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We address four problems related to multi-agent optinoratiiltering and agree-
ment. First, we investigate collaborative optimizatioraafobjective function expressed
as a sum of local convex functions, when the agents makeidesis a distributed man-
ner using local information, while the communication tagp} used to exchange mes-
sages and information is modeled by a graph-valued randooeps, assumed indepen-
dent and identically distributed. Specifically, we studg gerformance of the consensus-
based multi-agent distributed subgradient method and $toowit depends on the prob-
ability distribution of the random graph. For the case of astant stepsize, we first give
an upper bound on theftierence between the objective function, evaluated at thetsige
estimates of the optimal decision vector, and the optimhlezaln addition, for a par-
ticular class of convex functions, we give an upper boundhendistances between the
agents’ estimates of the optimal decision vector and themiwer and we provide the

rate of convergence to zero of the time varying component@fforementioned upper



bound. The addressed metrics are evaluated via their egeatues. As an application,
we show how the distributed optimization algorithm can beduw® perform collabora-
tive system identification and provide numerical experiteemder the randomized and
broadcast gossip protocols.

Second, we generalize the asymptotic consensus probleomtex metric spaces.
Under minimal connectivity assumptions, we show that ifatheiteration an agent up-
dates its state by choosing a point from a particular subdseeayeneralized convex hull
generated by the agents current state and the states ofigtshoes, then agreement is
achieved asymptotically. In addition, we give bounds ordistance between the consen-
sus point(s) and the initial values of the agents. As an egiptin example, we introduce
a probabilistic algorithm for reaching consensus of opiramd show that it in fact fits
our general framework.

Third, we discuss the linear asymptotic consensus probtena hetwork of dy-
namic agents whose communication network is modeled bydoraly switching graph.
The switching is determined by a finite state, Markov proceash topology correspond-
ing to a state of the process. We address both the cases wkatgrtamics of the agents
are expressed in continuous and discrete time. We showitllag consensus matrices
are doubly stochastic, average consensus is achieved mehae square and almost sure
senses if and only if the graph resulting from the union oppsacorresponding to the
states of the Markov process is strongly connected.

Fourth, we address the consensus-based distributed fiteang problem, where
a discrete time, linear stochastic process is observed byw#rk of sensors. We assume

that the consensus weights are known and we first proviflecigmt conditions under



which the stochastic process is detectable, i.e. for a pebioice of consensus weights
there exists a set of filtering gains such that the dynami¢seoéstimation errors (with-
out noise) are asymptotically stable. Next, we develop @idiged, sub-optimal filtering
scheme based on minimizing an upper bound on a quadratrinijteost. In the station-
ary case, we provide flicient conditions under which this scheme converges; cromdit
expressed in terms of the convergence properties of a setupled Riccati equations.
We continue by presenting a connection between the consdramed distributed linear
filter and the optimal linear filter of a Markovian jump linesystem, appropriately de-
fined. More specifically, we show that if the Markovian jumpdar system is (mean
square) detectable, then the stochastic process is ddtectader the consensus-based
distributed linear filtering scheme. We also show that thingd gains of a linear filter
for estimating the state of a Markovian jump linear systepprapriately defined, can be

used to approximate the optimal gains of the consensusiliasar filter.
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Chapter 1

Introduction
This chapter serves as an introduction to the rest of thasthieg providing the
motivation for the current work. Moreover, it introducee foroblems that are addressed

and our contributions.

1.1 Motivation

In the following chapters we address problems related tdiragent optimization
and filtering. We design and analyze distributed algorithwvhich are based on the con-
sensug@greement asymptotic algorithm for performing localizesl (using only informa-
tion from neighbors) computations. A consensus problensistsof a group of dynamic
agents who seek to agree upon certain quantities of inteyeskchanging information
among them according to a set of rules. This problem can nrmdey phenomena involv-
ing information exchange between agents such as coopecatitrol of vehicles, forma-
tion control, flocking, synchronization, parallel commgfj etc. Distributed computation
over networks has a long history in control theory startinthwhe work of Borkar and
Varaiya [5], Tsitsikils, Bertsekas and Athans [51, 52] ogrechronous agreement prob-
lems and parallel computing. A theoretical framework folvsw consensus problems
was introduced by Olfati-Saber and Murray in [42, 43], whikdbabaie et al. studied

alignment problems [18] for reaching an agreement. Retexgiensions of the consen-



sus problem were done by Ren and Beard [39], by Moreau in [E3hore recently, by
Nedic and Ozdaglar in [32, 33] or by Olshevsky and Tsitsiklif36].

Typically agents are connected via a network that changistiwie due to link fail-
ures, packet drops, node failure, etc. Such variationspolémy can happen randomly
which motivates the investigation of consensus problensieua stochastic framework.
Hatano and Mesbahi consider in [17] an agreement problemramglom information
networks, where the existence of an information channebden a pair of elements at
each time instance is probabilistic and independent ofrai@nnels. In [38], Porfiri and
Stilwell provide stificient conditions for reaching consensus almost surely enctise
of a discrete linear system, where the communication flonnergby a directed graph
derived from a random graph process, independent of otineritistances. Under a sim-
ilar model of the communication topology, Tahbaz-Saleld dadbabaie give necessary
and stficient conditions for almost sure convergence to consemgdgl], while in [45],
the authors extend the applicability of their necessarysafittient conditions to strictly
stationary ergodic random graphs.

The consensus algorithm proves to be a useful tool for sglgistributively opti-
mization and estimation problems. Multi-agent distrilolb@timization problems appear
naturally in many distributed processing problems (sucheawork resource allocation,
collaborative control and estimation, etc.), where thenojzation cost is a convex func-
tion which is not necessarily separable. A distributed satignt method for multi-agent
optimization of a sum of convex functions was proposed if,[8Bere each agent has
only local knowledge of the optimization cost, i.e. knowdyoane term of the sum.
The agents exchange information according to a commuaitétpology, modeled as an
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undirected, time varying graph, which defines the commuimicaneighborhoods of the
agents. The agents maintastimate®of the optimal decision vector, which are updated
in two stages. The first stage consists of a consensus stepgatie estimates of an
agent and its neighbors. In the second stage, the resuleafaisensus step is updated
in the direction of a subgradient of the local knowledge ef dtptimization cost. Another
multi-agent subgradient method was proposed in [20], wheFecommunication topol-
ogy is assumed time invariant and where the order of the tagestmentioned above is
inverted.

A fundamental problem in sensor networks is developingifisted algorithms for
the state estimation of a process of interest. Generi@aflypcess is observed by a group
of (mobile) sensors organized in a network. The goal of eads® is to compute accu-
rate state estimates. The distributed filtering (estinmtpyroblem has received a lot of
attention during the past thirty years. An important cdnttion was made by Borkar and
Varaiya [5], who addressed the distributed estimation lgralof a random variable by a
group of sensors. The particularity of their formulatiorthat both estimates and mea-
surements are shared among neighboring sensors. The agtiaw that if the sensors
form a communication ring, through which information is banged infinitely often, then
the estimates converge asymptotically to the same vakiethiey asymptotically agree.
An extension of the results in reference [5] is given in [5De recent technological ad-
vances in mobile sensor networks have re-ignited the istt@rehe distributed estimation
problem. Most papers focusing on distributed estimatimppse diferent mechanisms
for combining the Kalman filter with a consensus filter in artte ensure that the es-

timates asymptotically converge to the same value, schevheh will be henceforth
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called consensus based distributed filtering (estimatitggrithms. In [41] and [40], sev-
eral algorithms based on the idea mentioned above are utdead In [8], the authors
study the interaction between the consensus matrix, théauof messages exchanged
per sampling time, and the Kalman gain for scalar systems. shown that optimizing
the consensus matrix for fastest convergence and usingetiteatized optimal gain is
not necessarily the optimal strategy if the number of exgedmmessages per sampling
time is small. In [48], the weights are adaptively updatethinimize the variance of the
estimation error. Both the estimation and the parametemag#tion are performed in a
distributed manner. The authors derive an upper bound oertbevariance at each node

which decreases with the number of neighboring nodes.

1.2 Contributions of the thesis

Our contributions are as follows. In Chapter 2 we study thdopmance met-
rics (rate of convergence and guaranteed region of corveej®f the consensus-based,
multi-agent subgradient method proposed in [33], for theeaaf a constant stepsize. The
communication among agents is modeled by a random grapépémdient of other time
instances, and the performance metrics are viewed in thecegon sense. Random
graphs are suitable models for networks that change with diue to link failures, packet
drops, node failure, etc. Our focus is on providing uppernasuon the performance
metrics, which explicitly depend on the probability dibtriion of the random graph. The
explicit dependence on the probability distribution alkous to determine the optimal

probability distributions in the sense that they would easthe best guaranteed upper



bounds on the performance metric. As an example of possiplécations of our results,
we address a scenario where the goal is to tune the commionigaibtocol parameters
of a wireless network so that the performance of the mukirhgubgradient method is
improved, in the context of a distributed parametric sysentification application.

In Chapter 2 we emphasize thgezt and importance of the agreement step in solv-
ing an optimization problem distributively. It is often tlvase that we need to solve
optimization problems that go beyond tR& setup. In [47], the authors formulate opti-
mization problems for theusted routing problemouting under a semiring framework. In
[28, 27], the populaparticle swarm optimization algorithims extended to combinatorial
spaces, such as Euclidean, Manhattan, and Hamming spaekdedto the distributed
optimization algorithm introduced in Chapter 2, a first sieextend the applicability of
the algorithm is to formulate and analyze the agreementi@noin more general spaces.
Consequently, in Chapter 3 we generalize the asymptotisasmus problem to the more
general case of convex metric spaces and emphasize thenfenti role of the gener-
alized notion of convexity and in particular of the genearadi convex hull of a finite set
of points. Tsitsiklis showed in [51] that, under some minlim@nnectivity assumptions
on the communication network, if an agent updates its vajuehmosing a point from
the (interior) of the convex hull of its current value and therent values of its neigh-
bors, then asymptotic convergence to consensus is achié&ewill show that this idea
extends naturally to the case of convex metric spaces. Agplication we present a
probabilistic consensus of opinion algorithm and show tthf#ts our general framework
for a particular convex metric space.

In Chapter 2 we assume that the communication topology, wdiictates how the
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consensus step is performed, is modeled by a random graggpendent of other time
instances. In Chapter 4, we generalize the communicatictheireind study the linear
consensus problem where the communication flow betweensaigamodeled by a (pos-
sibly directed) switching random graph. The switching iseed@ined by a homogeneous,
finite-state Markov chain, each communication patternesponding to a state of the
Markov process. We address both the continuous and didoreteases and, under cer-
tain assumptions on the matrices involved in the linear meheve give necessary and
suficient conditions such that average consensus is achievind imean square sense
and in the almost sure sense. The Markovian switching mooe$ dgpeyond the com-
mon i.i.d. assumption on the random communication topokrgy appears in the cases
where Rayleigh fading channels are considered. Our aim shoov how mathemati-
cal techniques used in the stability analysis of Markovianp linear systems, together
with results inspired by matrix and graph theory, can be usquove (intuitively clear)
convergence results for the (linear) stochastic consgmsimem.

In Chapter 5 we address the consensus-based distribuead hitering problem.
We assume that each agent updates its (local) estimate istegs. In the first step, an
update is produced using a Luenberger observer type of fittidhe second step, called
theconsensus stepvery sensor computes a convex combination between @kupdate
and the updates received from the neighboring sensors.ifar gonsensus weights, we
will first give suficient conditions for the existence of filter gains such thatdynamics
of the estimation errors (without noise) are asymptotycathble. Next, we present a
distributed, sub-optimal filtering algorithm, valid fomie varying topologies as well,
resulting from minimizing an upper bound on a quadratic exgtressed in terms of the

6



covariances matrices of the estimation errors. We will plgsent a connection between
the consensus-based linear filter and the linear filterirrgdérkovian jump linear system
appropriately defined, a connection which was inspired hyposavious work on state

estimation for switching systems (see for instance [24])[2



Chapter 2
Distributed Optimization under Random Communication Topes

2.1 Introduction

We investigate the collaborative optimization problem muti-agent setting, when
the agents make decisions in a distributed manner using ilofmamation, while the
communication topology used to exchange messages andniation is modeled by a
graph-valued random process, assumed independent arcadlgrdistributed (i.i.d.).
Specifically, we study the performance of the consensusebauulti-agent distributed
subgradient method proposed in [33], for the case of a cohstapsize.

Random graphs are suitable models for networks that chartgeime due to link
failures, packet drops, node failures, etc. An analysishef multi-agent subgradient
method under random communication topologies is addrassg@®]. The authors as-
sume that the consensus weights are lower bounded by sonteegsalar and give
upper bounds on the performance metrics as functions o$thisr and other parameters
of the problem. More precisely, the authors give upper bewnrdthe distance between
the cost function and the optimal solution (in expectatiavere the cost is evaluated
at the (weighted) time average of the optimal decision vécastimate.Our main goal
is to provide upper bounds on the performance metrics, waxgilicitly depend on the
probability distribution of the random graphWe first derive an upper bound on the

difference between the cost function, evaluated at the estimatethe optimal value.



