19 research outputs found

    Methods for training the spatial skills of students pursuing technical careers

    Full text link
    [EN] Spatial skills are essential tools for engineers and architects during their training and career. However, consecutive curricula, in particular those in the European Higher Education Area, are assigning increasingly less credits to Graphic Expression courses, resulting in insufficient attention to the development of those skills.Considering this situation, over the past few decades many Graphic Expression teachers have conducted studies that analyse several methods for training spatial skills. This paper describes some of the main studies and their results, in which a major conclusion is that freehand sketching exercises are the most effective to develop spatial skills, more than modelling with CAD software or using innovative tools and specific applications.[ES] Las habilidades espaciales son herramientas fundamentales en el desempeño profesional y en la formación académica de ingenieros y arquitectos. Sin embargo los sucesivos planes de estudio, en particular los derivados del Espacio Europeo de Educación Superior, asignan cada vez menos créditos para las asignaturas de Expresión Gráfica, lo que conlleva una insuficiente atención al desarrollo de estas habilidades.Ante esta situación, desde el ámbito de la docencia de la Expresión Gráfica se han llevado a cabo en las últimas décadas numerosos estudios que analizan varios métodos entrenamiento de las habilidades espaciales. Este artículo describe algunos de los principales estudios y sus resultados, de los que se desprende que son los ejercicios de bocetado a mano alzada los más eficaces, por encima del modelado con aplicaciones CAD y de herramientas innovadoras y software específicamente diseñado para elloMataix Sanjuán, J.; León Robles, C.; Reinoso Gordo, JF. (2015). Métodos de entrenamiento de las habilidades espaciales de los estudiantes de titulaciones técnicas. EGA. Revista de Expresión Gráfica Arquitectónica. 20(26):278-287. doi:10.4995/ega.2015.3324.SWORD2782872026Bennett, G.K., Seashore, H.G. & Wesman, A.G., 1973. Differential aptitude tests, forms S and T, New York: The Psychological Corporation.Contero, M., Naya, F., Company, P., Saorin, J. L., & Conesa, J. (2005). Improving Visualization Skills in Engineering Education. IEEE Computer Graphics and Applications, 25(5), 24-31. doi:10.1109/mcg.2005.107Guay, R.B., 1977. Purdue Spatial Visualization Tests, West Lafayette, IN: Purdue Research Foundation.Kinsey, B., Towle, E. & Onyancha, R.M., 2008. Improvement of Spatial Ability Using Innovative Tools: Alternative View Screen and Physical Model Rotator. Engineering Design Graphics Journal, 72(1), pp.1–8.Martín-Dorta, N., Saorín, J. L., & Contero, M. (2008). Development of a Fast Remedial Course to Improve the Spatial Abilities of Engineering Students. Journal of Engineering Education, 97(4), 505-513. doi:10.1002/j.2168-9830.2008.tb00996.xMartín-Dorta, N., Saorín, J.L. & Contero, M., 2011. Web-based spatial training using handheld touch screen devices. Educational Technology & Society, 14(3), pp.163–177.Mataix, J., 2014. La habilidad espacial en los estudiantes de carreras técnicas. Desarrollo, medida y evaluación en el marco del Espacio Europeo de Educación Superior. Universidad de Córdoba.Mataix Sanjuán, J., León Robles, C., & Montes Tubío, F. de P. (2014). Las habilidades espaciales de los estudiantes de las nuevas titulaciones técnicas. Estudio en la Universidad de Granada. EGA. Revista de expresión gráfica arquitectónica, 19(24), 264. doi:10.4995/ega.2014.1767Mohler, J.L. & Miller, C.L., 2008. Improving Spatial Ability with Mentored Sketching. Engineering Design Graphics Journal, 72(1), pp.19–27.Sorby, S.A., 2007. Developing 3D spatial skills for engineering students. Australasian Journal of Engineering Education, 13(1), pp.1–11.Sorby, S. A., & Baartmans, B. J. (2000). The Development and Assessment of a Course for Enhancing the 3-D Spatial Visualization Skills of First Year Engineering Students. Journal of Engineering Education, 89(3), 301-307. doi:10.1002/j.2168-9830.2000.tb00529.xSorby, S.A., Wysocki, A.F. & Baartmans, B.J., 2003. Introduction to 3-D spatial visualization: an active approach, Clifton Park, NY: Thomson.Stanley, J.C. & Hopkins, K.D., 1972. Educational and Psychological Measurement, Englewood Cliffs, NJ: Prentice-Hall.Vandenberg, S. G., & Kuse, A. R. (1978). Mental Rotations, a Group Test of Three-Dimensional Spatial Visualization. Perceptual and Motor Skills, 47(2), 599-604. doi:10.2466/pms.1978.47.2.59

