with k∗ , k
(
X,x∗

)
, k∗∗ , k

(
x∗,x∗

)
, β ,

(
K+σ2

εI
)−1 y , and where

K is the kernel matrix with Ki j = k
(
xi , x j

)
. Moreover, X = [

x1, . . . , xn

]
are the

training inputs, and y = [
y1, . . . , yn

]T
are the corresponding training targets (ob-

servations).

4 Gaussian Processes 387

4.1 Predictions for Uncertain Inputs
We review results by [13], [12], and [8] of how to predict with GPs when the test
input x∗ is uncertain, which means that it has a probability distribution.

Consider the problem of predicting a function value h(x∗) for an uncertain test
input x∗ ∼N (µ,C), where h ∼GP with an SE kernel kh . The prediction problem
corresponds to seeking the distribution

p
(
E
{
h(x∗)

}∣∣µ,C
)= ∫

p(h(x∗)|x∗
)
p

(
x∗|µ,C

)
dx∗ . (8)

The mean and variance of the GP predictive distribution for p
(
h(x∗)|x∗

)
are

given in equations (6) and (7), respectively. For the SE kernel, we can compute
the mean µ∗ and the variance σ2

∗ of equation (8) in closed form. The mean µ∗ is

µ∗ = Ex∗
{
Eh{h(x∗)}|µ,C

} (6)= Ex∗
{
mh(x∗)|µ,C

}
=

∫
mh(x∗) ·N

(
x∗;µ,C

)
dx∗ =βTl (9)

with l = [l1, . . . , ln]T, where

li =
∫

kh
(
xi ,x∗

)
p

(
x∗

)
dx∗ =α2∣∣CΛ−1 + I

∣∣− 1
2

×exp
(
− 1

2

(
xi −µ

)T(C+Λ)−1(xi −µ
))

is an expectation of kh
(
xi ,x∗

)
with respect to x∗. Note that the predictive mean

explicitly depends on the mean and covariance of the distribution of the input
x∗. The variance σ2

∗ of p
(
E{h(x∗)}|µ,C

)
is

σ2
∗ = Ex∗

{
mh(x∗)2∣∣µ,C

}+Ex∗
{
σ2

h(x∗)
∣∣µ,C

}−Ex∗
{
mh(x∗)

∣∣µ,C
}2

=βTL̃β+α2 −Tr
((

K+σ2
εI

)−1L̃
)
−µ2

∗ , (10)

where Tr(·) is the trace and

L̃i j =
kh

(
xi ,µ

)
kh

(
x j ,µ

)
∣∣2CΛ−1 + I

∣∣ 1
2

×exp
((

z̃i j −µ
)T(

C+ 1
2Λ

)−1CΛ−1(z̃i j −µ
))

(11)

388 Paper H Analytic Moment-based Gaussian Process Filtering

with z̃i j ,
1
2

(
xi + x j

)
. Like the predicted mean in equation (9), the predictive

variance explicitly depends on the mean and the covariance matrix of the input
distribution. We approximate the predictive distribution p

(
E{h(x∗)|µ,C}

)
by a

Gaussian N
(
µ∗,σ2

∗
)

that exactly matches the predictive mean and variance.

4.2 Multivariate Predictions

We extend the previous results to the case of a latent function h : RD → RE , h ∼
GP with an SE kernel kh . We train E GP models independently using the same

training inputs X, but different training targets y
a
= [

y a
1 , . . . ,y a

n

]T
, a = 1, . . . ,E . This

model implies that any two target dimensions are conditionally independent
given the input. Intuitively, different target dimensions can only “communicate”
via the input.

For a deterministically given input x∗, the mean and the variance of a predicted
function value for each target dimension are given by equations (6) and (7),
respectively. The predicted covariance matrix is diagonal since we assume that
the predicted target dimensions are conditionally independent given the input.

For an uncertain input x∗ ∼N
(
µ,C

)
, the predictive mean µ∗ of p

(
E{h(x∗)}|µ,C

)
is the collection of all E individual predicted means µa

∗ given by equation (9). The
target dimensions, however, co-vary and the corresponding predictive covariance
matrix

C∗
∣∣µ,C =

var

{
h∗

1

∣∣µ,C
}

. . . cov
{
h∗

1 ,h∗
E

∣∣µ,C
}

...
. . .

...
cov

{
h∗

E ,h∗
1

∣∣µ,C
}

. . . var
{
h∗

E

∣∣µ,C
}

is no longer diagonal. The variances on the diagonal are the predictive variances
of the individual target dimensions given by equation (10). The cross-covariances
are given by

cov
{
h∗

a ,h∗
b

∣∣µ,C
}= Eh,x∗

{
h∗

a h∗
b

∣∣µ,C
}−µa

∗µ
b
∗ ,

where a,b ∈ {1, . . . ,E } and h∗
a , ha

(
x∗

)
. We rewrite

Eh,x∗
{
h∗

a h∗
b

∣∣µ,C
}=Ï

h∗
a h∗

b p
(
ha ,hb

∣∣x∗
)
p

(
x∗

)
dh dx∗

(9)=
∫

ma
h

(
x∗

)
mb

h

(
x∗

)
p

(
x∗

)
dx∗ .

5 GP-ADF: Assumed Density Filtering with Gaussian Processes 389

With β
a
,

(
Ka +σ2

εa
I
)−1 y

a
in equation (6), we obtain

Eh,x∗
{
h∗

a h∗
b

∣∣µ,C
}= ∫

ma
h

(
x∗

)
mb

h

(
x∗

)
p

(
x∗

)
dx∗

(6)=
∫

ka
h

(
x∗,X

)
β

a
·kb

h

(
x∗,X

)
β

b
· p

(
x∗

)
dx∗

=βT
a

∫
ka

h

(
X,x∗

)
kb

h

(
x∗,X

)
p

(
x∗

)
dx∗︸ ︷︷ ︸

=:L

β
b

.

Furthermore, with R,
(
Λa +Λb

)−1 +C ,

Li j =α2
aα

2
b

∣∣(Λ−1
a +Λ−1

b

)
C+ I

∣∣− 1
2 (12)

×exp
(
− 1

2

(
xi −x j

)T(
Λa +Λb

)−1(xi −x j

))
×exp

(
− 1

2

(
zi j −µ

)TR−1(zi j −µ
))

,

zi j ,Λb(Λa +Λb)−1xi +Λa(Λa +Λb)−1x j .

Note that L equals L̃ in equation (11) if a = b.

With these results, the first two momentsµ∗,C∗ of p
(
E
{
h(x∗)

}∣∣µ,C
)

can be exactly

determined.

5 GP-ADF: Assumed Density Filtering with Gaus-
sian Processes

We assume that the transition dynamics f and the measurement function g in
equations (1) and (2) are either not known or no longer accessible. Thus, we use
models of the latent functions. We will model both functions by the GPs GP f and
GPg with SE kernels k f and kg , respectively. We assume that we have access to

ground truth observations of the hidden state during training.1 In the following,
we show how to exploit these GP models for assumed density filtering and derive
the GP-ADF. We closely follow the steps in Section 2.

1 This can be described by the graphical model in Figure 1, where the states xτ are observed
(shaded), and the index τ runs from −n to −1.

390 Paper H Analytic Moment-based Gaussian Process Filtering

5.1 Prediction Step (xk−1 → xk)

We compute the predictive distribution p
(
xk

∣∣y
1:k−1

)
in equation (3). Using

p
(
xk−1

∣∣y
1:k−1

)
, the result of the preceding filter step, as a Gaussian prior on

xk−1, we predict the outcome of f for uncertain inputs according to Section 4.2
by treating xk−1 as x∗ and f as h. Note that the transition density p

(
xk

∣∣xk−1

)
is exactly Gaussian due to GP f . By integrating out xk−1 using equation (3), we

determine the first two moments µp
k

and Cp
k of the predictive distribution exactly

and approximate p
(
xk

∣∣y
1:k−1

)
by N

(
µp

k
,Cp

k

)
.2

5.2 Filter Update (y
k
→ xk)

Now, let us consider the actual filter update at time step k. The goal is to de-
termine p

(
xk

∣∣y
1:k

)
. The preceding prediction result p

(
xk

∣∣y
1:k−1

) ≈N
(
µp

k
,Cp

k

)
serves as the prior on xk and will be combined with the recent observation y

k
to

determine the filter update (4) of the hidden state xk .

First, we determine the joint distribution

p
(
xk ,y

k

∣∣y
1:k−1

)= p
(
y

k

∣∣xk

)
· p

(
xk

∣∣y
1:k−1

)
. (13)

The GP measurement model GPg yields an exact Gaussian likelihood p
(
y

k

∣∣xk

)
,

which is combined with the Gaussian prior p
(
xk

∣∣y
1:k−1

)
, to obtain an approx-

imate Gaussian predictive distribution p
(
y

k

∣∣y
1:k−1

)≈N
(
µy

k
,Cy

k

)
. Note that µy

k
and Cy

k are the exact moments of the predictive distribution, which can be com-
puted analytically using the results from Section 4.2 by treating xk as x∗ and g
as h. 3

2 We write µ
p
k

and C
p
k

to indicate a one-step ahead prediction from time step k−1 to k given y
1:k−1

.

3 In the following paragraph, we will implicitly assume that all variables are conditioned on the
previous observations y

1:k−1
. Moreover, we will omit the time index k for brevity and clarity

reasons. For example, p
(
xk ,y

k
|y

1:k−1

)
will be denoted by p

(
x,y

)
.

5 GP-ADF: Assumed Density Filtering with Gaussian Processes 391

To approximate the joint distribution p
(
x,y

)
by a Gaussian distribution4, we

compute the cross terms Cx y = Ex,g
{

x yT}−µp
k

(
µy

k

)T of the joint covariance

C =
[

Cp
k Cx y

CT
x y Cy

k

]
.

For the unknown values Ex,g
{

x y a}
, we obtain

Ex,ga

{
x y a}= Ex,ga

{
x

(
ga(x)+ v

)}= Ex,ga

{
x ga(x)

}
=

∫
x

(∫
ga(x)p

(
ga |x

)
dga

)
︸ ︷︷ ︸

=Ega

{
ga (x)

∣∣x
}
=ma

g (x)

p(x)dx

(6)=
∫

x

(
n∑

i=1
βa

i ka
g

(
x,xi

))
p(x)dx

=
n∑

i=1
βa

i

∫
x c1N

(
x
∣∣xi ,Λa

)
N

(
x
∣∣µp

k
,Cp

k

)
dx

for each target dimension a = 1, . . . ,E . Here, c−1
1 is the normalization constant

of the unnormalized SE kernel ka
g . Note that xi , i = 1, . . . ,n, are the training

inputs of GPg . The product of the two Gaussians results in a new (unnormalized)
Gaussian, the normalization constant of which is denoted by c−1

2 . The mean of
this new Gaussian is a function of xi and µp

k
and denoted by ψ

(
xi ,µp

k

)
. Hence,

we finally obtain

Ex,g
{

x y a}= c1c−1
2

n∑
i=1

βa
i ·ψ

(
xi ,µp

k

)
, a = 1, . . . ,E ,

and the covariance matrix C is completely determined.

Second and finally, the joint Gaussian distribution

p
(
xk , y

k

∣∣y
1:k−1

)
=N

([(
µp

k

)T,
(
µy

k

)T
]T

,C
)

4 This approximation also appears in standard Gaussian filters, such as the UKF by [3].

392 Paper H Analytic Moment-based Gaussian Process Filtering

leads to the actual filter update

p
(
xk

∣∣y
1:k

)
=N

(
xk ;µe

k
,Ce

k

)
, (14)

with mean and covariance

µe
k
=µp

k
+Cx y

(
Cy

k

)−1
(

y
k
−µy

k

)
,

Ce
k = Cp

k −Cx y
(
Cy

k

)−1
CT

x y ,

respectively.

5.3 Assumptions and Computational Complexity
For performing prediction and filtering in closed form, we employ two approxi-
mations: First, if the input x∗ is Gaussian distributed, we approximate the true
predictive distributions f (x∗) and g (x∗) by a Gaussian with the exact mean and
covariance. Second, the assumption that the joint distribution (13) is Gaussian,
is only true if there is a linear relationship between x and y . Otherwise, it is an
approximation.

No sampling or finite-sample approximations are required in GP-ADF. In contrast
to the UKF or the GP-UKF, the GP-ADF propagates densities instead of samples
from them, which will allow for gradient-based parameter learning in nonlinear
dynamic systems.

The computational complexity of predicting and filtering (after training the GPs)
is O

(
E 3)+O

(
DE 2n2) due to the inversion of the predicted covariance matrices

in equation (14), and the computation of the L-matrix (12) for the predictive
covariance matrix. Here, D and E are the dimensionalities of the training inputs
and the training targets, respectively, and n is the size of the GP training set.
Classical filters, such as the EKF or the UKF, scale in O

(
E 3) computations.

6 Results

We assess filter performances for a 1D example with a single filter step and a
time-series in a 2D example. The GP-UKF and the GP-ADF use the same models
for the transition and observation functions. The UKF and EKF always have

6 Results 393

access to the true underlying functions and noise models. We implemented the
UKF and the GP-UKF as described by [7].5

6.1 1D Example
We consider the one-dimensional nonlinear problem

xk+1 = 1
2 xk +25 xk

1+x2
k
+w , w ∼N

(
0,0.22) ,

yk = 5 sin(2 xk)+ v , v ∼N
(
0,0.012) ,

which is similar to the growth model by [5]. We randomly distributed 100 points
in [−10,10] to train GP f and GPg . The prior on x0 is Gaussian with mean µ0 ∈
[−10,10] and variance σ2

0 = 0.52. For 200 independent pairs
(
x(i)

0 ,y (i)
1

)
of states

and observations of the successor states, we assess the performance of a single
filter step of four filters, the EKF, the UKF, the GP-UKF, and the GP-ADF. Figure 2
shows a typical realization of the filtered state distributions.

We evaluate the performance of the filters using two performance measures, the
Mahalanobis distance

Mx =
√(

xtrue −µe
k

)T(
Ce

k

)−1(xtrue −µe
k

)
(15)

between the ground truth and the filtered mean and the negative log-likelihood
N Lx of the hidden states. The filtered state distribution is an approximate Gaus-
sian N

(
µe

k
,Ce

k

)
. The units of Mx are standard deviations of xtrue from the mean

of the filter distribution. For both N Lx and Mx , lower values indicate better per-
formance. N Lx penalizes both uncertainty and inconsistency, while Mx solely
penalizes inconsistency. A distribution is inconsistent if the true underlying value
is an outlier under the distribution.

Figure 3 shows that finite-sample approximations of densities can lead to over-
confident predictions. The predictive distribution p(y) =N (−4.9,0.0003) based
upon finite samples claims full confidence. The actual measurement y =−2.6
cannot be explained.

5 The UKF and GP-UKF implementations are based on Nando de Freitas’ UPF software available at
http://www.cs.ubc.ca/~nando/software.html. The GP-ADF code will be publicly available
at http://mlg.eng.cam.ac.uk/marc/download_icml2009.php.

http://www.cs.ubc.ca/~nando/software.html
http://mlg.eng.cam.ac.uk/marc/download_icml2009.php

394 Paper H Analytic Moment-based Gaussian Process Filtering

-10 -5 0 5 10
µ0 →

-30
-20
-10

0
10
20
30

p
(x

1
|y 1

)→

EKF
true

(a) EKF

-10 -5 0 5 10
µ0 →

-30
-20
-10

0
10
20
30

p
(x

1
|y 1

)→

UKF
true

(b) UKF

-10 -5 0 5 10
µ0 →

-30
-20
-10

0
10
20
30

p
(x

1
|y 1

)→

GP-ADF
true

(c) GP-ADF

-10 -5 0 5 10
µ0 →

-30
-20
-10

0
10
20
30

p
(x

1
|y 1

)→

GP-UKF
true

(d) GP-UKF

Figure 2: True hidden states (black) and filter distributions (red) for EKF, UKF, GP-

ADF, and GP-UKF. The x-axis shows µ0, the mean value of p
(
x(i)

0

)
, the y-axis is the

filtered distribution p(x1|y1), p
(
x(i)

1

∣∣y (i)
1 ,µ(i)

0 ,σ2
0
)

of the hidden state. The error
bars show twice the standard deviations of the filtered state distributions. The
filtered state distributions of the EKF, UKF, and the GP-UKF suffer from occasional
inconsistencies that do not explain the true state at all. In contrast, GP-ADF is always
consistent.

Table 2: Average filter performances (1D example).

N L0.25
x N L0.5

x N L0.75
x Mx

EKF 2.4×105 2.9×105 3.5×105 30.2±3.2
UKF 4.7×104 6.5×104 1.1×105 3.9±0.9
GP-UKF 319 1.1×103 1.3×104 1.5±1.0
GP-ADF 90 98 106 0.46±0.04

6 Results 395

-20 -15 -10 -5 0 5
x →

-6

-4

-2

0

2

4
g

(x
)→

Figure 3: Typical failing of unscented filters. Although the function highly varies, the
sigma points (red dots) are mapped to almost the same function value (red crosses).
The sample predictive distribution is overconfident.

Table 2 shows the average performance of the filters after 100 independent runs
of the filter experiment. We report the upper and lower quantiles N L0.75

x ,N L0.25
x

and the median of N Lx as well as the mean and the standard deviation of Mx .

According to N Lx , EKF is outperformed by all other filters. The EKF and the UKF
heavily suffer from inconsistencies. The GP-UKF performs better than the UKF
since particularly GPg does not have training data in all relevant regions, which
alleviates the overconfidence problem in Figure 3. According to the error measure
Mx , GP-ADF yields substantially better results than all other filters. Moreover,
the performance of GP-ADF is stable, which is expressed by the quantiles.

6.2 Recursive Filtering: Time-Series
We consider the problem of recursively filtering a time-series of a two-dimensional
pendulum, where

xk =
[
ϕk−1 +∆t ϕ̇k−1 + ∆2

t
2

mgl sin(ϕk−1)+uk−1
ml 2

ϕ̇k−1 +∆t
mgl sin(ϕk−1)+uk−1

ml 2

]
+w ,

is the time-discretized dynamics model and

y
k
=

arctan
(

p1−l sin(ϕk)
p1−l cos(ϕk)

)
arctan

(
p2−l sin(ϕk)
p2−l cos(ϕk)

)+ v , with

[
p1

p2

]
=

[
1
−2

]
, (16)

396 Paper H Analytic Moment-based Gaussian Process Filtering

UKF GP-UKF GP-ADF

100

200

300

400

500

600

700

N
L

y
→

(a) The median (notch), the lower and
upper quantile (blue box), and the
spread of the negative log predictive
likelihood. The crosses are outliers.

0 50 100 150 200

k →

100

101

102

103

E
{M

x
}→

UKF
GP-UKF
GP-ADF

(b) The x-axis shows the time steps,
the y-axis displays the averaged Maha-
lanobis distance Mx on a logarithmic
scale.

Figure 4: Recursive filter performances of UKF, GP-ADF, and GP-UKF for the 2D
pendulum. (a) shows the negative log predictive likelihood N Ly . While the perfor-
mances of the UKF and the GP-UKF vary strongly and depend on the particular noise
realizations, the GP-ADF reliably provides a good solution. (b) shows the averaged
Mahalanobis distances of the filters. In contrast to the GP-ADF, the UKF and the
GP-UKF quickly become inconsistent.

is the observation model. We choose Cw = diag
(
0.12,0.32) ,Cv = diag

(
0.22,0.22).

Here, xT = [
ϕ,ϕ̇

]
with ϕ,ϕ̇ are the angle and the angular velocity, respectively.

The applied torque is denoted by u ∈ [−5,5]Nm, the acceleration of gravity is
g = 9.81 m/s2, the length of the pendulum is l = 1m, the mass of the pendulum
is m = 1kg. The discretization constant is ∆t = 400ms. The measurement equa-
tion (16) describes bearings-only measurements of the Cartesian coordinates of
the pendulum tip and solely depends on the angle. Thus, the filter distribution
of the angular velocity has to be reconstructed by using the cross-correlation in-
formation between angle and angular velocity in the transition dynamics model.
We used 200 data points to train GP f and GPg .

We start 100 independent trajectories from the initial state distribution x0 ∼
N

(
µ

0
,C0

)
with µT

0
= [−π,0

]
and C0 = diag

(
0.12,0.22). This corresponds to the

still pendulum hanging downward. We fuse information of a state prediction and

7 Discussion 397

a corresponding observation at each time step k. This filtered state distribution
serves as prior for the subsequent state prediction. We iterate this procedure for
200 time steps.

In Figure 4, we compare the performances of the UKF, the GP-ADF, and the
GP-UKF by considering N Ly , the negative log predictive likelihood of a full
trajectory. N Ly assesses whether the observations y

k
can be explained by the

predicted measurement distributions p
(
y

k
|y

1:k−1

) = N
(
µy

k
,Cy

k

)
. Note that in

contrast to N Lx , N Ly solely depends on observations y , and no longer on the
hidden variables x. Additionally, we consider the Mx -measure.

A major observation is that the UKF and the GP-UKF are unaware of losing
track of the state since the final covariances are tiny. Therefore, they often yield
inconsistent solutions after 200 time steps, whereas the GP-ADF determines
tight, but consistent distributions.

In general, we observed that the performance of GP-ADF is particularly good for
non-negligible noise levels and fairly nonlinear mappings f and g . If the state
uncertainty is small or the functions f and g are nearly linear, the UKF and the
GP-UKF perform well.

7 Discussion

Non-parametric probabilistic GP models describe distributions over all functions
that plausibly explain the data. In the context of our work, this property matters
if a parametric model cannot easily be determined or the real system does not
closely follow idealized models.

We observe that the uncertainty in the GP-ADF is often larger than the uncertainty
in the UKF and the GP-UKF, which depends on two factors. First, in contrast
to the GP-UKF, the GP-ADF explicitly incorporates the uncertainty about the
underlying function. Second, the predictive uncertainty is computed using the
entire prior. Due to the appropriate treatment of uncertainties, we observe that
the predictions of the GP-ADF are rarely inconsistent.

Both UKF-based algorithms can easily fail when the functions, which are used
for mapping the sigma points, are highly nonlinear and the input distribution is
wide (see Figure 3). The UKF and EKF are solely applicable when the functions
are known or directly accessible. If only samples of the underlying function are

398 Paper H Analytic Moment-based Gaussian Process Filtering

available, models have to be employed. [6] replace transition and measurement
functions by GP models in standard filters, such as the EKF and the UKF. However,
they do not exploit the GP structure that allows for an exact computation of the
first two predictive moments given a Gaussian prior. Since [7] and [6] do not
exploit these properties, the GP-UKF is not moment preserving.

The GP-ADF can be considered the limit of the GP-UKF propagating infinitely
many samples from a Gaussian input distribution if additionally the correspond-
ing function values are sampled from the GP predictive distribution.

Like [7] and [6], we assume that the transition function and the measurement
function can be learned by having access to ground truth observations of the
hidden states. The measurement function could be learned independent of the
transition function, but (measurement) noise-free observations of the hidden
states in Figure 1 can be difficult to obtain.

For highly uncertain models for the latent functions f ,g GP-ADF is still consistent
and shows the same stable performance as described in Figure 4a.

8 Summary and Future Work

In this paper, we propose the GP-ADF, a fully Bayesian approach to assumed
density filtering for nonlinear dynamics and observation models. Similar to the
papers by [7] and [6], we model the transition dynamics and the measurement
function by GPs. However, we propagate full densities and approximate the
predictive distribution by a Gaussian with the exact moments. In contrast to
the EKF, the UKF, and the recent GP-UKF, our filter is consistent and moment
preserving.

We will complete the forward-backward algorithm and learn the GP models for
the transition dynamics and the measurements without the need of direct access
to the hidden states. We will utilize Expectation Maximization for this purpose
since GP-ADF allows for gradient-based parameter optimization.

References 399

Acknowledgements

We thank Ryan Turner, Carl Edward Rasmussen, and the reviewers for very help-
ful comments and suggestions. MPD acknowledges support by the German
Research Foundation (DFG) through grant RA 1030/1-3.

References

[1] Xavier Boyen and Daphne Koller. Tractable Inference for Complex Stochas-
tic Processes. In Proceedings of the 14th Conference on Uncertainty in
Artificial Intelligence, pages 33–42, San Francisco, CA, USA, 1998.

[2] Zoubin Ghahramani and Sam T. Roweis. Learning Nonlinear Dynamical
Systems using an EM Algorithm. In M. S. Kearns, S. A. Solla, and D. A. Cohn,
editors, Advances in Neural Information Processing Systems 11, pages 599–
605. The MIT Press, 1999.

[3] Simon J. Julier and Jeffrey K. Uhlmann. Unscented Filtering and Nonlinear
Estimation. IEEE Review, 92(3):401–422, March 2004.

[4] Rudolf E. Kalman. A new Approach to Linear Filtering and Prediction
Problems. Transactions of the ASME, Journal of Basic Engineering, 82
(Series D)(1):35–45, 1960.

[5] Genshiro Kitagawa. Monte Carlo filter and smoother for non-Gaussian
nonlinear state space models. Journal of Computational and Graphical
Statistics, 5(1):1–25, 1996.

[6] Jonathan Ko and Dieter Fox. GP-BayesFilters: Bayesian Filtering Using
Gaussian Process Prediction and Observation Models. In Proceedings of the
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3471–3476, Nice, France, September 2008.

[7] Jonathan Ko, Daniel J. Klein, Dieter Fox, and Dirk Haehnel. Gaussian
Processes and Reinforcement Learning for Identification and Control of
an Autonomous Blimp. In Proceedings of the International Conference on
Robotics and Automation (ICRA), pages 742–747, Rome, Italy, April 2007.

[8] Malte Kuss. Gaussian Process Models for Robust Regression, Classifica-
tion, and Reinforcement Learning. PhD thesis, Technische Universität
Darmstadt, Germany, February 2006.

400 Paper H Analytic Moment-based Gaussian Process Filtering

[9] Tine Lefebvre, Herman Bruyninckx, and Joris De Schutter. Nonlinear
Kalman Filtering for Force-Controlled Robot Tasks. Springer Berlin, 2005.

[10] Peter S. Maybeck. Stochastic Models, Estimation, and Control, volume 141
of Mathematics in Science and Engineering. Academic Press, Inc., 1979.

[11] Manfred Opper. A Bayesian Approach to Online Learning. In Online
Learning in Neural Networks, pages 363–378. Cambridge University Press,
1998.

[12] Joaquin Quiñonero-Candela, Agathe Girard, Jan Larsen, and Carl E.
Rasmussen. Propagation of Uncertainty in Bayesian Kernel Models—
Application to Multiple-Step Ahead Forecasting. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), volume 2,
pages 701–704, April 2003.

[13] Carl E. Rasmussen and Zoubin Ghahramani. Bayesian Monte Carlo. In
S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Infor-
mation Processing Systems 15, pages 489–496. The MIT Press, Cambridge,
MA, USA, 2003.

[14] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, Cambridge, MA, USA, 2006.

[15] Dan Simon. Optimal State Estimation: Kalman, H-Infinity, and Nonlinear
Approaches. John Wiley & Sons, Inc., 1st edition, 2006.

Paper I
Robust Filtering and Smoothing

with Gaussian Processes

Authors: Marc P. Deisenroth, Ryan D. Turner, Marco F. Huber, Uwe D. Hanebeck,
and Carl E. Rasmussen

Edited version of the paper:

M. P. Deisenroth, R. D. Turner, M. F. Huber, U. D. Hanebeck, and C. E.
Rasmussen. Robust Filtering and Smoothing with Gaussian Processes. In
IEEE Transactions on Automatic Control, vol. 57, no. 7, pages 1865–1871,
July 2012.

Robust Filtering and Smoothing with
Gaussian Processes

Marc P. Deisenroth∗, Ryan D. Turner∗∗, Marco F. Huber∗∗∗,
Uwe D. Hanebeck∗∗∗∗, and Carl E. Rasmussen∗∗

∗Intelligent Autonomous Systems
TU Darmstadt

Darmstadt, Germany
marc@ias.tu-darmstadt.de

∗∗Department of Engineering
University of Cambridge

Cambridge, UK
{rt324|cer54}@cam.ac.uk

∗∗∗AGT International
Darmstadt, Germany

marco.huber@ieee.org

∗∗∗∗ Intelligent Sensor-Actuator-Systems
Laboratory (ISAS)

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

uwe.hanebeck@ieee.org

Abstract
We propose a principled algorithm for robust Bayesian filtering and
smoothing in nonlinear stochastic dynamic systems when both the
transition function and the measurement function are described by
non-parametric Gaussian process (GP) models. GPs are gaining in-
creasing importance in signal processing, machine learning, robotics,
and control for representing unknown system functions by posterior
probability distributions. This modern way of “system identification”
is more robust than finding point estimates of a parametric function
representation. In this article, we present a principled algorithm
for robust analytic smoothing in GP dynamic systems, which are
increasingly used in robotics and control. Our numerical evaluations
demonstrate the robustness of the proposed approach in situations
where other state-of-the-art Gaussian filters and smoothers can fail.

404 Paper I Robust Filtering and Smoothing with Gaussian Processes

1 Introduction

Filtering and smoothing in context of dynamic systems refers to a Bayesian
methodology for computing posterior distributions of the latent state based
on a history of noisy measurements. This kind of methodology can be found,
e.g., in navigation, control engineering, robotics, and machine learning [1, 3,
28, 30]. Solutions to filtering [1, 3, 14, 28, 30] and smoothing [18, 23, 26, 27]
in linear dynamic systems are well known, and numerous approximations for
nonlinear systems have been proposed, for both filtering [2, 6, 12, 13, 16, 20] and
smoothing [7, 11, 15, 29].

In this article, we focus on Gaussian filtering and smoothing in Gaussian pro-
cess (GP) dynamic systems. GPs are a robust non-parametric method for ap-
proximating unknown functions by a posterior distribution over them [19, 25].
Although GPs have been around for decades, they only recently became compu-
tationally interesting for applications in robotics, control, and machine learn-
ing [8, 9, 17, 21, 22].

The contribution of this article is the derivation of a novel, principled, and robust
Rauch-Tung-Striebel (RTS) smoother for GP dynamic systems, which we call the
GP-RTSS. The GP-RTSS computes a Gaussian approximation to the smoothing
distribution in closed form. The posterior filtering and smoothing distributions
can be computed without linearization [20] or (small) sampling approximations
of densities [13].

We provide numerical evidence that the GP-RTSS is more robust than state-of-
the-art nonlinear Gaussian filtering and smoothing algorithms including the
extended Kalman filter (EKF) [20], the unscented Kalman filter (UKF) [13], the
cubature Kalman filter (CKF) [2], the GP-UKF [16], and their corresponding RTS
smoothers. Robustness refers to the ability of an inferred distribution to explain
the “true” state/measurement.

The paper is structured as follows: In Sections 1.1–1.2, we introduce the prob-
lem setup and necessary background on Gaussian smoothing and GP dynamic
systems. In Section 2, we briefly introduce Gaussian process regression, discuss
the expressiveness of a GP, and explain how to train GPs. Section 3 details our
proposed method (GP-RTSS) for smoothing in GP dynamic systems. In Section 4,
we provide experimental evidence of the robustness of the GP-RTSS. Section 5
concludes the paper with a discussion.

1 Introduction 405

1.1 Problem Formulation and Notation
In this article, we consider discrete-time stochastic systems

x t = f
(
x t−1

)+w t , (1)

z t = g
(
x t

)+ v t , (2)

where x t ∈ RD is the state, z t ∈ RE is the measurement at time step t , w t ∼
N (0,Cw) is Gaussian system noise, v t ∼ N (0,Cv) is Gaussian measurement
noise, f is the transition function (or system function) and g is the measurement
function. The discrete time steps t run from 0 to T . The initial state x0 of the
time series is distributed according to a Gaussian prior distribution p

(
x0

) =
N

(
µx

0
,Cx

0

)
. The purpose of filtering and smoothing is to find approximations

to the posterior distributions p
(
x t |z1:τ

)
, where 1:τ in a subindex abbreviates

1, . . . ,τ with τ = t during filtering and τ = T during smoothing. In this article,
we consider Gaussian approximations p

(
x t |z1:τ

)≈N
(
x t ;µx

t |τ,Cx
t |τ

)
of the latent

state posterior distributions p
(
x t |z1:τ

)
. We use the short-hand notation ad

b|c
where a =µ denotes the mean µ and a = C denotes the covariance, b denotes the
time step under consideration, c denotes the time step up to which we consider
measurements, and d ∈ {x, z} denotes either the latent space (x) or the observed
space (z).

1.2 Gaussian RTS Smoothing

Given the filtering distributions p
(
x t

∣∣z1:t

)=N
(
x t ;µx

t |t ,Cx
t |t

)
, t = 1, . . . ,T , a suffi-

cient condition for Gaussian smoothing is the computation of Gaussian approxi-
mations of the joint distributions p

(
x t−1,x t

∣∣z1:t−1

)
, t = 1, . . . ,T [7].

In Gaussian smoothers, the standard smoothing distribution for the dynamic
system in Equations (1)–(2) is always

p
(
x t−1

∣∣z1:T

)=N
(
x t−1;µx

t−1|T ,Cx
t−1|T

)
, (3)

where

µx
t−1|T =µx

t−1|t−1
+ Jt−1

(
µx

t |T −µx
t |t−1

)
, (4)

Cx
t−1|T = Cx

t−1|t−1 + Jt−1
(
Cx

t |T −Cx
t |t−1

)
JT

t−1 , (5)

Jt−1,Cx
t−1,t |t−1

(
Cx

t |t−1

)−1 , (6)

406 Paper I Robust Filtering and Smoothing with Gaussian Processes

for t = T, . . . ,1. Depending on the methodology of computing this joint distribu-
tion, we can directly derive arbitrary RTS smoothing algorithms, including the
URTSS [29], the EKS [1, 20], the CKS [7], a smoothing extension to the CKF [2],
or the GP-URTSS, a smoothing extension to the GP-UKF [16]. The individual
smoothers (URTSS, EKS, CKS, GP-based smoothers etc.) simply differ in the
way of computing/estimating the means and covariances required in Equations
(4)–(6) (see [7]).

To derive the GP-URTSS, we closely follow the derivation of the URTSS [29]. The
GP-URTSS is a novel smoother, but its derivation is relatively straightforward
and therefore not detailed in this article. Instead, we detail the derivation of
the GP-RTSS, a robust Rauch-Tung-Striebel smoother for GP dynamic systems,
which is based on analytic computation of the means and (cross-)covariances in
Equations (4)–(6).

In GP dynamics systems, the transition function f and the measurement function
g in Equations (1)–(2) are modeled by Gaussian processes. This setup is getting
more relevant in practical applications such as robotics and control, where it can
be difficult to find an accurate parametric form of f and g , respectively [4, 9].
Given the increasing use of GP models in robotics and control, the robustness of
Bayesian state estimation is important.

2 Gaussian Processes

In the standard GP regression model, we assume that the data D,
{

X, y
}

with

X ,
[
x1, . . . , xn

]
and y ,

[
y1, . . . , yn

]T
have been generated according to yi =

h(xi)+ εi , where h :RD →R and εi ∼N
(
0,σ2

ε

)
is independent (measurement)

noise. GPs consider h a random function and infer a posterior distribution over
h from data. The posterior is used to make predictions about function values
h(x∗) for arbitrary inputs x∗ ∈RD .

Similar to a Gaussian distribution, which is fully specified by a mean vector and
a covariance matrix, a GP is fully specified by a mean function mh(·) and a
covariance function

kh(x,x ′), Eh
{(

h(x)−mh(x)
)(

h(x ′)−mh(x ′)
)}

(7)

= covh
{
h(x),h(x ′)

} ∈R , (8)

2 Gaussian Processes 407

with x, x ′ ∈RD . The latter specifies the covariance between any two function
values. Here, Eh denotes the expectation with respect to the function h. The
covariance function kh(· , ·) is also called a kernel.

