
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Dissertations Electronic Theses and Dissertations

Summer 2018

Improving k-nn search and subspace clustering based on local Improving k-nn search and subspace clustering based on local

intrinsic dimensionality intrinsic dimensionality

Arwa M. Wali
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wali, Arwa M., "Improving k-nn search and subspace clustering based on local intrinsic dimensionality"
(2018). Dissertations. 1384.
https://digitalcommons.njit.edu/dissertations/1384

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital
Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons @ New Jersey Institute of Technology (NJIT)

https://core.ac.uk/display/232277174?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/dissertations
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1384&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1384&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1384?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1384&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

IMPROVING k-NN SEARCH AND SUBSPACE CLUSTERING
BASED ON LOCAL INTRINSIC DIMENSIONALITY

by
Arwa M. Wali

In several novel applications such as multimedia and recommender systems, data

is often represented as object feature vectors in high-dimensional spaces. The

high-dimensional data is always a challenge for state-of-the-art algorithms, because

of the so-called ”curse of dimensionality”. As the dimensionality increases, the

discriminative ability of similarity measures diminishes to the point where many data

analysis algorithms, such as similarity search and clustering, that depend on them

lose their effectiveness. One way to handle this challenge is by selecting the most

important features, which is essential for providing compact object representations

as well as improving the overall search and clustering performance. Having compact

feature vectors can further reduce the storage space and the computational complexity

of search and learning tasks.

Support-Weighted Intrinsic Dimensionality (support-weighted ID) is a new

promising feature selection criterion that estimates the contribution of each feature

to the overall intrinsic dimensionality. Support-weighted ID identifies relevant

features locally for each object, and penalizes those features that have locally lower

discriminative power as well as higher density. In fact, support-weighted ID measures

the ability of each feature to locally discriminate between objects in the dataset.

Based on support-weighted ID, this dissertation introduces three main research

contributions: First, this dissertation proposes NNWID-Descent, a similarity graph

construction method that utilizes the support-weighted ID criterion to identify and

retain relevant features locally for each object and enhance the overall graph quality.

Second, with the aim to improve the accuracy and performance of cluster analysis,

this dissertation introduces k-LIDoids, a subspace clustering algorithm that extends

the utility of support-weighted ID within a clustering framework in order to gradually

select the subset of informative and important features per cluster. k-LIDoids is able

to construct clusters together with finding a low dimensional subspace for each cluster.

Finally, using the compact object and cluster representations from NNWID-Descent

and k-LIDoids, this dissertation defines LID-Fingerprint, a new binary fingerprinting

and multi-level indexing framework for the high-dimensional data. LID-Fingerprint

can be used for hiding the information as a way of preventing passive adversaries

as well as providing an efficient and secure similarity search and retrieval for the

data stored on the cloud. When compared to other state-of-the-art algorithms, the

good practical performance provides an evidence for the effectiveness of the proposed

algorithms for the data in high-dimensional spaces.

IMPROVING k-NN SEARCH AND SUBSPACE CLUSTERING
BASED ON LOCAL INTRINSIC DIMENSIONALITY

by
Arwa M. Wali

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology – Newark
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2018

Copyright © 2018 by Arwa M. Wali

ALL RIGHTS RESERVED

APPROVAL PAGE

IMPROVING k-NN SEARCH AND SUBSPACE CLUSTERING
BASED ON LOCAL INTRINSIC DIMENSIONALITY

Arwa M. Wali

Dr. Vincent Oria, Dissertation Co-Advisor Date
Professor, Department of Computer Science, NJIT

Dr. Michael E. Houle, Dissertation Co-Advisor Date
Visiting Professor, National Institute of Informatics, Japan

Dr. Ali Mili, Committee Member Date
Professor, Department of Computer Science, NJIT

Dr. Dimitri Theodoratos, Committee Member Date
Associate Professor, Department of Computer Science, NJIT

Dr. Yi Chen, Committee Member Date
Professor, School of Management, NJIT

Dr. Moshiur Rahman, Committee Member Date
Principal Scientist, AT&T

BIOGRAPHICAL SKETCH

Author: Arwa M. Wali

Degree: Doctor of Philosophy

Date: August 2018

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2018

• Master of Science in Information Systems,
New Jersey Institute of Technology, Newark, NJ, 2011

• Bachelor of Science in Computer Science,
King Abdulaziz University, Jeddah, Saudi Arabia, 2002

Major: Computer Science

Presentations and Publications:

M.E. Houle, V. Oria and A.M. Wali, ”k-LIDoids: A Subspace Clustering Algorithm
using Local Intrinsic Dimensionality,” In preparation for submission.

