1,784 research outputs found

    A Coupled Spintronics Neuromorphic Approach for High-Performance Reservoir Computing

    Get PDF
    The rapid development in the field of artificial intelligence has increased the demand for neuromorphic computing hardware and its information-processing capability. A spintronics device is a promising candidate for neuromorphic computing hardware and can be used in extreme environments due to its high resistance to radiation. Improving the information-processing capability of neuromorphic computing is an important challenge for implementation. Herein, a novel neuromorphic computing framework using spintronics devices is proposed. This framework is called coupled spintronics reservoir (CSR) computing and exploits the high-dimensional dynamics of coupled spin-torque oscillators as a computational resource. The relationships among various bifurcations of the CSR and its information-processing capabilities through numerical experiments are analyzed and it is found that certain configurations of the CSR boost the information-processing capability of the spintronics reservoir toward or even beyond the standard level of machine learning networks. The effectiveness of our approach is demonstrated through conventional machine learning benchmarks and edge computing in real physical experiments using pneumatic artificial muscle-based wearables, which assist human operations in various environments. This study significantly advances the availability of neuromorphic computing for practical uses

    Examining the robustness of pose estimation (OpenPose) in estimating human posture

    Get PDF

    The use of mHealth solutions in active and healthy ageing promotion: an explorative scoping review

    Get PDF
    The global population aged 60 years and over is expected to almost double between 2015 and 2050 from 12.0% to 22.0%, which will directly impact countries' labor market composition and increase the economic pressure on their healthcare systems. One way to address these challenges is to promote Active and Healthy Ageing (AHA) using mobile Health (mHealth). This research aims to provide an initial overview of the width and the depth of contemporary preventive mHealth solutions that promote AHA among healthy, independent older adults (individuals aged 60 years and over). To do so, an explorative scoping review was applied to search online databases for recent studies (March 2015 - March 2020) addressing the promotion of mHealth solutions targeting healthy and independent older adults. We identified 31 publications that met the inclusion criteria. Most of them utilized either mobile (n=25) and/or wearable (n=11) devices. mHealth solutions mostly promoted AHA by targeting older adults’ active lifestyles or independence. Most of the studies (n=27) did not apply a theoretical framework on which the mHealth promotion was based. User-experience was positive (n=12) when the solution was easy to use but negative (n=11) when the participants were resistant or faced challenges using the device and/or technology. The review concludes that mHealth offers the opportunity to combat the issues faced by an unhealthy and dependent aging population by promoting AHA through focusing on older adults’ Lifestyle, Daily functioning, and Participation. Future research should use multidisciplinary integrated approaches and strong theoretical and methodological foundations to investigate mHealth solutions' impact on AHA behavioral change

    Classification of colloquial Arabic tweets in real-time to detect high-risk floods

    Get PDF
    Twitter has eased real-time information flow for decision makers, it is also one of the key enablers for Open-source Intelligence (OSINT). Tweets mining has recently been used in the context of incident response to estimate the location and damage caused by hurricanes and earthquakes. We aim to research the detection of a specific type of high-risk natural disasters frequently occurring and causing casualties in the Arabian Peninsula, namely `floods'. Researching how we could achieve accurate classification suitable for short informal (colloquial) Arabic text (usually used on Twitter), which is highly inconsistent and received very little attention in this field. First, we provide a thorough technical demonstration consisting of the following stages: data collection (Twitter REST API), labelling, text pre-processing, data division and representation, and training models. This has been deployed using `R' in our experiment. We then evaluate classifiers' performance via four experiments conducted to measure the impact of different stemming techniques on the following classifiers SVM, J48, C5.0, NNET, NB and k-NN. The dataset used consisted of 1434 tweets in total. Our findings show that Support Vector Machine (SVM) was prominent in terms of accuracy (F1=0.933). Furthermore, applying McNemar's test shows that using SVM without stemming on Colloquial Arabic is significantly better than using stemming techniques

    Networking Architecture and Key Technologies for Human Digital Twin in Personalized Healthcare: A Comprehensive Survey

    Full text link
    Digital twin (DT), refers to a promising technique to digitally and accurately represent actual physical entities. One typical advantage of DT is that it can be used to not only virtually replicate a system's detailed operations but also analyze the current condition, predict future behaviour, and refine the control optimization. Although DT has been widely implemented in various fields, such as smart manufacturing and transportation, its conventional paradigm is limited to embody non-living entities, e.g., robots and vehicles. When adopted in human-centric systems, a novel concept, called human digital twin (HDT) has thus been proposed. Particularly, HDT allows in silico representation of individual human body with the ability to dynamically reflect molecular status, physiological status, emotional and psychological status, as well as lifestyle evolutions. These prompt the expected application of HDT in personalized healthcare (PH), which can facilitate remote monitoring, diagnosis, prescription, surgery and rehabilitation. However, despite the large potential, HDT faces substantial research challenges in different aspects, and becomes an increasingly popular topic recently. In this survey, with a specific focus on the networking architecture and key technologies for HDT in PH applications, we first discuss the differences between HDT and conventional DTs, followed by the universal framework and essential functions of HDT. We then analyze its design requirements and challenges in PH applications. After that, we provide an overview of the networking architecture of HDT, including data acquisition layer, data communication layer, computation layer, data management layer and data analysis and decision making layer. Besides reviewing the key technologies for implementing such networking architecture in detail, we conclude this survey by presenting future research directions of HDT