Unless stated otherwise, we consider a prior mean function mh ≡ 0 and use
the squared exponential (SE) covariance function with automatic relevance
determination

kSE
(
xp ,xq

)
,α2 exp

(
− 1

2

(
xp −xq

)T
Λ−1(xp −xq

))
(9)

for xp , xq ∈RD , plus a noise covariance function knoise, δpqσ
2
ε , such that kh =

kSE +knoise. The δ denotes the Kronecker symbol that is unity when p = q and
zero otherwise, resulting in i.i.d. measurement noise. In (9), Λ= diag

(
`2

1, . . . ,`2
D

)
is a diagonal matrix of squared characteristic length-scales `i , i = 1, . . . ,D, and
α2 is the signal variance of the latent function h. By using the SE covariance
function from (9) we assume that the latent function h is smooth and stationary.
Smoothness and stationarity is easier to justify than fixed parametric form of the
underlying function.

2.1 Expressiveness of the Model
Although the SE covariance function and the zero-prior mean function are com-
mon defaults, they retain a great deal of expressiveness. Inspired by [19?], we
demonstrate this expressiveness and show the correspondence of our GP model
to a universal function approximator: Consider a function

h(x) = ∑
i∈Z

lim
N→∞

1

N

N∑
n=1

γn · exp

(
− (x − (i + n

N))2

λ2

)
(10)

where γn ∼ N (0,1) ,n = 1, . . . ,N . Note that in the limit h(x) is represented by
infinitely many Gaussian-shaped basis functions along the real axis with variance
λ
p

2 and prior (Gaussian) random weights γn , for x ∈R, and for all i ∈Z. The
model in (10) is considered a universal function approximator. Writing the sums
in (10) as an integral over the real axisR, we obtain

h(x) = ∑
i∈Z

∫ i+1

i
γ(s) · exp

(
− (x − s)2

λ2

)
ds

=
∫ ∞

−∞
γ(s) · exp

(
− (x − s)2

λ2

)
ds = (

γ∗K)
(x) , (11)

408 Paper I Robust Filtering and Smoothing with Gaussian Processes

where γ(s) ∼N (0,1) is a white-noise process and K is a Gaussian convolution
kernel. The function values of h are jointly normal, which follows from the con-
volution γ∗K. We now analyze the mean function and the covariance function
of h, which fully specify the distribution of h. The only random variables are
the weights γ(s). Computing the expected function of this model (prior mean
function) requires averaging over γ(s) and yields

Eγ{h(x)} =
∫

h(x)p(γ(s))dγ(s) (12)

(11)=
∫

exp

(
− (x − s)2

λ2

)∫
γ(s)p

(
γ(s)

)
dγ(s)ds = 0 (13)

since Eγ{γ(s)} = 0. Hence, the mean function of h equals zero everywhere. Let us
now find the covariance function. Since the mean function equals zero, for any
x,x ′ ∈Rwe obtain

covγ
{
h(x),h(x ′)

}= ∫
h(x)h(x ′)p

(
γ(s)

)
dγ(s)

=
∫

exp

(
− (x − s)2

λ2

)
exp

(
− (x ′− s)2

λ2

)
×

∫
γ(s)2p

(
γ(s)

)
dγ(s)ds , (14)

where we used the definition of h in (11). Using varγ
{
γ(s)

}= 1 and completing
the squares yields

covγ
{
h(x),h(x ′)

}= ∫
exp

(
−2

(
s − x+x′

2

)2 + (x−x′)2

2

λ2

)
ds

=α2 exp

(
− (x −x ′)2

2λ2

)
(15)

for suitable α2.

From (13) and (15), we see that the mean function and the covariance function
of the universal function approximator in (10) correspond to the GP model as-
sumptions we made earlier: a prior mean function mh ≡ 0 and the SE covariance
function in (9) for a one-dimensional input space. Hence, the considered GP
prior implicitly assumes latent functions h that can be described by the universal

3 Robust Smoothing in Gaussian Process Dynamic Systems 409

function approximator in (11). Examples of covariance functions that encode
different model assumptions are given in [25].

2.2 Training via Evidence Maximization
For E target dimensions, we train E GPs assuming that the target dimensions are
independent at a deterministically given test input (if the test input is uncertain,
the target dimensions covary): After observing a data set D, for each (training)
target dimension, we learn the D+1 hyper-parameters of the covariance function
and the noise variance of the data using evidence maximization [19, 25]: Collect-
ing all (D+2)E hyper-parameters in the vector θ, evidence maximization yields a
point estimate θ̂ ∈ arg maxθ log p

(
y
∣∣X,θ

)
. Evidence maximization automatically

trades off data fit with function complexity and avoids overfitting [25].

From here onward, we consider the GP dynamics system setup, where two GP
models have been trained using evidence maximization: GP f , which models

the mapping x t−1 7→ x t ,RD →RD , see (1), and GPg , which models the mapping

x t 7→ z t ,RD →RE , see (2). To keep the notation uncluttered, we do not explicitly

condition on the hyper-parameters θ̂ and the training data D in the following.

3 Robust Smoothing in Gaussian Process
Dynamic Systems

Analytic moment-based filtering in GP dynamic systems has been proposed
in [6], where the filter distribution is given by

p
(
x t

∣∣z1:t

)=N
(
x t ;µx

t |t ,Cx
t |t

)
, (16)

µx
t |t =µ

x
t |t−1

+Cxz
t |t−1

(
Cz

t |t−1

)−1
(
z t −µz

t |t−1

)
, (17)

Cx
t |t = Cx

t |t−1 −Cxz
t |t−1

(
Cz

t |t−1

)−1Czx
t |t−1 , (18)

for t = 1, . . . ,T . Here, we extend these filtering results to analytic moment-based
smoothing, where we explicitly take nonlinearities into account (no linearization
required) while propagating full Gaussian densities (no sigma/cubature-point
representation required) through nonlinear GP models.

410 Paper I Robust Filtering and Smoothing with Gaussian Processes

In the following, we detail our novel RTS smoothing approach for GP dynamic
systems. We fit our smoother in the standard frame of (4)–(6). For this, we
compute the means and covariances of the Gaussian approximation

N
([

x t−1
x t

]
;

[
µx

t−1|t−1
µx

t |t−1

]
,

[
Cx

t−1|t−1 Cx
t−1,t |t−1

Cx
t ,t−1|t−1 Cx

t |t−1

])
(19)

to the joint p
(
x t−1,x t |z1:t−1

)
, after which the smoother is fully determined [7].

Our approximation does not involve sampling, linearization, or numerical inte-
gration. Instead, we present closed-form expressions of a deterministic Gaussian
approximation of the joint distribution in (19).

In our case, the mapping x t−1 7→ x t is not known, but instead it is distributed
according to GP f , a distribution over system functions. For robust filtering and
smoothing, we therefore need to take the GP (model) uncertainty into account
by Bayesian averaging according to the GP distribution [6, 24]. The marginal
p

(
x t−1|z1:t−1

)=N
(
µx

t−1|t−1
,Cx

t−1|t−1

)
is known from filtering [6]. In Section 3.1,

we compute the mean and covariance of second marginal p
(
x t |z1:t−1

)
and then

in Section 3.2 the cross-covariance terms Cx
t−1,t |t−1 = cov

{
x t−1,x t |z1:t−1

}
.

3.1 Marginal Distribution

Marginal Mean

Using the system (1) and integrating over all three sources of uncertainties (the
system noise, the state x t−1, and the system function itself), we apply the law of
total expectation and obtain the marginal mean

µx
t |t−1

= Ex t−1

{
E f

{
f
(
x t−1

)|x t−1

}|z1:t−1

}
. (20)

The expectations in (20) are taken with respect to the posterior GP distribution
p(f) and the filter distribution p

(
x t−1|z1:t−1

)=N
(
µx

t−1|t−1
,Cx

t−1|t−1

)
at time step

t − 1. Equation (20) can be rewritten as µx
t |t−1

= Ex t−1

{
m f

(
x t−1

)∣∣z1:t−1

}
with

m f
(
x t−1

)
, E f

{
f
(
x t−1

)∣∣x t−1

}
is the posterior mean function of GP f . Writing

3 Robust Smoothing in Gaussian Process Dynamic Systems 411

m f as a finite sum over the SE kernels centered at all n training inputs [25], the
predicted mean for each target dimension a = 1, . . . ,D is

(
µx

t |t−1

)
a =

∫
m fa

(
x t−1

)
p

(
x t−1|z1:t−1

)
dx t−1 (21)

=
n∑

i=1
βx

ai

∫
k fa

(
x t−1,xi

)
p

(
x t−1|z1:t−1

)
dx t−1 ,

where p
(
x t−1|z1:t−1

)=N
(
x t−1;µx

t−1|t−1
,Cx

t−1|t−1

)
is the filter distribution at time

t −1. Moreover, xi , i = 1, . . . ,n, are the training set of GP f , k fa is the covariance
function of GP f for the ath target dimension (GP hyper-parameters are not

shared across dimensions), and βx
a
,

(
K fa +σ2

wa
I
)−1 y

a
∈ Rn . For dimension

a, K fa denotes the kernel matrix (Gram matrix), where K fai j
= k fa

(
xi ,x j

)
, i , j =

1, . . . ,n. Moreover, y
a

are the training targets, and σ2
wa

is the learned system

noise variance. The vector βx
a

has been pulled out of the integration since it is

independent of x t−1. Note that x t−1 serves as a test input from the perspective
of the GP regression model.

For the SE covariance function in (9), the integral in (21) can be computed
analytically (other tractable choices are covariance functions containing com-
binations of squared exponentials, trigonometric functions, and polynomials).
The marginal mean is given as(

µx
t |t−1

)
a = (

βx
a

)Tq x
a

(22)

where we defined

q x
ai
,α2

fa

∣∣Cx
t−1|t−1Λ

−1
a + I

∣∣− 1
2

×exp

(
− 1

2

(
xi −µx

t−1|t−1

)T
S−1

(
xi −µx

t−1|t−1

))
, (23)

S,Cx
t−1|t−1 +Λa , (24)

for i = 1, . . . ,n, being the solution to the integral in (21). Here, α2
fa

is the signal
variance of the ath target dimension of GP f , a learned hyper-parameter of the
SE covariance function, see (9).

412 Paper I Robust Filtering and Smoothing with Gaussian Processes

Marginal Covariance Matrix

We now explicitly compute the entries of the corresponding covariance Cx
t |t−1.

Using the law of total covariance, we obtain for a,b = 1, . . . ,D(
Σx

t |t−1

)
(ab) = covx t−1, f ,w

{
x(a)

t ,x(b)
t |z1:t−1

}
= Ex t−1

{
cov f ,w

{
fa

(
x t−1

)+wa , fb
(
x t−1

)+wb
∣∣x t−1

}∣∣z1:t−1

}
+covx t−1

{
E fa

{
fa

(
x t−1

)∣∣x t−1

}
,E fb

{
fb

(
x t−1

)∣∣x t−1

}∣∣z1:t−1

}
, (25)

where we exploited in the last term that the system noise w has zero mean.
Note that (25) is the sum of the covariance of (conditional) expected values and
the expectation of a (conditional) covariance. We analyze these terms in the
following.

The covariance of the expectations in (25) is∫
m fa

(
x t−1

)
m fb

(x t−1)p
(
x t−1

)
dx t−1 −

(
µx

t |t−1

)
a ·

(
µx

t |t−1

)
b , (26)

where we used that E f
{

f
(
x t−1

)∣∣x t−1

} = m f
(
x t−1

)
. With βx

a
= (

Ka +σ2
wa

I
)−1 y

a

and m fa

(
x t−1

)= k fa

(
X,x t−1

)T
βx

a
, we obtain

covx t−1

{
m fa

(
x t−1

)
,m fb

(
x t−1

)∣∣z1:t−1

}= (
βx

a

)T ·Q ·βx
b
− (
µx

t |t−1

)
a ·

(
µx

t |t−1

)
b . (27)

Following [5], the entries of Q ∈Rn×n are given as

Qi j =
k fa

(
xi ,µx

t−1|t−1

)
k fb

(
x j ,µx

t−1|t−1

)
p|R| ×exp

(
1
2 zT

i j R−1Cx
t−1|t−1zi j

)
=

exp
(
n2

i j

)
p|R| , (28)

n2
i j = log

(
α2

fa

)+ log
(
α2

fb

)− 1
2

(
ζT

i
Λ−1

a ζ
i
+ζT

j
Λ−1

b ζ
j
− zT

i j R−1Cx
t−1|t−1zi j

)
,

where we defined R,Cx
t−1|t−1

(
Λ−1

a +Λ−1
b

)+I, ζ
i
, xi−µx

t−1|t−1
, and zi j ,Λ

−1
a ζ

i
+

Λ−1
b ζ

j
.

3 Robust Smoothing in Gaussian Process Dynamic Systems 413

The expected covariance in (25) is given as

Ex t−1

{
cov f

{
fa

(
x t−1

)
, fb

(
x t−1

)∣∣x t−1

}∣∣z1:t−1

}+δab ·σ2
wa

(29)

since the noise covariance matrix Cw is diagonal. Following our GP training
assumption that different target dimensions do not covary if the input is de-
terministically given, (29) is only non-zero if a = b, i.e., (29) plays a role only
for diagonal entries of Cx

t |t−1. For these diagonal entries (a = b), the expected
covariance in (29) is

α2
fa
−Tr

((
K fa +σ2

wa
I
)−1Q

)
+σ2

wa
. (30)

Hence, the desired marginal covariance matrix in (25) is

(
Σx

t |t−1

)
ab =

{
Eq. (27)+Eq. (30) , if a = b

Eq. (27) , otherwise
. (31)

We have now solved for the marginal distribution p
(
x t

∣∣z1:t−1

)
in (19). Since the

approximate Gaussian filter distribution p
(
x t−1

∣∣z1:t−1

) =N
(
µx

t−1|t−1
,Cx

t−1|t−1

)
is also known, it remains to compute the cross-covariance Cx

t−1,t |t−1 to fully
determine the Gaussian approximation in (19).

3.2 Cross-Covariance
By the definition of a covariance and the system (1), the missing cross-covariance
matrix Cx

t−1,t |t−1 in (19) is

Cx
t−1,t |t−1 = Ex t−1, f ,w t

{
x t−1 ·

(
f
(
x t−1

)+w t

)T∣∣z1:t−1

}
− µx

t−1|t−1

(
µx

t |t−1

)T
, (32)

where µx
t−1|t−1

is the mean of the filter update at time step t −1 and µx
t |t−1

is the

mean of the time update, see (20). Note that we explicitly average out the model
uncertainty about f . Using the law of total expectations, we obtain

Cx
t−1,t |t−1 = Ex t−1

{
x t−1 · E f ,w t

{
f
(
x t−1

)+w t

∣∣x t−1

}T ∣∣z1:t−1

}
− µx

t−1|t−1

(
µx

t |t−1

)T

= Ex t−1

{
x t−1 ·m f

(
x t−1

)T∣∣z1:t−1

}
− µx

t−1|t−1

(
µx

t |t−1

)T
, (33)

414 Paper I Robust Filtering and Smoothing with Gaussian Processes

where we used the fact that E f ,w t

{
f
(
x t−1

)+w t

∣∣x t−1

} = m f
(
x t−1

)
is the mean

function of GP f , which models the mapping x t−1 7→ x t , evaluated at x t−1. We
thus obtain

Cx
t−1,t |t−1 =

∫
x t−1 ·m f

(
x t−1

)Tp
(
x t−1

∣∣z1:t−1

)
dx t−1 − µx

t−1|t−1

(
µx

t |t−1

)T
. (34)

Writing m f (x t−1) as a finite sum over kernels [25] and moving the integration
into this sum, the integration in Eq. (34) turns into∫

x t−1m fa

(
x t−1

)
p

(
x t−1

∣∣z1:t−1

)
dx t−1

=
n∑

i=1
βx

ai

∫
x t−1k fa

(
x t−1,xi

)
p

(
x t−1

∣∣z1:t−1

)
dx t−1

for each state dimension a = 1, . . . ,D . With the SE covariance function kSE defined
in (9), we compute the integral analytically and obtain∫

x t−1m fa

(
x t−1

)
p

(
x t−1

∣∣z1:t−1

)
dx t−1

=
n∑

i=1
βx

ai
·c3

∫
x t−1N

(
xi ,Λa

)
N

(
µx

t−1|t−1
,Cx

t−1|t−1

)
dx t−1 , (35)

with c−1
3 ,

(
α2

fa
(2π)

D
2
√
|Λa |

)−1 such that k fa (x t−1,xi) = c3N
(
x t−1; xi ,Λa

)
. In the

definition of c3, α2
fa

is a hyper-parameter of GP f responsible for the variance
of the latent function in dimension a. Using the definition of S in (24), the
product of the two Gaussians in (35) results in a new (unnormalized) Gaussian
c−1

4 N
(
x t−1;ψ

i
,Ψ

)
with

c−1
4 = (2π)−

D
2
∣∣Λa +Σx

t−1|t−1

∣∣− 1
2 ×exp

(
− 1

2

(
xi −µx

t−1|t−1

)T
S−1

(
xi −µx

t−1|t−1

))
,

Ψ=
(
Λ−1

a + (
Σx

t−1|t−1

)−1
)−1

,

ψ
i
=Ψ ·

(
Λ−1

a xi +
(
Σx

t−1|t−1

)−1
µx

t−1|t−1

)
.

Pulling all constants outside the integral in (35), the integral determines the
expected value of the product of the two Gaussians, ψ

i
. For a = 1, . . . ,D, we

4 Simulations 415

obtain

E
{

x t−1 xta

∣∣z1:t−1

}= n∑
i=1

c3c−1
4 βx

ai
ψ

i
.

Using c3c−1
4 = q x

ai
, see (23), and some matrix identities, we finally obtain

covx t−1, f ,w t

{
x t−1,xta

∣∣z1:t−1

}=
n∑

i=1
βx

ai
q x

ai
Cx

t−1|t−1

(
Cx

t−1|t−1 +Λa
)−1

(
xi −µx

t−1|t−1

)
(36)

Thus, the joint covariance matrix of p
(
x t−1,x t

∣∣z1:t−1

)
and hence, the full Gaus-

sian approximation in (19) is completely determined.

With the mean and the covariance of the joint distribution p
(
x t−1,x t

∣∣z1:t−1

)
given

by (22), (31), (36), and the filter step, all necessary components are provided to
compute the smoothing distribution p

(
x t

∣∣z1:T

)
analytically [7].

4 Simulations

In the following, we present results analyzing the robustness of state-of-the-
art nonlinear filters (Section 4.1) and the performances of the corresponding
smoothers (Section 4.2).

4.1 Filter Robustness
We consider the nonlinear stochastic dynamic system

xt = xt−1
2 + 25 xt−1

1+x2
t−1

+wt , with wt ∼N
(
0,σ2

w = 0.22) , (37)

zt = 5· sin(xt)+ vt , with vt ∼N
(
0,σ2

v = 0.22) , (38)

which is a modified version of the model used in [10, 15]. The system is modi-
fied in two ways: First, (37) does not contain a purely time-dependent term in
the system, which would not allow for learning stationary transition dynamics.
Second, we substituted a sinusoidal measurement function for the originally
quadratic measurement function used by [15] and [10]. The sinusoidal measure-
ment function increases the difficulty in computing the marginal distribution
p

(
z t

∣∣z1:t−1

)
if the time update distribution p

(
x t

∣∣z1:t−1

)
is fairly uncertain: While

416 Paper I Robust Filtering and Smoothing with Gaussian Processes

the quadratic measurement function can only lead to bimodal distributions
(assuming a Gaussian input distribution), the sinusoidal measurement function
in (38) can lead to an arbitrary number of modes—for a broad input distribution.

The prior variance was set to σ2
0 = 0.52, i.e., the initial uncertainty was fairly high.

The system and measurement noises (see (37)–(38)) were relatively small consid-
ering the amplitudes of the system function and the measurement function. For
the numerical analysis, a linear grid in the interval [−3,3] of mean values

(
µx

0

)
i ,

i = 1, . . . ,100, was defined. Then, a single latent (initial) state x(i)
0 was sampled

from p
(
x(i)

0

)=N
((
µx

0

)
i ,σ2

0

)
, i = 1, . . . ,100.

For the dynamic system in (37)–(38), we analyzed the robustness in a single filter
step of the EKF, the UKF, the CKF, an SIR PF (sequential importance resampling
particle filter) with 200 particles, the GP-UKF, and the GP-ADF against the ground
truth, closely approximated by the Gibbs-filter [7]. Compared to the evaluation
of longer trajectories, evaluating a single filter step makes it easier to analyze the
robustness of individual filtering algorithms.

Table 1 summarizes the expected performances (root-mean-square error (rmse),
mean-absolute error (mae), negative log-likelihood (nll)) of the EKF, the UKF, the
CKF, the GP-UKF, the GP-ADF, the Gibbs-filter, and the SIR PF for estimating the
latent state x. The results in the table are based on averages over 1,000 test runs
and 100 randomly sampled start states per test run (see experimental setup). The
table also reports the 95% standard error of the expected performances. Table 1
indicates that the GP-ADF is the most robust filter and statistically significantly
outperforms all filters but the sampling-based Gibbs-filter and the SIR PF. The
green color highlights a near-optimal Gaussian filter (Gibbs-filter) and the near-
optimal particle filter. Amongst all other filters the GP-ADF is the closest Gaussian
filter to the computationally expensive Gibbs-filter [7]. Note that the SIR PF
is not a Gaussian filter and is able to express multi-modality in distributions.
Therefore, its performance is typically better than the one of Gaussian filters. The
difference between the SIR PF and a near-optimal Gaussian filter, the Gibbs-filter,
is expressed in Table 1. The performance difference essentially depicts how much
we lose by using a Gaussian filter instead of a particle filter. The nll values for the
SIR PF are obtained by moment-matching the particles.

The poor performance of the EKF is due to linearization errors. The filters based
on small sample approximations of densities (UKF, GP-UKF, CKF) suffer from
the degeneracy of these approximations, which is illustrated in Figure 1. Note
that the CKF uses a smaller set of cubature points than the UKF to determine

4 Simulations 417

Ta
b

le
1:

A
ve

ra
ge

fi
lt

er
p

er
fo

rm
an

ce
s

(r
m

se
,m

ae
,n

ll)
w

it
h

st
an

d
ar

d
er

ro
rs

(9
5%

co
n

fi
d

en
ce

in
te

rv
al

)
an

d
p

-v
al

u
es

te
st

in
g

th
e

h
yp

o
th

es
is

th
at

th
e

o
th

er
fi

lt
er

s
ar

e
b

et
te

r
th

an
th

e
G

P-
A

D
F

u
si

n
g

a
o

n
e-

si
d

ed
t-

te
st

.

rm
se

x
m

ae
x

n
ll

x

av
er

ag
e

p
-v

al
u

e
av

er
ag

e
p

-v
al

u
e

av
er

ag
e

p
-v

al
u

e

E
K

F
[2

0]
3.

62
±0

.2
12

4.
1
×1

0−
2

2.
36

±0
.1

76
0.

38
3.

05
×1

03
±3

.0
2
×1

02
<

10
−4

U
K

F
[1

3]
10

.5
±1

.0
8

<
10

−4
8.

58
±0

.9
15

<
10

−4
25

.6
±3

.3
9

<
10

−4

C
K

F
[2

]
9.

24
±1

.1
3

2.
8
×1

0−
4

7.
31

±0
.9

41
4.

2
×1

0−
4

2.
22

×1
02

±1
7.

5
<

10
−4

G
P-

U
K

F
[1

6]
5.

36
±0

.4
61

7.
9
×1

0−
4

3.
84

±0
.3

52
3.

3
×1

0−
3

6.
02

±0
.4

97
<

10
−4

G
P-

A
D

F
[6

]
2.

85
±0

.1
74

—
2.

17
±0

.1
51

—
1.

97
±6

.5
5
×1

0−
2

—
G

ib
b

s-
fi

lt
er

[7
]

2.
82

±0
.1

71
0.

54
2.

12
±0

.1
48

0.
56

1.
96

±6
.6

2
×1

0−
2

0.
55

SI
R

P
F

1.
57

±7
.6

6
×1

0−
2

1.
0

0.
36

±2
.2

8
×1

0−
2

1.
0

1.
03

±7
.3

0
×1

0−
2

1.
0

418 Paper I Robust Filtering and Smoothing with Gaussian Processes

-10

0

10

0.1 0.05 0
← p(x1)

-10

0

10

x 1
→

-3 -2 -1 0 1
x0 →

-3 -2 -1 0 1
0

0.5

p
(x

0
)→

(a) UKF time update p
(
x1

∣∣;)
, which misses out substantial probability

mass of the true predictive distribution.

-5

0

5

10

1.5 1 0.5 0
← p(z1)

-5

0

5

10

z 1
→

-25 -20 -15 -10 -5 0
x1 →

-25 -20 -15 -10 -5 0
0

0.1

p
(x

1
)→

(b) UKF determines p
(
z1

∣∣;)
, which is too sensitive and cannot explain

the actual measurement z1 (black dot, left sub-figure).

Figure 1: Degeneracy of the unscented transformation (UT) underlying the UKF.
Input distributions to the UT are the Gaussians in the sub-figures at the bottom in
each panel. The functions the UT is applied to are shown in the top right sub-figures,
i.e, the transition mapping (37) in (a) and the measurement mapping (38) in (b).
Sigma points are marked by red dots. The predictive distributions are shown in the
left sub-figures of each panel. The true predictive distributions are the shaded areas;
the UT predictive distributions are the solid Gaussians. The predictive distribution
of the time update in (a) equals the input distribution at the bottom of (b).

4 Simulations 419

predictive distributions, which makes the CKF statistically even less robust than
the UKF.

4.2 Smoother Robustness
We consider a pendulum tracking example taken from [6]. We evaluate the per-
formances of four filters and smoothers, the EKF/EKS, the UKF/URTSS, the GP-
UKF/GP-URTSS, the CKF/CKS, the Gibbs-filter/smoother, and the GP-ADF/GP-
RTSS. The pendulum has mass m = 1kg and length l = 1m. The state x = [

ϕ̇,ϕ
]T

of the pendulum is given by the angle ϕ (measured anti-clockwise from hang-
ing down) and the angular velocity ϕ̇. The pendulum can exert a constrained
torque u ∈ [−5,5]Nm. We assumed a frictionless system such that the transition
function f is

f
(
x t ,ut

)= t+∆t∫
t

[
u(τ)−0.5ml g sin

(
ϕ(τ)

)
0.25ml 2+I
ϕ̇(τ)

]
dτ , (39)

where I is the moment of inertia and g the acceleration of gravity. Then, the
successor state

x t+1 = x t+∆t
= f

(
x t ,ut

)+w t , (40)

was computed using an ODE solver for (39) with a zero-order hold control signal
u(τ). In (40), we set Cw = diag

(
0.52,0.12). In our experiment, the torque was

sampled randomly according to u ∼U [−5,5]Nm and implemented using a zero-
order-hold controller. Every time increment ∆t = 0.2s, the state was measured
according to

zt = arctan
(−1−l sin(ϕt)

0.5−l cos(ϕt)

)+ vt , with σ2
v = 0.052 . (41)

Note that the scalar measurement (41) solely depends on the angle. Thus, the
full distribution of the latent state x had to be reconstructed using the cross-
correlation information between the angle and the angular velocity.

Trajectories of length T = 6s = 30 time steps were started from a state sampled

from the prior p
(
x0

) =N
(
µ

0
,C0

)
with µ

0
= [

0,0
]T

and C0 = diag
(
0.012, (π/16)2).

For each trajectory, GP models GP f and GPg were learned based on randomly
generated data using either 250 or 20 data points.

Table 2 reports the expected values of the nllx -measure for the EKF/EKS, the
UKF/URTSS, the GP-UKF/GP-URTSS, the GP-ADF/GP-RTSS, and the CKF/CKS

420 Paper I Robust Filtering and Smoothing with Gaussian Processes

Table 2: Expected filtering and smoothing performances (pendulum tracking) with
95% confidence intervals.

Filters nllx Smoothers nllx

EKF [20] 1.6×102 ±29.1 EKS [20] 3.3×102 ±60.5
UKF [13] 6.0±3.02 URTSS [29] 17.2±10.0
CKF [2] 28.5±9.83 CKS [7] 72.0±25.1

GP-UKF250 [16] 4.4±1.32 GP-URTSS?250 10.3±3.85
GP-ADF250 [6] 1.44±0.117 GP-RTSS?250 1.04±0.204
GP-ADF20 [6] 6.63±0.149 GP-RTSS?20 6.57±0.148

when tracking the pendulum over a horizon of 6s, averaged over 1,000 runs. The
? indicates a method developed in this paper. As in the example in Section 4.1,
the nllx -measure emphasizes the robustness of our proposed method: The GP-
RTSS is the only method that consistently reduced the negative log-likelihood
value compared to the corresponding filtering algorithm. Increasing the nllx -
values (red color in Table 2) occured when the filter distribution cannot explain
the latent state/measurement, an example of which is given in Figure 1b. Even
with only 20 training points, the GP-ADF/GP-RTSS outperformed the commonly
used EKF/EKS, UKF/URTSS, CKF/CKS.

We experimented with even smaller signal-to-noise ratios. The GP-RTSS remains
robust, while the other smoothers remain unstable.

5 Discussion and Conclusion

In this paper, we presented GP-RTSS, an analytic Rauch-Tung-Striebel smoother
for GP dynamic systems, where the GPs with SE covariance functions are prac-
tical implementations of universal function approximators. We showed that
the GP-RTSS is more robust to nonlinearities than state-of-the-art smoothers.
There are two main reasons for this: First, the GP-RTSS relies neither on lin-
earization (EKS) nor on density approximations (URTSS/CKS) to compute an
optimal Gaussian approximation of the predictive distribution when mapping
a Gaussian distribution through a nonlinear function. This property avoids in-
coherent estimates of the filtering and smoothing distributions as discussed in
Sec 4.1. Second, GPs allow for more robust “system identification” than standard
methods since they coherently represent uncertainties about the system and

5 Discussion and Conclusion 421

measurement functions at locations that have not been encountered in the data
collection phase. The GP-RTSS is a robust smoother since it accounts for model
uncertainties in a principled Bayesian way.

After training the GPs, which can be performed off-line, the computational com-
plexity of the GP-RTSS (including filtering) is O

(
T

(
E 3 +n2(D3 +E 3))) for a time

series of length T . Here, n is the size of the GP training sets, and D and E are the
dimensions of the state and the measurements, respectively. The computational
complexity is due to the inversion of the D and E-dimensional covariance matri-
ces, and the computation of the matrix Q ∈Rn×n in (28), required for each entry
of a D and E-dimensional covariance matrix. The computational complexity
scales linearly with the number of time steps. The computational demand of
classical Gaussian smoothers, such as the URTSS and the EKS is O

(
T

(
D3 +E 3)).

Although not reported here, we verified the computational complexity experi-
mentally. Approximating the on-line computations of the GP-RTSS by numerical
integration or grids scales poorly with increasing dimension. These problems
already appear in the histogram filter [30]. By explicitly providing equations for
the solution of the involved integrals, we show that numerical integration is not
necessary and the GP-RTSS is a practical approach to filtering in GP dynamic
systems.

Although the GP-RTSS is computationally more involved than the URTSS, the
EKS, and the CKS, this does not necessarily imply that smoothing with the GP-
RTSS is slower: function evaluations, which are heavily used by the EKS/CKS/
URTSS are not necessary in the GP-RTSS (after training). In the pendulum exam-
ple, repeatedly calling the ODE solver caused the EKS/CKS/URTSS to be slower
than the GP-RTSS (with 250 training points) by a factor of two.

The increasing use of GPs for model learning in robotics and control will eventu-
ally require principled smoothing methods for GP models. To our best knowledge,
the proposed GP-RTSS is the most principled GP-smoother since all computa-
tions can be performed analytically exactly, i.e., without function linearization or
sigma/cubature point representation of densities, while exactly integrating out
the model uncertainty induced by the GP distribution.

Code will be made publicly available at http://mloss.org.

http://mloss.org

422 Paper I Robust Filtering and Smoothing with Gaussian Processes

Acknowledgements

This work was partially supported by ONR MURI grant N00014-09-1-1052, by
Intel Labs, and by DataPath, Inc.

References

[1] Brian D. O. Anderson and John B. Moore. Optimal Filtering. Dover Publi-
cations, 2005.

[2] Ienkaran Arasaratnam and Simon Haykin. Cubature Kalman Filters. IEEE
Transactions on Automatic Control, 54(6):1254–1269, 2009.

[3] Karl J. r Aström. Introduction to Stochastic Control Theory. Dover Publica-
tions, Inc., 2006.

[4] Christopher G. Atkeson and Juan C. Santamaría. A Comparison of Direct
and Model-Based Reinforcement Learning. In Proceedings of the 1997 IEEE
International Conference on Robotics and Automation, pages 3557–3564,
1997.

[5] Marc P. Deisenroth. Efficient Reinforcement Learning using Gaussian Pro-
cesses. PhD thesis, Karlsruhe Institute of Technology (KIT), 2010.

[6] Marc P. Deisenroth, Marco F. Huber, and Uwe D. Hanebeck. Analytic
Moment-based Gaussian Process Filtering. In International Conference on
Machine Learning, pages 225–232, 2009.

[7] Marc P. Deisenroth and Henrik Ohlsson. A General Perspective on Gaussian
Filtering and Smoothing: Explaining Current and Deriving New Algorithms.
In American Control Conference, pages 1807–1812, 2011.

[8] Marc P. Deisenroth and Carl E. Rasmussen. PILCO: A Model-Based and
Data-Efficient Approach to Policy Search. In International Conference on
Machine Learning, 2011.

[9] Marc P. Deisenroth, Carl E. Rasmussen, and Dieter Fox. Learning to Control
a Low-Cost Manipulator using Data-Efficient Reinforcement Learning. In
Robotics: Science & Systems, 2011.

References 423

[10] Arnaud Doucet, Simon J. Godsill, and Christophe Andrieu. On Sequen-
tial Monte Carlo Sampling Methods for Bayesian Filtering. Statistics and
Computing, 10:197–208, 2000.

[11] Simon J. Godsill, Arnaud Doucet, and Mike West. Monte Carlo Smoothing
for Nonlinear Time Series. Journal of the American Statistical Association,
99(465):438–449, 2004.

[12] Uwe D. Hanebeck. Optimal Filtering of Nonlinear Systems Based on
Pseudo Gaussian Densities. In Symposium on System Identification, pages
331–336, 2003.

[13] Simon J. Julier and Jeffrey K. Uhlmann. Unscented Filtering and Nonlinear
Estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[14] Rudolf E. Kalman. A new Approach to Linear Filtering and Prediction
Problems. Transactions of the ASME, Journal of Basic Engineering, 82
(Series D)(1):35–45, 1960.

[15] Genshiro Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian
Nonlinear State Space Models. Journal of Computational and Graphical
Statistics, 5(1):1–25, 1996.

[16] Jonathan Ko and Dieter Fox. GP-BayesFilters: Bayesian Filtering using
Gaussian Process Prediction and Observation Models. Autonomous Robots,
27(1):75–90, 2009.

[17] Jus Kocijan, Roderick Murray-Smith, Carl E. Rasmussen, and Bojan Likar.
Predictive Control with Gaussian Process Models. In IEEE Region 8 Eurocon
2003: Computer as a Tool, pages 352–356, 2003.

[18] Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger. Factor
Graphs and the Sum-Product Algorithm. IEEE Transactions on Information
Theory, 47(2):498–519, February 2001.

[19] David J. C. MacKay. Introduction to Gaussian Processes. In Neural Net-
works and Machine Learning, volume 168, pages 133–165. Springer, 1998.

[20] Peter S. Maybeck. Stochastic Models, Estimation, and Control, volume 141.
Academic Press, Inc., 1979.

424 Paper I Robust Filtering and Smoothing with Gaussian Processes

[21] Roderick Murray-Smith, Daniel Sbarbaro, Carl E. Rasmussen, and Agathe
Girard. Adaptive, Cautious, Predictive Control with Gaussian Process
Priors. In The 13th IFAC Symposium on System Identification, pages 1155–
1160, 2003.

[22] Duy Nguyen-Tuong, Matthias Seeger, and Jan Peters. Local Gaussian
Process Regression for Real Time Online Model Learning. In Advances in
Neural Information Processing Systems, pages 1193–1200. 2009.