Next, for a particular class of convex functions, we focustloa distance between the
estimate of the optimal decision and the minimizer. The ufoeind we provide has a
constant component and a time varying component. For thkerlate provide the rate
of convergence to zero. The performance metrics are eesluaa their expected val-
ues. The explicit dependence on the graph’s probabilitiridigion may be useful to
design probability distributions that would ensure thetlgegranteed upper bounds on
the performance metrics. This idea has relevance espeaiathe wireless networks,
where the communication topology has a random nature wittobability distribution
(partially) determined by the communication protocol paeters (the reader can consult
[21, 35], where the authors introduce probabilistic mof®lsuccessful transmissions as
functions of the transmission powers). As an example ofiptesapplication, we show
how the distributed optimization algorithm can be used tdgoen collaborative system
identification and we present numerical experiments resmitler the randomized [7] and
broadcast [1] gossip protocols. Similar performance rogtais our are studied in [2],
where the authors generalizes the randomized incremerigiadient method and where
the stochastic component in the algorithm is described byaek® chain, which can be
constructed in a distributed fashion using local informatnly. Newer results on the dis-
tributed optimization problem can be found in [13], where &uthors analyze distributed
algorithms based on dual averaging of subgradients, anddereharp bounds on their
convergence rates as a function of the network size anddgpol

Notations: Let X be a subset oR" and lety be a point inR". By slight abuse
of notation, let]ly — X|| denote the distance from the pointo the setX, i.e. |ly— X|| =
Minyex |ly— X||, where]| - || is the standard Euclidean norm. For a twicgetentiable func-
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tion f(x), we denote by f (x) andV2f(x) the gradient and Hessian bfat x, respectively.
Given a symmetric matriA, by (A > 0) A > 0 we understand is positive (semi) definite.
The symbol® represents the Kronecker product.

Let f : R" — R be a convex function. We denote By (x) the subdiferential of f

atx, i.e. the set of all subgradients dfat x:
of(X) ={deR"f(y) > f(X)+d'(y-X), Vye R"}. (2.1)

Let e > 0 be a nonnegative real number. We denotétfy(x) the e-subdiferential off at

X, i.e. the set of alé-subgradients of atx:
0 F(X) ={deR"f(y) > f(X)+d'(y-X) —¢, YyeR"). (2.2)

The gradient of the dierentiable functiorf (x) on R" satisfies d.ipschitz condition with
constant Lif

IVF(X) = V)l <LIx=Vll, YxyeR".

The diterentiable, convex functiof(x) on R" is strongly convex with constanifl
I
f0) = F0)+ VI (=) + 5lly— X%, ¥xyeR".

We will denote by LEM and SLEM the largest and second largiggiralue in modulus
of a matrix, respectively. We willuse CBMASM as the abbréwiafor Consensu®ased
M ulti-AgentSubgradient ethod and pmf for probability mass function.

Chapter structureSection 2.2 contains the problem formulation. In Secti@wze
introduce a set of preliminary results, which mainly constgroviding upper bounds for

a number a quantities of interest. Using these preliminesylts, in Section 2.4 we give
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upper bounds for the expected value of two performance osetthe distance between
the cost function evaluated at the estimate and the optiolatisn and the (squared)
distance between the estimate and the minimizer. Sect®oaaws how the distributed

optimization algorithm can be used for collaborative systéentification.

2.2 Problem formulation

2.2.1 Communication model

Consider a network dfl agents, indexed hbiy=1,...,N. The communication topol-
ogy is time varying and is modeled by a random gr&gk) = (V,&(K)), whereV is the
set ofN vertices (nodes) anél(k) = (gj(K)) is the set of edges, and where we uked
denote the time index. The edges in the&@) correspond to the communication links
among agents. Given a positive inteddr the graphG(k) takes values in a finite set
G =1{G1,Gy,...,G\} at eaclk, where the graphG; = (V,&;) are assumedndirectedand
without self loops In other words, we will consider only bidirectional comnication
topologies. The underlying random process3gk) is assumed i.i.d. with probability

distributionPr(G(k) = Gj) = p;, Yk > 0, Wherezi'\ﬂl pi = 1 andp; > 0.

Assumption 2.2.1.(Connectivity assumption) The gragh= (V,E) resulting from the

union of all graphs in th¢ is connectedwhere

M M
G= UGi = [V,U&].
Let G be an undirected graph witi nodes and no self loops and late RN<N

be a row stochastic matrix, with positive diagonal entrié§e say that the matrid
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correspondgo the graphG or the graphs is inducedby A if any non-zero entryifj) of

A, withi # j implies a link fromj toi in G and vice-versa.

2.2.2 Optimization model

The task of théN agents consists of minimizing a convex functibnR" — R. The

function f is expressed as a sumMffunctions, i.e.

N
f09 =) i, (23)
i=1

wherefi : R" — R are convex. Formally expressed, the agents want to codgsyatolve

the following optimization problem

N
Qﬂig; fi(). (2.4)
The fundamental assumption is that each agdrds access only to the functidn

Let f* denote the optimal value df and letX* denote the set of optimizers &f
i.e. X* ={xe R"f(x) = f*}. Letxi(k) € R" designate thestimate of the optimal decision
vectorof (2.4), maintained by agemtat timek. The agents exchange estimates among
themselves subject to the communication topology desthiyehe random grapG(k).

As proposed in [33], the agents update their estimates asmngdified incremental
subgradient method. Compared to the standard subgradethbd) the local estimate
xi(K) is replaced by a convex combination xtk) with the estimates received from the
neighbors:

N
xi(k+1)= Z aij (K)xj (K) — a(K)di (K), (2.5)
=1
wherea;j(K) is the {, )" entry of a stochastic random mat(k) which corresponds

to the communication grap&(k). The matricesA(k) form an i.i.d. random process

12



taking values in a finite set gfymmetricstochastic matrices withositive diagonal entries
A= {A;}i'\ﬁl, whereA; is a stochastic matrix corresponding to the gré&ple G, for i =
1,...,M. The probability distribution oA(K) is inherited fromG(k), i.e. Pr(A(k) = Aj) =
Pr(G(k) = Gj) = pi. The real valued scalar(k) is the stepsize, while the vectd(k) € R"
is a subgradient of; at x;(k), i.e. di(k) € dfi(xi(k)). Obviously, whenf;j(x) are assumed
differentiabled; (k) becomes the gradient dfat x;(k), i.e. d(kK) = V fi(x(k)).

Note that the first part of equation (2.5) is a consensus stgppblem that has
received a lot of attention in recent years, both in a detastic ([6, 14, 18, 29, 39, 51,
52]) and a stochastic ([17, 23, 44, 45]) framework.

The consensus problem undeffdient gossip algorithms was studied in [1, 7, 12].
We note that there is direct connection between our commatinit model and the com-
munication models used in thandomized gossip protocpl] and broadcast communi-
cation protocol[1]. Indeed, in the case of the randomized communicatiotogad, the
setG is formed by the graphG;j with only one link {, j), wherePr(G(k) = Gjj) = %Pij
for someP;j > 0 with 2V, Pjj = 1, while the setA is formed by stochastic matricég of
the formA;; =1 - %(a —ej)(a —ej)’, where vectors the represent the standard basis. In
the case of the broadcast communication protocol, thg seformed by the graphS;,
whereG; contains links between the nodand the nodes in its neighborhood, denoted
by Ni. The probability distribution o6(k) is given byPr(G(k) = G;) = % and the setA
is formed by matrices of the fordy = | - 6; 3’ jen, (6 —€j)(e —e])’, for some O< §; < Wl.|

The following assumptions, which will not necessarily bedisimultaneously, in-

troduce properties of the functidr(x).
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Assumption 2.2.2.(Non-differentiable functions

(a) The subgradients of the functiongxj are uniformly bounded, i.e. there exists a

positive scalakp such that

dl| < o,Vd € 8fi(X), YxeR", i=1,...,N,

(b) The stepsize is constant, i.e.

a(k) = a, Yk> 0,
(c) The optimal solution set*™s nonempty.
Assumption 2.2.3.(Differentiable functions
(a) The functions;fx) are twice djferentiable orR",
(b) There exists positive scalafsl; such that

lil < V2fi(x) < Lil, Yxe R" andVi,

(c) The stepsize is constant, icgk) = « for all k and satisfies the inequality

o (A+1 1
O<a<min _T’T ,

where A is the smallest among all eigenvalues of matrices|A min;l; and L=

max L.

Assumption 2.2.3 -(b) is satisfied if the gradientfk) satisfies a Lipschitz condi-
tion with constant; and if f;(x) is strongly convex with constaht Also, under Assump-
tions 2.2.3X* has one element which is the unique minimizer ¢f), denote henceforth
by x*.

14



2.3 Preliminary Results

In this section we lay the foundation for our main results étt®n 2.4. The pre-
liminary results introduced here revolve around the ide@ro¥iding upper-bounds on
a number of quantities of interest. The first quantity is espnted by the distance be-
tween the estimate of the optimal decision vector and theageeof all estimates. The
second quantity is described by the distance between thagesef all estimates and the
minimizer.

We introduce theaveragevector of estimates of the optimal decision vector, de-

noted byx(k) and defined by

N
| _
X(K) 2 N;mk). (2.6)
The dynamic equation for the average vector can be deriead {2.5) and takes the form
(k1) = 50K~ V(K. @

whereh(k) = Zi’i 1di(K).
We introduce also thdeviationof the local estimates;(k) from the average esti-
matex(k), which is denoted by; (k) and defined by
Z(K) = x(K)—x(k), i=1...N. (2.8)

and letB be a positive scalar such that

Iz(0)| <B, i=1...N.

Let us define thaggregaterectors of estimates, average estimates, deviations abjjfadients,
respectively:
X(K) = [x1(K), %2(K)', ..., xn(K)'] € RN™,
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X(K)' £ [X(K)', X(K)",..... x(k)] € RN™,
(k) = [z1(K), Z2(K) ,....zn(K)'] € RN"

and

d(k)’ £ [d1(K)",da(K)', ..., dn(K)'] € RN

From (2.6) we note that the aggregate vector of average &stincan be expressed as
X(K) = Ix(K),

whereJ = %]1]1’@ |, with | the identity matrix inR™" and1 the vector of all ones iR N.

Consequently, the aggregate vector of deviations can liewias
z(K) = (I = J)x(K), (2.9)

wherel is the identity matrix ifR"™<"N_ The next Proposition characterizes the dynamics

of the vectorz(k).

Proposition 2.3.1. The dynamic evolution of the aggregate vector of deviatisggven

by
z(k+ 1) = W(K)z(K) — a(K) (I - J)d(K), (0) = zo, (2.10)

whereW(k) = A(k) —J andA(k) = A(K) ® |, with solution
k-1
z(k) = @(k,0)z(0)— Z a(9)0(k, s+ 1)d(s), (2.11)
s=0

whered(k, s) is the transition matrix of (2.10) defined ik, s) = W(k— 1)W(k—-2)- - - W(S),

with Ok, k) = 1.
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Proof. From (2.5) the dynamics of the aggregate vector of estimsigisen by

x(k+ 1) = AK)X(K) — a(K)d(K). (2.12)

From (2.9) together with (2.12), we can further write

2(k+1) = (I = I)x(k+ 1) = (A(K) — I)x(K) — (k)| = I)d(K).

By noting that

(A(K) = 9)z(K) = (A(K) = I)(I = )x(K) = (A(K) = I)x(K),

we obtain (2.10). The solution (2.11) follows from (2.10y&bher with the observation

thatd(k, )(1 — J) = d(k, 3). O

Remark 2.3.1. The transition matrixd(k, s) of the stochastic linear equation (2.10) can
also be represented as

D(k, S) = -3, (2.13)

ﬁA(k—i)
i=1

whered = (%]l]l’)@ I. This follows from the fact that for anyi{1,2,...,s— 1} we have

(A=) = )(AK=i—1)=J) = A(—i)A(K—i—1)—J.

Remark 2.3.2 (On the first and second moments of the
transition matrix®(k, s)). Let m be a positive integer and consider the transition rxatri
®d(k+m,k) = W(k+m-1)...W(K), generated by a sequence of length m of random graphs,
i.e. §K)...G(k+m-1), for some k= 0. The random matrix>(k + m, k) takes values of
the form W W, ---Wi_,, with ij € {1,2,...,M} and j=1,...,m. The norm of a particular

realization of®(k+m,K) is given by the LEM of the matrix product W, - -- Wi, or the
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SLEM of A A, --- A, denoted henceforth by, .. Letq, i, = 1‘[’]-“:l Pi; be the proba-
bility of the sequence of graphs,G..G;,, that appear during the time intervgk, k+ m).
Let I, be the set of sequences of indices of length m for which tloawhgraphs with the
respective indices produces a connected graph,he. {i1iz2...im| U?llGi,- = connected
Using the previous notations, the first and second momeiit®aform ofd(k+ m, k) can
be expressed as

E[llo(k+mK)lI] = 7m, (2.14)
Elll®k+m K] = om, (2.15)

wherenm = ¥ el djdj + 1= Xjel,,dj @and pm = Zj€|mqj/1j2 +1-3je,0j- The integer j
was used as an index for the elements of get &. for an element of the form.i..inm.

The above formulas follow from results introduced in [18¢nhma 1, or in [39],
Lemma 3.9, which state that for any sequence of indicesi, € I, the matrix product
A, ---Ai, is ergodic, and thereforgj < 1, for any je Im. Conversely, if g I, thena; = 1.

We also note tha}j, q; is the probability of having a connected graph over a time
interval of length m. Due to Assumption 2.2.1, fofisiently large values of m, the set |

is nonempty. In fact for m M, |, is always non-emptylherefore, for anyn such that

Im is not empty, we have thatOpmn < nm < 1. In general for large values of m, it may be
difficult to compute all eigenvaluey, j € I. We can omit the necessity of computing the
eigenvalueslj, and this way decrease the computational burden, by usiadaifowing

upper bounds ofy, andpm

m < AmPm+ 1— P, (2.16)

pm < AP+ 1= P (2.17)
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wherelm = maX, 4j and py, = ¥ je,,d;j is the probability to have a connected graph
over a time interval of length m. For notational simplicily,what follows we will omit

the index m when referring to the scalagig andpm.