    Solving Electrical Engineering Puzzles Using Spatial Reasoning

    Get PDF
    The precursor of any problem-solving strategy is the visualization of the problem at hand. When dealing with problems pertaining to STEM (science, technology, engineering, and mathematics) areas, visualization plays a very significant role in addressing the same. Several initiatives are being taken to improve the visualization skills of the students and spatial reasoning techniques have proved to be one of the most widely accepted tools for addressing the problems in the STEM field. In this paper, we specifically address the use of spatial reasoning to solve problems in the form of puzzles taken from electrical engineering and analyze the fruitfulness of employing such a strategy. The puzzles are hosted in an online interactive framework called UNTANGLED and classified into different categories on the basis of the nature of the puzzles and their difficulties. The results indicate that spatial reasoning technique indeed helped the players to successfully complete the puzzles. The interpretation of the data led to the conclusion that spatial reasoning techniques are imperative when it comes to discerning and resolving a problem, especially in the STEM domain

    ICT Integrations in TVET: Is it up to Expectations?

    Get PDF
    AbstractIn today's world where information and communication technology is playing a major role in people's daily lives, how a student learns is dependent on how the student reacts to the sophisticated system offered by these technologies. Thus, it is not surprising that online learning is accepted as an important tool in the general education sector. However its adoption in Technical and Vocational Education and Training (TVET) is yet to reach the equivalence of the general education sector. With the availability of state of the art online learning technology, there is greater opportunity for acquiring the technology that can support TVET practices. The aim of this paper is to discuss the trend of ICT integration in teaching and learning in TVET based on a systematic review of ICT integration in post-secondary TVET. The focus is mainly on the “what’ and “how” aspects of ICT integration in TVET. The literature reviewed indicates that while ICT integration can be aimed at the learning goals in the three domains, the affective, cognitive and psychomotor domain; its effectiveness is more noted where learning goals are of the cognitive domains. More effective integration is also indicated where the blended mode is adopted as compared to the fully ICT mediated mode. Lessons learnt in light of these findings are discussed for future ICT integration in TVET

    Interactive Learning Management System to Develop Spatial Visualization Abilities

    Get PDF
    An Interactive Learning Management System (ILMS) is presented, which functions as a web-based Spatial Visualization Ability (SVA) learning support tool for students of engineering graphics and as a management tool for teachers to track student learning. This software is designed to fill the gaps in student knowledge, giving them more uniform spatial visualization abilities when enrolling on University Engineering degrees. The ILMS_SVA consists of: (1) a Content Management System (CMS); (2) a preliminary level assessment test; (3) a web-based tool for exercise management and self-assessment incorporating a 3D viewer that functions as an interactive tutorial (IT), allowing the manipulation of 3D objects in every exercise; (4) a database. It is designed for three types of users (student, teacher, and administrator), and has been validated with engineering graphics students at the University of Burgos (Spain) by means of experimental trials in the classroom and a user satisfaction survey, over two academic years. The results indicate that use of this tool improved SVA among students generally and was even of greater effectiveness for those students that accessed engineering courses with no prior knowledge of Technical Drawing

    Spatial skills of students in new technical degrees. Case study at the University of Granada (Spain)

    Full text link
    [ES] La visión espacial y el bocetado a mano alzada son competencias fundamentales de todo ingeniero o arquitecto, tanto durante su formación como en el desempeño de su profesión. Sin embargo los sucesivos planes de estudio, en particular los derivados del Espacio Europeo de Educación Superior, han supuesto una importante merma en las habilidades espaciales de los estudiantes de las titulaciones técnicas.Este artículo describe la metodología implantada durante el curso académico 2012/2013 en varios grados técnicos de la Universidad de Granada, diseñada para mejorar las habilidades espaciales y de bocetado de sus estudiantes mediante una serie de actividades complementarias en las asignaturas de Expresión Gráfica. Los test estandarizados administrados a los estudiantes al principio y al final del período lectivo han puesto de manifiesto una importante mejora en aquéllos que han participado en estas actividades[EN] Spatial visualization and sketching are essential skills for engineers and architects during their training and career. However, successive curricula, in particular those resulting from the European Higher Education Area, have caused a marked decline in spatial skills of students pursuing technical degrees.This paper describes the methodology introduced during the academic year 2012/2013 in several technical degrees at the University of Granada (Spain), designed to enhance the spatial and sketching skills of students by means of a series of complementary activities in Graphic Expression courses. The standardized tests administered to students at the beginning and at the end of the course revealed a major improvement in those who participated in these activitiesMataix Sanjuán, J.; León Robles, C.; Montes Tubío, FDP. (2014). Las habilidades espaciales de los estudiantes de las nuevas titulaciones técnicas. Estudio en la Universidad de Granada. EGA. Revista de Expresión Gráfica Arquitectónica. 19(24):264-271. doi:10.4995/ega.2014.1767.SWORD264271192