    The feet in human--computer interaction: a survey of foot-based interaction

    Get PDF
    Foot-operated computer interfaces have been studied since the inception of human--computer interaction. Thanks to the miniaturisation and decreasing cost of sensing technology, there is an increasing interest exploring this alternative input modality, but no comprehensive overview of its research landscape. In this survey, we review the literature on interfaces operated by the lower limbs. We investigate the characteristics of users and how they affect the design of such interfaces. Next, we describe and analyse foot-based research prototypes and commercial systems in how they capture input and provide feedback. We then analyse the interactions between users and systems from the perspective of the actions performed in these interactions. Finally, we discuss our findings and use them to identify open questions and directions for future research

    Hierarchical sensor fusion for micro-gestures recognition with pressure sensor array and radar

    Get PDF
    This paper presents a hierarchical sensor fusion approach for human micro-gesture recognition by combining an Ultra Wide Band (UWB) Doppler radar and wearable pressure sensors. First, the wrist-worn pressure sensor array (PSA) and Doppler radar are used to respectively identify static and dynamic gestures through a Quadratic-kernel SVM (Support Vector Machine) classifier. Then, a robust wrapper method is applied on the features from both sensors to search the optimal combination. Subsequently, two hierarchical approaches where one sensor acts as ‛enhancer‚ of the other are explored. In the first case, scores from Doppler radar related to the confidence level of its classifier and the prediction label corresponding to the posterior probabilities are utilized to maximize the static hand gestures classification performance by hierarchical combination with PSA data. In the second case, the PSA acts as an ‛Enhancer‚ for radar to improve the dynamic gesture recognition. In this regard, different weights of the ‛Enhancer‚ sensor in the fusion process have been evaluated and compared in terms of classification accuracy. A realistic cross-validation method is chosen to test one unknown participant with the model trained by data from others, demonstrating that this hierarchical fusion approach for static and dynamic gestures yields approximately 16.7% improvement in classification accuracy in the best cases

    Improving k-nn search and subspace clustering based on local intrinsic dimensionality

    Get PDF
    In several novel applications such as multimedia and recommender systems, data is often represented as object feature vectors in high-dimensional spaces. The high-dimensional data is always a challenge for state-of-the-art algorithms, because of the so-called curse of dimensionality . As the dimensionality increases, the discriminative ability of similarity measures diminishes to the point where many data analysis algorithms, such as similarity search and clustering, that depend on them lose their effectiveness. One way to handle this challenge is by selecting the most important features, which is essential for providing compact object representations as well as improving the overall search and clustering performance. Having compact feature vectors can further reduce the storage space and the computational complexity of search and learning tasks. Support-Weighted Intrinsic Dimensionality (support-weighted ID) is a new promising feature selection criterion that estimates the contribution of each feature to the overall intrinsic dimensionality. Support-weighted ID identifies relevant features locally for each object, and penalizes those features that have locally lower discriminative power as well as higher density. In fact, support-weighted ID measures the ability of each feature to locally discriminate between objects in the dataset. Based on support-weighted ID, this dissertation introduces three main research contributions: First, this dissertation proposes NNWID-Descent, a similarity graph construction method that utilizes the support-weighted ID criterion to identify and retain relevant features locally for each object and enhance the overall graph quality. Second, with the aim to improve the accuracy and performance of cluster analysis, this dissertation introduces k-LIDoids, a subspace clustering algorithm that extends the utility of support-weighted ID within a clustering framework in order to gradually select the subset of informative and important features per cluster. k-LIDoids is able to construct clusters together with finding a low dimensional subspace for each cluster. Finally, using the compact object and cluster representations from NNWID-Descent and k-LIDoids, this dissertation defines LID-Fingerprint, a new binary fingerprinting and multi-level indexing framework for the high-dimensional data. LID-Fingerprint can be used for hiding the information as a way of preventing passive adversaries as well as providing an efficient and secure similarity search and retrieval for the data stored on the cloud. When compared to other state-of-the-art algorithms, the good practical performance provides an evidence for the effectiveness of the proposed algorithms for the data in high-dimensional spaces
    corecore