Throughout this chapter we will use the symboisy andp in the sense defined
within the Remark 2.3.2. Moreover, the valuerofis chosen such tha, is nonempty.
The existence of such a value is guaranteed by Assumptioh 2.2

The next proposition gives upper bounds on the expecteesaltithe norm and

the squared norm of the transition matdiXk, s).

Proposition 2.3.2. Let Assumption 2.2.1 hold, and letrs < k be three nonnegative
integer values and m a positive integer, such that the gas Inon-empty. Then, the

following inequalities involving the transition matrix(k, s) of (2.10), hold

Elllotk, 9l <7, (2.18)
Efllok, 9117 < L7, (2.19)
EfI(k. 1)@k, 9)|]] < pl'mlnl 5, (2.20)

wheren andp are defined in Remark 2.3.2.

Proof. We fix anm such that the probability of having a connected graph ovéma t
interval of lengthm is positive, i.e. I, is non-empty. Note that, by Assumption 2.2.1,
such a value always exists (pick> M). Lett be the number of intervals of length

betweensandk, i.e.



and letsp, s1,..., S be a sequence of nonnegative integers suctsthag < s1 <... < 5 <K
wheres;1—s =mandi =0,...,m-1. By the semigroup property of transition matrices,
it follows that

Dk, s) = DK, ) (st &-1) - (81, 9),
or

1D(K, Il < ID(st, St—2)I - - 1D(S1, S,
where we use the fact thi®(k, )|l < 1. Using the i.i.d. assumption on the random

processA(k), we can further write

E[llok, 9l < E[lId(st, se-2)Il] - - - E[IIP(s2, 9]

which together with (2.14) leads to inequality (2.18).
Similarly, inequality (2.19) follows from (2.15) and frorhé i.i.d. assumption on
the random graph process.

We now turn to inequality (2.20). By the semigroup property get
E[llo(k. 1)@ (K, )'|l] < E[llok, 9)2I0(s. NI < E[IDK, S)IPTE[lID(s, NI,

where the second inequality followed by the independenca(kf. Inequality (2.20)

follows from (2.18) and (2.19). |

In the next lemma we show that, under Assumption 2.2.3, fallsemougha the

gradientsV f;(x;(k)) remain bounded with probability one for il

Lemma 2.3.1. Let Assumption 2.2.3 hold and I&t: RN" — R be a function given by
F(x) = Zi’il fi(x) wherex’ = (x3,..., X ). There exists a positive scalarsuch that
IV (DI < ¢,V i, kw.p. 1
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IVEUDN < ¢, ¥ i,k w.p. 1

wherep = L||x(0)-X||+ L(l%q + 1) IXIl, g= max|1—all,|1-al]}, X is the unique minimizer

of F(x), and x(k) and x(k) satisfy (2.5) and (2.7), respectively.

Proof. We first note that since the matricés have positive diagonal entries, they are
aperiodic and thereforg € (-1 1]. From Assumption 2.2.3 it follows immediately that

¥ (x) is a convex, twice dierentiable function satisfying
Il < V2F(x) < LI, (2.21)

wherel = minjlj, L = maxL; andl is the identity matrix inR""N. In addition,  (x)
has a unique minimizer denoted By The dynamics described by (2.5) can be compactly
written as

x(k+ 1) = A(RX(K) — 2VF (x(K)), X(0) = Xo, (2.22)

with x(k)’ = (x1(K)’, ..., xn(K)').

We observe that equation (2.22) is a modified version of tadignt method with
constant step, where instead of the identity matrix, we hiaabA (k) multipliesx(k). In
what follows we show that the stochastic dynamics (2.22fable with probability one.

Using a similar idea as in Theorem 3, page 25 of [37], we haat th
1
VF (x(K) = VF (X) + f V2F (% + 7(x(K) — %)) (X(K) = X)dr = H(K)(x(K) — %),
0
wherell < H(K) < LI by virtue of (2.21). Hence, with probability one
IIX(k+ 1) —X|| = [JAK)X(K) — X — aVF (X(K)) + A(K)X — A(K)X|| <

< NAK) — aH W Ix(K) = XI + 1A K) = T
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But since

(A—abl)l <AK) - H(K) < (1-al)l,

it follows that
[IX(K+ 1) =X < qlIx(K) = X|| + |4 — L[[IXIl,

whereq = max|1 - al|,|1-«all}. Since by Assumption 2.2.3-(e)< min{ill_l,ll} we get

thatq < 1 and therefore the dynamics (2.22) is stable with prolgtwihe and
(9~ 1 < cHIX(©) =Kl + Il < [X(0) = + =[5 Vk
1-q 1-q
From Assumption 2.2.3 we have that
IV £ (6 (RIF < IVF (XKD < LIIx(K) = XII < LIIx(0) - XIl + 12—_Lq||>~<||. (2.23)
We also have that
[IX(K) = X1l = II%(K) = IK + IX = K| < [Ix(K) = XI| +IKII,

from where it follows that

IV < 197 GRI9N < LIS -3 < Lix(Q) -+ L (2o s 1) 1. 2.24)

Taking the maximum among the right hand side terms of theualties (2.23) and

(2.24), the result follows. O

Remark 2.3.3. If the stochastic matricesfare generated using a Laplacian based
scheme, e.g.

A =1 -¢eLl,Vi,
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where/; is the Laplacian of the graphi@nde < ﬁ then it turns out thal > 0. Hence,

the inequality in Assumption 2.2.3-(c) is satisfied if

1
O<C¥<E,

which is a sificient condition for the stability of (2.5). In the case of taedomized and

broadcast gossip protocols it can be checked thatO.

Remark 2.3.4. Throughout the rest of the chaptershould be interpreted in the context
of the assumptions used, i.e. under Assumption 2¢i2,the uniform bound on the
subgradients of jfx), while under Assumption 2.2.3, is the bound on the gradients

Vfi(x(K)) andV f;(x(k)) given by Lemma 2.3.1.

The following lemma gives upper bounds on the first and thers&éenoments of

the distance between the estimatgx) and the average of the estimate&).

Lemma 2.3.2.Under Assumptions 2.2.1 and 2.2.2 or 2.2.1 and 2.2.3, fos#ggiences
{(xi(K}ks0, 1 = 1,...,N generated by (2.5) with a constant stepsizehe following in-
equalities hold
B m
E[l1x (K) = X(K)I] < 8 VNylm) + o ‘/Nrn (2.25)

|_k;mlJ+l_ [k;mlJ+1
_m +2Na,8(,0mp il ,
1-p p—n

E[lI% (K) = X(K)I2] < NB2plm] + Na2e? (1 + Zlen)

(2.26)

wheren, p and m are defined in Remark 2.3.2.

Proof. Note that the norm of the deviatiaqn(k) = X;(k) — x(k) is upper bounded by the

norm of the aggregate vector of deviatial) (with probability one), i.e||z(K)|| < ||z(K)]|.
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Hence, by Proposition 2.3.1, we have

k-1
1 (R < 11z(K) = (K, 0)2(0) —a > @(k, 5+ 1)d(IIl
s=0

or

k-1
Ella (K] <8 VNE[ID(K, O)l] +ap VN > E[llo(k, s+ ],
s=0

where we used the fact thii (0)|| < 8 and||di(K)|| < ¢, Yk > 0.

By inequality (2.18) of Proposition 2.3.2, we get

k-1
k k—s-
Ez (K] < VNitw! + ap VN Y gt 5,
s=0

Noting that the sunx*-37 L5+ can be upper bounded by

LG NI

Zntkslj<mzn = — gmlin,

inequality (2.25) follows.

We now turn to obtaining an upper bound on the second momejaflof.

Let Z(k) e RN™N" pe the symmetric, semi-positive definite matrix defined by
Z(K) = z(k)z(k)'.

Using Proposition 2.3.1, it follows th&t(k) satisfies the following dynamic equa-
tion

Z(k+1)=W(K)ZKW(K) +F(K), (2.27)
whereF(K) is given by
F(K) = ?(1 = 3)d(K)d(K)' (I = J) = aW (K)z(K)d(K)' (I =J)" —a(l —I)d(K)z(K)' W (K)'.

(2.28)
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The solution of (2.27) is given by

k-1
Z(K) = d(k,0)Z(0)®(k, 0y + Z d(k, s+ 1)F(s)D(k, s+ 1) (2.29)
s=0

For simplicity, in what follows, we will omit the matrik—J from F(Kk) since it disappears

by multiplication with the transition matrix (see Propasit2.3.1). We can further write

k=1
IZ()I < (K O)IAIZ(O)I+ ) lld(k, S+ LF(S)D(k, S+ 1Y,
s=0
and by noting thaltZ (k)|| = |1z(K)||?, we obtain
k-1
ELIz(9I7] < Efllo(k, 0)IP1IZO)I7 + > ElID(k, s+ DF(9D(k s+ 1Y1l.  (2.30)
s=0
From (2.19) of Proposition 2.3.2 we obtain
Kk
E[lo(k,0)7] < pl.
We now focus on the terms of the sum in the right hand-side 802 We have

D(k, s+ L)F(D(K, S+ 1) = 20k, s+ 1)d(9)d(s) D(k, S+ 1)

—a®(k, s+ DW(9)Z(9)d(8) Dk, S+ 1) — ad(k, s+ 1)d(8)2(s) W () D(k, S+ 1 .

Using the solution of(k) given in (2.11), we get

d(k, s+ 1)W(9)z(s)d(s)' d(k,s+1) =

s-1
= ®(k, s+ 1)W ()| O(s,0)z(0) - « Z @(s,r+1)d(r) |d(s) D(k, s+ 1)
r=0
s-1
= ®(k,0)z(0)d(s) D(k, s+ 1) — az @(k,r +1)d(r)d(s)’ ®(k,s+1). (2.31)
r=0

Similarly,
O(k, s+ 1)d(9)z(s)’ W(9)'D(k, s+ 1) =

25



s-1
®(k, s+ 1)d(9)z(0) D(k, 0 — aZ Dk, s+ 1)d(9)d(r) DK, r + 1)’ (2.32)
r=0

We now give a more explicit formula fab(k, s+ 1)F(S)D(k, s+ 1)':
O(k, s+ 1)F(S)O(k, s+ 1) = (K, s+ 1)d(s)d(s) D(k, S+ 1) —

s-1
—a®(K,0)(0)d(s) D(K, S+ 1) + @ Z (K, 1+ 1)d(r)d(s) DK, s+ 1) —
r=0

s-1
—a®(K, s+ 1)d(9)z(0Y d(k, 0) + a? Z Dk, s+ 1)d(9)d(r) DK, r + 1)’
r=0

By applying the norm operator, we get

1D(K, s+ LDF(S)D(K, s+ 1Y|| < Na?p?|D(k, s+ 1)||°+

s-1 s-1
+NaZp? 3" 0,1 + 1)(K, 5+ 1) |+ Nae? > I1d(k s+ 1)d(k,r + 1Y ||+
r=0 r=0

+NapByl|®(k, s+ 1)O(K,0Y || + NaBepl|D(k,0)D(k, s+ 1)'],

or

1Dk, s+ LF(S)D(K, s+ 1Y|| < Na?p?| O (K, s+ 1)]|°+

s-1
+2Na?p? Z IOk, + 1)D(K, 5+ 1Y|| + 2NaBe|| @ (K, s+ 1)D(K, 0Y . (2.33)
r=0

Next we derive bounds for the expected values of each of thesten (2.33). Based on

the results of Proposition 2.3.2 we can write

k=s-1

E[l®k, s+ 1) gp[T ,

[A—

& S k-s-1 sr k=s-1 L%J
ZE[ncp(k,r+1)q>(k,s+1)’||]sZplTJanJsmol N <
r=0 r=0 r=0
_ —plml+l _
cmpl? )il L
1-n 1-7



and

k=s-1

EfI(k, s+ 1)o(k.0)[] < pl T Il ],

Therefore we obtain

E[IIB(k, s+ L)F(9D(k, s+ 1Y|]] < NaZp? (1 ¥ 127”17) pl'F ]+ 2Nagpl Tl .

We know compute an upper bound fEll;(l) E[l|®(k, s+ 1)F(s)@(k, s+ 1)]|]]. Using the

fact that [k 1J
SN & _ s
Zptk—mljgmzpsgml f Smll
s=0 s=0 —p Y
and
k=l kes-1| | s+l k-1 kes-1 s
s=0 s=0
<mZp|.k;mlJ Snszmp —-n
s=0 Pp—n
we obtain
k-1
END(k s+ (DK, s+ 1Yl < NaZp?(14+ 20 ) Ty
2 Elllo( ¢
s=0 1-n/1-p
eyl
+2Na',8t,0mp i
pP—Nn

Finally we obtain an upper bound for the second momefiz@d|:

k—1J

R
E[llz(K)I2] < NBZolm] + Na2¢2(l+ Z—m) L N | d
1-n)1-p p-n

+ [k;mlJ+1

The following lemma allows us to interprdi(k) as ane-subgradient off; at x(k)

(with € being a random variable).
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Lemma 2.3.3. Let Assumptions 2.2.2 or 2.2.3 hold. Then the vecttk) ds an e(k)-
subdfferential of f at x(k), i.e. d(k) € de fi(x(K)) and hK) = Zi'\lldi(k) is an Ne(k)-

subdjferential of f atx(k), i.e. h(K) € dne) f(X(K)), for any k> 0, where
k-1
e(k) = 2B VN||0(k, )]+ 206 VN ) [[D(k, 5+ 1) (2.34)
s=0

Proof. The proof is somewhat similar to the proof of Lemma 3.4.5 @fj[1 et cf(k) be a

subgradient ofi; at x(k). By the subgradient definition we have that
fiO6(K) = i(X(K)) + i (k) (xi (K) = X(K)) = i (X(K)) = Il ()11 (i (K) = XK1l
or
fi(xi(K) > fi(x(K) — ¢liz (K.