    Entorno de aprendizaje ubicuo con realidad aumentada y tabletas para estimular la comprensión del espacio tridimensional

    Get PDF
    In this paper; two digital alternatives are analyzed against use of tangible models (physical parts) for sketching and analyzing forms: these are augmented reality and digital tablets. For this purpose; three pilot tests have been performed during the academic year 2011- 2012; where 62 students took part in it. These students came from three different educational setting: Arts Degree at La Laguna University; IES La Laboral high school and a group of Art and Technology subject’s high school teachers. The study has been performed with six tangible models of painted aluminum. The digital versions of these digital models have been created on a digital tablet and augmented reality over a PC. An overall evaluation and specific evaluation over the technology used has been performed too. From the results of this study; we have concluded that both technologies are valid alternatives for the substitution of tangible models in digital environments.En este artículo se analiza la adopción de alternativas digitales a modelos físicos mediante las tecnologías de realidad aumentada y las tabletas multitáctiles. El objetivo es ofrecer un entorno de aprendizaje ubicuo para estimular la comprensión del espacio tridimensional. Para ello se han realizado tres pruebas piloto durante el curso académico 2011-2012, en las que participaron 62 estudiantes de tres ámbitos educativos diferentes de la isla de Tenerife: Grado en Bellas Artes de la Universidad de La Laguna, estudiantes de educación secundaria del IES La Laboral y un grupo de profesores de secundaria de las asignaturas de Arte y Tecnología. El estudio se ha realizado con seis modelos físicos de aluminio pintado. Se ha dispuesto de la versión digital de seis modelos en Realidad Aumentada y en tableta multitáctil. Se ha realizado una valoración global y una valoración específica sobre las tecnologías utilizadas. De los resultados de este estudio se obtiene que ambas tecnologías son alternativas válidas para la sustitución de los modelos físicos en entornos digitales

    Virtual Blocks: a serious game for spatial ability improvement on mobile devices

    Full text link
    This paper presents a novel spatial instruction system for improving spatial abilities of engineering students. A 3D mobile game application called Virtual Blocks has been designed to provide a 3D virtual environment to build models with cubes that help students to perform visualization tasks to promote the development of their spatial ability during a short remedial course. A validation study with 26 freshman engineering students at La Laguna University (Spain) has concluded that the training had a measurable and positive impact on students spatial ability. In addition, the results obtained using a satisfaction questionnaire show that Virtual Blocks is considered an easy to use and stimulating application.This work has been partially supported by the (Spanish) National Program for Studies and Analysis project "Evaluation and development of competencies associated to the spatial ability in the new engineering undergraduate courses" (Ref. EA2009-0025) and the (Spanish) National Science Project "Enhancing Spatial REasoning and VIsual Cognition with advanced technological tools (ESREVIC)" (Ref TIN2010-21296-C02-02)Martín Dorta, NN.; Sanchez Berriel, I.; Bravo, M.; Hernández, J.; Saorin, JL.; Contero, M. (2014). Virtual Blocks: a serious game for spatial ability improvement on mobile devices. Multimedia Tools and Applications. 73(3):1575-1595. https://doi.org/10.1007/s11042-013-1652-0S15751595733Baartmans BG, Sorby SA (1996) Introduction to 3-D spatial visualization. Prentice Hall, Englewood CliffsClements D, Battista M (1992) Geometry and spatial reasoning. In: Grouws DA (ed) Handbook of research on mathematics teaching and learning. New York, pp 420–464Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, HillsdaleDe Lisi R, Cammarano DM (1996) Computer experience and gender differences in undergraduate mental rotation performance. Comput Hum Behav 12:351–361Deno JA (1995) The relationship of previous experiences to spatial visualization ability. Eng Des Graph J 59(3):5–17Feng J, Spence I, Pratt J (2007) Playing an action video game reduces gender differences in spatial cognition. Psychol Sci 18(10):850–855French JW (1951) The description of aptitude and achievement tests in terms of rotated factors. Psychometric monograph 5Guilford JP, Lacy JI (1947) Printed classification tests, A.A.F. Aviation Psychological Progress Research Report, 5. US. Government Printing Office, Washington DCHalpern DF (2000) Sex differences and cognitive abilities. Erlbaum, MahwahHöfele C (2007) Mobile 3D graphics: learning 3D graphics with the Java Micro Edition. Editorial ThomsonKajiya JT, Kay TL (1989) Rendering fur with three dimensional textures. In Proceedings of the 16th Annual Conference on Computer Graphics and interactive Techniques SIGGRAPH ’89. ACM Press, New York pp 271–280Linn MC, Petersen AC (1985) Emergence and characterization of gender differences in spatial abilities: a meta-analysis. Child Dev 56:1479–1498Martin-Dorta N, Sanchez-Berriel I, Bravo M, Hernandez J, Saorin JL, Contero M (2010) A 3D educational mobile game to enhance student’s spatial skills, ICALT, pp.6–10, 2010 10th IEEE International Conference on Advanced Learning TechnologiesMartin-Dorta N, Saorin J, Contero M (2008) Development of a fast remedial course to improve the spatial abilities of engineering students. J Eng Educ 27(4):505–514Martin-Dorta N, Saorin JL, Contero M (2011) Web-based spatial training using handheld touch screen devices. Educ Technol Soc 14(3):163–177McGee MG (1979) Human spatial abilities: psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychol Bull 86:889–918Noguera JM, Segura RJ, Ogayar CJ, Joan-Arinyo R (2011) Navigating large terrains using commodity mobile devices. Comput Geosci 37:1218–1233Okagaki L, Frensch PA (1994) Effects of video game playing on measures of spatial performance: gender effects in late adolescence. J Appl Dev Psychol 15(1):33–58Pulli K, Aarnio T, Miettinen V, Roimela K, Vaarala J (2007) Mobile 3D graphics with OpenGL ES and M3G. Editorial Morgan KaufmannQuaiser-Pohl C, Geiser C, Lehmann W (2005) The relationship between computer-game preference, gender, and mental-rotation ability. Personal Individ Differ 40(3):609–619Smith IM (1964) Spatial ability- its educational and social significance. The University of London Press, LondonSorby S (2007) Developing 3D spatial skills for engineering students. Australas Assoc Eng Educ 13(1):1–11Terlecki MS, Newcombe NS (2005) How important is the digital divide? The relation of computer and videogame usage to gender differences in mental rotation ability. Sex Roles 53(5/6):433–441Terlecki MS, Newcombe NS, Little M (2008) Durable and generalized effects of spatial experience on mental rotation: gender differences in growth patterns. Appl Cogn Psychol 22:996–1013Thurstone LL (1950) Some primary abilities in visual thinking (Tech. Rep. No. 59). IL University of Chicago Psychometric Laboratory, ChicagoThurstone LL, Thurstone TG (1941) Factorial studies of intelligence. Psychometric monographs. Chicago Press, ChicagoVanderberg S, Kuse A (1978) Mental Rotation, a group test of three dimensional spatial visualization. Percept Mot Skills 47:599–604Zimmerman WS (1954) Hypotheses concerning the nature of the spatial factors. Educ Psychol Meas 14:396–40