[23] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[24] Joaquin Quiñonero-Candela, Agathe Girard, Jan Larsen, and Carl E.
Rasmussen. Propagation of Uncertainty in Bayesian Kernel Models—
Application to Multiple-Step Ahead Forecasting. In International Con-
ference on Acoustics, Speech and Signal Processing, pages 701–704, 2003.

[25] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, 2006.

[26] H. E. Rauch, F. Tung, and C. T. Striebel. Maximum Likelihood Estimates of
Linear Dynamic Systems. AIAA Journal, 3(8):1445–1450, August 1965.

[27] Sam T. Roweis and Zoubin Ghahramani. A Unifying Review of Linear
Gaussian Models. Neural Computation, 11(2):305–345, 1999.

[28] Sam T. Roweis and Zoubin Ghahramani. Kalman Filtering and Neural
Networks, chapter Learning Nonlinear Dynamical Systems using the EM
Algorithm, pages 175–220. Wiley, 2001.

[29] Simo Särkkä. Unscented Rauch-Tung-Striebel Smoother. IEEE Transac-
tions on Automatic Control, 53(3):845–849, 2008.

[30] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics.
The MIT Press, 2005.

Paper J
Recursive Gaussian Process

Regression

Authors: Marco F. Huber

Edited version of the paper:

M. F. Huber. Recursive Gaussian Process Regression. In Proceedings of the
38th International Conference on Acoustics, Sound, and Signal Processing
(ICASSP), pages 3362–3366, Vancouver, BC, Canada, May 2013.

Recursive Gaussian Process Regression

Marco F. Huber

AGT International
Darmstadt, Germany

marco.huber@ieee.org

Abstract
For large data sets, performing Gaussian process regression is com-
putationally demanding or even intractable. If data can be processed
sequentially, the recursive regression method proposed in this paper
allows incorporating new data with constant computation time. For
this purpose two operations are performed alternating on a fixed
set of so-called basis vectors used for estimating the latent function:
First, inference of the latent function at the new inputs. Second,
utilization of the new data for updating the estimate. Numerical sim-
ulations show that the proposed approach significantly reduces the
computation time and at the same time provides more accurate esti-
mates compared to existing on-line and/or sparse Gaussian process
regression approaches.

1 Introduction

Gaussian processes (GPs) allow non-parametric learning of a regression function
from noisy data. They can be considered Gaussian distributions over functions
conditioned on the data [11]. In contrast to classical regression, GPs provide not
only a regression function but also provide uncertainty estimates (error bars)
depending on the noise and variability of the data.

Unfortunately, due to their non-parametric nature, GPs require computations
that scale with O(n3) for training, where n is the number of data points. In order
to reduce the computational load, sparse approximations have been proposed
in the recent years (see for example [7, 10, 14, 15, 17–19]). Typically, these ap-
proximations operate on a subset of size s of the training data, which reduces the

428 Paper J Recursive Gaussian Process Regression

computation load to O
(
s2 ·n

)
for training. However, most of these approxima-

tions assume that the whole data set is available prior to the training and thus,
training is performed off-line in a batch mode.

Only a few approaches have been proposed that allow sequential training of
GPs for data that arrives on-line, e.g., from a time series. In [8] for instance,
clusters on the incoming data points are identified and created sequentially.
The assignment of data points to clusters and the number of clusters, however,
depend a threshold value that is heavily application specific and requires care-
ful tuning. For specific kernel functions, the approach proposed in [4] allows
transforming GP regression into a Kalman filtering and smoothing problem that
merely scales with O(n). Unfortunately, this approach so far is only applicable
for one-dimensional inputs.

Similar to [4], the approach proposed in this paper considers GP training a
Bayesian filtering problem. To allow for a large number of inputs of arbitrary
dimension, the regression function is represented by means of a finite set of basis
vectors. Training with incoming data, i.e., updating the mean and covariance
estimate featured by the basis vectors, is performed on-line in a recursive fashion.
Thus, after updating, the newly arrived data points can be discarded, while the
estimate provided by the basis vectors is sufficient for prediction.

2 Problem Statement

For GP regression, it is assumed that a set of data D = {(
x1, y1

)
, . . . ,

(
xn , yn

)}
is

drawn from the noisy process

yi = g
(
xi

)+ε ,

where xi ∈ Rd are the inputs, yi ∈ R are the observations or outputs, and
ε ∼ N

(
0,σ2) is zero-mean Gaussian noise with variance σ2. For brevity rea-

sons, XD ,
[
x1, . . . , xn

]
are all inputs and y ,

[
y1, . . . , yn

]T
are the corresponding

observations in the following.

A GP is used to infer the latent function g (.) from the data D. The GP is com-
pletely defined by a mean function m(x) , E

{
g (x)

}
, which specifies the ex-

pected output value, and a positive semi-definite covariance function k
(
x,x ′),

cov
{

g
(
x
)
, g

(
x ′)}, which specifies the covariance between pairs of inputs and is

2 Problem Statement 429

often called a kernel. Typical examples are the zero mean function m(x) = 0 and
the squared exponential (SE) kernel

k
(
x, x ′)=α2 · exp

(
− 1

2

(
x −x ′)T

Λ−1(x −x ′)) . (1)

It is worth mentioning that the approach proposed in this paper holds for ar-
bitrary mean and covariance functions. In (1), Λ is a diagonal matrix of the
characteristic length-scales for each input dimension and α2 is the variance of
the latent function g . Such parameters of the mean and covariance functions
together with the noise variance σ2 are called the hyperparameters of the GP. In
this paper, it is assumed that the hyperparameters are given and thus, are not
learned from data.

As a GP forms a Gaussian distribution over functions, we can write g (x) ∼
GP

(
m

(
x
)
,k

(
x,x ′)). For any finite set of inputs, the resulting distribution of the

outputs is a multivariate Gaussian. For example, the distribution of the function
value g∗ = g

(
x∗

)
for an arbitrary test input x∗ is a univariate Gaussian with mean

and variance

µg
(
x∗

)= E
{

g∗
}= m∗+kT

∗K−1
x

(
y −m

)
, (2)

σ2
g

(
x∗

)= var
{

g∗
}= k∗∗−kT

∗K−1
x k∗ , (3)

respectively. Here, var{.} is the variance, Kx ,K+σ2I , m∗,m
(
x∗

)
, m,m

(
XD

)
,

k∗, k
(
XD , x∗

)
, k∗∗, k

(
x∗, x∗

)
, and K, k

(
XD ,XD

)
is the kernel matrix.

For GP prediction, i.e., for calculating the distribution for a given set of test inputs
according to (2) and (3), it is necessary to calculate the kernel matrix K, to invert
the matrix Kx , and to multiply Kx with k∗. Both the kernel matrix calculation and
the multiplication scale with O

(
n2), while the inversion even scales with O

(
n3).

Thus, for large data setsD, storing the kernel matrix and solving all calculations is
prohibitive. The following recursive GP regression approach aims at performing
all calculations computationally very efficient on a set of s ¿ n so-called basis
vectors.

Let X,
[
x1, x2, . . . , xs

]
be the matrix of locations of the basis vectors and g , g (X)

the corresponding (unkown) values of the latent function. It is assumed that
the basis vectors remain fixed for all processing steps t = 0,1, . . . Since g (x)
is assumed to be a GP, the distribution p0

(
g
) = N

(
g ;µg

0
,Cg

0

)
of g at the ini-

tial step t = 0 of the recursive processing is Gaussian with mean µg
0
, m

(
X
)

430 Paper J Recursive Gaussian Process Regression

and covariance Cg
0 , k

(
X,X

)
. At an arbitrary step t > 0, new observations

y
t
,

[
yt ,1, yt ,2, . . . , yt ,nt

]T
at inputs Xt ,

[
x t ,1, x t ,2, . . . , x t ,nt

]
become available.

The goal is now to calculate the posterior distribution pt

(
g
∣∣y

1:t

)
, with y

1:t
=(

y
1

, . . . , y
t

)
, by updating the prior distribution of g at step t −1

pt−1, pt−1

(
g
∣∣y

1:t−1

)
=N

(
g ;µg

t−1
,Cg

t−1

)
(4)

with the new observations y
t
.

3 Recursive Processing

One might think of exploiting (2) and (3) for incorporating the new observations.
This however, is not suitable for recursive processing for mainly two reasons.
Firstly, the latest estimate of the latent function in terms of the distribution pt−1

or the mean µg
t−1

and covariance Cg
t−1 is not utilized. Secondly, no correlation or

cross-covariance between X and Xt is provided, which however is of paramount
importance for updating pt−1. Instead, for deriving a recursive algorithm, the
desired posterior distribution is expanded according to

pt = ct

∫
pt

(
y

t

∣∣g , g
t

)
· pt−1

(
g , g

t

∣∣y
1:t−1

)
︸ ︷︷ ︸

=pt

(
g ,g

t

∣∣y
1:t

)
dg

t
(5)

by applying Bayes’ law and by integrating out g
t
, g

(
Xt

)
from the joint distribu-

tion pt

(
g , g

t

∣∣y
1:t

)
. Here, ct is a normalization constant. Based on (5), calculating

the posterior distribution can be performed in two steps: I. Inference, i.e., calcu-

lating the joint prior pt−1

(
g , g

t

∣∣y
1:t−1

)
given the prior pt−1 in (4). II. Update, i.e.,

updating the joint prior with the observations y
t

and integrating out g
t

.

3 Recursive Processing 431

3.1 Inference

In order to determine the joint prior pt−1

(
g , g

t

∣∣y
1:t−1

)
, it is important to empha-

size that the joint distribution p
(
g , g

t

)
is Gaussian with mean and covariance

µ=
[

m
(
X
)

m
(
Xt

)] and C =
[

k
(
X,X

)
k
(
X,Xt

)
k
(
Xt ,X

)
k
(
Xt ,Xt

)] , (6)

respectively. This follows from the fact that g (.) is a GP and any finite repre-
sentation of this GP yields a Gaussian distribution. Thus, the joint prior can be
written as

pt−1

(
g , g

t

∣∣y
1:t−1

)
≈ p

(
g

t

∣∣g)
· pt−1 (7)

=N
(
g

t
;µp

t
,B

)
·N

(
g ;µg

t−1
,Cg

t−1

)
,

with

µp
t
= m

(
Xt

)+ Jt ·
(
µg

t−1
−m

(
X
))

,

B = k
(
Xt ,Xt

)− Jt ·k
(
X,Xt

)
,

Jt = k
(
Xt ,X

)
·k

(
X,X

)−1 .

The first equality in (7) follows from assuming that g
t

is conditionally indepen-

dent of the past observations y
1:t−1

given g . Hence, the conditional distribution

p
(
g

t

∣∣g)
is Gaussian and results from the joint distribution p

(
g , g

t

)
in (6) by

conditioning on g (see for example Chapter 2.6 in [5]).

For solving the product in (7), at first the exponential functions of both Gaussians
are considered. By defining f , g

t
−m

(
Xt

)+ Jt ·m
(
X
)

and utilizing the result of

Lemma 1 in Appendix A, the sum of both exponents can be transformed into

− 1
2

((
f − Jt · g

)T
B−1

(
f − Jt · g

)
+

(
g −µg

t−1

)(
Cg

t−1

)−1
(
g −µg

t−1

))
=

− 1
2

((
g −d

)T
D−1

(
g −d

)
+

(
f − Jt ·µg

t−1︸ ︷︷ ︸
=g

t
−µp

t

)(
Cp

t

)−1
(

f − Jt ·µg
t−1

))
, (8)

432 Paper J Recursive Gaussian Process Regression

with

d ,µg
t−1

+DJT
t B−1

(
f − Jt ·µg

t−1

)
=µg

t−1
+DJT

t B−1
(
g

t
−µp

t

)
,

D−1, JT
t B−1Jt +

(
Cg

t−1

)−1
,

Cp
t ,B+ Jt Cg

t−1JT
t , (9)

where µp
t

and Cp
t are the respective mean and covariance of g

t
. The inverse of (9)

given by (
Cp

t

)−1 = B−1 −B−1Jt DJT
t B−1 (10)

results from applying the Woodbury formula [9]. By employing (10) together
with some basic algebraic transformations, (8) can be rearranged to

− 1
2

((
g −d

)T
D−1

(
g −d

)
+

(
g

t
−µp

t

)T
B−1

(
g

t
−µp

t

)
−(

g
t
−µp

t

)T
B−1Jt DJT

t B−1
(
g

t
−µp

t

))
=− 1

2

((
g −µg

t−1

)
D−1

(
g −µg

t−1

)
−

2
(
g −µg

t−1

)T
JT

t B−1
(
g

t
−µp

t

)
+

(
g

t
−µp

t

)T
B−1

(
g

t
−µp

t

))
.

The right-hand term corresponds to the exponent of a joint Gaussian density

pt−1

(
g ,g

t

∣∣y
1:t−1

)
of g and g

t
with mean and (inverse) covariance

q =
[
µg

t−1
µp

t

]
and Q−1 =

[
D−1 −JT

t B−1

−B−1Jt B−1

]
=

[
Cg

t−1 Cg
t−1JT

t
Jt Cg

t−1 Cp
t

]−1

, (11)

respectively, where the covariance Q on the right-hand side of (11) is obtained
from applying Lemma 2 in Appendix A on Q−1.

Besides the exponential functions, the multiplication in (7) also comprises the
product of the normalization factors of both Gaussians, which can be simplified
according to

1p|2πB| · 1√∣∣2πCg
t−1

∣∣ = 1√
(2π)(nt +m) · |B| ·

∣∣Cg
t−1

∣∣
(a)= 1√

(2π)(nt +m) ·
∣∣Cg

t−1

∣∣ ·
∣∣B+Jt Cg

t−1JT
t −Jt Cg

t−1

(
Cg

t−1

)−1
Cg

t−1JT
t

∣∣ (b)= 1p
|2πQ| ,︸ ︷︷ ︸

=Cp
t

3 Recursive Processing 433

where (a) results from adding the zero Jt Cg
t−1JT

t − Jt Cg
t−1JT

t = 0 and (b) results
from applying (24).

3.2 Update
Given the result of the previous section that the joint prior in (7) is a Gaussian
N

(
q ,Q

)
, the next step is to perform the update and marginalization in (5). For

this purpose, (5) is rearranged to

=pt−1

(
g ,g

t

∣∣y
1:t−1

)︷ ︸︸ ︷
pt =

∫
ct · pt

(
y

t

∣∣g
t

)
· pt−1

(
g

t

∣∣y
1:t−1

)
︸ ︷︷ ︸

=pt

(
g

t

∣∣y
1:t

)
(Kalman filter)

· pt−1

(
g
∣∣g

t
,y

1:t−1

)
dg

t
(12)

under consideration that g is not observed and thus, pt

(
y

t

∣∣g
t

)
is independent

of g . Since pt

(
y

t

∣∣g
t

)
=N

(
y

t
; g

t
,σ2I

)
and pt−1

(
g

t

∣∣y
1:t−1

)
=N

(
g

t
;µp

t
,Cp

t

)
are

both Gaussian, g
t

can be updated easily via a Kalman filter update step. Updating

g and integrating out g
t

is then performed simultaneously.

Applying the well-known Kalman filter update equations yields pt

(
g

t

∣∣y
1:t

)
=

N
(
g

t
;µe

t
,Ce

t

)
with mean and covariance

µe
t
=µp

t
+Gt ·

(
y

t
−µp

t

)
, (13)

Ce
t = Cp

t −Gt Cp
t , (14)

respectively, where Gt = Cp
t ·

(
Cp

t +σ2I
)−1

is the Kalman gain. The multiplication

of the two Gaussians pt

(
g

t

∣∣y
1:t

)
and pt−1

(
g
∣∣g

t
,y

1:t−1

)
in (12) again results in a

joint Gaussian distribution of g and g
t

with mean and covariance

µ
t
=

[
µg

t
µe

t

]
and Ct =

[
Cg

t Lt Ce
t

Ce
t LT

t Ce
t

]

434 Paper J Recursive Gaussian Process Regression

respectively, where Lt ,Cg
t−1JT

t

(
Cp

t

)−1
and

µg
t
=µg

t−1
+Lt ·

(
µe

t
−µp

t

)
, (15)

Cg
t = Cg

t−1 +Lt ·
(
Ce

t −Cp
t

)
·LT

t . (16)

However, since we are merely interested in obtaining the distribution pt =
N

(
g ;µg

t
,Cg

t

)
, i.e., updating the latent function at the basis vectors X in order

to keep the memory and computational complexity bounded over time, g
t

is

integrated out. This corresponds to neglecting the mean µe
t

and covariance Ce
t of

g
t

as well as the cross-covariance Lt Ce
t .

3.3 Summary
Putting all together, at steps t = 1,2, . . . the proposed approach recursively pro-
cesses observations y

t
at the inputs Xt by means of the following set of equations:

In
fe

re
n

ce

Jt = k
(
Xt ,X

)
·k

(
X,X

)−1 , (17)

µp
t
= m

(
Xt

)+ Jt ·
(
µg

t−1
−m

(
X
))

, (18)

Cp
t = k

(
Xt ,Xt

)+ Jt ·
(
Cg

t−1 −k(X,X)
)

·JT
t , (19)

U
p

d
at

e

G̃t = Cg
t−1JT

t ·
(
Cp

t +σ2I
)−1

, (20)

µg
t
=µg

t−1
+ G̃t ·

(
y

t
−µp

t

)
, (21)

Cg
t = Cg

t−1 − G̃t Jt Cg
t−1 . (22)

This recursion commences from the initial meanµg
0
,m

(
X
)

and covariance Cg
0 ,

k
(
X,X

)
of g . The updated mean (21) and covariance (22) result from substituting

µe
t

in (15) with (13) and Ce
t in (16) with (14), respectively, where G̃t = Lt ·Gt . The

effect of both operations, namely inference and update, is illustrated exemplary
in Figure 1.

4 Discussion 435

x

g

? ?

?

(a)
x

g

? ?

?

(b)
x

g

(c)

Figure 1: (a) The black line indicates the true function g , while the gray solid and
dotted lines represent the mean and variance of recursive GP. The circles indicate
the location of the basis vectors X (x-axis) and their mean values µg (y-axis). The
stars indicate new observations. (b) Inferring the mean and covariance of g at
the locations of the new observations from the current recursive GP estimate. (c)
Updating the GP with the new observations gives an improved estimate of the true
function.

4 Discussion

A close inspection of the inference step shows that it has the same structure as
the backward pass of the Rauch-Tung-Striebel (RTS) smoother [12]. In contrast
to classical RTS smoothing, the inference step operates in the input domain and
not in the time domain. It predicts the function value g

(
x∗

)
at any (test) input

x∗ given all information acquired so far and thus, is dual to the prediction (2), (3)
of a classical GP.

So far, it was assumed that the set of basis vectors is fixed. The inference step,
however, can also be utilized for introducing new basis vectors. This might
be of interest in locations where the current estimate of the latent function is
inaccurate. By replacing Xt with

[
X,X′], the inference step provides the initial

mean and covariance as well as the cross-covariance between the new basis
vectors and the old ones.

The computations of the inference step scale with O
(
s2 ·nt

)
due to calculating Jt

in (17), where nt is the number of observations at step t . Here, the inversion of the
kernel matrix k

(
X,X

)
is computationally unproblematic, as it has to be calculated

only once at step t = 0 . Once the gain matrix Jt is calculated, predictions for
a single test input are in O(s) (mean) and O

(
s2) (covariance). Assuming that

all observations are processed at once, predictions of the recursive GP are as
complex as predictions of sparse GP approaches relying on a representation

436 Paper J Recursive Gaussian Process Regression

comparable to the basis vectors, e.g., pseudo-inputs in [15] or subset of regressors
in [18]. In this case, the complexity is in O

(
s2 ·n

)
for initialization as well as O(s)

(mean) and O
(
s2) (covariance) for predictions, respectively. In contrast to most

sparse GP approaches, the proposed method can process new observations
on-line.

The update step scales with O
(
nt · s2), where the complexity results from matrix

multiplications for which more efficient algorithms exist, e.g., Strassen’s algo-
rithm [16]. The inversion in (20) again is not critical as the affected matrix is of
size nt ×nt , where typically nt ¿ s .

5 Simulation Examples

The proposed approach is compared to existing on-line and/or sparse GP ap-
proaches: a full GP (named FGP in the following), the on-line approaches local
GP ([8], LGP) and sparse on-line GP ([2], SOGP), as well as the sparse (but off-line)
approaches Bayesian committee machine ([17], BCM), subset of regressors ([18],
SRM), and sparse GP using pseudo-inputs ([15], SGP). Further, our approach
is applied in three different modes: updating/training the basis vectors with
every observation (RGP1), with a batch of 10 successive observations (RGP10),
or with a batch of all observations (RGPall). In the latter case, RGP becomes an
off-line algorithm. For training the on-line algorithms (LGP, SOGP, RGP1, and
RGP10), the training data is presented sequentially, while for the remaining off-
line algorithms, the training data is processed in a batch. All GP methods are
implemented in MATLAB, where the GPML toolbox1 is utilized for FGP and SGP.

At first, the one-dimensional nonlinear function

y = x
2 + 25 ·x

1+x2 · cos(x)+ε , ε∼N (0,0.1) (23)

is considered as an example. It is similar to the growth model proposed in [6]. To
train the GPs, the inputs xi , i = 1, . . . ,n with n ∈ {50,100,150,200}, are sampled
uniform at random from the interval [−10,10]. For testing, 200 input-observation
pairs are considered. All GPs except of FGP use some sparse representation
consisting of s elements (basis vectors, pseudo-inputs, clusters, etc.), where

1 http://www.gaussianprocess.org/gpml/code

http://www.gaussianprocess.org/gpml/code

5 Simulation Examples 437

s = 20 and s = 40 are considered. In case of the RGPs, the basis vectors are placed
equidistant on the interval [−10,10].

In the second example, the satellite observations of the Global Monitoring for
Environment and Security program (GMES)2 are considered. The inputs are the
two-dimensional measurement locations and the observations are the partic-
ulate matter (PM10) measurements at these locations. The data set comprises
10,000 elements and was recorded at 10th of October 2011. For training, n ∈ {500,
1,000, 1,500, 2,000} elements and for testing 1,000 elements are selected ran-
domly from the data set. For the sparse representations both s = 25 and s = 100
elements are considered. The basis vectors of the recursive GPs are placed on a
regular grid.

For both examples, a zero mean function and the SE kernel (1) are used. All
GP methods use the same hyperparameters. For comparison, two performance
criteria are considered: the total runtime in seconds comprising training and
testing. Further, the negative log-likelihood (nll) of the predicted observations
at the test inputs. For both a lower value indicates a better performance, where
the nll penalizes uncertainty and inconsistency (prediction error). Regarding nll,
FGP acts as the lower bound for all other methods. The averaged results of 100
simulation runs are depicted in Figure 2 and Figure 3 for the first and second
example, respectively.

Among all on-line GP methods RGP1 and RGP10 are the fastest and the most
accurate. However, RGP1 has a significantly higher runtime as RGP10 due to some
overhead when performing inference and update for every single observation.

While BCM cannot compete with RGP regarding runtime and nll, SRM is faster
but has a by far higher prediction error and provides too low variance values, i.e.,
SRM is inaccurate and at the time too confident about its predictions. SGP is as
accurate as RGP for the first example and slightly worse for the second example.
Regarding runtime, SGP is much faster. The proposed RGP however, is an on-line
method that processes all observations only once. Operating SGP in an on-line
fashion would require to revisit all observations acquired so far for each new
input in order to provide updated pseudo-inputs. This of course would lead to
a much higher computation time compared to RGP. Here, RGP clearly benefits
from its recursive structure, which is not present for SGP.

2 http://www.gmes.info/ - Data accessible via ftp://data-portal.ecmwf.int/

http://www.gmes.info/
ftp://data-portal.ecmwf.int/

438 Paper J Recursive Gaussian Process Regression

50 100 150 200

No. observations →
0.001

0.01

0.1

1

10

ti
m

e
/

s
→

50 100 150 200

No. observations →
0.001

0.01

0.1

1

10

ti
m

e
/

s
→

(a) Average runtime for s = 20 (left) and s = 40 (right).

50 100 150 200

No. observations →
1

2

3

4

n
eg

.l
o

g-
li

ke
li

h
o

o
d
→

50 100 150 200

No. observations →
1

5

10

n
eg

.l
o

g-
li

ke
li

h
o

o
d
→

(b) Average nll for s = 20 (left) and s = 40 (right).

FGP

SOGP

RGP1

BCM

RGP10

SRM

RGPall

SGP

LGP

Figure 2: Average runtime and nll of first example according to (23) for different
numbers of observations n and different numbers of sparse elements s. The average
nll values are increased by one in order to have positive values and allow for a log-
scale plot. In the left plot of (b), SRM and BCM have average values higher than four
and thus, are not shown. In the right plot of (b), SRM is not depicted as its average
values are significantly larger than 10.

5 Simulation Examples 439

500 1000 1500 2000

No. observations →
0.001

0.01

0.1

1

10

ti
m

e
/

s
→

500 1000 1500 2000

No. observations →
0.001

0.01

0.1

1

10

ti
m

e
/

s
→

(a) Average runtime for s = 25 (left) and s = 100 (right).

500 1000 1500 2000

No. observations →
-250

-200

-150

-100

-50

0

n
eg

.l
o

g-
li

ke
li

h
o

o
d
→

500 1000 1500 2000

No. observations →
-250

-200

-150

-100

-50

0

50

n
eg

.l
o

g-
li

ke
li

h
o

o
d
→

(b) Average nll for s = 25 (left) and s = 100 (right).

FGP

SOGP

RGP1

BCM

RGP10

SRM

RGPall

SGP

LGP

Figure 3: Average runtime and nll of second example (GMES) for different numbers
of observations n and different numbers of sparse elements s.

440 Paper J Recursive Gaussian Process Regression

For few observations, RGP is slower than FGP due to the overhead of managing
and updating the basis vectors. However, RGP benefits from a large data set as
considered in the second example. Here, RGPall has a lower runtime compared to
FGP since the prediction is less costly. Furthermore, RGP10 also becomes faster
from 1,000 observations on. The same behavior is expected for RGP1 for training
data sets with more than 8,000 observations. If the number of basis vectors is
sufficiently high, RGP can even have nll values similar to FGP.

6 Conclusions

The novel on-line Gaussian process regression approach proposed in this paper
relies on a set of basis vectors that is updated recursively with new observations.
The number of basis vectors and thus, the computation time for updating or
prediction remains constant. Compared to existing on-line GP approaches, the
proposed one is computationally more efficient and provides a higher prediction
accuracy.

Future work is devoted to on-line adjustment of the hyperparameters. Further-
more, an extension towards multi-output GPs (see e.g. [1]) is intended.

A Useful Lemmas

The derivation of the solution for both inference step and update step are based
on the following results.

Lemma 1 (Combination of Quadratic Forms) If B and C are symmetric and
positive definite matrices, then

(
a −Ax

)T B−1 (
a −Ax

)+ (
b −x

)T C−1 (
b −x

) =
(
x − y

)T
D−1

(
x − y

)
+ r ,

where

y = b +DATB−1 (
a −Ab

)
,

D−1 = ATB−1A+C−1 ,

r = (
a −Ab

)T (
B+ACAT)−1 (

a −Ab
)

. 2

References 441

Lemma 2 (Inversion of Block Matrices) If A and D are regular matrices, then

M−1 =
[

A U
V D

]−1

=
[

A−1 +A−1UQ−1VA−1 −A−1UQ−1

−Q−1VA−1 Q−1

]
,

where Q = D−VA−1U is the Schur complement of the block matrix M . Further-
more, the determinant |.| of the matrix M is

|M| = |A| · |Q| . (24)
2

For a proof of Lemma 1, see for example the proof of Lemma A.4, pp. 261–262 in
[13]. Lemma 2 is proved in [3].

References

[1] Philipp Boyle and Marcus Frean. Dependent Gaussian Processes. In
Lawrence K. Saul, Yair Weiss, and Leon Bottou, editors, Advances in Neural
Information Processing Systems, volume 17, pages 217–224. MIT Press,
2005.

[2] Lehel Csató and Manfred Opper. Sparse on-line Gaussian processes. Neu-
ral Computation, 14(3):641–668, March 2002.

[3] W. J. Duncan. Some devices for the solution of large sets of simultaneous
linear equations. Philosophical Magazine Series 7, 35(249):660–670, 1944.

[4] Jouni Hartikainen and Simo Särkkä. Kalman Filtering and Smoothing
Solutions to Temporal Gaussian Process Regression Models. In Proceedings
of IEEE International Workshop on Machine Learning for Signal Processing
(MLSP), pages 379–384, August 2010.

[5] Andrew H. Jazwinski. Stochastic Processes and Filtering Theory. Dover
Publications, Inc., 2007.

[6] Genshiro Kitagawa. Monte Carlo filter and smoother for non-Gaussian
nonlinear state space models. Journal of Computational and Graphical
Statistics, 5(1):1–25, 1996.

442 Paper J Recursive Gaussian Process Regression

[7] Neil Lawrence, Matthias Seeger, and Ralf Herbich. Fast Sparse Gaussian
Process Methods: The Informative Vector Machine. In S. Becker, S. Thrun,
and K. Obermayer, editors, Advances in Neural Information Processing
Systems 15, pages 609–616. The MIT Press, 2003.

[8] Duy Nguyen-Tuong, Matthias Seeger, and Jan Peters. Real-Time Local
GP Model Learning. In Olivier Sigaud and Jan Peters, editors, From Mo-
tor Learning to Interaction Learning in Robots, volume 264 of Studies in
Computational Intelligence, pages 193–207. Springer-Verlag, 2010.

[9] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge
University Press, 3rd edition, 2007.

[10] Ananth Ranganathan, Ming-Hsuan Yang, and Jeffrey Ho. Online Sparse
Gaussian Process Regression and Its Applications. IEEE Transactions on
Image Processing, 20(2):391–404, February 2011.

[11] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, 2006.

[12] H. E. Rauch, F. Tung, and C. T. Striebel. Maximum Likelihood Estimates of
Linear Dynamic Systems. AIAA Journal, 3(8):1445–1450, August 1965.

[13] David J. Salmond. Tracking in Uncertain Environments. PhD thesis, Royal
Aerospace Establishment, Farnborough, Hants, UK, 1989.

[14] Alex J. Smola and Peter Bartlett. Sparse Greedy Gaussian Process Regres-
sion. In T. K. Leen, T. G. Diettrich, and V. Tresp, editors, Advances in Neural
Information Processing Systems 13, pages 619–625. The MIT Press, 2001.

[15] Ed Snelson and Zoubin Ghahramani. Sparse Gaussian processes using
pseudo-inputs. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances
in Neural Information Processing Systems 18, pages 1259–1266. The MIT
Press, 2006.

[16] Volker Strassen. Gaussian Elimination is not Optimal. Numerische Mathe-
matik, 13(4):354–356, August 1969.

[17] Volker Tresp. A Bayesian Committee Machine. Neural Computation,
12(11):2719–2741, 2000.

References 443

[18] Grace Wahba. Spline Models for Observational Data, chapter 7 - Finite-
Dimensional Approximating Subspaces. CBMS-NSF Regional Conference
Series in Applied Mathematics. Society for Industrial and Applied Mathe-
matics, 1990.

[19] Christopher K. I. Williams and Matthias Seeger. Using the Nyström Method
to Speed Up Kernel Machines. In T. K. Leen, T. G. Diettrich, and V. Tresp,
editors, Advances in Neural Information Processing Systems 13, pages 682–
688. The MIT Press, 2001.

Paper K
Recursive Gaussian Process:

On-line Regression and Learning

Authors: Marco F. Huber

Edited version of the paper:

M. F. Huber. Recursive Gaussian Process: On-line Regression and Learning.
Pattern Recognition Letters, vol. 45, pages 85–91, August 2014.

Recursive Gaussian Process:
On-line Regression and Learning

Marco F. Huber

AGT International
Darmstadt, Germany

marco.huber@ieee.org

Abstract
Two approaches for on-line Gaussian process regression with low
computational and memory demands are proposed. The first ap-
proach assumes known hyperparameters and performs regression
on a set of basis vectors that stores mean and covariance estimates of
the latent function. The second approach additionally learns the hy-
perparameters on-line. For this purpose, techniques from nonlinear
Gaussian state estimation are exploited. The proposed approaches
are compared to state-of-the-art sparse Gaussian process algorithms.

1 Introduction

Gaussian processes (GPs) allow non-parametric learning of a regression function
from noisy data and can be considered Gaussian distributions over functions
conditioned on the data [11]. Unfortunately, due to their non-parametric nature,
GPs require computations that scale with O(n3) for training, where n is the
number of data points.

In order to reduce the computational load, sparse approximations have been
proposed in the recent years. In [10] a unifying framework for so-called active set
approaches has been derived. Here, instead of processing the entire training data
set, only a subset of the data points—the active set with s ¿ n data points—is
used. This framework comprises for instance the subset of regressors [14], sparse
on-line GP (SOGP, [2]), or sparse pseudo-input GP (SPGP, [15]). Thanks to the

448 Paper K Recursive Gaussian Process: On-line Regression and Learning

sparse representation, the computational load is reduced to O
(
s2 ·n

)
or even to

O
(
s3) (see the approach proposed in [4]).

GP regression can also be sped up by partitioning the training data into separate
data sets, where for each data set a separate GP is learned (see e.g. [17, 131]). For
calculating the GP prediction, the results of the separate GPs are combined. In
contrast to active set methods, partitioning approaches make use of the entire
training data.

Most of the above approximations assume that the whole data set is available a
priori and thus, training can be performed off-line in a batch mode. Only a few
sparse approaches have been proposed that allow sequential training of GPs for
data that arrives on-line, i.e., streaming data. In [2] for instance, a score value is
assigned to each element of the active set. If a new data point arrives, it is added
to the active set, while an element with the lowest score is eliminated. For specific
kernel functions, the approach proposed in [3] transforms GP regression into a
Kalman state estimation problem that merely scales with O(n). Unfortunately,
this approach so far is only applicable for one-dimensional inputs.

The approaches proposed in this paper allow for both a sparse representation and
on-line processing. For this purpose, the regression function is represented by
means of a finite set of basis vectors. Training with incoming data, i.e., updating
mean and covariance estimates featured by the basis vectors (Section 3) as well as
simultaneously learning hyperparameters (Section 4), is performed recursively
via Bayesian state estimation techniques. After updating the newly arrived data
points can be discarded, while the joint Gaussian state estimate of the regression
function and the hyperparameters is sufficient for prediction.

2 Problem Formulation

For GP regression, it is assumed that a set of data D = {(
x1, y1

)
, . . . ,

(
xn , yn

)}
is

drawn from the noisy process

yi = g
(
xi

)+ε , (1)

where xi ∈Rd are the inputs, yi ∈R are the observations or outputs, and ε ∼
N

(
0,σ2) is zero-mean Gaussian noise with varianceσ2. For brevity reasons, XD =[

x1, . . . , xn

]
are all inputs and y = [

y1, . . . , yn
]T are the corresponding observations

in the following.

2 Problem Formulation 449

A GP is used to infer the latent function g (.) fromD. The GP is completely defined
by a mean function m

(
x
)
, E

{
g
(
x
)}

specifying the expected output value, and
a positive semi-definite covariance function k

(
x,x ′), cov

{
g
(
x
)
, g

(
x ′)}, which

specifies the covariance between pairs of inputs and is often called a kernel. Typ-
ical examples are the zero mean function m

(
x
)= 0 and the squared exponential

(SE) kernel
k(x, x ′) =α2 · exp

(
− 1

2

(
x −x ′)T

Λ−1(x −x ′)) . (2)

In (2)Λ= diag(l1, l2, . . . , ld) is a diagonal matrix of the characteristic length-scales
li for each input dimension and α2 is the variance of the latent function g . Such
parameters of the mean and covariance functions together with the noise stan-
dard deviation σ are called the hyperparameters of the GP. In the following, all
hyperparameters are collected in the vector θ ∈Rr , e.g., θ = [α, l1, . . . , ld ,σ]T com-
prising the parameters of the SE kernel (2) and the noise standard deviation. It is
worth mentioning that the approach proposed in this paper holds for arbitrary
mean and covariance functions.