Furthermore, for any € R" we have that
fi(y) > fi(xi(K)) +di(K)' (y—%i(K)) = fi(xi(K)) +di (k)" (y = X(K)) + di (K)" (X(K) — xi (K)) >

> fi(x(K)) +di(K)’ (y = X(K)) = 20|z (K)II > fi(X(K)) + di(K)" (y — X(K)) — 2¢lIz(K)II,
or
fi(y) > fi(x(K)) + di (k)" (y — X(K)) — €(K),
wheree(k) = 2¢l|z(K)]|. Using the definition of the-subgradient, it follows thati(k) €
Beio Ti(X(K)). Summing over all we get that N, di(k) € dnege f(X(K)). Note, thate(K) has

a random characteristic due to the assumptionA (& O

For twice dtferentiable cost functions with lower and upper boundediaessthe
next result gives an upper bound on the second moment of shkende between the aver-
age vecto(k) and the minimizer of .
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Lemma 2.3.4.Let Assumptions 2.2.1 and 2.2.3 hold and{lk)}x-o0 be a sequence of

vectors defined by iteration (2.7). Then, the following uredy holds

QIR - X 7] < IK(0) - x12y% + 22BN Y ”m (4\/——+1) (2.35)
Y1y 1 Y
wherey = 1-al, with | = min;jl; andn is defined in Remark 2.3.2.

Proof. Under Assumption 2.2.3f(x) is a strongly convex function with constait,

wherel = min;l; and therefore it follows that
NI
f(x)—f*> ?Hx—x*llz. (2.36)

We use the same idea as in the proof of Proposition 2.4 in {80hulated under a

deterministic setup. By (2.7), where we use a constantigepswe obtain
0K+ 1) = X7 = K = X = (I = 1K) = X117~ 2 h(kY (k) — ) + P
Using the fact that, by Lemma 2.313K) is aNe(k)-subdiferential off at x(k), we have
f(X) > f(x(k)) + h(k)' (X" — x(k)) — Ne(k),
or, from inequality (2.36),
¥evr, NI _ %112
=Nk’ (x(k) = x) < ==[1x(K) = X1 + Ne(k).
Further, we can write
IX(k+ 1) = X|I? < (L—al) [IX(K) — X||? + 20e(K) + a??
or
k=1

ELIXK) - X117] < (1=l IX0) - X7+ ) (1-al)5 (20E[e(9)] + a??).

s=0
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Note that from Assumption 2.2.3-(c),<0a < { and therefore the quantity = (1 - al)X

does not grow unbounded. It follows that

k-1
ELIXK) - X1P] <yMIX0) - X 1P+ > Y H2E[e(s)] +0%P).  (2.37)

s=0

From the expression e{k) in Lemma 2.3.3, we immediately obtain the following

inequality
. 2
E[e(9)] < 208 VNyLal + Za‘iﬂ“. (2.38)
-n
The inequality
k-1 . k-1 77% s yk—nnkw
D yelal < 7"'177'12[—] = ()t —r
=0 so\ 7V y—nm
yields
k-1 k_ & 2
Z')/k_s_lE[E(S)] < 290,3\/N7 771 " 20“;; \/lel ’ (239)
=0 Y y—nm Ty
which combined with (2.37), generates the inequality (.35 O

2.4 Main Results - Error bounds

In the following we provide upper bounds for two performaneetrics of the CB-
MASM. First, we give a bound on thefiierence between the best recorded value of the
cost functionf, evaluated at the estimakgk), and the optimal valué*. Second, we
focus on the second moment of the distance between the ésti{ld and the minimizer
of f*. For a particular class of twice ftierentiable functions, we give an upper bound
on this metric and show how fast the time varying part of tlosirid converge to zero.
The bounds we give in these section emphasize flieeteof the random topology on the

performance metrics.
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The following result shows how close the cost functioavaluated at the estimate
xi(K) gets to the optimal valué*. A similar result for the standard sub-gradient method

can be found in [31], for example.

Corollary 2.4.1. Let Assumptions 2.2.1and 2.2.2 or 2.2.1 and 2.2.3 hold ang; (&)}k-o0
be a sequence generated by the iteration (2.5),i...N. Let fi_beskk) =mingo._k E[f(X(9))]

be the smallest cost value (in average) achieved by agentdration k. Then

2
lim fPeSYk) < f* + 309N mli + NC;” . (2.40)
—00 —77

Proof. Using the subgradient definition dfat x;(k) we have that
fi(x(K) < fi(x(K)) + ¢llz(K)l, foralli=1,...,N.
Summing over all, we get
f(xi(k)) < F(x(K) + Neliz(K)Il,

which holds with probability one. Subtractirfg from both sides of the above inequality,

and applying the expectation operator, we further get
E[f (i ()] - " < E[f(x(K)] - f + NeE[liz(K)I]],

or
fPes(l) - < min {E[f(X(9)] - "+ NeE[liz(s)ll}- (2.41)
Let x* € X* be an optimal point of . By (2.7), where we use a constant stepsize
we obtain
0K+ 1) =X = K = X = (I < 1XTK) = X117 = 25 h(KY (3TK) — ) + aP?
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and since, by Lemma 2.3.8(x(Kk)) is aNe(k)-subdiferential off at x(k), we have
Xk + 1) = X712 < 1X(K) - X - 2W"‘(f(%(k))— )+ 20e(k) + %%,
or
g o1 k-1
T, %112 T #012 1 ® 2 2
50 = X1 < 1K0) = X117 = T2 D () = 1)+ 20 ) e(9) + ka?
s=0 s=0
Sincel|x(k) - x*||2> 0
g 1 k-1
T 2K = ) IO~ X7 +20 ) e(9) +ka’p?
s=0 s=0

or
k-1

ICUCOR ) < 5 IK0) - x| +NZE[e(s)]+kN‘“”

Adding and subtractindNgE[||z(s)||] inside the sum of the left-hand side of the above

inequality and recalling from Lemma 2.3.3 thk) = 2¢||z(K)||, we obtain

k-1

k-1
S ELFRN - 1+ NeELIZS) < 5 IK0) - X P+ 51 3 Ele(9)] +
s=0

s=0

kNag?
>

Using the fact that
k-1
Z(E[f(X(S))] — 7+ NeE[liz(s)I) = k _min_{E[(X(s)] - "+ NeE[lI()Il]},

s 0 5P

we get

_min_ [ETFAS) - 1+ NgE[IZ(9) < 5.~ IK0) - x||2+—ZE[ (90+

Using inequality (2.38) from Lemma 2.3.3 we obtain

k-1
> Ele(9)] < 208 VN + k2ay? VN -
s=0 1-n 1-n
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It follows that

_min_(ELET9)] - 1+ NeElI2(S} < 5 IK0) - X 1P+

.....

3N m m \ Nag?
(208 VN— + k2ap? VN—— : 2.42
+2k( 90,8\/_1_77+ ayp \/_1_77)+ > ( )
Combining inequalities (2.41) and (2.42) and taking thetlime obtain
: Nap?
lim fPeS(k) < f* + 3?N \/N£+ @
k—oo ! 1—77 2
O

In the case of twice dierentiable functions, the next result introduces an error
bound which essentially says that the estimates “converdgee mean square sense to
within some guaranteed distance” from the optimal poindtadice which can be made
arbitrarily small by an appropriate choice of the stepsireaddition, the time varying

component of the error bound converges to zero at leastrhnea

Corollary 2.4.2. Let Assumptions 2.2.1 and 2.2.3 hold. Then, for the seqUef{kBk-0

generated by iteration (2.5) we have

@
lim sup E[|1x (k) — x*||?] < C1+Cp+2+/C1Co, (2.43)
k— o0
where
a2 2
Ci= T@(“T}fﬁﬂ), Co = No¢?(1+ £0) 2. (2.44)
(b)
E[l%(K) - XI7] < w(K)+C, (2.45)
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wherey (k) = c5¥ with ¢ a positive constant depending on the initial condisig’ =

max{y,nn%}, v =1-al, and where C= 4maxCy,C5}.
Proof. By the triangle inequality we have
1% (K) = X112 < 113 (k) = XTI + 2113 () = XCINIXK) = X1+ [1X(K) = X[
or
EflIxi(k) — x“117] < ELlIx (K) = X171 + 2E11 (k) — X{R)IIXTK) = X1 + ELIX(K) -~ x“[1].

By the Cauchy-Schwarz inequality for the expectation cjperave get

ELlIx (k) — x*112] < E[lIxi(K) — XK1 + 2E[II% (k) - XN ZELIIXK) — X“[12]2 + EL[1(K) — x7112].
(2.46)

Inequality (2.35) can be further upper bounded by
E[IIX(K) = XI17] < ya(K) +Ca,

where

w1(k) = [[IX(0)— x"[I2 + &K = 16,

8apB VN 1
My g

C1

with ¢ = max{y,nn%} andC; being given in (2.44). Using the inequalities

e

=7

3=

p[k;mlJ*_l Sp_%pnkw and 77[ n%’
from (2.26), a new bound fdE[||x; (k) — x(K)||?] is given by

EllIx (k) — X(K)I1?] < y2(K) +Ca,
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whereC; is given in (2.44) and

2NafBem
n-p

C2

wa(k) = |NEZo 4 (7% +p-n%)] 5 = c0".

Taking the limit of (2.46) and recalling that under Assurops 2.2.1 and 2.2.3,
v<1 andnr‘ln <1 for anyme I, we obtain (2.43).

Inequality (2.46) can be further upper bounded by
E[lIx (k) - XI°] < 2maxcy, c2}6* + 2(maxcy, Co}6* + max(Cy, Ca} ) = y(k) +C,

wherey/(k) = csK, with ¢ = 4maxcy, ¢} andC = 4maxCy,Cy}. Hence, we obtained that
the time varying component of the error bound convergesaitigdo zero with a factor

1
6 = maxy,nm}.

2.4.1 Discussion of the results

We obtained upper bounds on two performance metrics rei¢évahe CBMASM.
First we studied the dlierence between the cost function evaluated at the estimdte a
the optimal solution (Corollary 2.4.1) - for nonfférentiable and dierentiable functions
with bounded (sub)gradients. Second, for a particularsctdsconvex functions (see
Assumptions 2.2.3), we gave an upper bound for the secondemoaf the distance
between the estimates of the agents and the minimizer. Wieshlmwed that the time
varying component of this upper bound converges lineareto with a factor reflecting
the contribution of the random topology. We introduced Asption 2.2.3 to cover part
of the class of convex functions for which uniform boundneisthe (sub)gradients can
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not be guaranteed.

From our results we can notice that the stepsize has a simflaence as in the
case of the standard subgradient method, i.e. a small vélaenoplies good precision
but slow rate of convergence, while a larger valueraficreases the rate of convergence
but at a cost in accuracy. More importantly, we can emphalsemfluence of the consen-
sus step on the performance of the distributed algorithmeMffossible, by appropriately
designing the probability distribution of the random grdfdgether with an appropriate
choice of the integem) we can improve the guaranteed precision of the algoritim (i
tuitively, this means making the quantitieg(1—r) andm/(1-p) as small as possible).
In addition, the rate of convergence of the time varying congmt of the error bound
(2.45) can be improved by making the quantjt%/ as small as possible. Note however
that there are limits with respect to the positivkeet of the consensus step on the the rate
of convergence af(k), since the latter is determined by the maximum betvmeandnr%.

Indeed, if the stepsize is small enough, i.e.
a< Tl(l—nn%), (2.47)

then the rate of convergence fk) is given byy. This suggests that having a fast con-
sensus step will not necessarily be helpful in the case of @l stepsize, which is in
accordance with the intuition on the role of a small valuerofin the case inequality
(2.47) is not satisfied, the rate of convergence (@ is determined by;nlw. However, this
does not necessarily means that the estimates will not ‘&rgevfaster to within some
distance of the minimizer”, since we are providing only amebound.