M.E. Houle, V. Oria, K.R. Rohloff and A.M. Wali, ”LID-Fingerprint: A Local
Intrinsic Dimensionality-Based Fingerprinting Method,” in International
Conference on Similarity Search and Applications, 2018.

M.E. Houle, V. Oria and A.M. Wali, in ”Improving k-NN Graph Accuracy Using Local
Intrinsic Dimensionality,” in International Conference on Similarity Search
and Applications., Springer, 2017, pp 110-124.

J. Geller, S. Ae Chun and A. Wali, ”A Hybrid Approach to Developing a
Cyber Security Ontology,” in Proceedings of 3rd International Conference on
Data Management Technologies and Applications. SCITEPRESS-Science and
Technology Publications, Lda, 2014, pp 377-384.

A. Wali, S. A. Chun and J. Geller, ”A bootstrapping approach for developing a cyber-
security ontology using textbook index terms,” in Availability, Reliability, and
Security (ARES), 2013 Eighth International Conference on., IEEE, 2013, pp.
569–576.

iv

يمِحَِّرلانِحمََّْرلا󰏦َِّامِسْبِ

٨٨:ةیلآا-دوه-))بُینِأُهِیَْلإِوَتَُّْكلوََتهِیَْلَع󰇾ِ󰏦ََِّّۚلاإِيقِیفِوَْتامَوَ((
”My success can only come from Allah. In Him I trust,
and to Him I return.” Quran, Surah Hud, Aya:88

اًقیرِط󰏤َََسَنْمَ":لاقََّلمسَوَهِیَْلَع󰏦َُّاَّلىص󰏦ََِّالُوسُرَنأهنعاللهضيرةَرَیْرَهُبيَِأنْعَ

)لمسمهاور("ةَِّنجَْلالىَإِاًقیرِطَهِب󰏦َُّ󰏩َُِالََّهسَامًْلعِهِیفِسُمَِتْلَی

Abu Huraira (May Allah be pleased with him) reported:
The Messenger of Allah, peace and blessings be upon
him, said, “Allah makes the way to Paradise (Jannah)
easy for him who treads the path in search of knowledge.”
Source: Ṣaḥīḥ Muslim 2699

"امًْلعِنيِدْزِوَ،نيِعُفَنَْیامَنيِمِّْلَعوَ،نيَِتمَّْلَعامَبِنيِعْفَْناَّمهَُّللا"
O Allah, benefit me by that which You have taught me,
and teach me that which will benefit me, and increase
me in knowledge.

To my parents.
The strong and gentle souls who taught me to trust in
Allah and believe in hard work. Thanks for supporting

and encouraging me to strive for excellence.

To my beloved husband, Emad.
The reason of what I become today, you are my

inspiration and my soulmate. Thanks for your love,
great support, and continuous care.

To my children, Hammam Lateen Bateel and Azzam.
The real treasure from Allah. Thanks for being patients

with me throughout these years.

v

ACKNOWLEDGMENT

Thanks to Allah Almighty for giving me the strength and ability to understand, learn,

and complete this dissertation. It is a great pleasure to acknowledge my deepest

thanks and gratitude to my co-advisors, Dr. Vincent Oria and Dr. Michael E. Houle,

for suggesting the topics of this research, and for their valuable guidance and advice

during the work on this dissertation.

I would like also to extend my thanks and appreciation to Dr. Ali Mili, Dr.

Dimitri Theodoratos, Dr. Yi Chen, and Dr. Moshiur Rahaman, for being members

in my doctoral dissertation committee. I am very grateful for their time, kindness,

encouragement, and valuable comments. I am particularly thankful for the comments

of Dr. Ali Mili with respect to the suggested areas of enhancement for writing and

editing the dissertation.

I would like also to thank Dr. Cristian Borcea, the (former) chair of the

Department of Computer Science (CS) at New Jersey Institute of Technology (NJIT),

for opening his door to me, listening to my concerns, and for giving me kind and

generous advice and support. I am also very grateful to him for providing me the

teaching opportunities in the CS department.

For the initial encouragement to commence doctoral studies, and/or advocacy

of my candidacy including the early stage of my doctoral research, I would like to

thank Dr. James Geller, Dr. Soon A. Chun, and Dr. Reza Curtmola for their time,

commitment, and sincere advice.