For any finite set of inputs a GP provides a multivariate Gaussian distribution of
the outputs. For example, the distribution of the function value g∗ = g

(
x∗

)
for

an arbitrary test input x∗ is a univariate Gaussian with mean and variance

µg
(
x∗

)= E{g∗} = m∗+kT
∗K−1

x

(
y −m

)
,

σ2
g

(
x∗

)= var{g∗} = k∗∗−kT
∗K−1

x k∗ ,
(3)

respectively. Here, var{.} is the variance, Kx ,K+σ2I , m∗,m
(
x∗

)
, m,m

(
XD

)
,

k∗, k
(
XD , x∗

)
, k∗∗, k

(
x∗, x∗

)
, and K, k

(
XD ,XD

)
is the kernel matrix.

For GP prediction, i.e., for calculating the distribution for a given set of test in-
puts according to (3), it is necessary to calculate the kernel matrix K, to invert
the matrix Kx , and to multiply Kx with k∗. Both the kernel matrix calculation
and the multiplication scale with O

(
n2), while the inversion even scales with

O
(
n3). Thus, for large data sets D, storing the kernel matrix and solving all calcu-

lations is prohibitive. The following recursive GP approach aims at performing
all calculations computationally very efficient on a set of m ¿ n so-called basis
vectors.

450 Paper K Recursive Gaussian Process: On-line Regression and Learning

3 On-line Regression

At first, let us assume that the hyperparameters are already known and thus, have
not to be learned from data. This assumption will be avoided in Section 4.

In the following, our approach proposed in [5] is summarized, which focuses
on performing on-line regression given a set of m basis vectors. These basis
vectors are located at X,

[
x1, x2, . . . , xm

]
and store local estimates g , g

(
X
)

of
the latent function g (.). Thus, the basis vectors can be considered an active
set allowing a sparse GP representation. In contrast to most other active set
approaches, the basis vectors are updated on-line with new observations y

t

at inputs Xt ,
[
x t ,1, x t ,2, . . . , x t ,nt

]
and time step t = 0,1, . . ., which makes this

approach well suited for streaming data. Also off-line processing is possible by
presenting the data in D in batches to the algorithm.

For all steps t = 0,1, . . . it assumed that the basis vectors are fixed in number

and location. Since g
(
x
)

is assumed to be a GP, the initial distribution p0

(
g
)
=

N
(
g ;µg

0
,Cg

0

)
of g for t = 0 is Gaussian with mean µg

0
,m

(
X
)

and covariance

Cg
0 , k

(
X,X

)
.

The goal is now to calculate the posterior distribution p
(
g
∣∣y

1:t

)
, with y

1:t
com-

prising all observations up to step t , recursively by updating the prior distribution
of g from the previous step t −1

p
(
g
∣∣y

1:t−1

)
=N

(
g ;µg

t−1
,Cg

t−1

)
with the new observations y

t
.

One might think of exploiting (3) for incorporating the new observations. This
however, is not suitable for recursive processing for mainly three reasons. First,
(3) merely allow a prediction for given inputs and no incorporation of new
information. Second, (3) operates directly on the data D. To allow recursive
processing with constant time and memory, not the data D but a distribution

p
(
g
∣∣y

1:t−1

)
sparsely representing D needs to processed. Third, no correlation or

cross-covariance between X and Xt is provided, which however is of paramount

3 On-line Regression 451

importance for updating p
(
g
∣∣y

1:t−1

)
. Instead, for deriving a recursive algorithm,

the desired posterior distribution is expanded according to

=p
(
g ,g

t

∣∣y
1:t−1

)
(inference)︷ ︸︸ ︷

p
(
g
∣∣y

1:t

)
=

∫
ct · p

(
y

t

∣∣g , g
t

)
· p

(
g

t

∣∣g)
· p

(
g
∣∣y

1:t−1

)
︸ ︷︷ ︸

=p
(
g ,g

t

∣∣y
1:t

)
(update)

dg
t

(4)

in two processing steps: (inference) calculating the joint prior p
(
g , g

t

∣∣y
1:t−1

)
given the prior p

(
g
∣∣y

1:t−1

)
, which provides the required correlation information

between X and Xt , and (update) updating the joint prior with the observations y
t
.

The second step follows from applying Bayes’ law and integrating out g
t
, g

(
Xt

)
,

where ct is a normalization constant. The integration is required for maintaining
a constant number of basis vectors.

3.1 Inference

In order to determine the joint prior p
(
g , g

t

∣∣y
1:t−1

)
, the chain rule for probability

distribution is applied, which yields

p
(
g , g

t

∣∣y
1:t−1

)
= p

(
g

t

∣∣g)
· p

(
g
∣∣y

1:t−1

)
(5)

=N
(
g

t
;µp

t
,B

)
·N

(
g ;µg

t−1
,Cg

t−1

)
,

with

µp
t
,m(Xt)+ Jt ·

(
µg

t−1
−m(X)

)
, (6)

B, k(Xt ,Xt)− Jt ·k(X,Xt) , (7)

Jt , k(Xt ,X) ·k(X,X)−1 . (8)

The first equality in (5) follows from assuming that g
t

is conditionally indepen-

dent of the past observations y
1:t−1

given g . As any finite representation of a GP

is Gaussian, this also holds for the joint prior. Hence, the conditional distribution

p
(
g

t

∣∣g)
is Gaussian as well and results from the joint prior by conditioning on g

(see for example Chapter 2.6 in [7]), which results in the second equality.

452 Paper K Recursive Gaussian Process: On-line Regression and Learning

After some algebraic transformations, where some basic properties of Gaussian
distributions and the Woodbury formula is utilized, the product in (5) yields the

joint Gaussian p
(
g ,g

t

∣∣y
1:t−1

)
=N

(
q ;Q

)
of g and g

t
with mean and covariance

q ,

[
µg

t−1
µp

t

]
and Q,

[
Cg

t−1 Cg
t−1JT

t
Jt Cg

t−1 Cp
t

]
, (9)

respectively, and with covariance Cp
t , B+ Jt Cg

t−1JT
t . This inference step co-

incides with the augmented Kalman Smoother proposed in [13], but there no
update step for basis vectors as introduced next is derived.

3.2 Update
The next step is to perform the update and marginalization in (4). For this

purpose, the joint prior p
(
g , g

t

∣∣y
1:t−1

)
= p

(
g

t

∣∣y
1:t−1

)
· p

(
g
∣∣g

t
, y

1:t−1

)
is now

factorized by conditioning on g
t
. Furthermore, the fact that g is not observed is

utilized and thus, p
(

y
t

∣∣g , g
t

)
= p

(
y

t

∣∣g
t

)
is independent of g . Since p

(
y

t

∣∣g
t

)
=

N
(

y
t
; g

t
,σ2I

)
according to (1) and p

(
g

t

∣∣y
1:t−1

)
=N

(
g

t
;µp

t
,Cp

t

)
according to

(9) are both Gaussian, g
t

can be updated easily via a Kalman filter update step.

Updating g and integrating out g
t

is then performed simultaneously.

Applying the well-known Kalman filter update yields p
(
g

t

∣∣y
1:t

)
=N

(
g

t
;µe

t
,Ce

t

)
with mean and covariance

µe
t
,µp

t
+Gt ·

(
y

t
−µp

t

)
,

Ce
t ,Cp

t −Gt Cp
t ,

respectively, where Gt , Cp
t ·

(
Cp

t +σ2I
)−1

is the Kalman gain. The multiplica-

tion of the two Gaussians p
(
g

t

∣∣y
1:t

)
and p

(
g
∣∣g

t
,y

1:t−1

)
again results in a joint

Gaussian distribution of g and g
t

with mean and covariance

µ
t
=

[
µg

t
µe

t

]
and Ct =

[
Cg

t Lt Ce
t

Ce
t LT

t Ce
t

]

4 On-line Learning 453

Algorithm 1 Recursive Gaussian Process (RGP)

. Inference
1: Calculate gain matrix Jt according to (8)
2: Calculate mean µp

t
via (6) and covariance matrix Cp

t via (9)

.Update
3: Calculate gain matrix G̃t according to (12)
4: Calculate mean µg

t
via (10) and covariance matrix Cg

t via (11)

respectively, where Lt ,Cg
t−1JT

t

(
Cp

t

)−1
and

µg
t
=µg

t−1
+ G̃t ·

(
y

t
−µp

t

)
, (10)

Cg
t = Cg

t−1 − G̃t Jt Cg
t−1 , (11)

G̃t = Lt ·Gt = Cg
t−1JT

t ·
(
Cp

t +σ2I
)−1

. (12)

We are merely interested in obtaining the distribution p
(
g
∣∣y

1:t

)
=N

(
g ;µg

t
,Cg

t

)
,

i.e., updating the latent function at the basis vectors X in order to keep the mem-
ory and computational complexity bounded over time, and thus g

t
is integrated

out. This corresponds to neglecting the mean µe
t

and covariance Ce
t of g

t
as well

as the cross-covariance Lt Ce
t .

Putting all together, at steps t = 1,2, . . . the proposed approach named recursive
GP (RGP) recursively processes observations y

t
at the inputs Xt as listed in

Algorithm 1. This recursion commences from the initial mean µg
0
= m(X) and

covariance Cg
0 = k(X,X) .

4 On-line Learning

In this section, the assumption of a-priori known hyperparameters is relaxed.
Instead, the goal is now to learn the hyperparameters θ simultaneously with
estimating the values of the latent function g (.) at the basis vectors. This is
achieved by formulating the learning part as a recursive parameter estimation
problem, which can be performed together with the function value estimation.
Similar to Section 3, this boils down to calculating a joint posterior distribution

454 Paper K Recursive Gaussian Process: On-line Regression and Learning

p
(
z t

∣∣y
1:t

)
= N

(
z t ;µz

t
,Cz

t

)
, where zT

t ,
[

g T,θT
t

]
is the joint hidden state with

mean and covariance

µz
t
,

[
µg

t
µθ

t

]
, Cz

t ,

[
Cg

t Cgθ
t

Cθg
t Cθ

t

]
.

Starting point for this calculation is a joint prior distribution p
(
z t−1

∣∣y
1:t−1

)
at

step t−1, which is updated with the new observations y
t
. This requires the follow-

ing two operations: (inference) calculating a joint distribution p
(
z t−1, g

t

∣∣y
1:t−1

)
by exploiting the results of Section 3.1, and (update) incorporation of the new

observations y
t

and marginalization to obtain p
(
z t

∣∣y
1:t

)
.

4.1 Inference
To incorporate the new inputs Xt , it is necessary to infer the latent function g (.) at
Xt . For this purpose, the intermediate result (9) derived in Section 3.1 is exploited.
The part of the mean q and the covariance Q regarding g

t
can alternatively be

calculated by employing a Kalman predictor on the linear state-space model

g
t
= Jt · g +w t , w t ∼N (b,B) , (13)

where b,m(Xt)− Jt ·m(X) and B is according to (7). In order to also correlate g
t

with the hyperparameters, the model in (13) is extended to a state-space model
given by [

z t−1
g

t

]
=

 I 0
0 I

Jt
(
θt−1

)
0

︸ ︷︷ ︸
,At (θt−1)

·

[
g

θt−1

]
︸ ︷︷ ︸

z t−1

+ w t , (14)

where the noise w t ∼N
(
µw

t
,Cw

t

)
is Gaussian with mean and covariance

µw
t
,

 0
0

b
(
θt−1

)
 , Cw

t ,

0 0 0
0 0 0
0 0 B

(
θt−1

)
 , (15)

4 On-line Learning 455

respectively. Please note, that we now made the dependence on the hyperparam-
eters explicit. The first two rows in (14) and (15) are merely an identity mapping
of the given joint state z t−1, while the last row corresponds to (13).

Based on model (14), performing a prediction would yield the desired joint distri-

bution p
(
z t−1, g

t

∣∣y
1:t−1

)
. Unfortunately, the model is nonlinear with respect to

the hyperparameters θt−1 and thus, the prediction cannot be performed exactly
in closed form. An approximate prediction has to be employed instead. In order
to keep the approximation error bounded, we exploit the fact that the model in
(14) is conditionally linear, i.e., for a given hyperparameter the model is linear
and prediction can be performed exactly via the Kalman predictor.

For conditionally linear models, efficient prediction techniques have been pro-
posed in [1]. Here, for the nonlinear part—the hyperparameters in our case—a
collection of so-called sigma points θ̂i is selected and given weights ωi , i = 1. . . s.
The mostly employed selection scheme for sigma points, which is also applied
here, is the unscented transform [8]. However, any sigma point algorithm can
be employed for the proposed GP learning approach, see for instance [6, 88].
Compared to Monte Carlo sampling, the sigma points have the benefit of being
deterministically selected and the sample mean as well as the sample covariance
coincide with the mean µθ

t−1
and covariance Cθ

t−1.

For each sigma point θ̂i a Kalman predictor is applied on (14). Combining the
individual predictions yields the mean and covariance

µp
t
=

s∑
i=1

ωi ·µp
i

, (16)

Cp
t =

s∑
i=1

ωi ·

((
µp

i
−µp

t

)(
µp

i
−µp

t

)T +Cp
i

)
(17)

of the joint distribution p
(
z t−1, g

t

∣∣y
1:t−1

)
≈N

(
µp

t
,Cp

t

)
with

µp
i
,At

(
θ̂i

)[µg
t−1

+St ·
(
θ̂i −µθt−1

)
θ̂i

]
+µw

t

(
θ̂i

)
, (18)

Cp
i ,At

(
θ̂i

)[Cg
t−1 −St Cθg

t−1 0
0 0

]
At

(
θ̂i

)T +Cw
t

(
θ̂i

)
(19)

and St = Cgθ
t−1(Cθ

t−1)−1.

456 Paper K Recursive Gaussian Process: On-line Regression and Learning

4.2 Update
In order to incorporate the new observations y

t
in a very computationally ef-

ficient manner, the update is performed in two steps. For this purpose, we
decompose the joint distribution into an observed and an unobserved part ac-
cording to

p
(
z t

∣∣y
1:t

)
=

∫
p

(
g ,θ−t

∣∣σ, g
t

)
︸ ︷︷ ︸

unobserved

· p
(
σ, g

t
|y

1:t

)
︸ ︷︷ ︸

observed

dg
t

,

where θ−t indicates the vector of all hyperparameters excluding σ. The ob-

servable state oT
t ,

[
σ, g T

t

]
directly affects the observations y

t
according to (1)

and thus, can be directly updated. In the second step, correlation in the joint

distribution p
(
z t−1, g

t

∣∣y
1:t−1

)
is exploited for updating the unobservable part

uT
t−1 ,

[
g T,

(
θ−t

)T
]

, where the decomposition of mean µp
t

and covariance Cp
t

regarding ut−1 and ot is according to

µp
t
=

[
µu

t−1
µo

t

]
, Cp

t =
[

Cu
t−1 Cuo

t
Cou

t Co
t

]
.

This two-step procedure reduces the computational demand significantly as
smaller matrices are multiplied and inverted.

Update Observable State The sigma point technique utilized for the infer-
ence step is one way for updating the observable state. However, to not introduce
approximation errors, the process model (1) is reformulated to

yi = g (xi)+σ · v , v ∼N (0,1) , (20)

with v being uncorrelated with σ. The model (20) is equivalent to (1) since
ε = σ · v with identical mean and variance. Here, the standard deviation σ of
the observation noise is made explicitly accessible. This simplifies the update,
as the mean and covariance of the observations as well as the cross-covariance
between observable state and observations can be calculated exactly in closed
form according to

µy
t
= E

{
y

t

}
= E

{
g

t
+σ · v

}
= E

{
g

t

}
, (21)

Cy
t = cov

{
y

t

}
= cov

{
g

t

}
+E

{
σ2} ·I , (22)

4 On-line Learning 457

Coy
t = cov

{
ot , y

t

}
= cov

{
ot , g

t

}
, (23)

with E
{
σ2}= var{σ}+E{σ}2, where E{σ}, E

{
g

t

}
are the elements of µo

t
and var{σ},

cov
{

g
t

}
, cov

{
ot , g

t

}
are the elements of Co

t .

Assuming that the observed state ot and the observations y
t

are jointly Gaussian

distributed—a typical assumption in Gaussian filters like the unscented Kalman
filter—updating the observed state can be performed by conditioning on the

observations, which yields the desired conditional distribution p
(
σ, g

t

∣∣y
1:t

)
≈

N
(
µe

t
,Ce

t

)
with mean and covariance according to

µe
t
=µo

t
+Gt ·

(
y

t
−µy

t

)
, (24)

Ce
t = Co

t −Gt ·Cy
t ·GT

t , (25)

with gain matrix Gt = Co,y
t

(
Cy

t

)−1
and µy

t
, Cy

t , Coy
t according to (21)–(23).

Update Joint State By means of (24) and (25) it is now possible to update the
unobserved part. Therefore, the results in [1] are exploited, which yields the

distribution p
(
g ,θ−t

∣∣σ, g
t

)
=N

(
µu

t
,Cu

t

)
with mean and covariance

µu
t
=µu

t−1
+Lt ·

(
µe

t
−µo

t

)
, (26)

Cu
t = Cu

t−1 +Lt ·
(
Ce

t −Co
t

)
·LT

t , (27)

where Lt = Cuo
t

(
Co

t

)−1. It is worth mentioning that this update has the same struc-
ture as the backward pass of the Rauch-Tung-Striebel smoother [12]. To finalize

the update step and thus to obtain the joint posterior distribution p
(
z t

∣∣y
1:t

)
=

N
(
z t ;µz

t
,Cz

t

)
with updated basis vectors and hyperparameters, the results in

(24)–(27) are combined according to

µz
t
=

[
µu

t
hT ·µe

t

]
, Cz

t =
[

Cu
t Lt Ce

t h
hTCe

t LT
t hTCe

t h

]
(28)

with hT, [1,0,0, . . . ,0] . The first row in (28) corresponds to marginalizing out g
t
.

458 Paper K Recursive Gaussian Process: On-line Regression and Learning

Algorithm 2 Recursive Gaussian Process with hyperparameter learning (RGP?)

. Inference

1: Draw sigma points
(
ωi , θ̂i

)
, i = 1, . . . ,s from N

(
µθ

t−1
, Cθ

t−1

)
2: For each sigma point determine µp

i
, Cp

i by means of (18) and (19)

3: Calculate µp
t

and Cp
t according to (16) and (17)

.Update
4: Calculate µy

t
, Cy

t , and Coy
t according to (21)–(23)

5: Update mean µe
t

and covariance Ce
t of observed state

by means of (24) and (25), respectively
6: Update mean µu

t
and covariance Cu

t of unobserved state

by means of (26) and (27), respectively
7: Calculate mean µz

t
and covariance Cz

t of joint state z t by means of (28)

The simultaneous regression and hyperparameter learning approach proposed
above is named recursive GP with learning (RGP?) and is summarized in Algo-
rithm 2.

5 Discussion

To predict the latent function g (.) for non basis vectors, e.g., for plotting the
estimate, the steps 1–4 have to be performed. Similarly, additional basis vectors
can be introduced, e.g., in order to refine the resolution or improve the accuracy.
For this purpose, the inference step has to be applied, where Xt now contains
the location of the additional basis vectors.

Directly modeling some of the hyperparameters by means of a Gaussian distri-
bution may not be appropriate in some cases. For instance, the length-scale
hyperparameters of the SE kernel in (2) have to be positive. To account for such
constraints, a standard trick in GP regression is to transform the hyperparameters
first and then to train the transformed parameters. After training, the inverse
transformation is applied in order to obtain the original hyperparameters. In
case of positive hyperparameters, the logarithm for transforming and the expo-
nential function as inverse transformation are common. RGP? can directly be
used to also train/estimate transformed hyperparameters.

6 Results 459

Assuming Gaussian noise ε in (1) is not reasonable for every application. Cap-
turing a non-Gaussian distribution by the proposed methods can for instance

be achieved via warping as proposed in [16]. Alternatively, p
(
g
∣∣y

1:t−1

)
could be

represented by means of a mixture of Gaussians.

RGP is exact in all computations, i.e., no approximations are employed despite
the fact that only a fixed set of basis vectors is used. RGP? instead requires two
approximations: the sigma point approximation of θt in the inference step and
the jointly Gaussian assumption of observations and observed state in the update
step. Furthermore, if σ is not correlated with any other element of the joint
state z t , it will not be correlated with g

t
in the inference step. This correlation

however is important to learn σ as well. This drawback can be compensated
by ensuring that the initial covariance Cθ

0 has non-zero off-diagonal elements.

In the simulation (see Section 6), Cθ
0 is almost a diagonal matrix, except of the

values that describe the correlation between σ and all other hyperparameters.
Here, full (positive) correlation is assumed, i.e., the values of the corresponding
line and column in Cθ

0 are chosen in such a way that the sum of the off-diagonal
values is equal to the diagonal value–this satisfies the row sum and the column

sum criterion. The initial cross-covariance Cg ,θ
0 is assumed to be a zero matrix.

The computation and memory costs of RGP? for a single time step t scale with
O

(
s ·nt · (m + r)2 +n3

t

)
and with O

(
(m + r)2), respectively, where s is the number

of sigma points, nt is the number of observations at step t , m is the number of
basis vectors, and r is the dimension of θ. In case of the employed unscented
transform to generate the sigma points, s = 2r +1 and thus scales linearly with
the number of hyperparameters. The costs of RGP are even less and scale with
O

(
nt ·m2) for computations and O

(
m2) for memory. If at each step t the same

number of observations is processed, than the computational and memory costs
are constant for each step for both RGP and RGP?. Furthermore and in contrast
to a full GP the computational and memory costs do not increase over time, i.e.,
when more and more observations become available.

6 Results

The proposed approaches are compared to existing GP algorithms: a standard
GP, SOGP, and SPGP. All methods are implemented in MATLAB by means of the
GPML toolbox (http://www.gaussianprocess.org/gpml/code).

http://www.gaussianprocess.org/gpml/code

460 Paper K Recursive Gaussian Process: On-line Regression and Learning

For all experiments, two different covariance functions are considered: the SE
kernel (2) as well as the sum of SE kernel and the so-called neural network (NN)
kernel

k
(
x, x ′)=β2 sin−1

(
xTΛ−2x′p

f (x) f (x′)

)
(29)

with f
(
x
) = 1+ xTΛ−2x, signal variance β2, and the diagonal matrix Λ of char-

acteristic length-scales. While the SE kernel is stationary, i.e., it is a function of
∆x , x − x ′, the NN kernel is non-stationary. Thus, also the sum of SE and NN
kernel—denoted as SE+NN in the following—allows modeling non-stationary
processes.

To train the GP methods, at every step t a set of observations y
t

at inputs Xt

is randomly selected from a data set. At the end of training, the regression
performance of the different approaches is evaluated and compared using a
randomly selected test data set. As performance criteria we employ the root mean
square error (rmse), the negative log-likelihood (nll), and the total computation
time. For each experiment, 50 Monte Carlo (MC) runs are performed.

Full GP and RGP require off-line learning of the hyperparameters. Therefore, 100
input-observation pairs are selected randomly and evidence maximization is
performed [11]. Then, the actual training takes place. SOGP and RGP? instead,
learn the hyperparameters on-line by exploiting the data provided at step t , while
SPGP learns the hyperparameters off-line after collecting all data. The number
of active set elements is identical for all approaches.

6.1 Synthetic Data
At first data generated by means of two different synthetic functions are consid-
ered. The first function

y = x
2 + 25 ·x

1+x2 · cos(x)+ε , ε∼N (0,0.1) (30)

is smooth but non-stationary. It is similar to the growth model proposed in [9]. At
each step t , 40 input-observation pairs are selected randomly from the interval
[−10,10]. In total 100 steps are performed. The sparse representation comprises
50 elements, which are placed equidistant on the interval [−10,10] . As second
function we consider

y =N (0.6,0.04)+N (0.15,0.0015)+4· H(0.3)+ε , (31)

6 Results 461

where H(.) is the Heaviside step function with H(a) = 0 if x ≤ a and H(a) = 1
if x > a. This function has a discontinuity at x = 0.3 and was considered as a
benchmark in [18]. The noise ε has variance σ2 = 0.16. A total of 70 steps are
performed, with 50 data points per step drawn from [−2,2]. On this interval, 30
active set elements are placed equidistant.

In Figure 1a on the next page, an exemplary regression result of RGP? with
SE+NN kernel is depicted. The true function is accurately reconstructed. As
shown in Figure 1b, the hyperparameters are adjusted over time and converge.
This leads to improved regression results compared to the other hyperparameter
learning approaches SOGP and SPGP as can be seen in Table 1. This holds for
both covariance functions, whereas SE+NN yields better results as it is possible
to capture the non-stationarity thanks to the non-stationary NN kernel (29).
Compared to a full GP, RGP? is slightly inferior. The off-line hyperparameter
optimization provides optimal results and RGP? cannot improve further. With
the optimal hyperparameters however, RGP performs close to a full GP but with
significantly lower runtime.

The results in Table 2 indicate that off-line hyperparameter optimization is not
always optimal. Here, the hyperparameters learned by RGP? result in better
estimates compared to all other algorithms with at the same time lower com-

Table 1: Average rmse, nll, and runtime for function (30).
SE SE+NN

rmse nll time in s rmse nll time in s

Full GP 0.31 ± 0.02 0.25 ± 0.05 0.82 0.30 ± 0.02 0.24 ± 0.06 1.46
RGP 0.31 ± 0.02 0.26 ± 0.06 0.16 0.31 ± 0.03 0.24 ± 0.06 0.11

RGP? 0.37 ± 0.02 0.41 ± 0.14 0.65 0.35 ± 0.05 0.34 ± 0.12 1.81
SOGP 1.18 ± 0.03 7.49 ± 0.4 0.93 0.44 ± 0.03 0.80 ± 0.13 2.58
SPGP 0.54 ± 0.02 1.15 ± 0.11 13.05 0.39 ± 0.02 0.51 ± 0.09 24.40

Table 2: Average rmse, nll, and runtime for function (31).
SE SE+NN

rmse nll time in s rmse nll time in s

Full GP 1.38 ± 0.41 1.70 ± 0.33 0.92 1.04 ± 0.43 1.41 ± 0.35 2.57
RGP 1.40 ± 0.38 1.98 ± 0.40 0.45 1.12 ± 0.35 1.86 ± 0.19 0.48

RGP? 0.98 ± 0.11 1.48 ± 0.23 0.38 0.88 ± 0.10 1.39 ± 0.15 1.14
SOGP 1.68 ± 0.07 2.89 ± 0.17 0.8 1.68 ± 0.07 2.88 ± 0.17 2.21
SPGP 1.63 ± 0.10 1.91 ± 0.06 5.6 1.65 ± 0.07 1.93 ± 0.05 10.85

462 Paper K Recursive Gaussian Process: On-line Regression and Learning

0 50 100
t →

0

2

4

θ
1
→

0 50 100
t →

4

6

8

10

θ
2
→

0 50 100
t →

0.26

0.28

0.3

θ
3
→

0 50 100
t →

0.4

0.6

0.8

1

θ
4
→

0 50 100
t →

10

20

30
θ

5
→

RGB?SE+NN

RGB?SE
true
training examples

(a) Evolution of the hyperparameters of RGP? with SE (blue, solid) and SE+NN
covariance function (red, dashed), where θ1 = l1 (length-scale), θ2 = α1 (signal
standard deviation), θ3 = σ (noise standard deviation) are the parameters of the
SE kernel and θ4 = l2 (length-scale), θ5 = β (signal standard deviation) are the
parameters of the NN kernel.

-10 -5 0 5 10
x →

-10

-5

0

5

10

g
(x

)→

(b) True function (black, dashed line), regression result by RGP?

with SE+NN covariance function together with 99% confidence area,
and the training examples of step t = 100 (black crosses).

Figure 1: Exemplary regression result of proposed approach for function (30).

6 Results 463

1 50 100
x →

1

50

100

y
→

(a) All training data.

1 50 100
x →

1

50

100

y
→

(b) SOGP.

1 50 100
x →

1

50

100

y
→

(c) SPGP.

1 50 100
x →

1

50

100

y
→

(d) RGP?.

0 1 2

Figure 2: Particulate matter estimates of different approaches.

putational load. It is worth mentioning that RGP? is the only sparse approach
that really exploits the properties of the SE+NN kernel resulting in an improved
regression compared to the SE kernel.

6.2 Particulate Ma�er Data
Here, satellite observations of the Global Monitoring for Environment and Secu-
rity program (http://www.gmes.info/, data via ftp://data-portal.ecmwf.

http://www.gmes.info/
ftp://data-portal.ecmwf.int/
ftp://data-portal.ecmwf.int/
ftp://data-portal.ecmwf.int/

464 Paper K Recursive Gaussian Process: On-line Regression and Learning

int/) are considered. The inputs are 2D measurement locations and the obser-
vations are particulate matter (PM10) measurements at these locations. The data
set recorded at October 10, 2011 comprises 10,000 elements. For each MC run,
100 active set elements are distributed randomly over the input domain.

Merely the SE covariance function is employed as the SE+NN covariance func-
tion does not lead to any improvement. The average performance is listed in
Table 3. While all GP approaches except of SOGP have a similar rmse, there
is a strong difference in terms of nll. Here, RGP? performs best as it provides
lower prediction covariances and thus, is more certain about its estimates. The
deviation of SOGP can be explained by Figure 2 on the next page. Occasionally,
SOGP fails in accurately modeling the high PM10 concentrations in the upper
part and it overfits around region (10,40). SPGP behaves similarly, but with much
lower deviation from the ground truth. RGP? instead models the concentrations
very accurately and even outperforms the full GP, as better hyperparameters are
learned from the data.

Table 3: Average rmse, nll, and runtime for PM10 data.
rmse nll time in s

Full GP 0.59 ± 0.01 1337.37 ± 217.92 0.18
RGP 0.59 ± 0.02 82.20 ± 24.48 0.06

RGP? 0.56 ± 0.01 45.47 ± 9.41 0.89
SOGP 0.86 ± 0.01 598.34 ± 20.22 1.58
SPGP 0.57 ± 0.01 114.83 ± 22.44 13.87

7 Conclusion and Future Work

Two novel approaches for on-line GP regression have been proposed. Both
approaches are especially well suited for streaming data. Given the hyperparam-
eters, the first approach provides similar performance than a full GP, but with
significantly lower computation and memory costs. If the hyperparameters are
unknown, our second approach is able to learn the hyperparameters on-line
from data. Here, the regression performance is comparable to or even better
than state-of-the-art approaches, but with lower computational demand. Future
work is devoted to adjust the location and number of the basis vectors over time.

ftp://data-portal.ecmwf.int/
ftp://data-portal.ecmwf.int/
ftp://data-portal.ecmwf.int/

References 465

References

[1] Frederik Beutler, Marco F. Huber, and Uwe D. Hanebeck. Gaussian Fil-
tering using State Decomposition Methods. In Proceedings of the 12th
International Conference on Information Fusion (Fusion), pages 579–586,
Seattle, Washington, July 2009.

[2] Lehel Csató and Manfred Opper. Sparse on-line Gaussian processes. Neu-
ral Computation, 14(3):641–668, March 2002.

[3] Jouni Hartikainen and Simo Särkkä. Kalman Filtering and Smoothing
Solutions to Temporal Gaussian Process Regression Models. In Proceedings
of the IEEE Intl. Workshop on Machine Learning for Signal Processing, pages
379–384, August 2010.

[4] James Hensman, Nicolo Fusi, and Neil D. Lawrence. Gaussian Processes for
Big Data. In Proceedings of the 29th Conference on Uncertainty in Artificial
Intelligence, Bellevue, Washington, USA, 2013.

[5] Marco F. Huber. Recursive Gaussian Process Regression. In Proceedings of
the 38th International Conference on Acoustics, Sound, and Signal Process-
ing (ICASSP), pages 3362–3366, Vancouver, BC, Canada, May 2013.

[6] Kazufumi Ito and Kaiqi Xiong. Gaussian Filters for Nonlinear Filtering
Problems. IEEE Transactions on Automatic Control, 45(5):910–927, May
2000.

[7] Andrew H. Jazwinski. Stochastic Processes and Filtering Theory. Dover
Publications, Inc., 2007.

[8] Simon J. Julier and Jeffrey K. Uhlmann. Unscented Filtering and Nonlinear
Estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[9] Genshiro Kitagawa. Monte Carlo filter and smoother for non-Gaussian
nonlinear state space models. Journal of Computational and Graphical
Statistics , 5(1), 1996.

[10] Joaquin Quiñonero-Candela and Carl E. Rasmussen. A Unifying View of
Sparse Approximate Gaussian Process Regression. Journal of Machine
Learning Research, 6:1939–1959, 2005.

[11] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, 2006.

466 Paper K Recursive Gaussian Process: On-line Regression and Learning

[12] H. E. Rauch, F. Tung, and C. T. Striebel. Maximum Likelihood Estimates of
Linear Dynamic Systems. AIAA Journal, 3(8):1445–1450, August 1965.

[13] Steven Reece and Stephen Roberts. An Introduction to Gaussian Processes
for the Kalman Filter Expert. In Proceedings of the 13th International
Conference on Information Fusion, Edinburgh, UK, 2010.

[14] Alex J. Smola and Peter Bartlett. Sparse Greedy Gaussian Process Regres-
sion. In T. K. Leen, T. G. Diettrich, and V. Tresp, editors, Advances in Neural
Information Processing Systems 13, pages 619–625. The MIT Press, 2001.

[15] Ed Snelson and Zoubin Ghahramani. Sparse Gaussian processes using
pseudo-inputs. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances
in Neural Information Processing Systems 18, pages 1259–1266. The MIT
Press, 2006.

[16] Edward Snelson, Carl Edward Rasmussen, and Zoubin Ghahramani.
Warped Gaussian Processes. In Advances in Neural Information Processing
Systems 16. The MIT Press, 2004.

[17] Volker Tresp. A Bayesian Committee Machine. Neural Computation,
12(11):2719–2741, 2000.

[18] Sally A. Wood, Wenxin Jian, and Martin Tanner. Bayesian mixture of splines
for spatially adaptive nonparameteric regression. Biometrika, 89(3):513–
528, 2002.

Paper L
Optimal Stochastic Linearization

for Range-Based Localization

Authors: Frederik Beutler, Marco F. Huber, and Uwe D. Hanebeck

Edited version of the paper:

F. Beutler, M. F. Huber, and U. D. Hanebeck. Optimal Stochastic Lineariza-
tion for Range-Based Localization. In Proceedings of the 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
5731–5736, Taipei, Taiwan, October 2010.

Optimal Stochastic Linearization
for Range-Based Localization

Frederik Beutler∗, Marco F. Huber∗∗, and Uwe D. Hanebeck∗

∗ Intelligent Sensor-Actuator-Systems
Laboratory (ISAS)

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{beutler|uwe.hanebeck}@ieee.org

∗∗ Variable Image Acquisition and
Processing Research Group

Fraunhofer Institute of Optronics, System
Technologies and Image Exploitation IOSB

Karlsruhe, Germany
marco.huber@ieee.org

Abstract
In range-based localization, the trajectory of a mobile object is es-
timated based on noisy range measurements between the object
and known landmarks. In order to deal with this uncertain informa-
tion, a Bayesian state estimator is presented, which exploits optimal
stochastic linearization. Compared to standard state estimators like
the Extended or Unscented Kalman Filter, where a point-based Gaus-
sian approximation is used, the proposed approach considers the
entire Gaussian density for linearization. By employing the common
assumption that the state and measurements are jointly Gaussian,
the linearization can be calculated in closed form and thus analytic
expressions for the range-based localization problem can be derived.

1 Introduction

In applications such as mobile robot navigation or telepresence, the position of
a moving object is often localized based on range measurements between the
object and known landmarks. These ranges can for example be measured by
times of arrival or field strengths [10].

Existing range-based localization algorithms can be divided into two classes.
Approaches of the first class assume exact (or almost exact) range measurements.