Assume that we are using the centralized subgradient médhmchimize the con-
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vex functionf(x) = Zi'\il fi(X) satisfying Assumption 2.2.2 (the subgradientd;(X) are
uniformly bounded by), where the stepsize usedNistimes smaller than the stepsize of

the distributed algorithm, i.e.
a
X(k+ 1) = x(k) - Nd(k)’

whered(k) is a subgradient of at x(k), with ||d(k)|| < N¢. Then, from the optimization

literature we get

Nap?
: besfy « £* ("%
fm o < 11 =5

where fPes{k) = Mins—o, k f(X(s)). From above we note that, compared with the central-
ized subgradient method with a step sitdimes smaller than the agents’ stepsize, the
distributed optimization algorithm introduced an addiabterm in the error bound given
by 3a¢?N \/N% which reflects the influence of the dimension of the netwoik af the
random topology on the guaranteed accuracy of the algorithm

Let us now assume that we are minimizing the functi¢r), satisfying Assump-

tions 2.2.3-(a)(b), using a centralized gradient algamith
x(k+1) = x(k) - %Vf(x(k)),

where we have that is small enough (& a < %) so that the algorithm is stable and there
exit ¢ so thatl|V fi(x(K))|| < ¢c. It follows that we can get the following upper bound on

the distance between the estimate of the optimal decisictovand the minimizer

2
s * ay
[1X(K) = X*||? < |1X(0) - X ||2yE+T°,

with yc. = 1—al. Therefore, we can see that y. which shows that the rates of conver-
gence, at which the time-varying components of the errontdewwonverge to zero in the
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centralized and distributed cases, are the same. Howdeasgunote that we assumed the
stepzise in the centralized case tohb&mes smaller than the stepsize used by the agents.
The error bounds (2.40) and (2.45) are functions of threatifiess induced by the
consensus stepl:%, % andnnlw. These quantities show the dependence of the perfor-
mance metrics on the pmf @&(k) and on the corresponding random matfgk). The
scalars;y andp represent the first and second moments of the SLEM of the ramda-
trix A(k+1)...A(k+ m), corresponding to a random graph formed over a time intefva
lengthm, respectively. We notice from our results that the perforoeeof the CBMASM
is improved by makingl%, rmp andnnlw as small as possible, i.e. by optimizing these
guantities having as decision variablesand the pmf ofG(k). For instance if we are
interested in obtaining a tight bound &ifi|x; (k) — x*||*] and having a fast decrease to zero
of y(k), we can formulate the following multi-criteria optimizan problem:

Minmp (7™, C1+Ca+2+CiCo)

subjectto: m>1,
(2.48)

3l

nm >y,

>Mpi=1, pi>0.

whereC; andC, were defined in (2.44). The second inequality constraintaeaed to
emphasize the fact that makivyé too small is pointless, since that rate of convergence
of y(K) is limited byy. If we are simultaneously interested in tightening the ujjeeinds

of both metrics, we can introduce the quanq@; in the optimization problem sinc«li-_”—,7
and% are not necessarily minimized by the same probability ithstion. The solution

to the above problem is a set of Pareto points, i.e. solutamtg for which improvement

in one objective can only occur with the worsening of at |eas other objective.
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We note that for each fixed value of, the three quantities are minimized if the
scalarsy andp are minimized as functions of the pmf of the random graph. pyrexi-
mate solution of (2.48) can be obtained by focusing only onimizing 1Tmn since both
nn% and% are upper bounded by this quantity. Therefore, an apprdrisaution can
be obtained by minimizing (i.e. computing the optimal pmf) for each valuerof and
then picking the best valuawith the corresponding that minimize%. Depending on
the communication model used, the pmf of the random graplbeaquantity dependent
on a set of parameters of the communication protocol (tresssan power, probability of
collisions, etc) and therefore we can potentially tuneeh@srameters so that the perfor-
mance of the CBMASM is improved.

In what follows we provide a simple example where we show hpthe optimal

probability distribution,%7 andnnlw evolve as functions ah.

Example 2.4.1.Let G(k) be a random graph process taking values in thgsetG1, G,},with
probability p andl- p, respectively. The graphs@nd G are shown in Figure 2.1. Also,
let A(k) be a (stochastic) random matrix , corresponding tk)taking value in the set

A ={Aq, Az}, with

1 1

$1 300 1000

1 1 1

1430 0100
Al_244 Ap=

0%3o0 00324

0001 001 ¢

Figure 2.2(a) shows the optimal probability that minimizeg; for different values
of m. Figure 2.2(b) shows the optimizedcomputed at P as a function of m. Figures
2.2(c) and 2.2(d) show the evolution of the optimif_érgandnn% as functions of m, from
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Figure 2.1: The sample space of the random g@afk)

where we notice that a Pareto solution is obtained fot Band p = 0.582

In order to obtain the solution of problem (2.48), we neediimpute the probability
of all possible sequences of lengtiproduced byG(k), together with the SLEM of their
corresponding stochastic matrices. This task, for largeegaofm and M may prove to
be numerically expensive. We can somewhat simplify the agatpnal burden by using
the bounds o andp introduced in (2.16) and (2.17), respectively. Note thatrgvesult
concerning the performance metrics still holds. In thisecés each value ah, the upper
bound oy is minimized, wherp,,, is maximized, which can be interpreted as having to
choose a pmf that maximizes the probability of connectioftthe union of random graph
obtained over a time interval of length

Even in the case where we use the boundy,agbmay be very dificult to compute
the expression fop,, for large values ofm (the setG may allow for a large number
of possible unions of graphs that produce connected gragtr®)ther way to simplify
our problem even more, is to (intelligently) fix a value forand try to maximizep,,
having as decision variable the pmf. We note timethould be chosen such that, within

a time interval of lengthm, a connected graph can be obtained. Also, a very large value
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Figure 2.2: (a) Optimap as a function oim; (b) Optimizedn as a function oim; (c)

Optimized%7 as a function ofn; (d) Optimizednnlw as a function om.
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for m should be avoided, sincgl‘—77 is lower bounded byn. Although in general the
uniform distribution does not necessarily minimizeit becomes the optimizer under
some particular assumptions, stated in what follows. @&die such that a connected
graph can be obtained only over a time interval of lenthi.e. in order to form a
connected graph, all graphsghmust appear within a sequence of lenjyth ChooseM

as the value fom. It follows thatp,, can be expressed as:

M
Pm=m! 1_[ Pi-
i=1

We can immediately observe that, is maximized for the uniform distribution, i.qy; =
yfori=1,...,M.

1
m

2.5 Application - Distributed System Identification

In this section we show how the distributed optimizatioroaigpm analyzed in the
previous section can be used to perform collaborative syglentification. We assume
the following scenario: a group of sensors track an objectatjing measurements of
its position. These sensors have memory and computati@bdees and are organized
in a communication network modeled by a random graph proGgk}s satisfying the
assumptions introduced in Section Il. The task of the seyegents is to determine a
parametric model of the object’s trajectory. The measurdsmare &ected by noise,
whose @&ect may diter from sensor to sensor (i.e. some sensors take more aecurat
measurements than others). This can happen for instangesshee sensors are closer to
the object than other (allowing a better reading of the pm¥)f or sensors with dierent
precision classes are used. Determining a model for the éwokution of the object’s
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position can be useful in motion prediction when the motignaimics of the object in
unknown to the sensors. The notations used in the followregradependent from the

ones used in the previous sections.

2.5.1 System identification model

Let p(t)” =[x(t),y(t), z(t)] be the position vector of the tracked object. We model the
time evolution of each of the axis of the position vector asretdependent polynomial

of degreen,, i.e.

X(t) = a§+aft+...+ag the,
y(t) = aj+ajt+...+aht", (2.49)
2t) = aj+ajt+...+ap,t".
The measurements of each sensane given by
Xi(t) = X(t) + & (1),
Yi(t) = y(t) + ey (b), (2.50)
z(t) = Z(t) + & (1),
whereg x(t), & y(t) andeg y(t) are assumed white noises of (unknown) variamq%;g afy

and(rizZ respectively. Equivalently, we have

Xi(t) = @(t) Ox + & x(b),
Yi(t) = ¢(t) 6y + &y (b), (2.51)
z(t) = (1) 02+ € 2(t),
wherep(t) =[1.t,...,t"] andfx =[agx,...,an,x]", by = [A0ys - - .. 8n,y]” @NdO, =[a0 7, . .., 8n, 2] -
In the following we focus only on one coordinate of the pasitvector, say(t).

The analysis, however can be mimicked in a similar way foother two coordinates. Let
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T be the total number of measurements taken by the sensorasiier the following

guadratic cost functions
T
Fi(0x) = > (60— (1) 6x)°, Vi.
t=1

Using its own measurements, sensa@an determine a parametric model for the time

evolution of the coordinatg(t) by solving the optimization problem:
nginji(ex). (2.52)

LetX{ =[xi(1)....,%(T)] be the vector of measurements of sensord letd’ = [¢(1),...,¢(T)]
be the matrix formed by the regression vectors. It is welMamehat the optimal solution
of (2.52) is given by

bi x = (O’ 0) L O’'X;. (2.53)

Remark 2.5.1. It can be shown thad’® is invertible for any T, but it becomes ill con-
ditioned for large values of T. That is why, for our numerisahulations, we will in fact

use an orthogonal basis to model the time evolution of thedioates Xt), y(t), and Zt).

Performing a localized system identification does not take account the mea-
surements of the other sensors, which can potentially exehtdye identified model. If all

the measurements are centralized, a model for the timetemolof x(t) can be computed

by solving
minJ (6),
where
N
VCAEDINACHY (2.54)
i=1
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Note that (2.54) fits the framework of the distributed opaation problem formulated in
the previous sections, and therefore can be solved distrdby eliminating the need for

sharing all measurements with all other sensors.

Remark 2.5.2. If each sensor has a priori information about its accuratwert the cost

function (2.54) can be replaced with

N
T =) 61xTi(6), (2.55)
i=1

wheres; x is a positive scalar such that the more accurate sensor hes|drgers; is. The
scalard;j x can be interpreted agustin the measurements taken by sensor i. The sensors

can use local identification to compuig,. For instanceg; x can be chosen a% y = (%2

i,x

whered?, is given by
1 J
~2 ~ 2
Tix=T Z(Xi (1) — (1) 61,5)°,
t=1
whered; 4 is the local estimate of the model for the time evolution(t x

The distributed optimization algorithm (2.5) can be wnittes

N
Oix(k+1) = > aj (K0 x(K) —aVTi(K), (2.56)
j=1

wherev.7; (k) = 20/ (X; — D6; x(K)).

2.5.2 Numerical simulations

In this section we simulate the distributed system ideriifoz algorithm under two
gossip communication protocols: the randomized gossifopob [7] and the broadcast

gossip protocol [1]. We perform the simulations on a circgeaph, where we assume
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that the cardinality of the neighborhoods of the nodes is tWais graph is a particular
example of small world graphs [53] (for an analysis of thessrsus problem under small

world like communication topologies, the reader can carf8lifor example).
/'/ '\\'\
o ./‘

Figure 2.3: Circular graph witN = 8

In the case of the randomized gossip protocol, the set olermus matrices is given

by

A =(AjLi=1.. N jefi-Li+1}},

whereA;j; = | - %(a —€j)(a — &))" and where by convention we assume thatfN then
i+1=1andifi =1theni—1=N. We assume that if nodewakes up, it chooses with
uniform distribution between its two neighbors. Hence tr@bpbility distribution of the

random matrixA(k) is given by
1
Pr(Ak) = Ajj) = N

We note that the minimum value ofsuch thay, < 1 isN—1. Recall thamis the length
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of a time interval such th&tr(Um‘lG(kH))>Oforanyk It turns out that fom=N-1

N-2 1 N-1
lL:JOG(kH) :N!(m)

Interestingly, the matrix products of length— 1 of the form [T Avigis1+ip With ig €

=Pr

{0,...,N— 1}, and the matrix products that may be obtained by the periontabf the
matrices in the aforementioned matrix products, have theesaLEM (where the sum-
mations in the indices are seen as moddjoin fact it is exactly this property that allows

us to give the following explicit expression fgg_1

Mo1 = Ped” +1-pL, (2.57)

whereA" is the SLEM of the matrix produdy 2A23- - AN-1.N-

In the case of the broadcast gossip protocol, thefsistgiven by
A° = (A,i=1...N},

whereA = | - 3[(e -@a1)(@ —€41) + (& —6_1)(@ —&-1)'] andPr(A(K) = A) = §. For
odd values ofN (andN > 3), the minimum value ofn such thaty,, < 1 is given by

m= "L, In addition, we have that
N-1\ (1\'7
= Pr UG(k+I) = N( 5 ) (N) .

Observing a similar phenomenon as in the case of the raneédrgssip protocol, namely
that the matrix product8y.i,Az+i, - - - An-2+i, fOr ip € {0,...N — 1} and their permutations
have the same SLEM (where as before the summations of ingieeseen as moduhd),
we obtain the formula

b b

nt&T = p2AP+1-pf,
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wherea® is the SLEM of the matrix produd;Az--- An-2.

The values formy,_, andnt% computed above, in the case of the two gossip pro-
tocols, do not necessarily provide tight error bounds,esime considered minimal time
interval lengths so thajy, < 1. Even for this relatively simple type of graph, analytical
formulas forny, for large values oM, are more diicult to obtain due to an increase in
combinatorial complexity and becaus&édient matrix products that appear in the expres-
sion ofy do not necessarily have the same SLEM. However, we did campunerical
estimates for dferent values ofm. Figures 4 and 5 show estimates of the three quantities
of interest;,, 1Tmn andnn%, as functions ofn, for N = 11 (the estimates were computed by
taking averages over 2000 realizations and are shown teigeith the 95% confidence
intervals). We can see thri\% is minimized form =~ 55 in the case of the randomized
gossip protocol and fom ~ 30 in the case of the broadcast gossip protocol, while the
best achievablanlw are approximately equal for the two protocols, (i.e985. for the
randomized gossip protocols an®@82 for the broadcast gossip protocols).

Next we present numerical simulations of the distributesteay identification al-
gorithm presented in the previous subsection, under traorarzed and broadcast gossip
protocols. We would like to point out that, in order to maintaumerical stability, in our
numerical simulation we used an orthogonalized versio®,ajiven by® = ®H, where
®’s columns form an orthogonal basis of the rang@pénd the new vector of the param-
eters is giver = HY, whereH is a linear transformation matrix, whose entries depend on

the orthogonalization process used (Gram-Schmidt, Hamldehtransformations, etc.).
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Randomized gossip protocol, N=11
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Broadcast gossip protocol, N=11
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Therefore, the cost function we are minimizing can be reéamits
~ n ~
T = Ti(B)
i=1

whereJi(8y) = ||Xi —&)éx”Z.