    FATORES DE IMPACTO NA ATITUDE E NA INTENÇÃO DE USO DO M-LEARNING: UM TESTE EMPÍRICO

    Get PDF
    Este artigo apresenta os resultados de uma pesquisa empírica, em que se propõe um modelo para avaliar a atitude e a intenção de uso do mobile-learning (m-learning) por estudantes do ensino superior de um curso de administração, baseado na teoria do flow, no Modelo de Aceitação de Tecnologia e na Teoria do Comportamento Planejado. A partir deste arcabouço teórico, elaborou-se uma atividade prática envolvendo o uso de dispositivos com tecnologia móvel digital (celulares), com a finalidade de aplicar o m-learning para estimular os estudantes a unir a teoria à prática. Em seguida, foi feita uma survey, respondida por 235 universitários, em que se buscou compreender os fatores que influenciam a atitude e a intenção de uso do m-learning para o processo de ensino-aprendizagem. Os dados coletados foram tratados por meio de equações estruturais e os resultados mostraram fortes efeitos positivos dos fatores utilidade, diversão e controle do comportamento percebidos pelos estudantes na atitude e na intenção de uso do m-learning. Por fim, a atividade de uso prático realizada com os alunos mostrou que o uso do celular em uma atividade acadêmica pôde lhes proporcionar a construção e o entendimento das relações entre a teoria apresentada e a prática em um ambiente real

    The effects of integrating mobile devices with teaching and learning on students' learning performance: A meta-analysis and research synthesis

    Get PDF
    AbstractMobile devices such as laptops, personal digital assistants, and mobile phones have become a learning tool with great potential in both classrooms and outdoor learning. Although there have been qualitative analyses of the use of mobile devices in education, systematic quantitative analyses of the effects of mobile-integrated education are lacking. This study performed a meta-analysis and research synthesis of the effects of integrated mobile devices in teaching and learning, in which 110 experimental and quasiexperimental journal articles published during the period 1993–2013 were coded and analyzed. Overall, there was a moderate mean effect size of 0.523 for the application of mobile devices to education. The effect sizes of moderator variables were analyzed and the advantages and disadvantages of mobile learning in different levels of moderator variables were synthesized based on content analyses of individual studies. The results of this study and their implications for both research and practice are discussed
    corecore