470 Paper L Optimal Stochastic Linearization for Range-Based Localization

As long as this assumption is satisfied, closed-form localization approaches
as those in [1, 2, 4, 6, 11], gradient descent algorithms, or methods based on
linearization via Taylor-series expansion perform very well. However, these
approaches merely allow for a static localization, i.e., a separate localization
is performed at every time step. Furthermore, accurate range measurements
require specialized and expensive hardware.

Dealing with inaccurate measurements that may arise for example from signal
strength information or ultrasonic range finders requires range-based localiza-
tion approaches from the second class. Based on probabilistic models that
capture measurement uncertainties—for instance arising from measurement
noise or modeling errors—the object’s position and velocity can be estimated by
means of a Bayesian estimator in a recursive fashion. This allows for dynamic
localization, i.e., the combination of dead reckoning and static localization, for a
smoother and more robust localization.

Generally, a closed-form evaluation of the equations of the Bayesian estimator is
not possible due to nonlinearities in the measurement model and the object’s
dynamics model. Thus, approximate estimators like the extended Kalman fil-
ter (EKF) [9] or the unscented Kalman filter (UKF) [5] are typically employed,
particularly for range-based localization.

In this paper, we proposed an analytically solvable estimator. For this purpose,
the standard measurement model consisting of the Euclidean norm between
object position and landmark position affected by additive noise is slightly modi-
fied by moving the noise into the Euclidean norm and by considering squared
ranges. Based on this modification, we derive an analytic expression of the first
two moments, i.e., mean and covariance, characterizing the object’s position and
velocity estimates. This analytic moment calculation (AMC) can be considered
as Gaussian estimation employing stochastic linearization. In contrast to the
point-based Gaussian estimators such as the EKF or the UKF, the proposed AMC
algorithm considers the entire Gaussian density for linearization, leading to more
accurate localization results.

The structure of the paper is as follows. The problem formulation in Section 2
provides the modified measurement model and the object’s dynamics model. In
Section 3, the general form of the proposed state estimator is described. Based
on the modified measurement model, the moments can be calculated in closed
form, which is shown in Section 4. In Section 5, the proposed algorithm is
compared with the EKF, the UKF, and a closed-form solution via simulations and
experiments. Conclusions and an outlook to future work are given in Section 6.

2 Problem Formulation 471

2 Problem Formulation

In this paper, dynamic localization of a mobile object is considered. The dynamic

state of the object is described by means of the state vector xT
k =

[
xT

k,P , xT
k,V

]
comprising the object’s position xk,P ∈ R3 and velocity xk,V ∈ R3 in three-
dimensional space. Here, k = 0,1, . . . is the discrete time index.

2.1 Dynamics Model
The dynamic behavior—the motion—of the object is described by means of the
linear discrete-time dynamic system

xk+1 = A · xk +w k , (1)

where the noise w k is assumed to be zero-mean white Gaussian. For a position
velocity model [12], the matrix A and the covariance of the process noise Cw are
given by

A =
[

I T ·I
0 I

]
, Cw =

 T 3

3 Cw
c

T 2

2 Cw
c

T 2

2 Cw
c T ·Cw

c

 ,

respectively, where T is the sampling time and I is the identity matrix of adequate
dimension. Cw

c is the process noise of the covariance from the continuous time
system model, where Cw

c = diag
([

C w
c,x C w

c,y C w
c,z

])
with C w

c,ξ being the variance
of dimension ξ ∈ {x,y,z}.

2.2 Measurement Models
For improving the object’s state estimate, range measurements to N landmarks
at the known positions Si ∈R3 with i = 1, . . . ,N are incorporated. The nonlinear
relation between the object position and the landmark position is given by

r k,i =
∥∥Si −xk,P

∥∥
2 , (2)

where r k,i is the Euclidean distance between object and landmark. ‖.‖2 is the
Euclidean norm.

472 Paper L Optimal Stochastic Linearization for Range-Based Localization

In a real scenario, the ranges cannot be measured exactly, i.e., measurement
uncertainty has to be considered, which is usually done by incorporating a noise
process into (2). Two possibilities arise for incorporation. In the first case given by

r k,i =
∥∥Si −xk,P

∥∥
2 +v k,i , (3)

the noise process v k,i directly affects the range r k,i , which is the standard model.
In the second case

r k,i =
∥∥Si −xk,P −v k,i

∥∥
2 , (4)

which is called noise before non-linearity [3], the noise process affects the differ-
ence between object and landmark position. This measurement model can be
interpreted in such a way that the positions of the landmarks are uncertain. In
both measurement models, the noise process is assumed to be zero-mean white
Gaussian.

In this paper, we will focus on the second model (4) mainly for two reasons.
First, the standard model (3) is only appropriate in situations where the distance
r k,i is large compared to the variance of the noise v k,i . Otherwise, negative
ranges are possible, which is not true in reality. This problem cannot occur in the
second measurement model. Second, the model in (4) allows analytic moment
calculation as will be shown in the following.

3 Recursive State Estimation

Both the measurement model (4) and the system model (1) are utilized in a
Bayesian estimation framework for recursively estimating the state xk . For this
purpose, two alternating steps, i.e., prediction and filtering, are performed.

3.1 Prediction Step
In the prediction step, we are interested in calculating the predicted mean µp

k+1
and covariance Cp

k+1 of the state. Thanks to the linear system model (1), the
prediction can be performed in closed form by means of the prediction step of
the Kalman filter. Assuming that the result of the previous filter step is Gaussian

3 Recursive State Estimation 473

and thus given by the density function f e(xk

)
,N

(
xk ;µe

k
,Ce

k

)
, the mean and the

covariance of the predicted density f p(
xk+1

)
,N

(
xk+1;µp

k+1
,Cp

k+1

)
are given by

µp
k+1

= A ·µe
k

,

Cp
k+1 = A ·Ce

k ·AT +Cw ,

respectively. It is worth mentioning that the approach proposed in this paper is
not restricted to linear system models. The techniques derived in the following
for the filter step can also be used for special types of nonlinear dynamics. If
the system model consists of a linear combination of trigonometric functions
and/or polynomials, as it is the case for example in differential drive or bicycle
kinematics, an analytic calculation of the predicted mean and covariance is still
possible.

3.2 Filter Step

In the filter step, the current range measurement r̂ k = [
r̂k,1, . . . ,r̂k,N

]T
is used for

updating the result of the prediction step f p (xk) according to Bayes’ rule

f e(xk

)= ck · f
(
r̂ k

∣∣xk

)
· f p(

xk

)
,

where ck = 1/
∫

f (r̂ k |xk) · f p (xk)dxk is a normalization constant and f
(
r̂ k

∣∣xk

)
is the

likelihood defined by (4). Here, r̂ k is a realization of the random vector r k .

Generally, for nonlinear measurement models, a closed-form calculation of the
density f e(xk

)
as well as the mean µe

k
and covariance Ce

k is not possible. Instead,

appropriate approximations have to be applied. For the special measurement
model in (4) however, mean µe

k
and covariance Ce

k can be calculated analytically

if we assume that state and measurement are jointly Gaussian1. This assumption
is only true if there is a linear relationship between xk and r k . Otherwise, it
is an approximation and corresponds to a special type of linearization. While
typically applied linearization techniques like first-order Taylor-series expansion
or unscented transformation [5], which are merely point-based, our approach

1 This assumption is common in Gaussian filters like the EKF or the UKF.

474 Paper L Optimal Stochastic Linearization for Range-Based Localization

considers the entire predicted density. In doing so, it is possible to calculate the
mean µe

k
and the covariance Ce

k according to

µe
k
=µp

k
+Cx,r

k ·
(
Cr

k

)-1 ·
(
r̂ k −µr

k

)
,

Ce
k = Cp

k −Cx,r
k ·

(
Cr

k

)-1 ·
(
Cx,r

k

)T ,
(5)

respectively, where µr
k

is the predicted measurement value, Cr
k is the covariance

of the predicted measurement and Cx,r
k is the cross-covariance between state and

range measurement. In the following, an analytic calculation of these quantities
is provided in order to allow for the closed-form evaluation of (5). For the rest
of the paper, the time index k and the superscripts at the symbol f of density
functions are omitted for brevity.

4 Analytic Moment Calculation (AMC)

4.1 Modified Measurement Equation
In order to obtain an analytic expression for the required quantities in (5), the
range-based measurement equation (4) is squared, which results in

d i , (r i)2 = (
Si −xP

)T ·
(
Si −xP

)−2·
(
Si −xP

)T · v i +v T
i · v i , (6)

where d i is a squared range assumed to be measured by d̂i = r̂ 2
i . Thus, the

modified measurement equation (6) can be described in short term via

d i = hi
(
xP ,v i

)
(7)

for a single measurement to landmark i and via

d = h
(
xP ,v

)
(8)

for measurements to all landmarks. It is important to note that the moments of
the squared ranges (indicated with superscript d) instead of the normal range
measurements (indicated with superscript r) have to be used in (5), which yields

µe =µp +Cx,d ·
(
Cd

)−1
·
(
d̂ −µd

)
,

Ce = Cp −Cx,d ·
(
Cd

)−1
·
(
Cx,d

)T
.

(9)

4 Analytic Moment Calculation (AMC) 475

4.2 Moment Calculation

Based on (8), the moments µd , Cd , and Cx,d of the squared range measurement
d can be calculated in closed form, if the random vectors x and v are assumed as
stemming from Gaussians N

(
x;µp ,Cp)

and N
(
v ;0,Cv)

. The mean and covari-
ance of the state are given by

µp =
[
µxP

µxV

]
, Cp =

[
CxP CxP ,xV

CxV ,xP CxV

]
,

respectively, where the state consists of the position and the velocity. The mea-
surement noise v is zero-mean with a covariance of

Cv =

Cv
1 . . . Cv

1, j . . . Cv
1,N

...
...

...
...

...
Cv

i ,1 . . . Cv
i , j . . . Cv

i ,N
...

...
...

...
...

Cv
N ,1 . . . Cv

N , j . . . Cv
N

 ,

where Cv
i , j is the three-by-three-dimensional covariance matrix between the i th

and j th landmark. It is worth mentioning that the landmarks are assumed to be
spatially correlated, which allows general applicability of the proposed algorithm.
Assuming uncorrelatedness would simplify the following derivations.

Mean

For calculating the mean, it can be utilized that

µd = E{d } =
∫

d · f (d) dd =
Ñ

d · f (x,d ,v) dx dd dv (10)

holds (see for instance [7]). With (8) and Bayes’ rule, the joint density function
f (x,d ,v) of x , d and v can be written according to

f (x,d ,v) = f (d |x,v) · f (x,v)

= δ(
d −h(x,v)

)
· f (x,v), (11)

where δ(x −µ) is the Dirac delta distribution at position µ.

476 Paper L Optimal Stochastic Linearization for Range-Based Localization

As white measurement noise is assumed, the random vectors x and v are inde-
pendent and thus, the joint density f (x,v) is given by f (x,v) = f (x) · f (v).

Plugging (11) into (10) and utilizing the sifting property of the Dirac delta distri-
bution results in

µd = Ex,v
{
h
(
xP ,v

)}=Ï
h
(
xP ,v

)
· f (x) · f (v) dx dv

=
Ï

h
(
xP ,v

)
· f

(
xP

)
· f (v) dxP dv = ExP ,v

{
h
(
xP ,v

)}
, (12)

where the velocity xV is marginalized, because the variable xV has no influence
on the mean. Hence, the mean of d can be calculated directly based on the
nonlinear function h(·) and the density of xP and f (v). By substituting (7) in

(12), the predicted measurement µd
i for the i th range between landmark i and

the target is given by

µd
i = ExP ,v

{
hi

(
xP ,v

)}
= E

{(
Si −xP

)T ·
(
Si −xP

)}−2· E
{(

Si −xP

)T · v i

}+E
{

v T
i · v i

}
= (

Si −µxP
)T ·

(
Si −µxP

)+Tr
(
CxP

)+Tr
(
Cv

i

)
.

Covariance

For calculating the covariance Cd of the measurement process, it is exploited that

Cd = E

{(
d −µd

)
·
(
d −µd

)T
}

=
Ñ (

d −µd
)

·
(
d −µd

)T
· f

(
xP ,v ,d

)
dxP dv dd

=
Ï

h
(
xP ,v

)
·h

(
xP ,v

)T · f
(
xP

)
· f

(
v
)

dxP dv −µd ·
(
µd

)T

= E
{

h
(
xP ,v

)
·h

(
xP ,v

)T
}
−µd ·

(
µd

)T
. (13)

Similar to the mean, the covariance does not depend on the velocity. With (13)
and (7), the covariance matrix of d consists of the single entries C d

i , j given by

C d
i , j = ExP ,v i ,v j

{
hi

(
xP ,v i

)
·h j

(
xP ,v j

)}−µd
i ·µd

j . (14)

4 Analytic Moment Calculation (AMC) 477

The expected value ExP ,v i ,v j
{ · } in (14) can be decomposed into nine summands

representing the product hi
(
xP ,v i

)
·h j

(
xP ,v j

)
. In the following, the solution of

the expected value ExP ,v i ,v j
{ · } for each of the nine summands is derived. The

first term is given by

ExP

{(
Si −xP

)T ·
(
Si −xP

)
·
(
S j −xP

)T ·
(
S j −xP

)}=
AT · A ·B T ·B + (AT · A+B T ·B) · Tr(CxP)+

4· AT ·CxP ·B + (Tr(CxP))2 +2·1T
M · (CxP ¯CxP) ·1M , (15)

where A, Si −µxP , B , S j −µxP , and ¯ is the Hadamard (element-wise) product.
1M is a vector consisting of ones, where the variable M = 3 stands for the three-
dimensional space.

In four of the summands, the noise v occurs in first or third order and thus
the expected value is zero, because the noise process v is zero-mean and it is
uncorrelated to the target position xP . The remaining four expected values are
given by

ExP ,v j

{(
Si −xP

)T ·
(
Si −xP

)
· v T

j · v j

}
= (

AT · A+Tr
(
CxP

))
· Tr

(
Cv

j

)
, (16)

ExP ,v i

{
v T

i · v i ·
(
S j −xP

)T ·
(
S j −xP

)}= (
B T ·B +Tr

(
CxP

))
· Tr

(
Cv

i

)
, (17)

ExP ,v i ,v j

{(
Si −xP

)T · v i ·
(
S j −xP

)T · v j

}
=

(
B T ·Cv

i , j · A+1T
M ·

(
CxP ¯Cv

i , j

)
·1M

)
,

(18)

Ev i ,v j

{
v T

i · v i · v T
j · v j

}
= Tr

(
Cv

i

)
· Tr

(
Cv

j

)+2·1T
M ·

(
Cv

i , j ¯Cv
i , j

)
·1M . (19)

Plugging the results of the five non-zero expected values (15)–(19) into (14), the
entry i , j of the covariance matrix Cd is given by

C d
i , j = 4· AT ·CxP ·B +2·1T

M ·
(
CxP ¯CxP

)
·1M

+4
(
B T ·Cv

i , j · A+1T
M ·

(
CxP ¯Cv

i , j

)
·1M

)
+2·1T

M ·
(
Cv

i , j ¯Cv
i , j

)
·1M ,

which can be simplified to

C d
i , j = 4· AT ·C

′
i , j ·B +2·1T

M ·
(
C

′
i , j ¯C

′
i , j

)
·1M

with covariance matrix C
′
i , j ,CxP +Cv

i , j .

478 Paper L Optimal Stochastic Linearization for Range-Based Localization

Cross-Covariance

Finally, the cross-covariance Cx,d is required, which consists of the cross-covari-
ance between the position CxP ,d and the velocity CxV ,d . Similar to the covariance
Cd in (13), the cross-covariance Cx,d is calculated by

Cx,d = Ex,d

{(
x −µp

)
·
(
d −µd

)T
}
= Ex,v

{
x ·h(x ,v)T}−µp ·

(
µd

)T
. (20)

For calculating the cross-covariance CxP ,d of the position, (20) is used. The
cross-covariance of the i th column is calculated by

C xP ,d
i = ExP ,v i

{
xP ·hi

(
xP ,v i

)}−µxP ·µd
i

=−2·Cp ·

[
IM ,M

0M ,M

]
· A

=−2·CxP · A , (21)

where IM ,M is the identity matrix and 0M ,M is a zero matrix, both with dimen-
sion M ×M . Analogously, the cross-covariance CxV ,d of the velocity is given by

C xV ,d
i = ExP ,xV ,v i

{
xV ·hi

(
xP ,v i

)}−µxV ·µd
i = CxV ,xP ·

(
CxP

)−1 ·C xP ,d
i

=−2·CxV ,xP · A .

with CxV ,xP being the cross-covariance between velocity and position taken from

the predicted covariance Cp . The last equality follows from substituting C xP ,d
i

by (21).

4.3 Summary
The proposed algorithm makes use of a state estimator for recursively calculating
the position and the velocity of the object. The state estimator consists of two
steps, the prediction and filter step, as described above. In the following, a
short wrap-up for the filter step is given in vector-matrix notation allowing for a
straightforward and computationally efficient implementation.

5 Experiments 479

The filter step provides an estimate of the mean µe and covariance matrix Ce

according to (9). Here, the unknown moments µd , Cd , and Cx,d are given by

µd = (V¯V)T ·1M +1N · Tr
(
P ·Cp ·PT)+OT · diag

(
Cv)

,

Cd = OT ·
(
4·

(
vec(V) ·vec(V)T)¯T+2·T¯T

)
·O ,

Cx,d =−2·Cp ·PT ·V ,

(22)

with

S,
[
S1 . . . SN

]
,

P,
[
IM ,M 0M ,M

]
,

V, S− (
1N

)T ⊗ (
P ·µp)

,

O, IN ,N ⊗1M ,

T,Cv +1N ,N ⊗ (
P ·Cp ·PT)

,

where ⊗ is the Kronecker product, vec(V) is the vectorized version of the matrix
V, and 1N ,N is a one matrix. The variable M = 3 stands for the three-dimensional
space and N for the number of landmarks. Furthermore, the measured ranges r̂
have to be squared according to d̂ = r̂ ¯ r̂ .

4.4 Computational Complexity

In order to calculate the required moments µd , Cd , and Cx,d for the filter step,

the computational complexity of the proposed approach is in O
(
N 2 · M 3). For

comparison, the computational complexity of calculating the matrix root in the
unscented Kalman filter is in O

(
N 3 · M 3).

5 Experiments

In this section, simulations and real-world experiments are used for comparing
the proposed approach (AMC) with standard state estimators like the extended
Kalman filter (EKF) and the unscented Kalman filter (UKF). Furthermore, a
closed-form solution (CFS) [4] is considered for the real world experiment. All
three estimators (AMC, EKF, and UKF) make use of the measurement equation
(4) and the system model (1).

480 Paper L Optimal Stochastic Linearization for Range-Based Localization

0 0.1 0.2 0.3

Noise level / m →
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

rm
se

/
m

→

EKF
UKF
AMC

(a) Result of the three estimators
AMC, UKF, and EKF.

0 0.1 0.2 0.3

Noise level / m →
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

rm
se

/
m

→
(b) Zoom of the result for AMC and
UKF only.

Figure 1: The average rmse and its standard deviation for different noise levels.

5.1 Simulation
To compare the performance of the three algorithms (AMC, EKF, UKF), range
measurements to four landmarks with positions

S = [
S1 . . . S4

]=
−2 −2 2 2
−2 2 −2 2
0 0 0 2

 m

are performed. For generating the noisy range measurements, ten different noise
levels Cv

i = I3,3 ·σ2
n for each landmark i = 1, . . . ,4 are considered, where σn =

n−1
30 m with n = 1, . . . ,10. For each noise level, 1000 random object trajectories are

generated. Each trajectory consists of 100 measurements to all landmarks.

The Gaussian density representing the initial state at time step k = 0 has zero
mean and an initial covariance C0 = 10·I6,6. The sampling time is T = 0.1s. The
process noise is C w

c,x = 0.01, C w
c,y = 0.01, and C w

c,z = 0.0001.

For each random trajectory, the root mean square error (rmse) between the
estimate and the ground truth is calculated. In Figure 1, the average rmse and
its standard deviation over the 1000 test runs for all the different noise levels is
shown.

5 Experiments 481

0 0.1 0.2 0.3

Noise level / m →
0

0.5

1

1.5

2 ×10−6

d
et

er
m

in
an

t→

EKF
UKF
AMC

(a) Average of the determinants over
all test runs.

0 0.2 0.4 0.6 0.8 1

time / s →
10−6

10−4

10−2

d
et

er
m

in
an

t→
(b) Determinant for one single run at
noise level 0.3m.

Figure 2: Determinant of the covariance matrix calculated by AMC, UKF, and EKF
for different noise levels.

For small noise, all three estimators perform similar. If the noise increases, the
rmse of the EKF increases much stronger compared to the other two estimators.
For a high noise level, the UKF and the proposed approach present comparable
results, where the average rmses and the standard deviations of the AMC are
slightly smaller.

All three estimators have to evaluate (5), but compared to AMC and EKF, the
UKF additionally requires matrix roots for determining the sigma points. Conse-
quently, the computational demand of the UKF is much higher. For calculating
the required moments in (22), only vector-matrix products and no additional
matrix inversions or roots are required. Of course, the complexity of the EKF
is lower compared to the AMC, but for a high noise level, the AMC performs
significantly better.

The average determinant of the covariance matrix of the position estimate xk,P
of all test runs is shown in Figure 2a. In Figure 2b, one single test run at noise
level 0.3 m exemplarily demonstrates the evolution of the determinant of the
covariance over the time. It can be seen that the covariance of the EKF decreases
too quickly. Due to the linearization based on first-order Taylor-series expansions,
the determinant of the EKF is too small and thus the EKF is too certain about its

482 Paper L Optimal Stochastic Linearization for Range-Based Localization

0 5 10 15 20

time / s →
0

1

2

3

4
4.5

m
ea

su
re

d
ra

n
ge

/
m

→

(a) Measured ranges between one mi-
crophone and six landmarks.

-0.2 -0.1 0 0.1 0.2

x / m →
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

y
/

m
→

CFS
UKF
AMC

(b) Estimated trajectories of the
AMC, UKF, and CFS.

Figure 3: The measured ranges and estimated trajectories.

estimate. Hence, the estimation results are inconsistent, which is often a problem
when using an EKF. On the other hand, sample-based approaches as the UKF
or analytic approaches as the AMC overcome this problem. The determinant of
the AMC is smaller compared to the determinant of the UKF. Furthermore, as
described before, the rmse of the AMC is smaller as well. All together, the AMC is
more informative compared to the UKF.

5.2 Experiment
The experiment considers a tracking system for extended range telepresence [8]
for generating the range data. Six loudspeakers emit signals that are received
by four microphones attached to the object. Based on the emitted and received
signals, ranges between each microphone and each loudspeaker are calculated.
The measured ranges for one microphone are shown in Figure 3a.

The initial mean is zero and the initial covariance is C0 = 10·I6,6. The process
noise was set to C w

c,x = 0.04, C w
c,y = 0.04, and C w

c,z = 0.01. The sampling time is
T = 0.0625s. The standard deviation of the measurement noise is assumed to be
0.1m.

References 483

It can be seen in Figure 3b that a closed-form solution as in [4] provides poor
results, if the range measurements are noisy. On the other hand, state estimators
like the AMC or UKF can deal with noisy range measurements. The results of
the state estimators (AMC, UKF) are similar, since the noise level is small (please
recall Section 5.1). The average of the absolute position error of all microphone
pairs is 0.0336m for the AMC, 0.0337m for the UKF, 0.0342m for the EKF, and
0.0423m for the closed-form solution (CFS). Even if the AMC merely provides a
slightly better result than the UKF and the EKF, this experiment demonstrates
that the AMC also works in a real-world scenario.

6 Conclusions

This paper presents a Bayesian state estimator for range-based localization.
Assuming that the object’s state estimate is Gaussian, the required moments,
i.e., mean and covariance are calculated analytically. Compared to well-known
closed-form solutions assuming exact (or almost exact) range measurements,
the proposed approach allows taking subspace measurements into account.
Furthermore, AMC facilitates dynamic localization and provides information
about the object’s position and velocity uncertainty.

Due to the assumption that state and measurement are jointly Gaussian, AMC
provides an optimal stochastic linearization, which takes the entire Gaussian den-
sity into account. Other Gaussian estimators based on linearization merely con-
sider points, i.e., EKF uses first-order Taylor-series expansion around the mean
and the UKF calculates sigma-points for stochastic linearization. As demon-
strated in the simulations and experiments, AMC leads to more accurate and
more consistent localization results compared to the EKF or UKF. The compu-
tational demand of AMC is lower than that of the UKF, because no matrix roots
have to be calculated. Furthermore, no parameter adaption for sigma-point
calculation is necessary.

It is intended to utilize the analytic expressions for the mean and covariance
for improving existing results in research fields such as sensor placement and
scheduling or simultaneous localization and mapping (SLAM).

484 Paper L Optimal Stochastic Linearization for Range-Based Localization

References

[1] James J. Caffery, Jr. A New Approach to the Geometry of TOA Location.
In Proceedings of 55th IEEE Vehicular Technology Conference, pages 1942–
1949, 2000.

[2] Kwok-Wai Cheung and Hing Cheung So. A Multidimensional Scaling
Framework for Mobile Location Using Time-of-Arrival Measurements.
IEEE Transactions on Signal Processing, 53(2):460–470, February 2005.

[3] Martin Clark and Richard Vinter. A New Class of Moment Matching Filters
for Nonlinear Tracking and Estimation Problems. In 2006 IEEE Nonlinear
Statistical Signal Processing Workshop, pages 108–112, September 2006.

[4] Uwe D. Hanebeck and Günther Schmidt. Closed-Form Elliptic Location
with an Arbitrary Array Topology. In Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages
3070–3073, 1996.

[5] Simon J. Julier and Jeffrey K. Uhlmann. Unscented Filtering and Nonlinear
Estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[6] Dimitris E. Manolakis. Efficient Solution and Performance Analysis of 3-D
Position Estimation by Trilateration. IEEE Transactions on Aerospace and
Electronic Systems, 32(4):1239–1248, October 1996.

[7] Athanasios Papoulis and S. Unnikrishna Pillai. Probability, Random Vari-
ables and Stochastic Processes. McGraw-Hill Science/Engineering/Math,
4th edition, 2002.

[8] Patrick Rößler, Frederik Beutler, Uwe D. Hanebeck, and Norbert Nitzsche.
Motion Compression Applied to Guidance of a Mobile Teleoperator. In
Proceedings of the 2005 IEEE International Conference on Intelligent Robots
and Systems (IROS), pages 2495–2500, 2005.

[9] Stanley F. Schmidt. Advances in Control Systems, Volume 3, chapter Ap-
plication of State-Space Methods to Navigation Problems, pages 293–340.
Academic Press, New York, 1966.

[10] Fernando Seco, Antonio R. Jiménez, Carlos Prieto, Javier Roa, and Katerina
Koutsou. A Survey of Mathematical Methods for Indoor Localization. In
IEEE International Symposium on Intelligent Signal Processing, pages 9–14,
August 2009.

References 485

[11] Federico Thomas and Lluís Ros. Revisiting trilateration for robot localiza-
tion. IEEE Transactions on Robotics, 21:93–101, 2005.

[12] Greg Welch, B. Danette Allen, Adrian Ilie, and Gary Bishop. Measurement
Sample Time Optimization for Human Motion Tracking/Capture Systems.
In Proceedings of Trends and Issues in Tracking for Virtual Environments,
Workshop at the IEEE Virtual Reality 2007 Conference, 2007.

Paper M
Semi-Analytic

Stochastic Linearization for
Range-Based Pose Tracking

Authors: Frederik Beutler, Marco F. Huber, and Uwe D. Hanebeck

Edited version of the paper:

F. Beutler, M. F. Huber, and U. D. Hanebeck. Semi-Analytic Stochastic
Linearization for Range-Based Pose Tracking. In Proceedings of the 2010
IEEE International Conference on Multisensor Fusion and Integration for
Intelligent Systems (MFI), pages 44–49, Salt Lake City, UT, USA, September
2010.

Semi-Analytic Stochastic Linearization
for Range-Based Pose Tracking

Frederik Beutler∗, Marco F. Huber∗∗, and Uwe D. Hanebeck∗

∗ Intelligent Sensor-Actuator-Systems
Laboratory (ISAS)

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{beutler|uwe.hanebeck}@ieee.org

∗∗ Variable Image Acquisition and
Processing Research Group

Fraunhofer Institute of Optronics, System
Technologies and Image Exploitation IOSB

Karlsruhe, Germany
marco.huber@ieee.org

Abstract
In range-based pose tracking, the translation and rotation of an ob-
ject with respect to a global coordinate system has to be estimated.
The ranges are measured between the target and the global frame.
In this paper, an intelligent decomposition is introduced in order to
reduce the computational effort for pose tracking. Usually, decom-
position procedures only exploit conditionally linear models. In this
paper, this principle is generalized to conditionally integrable sub-
structures and applied to pose tracking. Due to a modified measure-
ment equation, parts of the problem can even be solved analytically.

1 Introduction

In many applications, the estimation of an object pose, i.e., the translation and
the rotation, is essential, e.g., in large-scale telepresence (see Figure 1 and [11]).
In [11], the pose of a human has to be tracked in order to steer the teleoperator.
For tracking the user’s pose, several emitters are located at known positions in a
global coordinate system. They are emitting signals that are received by several
sensors attached to the target frame. Based on the emitted and received signals,
ranges between emitters and sensors can be determined. Due to disturbances
and a nonlinear measurement equation, which describes the relationship be-
tween measured ranges and pose, an exact estimator cannot be applied and so

490 Paper M Semi-Analytic Stochastic Linearization for Range-Based Pose Tracking

Figure 1: Person using large-scale telepresence system.

approximative estimators have to be used. Algorithms for estimating the pose
based on range measurements are closed-form solutions [2], gradient descent
algorithms [11], or state estimators [3]. Popular state estimators rely on the
Gaussian assumption [6–8], e.g., the unscented Kalman filter, where all involved
random variables are described by mean and covariance. Furthermore, the ran-
dom variable for the measurement and for the state are assumed to be jointly
Gaussian distributed. In order to calculate the mean and covariance, sample-
based approaches are used. For an efficient implementation, the structure of
the measurement and system equation can be exploited and so the number of
sample points can be reduced. For conditionally linear substructures, the reader
is referred to [3] and [9]. In order to reduce the number of sample points, the
decomposition in conditionally linear substructures can be generalized to con-
ditionally integrable substructures. In this case, nonlinear parts of the problem
can be solved in closed form.

Compared to the previous approach in [3], where the density of the translation
and rotation has to be approximated for the filter step, merely the density of
the rotation is processed approximately in the proposed approach, while the
remaining part can be calculated in closed form. In doing so, the number of
sample points can be decreased.

The structure of the paper is as follows. In the problem formulation in Sec-
tion 2, the measurement equation (see Section 2.1) and system equation (see
Section 2.2) for pose tracking are described. The proposed approach makes use
of a state estimator, the generalized Gaussian assumed density filter, which is
described in Section 2.3. This filter consists of a prediction step and a filter step.

2 Problem Formulation 491

In the filter step, the assumption that measurements and the state are jointly
Gaussian distributed is applied. The proposed approach for pose tracking is
shown in Section 3. First, the measurement equation is modified in Section 3.1.
Based on this modified measurement equation, parts of the problem can be
solved in closed form, where first the decomposition is explained in Section 3.2.
This decomposition is then used in order to calculate the mean (Section 3.3),
the covariance (Section 3.4), and the cross-covariance (Section 3.5), which is
required for the filter step. A short wrap-up of the filter step is described in
Section 3.6. The proposed approach is compared to the standard decomposition
via simulations in Section 4. Finally, the paper closes with conclusions.

2 Problem Formulation

In pose tracking, the translation t and the rotation r of an extended object have
to be estimated in three-dimensional space. Due to the fact that the object is in
motion, it is essential to consider the dynamic behavior of the object by means
of the translation velocity ṫ and angular velocityω. In order to estimate the state
of the object

xk ,
[

t T
k ṫ T

k r T
k ωT

k

]T

at time step k = 0,1, . . ., a state estimator is used.

2.1 Measurement Equation
The measurement equation describes the relationship between the measurement
and the state. In range-based pose estimation, the measured ranges depend
on known landmarks located on the extended target, known landmarks in a
static global coordinate system, and the unknown translation and rotation of the
object with respect to the global coordinate system. The relationship between
measured ranges and the translation and rotation is given by

d i , j ,k = ∥∥L j −D
(
r k

)
· M i − t k −v i , j ,k

∥∥
2 , (1)

where D(·) is the rotation matrix parametrized by the vector r k , which describes
the rotation. L j is the position of the j th landmark with respect to the global
coordinate system and M i is the position of the i th landmark with respect to

492 Paper M Semi-Analytic Stochastic Linearization for Range-Based Pose Tracking

the target coordinate system. v i , j ,k is the measurement noise between land-
mark L j and landmark M i . d i , j ,k is the measured range between these two
landmarks, while d k comprises all possible measurements between global and
target landmarks in the following.

The rotation matrix can be parameterized by quaternions, Euler angles, roll-
pitch-yaw, or a rotation vector [1]. In this paper, the parameterization of the
rotation matrix is based on the rotation vector [3] according to

D
(
r k

)= I+ sin
(∥∥r k

∥∥)∥∥r k

∥∥ ·R
(
r k

)+ 1−cos
(∥∥r k

∥∥)∥∥r k

∥∥2 ·R
(
r k

)
·R

(
r k

)
,

where I is the identity matrix and R is a skew-symmetric matrix given by

R
(
r k

)=
 0 −r z r y

r z 0 −r x

−r y r x 0

for the three-dimensional space.

2.2 System equation
The system equation describes how the state evolves over time. In state estima-
tion, the system equation is used to predict the state at the next time step when
a new measurement is taken. In the considered example, two separate motion
models are assumed, one for the translation and the second for the rotation.
The discrete-time motion model for the translation is given by a linear equation
according to [

t k+1
ṫ k+1

]
= A ·

[
t k
ṫ k

]
+w t

k , (2)

where the process noise w t
k is assumed to be Gaussian distributed with covari-

ance Qt [12]. The matrix A and the covariance Qt are given by

A =
[

I T ·I
0 I

]
, Qt =

[
T 3

3 Qt
c

T 2

2 Qt
c

T 2

2 Qt
c T ·Qt

c

]
,

where T is the sampling time and Qt
c = diag

([
Q t

c,x Q t
c,y Q t

c,z
])

is the covari-
ance of the process noise from the continuous-time system model.

2 Problem Formulation 493

The evolution of the rotation vector over time is described by means of a nonlin-
ear equation [4, 5]

r k+1 = r k +T ·
(
I+0.5·R

(
r k

)+a
(
r k

)
·R

(
r k

)
·R

(
r k

))︸ ︷︷ ︸
,Λ

(
r k

) ·ωk , (3)

with

a
(
r
)
,

1−0.5·
∥∥r k

∥∥∥∥r k

∥∥2 ·cot

(∥∥r k

∥∥
2

)
.

The system model for the angular velocityωk is assumed to be

ωk+1 =ωk +w w
k ,

where w w
k is the process noise that affects the angular velocity. The process noise

has zero mean and is Gaussian distributed with covariance Qw .

By combining (2) and (3), the system model for the pose tracking scenario can
be written as

xk+1 =
A 0 0

0 I Λ
(
r k

)
0 0 I

 · xk +w k , (4)

where the covariance of the process noise w k comprises the covariances of
the process noises from the translation model Qt and the rotation model Qw

according to

Q =
Qt 0 0

0 0 0
0 0 Qw

 .

It is worth mentioning that the length of the rotation vector has to be limited to
the interval [−π,π]. Thus, if the norm of the rotation vector ||r k || exceeds π, the
transformation r new

k = r k ·
(
1− 2π/||r k ||

)
has to be applied to the rotation vector.1

2.3 Recursive Gaussian State Estimation
Generally, in state estimation, filtering and prediction are performed alternating
in a recursive fashion. The two steps depend on the measurement equation (1)

1 In the following, the time index k is omitted.

494 Paper M Semi-Analytic Stochastic Linearization for Range-Based Pose Tracking

and the system equation (4), respectively. Furthermore, it is assumed that the
state x is Gaussian and thus, can be described completely by means of a mean
vector µx and a covariance matrix Cx according to

µx =

µt

µṫ

µr

µω

 , Cx =

Ct Ct ,ṫ Ct ,r Ct ,ω

Cṫ ,t Cṫ Cṫ ,r Cṫ ,ω

Cr,t Cr,ṫ Cr Cr,ω

Cω,t Cω,ṫ Cω,r Cω

 .