My thanks also goes to my sponsors, King Abdulaziz University (KAU) and

Saudi Arabia Cultural Mission (SACM) for their great financial support during my

graduate studies. I would also like to thank both the CS Department administration

at NJIT, particularly Kathy Thompson and Angel J. Butler, for their help in getting

all my paperwork done, and the Department of Academic and Research Computing

vi

Systems (ARCS) of the Information Services and Technology (IST) Division at NJIT

for providing me with continuous technical assistance. I would also like to thank

the National Institute of Informatics (NII) in Japan for providing me the research

internship opportunity.

I furthermore want to express my appreciation to my colleagues, Christopher

Ochs, Xiang Ji, and Jichao Sun from the CS Department at NJIT, and Oussama

Chelly from NII, for their help and technical support. Most important, I would like

to thank my parents, my mother, Fatima Alhindi, and my father, Dr. Mahmoud Wali,

for their financial support and passionate encouragement. I am extremely grateful

to my husband, Dr. Emad Alharbi, and my children, Hammam, Lateen, Bateel, and

Azzam, for their patience, continuous help and endless love during this long journey.

I am also thankful to my entire family for their praying and support.

Last but not least, I am humbly extend my acknowledgment to all the people

who were concerned and co-operated with me in this regard.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 k-NN Graph Construction . 3