It is easy to check that in the case of the two protocdlshe smallest of all eigen-
values of matrices belonging to the s&j is zero. In addition, Assumption 2.2.3-(a)(b)
are satisfied fol; = Lj = 2, and fora < % the distributed optimization algorithm is guar-
anteed to be stable with probability one (recall Lemma 2.3Ftom above we see that
nn% can not attain less thandB for both protocols, for angn. Therefore, although we can
choosex > 0.01 which in turn impliesy < 0.98, our analysis cannot guarantee a rate of
convergence fog(k) smaller than ®8, since the rate of convergence is upper bounded
by the maximum between and nnlw. However, this does not mean that faster rates of
convergence can not be achieved, which in fact is shown imoorerical simulations.

Figures 6 and 7 present numerical simulations of the digkibsystem identifica-
tion algorithm for the two protocols and for a circular grapth N = 11. In our numerical
experiments we considered a numibet 786 of measurements of tixecoordinate of the
trajectory depicted in Figure 2.6. We assumed thatdoteordinate measurements are
affected by white, Gaussian noise with a signal-to-noisemagieen byS NR=5x1dB,
fori=1...11. The time polynomials modeling the trajectory evolutame chosen of
degree ten, i.eny = 10. We plot estimates of two metrics: nnE*lléi,x(k) —5*||] and
max E[f(éi,x(k))] — f* for different values o# (the estimates were computed by taking
averages over 500 realizations). We note that for largeregbfa, under the two proto-

cols, the algorithm has roughly the same rate of convergdntehe broadcast protocol
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is more accurate. This is in accordance with our analysisesas Figures 4 and 5 show,

1_—”37b < 1[‘)7, for any m, quantities which control the guaranteed accuracy. Foillesma
values ofa, under both protocols the algorithm becomes more accuratdtes rate of

convergence decreases since the parameteesomes larger and therefore dominant.
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Chapter 3
Distributed Asymptotic Agreement Problem on Convex Me8aces

3.1 Introduction

A convex metric space is a metric space endowed with a corimastsre. In this
chapter we generalize the asymptotic consensus probleimetonbre general case of
convex metric spaces and emphasize the fundamental rotneéxity and in particular
of the convex hull of a finite set of points. Tsitsiklis showiad51] that, under some
minimal connectivity assumptions on the communicatiorwoek, if an agent updates
its value by choosing a point (iR") from the (interior) of the convex hull of its current
value and the current values of its neighbors, then asymptohvergence to consensus
is achieved. We will show that this idea extends naturallyh more general case of
convex metric spaces.

Our main contributions are as followirst, after citing relevant results concerning
convex metric spaces, we study the properties of the distbetween two points belong-
ing to two, possibly overlapping convex hulls of two finitéssef points. These properties
will prove to be crucial in proving the convergence of theesgnent algorithmSecond
we provide a dynamic equation for an upper bound of the vexdftdistances between the
current values of the agents. We show that the agents astiogtiforeach agreement,
by showing that this upper bound asymptotically convergemeto. Third, we character-

ize the agreement point(s) compared to the initial valueb®fagents, be giving upper
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bounds on the distance between the agreement point(s) arnitial values in terms of
the distances between the initial values of the agdfutgh, we emphasize the relevance
of our framework, by providing an application under the farfra consensus of opinion
algorithm. For this example we define a particular conveximsepace and we study in
more depth the properties of the convex hull of a finite setouf{s.

The chapter is organized as follows. Section 3.2 introdtivesnain concepts re-
lated to the convex metric spaces and focuses in particaléineconvex hull of a finite
set. Section 3.3 formulates the problem and states our rhaorém. Section 3.4 gives
the proof of our main theorem together with some auxiliagutes. In Section 3.6 we
present an application of our main result by providing aratiee algorithm for reaching
consensus of opinion.

Some basic notationgsivenW € R™" by [W];; we refer to thei( j) element of the
matrix. Theunderlying graptof Wis a graph of orden for which every edge corresponds
to a non-zero, non-diagonal entry\&f. We will denote byl (4 the indicator function of

eventA. Given some spac& we denote byP(X) the set of all subsets df.

3.2 Convex Metric Spaces

The first part of this section deals with a set of definitiond basic results about
convex metric spaces. The second part focuses on the cooll@x & finite set in convex

metric spaces.
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3.2.1 Definitions and Results on Convex Metric Spaces

For more details about the following definitions and resthlesreader is invited to

consult [46],[49].

Definition 3.2.1. Let (X,d) be a metric space. A mapping: X x X x[0,1] — X is said

to be aconvex structuren X if

d(u, w(xy, 1)) < Ad(u,X) + (1 - D)d(u,y), Yx,y,ue X andV¥1 € [0,1]. (3.1)

Definition 3.2.2. The metric spacéX, d) together with the convex structweis called a

convex metric space

A Banach space and each of its subsets are convex metricsspabere are ex-
amples of convex metric spaces not embedded in any Banach.sphe following two

examples are taken from [49].

Example 3.2.1.Let | be the unit interval0, 1] and X be the family of closed intervals
[ai,bi] such that0 < g <bj <1. For | = [a,b], |; =[aj,bj] and A € |, we define a
mappingy by y(lj,1j, 1) = [1a + (1 - A)aj, Abj + (1 - A)bj] and define a metric d iK' by

the Hausdoff distance, i.e.
d(li, 1j) = maxla; - ajl, |bi - bjl}.

Example 3.2.2.We consider a linear space L which is also a metric space wighfol-

lowing properties:

(@) Forxyel,d(xy) =d(x-y,0);
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(b) For xyeLandae][0,1],

d(Ax+ (1- 1)y, 0) < Ad(x,0)+ (21— 2)d(y, 0).

Hence L, together with the convex structyrex,y, 1) = Ax+ (1—2)y, is a convex metric

space.

Definition 3.2.3. Let X be a convex metric space. A nonempty subset¥is said to be

convexif y(x,y,1) e K, ¥x,ye K andVa € [0, 1].
We define the set valued mappifig P(X) — P(X) as
W(A) = {y(xy,4) | VYxye AVae[0,1]}, (3.2)

whereA is an arbitrary set itX.
In [49] it is shown that, in a convex metric space, an arbjtmatersection of convex

sets is also convex and therefore the next definition makesese

Definition 3.2.4. Theconvex hullof the set Ac X is the intersection of all convex sets in

X containing A and is denoted by @).

Another characterization of the convex hull of a seiins given in what follows.
By defining Am = y(Amn-1) with Ag = A for someA c X, it is discussed in [46] that the
set sequencAm}m=0 is increasing and limsufy, exists, and limsupy, = liminf Ay, =
lim Am = Up_o Am.
Proposition 3.2.1([46]). Let X be a convex metric space. The convex hull of a setA
is given by

co(A) =limAp = OAm (3.3)
m=0
It follows immediately from above that .1 = An for somem, thenco(A) = An.
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3.2.2 On the convex hull of a finite set

For a positive integen, let A = {x1,...,Xn} be a finite set inX with convex hull
co(A) and letz belong toco(A). By Proposition 3.2.1 it follows that there exists a positi
integerm such thatz e Ay,. But sinceAn, = w(Am-1) it follows that there exitg,z> € A1
and 412 € [0,1] such thatz = y(z1,22, A(12)). Similarly, there exitss, 74,275,725 € Am-2
andA34),4s6 € [0, 1] such thatzy = y(z3,21,4(34)) andz, = y(zs,26, A(56)). By further
decomposings,z4,zs andzs and their followers until they are expressed as functions of
elements ofA and using a graph theory terminology, we note thedn be viewed as the
root of a weighted binary tree with leaves belonging to theds&ach noder (except the
leaves) has two childrem; anday, and are related through the operatom the sense
a = y(a1,a2,1) for somea € [0,1]. The weights of the edges connectingvith a1 and
az are given byl and 1- A respectively.

From the above discussion we note that for any ppito(A) there exits a non-
negative integem such thatz is the root of a binary tree of height, and has as leaves
elements ofA. The binary tree rooted atmay or may not be aerfect binary treei.e.

a full binary tree in which all leaves are at the same depthat T because on some
branches of the tree the pointsAnare reached faster then on others. hetlenote the
number of timesg appears as a leaf node, wit]. ; nj < 2™ and letm;, be the length of
theilth path from the rook to the nodex;, for | = 1...n;. We formally describe the paths

from the rootzto x; as the set
P2y = {({Yihj}?lHO’{/lihj}Ezll) 1= 1"'ni}’ (3.4)

where{yilj}?li'o is the set of points forming thig" path, withyj, 0 =z andyil,rnl = X and
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Where{/li,,j}?l'l is the set of weights corresponding to the edges along tines patpartic-

ular 4;, j being the weight of the edgg;(j-1,Vi,,j). We define the aggregate weight of the

paths from rook to nodex; as

n My
W(P.x) = Z]—[ﬁi.,j- (3.5)
=1 j=1

It is not difficult to note that all the aggregate weights of the paths floarootz

to the leaves$xy,...,Xn} sSum up to one, i.e.

D W(Py) =1
i=1

z€As
/ 1-Ags,2)
€A, 7,640,
}l‘:3-'ll 1-?|.|3__-_] 1':5'6:’ 1';‘15.51
z:EA; 2464, 2s€Ay Z:€A,
Ags 1-A7a Ags,10) 1-Ms, 10y
X EA %€M %HEA %EA X EA *:EA % EA XEA

Figure 3.1: The decomposition of a por¢ Az with A = {X1, X2, X3}

Example 3.2.3.Figure 3.1 shows a binary tree corresponding to a poirtAs, where

A = {X1, X2, X3}. For this particular example, the paths from to root z to thaves xare

given by

Pox, = {1z 21,23, X1}, {A(1,2), A43.4), A(7.8)}) , ({Z 71, 24, X1}, {A(1,2), (1 = A3.4)), A(9,10)}) »
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({2 22,25, X1 {(1 - A1.2)), As.6) A1112)) s (2 22, Z6, Xa 1 A(1 — A(1.2)), (1 - A(5.6))- Aaz14))} s
Pzx ={({Z 21, Z3, X2}, {A(1,2), 43,2y, (1 — A7,8)})}
Pzxs = {({Z 21, 24, X3}, {A(1,2), (1 = A3.4)), (1= A9,10)}) . (1Z 22, 25, X3}, {(1 = 21.2)). A5.6): (1 — A1112)}) s
(2 22,26, X3}, {(1 - A(1.2), (1 - A5.6)), (1 - A1314)})}

and the path weights are

W(Pzx,) = 412143 4)A7.8) + 41,2 (1= A3.4))A9,10) + (1 — A(1,2), A5.6)> A(11.12)s
W(P.x) = A12)A3.4)(1— A78));
W(Pzxs) = 412)(1-23.4)(1-4(9.10) + (1 - A1.2)5.6)(1 - A1112) + (1 - 21.2)) (1~ A5.6)) (L - A(1314))-
Definition 3.2.5. Given a small enough positive scakak 1 we define the following sub-
set of c@A) consisting of all points in d@\) whose aggregate weights are lower bounded
bye, i.e.
CO:(A) = {z] ze co(A), W(P.x) > &, VX € A}. (3.6)
Remark 3.2.1. By asmall enoughvalue ofe we understand a value such that the in-

equalityW(P,y) > ¢ is satisfied for all i. Obviously, for n agentseeds to satisfy

Sl

but usually we would want to choose a value much smaller Hiiarsince this implies a

richer set cQ(A).

Remark 3.2.2. We can iteratively generate points for which we can make shatthey
belong to the interior of the convex hull of a finite seEAXxi,...,X,}. Given a set of

positive scalargAs,...,An-1} € (0,1), consider the iteration

Yi+1 = W(Vi, Xi+1,4i) fori=1...n—1with y; = Xg. (3.7)

61



Itis not difficult to note that )y is guaranteed to belong to the interior of(@). In addition,

if we impose the condition

s 1-(n-1e L
TS S T o 0 2)8| 1...n-1, (3.8)
ande respects the inequality
1 1-(n-1)e
G 5.9)

then y, € co.(A). We should note that for any=n2 we can find a small enough valuesof

such that inequality (3.9) is satisfied.

The next result characterizes the distance between twaspoine X belonging to

the convex hulls of two (possibly overlapping) finite sktandY.

Proposition 3.2.2.Let X= {x1,..., %} and Y= {y1,...,yn } be two finite sets oX and

let £ < 1 be a positive scalar small enough.
(a) If xe co(X) and ye X then
Nx
doey) < ) Aid(x,y), (3.10)
for somet; > O with 3™ 4; = 1.
(b) If xe co(X) and ye co(Y) then
nx Ny
dixy) < > > 4ijd(x,y)), (3.11)
i=1 j=1
for somet;j > O with 3™ Z 1Aij =
(c) If xe co.(X), ye co.(Y), then

A >eanddij > €% Vi, j, (3.12)

where; and 4j; where introduced in part (a) and part (b), respectively.
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(d) If xe cox(X), ye co.(Y) and XnY # 0, then

ny Ny
D2 AiTdpyeo < 1-62, (3.13)
i=1 j=1

wherejj were introduced in part (b).
Proof. (a) Mimicking the idea introduced at the beginning of thist&m, sincex € co(X)
it follows that there exists a positive integaisuch that € Xy, whereXm,.1 = ¥(Xm) with
Xo = X. Further, there exist, z» € Xm-1 andAs2 € [0, 1] such that = y(z1, 2, 112). Using
the definition of the convex structure, it follows that thetdince betweenandy can be
upper bounded by

d(xy) < A12d(z1,Y) + (1 - A12)d(22, Y).

Inductively decomposing, zo and theirchildren it can be easily argued that

doxy) < ) Aid(x,y),
i=1

for some positive weightg; > 0 summing up to one.
(b) To obtain (3.11) we proceed as in part (a) and obtain uppends ord(x;,y).