Prediction Step

In the prediction step, the estimated mean µx,e and covariance Cx,e of the previ-
ous filter step as well as the probabilistic model according to the system equa-
tion (4) are used in order to determine the predicted mean µx,p and covariance

Cx,p . Due to the fact that the system model (4) is conditionally linear, i.e., if the
rotation vector is set to a fixed value, the system model becomes linear and the
prediction for each value can be performed by using the well-known Kalman
predictor equation. Based on the predicted quantities for each fixed value, the
predicted mean and covariance are calculated [3].

Filter Step

In the filter step, the state is updated based on the actual measurement value ẑ
by using Bayesian inference. Due to the nonlinear measurement equation (1),
the filter step cannot be solved in closed form. However, by assuming that the
joint density of the measurement and the state is Gaussian, the estimated mean
µx,e and covariance Cx,e can be efficiently calculated by using

µx,e =µx,p +Cx,d ·
(
Cd

)−1 (
d̂ −µd

)
,

Cx,e = Cx,p −Cx,d ·
(
Cd

)−1
·Cd ,x ,

(5)

where, Cd and µd are the covariance and the mean of the range measurement d ,

respectively, and Cx,d is the cross-covariance between the state and the measure-
ment. These three quantities depend on the considered nonlinear measurement
equation (1) as well as on the involved densities of the state x and the noise v . In
general, these quantities cannot be calculated in closed form. However, some
classes of nonlinear functions lead to analytic expressions [10].

3 Semi-Analytic Linearization 495

3 Semi-Analytic Linearization

In the following, first the measurement equation is modified to a polynomial
function and then the density of the state is decomposed in order to solve parts
of the problem in closed form.2

3.1 Modified Measurement Equation
For an analytical solution of the filter step in closed from, the measurement
equation (1) is squared, which results in

(
d i , j

)2 =
(
g

i , j
(r)− t −v i , j

)T
·
(
g

i , j
(r)− t −v i , j

)
, (6)

with

g
i , j

(r), L j −D(r) · M i . (7)

Furthermore, it is assumed that squared ranges z i , j ,
(
d i , j

)2 are measured,

i.e., if a measurement d̂i , j is taken, this measurement is mapped to the new
measurement ẑi , j by means of

ẑi , j =
(
d̂i , j

)2
. (8)

For every possible range measurement between landmarks in global and target
coordinate system, the nonlinear measurement equation can be compactly
written as

z = h
(
t , v , g (r)

)
= OT ·

((
g

(
r
)−1N ·M ⊗ t −v

)
¯

(
g

(
r
)−1N ·M ⊗ t −v

))
,

(9)

where ⊗ is the Kronecker product, ¯ the element-wise product, 1 is the one-
vector, D is the dimension of t , and O = IN ·M ⊗1D . The vector g (·) in (9) com-
prises all possible combinations of (7) for i = 1, . . . ,N and j = 1, . . . ,M , where N is
the number of landmarks of the target frame and M is the number of landmarks
of the global coordinate system. Accordingly, g (·) is given by

g
(
r
)= [

g
1,1

(
r
)T . . . g

N ,1

(
r
)T . . . g

N ,M

(
r
)T

]T
. (10)

2 In the following, the indices for the predicted and estimated state are omitted.

496 Paper M Semi-Analytic Stochastic Linearization for Range-Based Pose Tracking

The term v in (9) is the Gaussian measurement noise with zero mean and covari-
ance matrix

Cv =

Cv
1 . . . Cv

1, j . . . Cv
1,N ·M

...
. . .

...
. . .

...
Cv

i ,1 . . . Cv
i , j . . . Cv

i ,N ·M
...

. . .
...

. . .
...

Cv
N ·M ,1 . . . Cv

N ·M , j . . . Cv
N ·M

 ,

where the submatrix Cv
i , j describes the noise covariance between the landmarks

from the different coordinate systems.

Based on the squared range measurements and the combined measurement
equation (9), the unknown quantities µd , Cd , and Cx,d in (5) can be replaced by

µz = E
{
h
(
t , v , g (r)

)}
, (11)

Cz = E
{(

h
(
t , v , g (r)

)−µz)
·
(
h
(
t , v , g (r)

)−µz)T
}

, (12)

Cx,z = E
{(

x −µx,p)
·
(
h
(
t , v , g (r)

)−µz)T
}

, (13)

respectively.

3.2 Decomposition
The quantities in (11)–(13), however, still cannot be calculated in closed form. To
facilitate this, it is necessary to decompose the problem into parts, which can
be solved analytically. For this purpose the density of the state f (x) has to be
written as

f (x) = f (t , ṫ , w |r) · f (r) . (14)

Furthermore, the density of the rotation f (r) is approximated by means of a
sample-based representation according to

f (r) ≈
L∑

u=1
wu ·δ

(
r −µ

u

)
, (15)

where L is the number of sample points, µ
u

are the sample positions, wu are

the sample weights, and δ(·) the Dirac delta distribution. For determining the
sample points µ

u
, several sampling schemes such as the unscented transform [8],

3 Semi-Analytic Linearization 497

Gauss-Hermite quadrature [7], or Gaussian shape approximation [6] can be
applied.

Using (15) in (14), for a single sample point µ
u

the condition density f (xa |r) with

xa ,
[

t T ṫ T wT
]T

,

can be written as f
(
xa |µ

u

)
=N

(
xa ;µa

u
,Ca

)
with mean vector and covariance

matrix according to

µa
u
=

µt

u

µṫ
u

µω
u

=

µ
t

µṫ

µω

+
Ct ,r

Cṫ ,r

Cω,r

 ·
(
Cr)−1 ·

(
µ

u
−µr

)
,

(16)

Ca =

 Ca
t Ca

t ,ṫ Ca
t ,ω

Ca
ṫ ,t Ca

ṫ Ca
ṫ ,ω

Ca
ω,t Ca

ω,ṫ Ca
ω

=

 Ct Ct ,ṫ Ct ,ω

Cṫ ,t Cṫ Cṫ ,ω

Cω,t Cω,ṫ Cω

−
Ct ,r

Cṫ ,r

Cω,r

(
Cr)−1

Ct ,r

Cṫ ,r

Cω,r

T

.

3.3 Mean
In order to calculate the required meanµz in (11), (14) and (15) are used to obtain

µz = E
{

h
(
t , v , g (r)

)}≈
L∑

u=1
wu

Ï
h
(
t , v , g (r)

)
· f

(
xa∣∣µ

u

)
·δ

(
r −µ

u

)
· f (v)dv dx .

Thanks to the sifting property of the Dirac delta distribution, the integration w.r.t.
the rotation variable r can be solved. As the nonlinear function in (9) then only
depends on the translation, the variable comprising the velocities (translational
and angular) can be simply marginalized. The predicted mean is then given by

µz ≈
L∑

u=1
wu

Ï
h

(
t , v , g

(
µ

u

))
· f

(
xa∣∣µ

u

)
· f (v) dv dxa

=
L∑

u=1
wu

Ï
h

(
t , v , g

(
µ

u

))
· f

(
t
∣∣µ

u

)
· f (v) dv dt︸ ︷︷ ︸

=E
{

h
(

t ,v ,g
(
µ

u

))}
. (17)

498 Paper M Semi-Analytic Stochastic Linearization for Range-Based Pose Tracking

To resolve the remaining integrals, a new variable q
u

is introduced, which is

defined by
q

u
, g (µ

u
)−1N ·M ⊗ t −v .

Due to the linear relation, the variable q
u

is Gaussian distributed with mean and
covariance

µq
u
= g

(
µ

u

)
−1N ·M ⊗µt

u
,

Cq = Cv +
(
1N ·M ·

(
1N ·M

)T
)
⊗Ca

t ,
(18)

respectively, where µt
u

and Ca
t are the quantities from µa

u
and Ca that are related

to the translation (16). Based on this new random variable q
u

, the expected value

in (17) for a fixed value for µ
u

is calculated as

E
{

h
(

t , v , g
(
µ

u

))}
(9)= E

{
OT ·

(
q

u
¯q

u

)}
= OT ·

(
µq

u
¯µq

u
+diag

(
Cq))

. (19)

Summing up this result of the expected value for every fixed value µ
u

, u = 1, . . . ,L,

gives the desired mean µz according to

µz =
L∑

u=1
wu ·OT ·

(
µq

u
¯µq

u
+diag

(
Cq))

. (20)

3.4 Covariance
Similar to (17), the covariance Cz in (12) is given by

Cz =
L∑

u=1
wu · E

{(
h

(
t , v , g

(
µ

u

))
−µz

)
·
(
h

(
t , v , g

(
µ

u

))
−µz

)T
}

, (21)

where the expected value can be resolved to

E

{(
h(·)−µz

)
·
(
h(·)−µz

)T
}
= E

{
h(·) ·h(·)T}−µz ·

(
µz

)T
(22)

(9)= OT · E
{(

q
u
¯q

u

)
·
(

q T
u
¯q T

u

)}
︸ ︷︷ ︸

=E
{(

q
u

· qT
u

)
¯

(
q

u
· qT

u

)}
·O−µz ·

(
µz

)T
,

where the Cartesian product of the squared variable q
u

is written as the squared

Cartesian product of q
u

.

3 Semi-Analytic Linearization 499

The expected value of the matrix E
{(

q
u

· q T
u

)
¯

(
q

u
· q T

u

)}
can be calculated sep-

arately. An entry of the matrix at row i and column j corresponds to the value

E
{

q 2
u,i · q 2

u, j

}
, which is a fourth-order non-central moment given by

E
{

q 2
u,i · q 2

u, j

}
=

((
µ

q
u,i

)2 +C q
i ,i

)
·

((
µ

q
u, j

)2 +C q
j , j

)
+4·µq

u,i ·µq
u, j ·C q

i , j +2·
(
C q

i , j

)2
,

where µq
u,i is the i th entry of the vector µq

u
and C q

i , j is the entry at row i , column

j of the matrix Cq for i = 1, . . . , N · M ·D and j = 1, . . . , N · M ·D. Accordingly, the
right-hand expected value in (22) can be expressed analytically via

E
{
h(·) ·h(·)T}= E

{
h(·)

}
· E

{
h(·)

}T+

OT ·

(
4·

(
µq

u
·
(
µq

u

)T
)
¯Cq +2·Cq ¯Cq

)
·O , (23)

where the expected value E
{
h(·)

}
is given by (19).

3.5 Cross-Covariance
By again exploiting the similarity to (17), the cross-covariance Cx,z is

Cx,z =
L∑

u=1
wu ·

E

{(
t −µt

)
·
(
h

(
t , v , g

(
µ

u

))
−µz

)T
}

E

{(
ṫ −µṫ

)
·
(
h

(
t , v , g

(
µ

u

))
−µz

)T
}

E

{(
µ

u
−µr

)
·
(
h

(
t , v , g

(
µ

u

))
−µz

)T
}

E

{(
ω−µω

)
·
(
h

(
t , v , g

(
µ

u

))
−µz

)T
}

. (24)

with its respective sub-cross-covariance matrices. Expanding each product in
(24) leads to the following not yet evaluated expected values

E
{

t ·h(·)T}=−2·Ca
t ·Su +µt

u
· E

{
h(·)

}T ,

E
{

ṫ ·h(·)T}=−2·Ca
ṫ ,t ·Su +µṫ

u
· E

{
h(·)

}T ,

E
{
ω ·h(·)T}=−2·Ca

ω,t ·Su +µw
u

· E
{
h(·)

}T ,

(25)

500 Paper M Semi-Analytic Stochastic Linearization for Range-Based Pose Tracking

with Su ,
[

g
1,1

(
µ

u

)
. . . g

N ,1

(
µ

u

)
. . . g

N ,M

(
µ

u

)]
−1T

N ·M ⊗µt
u

. The quanti-

ties µṫ
u

,Ca
ṫ ,t ,µw

u
, and Ca

ω,t are those entries of µa and Ca that are related to the

translation and angular velocity, respectively (see (16)).

3.6 Summary
In the following, all steps of the filter are summarized:

1. Determine the sample points µ
u

with corresponding weights wu of the

density of the rotation f (r), where u = 1, . . . ,L.

2. Calculate the conditional means µt
u

, µṫ
u

, and µw
u

, the conditional covari-

ance Ca
t , and conditional cross-covariances Ca

ṫ ,t and Ca
ω,t for all sample

points (see (16)).

3. Calculate the mean µq
u

and covariance Cq of the random variable q
u

for

all sample points (see (18)).

4. Calculate the expected values E{h(·)} (see (19)) and E
{
h(·) ·h(·)T}

(see
(23)) as well as E

{
t ·h(·)T}

, E
{

ṫ ·h(·)T}
, and E

{
ω ·h(·)T}

(see (25)) for all
sample points.

5. Combine the results of the expected values for determining the mean µz

(see (20)), the covariance Cz (see (21)), and the cross-covariance Cx,z (see
(24)).

6. Square the measured ranges d̂ (see (8)).

7. Perform the filter step in order to calculate the estimated mean and covari-
ance (see (5)).

3.7 Computational Complexity
The determination of the sample points has the highest computational cost of
calculating the required mean µz , covariance Cz , and cross-covariance Cx,z . For
the proposed approach, the sample points only have to be calculated for the
rotation. In this case, the computational complexity is in O

(
R3 +D3 · N 2 · M 2),

where R is the dimension of the rotation vector. For comparison, if the decom-
position would be based on separating the directly and the indirectly observed
parts of the state—see [3] for details—the computational complexity would be in

4 Simulation Results 501

O
(
(R +D +N · M)3). This significantly higher complexity is caused by the need

to additionally sample the translation and the noise, as both are nonlinearly
transformed.

4 Simulation Results

In the simulation, a two-dimensional coordinate system is considered containing
four emitters and four sensors with positions

M T
1

M T
2

M T
3

M T
4

=

−0.2 −0.2
−0.2 0.2
0.2 −0.2
0.2 0.2

m ,

LT

1
LT

2
LT

3
LT

4

=

−2 −2
−2 2
2 −2
2 2

m

with respect to the global coordinate system and the target frame, respectively.
At different noise levels ranging from [0.000001, . . . ,0.3] meters, 1000 random
trajectories are generated, where the sampling time was T = 0.1s. The noise
process is assumed as isotropic. The measured ranges were generated with (1).

In the simulation, the proposed approach denoted by Semi-Analytic Lineariza-
tion (SAL) is compared to a standard estimator. As a standard estimator, the
unscented Kalman filter (UKF) is used, with decomposition into directly and
indirectly observed parts as explained above. In this case, the density of the
translation and the rotation has to be approximated with samples. Furthermore,
due to the fact that the measurement noise is mapped through the nonlinear
transformation, it has to be approximated with samples as well. For the UKF, 71
sample points are used to approximate the density of the translation, rotation,
and the measurement noise. On the other hand, the proposed approach only
has to approximate the rotation by sample points, where for determining the
sample points the approach presented in [6] is used. Here, 5 sample points are
used to approximate the density for the rotation.

The system equation (4) for a two-dimensional coordinate system becomes linear
and thus, the prediction step can be solved by using the Kalman prediction step.
This is exploited for both estimators. The covariance of the continuous process
noise for the velocities (translation and rotation) is set to Qt

c = diag
([

0.1 0.1
])

and Qw
c = 0.1, respectively. The initial covariance of the translation is Ct

0 =
diag

([
10 10

])
, of the translation velocity Cṫ

0 = diag
([

10 10
])

, of the angle

502 Paper M Semi-Analytic Stochastic Linearization for Range-Based Pose Tracking

0 0.1 0.2 0.3

Noise level / m →
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

rm
se

/
m

→

SAL
UKF

(a) Rmse of the translation.

0 0.1 0.2 0.3

Noise level / m →
0

0.02

0.04

0.06

0.08

0.10

0.12

0.14

rm
se

/
ra

d
→

(b) Rmse of the rotation.

Figure 2: Simulation results for the two estimators SAL and UKF. The average and
the standard deviation of the rmse for different noise levels.

C r
0 = 0.001, and of the angular velocity C w

0 = 0.0001. The initial mean is initialized
with zeros.

In Figure 2, the average and the standard deviation of the root mean square error
(rmse) over 1000 trajectories for each noise level are plotted. The performance
of the two estimators is nearly identical. Regarding the computational effort,
the proposed approach only has to determine sample points for one dimen-
sion, which can be implemented very efficiently. On the other hand, the UKF
calculates a matrix root of the covariance of the noise and the state (translation
and rotation), which has a high computational effort considering the size of the
combined covariance matrix, which is 35×35. In the simulation, the proposed
approach is three times faster than the standard approach.

5 Conclusions

In this paper, a state estimator for range-based pose tracking is presented, which
relies on an intelligent decomposition of the proposed problem. This state
estimator exploits the Gaussian assumption and makes use of a modified mea-
surement equation, where the measurement noise process is inside of the non-
linearity. Due to the modified measurement equation, the filter step is separated

References 503

into an analytically integrable and an approximate part. In the approximate
part, the density of the rotation is represented by samples. For every sample
point, the required moments for the filter step are then calculated by analytic
moment calculation. In doing so, the computational demand for the approxima-
tion is drastically reduced compared to a standard decomposition, which relies
on conditionally linear substructures.

The new approach was evaluated in a two-dimensional simulation and compared
to the standard approach. Regarding the rmse, the performance of the two
estimators is similar. However, in the two-dimensional simulation example,
only a one-dimensional density of the rotation has to be approximated for the
proposed approach, which is feasible for an embedded system, compared to the
standard estimator, where the matrix root of a large covariance matrix has to
be calculated. In summary, if the decomposition in integrable substructure is
exploited, the number of sample points and thus, the computational complexity
can be drastically reduced.

References

[1] Nicholas Ayache. Artifical Vision for Mobile Robots: Stereo Vision and
Multisensory Perception. Massachusetts Institute of Technology, 1991.

[2] Frederik Beutler and Uwe D. Hanebeck. Closed-Form Range-Based Posture
Estimation Based on Decoupling Translation and Orientation. In Proceed-
ings of the 2005 IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2005), volume 4, pages 989–992, Philadelphia,
Pennsylvania, March 2005.

[3] Frederik Beutler, Marco F. Huber, and Uwe D. Hanebeck. Gaussian Fil-
tering using State Decomposition Methods. In Proceedings of the 12th
International Conference on Information Fusion (Fusion), pages 579–586,
Seattle, Washington, July 2009.

[4] Frederik Beutler, Marco F. Huber, and Uwe D. Hanebeck. Instantaneous
Pose Estimation using Rotation Vectors. In Proceedings of the 34th Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP),
pages 3413–3416, Taipei, Taiwan, April 2009.

504 Paper M Semi-Analytic Stochastic Linearization for Range-Based Pose Tracking

[5] John E. Bortz. A New Mathematical Formulation for Strapdown Inertial
Navigation. IEEE Transactions on Aerospace and Electronic Systems, AES-
7(1):61–66, January 1971.

[6] Marco F. Huber and Uwe D. Hanebeck. Gaussian Filter based on Deter-
ministic Sampling for High Quality Nonlinear Estimation. In Proceedings
of the 17th IFAC World Congress, Seoul, Republic of Korea, July 2008.

[7] Kazufumi Ito and Kaiqi Xiong. Gaussian Filters for Nonlinear Filtering
Problems. IEEE Transactions on Automatic Control, 45(5):910–927, May
2000.

[8] Simon J. Julier and Jeffrey K. Uhlmann. Unscented Filtering and Nonlinear
Estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[9] Mark R. Morelande and Bill Moran. An Unscented Transformation for Con-
ditionally Linear Models. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages III–1417–III–1420, April 2007.

[10] Athanasios Papoulis and S. Unnikrishna Pillai. Probability, Random Vari-
ables and Stochastic Processes. McGraw-Hill Science/Engineering/Math,
4th edition, 2002.

[11] Patrick Rößler, Frederik Beutler, Uwe D. Hanebeck, and Norbert Nitzsche.
Motion Compression Applied to Guidance of a Mobile Teleoperator. In
Proceedings of the 2005 IEEE International Conference on Intelligent Robots
and Systems (IROS), pages 2495–2500, 2005.

[12] Greg Welch, B. Danette Allen, Adrian Ilie, and Gary Bishop. Measurement
Sample Time Optimization for Human Motion Tracking/Capture Systems.
In Proceedings of Trends and Issues in Tracking for Virtual Environments,
Workshop at the IEEE Virtual Reality 2007 Conference, 2007.

Paper N
On-line Dispersion Source
Estimation using Adaptive

Gaussian Mixture Filter

Authors: Marco F. Huber

Edited version of the paper:

M. F. Huber. On-line Dispersion Source Estimation using Adaptive Gaus-
sian Mixture Filter. In Proceedings of the 19th IFAC World Congress, pages
1059–1066, Cape Town, South Africa, August 2014.

On-line Dispersion Source Estimation
using Adaptive Gaussian Mixture Filter

Marco F. Huber

AGT International
Darmstadt, Germany

marco.huber@ieee.org

Abstract
The reconstruction of environmental events has gained increased
interest in the recent years. In this paper, the focus is on estimating
the location and strength of a gas release from distributed measure-
ments. The estimation is formulated as Bayesian inverse problem,
which utilizes a Gaussian plume forward model. A novel recursive
estimation algorithm based on statistical linearization and Gaus-
sian mixture densities with adaptive component number selection is
used in order to allow at the same time accurate and computation-
ally efficient source estimation. The proposed solution is compared
against state-of-the-art methods via simulations and a real-word
experiment.

1 Introduction

If a hazardous gas has been released—either accidentally or deliberately—into
atmosphere, it is of paramount importance to gain knowledge of this event
at an early stage in order to increase the effectiveness of counter measures
for protecting the public and for mitigating the harmful effects. By means of
so-called atmospheric dispersion models (ADMs), it is possible to predict the
concentration spread of the released gas in space and time. These models,
however, merely provide reliable predictions, if the characteristics of the gas
source are known precisely. To determine or estimate the source characteristics
it necessary to solve an inverse problem, where one has to infer the location

508 Paper N On-line Dispersion Source Estimation

and strength of the gas release from concentration measurements of spatially
distributed sensors.

In general, solution methods of the source estimation problem can be classified
into forward and backward methods [15]. Forward methods employ an forward-
running ADM multiple times in order to find an estimate of the source that
best describes the given concentration measurements. Here, the mostly used
techniques are based on Bayesian inference in combination with Monte Carlo
sampling. Sequential Monte Carlo methods as described in [21] or [23] employ a
set of samples or particles that forms the posterior probability distribution of the
source parameters. This distribution is updated by means of Bayes’ rule when-
ever new concentration measurements from sensors are available. In contrast
to this online procedure, Markov chain Monte Carlo (MCMC) methods process
all acquired concentration measurements in a batch in order to determine the
posterior distribution. For this purpose, samples are drawn from the posterior
distribution by simulating a Markov chain that has the desired posterior distribu-
tion as its stationary distribution. Given a properly constructed Markov chain
it can be shown that MCMC reaches the stationary distribution after a typically
large number of sampling steps. Application of MCMC to source estimation can
be found for instance in [4, 19], and [8].

Backward methods instead perform only one model run in the reverse direction
from the sensors to the source. Commonly used techniques are backtracking,
where an inverse version of an ADM is utilized (see e.g. [10]), and variational
methods, where a cost function between model predictions and concentration
measurements is optimized (see e.g. [16, 22]). The backward approach is pre-
ferred over forward methods, when the number of sources is larger than the
number of sensors [15].

In this paper, a novel forward approach is proposed that aims at performing on-
line source estimation, i.e., the current source estimate is updated at run-time
whenever sensors provide new concentration measurements. For this purpose,
a Gaussian plume dispersion model is employed, which allows predicting the
gas dispersion in closed-form with low computational overhead. This forward
model is employed in a recursive Bayesian inference framework to allow for
uncertainties arising from modeling errors and sensor noise. The resulting
statistical inverse problem, however, cannot be solved in closed form due to
nonlinearities in the Gaussian plume model. To overcome this issue, the so-called
adaptive Gaussian mixture filter (AGMF) proposed in [11] is employed. Here, the
posterior distribution is approximated via a sum of Gaussians, which is known to

2 Problem Formulation 509

be a universal function approximator [14]. To limit the computational demand
but still perform accurate estimation, the number of Gaussian components is
adapted at run-time depending on the nonlinearity of the dispersion model.

The paper is structured as follows: In the next section, a general ADM and its
special case, the Gaussian plume model, are introduced. The recursive Bayesian
estimation problem is stated in Section 3, while Section 4 describes the AGMF. A
comparison of the proposed source estimation methods with state-of-the-art is
provided in Section 5. The paper closes with a conclusion.

2 Problem Formulation

In this section, a physical model describing the spatial dispersion of a substance
in atmosphere is derived. It models the transportation of a substance from an
emitting source to regions of low concentration under consideration of various
environmental conditions.

2.1 General Dispersion Model

In the following, c
(
x, t

)
is the concentration of the substance at position x =

[x, y, z]T ∈R3 and at time t ≥ 0. The concentration follows the advection-diffusion
equation

∂c
(
x, t

)
∂t

=∇ ·
(
K∇c

(
x, t

)− v ·c
(
x, t

))+ s
(
x,t

)
(1)

with ∇, [∂/∂x,∂/∂y,∂/∂z]T (see e.g. [9]). The term K∇c
(
x, t

)
describes the diffusion

according to Fick’s law with diffusion matrix K
(
x,t

)
and the term v ·c

(
x, t

)
repre-

sents linear advection due to wind with velocity v(x,t). Finally, s
(
x,t

)
is a source

or sink term.

Analytical solutions of (1), i.e., functions c
(
x,t

)
satisfying the equation, exist

merely for some special cases. In the following, one important special case
utilized throughout the paper is introduced.

2.2 Gaussian Plume
In order to obtain a closed-form solution, it is necessary to make several assump-
tions:

510 Paper N On-line Dispersion Source Estimation

1. The substance is emitted at a constant rate q > 0 from a single point source
at location xs , [xs , ys , zs]T. Thus, the source term s

(
x,t

)
in (1) becomes

s
(
x,t

)= q ·δ(x −xs) ·δ(y − ys) ·δ(z − zs) ,

where δ(x −xs) is the Dirac delta localized at xs .

2. The wind is constant with velocity v ≥ 0 and the wind direction draws an
angle φ with the x-axis so that v = v · [cosφ, sinφ,0]T.

3. The diffusion is a function of the downwind distance only. Furthermore, it
is assumed that the diffusion in wind direction can be neglected.

4. The terrain is flat and the ground cannot be penetrated by the substance.

5. The solution is steady state, i.e., time independent.

Based on these assumptions and additional boundary conditions that force
vanishing concentrations at infinite distance from the source and at upwind
distances, (1) has the time-invariant solution

c
(
x
)= q

2π ·v ·σyσz
· exp

(
− (1+2sin(φ)cos(φ)) · (y−ys)2

2σ2
y

)
·[

exp
(
− (z−zs)2

2σ2
z

)
+exp

(
− (z+zs)2

2σ2
z

)]
,

(2)

which is the well-known Gaussian plume dispersion model (for a detailed deriva-
tion see [22]). Here, σy and σz are the so-called standard deviations of the
Gaussian concentration distribution. They are both functions of x, y , φ and they
depend on the stability of the atmosphere.

The Gaussian plume model (2) is employed as it is widely used and suitable for
describing short range substance releases. Furthermore, being an analytical
model, it allows for an on-line and computationally light-weight estimation of
the unknown parameters.

In this paper, the focus is on estimating the source rate q and location xs from a
set of spatially distributed concentration measurements. It is assumed that the
measurements become available sequentially over time, i.e., batch or off-line
estimation is impractical. Additional parameters like wind speed or direction are
assumed to be known, as they can be provided reliably from external sources like
weather stations. However, the approach proposed in this paper can be easily
extended to estimate also these additional parameters.

3 Recursive Estimation 511

3 Recursive Estimation

The Gaussian plume model forms an instance of a so-called forward model

z = g
(
θ
)

, (3)

where the output or observations z are defined based on physical transforma-
tions g (.) and model parameters θ. In the considered problem, z corresponds to
a set of concentration measurements, g is the Gaussian plume model (2), and

θT,
[
q, xT

s

]
comprises the source rate as well as the source location.

As the goal is to determine the parameters θ, an inverse problem of (3) needs
to be considered, where θ is estimated given the observed concentrations z.
Inverse problems are typically difficult to solve: they are often ill-conditioned,
ambiguities exist—the observations z can be explained by different parameters
θ—, and an inverse transformation g−1 often is not available.

3.1 Bayesian Estimation
For solving inverse problems, deterministic or probabilistic approaches can be
applied. In this paper, a probabilistic approach employing Bayesian inference is
considered. In doing so, uncertainties arising for instance from sensor noise or
modeling errors can be incorporated.

According to Bayes’ theorem (see e.g. [18]), the so-called posterior density p
(
θ
∣∣z)

of θ is calculated according to

p
(
θ
∣∣z)= p

(
z
∣∣θ)

· p
(
θ
)

p
(
z
) , (4)

which is the conditional probability of the unknown model parameters given
the measurements. This density function represents the solution of the inverse
problem. In (4), p

(
z
∣∣θ)

is the likelihood, p
(
θ
)

is the prior density, and p
(
z
) =

∫ p
(
z
∣∣θ)

· p
(
θ
)

dθ is a normalization constant.

By inspecting (4) it can be seen that all concentration measurements are pro-
cessed at once. Under weak assumptions however, Bayes’ theorem also allows
an recursive calculation of the posterior distribution. This is especially useful,
when the concentration measurements zk are acquired over time at discrete
time steps tk with k = 1,2, . . . and one is interested in constantly updating the

512 Paper N On-line Dispersion Source Estimation

posterior. Assuming that the concentration measurements zk are conditionally
independent given the model parameters, (4) can be re-formulated in a recursion

p
(
θ
∣∣z1:k

)= p
(
zk

∣∣θ)
· p

(
θ
∣∣z1:k−1

)
p

(
zk

∣∣z1:k−1
) (5)

which commences from the prior p
(
θ
)

and where z1:k , (z1, z2, . . . , zk) is the
collection of all measurements up to and including zk .

3.2 Measurement Model
While the prior reflects the a priori knowledge of the user on the source, the
likelihood p

(
zk

∣∣θ)
relates a concentration measurement to the unknown source

parameters. In order to define the likelihood, one can make use of the Gaussian
plume model derived above, assuming that this model represents the underlying
dispersion mechanism. For this purpose, suppose that the k-th measurement
zk is acquired by a sensor at location xr , [xr , yr , zr]T at time tk . The resulting
measurement model is given by

zk = c
(
xr ;θ

)+ vk , vk ∼ p(vk),N
(
0,σ2

v

)
, (6)

where c
(
xr ;θ

)
is the true concentration value according to (2) and vk is the

sensor’s noise, which is assumed to be zero-mean Gaussian with variance σ2
v and

independent in time and space. The measurement model (6) can be turned into
a statistical model according to

p
(
zk |θ

)= ∫
p

(
zk

∣∣vk ,θ
)︸ ︷︷ ︸

δ
(
zk−c

(
xr ;θ

)
−vk

)· p(vk)dvk =N
(
zk ;c

(
xr ;θ

)
,σ2

v

)
,

where the second equality follows from the sifting property of the Dirac delta
distribution δ(.). This completes the derivation of the Bayesian estimation for-
malism.

It is worth mentioning that in case of multiple sources, the concentration mea-
surement can be written as

zk =
N∑

i=1
ci

(
xr ;θi

)+ vk , (7)

4 Adaptive Gaussian Mixture Filter 513

where the superposition of the concentration values ci
(
xr ;θi

)
of the sources

i = 1, . . . ,N is exploited (see [22]). The likelihood for multiple sources can be
derived analogously as described above.

3.3 Approximate Estimation
Unfortunately, the Bayesian formalism in (5) is merely of limited practical use
as a closed-form solution of the recursion is not available in general. Except
for some special cases like the linear Gaussian one, an approximate solution is
inevitable. This holds also for the considered source estimation problem due
to the nonlinear Gaussian plume model (2) that forms the likelihood. Typical
approximations of nonlinear Bayesian estimation problems rely on Monte Carlo
methods like particle filters (see e.g. [3]). However, the obtained results are not
reproducible and scaling for high dimensional parameters is an issue. Alterna-
tives are Gaussian filters like the extended Kalman filter (EKF) or the unscented
Kalman filter (UKF) (see e.g. [18]), where the posterior is approximated by means
of a Gaussian distribution. These approaches scale well with high dimensions,
but the approximation can be poor in case of strong nonlinearities. In this pa-
per, an approximate Bayesian estimator named adaptive Gaussian mixture filter
(AGMF) is employed that provides Gaussian mixture posteriors. As a result, sig-
nificantly better approximations compared to Gaussian filters are obtained with
an at the same time low computational demand and good scalability.

4 Adaptive Gaussian Mixture Filter

In this section, a brief introduction of the AGMF proposed by [11] is given. It pro-
vides a Gaussian mixture representation of the posterior p

(
θ
∣∣z1:k

)
according to

p
(
θ
∣∣z1:k

)= L∑
i=1

ωk,i ·N
(
θ; θ̂k,i ,Ck,i

)
,

where L is the number of mixture components, ωk,i are non-negative weights
summing up to one, and θ̂k,i , Ck,i are the mean and covariance matrix, respec-
tively, of the i -th Gaussian component. By substituting this mixture representa-
tion into the Bayesian recursion (5), one has to evaluate two terms: the product
of the Gaussian mixture with the likelihood (3.2) and the integration required for
the normalization constant p(zk |z1:k−1). In order to obtain the desired quantities,

514 Paper N On-line Dispersion Source Estimation

the AGMF performs four steps as depicted in Figure 1: linearization, splitting,
filtering, and reduction. Each step is explained in the following, where the time
index k is omitted for improved readability.

4.1 Statistical Linearization
The product of likelihood and mixture boils down to multiple products between
the likelihood and each Gaussian component of the mixture. These individual
products also appear in standard nonlinear Gaussian filters like the EKF or UKF.
The AGMF utilizes the same technique also used in the UKF in order to provide
an approximate solution of the individual products. By means of so-called
statistical linearization, the nonlinearity inducted by the Gaussian plume model
is transformed into a linear one, i.e., the nonlinear model (6) is approximated by
means of the linear model

z ≈ Hi ·θ+bi + v . (8)

The terms Hi and bi are obtained via statistical linear regression, where the
Gaussian plume model c(.) is evaluated at a set of weighted regression points
L,

{
α(i)

j ,θ(i)
j

}
j=0...N with non-negative weights α(i)

j . The regression points are

drawn deterministically from the i -th Gaussian component in such a way that
sample mean and covariance of L coincide with the mean θ̂i and covariance Ci .
The solution of the linear regression yields

Hi =
(
Cθz

)T
C−1

i and bi = ẑ −Hi · θ̂i (9)

for the required terms in (8), where L is used to approximate the mean and
cross-covariance of z according to

ẑ ≈
N∑

j=0
α(i)

j · z(i)
j , Cθz ≈

N∑
j=0

α(i)
j ·

(
θ(i)

j − θ̂)
·
(
z(i)

j − ẑ
)T ,

respectively, with z(i)
j = c

(
.;θ(i)

j

)
for j = 0. . . N . The terms in (9) minimize the

square of the error
ei , c

(
.;θ

)−Hi ·θ−bi (10)

in such a way that the error has zero mean and variance

σ2
e,i =σ2

z,i −Hi Ci HT
i −σ2

v , (11)

4 Adaptive Gaussian Mixture Filter 515

Linearization stop?