1.2 Subspace Clustering . 5

1.3 Binary Fingerprinting and Indexing 8

2 RELATED WORK . 13

2.1 Feature Selection Techniques . 13

2.1.1 Supervised Feature Selection 14

2.1.2 Unsupervised Feature Selection 15

2.2 Binary Fingerprinting and Indexing 21

2.2.1 Binary Fingerprinting Generating 21

2.2.2 Algorithms for Fast Search with Binary Data 23

2.2.3 Local Dimensionality Reduction for Indexing 25

2.3 Support-Weighted Local Intrinsic Dimensionality 26

2.3.1 Local Intrinsic Dimensionality 27

2.3.2 Support-Weighted Local Intrinsic Dimensionality Measure . . . 30

3 IMPROVING k-NN GRAPH ACCURACY USING LOCAL INTRINSIC
DIMENSIONALITY . 33

3.1 Overview of NNF-Descent . 33

3.1.1 Local Laplacian Score, Feature Ranking, and Sparsification . . 34

3.1.2 NNF-Descent . 34

3.2 Improving NN-Descent Graph with Weighted ID 35

3.2.1 Defining Support-weighted ID (wID) for each Feature 36

3.2.2 NNWID-Descent . 37

3.2.3 Variants of NNWID-Descent 39

3.3 Experiments . 40

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

3.3.1 Datasets . 41

3.3.2 Competing Methods . 42

3.3.3 Performance Measure . 42

3.3.4 Default Parameters . 42

3.3.5 Effects of Varying the Sparsification Rate Z 43

3.3.6 Effects of Varying the Neighbor List Size K 49

3.4 Conclusion . 50

4 k-LIDoids: A SUBSPACE CLUSTERING ALGORITHM USING LOCAL
INTRINSIC DIMENSIONALITY . 52

4.1 Preliminaries . 54

4.1.1 Notations . 54

4.1.2 k-medodis Clustering . 54

4.1.3 Defining Support-weighted ID (wID) for each Feature per Cluster 56

4.2 k-LIDoids Algorithm . 58

4.2.1 Initialization Phase . 59

4.2.2 Iterative Phase . 59

4.2.3 Termination Criteria for the Clustering Convergence 62

4.2.4 Time Complexity . 64

4.3 Experimental Framework . 64

4.3.1 Competing Methods . 64

4.3.2 Datasets . 65

4.3.3 Parameters Setting . 66

4.3.4 Evaluation . 67

4.3.5 Comparison Against the Competing Methods with Respect to
ARI and the Maximum Number of Iterations M 70

4.3.6 Comparison Against the Competing Methods with Respect to
the Expected Measurements 72

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

4.3.7 Comparison Against the Competing Methods with Respect to
the Clustering Convergence 74

4.3.8 Case Studies for the Clustering Accuracy 76

4.4 Conclusion . 82

5 LID-FINGERPRINT: A LOCAL INTRINSIC DIMENSIONALITY-BASED
FINGERPRINTING AND INDEXING METHOD FOR SIMILARITY
SEARCH . 83

5.1 LID-Fingerprint Framework . 84

5.1.1 Notations . 85

5.1.2 Fingerprinting Process . 85

5.1.3 Indexing Process . 87

5.1.4 Nearest Neighbor Search Process 92

5.1.5 Updating the Index . 94

5.1.6 Information Hiding Aspects of LID-Fingerprint 97

5.2 Experimental Framework . 98

5.2.1 Competing Methods . 98

5.2.2 Datasets . 99

5.2.3 Accuracy of LID-Fingerprint based on Nearest Neighbors Graph
Construction vs. Sparsification 99

5.2.4 Comparison of LID-Fingerprint with its competitors 103

5.2.5 Preprocessing Time . 111

5.3 Conclusion . 112

6 CONCLUSION AND FUTURE WORK 114

Bibliography . 117

x

LIST OF TABLES

Table Page

3.1 Average Time in Seconds per Iteration for each Dataset 49

4.1 Datasets used in the Experiments . 68

4.2 CLIQUE Parameters Setting for the Density Threshold (ε), and the Grid
Size (gridSize) . 68

4.3 k-LIDoids: Confusion Matrix for MAGIC 77

4.4 k-LIDoids: Confusion Matrix for ONP 78

4.5 k-LIDoids: Confusion Matrix for MiniBooNE 79

4.6 k-LIDoids: Confusion Matrix for Wearable Computing 80

4.7 k-LIDoids: Subset of Features per Cluster in MAGIC 81

4.8 k-LIDoids: Subset of Features per Cluster in ONP 81

4.9 k-LIDoids: Subset of Features per Cluster in MiniBooNE 81

4.10 k-LIDoids: Subset of Features per Cluster in Wearable Computing 82

5.1 Parameter Setting for all Datasets: the Number of Iterations M for k-
LIDoids, the Number of Iterations T for the Object Fingerprinting
Process, the Features Sparsification rate Z, and the Cardinality Values
for the Clusters and Objects Fingerprints, mI = D− (Ceil(D ∗Z)∗M)
and mL = D − (Ceil(D ∗ Z) ∗ T), Receptively 105

5.2 Preprocessing Time (in Seconds) for all Methods Except the Linear Scan
Search . 112

xi

LIST OF FIGURES

Figure Page

1.1 (a) An illustration of K-NN graph with K=3, for a set of six objects in
Euclidean space, (b) The NN-Descent’s principle. 3

1.2 Subspace clustering illustrated for a 3-D dataset with two clusters,the
first cluster defined by axes (features) X and Y, and the second cluster
defined by by axes (features) Y and Z. 7

1.3 A possible scenario for searching of encrypted data on a server or the cloud. 11

3.1 Performance of NNWID-Descent and its variants with varying values of
Z, and K = 100 for Google-23, HAR, ISOLET, MNIST, ALOI, and
RLCT datasets. 44

3.2 Performance of NNWID-Descent and its variants with varying values of
Z, and K = 100 for ONP, Statlog, and Wearable Computing datasets. 45

3.3 Performance of NNWID-Descent and the competing methods with vary-
ing values of Z, and K = 100 for Google-23, HAR, ISOLET, MNIST,
ALOI, and RLCT datasets. 47

3.4 Performance of NNWID-Descent and the competing methods with vary-
ing values of Z, and K = 100 for ONP, Statlog, and Wearable
Computing datasets. 48

3.5 Performance of NNWID-Descent with different values of K and fixed Z
(Z = 4% for RLCT, MNIST, 2% for ALOI, 40% for ONP and Statlog,
and 50% for Wearable Computing). 51

4.1 Examples of set L in two clusters, where L is defined as local neighborhood
for each cluster representative, and p-NN is local neighbor objects list
for each medoid. 58

4.2 Adjusted Rand Indices (ARI) for all methods in comparison with respect
to the total value of sparsification rate Z as, 12% for ALOI-100 (Total
Sparsified Features =80/641), 83% for Wearable Computing (Total
Sparsified Features =15/18), 97% for ONP (Total Sparsified Features
=58/60), 70% for MAGIC (Total Sparsified Features =7/10), 96% for
MiniBooNE (Total Sparsified Features =48/50), and 96% for SDD
(Total Sparsified Features =46/48). 71