More precisely we get that

My
dx.y) < > uid(x.y)), Vi,
j=1

with z1j > 0 andy."” , uj = 1, and it follows that
ny Ny
dixy) < > > ijd(x.y)),
i-1 j=1
whereAjj = Ajuj >0 andzinlez?il/lij =1.
(c) We note thatti = W(Pxx) anduj = W(Py,y,), ¥i, j. But sincex € co,(X) and

y € co(Y) it immediately follows thaflj > ¢ andu; > &, and thereforaljj = 2.
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(d) If XN'Y # 0 then there exists at least one paifj) such thad(x;,y;) = 0. But

sincel;j > &2 the inequality (3.13) follows. O

3.3 Problem formulation and statement of the main result

We consider a convex metric spacé () and a set oh agents indexed bywhich
take values oiX. Denoting byk the time index, the agents exchange information based on
a communication network modeled by a time varying gr&gk) = (V, E(K)), whereV is
the finite set of vertices (the agents) &) is the set of edges. An edge (communication
link) &;(k) € E(K) exists if nodei receives information from nodg¢ Each agent has
an initial value inX. At each subsequent time-slot is adjusting its value baseth®
observations about the values of its neighbors. The goalechgents is to asymptotically
agree on the same value. In what follows we denote;fk) € X the value orstateof

agent at timek.
Definition 3.3.1. We say that the agents asymptotically readmsensugor agreement)
if
kIim d(xi(k), xj(K)) =0, Vi, j, i # ]. (3.14)
Similar to the communication models used in [52], [4], [34& impose minimal as-
sumptions on the connectivity of the communication grggk). Basically these assump-

tion consists of having the communication graph connettéditely oftenand having

bounded intercommunication interva¢tween neighboring nodes.

Assumption 3.3.1(Connectivity) The graph(V, E) is connected, where Eis the set of
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edgeq(i, j) representing agent pairs communicating directly infiritelany times, i.e.,
Ew ={(i, ) | (i, j) € E(K) for infinitely many indices k

Assumption 3.3.2(Bounded intercommunication intervalfhere exists an integer B1
such that for everyi, j) € E., agent j sends its information to the neighboring agent i at
least once every B consecutive time slots, i.e. at time kmatk+ 1 or ... or (at latest)

at time k+ B— 1 for any k> 0.
Assumption 3.3.2 is equivalent to the existence of an intBge 1 such that
(i,)) e E(UE(k+1)U...UE(k+B-1), ¥(i, j) € E, andVk.

Let Ni(k) denote the communication neighborhood of agemthich contains all
nodes sending information toat timek, i.e. Ni(k) = {j | &j(k) € E(K)} U{i}, which by
convention contains the nodétself. We denote by (k) = {xj(K), V] € Ni(K)} the set of
the states of agens neighbors (its own included), and Byk) = {x;(k),i = 1...n} the set
of all states of the agents.

The following theorem states our main result regarding gargtotic agreement

problem on metric convex space.

Theorem 3.3.1.Let Assumptions 3.3.1 and 3.3.2 hold fdk{zand lete < 1 be a positive

scalar syficiently small. If agents update their state according toghleeme
Xi(k+ 1) € co.(A (K)), Vi, (3.15)
then they asymptotically reach consensus, i.e.
klITgod(Xi(k),Xj (K) =0, Vi, j, i #]. (3.16)
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Remark 3.3.1. We would like to point out that the result refers strictly ve@ tonvergence

of the distances between states and not to the convergertbe sfates themselves. It
may be the case that the sequenpe&)}k-0 i = 1...n do not have a limit and still the
distances ¢ki(k), xj(k)) decrease to zero as k goes to infinity. In other words the agent
asymptotically agree on the same value which may be verywaglible. However, as
stated in the next corollary this is not the case and in faet skates of the agents do

converge to the same value.

Corollary 3.3.1. Let Assumptions 3.3.1 and 3.3.2 hold fdk{zand lete < 1 be a positive

scalar syficiently small. If agents update their state according toghleeme

Xi(k+ 1) € co:(A (K)), Vi, (3.17)
then there exists* X such that

kll_r)rgo d(xi(k),x") = 0, Vi. (3.18)

We will give the proofs for both Theorem 3.3.1 and Corollar$.3 in the subse-

guent section.

Remark 3.3.2. A procedure for generating points that are guaranteed tobglto cq(A; (k)
is described in Remark 3.2.2. The idea of pickin@x x 1) from cq.(Ai(k)) rather than
co(Ai(K)) is in the same spirit of the assumption imposed on the nam-@emsensus
weights in [51], [34], [4], i.e. they are assumed lower bowadby a positive, sub-
unitary scalar. Setting ¥k + 1) € co(Ai(k)) may not necessarily guarantee asymptotic
convergence to consensus. Indeed, consider the case wher with the standard
Euclidean distance. A convex structure Bnis given byy(x,y,1) = Ax+ (1 - 2)y, for
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any Xy € R and 1 € [0,1]. Assume that we have two agents which exchange informa-
tion at all time slots and therefore1hk) = {x1(K), x2(k)}, A2(K) = {X1(K), x2(K)}, Yk > O.
Let x(k+ 1) = A(K)x1(K) + (1 — A(K))x2(k), whereA(k) = 1-0.1e X and let »(k+ 1) =
u(K)x1(K) + (1 - u(k))x2(K), whereu(k) = 0.1e7K. Obviously, xk+ 1) € co(A(K)), i = 1,2

for all k > 0. It can be easily argued that
d(xa(k+ 1), Xa(k+ 1)) < (A(K)(1 = u(K) + (k) (1 - A(K))) d(xa(K, X2(K)))- (3.19)

We note thatimk e [T5q (A(K)(L - x(K) + (L= AK)(K) = liMk o0 [T (1 - 0.267% +
0.02e"%) = 0.73 and therefore under inequality (3.19) asymptotic convecgeto con-
sensus is not guaranteed. In fact it can be explicitly shdva the agents do not reach
consensus. From the dynamic equation governing the ewalofi x(k), i = 1,2, we can

write

AK) 1-a(k)
X(k+1)= X(K), x(0) = Xo,

pu(k)  1—p(k)

wherex(k)T = [x1(K), x2(K)], and we obtain that

0.8540 01451
kIim X(K) = X0
~ 0.1451 08540

and therefore it can be easily seen that consensus is ndbeglfcom any initial states.

3.4 Proof of the main result

This section is divided in three parts. In the first part we thgeresults of Section
3.2.2 regarding the convex hull of a finite set and show thatehtries of the vector
of distances between the states of the agents atkimk are upper bounded by linear
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combinations of the entries of the same vector but at kmkhe codicients of the linear

combinations are the entries of a time varying matrix forahhive prove a number of
properties (Lemma 3.4.1). In the second part we analyzertbgepties of the transition
matrix of the aforementioned time varying matrix (Lemma23)4The last part is reserved

to the proof of Theorem 3.3.1.

Lemma 3.4.1. Given a small enough positive scalax 1, assume that agents update
their states according to the schemkx 1) € co.(Ai(K)), for alli. Letd(k) £ (d(xi(k), Xj(K)))
for i # j be the N dimensional vector of all distances between thestaf the agents,

where N= ”(”2‘1). Then we obtain that

d(k+ 1) < W(k)d(k), d(0) = do, (3.20)
where the Nk N dimensional matri¥V(k) has the following properties:
(&) W(K) is non-negative and there exits a positive scajar(0, 1) such that
(W= 7. ¥ ik (3:21)
[WKIF> 7, ¥ [WERIT#0, i #j, Yk (3.22)

(b) If Ni(k)NNj(K) # 0, then the row of matrix W(K), corresponding to the pair of agents
(i, ), has the property

N
D IWRIy<1-n, (3.23)
ji=1

wheren is the same as in part (a).

(c) If Ni(K N Nj(K) = 0 then the row corresponding to the pair of agen(s j) sums up
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to one, i.e.

N
D WKy =1 (3.24)

=1

In particular if G(k) is completely disconnected (i.e. agents do not send anymiafo
tion), thenW(k) = I.
(d) the rows oW(k) sum up to a value smaller or equal then one, i.e.
N J—
D IWERIF< 1 Vik (3.25)
=1
Proof. Given two agents and j, by part (b) of Proposition 3.2.2 the distance between
their states can be upper bounded by
dosk+ D) xjk+ 1)< >0 WK, Xq(K), T ), (3.26)
PeNi(K).aeN;(K)
wherewjq(K) > 0 andy. pen; o.qen; (9 Wag(K) = 1. By definingW (K) = (wiqy(K)) for i # j and
p # g (where the pairs(j) and (p, q) refer to the rows and columns¥f(k), respectively),
inequality (3.20) follows. We continue with proving the pesties of matrix\V (k).

(a) Since alw)y(k) > 0 for alli # j, p e Ni(k) andq € AVj(K) we obtain thatV (k) is
non-negative. By part (c) of Proposition 3.2.2, there exjst &2 such that/\fgq(k) > n for
all non-zero entries ofV (k). Also, sincei € Nj(k) and j € Nj(k) for all k> O it follows
that the termNH (K)d(x (K), X (K)), with w:j (K) > 1 will always be present in the right-hand
side of the inequality (3.26), and therefdhgk) has positive diagonal entries.

(b) Follows from part (d) of Proposition 3.2.2, with= £2.

(c) If Ni(K N Nj(K) = 0 then no terms of the forrwigp(k)d(xp(k), Xp(K)) will appear

in the sum of the right hand side of inequality (3.26). HedGR v (k).qen; () vvirj,q(k) =1
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and therefore

N
D IWRI= 1.
j=1
If G(K) is completely disconnected, then the sum of the right hatedaf inequality (3.26)
will have only the term! (K)d(x(K), x;(K)) with w! (K) = 1, for alli, j = 1...n. Therefore
W(K) is the identity matrix.

(d) The result follows from parts (b) and (c). m|

LetG(K) = (V, E(K)) be the underlying graph &% (k) and leti and | refer to the rows
and columns ofV(K), respectively. Note the under this notation, indlerrresponds to a

pair (, j) of distinct agents. It is not @icult to see that the set of edges@(k) is given
by

E(K) =1((, ) (p. @) 1 (- p) € E(K), (1, 0) € E(K),i # ], p#q}. (3.27)
Proposition 3.4.1.Let Assumptions 3.3.1 and 3.3.2 hold fakkz Then, similar proper-
ties hold forG(k) as well, i.e.
(a) the graph(V, E.,) is connected, where
Ee = {(,]) | (i, j) € E(K) infinetly many indices}k
(b) there exists an integdB > 1 such that everyj, j) € E., appears at least once every

B consecutive time slots, i.e. at time k or at timeXor ... or (at latest) at time

k+B-1for any k> 0.

Proof. It is not difficult to observe that similar to (3.27.. is given by

Ewo = {((, ) (P. ) | (i, P) € Eco, (J, P) € Eco, P# Q1 # ). (3.28)

70



(a) Showing thatV{, E.) is connected is equivalently to showing that for any two
pairs {, j) and (p,q) there exits a path connecting them. SingegE(,) is assumed con-
nected, there exits a paify— i1 — ...,— Ij_1 — i, for somel < n, such thaig = p and
iy =i. From (3.28), it is easily argued thab,(j) — (i1, )) — ... = (ij=1,]) — (i1, ]) rep-
resents a path connectinigj) with (p, j). Similarly, there exits a pathp — j1 — ... —
jm-1 — Jm for somem < n, such thatjo = g and jm, = j. Therefore, p, jo) — (p, j1) —

... > (p, Jm-1) = (p, jm) is a path connectingx j) with (p,q) and it follows that ¥, j) and
(p,Q) are connected.
(b) Let (G, j), (p,q)) be an edge ifE., or equivalentlyi, p) € Ew and (j,q) € Ec. By

Assumption 3.3.2, we have that for akyg O
(i,p) e E(KUE(k+1)...UE(k+B-1),
(j,q) € E(KUE(k+1)...UE(k+B-1),
where the scalaB was introduced in Assumption 3.3.2. But this also implied th
(i,j) e E(UEK+1)U...UE(k+B-1), ¥(i, ) € Eco.
ChoosingB 2 B, the result follows. O

Let d(k,s) 2 W(k—1)W(k-2)---W(s), with d(k,k) = W(K) denote the transition
matrix of W(Kk) for anyk > s. It should be obvious from the propertieswfk) thatd(k, s)

is a non-negative matrix with positive diagonal entries gh(k, s)||.. < 1 for anyk > s.

Lemma 3.4.2.LetW(k) be the matrix introduced in Lemma 3.4.1. Let Assumptiong 3.3

and 3.3.2 hold for @). Then there exits a row indéxsuch that

N
Z[d)(s+ moFr<1-5"vsm>B-1, (3.29)
ji=1
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wheren is the lower bound on the non-zero entries/dfk) and B is the positive integer

from the part (b) of the Proposition 3.4.1.