Splitting

Estimation Reduction

k → k −1

5
3

p
(θ∣ ∣ z 1:k

−1
)

p
(
θ
∣∣z1:k−1

)
p

(
θ
∣∣z1:k−1

)

zk

Figure 1: Flow chart of the adaptive Gaussian mixture filter.

where σ2
z,i ≈ ∑

j α
(i)
j ·

(
z(i)

j − ẑ
)(

z(i)
j − ẑ

)T +σ2
v . The error variance (11) gives a

good indication of the linearization error as it is merely zero iff c(.) is affine.
The Gaussian plume model approaches an affine function with an increasing
distance between the sensor location xr and the gas source.

4.2 Spli�ing
As statistical linearization (8) has to be performed for every component of the
Gaussian mixture p

(
θ
∣∣z1:k−1

)
, it is called local linearization in the following. It

typically provides a better estimation performance compared to a single global
linearization (see [2]). A further performance improvement can be achieved
by increasing the number of mixture components. It was proven in [1] that
Gaussian mixture filters relying on a local linearization converge towards the
optimal estimate when increasing the component number.

The AGMF adds additional components to the mixture by splitting existing
ones, i.e., an existing component is replaced by several new components that
share some statistics with the original component and that have lower weights
and covariances. To select a component for splitting, AGMF takes the local
linearization error induced by each component into account. Here, the statistical
linearization described above already provides a measure via the error variance
σ2

e in (11). Besides the linearization error, also the importance of a mixture
component, which is given by its weight ωi , is curcial. Both ingredients are
combined in the so-called selection criterion

i∗ = arg min
i=1...L

{si } , si ,ω
γ

i ·
(
1−exp

(−σ2
e,i

))1−γ
(12)

516 Paper N On-line Dispersion Source Estimation

for selecting component i∗ for splitting. Here, the term 1−exp
(−σ2

e,i

)
normalizes

the error σ2
e,i of the i -th component to the interval [0,1]. The criterion considers

the component weight and linearization error through a geometric interpola-
tion with parameter γ ∈ [0,1], where for γ= 0 only the linearization error is the
determining factor and for γ= 1 it is the weight.

In order to trade the reduction of the linearization error off against controlling the
computational load and the growth of the number of components, the Gaussian
component selected for splitting is replaced by two Gaussians only in each
splitting round. As splitting is performed recursively by the AGMF, the newly
introduced components can be split again in the next rounds if the linearization
error is still too high.

Let ω ·N
(
θ; θ̂,C

)
be the component considered for splitting. It is replaced by two

components according to

ω ·N
(
θ; θ̂,C

)≈ 2∑
n=1

ωn ·N
(
θ; θ̂n ,Cn

)
,

with parameters

ω1 =ω2 = ω
2 ,

θ̂1 = θ̂+
p
λ ·µ ·ε , θ̂2 = θ̂−

p
λ ·µ ·ε ,

C1 = C2 = C−λ ·µ ·εεT ,

(13)

whereµ ∈ [−1,1] is a free parameter. The parametrization in (13) ensures moment
preservation, i.e., the original Gaussian component and its split counterpart have
the same mean and covariance. Furthermore, λ and ε in (13) are a particular
eigenvalue and eigenvector, respectively, of C. Splitting is merely performed
along eigenvectors of C, which is computationally cheap and numerically stable
compared to arbitrary splitting directions. Among all possible eigenvectors, the
one is chosen that currently induces the highest error according to (10), i.e.,
splitting is performed along the eigenvector where the Gaussian plume model
posses the strongest nonlinearity.

As indicated in Figure 1, in every splitting round a stopping criterion is evaluated.
Splitting stops, if at least one of the three following thresholds is reached:

Error threshold: The value si in the selection criterion (12) drops below smax ∈
[0,1] for every component.

4 Adaptive Gaussian Mixture Filter 517

Component threshold: The number of mixture components excels Lmax.

Deviation threshold: The deviation between the original Gaussian mixture p
(
θ
)

and the mixture obtained via splitting p̃
(
θ
)

excels dmax ∈ [0,1].

The deviation considered for the latter threshold is determined by means of the
normalized intergral squared distance measure

D
(
p

(
θ
)
, p̃

(
θ
))= ∫ (

p
(
θ
)− p̃

(
θ
))2 dθ∫

p
(
θ
)2 dθ+∫

p̃
(
θ
)2 dθ

∈ [0,1] .

Since splitting always introduces an approximation error to the original mixture,
continuously monitoring the deviation limits this error.

4.3 Filtering

Let ωs
i ·N

(
θ; θ̂

s
i ,Cs

i

)
be the Gaussians resulting from splitting with i = 1. . .Ls

and Ls ∈ [L,Lmax] ⊂N. Given the concentration measurement zk , the recursive
Bayesian update according to (5) boils down to a bank of Kalman filter updates
thanks to the locally linearized models (8). Thus, the update of each (prior) Gaus-
sian component gives rise to the parameters of the corresponding component of
the posterior Gaussian mixture p

(
θ
∣∣z1:k

)
according to

ωi = c ·ωs
i ·N

(
zk ; ẑi ,σ2

z,i

)
,

θ̂i = θ̂
s
i +Ki · (zk − ẑi) ,

Ci = Cs
i −Ki Hi Cs

i ,

(14)

with predicted measurement ẑi = Hi · θ̂
s
i +bi , Hi and bi according to (9), Kalman

gain Ki = Cs
i HT

i /σ2
z,i , and innovation variance σ2

z,i = Hi Cs
i HT

i +σ2
v +σ2

e,i with σ2
e,i

being the linearization error variance (11). In the calculation of the weight ωi

in (14), c = 1/∑
i ω

s
i ·N

(
zk ;ẑi ,σ2

z,i

)
is a normalization constant.

4.4 Reduction

As the number of components of p
(
θ
∣∣z1:k

)
grows due to splitting, it is necessary

to bound this growth in order to reduce the computational and memory demand
of subsequent estimation steps. For this purpose, one can exploit the redundancy

518 Paper N On-line Dispersion Source Estimation

and similarity of Gaussian components. Furthermore, many components will
have negligible weights and thus, they can be removed without introducing
significant errors. To reduce a Gaussian mixture, many algorithms have been
proposed in the recent years (see e.g. [12, 155, 207]). Most of these algorithms
require a reduction threshold Lred ¿ Ls to which the number of components of
the given Gaussian mixture has to be reduced. The reduction to Lred components
closes the calculation of the posterior Gaussian mixture in (5) for time step k.

5 Results

The estimation performance of the AGMF is assessed in the following by means
of real data in Section 5.2 and by means of a synthetic example in Section 5.3.
However, as the AGMF is a generic estimator allowing specific parametrization
depending on the estimation task, the selected setup is described first.

5.1 AGMF Parametrization
The three processing steps linearization, splitting, and reduction allow special-
ized parametrization. For the statistical linearization, the selection of the regres-
sion points is based on the scaled unscented transform [13]. Hence, the points
and their weights are given by

θ0 = θ̂ , α0 = λ2−d
λ2 ,

θ j = θ̂+λ ·P j , α j = 1
2λ2 , j = 1. . .d ,

θd+ j = θ̂−λ ·P j , αd+ j =α j , j = 1. . .d ,

with d being the dimension of θ, λ = ν ·
p

d +κ being a scaling factor, and P j

being the j -th column of the matrix P =
p

C, where the matrix square root is
calculated via the Cholesky decomposition. The free parameters in λ are chosen
to ν = 1, β = 2, and κ = 0.5 in the following experiments, which leads to equal
weights α j for all j = 0. . .2d .

Both the mixing parameter γ in the selection criterion (12) and the displacement
parameter µ in (13) are set to be 0.5. The thresholds for stopping component
splitting are chosen to be smax = 0 and dmax = 1, which actually disables these

5 Results 519

thresholds. Only the threshold Lmax is active, but set differently depending on
the considered experiment.

For reducing the Gaussian mixture after performing the filtering step, the re-
duction algorithm proposed by [17] is employed as it provides a good trade-off
between computational demand and reduction error. The reduction threshold
Lred is set to be Lmax/8.

5.2 Indianapolis Field Study
In the first experiment, it is demonstrated how the proposed source estimation
solution performs on a real data set. For this purpose, the data acquired during
the EPRI Indianapolis field study is considered, where SF6 tracer was released
from a zs = 83.8m stack at a power plant in Indianapolis, Indiana, USA. Data was
recorded by 160 ground-level sensors over 19 days in September and October
1985 for 8 to 9 hours every day. Details about the field study and the data can be
found in [7].

In Figure 2a, the locations of the sensors and sensors’ concentration measure-
ments are depicted for the 19th September 1985. The source is located at the
origin and the emission rate of the tracer gas is q = 0.0041 g/s. Information about
wind speed, wind direction, and atmospheric stability was made available by
meteorological observations. The initial estimate of the source at time step k = 0
is given by a single Gaussian with mean vector θ̂0 = [2000,3000,102,0.033]T and
covariance matrix C0 = diag(106,106,500,0.001). Figures 2a and 2b show the
convergence of the source estimate towards the true source location over time
and with increasing number of concentration measurements, respectively. It is
important to note that many sensor measurements (typically 60%-70%) provide a
concentration measurement of almost zero as most of the sensor are outside the
gas plume, as can be seem in Figure 2a. This explains the step-wise convergence
of the estimate and reduction of the variance in Figure 2b.

The posterior density p
(
θ
∣∣z1:k

)
after all k = 1200 measurements is depicted in

Figure 3. It can be seen that the mean of the estimate is close to the true source
parameters. Slight deviation from the ground truth is only observed for the
emission rate, but still the true parameters are within the high confidence region
of the estimate. Thus, the proposed estimator is not overconfident.

520 Paper N On-line Dispersion Source Estimation

-4000 -2000 0 2000 4000

x / m →

-1000

0

2000

4000
y

/
m

→

0

200

400

600

800

(a) The red dashed line marks the trajectory of the estimated source location [x, y]T,
whereas the true location of the source is marked by the black cross. Circular
markers denote the sensor locations colored with the measured concentration in
ppt.

0 400 800 1200

no. measurements →
0

100

200

z
/

m
→

0 400 800 1200

no. measurements →

-0.1

0

0.1

z
/

m
→

(b) Estimate of source height z and emission rate q with increasing number of
measurements. The shaded area denotes the 3-sigma confidence region and the
red line indicates the true value.

Figure 2: Source estimate by AGMF based on the data from the Indianapolis field
study.

5 Results 521

q
z

y
x

x y z q

Figure 3: Bivariate posterior densities of the AGMF source estimate. The diagonal
plots are the univariate marginal densities. Red crosses indicate the true value, while
white and black circles, respectively, denote the mean of the respective density.

5.3 Simulation
In contrast to the previous experiment, a synthetic example is considered here
allowing the comparison with state-of-the-art source estimation methods via
Monte Carlo simulations. In this example, the locations and emission rates of
two sources have to be estimated. Thus, the measurement model (7) for N = 2
applies here. The employed simulation parameters are listed in Table 1. The
standard deviations σy , σz of the Gaussian plume model are assumed to take the
form

σ(x) = a · x · (1+b · x)−c (15)

according to [5]. The constants in (15) depend on the atmospheric stability,
for which class D is assumed—corresponds to “neutral” in accordance to the

522 Paper N On-line Dispersion Source Estimation

Pasquill-Gifford classification scheme. As described in [6], the corresponding
values of the constants for class D are as listed in the last two rows of Table 1.

For comparison, the following estimators are considered:

AGMF16 Proposed source estimator with Lmax = 16.

AGMF32 Proposed source estimator with Lmax = 32.

GMF16 Gaussian mixture estimator by [20], i.e., AGMF without adaptation.
The number of components remains constant at 16.

GMF32 Same estimator as GMF16 but with 32 mixture components.

UKF Unscented Kalman filter proposed by [13], i.e., only a single Gaussian
represents the posterior.

GN Forward off-line method utilizing Gauß-Newton optimization pro-
posed by [16].

MCMC Backward off-line method utilizing Markov chain Monte Carlo sam-
pling. The number of sampling steps is chosen in such a way that the
runtime of MCMC is similar to AGMF32.

Table 1: Simulation parameters, where U (a,b) is a uniform distribution over the
interval [a,b].

Parameter Distribution / Value

location 1st source xs,1, ys,1 ∼U (0m,100m)
height 1st source zs,1 ∼N

(
4m,1m2)

emission rate 1st source q1 ∼U (0.005 g/s,0.006 g/s)
location 2nd source xs,1, ys,2 ∼U (0m,100m)
height 2nd source zs,2 ∼N

(
6m,1m2)

emission rate 2nd source q2 ∼U (0.0075 g/s,0.0085 g/s)
wind speed u ∼U (1 m/s,2 m/s)

wind direction φ∼U (−π/4 rad,π/4 rad)
standard deviation σy a = 0.08, b = 0.0001, c = 0.5
standard deviation σz a = 0.06, b = 0.0015, c = 0.5

5 Results 523

Table 2: Average distance and average source rate deviation in case of two sources.

Strong Noise Med. Noise Low Noise
dist rate dist rate dist rate

AGMF16 49.9 29.0 37.1 31.9 37.5 27.3
AGMF32 45.6 28.5 34.6 32.1 34.2 28.1

GMF16 58.0 27.2 42.6 30.9 61.2 36.8
GMF32 52.2 28.2 41.6 31.1 48.8 33.7
UKF 69.9 29.1 74.5 34.7 124.1 59.8

GN 63.8 21.8 63.5 21.3 64.2 21.6
MCMC 34.3 25.5 43.0 29.9 75.8 36.3

The initial estimate of each estimator at time step k = 0 is Gaussian with mean
vector θ̂0 drawn randomly from N

(
θ;C

)
with

θ = [
xs,1, ys,1, zs,1, q1, xs,2, ys,2, zs,2, q2

]T , (16)

C = diag
(
502,502,102,0.00252,502,502,102,0.00252) . (17)

The initial covariance matrix is set to be C0 = C.

Three different sensor noise levels for σ are considered: 10 mg/m3 (strong noise),
5 mg/m3 (medium noise), and 1 mg/m3 (low noise). For each noise level, 100
Monte Carlo simulation runs are performed. In each run, 600 concentration
measurements are acquired at locations drawn randomly from U (0m,200m)×
U (0m,200m). In Table 2, average values of the distance between source estimates
and true source locations for both sources as well as the average absolute devia-
tion between estimated and true emission rate are listed. For low and medium
noise, the proposed AGMF provides the lowest source distance, where allowing
more components for splitting leads to a slightly better estimation performance.
Regarding the emission rate, GN is the most accurate estimator. In case of strong
noise, MCMC is the best estimator with respect to the source location. MCMC
however, is an off-line estimator, i.e., estimates become available after processing
all measurements in a batch, while the AGMF continuously provides estimates
at runtime.

The superior estimation performance of the AGMF compared to the other es-
timators in case of low noise does not vary with the number of concentration
measurements as shown in Figure 4a. From 50 to 600 measurements AGMF al-

524 Paper N On-line Dispersion Source Estimation

50 100 200 300 400 500 600

no. measurements →

AGMF16
AGMF32

GMF16
GMF32

UKF GN
MCMC

0

50

100

150

av
g.

d
is

ta
n

ce
/

m
→

(a) Average distance depending on the number of measure-
ments. For the batch methods GN and MCMC, for each num-
ber of measurements separate estimation runs have been per-
formed.

AGMF16 AGMF32 GMF16 GMF32 UKF GN MCMC
0

50

100

150

200

250

d
is

ta
n

ce
/

m
→

(b) Median (red line), lower and upper quantiles (blue box), and
spread (black lines) of the distances for 600 measurements. Red
crosses indicate outliers.

Figure 4: Distances between estimated source position and true source positions
for the low noise case.

6 Conclusion 525

Table 3: Average and standard deviation of the number of mixture components per
time step.

Strong Noise Med. Noise Low Noise

AGMF16 12.46 ± 8.07 9.77 ± 8.93 8.59 ± 8.96
AGMF32 25.13 ± 16.02 19.64 ± 17.85 16.53 ± 17.86

ways provides the smallest distance between estimated and true source location.
A similar result is obtained for the other noise levels, except that MCMC always
provides a better estimate for the strong noise case.

Figure 4b shows that the majority of the estimates provided by the AGMF is better
than the average listed in Table 2. Some outliers significantly lower the average
performance. These outliers result from random initializations, where the initial
estimated source location is far outside the sensor area [0m,200m]× [0m,200m].
Due to the potentially large distance between estimate and measurement loca-
tion, the Gaussian plume model become almost linear, which is also indicated by
the lineariztion error measure (11). As a consequence no splitting is performed
and thus, the AGMF degrades to a simple UKF. By means of allowing also splitting
towards the sensor location would resolve this issue and would result in a better
performance.

Of all on-line estimators, AGMF performs best. This clearly shows that a single
Gaussian and also a fixed Gaussian mixture representation are not sufficient.
By means of the adaptation via splitting, a much better source estimation is
possible. It is worth mentioning that it is not necessary to utilize the maximum
number of components Lmax at all time steps in order to provide a meaningful
representation of the posterior density. As shown in Table 3, the average number
of components per time step is significantly below Lmax, whereas the lower the
measurement noise the lower the required number of components. Thus, the
proposed AGMF can carefully control the demand of splits.

6 Conclusion

The state-of-the-art in dispersion source estimation mainly focuses on MCMC
methods. While this allows accurate estimates, only batch processing is possible.
The proposed adaptive Gaussian mixture filter shows that a similar and in some
cases an even better estimation performance can be obtained with an on-line

526 Paper N On-line Dispersion Source Estimation

estimator. Therefore, it is of paramount importance to not rely on a single
Gaussian or a fixed Gaussian mixture representation. By means of splitting
that adapts the Gaussian mixture to the nonlinearity of the Gaussian plume
dispersion model, a significant improvement can be achieved.

References

[1] Simo Ali-Löytty. Gaussian Mixture Filters in Hybrid Positioning. PhD thesis,
Tampere University of Technology, Tampere, Finland, August 2009.

[2] Daniel L. Alspach and Harold W. Sorenson. Nonlinear Bayesian Estimation
using Gaussian Sum Approximation. IEEE Transactions on Automatic
Control, 17(4):439–448, August 1972.

[3] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A
Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking. IEEE Transactions on Signal Processing, 50(2):174–188, February
2002.

[4] Mieczyslaw Borysiewicz, Anna Wawrzynczak, and Piotr Kopka. Bayesian-
Based Methods for the Estimation of the Unknown Model’s Parameters in
the Case of the Localization of the Atmospheric Contamination Source.
Foundations of Computing and Decision Sciences, 37(4):253–270, 2012.

[5] G. A. Briggs. Diffusion estimation for small emissions, Atmospheric Tur-
bulence and Diffusion Laboratory Contribution. Technical Report 79,
National Oceanic and Atmospheric Administration, Oak Ridge, 1973.

[6] M. D. Carrascal, M. Puigcerver, and P. Puig. Sensitivity of Gaussian plume
model to dispersion specifications. In Theoretical and Applied Climatology,
volume 48, pages 147–157. Springer, 1993.

[7] Steven Hanna, Joseph Chang, and Helge R. Olesen. Indianapolis Tracer
Data and Meteorological Data, May 1997.

[8] Bill Hirst, Philip Jonathan, Fernando G. del Cueto, David Randell, and
Oliver Kosut. Locating and quantifying gas emission sources using re-
motely obtained concentration data. Atmospheric Environment, 74:141–
158, August 2013.

References 527

[9] Ekkehard Holzbecher. Environmental Modeling. Springer, 2nd edition,
2012.

[10] Frédéric Hourdin and Olivier Talagrand. Eulerian backtracking of at-
mospheric tracers. I: Adjoint derivation and parametrization of subgrid-
scale transport. Quarterly Journal of the Royal Meteorological Society,
132(615):567–583, January 2006.

[11] Marco F. Huber. Adaptive Gaussian Mixture Filter Based on Statistical
Linearization. In Proceedings of the 14th International Conference on
Information Fusion (Fusion), Chicago, Illinois, July 2011.

[12] Marco F. Huber and Uwe D. Hanebeck. Progressive Gaussian Mixture
Reduction. In Proceedings of the 11th International Conference on Infor-
mation Fusion (Fusion), Cologne, Germany, July 2008.

[13] Simon J. Julier and Jeffrey K. Uhlmann. Unscented Filtering and Nonlinear
Estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[14] Vladimir Maz’ya and Gunther Schmidt. On approximate approximations
using gaussian kernels. IMA Journal of Numerical Analysis, 16:13–29, 1996.

[15] K. Shankar Rao. Source estimation methods for atmospheric dispersion.
Atmospheric Environment, 41:6964–6973, 2007.

[16] Alison Rudd, Alan G. Robins, Jason J. Lepley, and Stephen E. Belcher. An
Inverse Method for Determining Source Characteristics for Emergency
Response Applications. Boundary-Layer Meteorology, 144(1):1–20, July
2012.

[17] Andrew R. Runnalls. Kullback-Leibler Approach to Gaussian Mixture Re-
duction. IEEE Transactions on Aerospace and Electronic Systems, 43(3):989–
999, July 2007.

[18] Simo Särkkä. Bayesian Filtering and Smoothing. Cambridge University
Press, 2013.

[19] Inanc Senocak, Nicolas W. Hengartner, Margaret B. Short, and W. Brent
Daniel. Stochastic Event Reconstruction of Atmospheric Contaminant Dis-
persion Using Bayesian Inference. Atmospheric Environment, 42(33):7718–
7727, October 2008.

528 Paper N On-line Dispersion Source Estimation

[20] Miroslav Simandl and Jindrich Duník. Sigma Point Gaussian Sum Filter
Design Using Square Root Unscented Filters. In Proceedings of the 16th
IFAC World Congress, Prague, Czech Republic, July 2005.

[21] Michael D. Sohn, Pamela Reynolds, Navtej Singh, and Ashok J. Gadgil.
Rapidly Locating and Characterizing Pollutant Releases in Buildings. Jour-
nal of the Air & Waste Management Association, 52(12):1422–1432, 2002.

[22] John M. Stockie. The Mathematics of Atmospheric Dispersion Modelling.
SIAM Review, 53(2):349–372, 2011.

[23] Yong Zhang and Li Wang. Particle Filtering Method for Source Localiza-
tion in Wireless Sensor Network. In Advanced Technology in Teaching:
Selected papers from the 2012 International Conference on Teaching and
Computational Science (ICTCS 2012), volume 163, pages 517–523. Springer,
2013.

Paper O
Bayesian Active

Object Recognition via
Gaussian Process Regression

Authors: Marco F. Huber, Tobias Dencker, Masoud Roschani, and Jürgen Beyerer

Edited version of the paper:

M. F. Huber, T. Dencker, M. Roschani, and J. Beyerer. Bayesian Active Object
Recognition via Gaussian Process Regression. In Proceedings of the 15th
International Conference on Information Fusion (Fusion), pages 1718–1725,
Singapore, July 2012.

Bayesian Active Object Recognition via
Gaussian Process Regression

Marco F. Huber∗, Tobias Dencker∗∗, Masoud Roschani∗∗, and Jürgen Beyerer∗∗

∗ AGT International
Darmstadt, Germany

marco.huber@ieee.org

∗∗ Institute for Anthropomatics
Karlsruhe Institute of Technology (KIT), Germany

tobias.dencker@kit.edu,
masoud.roschani@kit.edu,
juergen.beyerer@kit.edu

Abstract
This paper is concerned with a Bayesian approach of actively select-
ing camera parameters in order to recognize a given object from a
finite set of object classes. Gaussian process regression is applied to
learn the likelihood of image features given the object classes and
camera parameters. In doing so, the object recognition task can be
treated as Bayesian state estimation problem. For improving the
recognition accuracy and speed, the selection of appropriate cam-
era parameters is formulated as a sequential optimization problem.
Mutual information is considered as optimization criterion, which
aims at maximizing the information from camera observations or
equivalently at minimizing the uncertainty of the state estimate.

1 Introduction

Research on computer vision mostly focuses on the object or scene observed by
the camera system. It is assumed that the parameters of the camera (e.g., position,
illumination, or focus) are given or determined off-line in a time-consuming
trial-and-error process involving human interaction. Particular operations are
then applied on the acquired images in order to solve the considered vision task
like recognizing an object. In such passive vision systems, the camera parameters
aer not adapted on-line. This is in contrast to an active vision system, where the

532 Paper O Bayesian Active Object Recognition via Gaussian Process Regression

next camera observation is carefully planned based on the previously acquired
images and prior information about the considered scene.

While various approaches for passive object recognition exist (see e.g. [23] and
references therein), active object recognition still is in its early stages. One of
the first approaches to active object recognition can be found in [2], where the
object models are learned via the eigenspace approach introduced in [15]. The
planning algorithm greedily chooses the view that leads to the maximum en-
tropy reduction of the object hypotheses. In [8], from a finite set of views the
one maximizing the mutual information between observations and classes is
selected. The approach is designed for arbitrary features, but requires approxi-
mate mutual information calculation via Monte Carlo sampling, which prevents
a direct extension to continuous views. An upper bound of the Jeffrey divergence
is employed in [13]. Again, merely a finite set of viewpoints is considered. Re-
inforcement learning approaches for active object recognition are proposed in
[6, 16]. Here, learning the object models and planning is performed simultane-
ously. A comparison of some of the aforementioned approaches can be found
in [5].

The active object recognition method proposed in this paper consists of two
parts (see Figure 1 on page 534). In the off-line learning part described in Sec-
tion 4.1, for each object a so-called object model is created. For varying camera
parameters, e.g., focus or position, 2D images of each 3D object are generated.
Gaussian process regression is then applied on the sample images to learn the
object models. As explained in Section 3, Gaussian processes can be considered
distributions over functions and thus, allow capturing the variations in images
due to noise and errors in image pre-processing.

In the on-line recognition part, planning the next-best camera view (see Sec-
tion 4.3) and Bayesian state estimation (see Section 4.2) are performed alternately.
For planning, mutual information is maximized with respect to the camera pa-
rameters. Mutual information quantifies the reduction of the uncertainty in
the current object estimate given a particular camera parameter. Based on the
chosen parameter, the object estimate is updated via Bayesian estimation under
consideration of the learned object models.

In contrast to prior art, the proposed method is very general as it is not restricted
to specific image features. Furthermore, camera parameters can be arbitrary and
continuous valued. All derivations in this paper regarding Bayesian estimation
hold for arbitrary Gaussian process kernel functions. The performance of the
proposed approach is demonstrated by means of simulations in Section 5.

2 Problem Formulation 533

2 Problem Formulation

In this paper, the object recognition problem is treated in a probabilistic fashion
in order to account for uncertainties arising for example from camera noise,
occlusion, or feature extraction. Based on a feature vector zk ∈Z ⊆Rnz acquired
from images at stage k = 0,1, . . ., the goal is to estimate the true latent object
class x ∈ X = {x1, x2, . . . , xN } ⊂N, with N being the finite number of possible
object classes. For estimation purposes, the true object class is approximated
by a discrete random variable xk ∈ X , which forms the object class estimate.
By means of the camera parameters ak ∈A⊆Rna the estimation process can
be actively driven. Potential camera parameters are position, orientation, focal
length, or exposure time, just to name a few.

The object class estimate xk given all features and camera parameters up to
and including stage k is characterized via the probability distribution pk|k ,
p

(
xk

∣∣z0:k , a0:k

)
, with z0:k = (

z0,z1, . . . , zk

)
. It is calculated recursively by means

of Bayes’ equation [20] according to

pk|k = 1
c · p

(
zk

∣∣xk , ak

)
· pk|k−1 , (1)

with normalization constant c , p
(
zk

∣∣z0:k−1, a0:k

)
and the prior distribution

pk|k−1, p
(
xk

∣∣z0:k−1, a0:k−1

)= pk−1|k−1, i.e., the distribution at stage k −1. The

recursion (1) commences from p0 , p(x0) being the prior distribution of the
object class estimate at stage k = 0. Furthermore, p

(
zk

∣∣xk , ak

)
in (1) is the likeli-

hood defined by the nonlinear transformation

zk = h
(
xk , ak

)+ vk . (2)

This measurement model with nonlinear measurement function h(.) relates the
object class to a feature vector given the camera parameters. Here, the measure-
ment noise vk subsumes all uncertainties arising during image acquisition.

So far, the action1 ak was assumed to be given. But in active object recognition,
an action is chosen automatically by the imaging system itself for acquiring high

1 The terms ‘state’, ‘observation’, ‘action’ are used interchangeably for ‘object class’, ‘feature vector’,
‘camera parameter’ from now on.

534 Paper O Bayesian Active Object Recognition via Gaussian Process Regression

Learning — Section 4.1

Planning — Section 4.3

Estimation — Section 4.2

k → k −1

object models

action a∗
k

pk|k

pk|k−1

object class distribution pk|k

feature zk

off-line

on-line

Figure 1: Flow chart of the active object recognition system.

informative observations. For this purpose, the optimization problem

a∗
k = arg max

ak

I
(
xk , zk

∣∣ak

)
(3)

is formulated to determine the optimal action a∗
k to be applied at stage k. Since

solving (3) results in the camera parameters to be applied next, it is often referred
to as next-best-view planning (see e.g. [19]). As target function in (3), the mu-
tual information I

(
xk , zk

∣∣ak

)
between state and observation given an action is

considered. This measure quantifies the amount of information the knowledge
of an observation revels about the state and vice versa. It is closely related to
Shannon’s entropy and zero only iff both variables are independent [4].

For solving the next-best-view problem given by (3), several problems arise:
1) Analytical expressions for the measurement model (2) and the likelihood
p

(
zk

∣∣xk ,ak

)
, respectively, are not given in general as both describe a complex

transformation of a potentially high-dimensional feature vector to an abstract
object class. 2) Calculating pk|k in (1) cannot be performed in closed form for
arbitrary likelihoods and priors pk|k−1 [20]. 3) Evaluating mutual information is
only possible for some special cases, e.g., if xk and zk are normally distributed.
4) The optimization problem is non-convex and thus, getting trapped in a sub-
optimal solution becomes an issue. A novel active object recognition method
addressing these problems is described in the following sections.

3 Gaussian Process Regression 535

3 Gaussian Process Regression

To tackle the issue of not having analytic expressions of the measurement model
and the likelihood, a machine learning tool named Gaussian processes (GPs)
is employed. GPs allow non-parametric learning of regression functions from
noisy training data. They can be considered Gaussian posterior distributions
over functions conditioned on the training data [18]. Thus and in contrast to
classical regression approaches, GPs provide not only a regression function but
also provide uncertainty estimates (error bars) depending on the noise and the
variability of the data.

For GP regression, a set of training data D = {(
x1, y1

)
,
(
x2,y2

)
, . . . ,

(
xn , yn

)}
is as-

sumed to be drawn from the noisy process

yi = h
(
xi

)+ε , (4)

where xi are the training inputs, yi are the training outputs, and ε∼N
(
0,σ2) is

zero-mean Gaussian noise with variance σ2. For brevity reasons, X = [
x1, . . . , xn

]
are all training inputs and y = [

y1, . . . , yn
]T

are the corresponding training outputs
in the following.

The GP is used to infer the latent function h(.) from the data D and is completely
specified by a mean function m(.) and a positive semi-definite covariance func-
tion k(.,.), also called a kernel. Throughout this paper, a zero mean function and
the squared exponential (SE) kernel

k
(
x, x ′)=α2 · exp

(
− 1

2

(
x −x ′)T

Λ−1(x −x ′))
are used, where Λ is a diagonal matrix of the characteristic length-scales for
each input dimension and α2 is the variance of the latent function h. It is worth
mentioning that the active object recognition approach proposed in this paper is
not restricted to an SE kernel. All derivations presented in the following hold for
arbitrary kernels.

The posterior distribution of the function value h∗ = h
(
x∗

)
for an arbitrary test

input x∗ is Gaussian with mean

ĥ
(
x∗

)= E{h∗} = kT
∗
(
K+σ2I

)−1
y , (5)

536 Paper O Bayesian Active Object Recognition via Gaussian Process Regression

and variance
σ2

h

(
x∗

)= var{h∗} = k∗∗−kT
∗
(
K+σ2I

)−1
k∗ , (6)

with E{.} being the expectation value, var{.} being the variance, k∗ , k
(
X, x∗

)
,

k∗∗ , k
(
x∗, x∗

)
, and K being the kernel matrix with elements Ki j = k

(
xi , x j

)
.

Note that the variance depends on the noise ε as well as on the correlation
between test input and training data.

The parameters σ,α,Λ of a GP are called the hyperparameters, which are learned
automatically by maximizing the log-likelihood of the training data using numer-
ical optimization [18]. Learning the hyperparameters corresponds to selecting a
GP model describing the training data and thus, the process (4) adequately.

4 Active Object Recognition

The GP regression introduced in the previous section forms the basis of the
proposed active object recognition approach. All components necessary for
object recognition using GP regression are described in the following. For an
overview and an illustration of the interactions between the components see
Figure 1 on page 534.

4.1 Learning Object Models
To apply GP regression, it is necessary to map the considered measurement
model (2) to the latent process (4). It is obvious that in (4) merely one-dimensio-
nal outputs are considered. In object recognition however, multi-dimensional
outputs resulting from feature extraction are typical. The straightforward way
used in this paper to apply GP regression to the multi-dimensional case is to learn
a separate GP for each output dimension e = 1, . . . ,nz . Thus, nz GPs are learned
independently using the same training inputs X but different training outputs

ze = [
ze

1 , . . . , ze
n

]T
for each output dimension e. In doing so, it is assumed that

any two output dimensions are conditionally independent given the input. For a
deterministic input—here the deterministic action a—this results in a posterior
Gaussian with diagonal covariance matrix. For a uncertain input however, the
covariance matrix is no longer diagonal [7]. An alternative approach resulting in
non-diagonal covariance matrices even for deterministic inputs is the recently
developed multi-output GP regression (see for example [3]).

4 Active Object Recognition 537

Furthermore, learning the GPs for each output dimension has to be performed
independently for each object class xl , l = 1, . . . ,N . This results in N multi-variate
GPs hl (.) ∼GP of dimension nz named object models in the following. To learn an
object model hl , samples ai , i = 1, . . . ,n of the action space A are used as training
inputs X. For each input sample ai , an object of the class xl ∈X is observed by

the camera resulting in the feature vector zi =
[
z1

i , z2
i , . . . , znz

i

]T
acting as training

output. In total, for nz output dimensions and N object classes, nz × N GPs
are learned. Since learning these measurement models is an off-line task (see
Figure 1), the required computation time is independent of the computation time
for object recognition. Furthermore, for high-dimensional features, which may
be obtained for instance by means of the scale-invariant feature transform (SIFT,
[14]), dimensionality reduction techniques like principal component analysis [1]
or GP latent variable models [24] can be employed in order to reduce the number
of GPs to be learned.

4.2 Bayesian Estimation
Given the learned object models, the next component towards an active object
recognition is the estimation of the object class given an arbitrary but fixed action
ak ∈A. Determining the next-best action is content of Section 4.3.

To solve Bayes’ equation (1), it is at first necessary to provide the representations
of all involved distributions.

Prior Distribution

As the latent object class x is a discrete random variable, the prior distribution
pk|k−1 at stage k can be characterized by means of

pk|k−1 =
N∑

i=1
ωk−1,i ·δxk ,i , (7)

where the weight ωk−1,i represents the probability that object x belongs to class
i . The weights are non-negative and sum up to one. Further, δxk ,i is defined as

δxk ,i =
{

1, if xk = i

0, otherwise
. (8)

and known as the Kronecker delta.

538 Paper O Bayesian Active Object Recognition via Gaussian Process Regression

Likelihood

In case of a given object class xk = i , the likelihood p
(
zk

∣∣xk = i , ak

)
corresponds

to the GP hi (.). If in addition the action ak is given, the likelihood becomes
a Gaussian density N

(
zk ; ẑk,i ,Cz

k,i

)
with mean vector and covariance matrix

according to

ẑk,i =
[

ẑ1
k,i , ẑ2

k,i , . . . , ẑnz
k,i

]T
,

Cz
k,i = diag

((
σ1

k,i

)2
,
(
σ2

k,i

)2
, . . . ,

(
σ

nz
k,i

)2)
,

(9)

respectively. The elements in (9) corresponding to dimension e = 1, . . . ,nz are
calculated according to (5) and (6), respectively, with the given action ak being
the test input and ze being the training output vector. Overall, the likelihood
for a fixed action ak can be characterized by means of the hybrid conditional
distribution

p
(
zk

∣∣xk , ak

)= N∑
i=1

δxk ,i ·N
(
zk ; ẑk,i ,Cz

k,i

)
. (10)

It is important to note that for a fixed observation zk —as required for solving
Bayes’ equation—the conditional distribution in (10) becomes a weighted sum
of Kronecker deltas as in (7), because all Gaussian components are evaluated at
zk and thus, become scalar weighting coefficients.

Normalization Constant

Finally, the normalization constant c in (1) can be calculated by marginalizing
the product of prior and likelihood over xk , which results in

c = p
(
zk

∣∣z0:k−1, a0:k

)=∑
xk

p
(
xk , zk

∣∣z0:k−1, a0:k

)︸ ︷︷ ︸
=p(zk |xk ,ak)·pk|k−1

=∑
xk

(
N∑

i=1
ωk−1,i ·δxk ,i ·N

(
zk ; ẑk,i ,Cz

k,i

))

=
N∑

i=1
ωk−1,i ·N

(
zk ; ẑk,i ,Cz

k,i

)
. (11)

Thus, the normalization constant is a Gaussian mixture evaluated at the given
observation zk .

4 Active Object Recognition 539

Posterior Distribution

With the closed-form representations of all required distributions at hand, it is
now possible to solve Bayes’ equation resulting in the posterior distribution of xk

pk|k = 1

c
·

(
N∑

i=1
δxk ,i ·N

(
zk ; ẑk,i ,Cz

k,i

))
·

(
N∑

i=1
ωk−1,i ·δxk ,i

)

= 1

c
·

N∑
i=1

ωk−1,i ·δxk ,i ·N
(
zk ; ẑk,i ,Cz

k,i

)
=

N∑
i=1

ωk,i ·δxk ,i

with weights ωk,i ,
1
c ·ωk−1,i ·N

(
zk ; ẑk,i ,Cz

k,i

)
. As expected, the incorporation

of a new observation zk leads to an adaption of the prior probability ωk−1,i of
each object class i depending on the individual likelihood N

(
zk ; ẑk,i ,Cz

k,i

)
of the

object class.

4.3 Next-Best-View Planning
The final component in Figure 1 is the planning of the next-best-view and optimal
action a∗

k ∈A, respectively, allowing for fast and accurate object recognition. As
discussed in Section 2, the optimal action results from solving the optimization
problem (3), where the mutual information

I
(
xk , zk

∣∣ak

)= H
(
xk

)−H
(
xk

∣∣zk , ak

)
(12)

= H
(
zk

∣∣ak

)−H
(
zk

∣∣xk , ak

)
(13)

is employed for quantifying the utility of a particular action ak ∈ A . In (12) and
(13), the first term H(.) denotes Shannon’s entropy

H(x) =−∑
x

p(x) · log p(x) (14)

for discrete random variables and the differential entropy

H(x) =−
∫
X

p(x) · log p(x) dx

for continuous random variables, respectively (see [4]). The second term H(.|.)
denotes the conditional entropy given by

H(z|x) =−
∫
X

p(x)
∫
Z

p(z|x) · log p(z|x) dz dx (15)

540 Paper O Bayesian Active Object Recognition via Gaussian Process Regression

for continuous random variables x and z. By replacing the integrals with sums, a
similar expression for the conditional entropy can be found for discrete random
variables.

Evaluation of Mutual Information

Unfortunately, neither (12) nor (13) allow an analytical calculation of the mu-
tual information value. An approximate evaluation of the mutual information
based on (12), however, is inappropriate for many reasons. While the first term
H

(
xk

)
is straightforward to evaluate as it is Shannon’s entropy (14) of the dis-

crete prior distribution pk|k−1, the second conditional entropy term can only
be evaluated approximately by discretizing the Gaussian mixture distribution
p

(
zk

∣∣z0:k−1, a0:k

)
, e.g., by means of random sampling or the unscented transform

[10]. Depending on the number of samples used, this approach of approximating
mutual information becomes computationally demanding. For each sample,
Bayes’ equation has to be evaluated completely in order to provide the posterior
distribution pk|k required for the inner integral in (15). Furthermore, random
sampling precludes classical optimization techniques like gradient descent for
solving the optimization problem (3).

Directly approximating mutual information via (13) is also critical, but (13) allows
calculating a lower bound, which is very convenient for the maximization in (3).
Here, the first term needs special treatment as it requires the calculation of the
entropy of the Gaussian mixture (11), which is not possible in closed form in
general due to the logarithm of a sum of exponential functions. Fortunately, the
entropy of a Gaussian mixture can be bounded from below according to [12]

H
(
zk

∣∣ak

)=−
∫
Z

p
(
zk

∣∣ak

)
· log p

(
zk

∣∣ak

)
dzk

=−
N∑

i=1
ωk−1,i

∫
Z
N

(
zk ; ẑk,i ,Cz

k,i

)
log

(
N∑

j=1
ωk−1, j ·N

(
zk ; ẑk, j ,Cz

k, j

))
dzk

≥−
N∑

i=1
ωk−1,i · log

(
N∑

j=1
ωk−1, j ·ci j

)
(16)

with shorthand term p
(
zk

∣∣ak

)
, p

(
zk

∣∣z0:k−1,a0:k

)
and ci j ,N

(
ẑk,i ; ẑk, j ,Cz

k,i +
Cz

k, j

)
being the value resulting from integrating over the product of the two Gaus-

sians N
(
zk ; ẑk,i ,Cz

k,i

)
and N

(
zk ; ẑk, j ,Cz

k, j

)
. The lower bound follows directly

from applying Jensen’s inequality [4], which allows pulling the logarithm out of

4 Active Object Recognition 541

the integral. With regard to complexity, the lower bound scales quadratically
with the number of object classes N and thus is computationally very efficient as
the number of classes is expected to be a few tens.

Utilizing the sifting property of the Kronecker delta (8) and the analytical evalua-
tion of the entropy of a Gaussian distribution, the second conditional entropy
term in (13) can written as

H
(
zk

∣∣xk , ak

)=−∑
xk

pk|k−1

∫
Z

p
(
zk

∣∣xk ,ak

)
· log p

(
zk

∣∣xk ,ak

)
dzk

=−
N∑

i=1
ωk−1,i ·

∫
Z
N

(
zk ; ẑk,i ,Cz

k,i

)
· logN

(
zk ; ẑk,i ,Cz

k,i

)
dzk︸ ︷︷ ︸

=− 1
2 log

∣∣∣2πeCz
k,i

∣∣∣
, (17)

where |.| is the determinant of a matrix. Putting (16) and (17) together, the lower
bound

Ī,−
N∑

i=1
ωk−1,i · log

(∣∣2πeCz
k,i

∣∣ 1
2 ·

N∑
j=1

ωk−1, j ·ci j

)
(18)

of (13) is used in (3) to approximate the mutual information value.

Solving the Optimization Problem

Solving the optimization problem (3) for finding the optimal action or next-best-
view a∗

k ∈A for the current stage k requires to calculate the maximum of the
mutual information and its lower bound (18), respectively. Unfortunately, the
optimal action cannot be calculated in closed form. Additionally, the maximum
of the mutual information with respect to the actions ak is not unique and thus,
the optimization problem is non-convex, which further complicates numerical
optimization.

To increase the probability of finding the optimal action or at least to ensure
finding an action that is very close to the optimal one, so-called multi-start opti-
mization is performed (see e.g. [21]). Here, optimization is repeated from varying
initial points. To cover the action space A uniformly, the initial points form a
regular grid on A. For each initial point, the lower bound (18) is maximized
by means of the BFGS method [9]. This well known quasi-Newton numerical
optimization technique utilizes—in contrast to a classical gradient ascent—an
estimate of the Hessian matrix, which results in an increased converge speed

542 Paper O Bayesian Active Object Recognition via Gaussian Process Regression

towards the sub-optimal solution. The derivation of the required gradient with
respect to ak can be found in Appendix A.

5 Simulation Results

The effectiveness of the proposed active object recognition approach is now
demonstrated by means of numerical simulations. At first, the setup of all simula-
tions is described. Then, two different object sets are considered for comparison.

5.1 General Simulation Setup
The considered objects are synthetic 3D models rendered by means of the Visual-
ization Toolkit (VTK)2. In Figure 2, for each set some of the objects are depicted.
For learning and recognition, 100×100 pixel normalized grayscale images are
generated from these objects, where zero-mean Gaussian noise with variance
14.7 is added.

1D and 2D features are extracted from the images. In the 1D case, the mean gray
value is considered. The eigenspace or principal component decomposition

Figure 2: Upper row: cups with different labels. Lower row: toy manikins with
different equipment (bow [left] + sword at each hip [second left] + emblem [second
right] + crest on the helmet [right]).

2 http://www.vtk.org/

http://www.vtk.org/

5 Simulation Results 543

approach proposed in [15] is used for extracting 2D features, where the two
largest eigenvalues are taken into account. It is important to note that although
low-dimensional features are considered here for simplicity, the proposed ap-
proach has been derived without any restrictions on the features. Thus, even
very complex and high-dimensional features like SIFT can be employed as well.

The simulations focus on actions that change the camera position in one or two
dimensions. In the 1D case, the camera moves on a circle that is parallel to the
horizontal plane and centered at the object. In the 2D case, the camera position
can be varied on a sphere centered at the object. Here, the actions correspond to
the azimuth and elevation angles.

To learn the GPs, each dimension of the action space is sampled regularly in 10
decimal degree steps, i.e., for the one-dimensional circular action space, this
leads to 36 sample images.

For comparison, the following active object recognition approaches are consid-
ered:

Planner The proposed approach, where 5 and 15 initial points for optimiza-
tion are exploited for the 1D and 2D action space, respectively.

Grid An approach similar to [8], where at each stage the action maximizing
the mutual information is taken from a finite set. Here, this finite set
coincides with the set of initial points of the Planner.

Random Actions are selected uniformly at random.

All approaches merely differ in the way the next action is selected, while for
instance the same GP object models are used and the Bayesian update step is
performed identically. Furthermore, Planner and Grid utilize the lower bound
(18) of the mutual information.

For each set of objects and each combination of feature and action space, 50
Monte Carlo simulation runs are performed, where the true object is selected
uniformly at random. The initial distribution p0 is uniform. A decision about the
object type is made if either the probability of one object estimate exceeds 0.95
or after eight stages.

5.2 Example I: Cups
The first set of objects consists of eight cups that are identical except for the label
that is cut through the surface (see Figure 2). The labels of six cups are visible

544 Paper O Bayesian Active Object Recognition via Gaussian Process Regression

(b) (c) (d)

(a)

-0.2
0

0.5

1

1.5

I(
x

,z
)→

90

45

0

-45

-90

←
elevation / deg 0

90
180

270
360

azimuth / deg →

Figure 3: (a) Lower bound of mutual information with optimal view/action (red
circle). (b)–(d) View of three of the cups corresponding to the optimal action.

from the same perspective, one is visible from the opposite point of view and
one cup is not labeled at all.

For the 2D action space, the mutual information surface for three cups is plotted
in Figure 3(a). Here, the optimal action is indicated by the red circle, which
corresponds to an elevation angle of approximately 45o . For this action, the
corresponding views on the three cups are depicted in Figure 3(b)–(d). It can be
seen that this view facilitates to look inside the cups and thus, allows an easy
discrimination of all three cups.

5 Simulation Results 545

Table 1: Cup recognition. (a) recognition rate in percent, (b) average number of
views, (c) average maximum object probability.

Dim.
A /Z

Planner Grid Random
(a) (b) (c) (a) (b) (c) (a) (b) (c)

1 / 1 66 6.06 0.74 62 6.1 0.71 50 7.32 0.53
1 / 2 88 3.08 0.97 74 4.96 0.89 94 6.88 0.81

2 / 1 92 2.5 0.99 62 4.1 0.95 76 6.34 0.70
2 / 2 100 1.88 0.99 88 2.5 0.97 68 6.92 0.74

The average values over the 50 simulation runs in terms of recognition rate, num-
ber of views, and maximum object probability are listed in Table 1. It can be
seen that the Planner performs best with respect to almost any performance
indicator. In comparison to Random, the number of stages after which a recogni-
tion decision is made is significantly lower. Simultaneously, the certainty in this
decision is much higher as the average maximum object probability indicates.
The performance of the Grid approach is often close to the proposed approach.
But the significantly lower number of views of the Planner shows the benefits
of performing a continuous optimization for next-best-view planning. In con-
trast to both Grid and Random, the proposed Planner can take advantage of an
increasing feature and action dimension, i.e., with an increasing dimension the
recognition rate increases as well and the number of views decreases.

A high object probability not necessarily coincides with the best recognition
rate as seen in the case of the 1D action space and 2D feature space. While
Random merely relies on the GP object models for inference, Grid and Planner
additionally use the models for decision making. Thus, a bootstrapping effect
can cause the decision maker to get stuck in a repetitive pattern. The quality
of the GP models is essential for the recognition process and thus, under- and
over-fitting require special attention.

5.3 Example II: Toy Manikins
The second set of objects used for simulation consists of nine toy manikins that
carry different pieces of equipment (bow, quiver, sword, emblem, helmet, and
crest—see Figure 2). Compared to the cups, the toy manikins have much more
details and the differences between each object are more subtle. In Figure 4, the
decision making of the Planner is shown for the 2D action space and 1D feature

546 Paper O Bayesian Active Object Recognition via Gaussian Process Regression

Table 2: Toy manikin recognition. (a) recognition rate in percent, (b) average number
of views, (c) average maximum object probability.

Dim.
A /Z

Planner Grid Random
(a) (b) (c) (a) (b) (c) (a) (b) (c)

1 / 1 68 2.58 0.98 64 5.32 0.93 68 2.7 0.98
1 / 2 90 4.9 0.95 72 5.78 0.87 82 7.3 0.83

2 / 1 100 2.34 0.99 90 3.12 0.97 92 5.66 0.92
2 / 2 100 1.56 0.99 88 2.96 0.96 90 5.56 0.91

space. The first view reveals most of the equipment items in such a way that the
differences to other manikins are significant regarding the rather simple mean
gray value feature. The next two views highlight the sword as well as the crest
and thus, help to distinguish the manikin from those without these items.

In Table 2, the same performance indicators as in the cup scenario are listed.
While Planner and Random perform nearly identical for the 1D action and feature
space, for higher dimensions, the Planner clearly is the best object recognition
algorithm. Interestingly, all algorithms perform better than in the cup scenario.
This is mainly due to the more details of the manikins and thus, much more
views exist that allow discriminating different manikins from each other.

stage 1 stage 2 stage 3

stage x1 x2 x3 x4 x5 x6 x7 x8 x9 H(x)

0 .111 .111 .111 .111 .111 .111 .111 .111 .111 1.0
1 .149 .383 .000 .000 .013 .000 .259 .188 .009 .643
2 .000 .000 .000 .000 .000 .000 .322 .674 .004 .298
3 .000 .000 .000 .000 .000 .000 .000 .998 .001 .006

Figure 4: Recognition of object x8 via proposed approach: selected views (top) and
corresponding distributions pk|k with entropy (bottom).

6 Conclusion and Future Work 547

6 Conclusion and Future Work

The proposed approach exploits Gaussian process regression for object recog-
nition. Thanks to the probabilistic nature of the GPs, the variability in image
acquisition—resulting for instance from changing light conditions, occlusion, or
changing background—is incorporated and robust object models over continu-
ous action spaces are generated from few training samples. In combination with
recursive Bayesian estimation and optimizing the next view, this approach allows
a reliable recognition even with low dimensional and thus, rather simple image
features. The proposed approach can be applied in various recognition scenarios
as it is not restricted to specific features, action spaces, or kernel functions.

Future work is devoted to applying the proposed approach in a real-world exper-
iment, where a camera is mounted on a six degree-of-freedom robotic arm. By
this means, the camera can be moved either in 2D or 3D space, as it is done in
the simulations. So far, a recognition or classification problem has been consid-
ered. It is also intended to combine classification with pose estimation, i.e., to
simultaneously identify the object class as well as its orientation and location
in space. An improved recognition rate is expected—especially in situations
with for instance time or kinematic constraints [11]—if actions are planned is
a non-myopic fashion, i.e., for more than one stage ahead. Furthermore, learn-
ing and planning are currently decoupled. By means of reinforcement learning
techniques [22], both steps could be performed simultaneously.

A Gradient

Next-best-view planning requires the calculation of the gradient of the lower
bound (18) of the mutual information with respect to the action a ∈A. An analyti-
cal expression of the gradient is derived in the following. The stage index k is omit-
ted for improved readability. By rewriting the lower bound Ī =−∑N

i=1ωi · log fi

with fi = |2πeCz
i |

1
2 ·

∑N
j=1ω j ·ci j , where ci j =N

(
ẑi ; ẑ j ,Ci j

)
and Ci j ,Cz

i +Cz
j , its

partial derivative with respect to action a can be written as

∂Ī

∂a
=−

M∑
i=1

ωi

fi
·
∂ fi

∂a
. (19)

548 Paper O Bayesian Active Object Recognition via Gaussian Process Regression

To solve (19), the differential identities

∂|X| = |X| · Tr
(
X−1 ·∂X

)
, (20)

∂X−1 =−X−1 ·∂X ·X−1 (21)

are required (see [17]), with Tr(.) being the matrix trace. Applying the chain rule
and (20), the derivative of fi is

∂ fi

∂a
= ∣∣2πeCz

i

∣∣ 1
2 ·

N∑
j=1

ω j ·
[

ci j

2 Tr
((

Cz
i

)−1 ∂Cz
i

∂a

)
+ ∂ci j

∂a

]
with

∂Cz
i

∂al
= diag

(
∂
(
σ1

i

)2

∂al
, . . . ,

∂
(
σ

nz
i

)2

∂al

)

for each dimension l = 1, . . . ,na of action a , where the variances
(
σe

i

)2, e =
1, . . . ,nz correspond to (6), and

∂ci j

∂a
= ∂

∂a

(
|2πCi j |−

1
2 · gi j

)
(22)

with gi j , exp
(
− 1

2 · ẑT
i j ·C−1

i j · ẑi j

)
and ẑi j , ẑi − ẑ j . Applying (20) and (21) on

(22) yields

∂ci j

∂a
= ∂|2πCi j |− 1

2

∂a
· gi j +|2πCi j |−

1
2 ·
∂gi j

∂a

=− gi j

2
|2πCi j |−

1
2 Tr

(
C−1

i j ·
∂Ci j

∂a

)
− ci j

2
·(

2

(
∂ẑi j

∂a

)T

·C−1
i j · ẑi j − ẑT

i j ·C−1
i j ·

∂Ci j

∂a
·C−1

i j · ẑi j

)
(23)

The remaining derivatives ∂ẑi j/∂a and ∂Ci j/∂a can easily be decomposed into the
derivatives of the respective summands. Furthermore, calculating the derivatives
can be performed dimension-wise. Thus, the remaining partial derivatives ∂/∂aẑe

i

References 549

and ∂/∂a
(
σe

i

)2 for each dimension e = 1, . . . ,nz , correspond to the derivatives

∂ĥ

∂a
=

(
∂

∂a
k∗

)T (
K+σ2I

)−1
y ,

∂σ2
h

∂a
= ∂

∂a
k∗∗︸ ︷︷ ︸

=0

−2

(
∂

∂a
k∗

)T (
K+σ2I

)−1
k∗

of (5) and (6) with respect to a, respectively, with the matrix

∂k∗
∂a

=
[
∂

∂a
k(a1, a), . . . ,

∂

∂a
k(an , a)

]
. (24)

Here, a1, . . . ,an are the training inputs. The derivative of the SE kernel in (24) for
i = 1, . . . ,n is given by

∂k(ai , a)

∂a
=α2 ·Λ−1 ·

(
ai −a

)
· exp

(
− 1

2

(
ai −a

)T
Λ−1 (

ai −a
))

.

References

[1] Hervé Abdi and Lynne J. Williams. Principal Component Analysis. In
Wiley Interdisciplinary Reviews: Computational Statistics, volume 2, pages
433–459. Wiley, New York, July 2010.

[2] Hermann Borotschnig, Lucas Paletta, Manfred Prantl, and Axel Pinz.
Appearance-Based Active Object Recognition. Image and Vision Com-
puting, 18:715–727, 2000.

[3] Philipp Boyle and Marcus Frean. Dependent Gaussian Processes. In
Lawrence K. Saul, Yair Weiss, and Leon Bottou, editors, Advances in Neural
Information Processing Systems, volume 17, pages 217–224. MIT Press,
2005.

[4] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
John Wiley & Sons, Inc., 1991.

[5] Guido de Croon, Ida G. Sprinkhuizen-Kuyper, and Eric O. Postma. Com-
paring Active Vision Models. Image and Vision Computing, 27:374–384,
March 2009.

550 Paper O Bayesian Active Object Recognition via Gaussian Process Regression

[6] Frank Deinzer, Joachim Denzler, and Heinrich Niemann. Viewpoint Selec-
tion - Planning Optimal Sequences of Views for Object Recognition. In In
International Conference on Computer Vision, pages 65–73. Springer, 2003.

[7] Marc P. Deisenroth, Marco F. Huber, and Uwe D. Hanebeck. Analytic
Moment-based Gaussian Process Filtering. In 26th International Confer-
ence on Machine Learning (ICML), pages 225–232, Montreal, Canada, June
2009.

[8] Joachim Denzler and Christopher M. Brown. Information Theoretic Sensor
Data Selection for Active Object Recognition and State Estimation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(2):145–157,
February 2002.

[9] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 2nd
edition, May 2000.

[10] Jacob Goldberger, Shiri Gordon, and Hayit Greenspan. An Efficient Image
Similarity Measure based on Approximations of KL-Divergence Between
Two Gaussian Mixtures. In Proceedings of the Ninth IEEE International
Conference on Computer Vision, volume 1, pages 487–493, October 2003.

[11] Marco Huber. Probabilistic Framework for Sensor Management. PhD thesis,
Universität Karlsruhe (TH), April 2009.

[12] Marco F. Huber, Tim Bailey, Hugh Durrant-Whyte, and Uwe D. Hanebeck.
On Entropy Approximation for Gaussian Mixture Random Vectors. In
Proceedings of the 2008 IEEE International Conference on Multisensor Fu-
sion and Integration for Intelligent Systems (MFI), pages 181–188, Seoul,
Republic of Korea, August 2008.

[13] Catherine Laporte and Tal Arbel. Efficient Discriminant Viewpoint Selec-
tion for Active Bayesian Recognition. International Journal of Computer
Vision, 68:267–287, July 2006.

[14] David G. Lowe. Object recognition from local scale-invariant features. In
Proceedings of the 7th International Conference on Computer Vision (ICCV),
volume 2, pages 1150–1157, Kerkyra, Greece, September 1999.

[15] Hiroshi Murase and Shree K. Nayar. Visual learning and recognition of 3-D
objects from appearance. International Journal Computer Vision, 14:5–24,
January 1995.

References 551

[16] Lucas Paletta and Axel Pinz. Active Object Recognition By View Integration
and Reinforcement Learning. Robotics and Autonomous Systems, 31:71–86,
2000.

[17] Kaare Brandt Petersen and Michael Syskind Pedersen. The Matrix Cook-
book. Online: http://www2.imm.dtu.dk/pubdb/p.php?3274, November
2008.

[18] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, 2006.

[19] Sumantra Dutta Roy, Santanu Chaudhury, and Subhashis Banerjee. Active
recognition through next view planning: a survey. Pattern Recognition,
37(3):429–446, March 2004.

[20] Dan Simon. Optimal State Estimation: Kalman, H∞, and Nonlinear Ap-
proaches. Wiley & Sons, 1st edition, 2006.

[21] Francisco J. Solis and Roger J-B. Wets. Minimization by Random Search
Techniques. Mathematics of Operations Research, 6(1):19–30, February
1981.

[22] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, 1998.

[23] Richard Szeliski. Computer Vision: Algorithms and Applications, chapter
14 – Recognition. Springer London, 2010.

[24] Raquel Urtasun and Trevor Darrell. Discriminative Gaussian Process La-
tent Variable Model for Classification. In Proceedings ot the 24th Interna-
tional Conference on Machine Learning (ICML), Corvallis, OR, 2007.

	Inhaltsverzeichnis
	I Background & Summary
	1 Introduction
	1.1 Nonlinear Bayesian Filtering
	1.1.1 Dynamic Models and Measurement Models
	1.1.2 Recursive Filtering
	1.1.3 Closed-form Calculation
	1.1.4 Approximate Filtering: State of the Art

	1.2 Research Topics
	1.3 Main Contributions
	1.3.1 Gaussian Filtering
	1.3.2 Gaussian Mixture Filtering
	1.3.3 Gaussian Process Filtering

	1.4 Thesis Outline

	2 Gaussian Filtering
	2.1 The Gaussian Distribution
	2.1.1 Importance of the Gaussian
	2.1.2 Dirac Delta Distribution
	2.1.3 The Exponential Family

	2.2 Exact Gaussian Filtering and Approximations
	2.2.1 General Formulation
	2.2.2 Linear Filtering
	2.2.3 Linearized and Extended Kalman Filter
	2.2.4 Statistical Linearization
	2.2.5 Linear Regression Kalman Filters

	2.3 Gaussian Smoothing
	2.3.1 General Formulation
	2.3.2 Linear Case
	2.3.3 Nonlinear Case

	2.4 Rao-Blackwellization
	2.5 Contributions
	2.5.1 Combining Rao-Blackwellization with Observed-Unobserved Decomposition
	2.5.2 Semi-Analytical Filtering
	2.5.3 Chebyshev Polynomial Kalman Filtering
	2.5.4 Efficient Moment Propagation for Polynomials
	2.5.5 Homotopic Moment Matching for Polynomial Measurement Models

	2.6 Summary

	3 Gaussian Mixture Filtering
	3.1 Gaussian Mixtures
	3.2 Nonlinear Filtering
	3.2.1 Individual Approximation
	3.2.2 Generic Gaussian Mixture Filter

	3.3 Component Adaptation
	3.3.1 Weight Optimization
	3.3.2 Reduction
	3.3.3 Refinement

	3.4 Contributions
	3.4.1 Semi-Analytic Gaussian Mixture Filter
	3.4.2 Adaptive Gaussian Mixture Filter
	3.4.3 Curvature-based Gaussian Mixture Reduction

	3.5 Summary

	4 Gaussian Process Filtering
	4.1 Gaussian Processes
	4.2 Covariance Functions
	4.2.1 Examples
	4.2.2 Hyperparameter Learning

	4.3 Large Data Sets
	4.3.1 Active Set Approaches
	4.3.2 Local Approaches
	4.3.3 Algebraic Tricks
	4.3.4 Open Issues

	4.4 Nonlinear Filtering
	4.5 Contributions
	4.5.1 Gaussian Process Filtering
	4.5.2 Gaussian Process Smoothing
	4.5.3 Recursive Gaussian Process Regression
	4.5.4 On-line Hyperparameter Learning

	4.6 Summary

	5 Applications
	5.1 Range-based Localization
	5.1.1 Position Estimation
	5.1.2 Position and Orientation Estimation

	5.2 Gas Dispersion Source Estimation
	5.2.1 Atmospheric Dispersion Models
	5.2.2 Parameter Estimation

	5.3 Active Object Recognition
	5.3.1 Object Classification
	5.3.2 Learning
	5.3.3 Estimation
	5.3.4 Planning

	5.4 Summary

	6 Concluding Remarks
	6.1 Conclusions
	6.2 Future Work

	A Particle Filtering
	A.1 Perfect Monte Carlo Sampling
	A.2 Importance Sampling
	A.2.1 Sequential Importance Sampling
	A.2.2 Choice of Importance Function
	A.2.3 Resampling

	B Performance Measures
	B.1 Root Mean Square Error
	B.2 Mean Absolute Error
	B.3 Normalized Estimation Error Square
	B.4 Negative Log-Likelihood

	C Quadratic Programming
	Bibliography

	II Publications
	A Gaussian Filtering using State Decomposition Methods
	1 Introduction
	2 Problem Formulation
	3 The Gaussian Filter (GF)
	4 Decomposition Methods
	4.1 Case I: directly observed, indirectly observed
	4.2 Case II: Linear, Nonlinear

	5 Estimation
	5.1 Prediction Step
	5.2 Filter Step

	6 Considered Example
	6.1 Prediction
	6.2 Filtering

	7 Results
	7.1 Simulation
	7.2 Experiment

	8 Conclusions

	B Semi-Analytic Gaussian Assumed Density Filter
	1 Introduction
	2 Problem Formulation
	2.1 Bayesian Estimation
	2.2 Gaussian Assumed Density Filter

	3 Analytic Gaussian Assumed Density Filter (AGF)
	4 Sample-Based Gaussian Assumed Density Filter (SGF)
	5 Semi-Analytic Gaussian Assumed Density Filter (SAGF)
	5.1 General Solution
	5.2 Estimation

	6 Simulation Examples
	6.1 System Equation
	6.2 Case I: Linear Measurement Equation
	6.3 Case II: Nonlinear Measurement Equation
	6.4 Simulation Results

	7 Discussion and Future Work

	C Chebyshev Polynomial Kalman Filter
	1 Introduction
	2 Problem Formulation
	3 Chebyshev Polynomials
	3.1 Properties
	3.2 Chebyshev Series
	3.3 Approximate Series Expansion

	4 Closed-Form Moment Propagation
	4.1 Non-central Moments of a Gaussian
	4.2 Efficient Mean Propagation
	4.3 Efficient Variance Propagation

	5 The Gaussian Estimator
	5.1 Approximation Interval
	5.2 Prediction
	5.3 Measurement Update

	6 Results
	6.1 Example I: Higher-Order Moments
	6.2 Example II: Real-World Application
	6.3 Example III: Time Series

	7 Discussion
	7.1 Strengths
	7.2 Limitations and Potential Extensions

	8 Conclusions
	A State Decomposition

	D Gaussian Filtering for Polynomial Systems Based on Moment Homotopy
	1 Introduction
	2 Problem Formulation
	3 Exponential Densities
	3.1 Definition
	3.2 Recursive Moment Calculation

	4 Gaussian Filtering
	4.1 Mean Propagation
	4.2 Variance Propagation
	4.3 Covariance Calculation
	4.4 Polynomial Kalman Filter
	4.5 Discussion

	5 Homotopic Bayesian Measurement Update
	5.1 Parameterization
	5.2 System of Ordinary Differential Equations
	5.3 Initialization and Solution
	5.4 Homotopic Polynomial Gaussian Filter

	6 Results
	6.1 Moment Homotopy Examples
	6.2 Chaotic Synchronization

	7 Conclusion and Future Work

	E (Semi-)Analytic Gaussian Mixture Filter
	1 Introduction
	2 Problem Formulation
	2.1 Prediction Step
	2.2 Filter Step

	3 Gaussian Mixture Filter
	3.1 Prediction Step
	3.2 Filter Step
	3.3 Gaussian Mixture Noise

	4 Types of Linearization
	4.1 Classical Linearization
	4.2 Analytic Stochastic Linearization
	4.3 Semi-Analytic Stochastic Linearization

	5 Simulation Results
	5.1 System and Measurement Model
	5.2 Estimator: A-GMF
	5.3 Estimator: SA-GMF
	5.4 Setup
	5.5 Results

	6 Conclusions
	A Analytic Expressions for A-GMF

	F Adaptive Gaussian Mixture Filter Based on Statistical Linearization
	1 Introduction
	2 Problem Formulation
	3 Statistical Linearization
	3.1 Classical Linearization
	3.2 Statistical Linear Regression
	3.3 Calculating the Regression Points

	4 Splitting Scheme
	4.1 Component Selection
	4.2 Splitting a Gaussian
	4.3 Splitting Direction

	5 Adaptive Gaussian Mixture Filter
	5.1 Prediction Step
	5.2 Filtering Step

	6 Simulation Results
	6.1 Shape Approximation
	6.2 Object Tracking

	7 Conclusions

	G Superficial Gaussian Mixture Reduction
	1 Introduction
	2 Problem Statement
	3 Superficial Gaussian Mixture Reduction
	3.1 Distance Measure
	3.2 Upper bound of Curvature
	3.3 Algorithm

	4 Limitations
	5 Experiments
	5.1 1DExperiment
	5.2 2DExperiment

	6 Conclusion

	H Analytic Moment-based Gaussian Process Filtering
	1 Introduction
	2 Model and Problem Statement
	3 Related Work
	4 Gaussian Processes
	4.1 Predictions for Uncertain Inputs
	4.2 Multivariate Predictions

	5 GP-ADF: Assumed Density Filtering with Gaussian Processes
	5.1 Prediction Step
	5.2 Filter Step
	5.3 Assumptions and Computational Complexity

	6 Results
	6.1 1D Example
	6.2 Recursive Filtering: Time-Series

	7 Discussion
	8 Summary and Future Work

	I Robust Filtering and Smoothing with Gaussian Processes
	1 Introduction
	1.1 Problem Formulation and Notation
	1.2 Gaussian RTS Smoothing

	2 Gaussian Processes
	2.1 Expressiveness of the Model
	2.2 Training via Evidence Maximization

	3 Robust Smoothing in Gaussian Process Dynamic Systems
	3.1 Marginal Distribution
	3.2 Cross-Covariance

	4 Simulations
	4.1 Filter Robustness
	4.2 Smoother Robustness

	5 Discussion and Conclusion

	J Recursive Gaussian Process Regression
	1 Introduction
	2 Problem Statement
	3 Recursive Processing
	3.1 Inference
	3.2 Update
	3.3 Summary

	4 Discussion
	5 Simulation Examples
	6 Conclusions
	A Useful Lemmas

	K Recursive Gaussian Process: On-line Regression and Learning
	1 Introduction
	2 Problem Formulation
	3 On-line Regression
	3.1 Inference
	3.2 Update

	4 On-line Learning
	4.1 Inference
	4.2 Update

	5 Discussion
	6 Results
	6.1 Synthetic Data
	6.2 Particulate Matter Data

	7 Conclusion and Future Work

	L Optimal Stochastic Linearization for Range-Based Localization
	1 Introduction
	2 Problem Formulation
	2.1 Dynamics Model
	2.2 Measurement Models

	3 Recursive State Estimation
	3.1 Prediction Step
	3.2 Filter Step

	4 Analytic Moment Calculation (AMC)
	4.1 Modified Measurement Equation
	4.2 Moment Calculation
	4.3 Summary
	4.4 Computational Complexity

	5 Experiments
	5.1 Simulation
	5.2 Experiment

	6 Conclusions

	M Semi-Analytic Stochastic Linearization for Range-Based Pose Tracking
	1 Introduction
	2 Problem Formulation
	2.1 Measurement Equation
	2.2 System equation
	2.3 Recursive Gaussian State Estimation

	3 Semi-Analytic Linearization
	3.1 Modified Measurement Equation
	3.2 Decomposition
	3.3 Mean
	3.4 Covariance
	3.5 Cross-Covariance
	3.6 Summary
	3.7 Computational Complexity

	4 Simulation Results
	5 Conclusions

	N On-line Dispersion Source Estimation
	1 Introduction
	2 Problem Formulation
	2.1 General Dispersion Model
	2.2 Gaussian Plume

	3 Recursive Estimation
	3.1 Bayesian Estimation
	3.2 Measurement Model
	3.3 Approximate Estimation

	4 Adaptive Gaussian Mixture Filter
	4.1 Statistical Linearization
	4.2 Splitting
	4.3 Filtering
	4.4 Reduction

	5 Results
	5.1 AGMF Parametrization
	5.2 Indianapolis Field Study
	5.3 Simulation

	6 Conclusion

	O Bayesian Active Object Recognition via Gaussian Process Regression
	1 Introduction
	2 Problem Formulation
	3 Gaussian Process Regression
	4 Active Object Recognition
	4.1 Learning Object Models
	4.2 Bayesian Estimation
	4.3 Next-Best-View Planning

	5 Simulation Results
	5.1 General Simulation Setup
	5.2 Example I: Cups
	5.3 Example II: Toy Manikins

	6 Conclusion and Future Work
	A Gradient