Proof. Let (i, j*) € E be a pair of agents. By Assumptions 3.3.1 and 3.3.2, thets &xi
positive integes’ € {s,s+1,...,5+ B- 1} such that agent’ sends information to agerit
at times’. This implies thaivi: (k) " Nj:(K) # @ and by part (b) of Lemma 3.4.1, we have

that
N

DIWES)rj<1-n,

j=1

wherei* is the index corresponding to the pair, (*). The sum of thé* row of transition

matrix ®(s' + 1, s) can be expressed as

N N N
2N +L9y= Y WE)RT Y IS, 9y
h=1

j=1 j=1
But since||®(k, 9)|l < 1 for anyk > s, we have thaghh':l[d)(s’,s)]j—h <1 for anyj, and
therefore

N
Do +19]r7< 1-n. (3.30)
j=1

We can write®(s' +2,s) = W(s' + 1)®(s + 1,s) and it follows that the* row sum of

®(S +2,) can be expressed as

N N N
DO +2.957= Y IW(S + Dl ) [0S + 19

j=1 j=1 h=1

SincexN [®(s +1,9)]5 < 1 for anyj it follows that

N
D [0S +2, 95 < [W(S + Dl ) [0S + L9lsp+ ), IW(S +D)fj<

N
j=1 h=1 j=1,j#i*

N
<WE+DEr-n)+ Y W+ D<) WS + Dl =W + Dl <1-17%
j=1j#i* j=1
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since W(s' +1)J+# > n. By induction it can be easily argued that
N
Z[q)(s’ +m9fFr<1-7", ¥Ym> 0. (3.31)
=1
Note that by Assumption 3.3.2, a paiisj) can exchange information gt= sthe earliest

or ats' = s+ B- 1 the latest. From (3.31) we obtain that &= s+B-1

N
Z[d)(s+ B-1+m9)ry<1-7™ vm>0, (3.32)
ji=1
and fors' = s
N
Z[d)(s+ m9lrr< 1-4™, Ym=>0,
ji=1
or
N
D Id(s+B-1+m95j<1-7™5 vm=0, (3.33)

j=1
From (3.32) and (3.33) we get

N
Z[CD(S+ B-1+m9Jrr<1-n™B1 vysm>0,
j=1

or equivalently

N
Dlo(s+m 9y 1-4" vm2 B-1. (3.34)
ji=1

Corollary 3.4.1. Let W(K) be the matrix introduced in Lemma 3.4.1 and let Assumptions

3.3.1 and 3.3.2 hold for (). We then have
[®(s+(N-1)B-19]; > 7N DB vsij, (3.35)

wheren is the lower bound on the non-zero entried/dfk) and B is the positive integer
from the part (b) of the Proposition 3.4.1.

73



Proof. By Proposition 3.4.1 and Lemma 3.4.1 all the assumptionseofima 2, [34] are

satisfied, from which the result follows. O

We are now ready to proveheorem 3.3.1andCorollary 3.3.1.

3.4.1 Proof of Theorem 3.3.1

We have that the vector of distances between the states afgtmes respects the
inequality

d(k+1) < W(K)(K),

where the properties &V (k) are described by Lemma 3.4.1.

It immediately follows that
ld(k+ 1)lleo < [|[d(K)||0, fOr k> 0. (3.36)

Let By = (N-1)B-1, whereB is the positive integer from the part (b) of the
Proposition 3.4.1. In the following we show that all row suonfs®(s+ 2By, s) are
upper-bounded by a positive scalar strictly less than ondedd sinceb(s+ 2Bg, s) =

®(s+ 2Bg, S+ Bo)®(s+ By, S) we obtain that

N N N
Z[cp(s+ 2Bo, 9)Iij = Z[cp(s+ 2Bg, S+ |§o)]WZ[q>(s+ Bo. 9l Vi
j=1 j=1 h=1

By Lemma 3.4.2 we have that there exists a fidwuch that

N _
D [0(s+Bo, 9] < 1-1™,¥s
h=1
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and sincexN [®(s+Bo, 9)]j < 1 for anyj, we get

N N
D [®(s+2Bo, I < Z [®(s-+ 2Bo, s+ Bo)li+ [®(s+ 2Bo, s+ Bo)lij (1 - ™) =

j=1 i=Lj#j*

N
_Z[cp(s+ 2By, s+ Bo)lij— [®(s+2Bo, 5+ Bo)l;j:n®
J:

By Corollary 3.4.1 it follows that

[D(s+ 2§0, S+ §0)]HZ 77§0+1, Vi_, ]_, S,
and sincey, ;ﬂ:l[CD(s+ 2By, Bo)li7 < 1 we get that

N - —
> [0(s+2Bo, 9] < 1-n*>* vi,s
ji=1

Therefore

ID(s+ 2Bo, 9lleo < 1— 72801 vs (3.37)

It follows that
d(tleo < (2-722L) (O, VK 2 O, (3.38)

wherety = 2kBy which shows that the subsequertid(tk)ll- k=0 asymptotically con-
verges to zero. Combined with inequality (3.36) we farthbtam that the sequence
{Ild(K)ll- k=0 @asymptotically converges to zero. Therefore the agentsptically reach

consensus.

3.4.2 Proof of Corollary 3.3.1

The main idea of the proof consist of showing that theceéf(k)), whereA(k) =
{xi(k),i = 1...n}, converges to a set containing one point.
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We first note that sincA; (k) € A(K) it can be easily argued thed(A; (k)) € co(A(K)),
for all i andk. Also, sinceco.(Ai(K)) € co(A(K)) it follows thatco.(Ai(k)) < co(A(k)) and
consequently;(k+ 1) € co(A(K)). Therefore, we have thab(A(k+ 1)) € co(A(k)) for all

k and from the theory of limit of sequence of sets, it followatth
liminf co(A(K)) = limsupco(A(K)) = lim co(A(K)) = A,
whereA, = Nis0CH(A(K)). We denote the diameter of the k) by
6(A(K) = sudd(x.y) | x.y € A(K)},
and by Proposition 2 of [46] we have that
6(co(A(K))) = 6(A(K)).
From Theorem 3.3.1 we have that
Jim d(xi(k), x;(K)) = 0, Vi # |,
and consequently
Jim 5(A(k)) = lim d(co(A(k)) =0,
which also means that
6(Ax) =0,
i.e. the sefA,, contains only one point, say € X, or A, = co(X*), or
kI|_r)r(]o co(A(k)) = co(X).
But sincex;(k+ 1) € co.(Ai(k)) € co(A(k)) for all i,k it follows that
Jim d(xi(k),.x") =0,V 1,
i.e. the states of the agents converge to the same pomk.
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3.5 Distance between the consensus points and the iniiiatispo

In this section we analyze the evolution of the distance betwthe states of the
agents and their initial values under the scheme descrip@&tidorem 3.3.1. This analysis
will give us upper bounds on the distance between the consgr@nt(s) and the initial
values of the agents.

Consider distancd(x;(k), x(0)) for somd,| and let us assume thg(k+ 1) is cho-
sen according to the scheme described by Theorem 3.3.X;(kex 1) € co.(Ai(K)). By

part (a) of Proposition 3.2.2 we can express this distance as

doi(k+ 1) x0) < > 4ij(K)d(xj(K), x(0), (3.39)
JeNi(K)

where 4ij(K) > & and ¥ jen; k) 4ij(K) = 1. By defining then dimensional vectop! (K) =
(d(xi(K), x(0))) (wherei varies) and the@x n dimensional matrix\ (k) = (ij(K)), inequal-

ity (3.39) can be compactly written as

p (k+1) < A(R' (K), 1(0) = gy (3.40)

whereA(K) is a row stochastic matrix. It is notficult to note that the underlying graph
of A(K) is G(k) and that in fact inequality (3.40) is valid for ay In the following
proposition we give upper bounds on the distance betweenahsensus states and the

initial values of the states.

Proposition 3.5.1.Let Assumptions 3.3.1 and 3.3.2 hold faikizand let the states of the

agents be updates according to the scheme given by Theoden Ble then have that

Jim d(xi(k), x(0)) < Z vid(xj(0),x(0)), ¥ i.l, (3.41)
=1
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where v= (vj) is a vector with positive entries summing up to one satigfyin
lim AR)AK=1)---A(0) = v, (3.42)

and wherel is the n dimensional vector of all ones andk) is the matrix defined in

inequality (3.40).

Proof. Our assumptions fit the assumptions of Lemmas 3 and 4 of [} Where (3.42)

follows. Therefore by inequality (3.40) the result follaws O

Remark 3.5.1.f in addition to the assumptions of Proposition 3.5.1 wevassume that

A(K) is doubly stochastic, then by Proposition 1 of [34] we gettha

1

; _ T
lim AA(K-1)---A(0) = 211",

Therefore, inequality (3.41) gets simplified to

. 13 .

lim d(x (). % (0)) < ~ ,Z; d(x;(0), x(0)). Vi.
The assumptions in this remark correspond to the assungtiorihe average consensus
problem in Euclidean spaces. For the aforementioned casecdnsensus point is given
by the average of the initial points, i.e.q= %Zi”:lxi(O). It can be easily check that
indeed %, satisfies

1 n
IXav=% (O)I < ;nxj(m—n(om,

where|| - || represents the euclidean norm.

3.6 Application - Asymptotic consensus of opinion

Social networks play a central role in the sharing of infotioraand formation of
opinions. This is true in the context of advising friends dmiath movies to see, relaying
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information about the abilities and fit of a potential new éogpe in a firm, debating the
merits of politicians. In the following we consider a sceaan which a group of agents
try to agree on a common opinion. Assume for example that apgod friends would

like to go to see a movie. Berent members of the group may suggeffedent movies.

A member of the group discusses with all or just some ghleisfriends to find out about
their opinions. This member gives some weight (importat@é)e opinion of his friends
based on the trust in theixpertise For instance some members of the group are more
informed about the quality of the proposed movies, and thez¢here opinions may have

a heavier influence on the final decision. By repeatedly dsiog among themselves, the
group of friends have to choose one of the movies.

In the following we mathematically formalize the scenarescribed above and
show that we can use the framework introduced in the prewegtions to give an al-
gorithm which ensures asymptotic consensus on opinionsmddel the opinion of a
member of the group (agent) as a discrete random variabléelam appropriate metric
and by providing a convex structure we show that the metracef discrete random
variable is convex . In addition, we analyze in more detal¢bnvex hull of a finite set;
this analysis is possible since the convex structure isngasplicitly. We give an itera-
tive algorithm that ensures agreement of opinion, whichaiseld on Theorem 3.3.1 and

provide some numerical simulations.
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3.6.1 Geometric framework

Let s be a positive integer, 18 = {1,2,..., s} be a finite set and leY, 7,P) be a
probability space. We denote % the space of discrete measurable functions (random
variable) on Q, ¥, %) with values inS.

We introduce the operatar: X x X — R, defined as
d(X,Y) = E[p(X, Y)],

wherep : R xR — {0,1} is the discrete metric, i.e.

1 x#y
p(Xy) =
0 x=y

It is not difficult to note that the operatdrcan also be written ad(X,Y) = E[1xxy;] =
Pr(X #Y), wherelx.yv, is the indicator function of the evefX # Y}.

We note that the operatdrsatisfies the following properties
1. ForanyX,Y € X,d(X,Y) =0 if and only if X = Y with probability one.
2. ForanyX,Y,Z € X, d(X,Z) +d(Y,Z) > d(X,Y) with probability one,

and therefore is a metric ak. The setX together with the operatat define the
metric spac€X,d).

Let 8 € {1,2} be an independent random variable, with probability masstfan
Pr(¢ =1)=AandPr(0 =2)=1- 2, wherea € [0,1]. We define the mapping : X x X x

[0,1] — X given by

W(X1, X2, 2) = Ljg=1y X1 + Ljp=py X2, VX1, X2 € X, 1€ [0, 1]. (3.43)
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Proposition 3.6.1. The mappingy is a convex structure oN.

Proof. For anyU, X1, X2 € X andA € [0,1] we have
d(U, w(X1, X2, 1)) = E[o(U, (X1, X2, 1))] = E[E[o(U, (X1, X2, 1)U, X1, X2]] =

= E[E[o(U, 1{p=1y X1 + L{9=2)X2)]|U, X1, Xo] = E[1p(U, X1) + (1 - 2)p(U, X2)] =

= 2d(U, X1) + (1— 2)d(U, Xo).

From the above proposition it follows thaX (d, ) is aconvex metric space

The next theorem characterizes the convex hull of a finitens&t

Theorem 3.6.1.Let n be a positive integer and let-A{X1,..., Xy} be a set of points in
X. Consider the independent random variableaking values in the finite s¢l,...,n},
with probability measure given by Rv : 6(w) = i) = w;, for some non-negative scalars
wi, with 3, wi = 1. Then
n n
CO(A) = {ZGX | Z:Z]l{g:i}xi, YW, zo,Zwi = 1}. (3.44)

|:1 |:1

Proof. We recall from Proposition 3.2.1 that the convex hulkaf given by
co(A) = lim A = {_] An,
m=1

whereAm = y(Am-1), with A; = y(A). Also, sinceA, is an increasing sequence, clearly

Ac Ay for all m> 1. We define the set

n

n
KA = {Z €X|Z= Z]l{e:i}xi, YW, ZO,ZWi = 1}.

|:1 |:1
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The proof is structured in two parts. In the first part we shbat tany point ink'(A)
belongs to the convex hull &, while in the second part we show that any pointaA)
belongs toK(A) as well.

LetZe K(A)i.e.Z= Y 1p=iyX wherePr(0 =i) =w;, for somew; >0, Y, , w; =
1. The random variableis defined such tha(wi) =i andPr(wi) = w;. LetQ; = {w}, wb},
i =1...n-1 be a set of independent sample spaces (i.e. the elememmnys«eij andw'p
are independent for ay i and for anyj). We define the probability measure for each

of the events if); as

; W1+...+W_
Pr(w)) = —— T4
Wi1+...+W,
. Wi
Pr(wh) = ————,
W1+...+W,

fori =1...n—1. We consider the following succession of events f@m

Sy =

{ 1‘*’%
S, = {w%w% ... a)g'l} , (3.45)
=2

1 i-2 -1 1 n-1| ; _ _
oW Wy Wy -] },|—3...n 1,

j1.. llzl{ Ji-2

UJ1 Jn-2= 1{ 111 ) w? zzwg }

For example, fon = 4 (3.45)