4.3 Expected Precision, Recall, and Cosine values for all methods in com-
parison in a specific iteration (M , Z) as (30, 0.093) for ALOI-100, (9,
0.5) for Wearable Computing, (5,0.71) for MAGIC, (27,0.9) for ONP,
(18,0.75) for SDD, and (19,0.76) for MiniBooNE. 73

xii

List of Figures
(Continued)

Figure Page

4.4 ARI values for k-LIDoids, PROCLUS, and the Correlation Model with
respect to the clustering convergence. k-LIDoids reaches a specific
iteration and sparsification rate before terminated (M , Z, wIDaverage),
as (200, 0.62, N/A) for ALOI-100, (9, 0.5, 3.89E+36) for Wearable
Computing, (5,0.71, 0.310386162) for MAGIC, (24,0.8, 0.223351866)
for ONP, (10,0.42, 3.09E+36) for SDD, and (19,0.76, 0.022918872) for
MiniBooNE. 75

5.1 Binary fingerprint vectors, CF1 and CF2 defined together with clusters
C1 and C2, respectively. 87

5.2 Multi-level index structure of LID-Fingerprint. 90

5.3 Comparison between NNWID-Descent graph (p=10) and LID-Fingerprint
fingerprints graph with different values of p (10, 50, and 100). 102

5.4 The 20-NN search performance, in terms of the average accuracy,
distance, and time, among the competing methods. For all datasets,
the Min-Hash’s time is > 200ms. The number of distance evaluations
of the linear scan is equal to the size of the datasets. 107

5.5 Comparison between LID-Fingerprint indexing and SUSHI in terms of
K-NN search with different values of K (20, 40, 60, 80, and 100). . . . 109

5.6 The average search performance, in terms of time and distance evalua-
tions, for the LID-Fingerprint indexing and SUSHI. For all datasets, the
results are averaged over all values of K. The number of distance eval-
uations of SUSHI for MiniBooNE and Wearable Computing datasets is
> 100000. 111

xiii

CHAPTER 1

INTRODUCTION

Modern data analysis tools have to deal with a massive amount of digital data,

which becomes more easily to acquire and to store. The size of this data is not

only measured by the number of samples collected, but also with the number of

features that characterize these samples [1]. In novel applications such as multimedia

and recommender systems, this data is often represented as object feature vectors in

high-dimensional spaces. Dealing with high-dimensional data is always a challenge

for the state-of-the-art machine learning and data mining algorithms, because of the

so-called ”curse of dimensionality”. As the dimensionality increases, the discriminative

ability of similarity measures between any two objects diminishes to the point where

those algorithms that depend on them lose their effectiveness. Therefore, in order to

help increasing the learning algorithms performance, it is necessary to considerably

reduce the number of features/dimensions. This is where dimensionality reduction

techniques come into play, whereas dimensionality reduction can be defined as the

process of reducing the number of dimensions in order to obtain a set of the most

important dimensions for the dataset objects.

Many researchers in statistics, computer science, and applied mathematics

try to develop novel solutions of computational techniques in order to cope with

the dimensionality reduction problems [2]. Dimensionality reduction techniques are

essential for providing compact object representations, and reducing the storage

space and the computational complexity of search and learning tasks. In general,

these techniques are rarely performed in isolation. Instead, they are often work as

preprocessing steps or integrated with other algorithms such as k-NN graph search

and cluster analysis.

1

The dimensionality reduction can be done in two different ways: First, feature

selection, such as feature weighting [3, 4], that keeps only a subset of most useful

features from the original dataset. Second, feature extraction, which tries to construct

a lower-dimensional space that captures most of the useful information of the original

space. Principal Component Analysis (PCA) [5], which creates linear correlations

of the original features, is the most widely used feature extraction technique.

Dimensionality reduction techniques can be further divided into (a) global; where

all objects in the dataset will be reduced to the same dimensions, and (b) local;

where the reduced dimensions are defined locally for one or few related (neighbors)

objects.

One of the promising new local feature selection criteria is Support-Weighted

Intrinsic Dimensionality (support-weighted ID, or wID) [6]. Support-weighted ID

is an extension of the Local Intrinsic Dimensionality (LID) measure introduced

in [7, 8], which does not require a construction for the basis dimensions as PCA.

Support-weighted ID estimates the contribution of each feature to the overall intrinsic

dimensionality. In fact, support-weighted ID measures the ability of each feature to

locally discriminate between objects in the dataset.

With the aim to improve the accuracy and performance of k-nearest neighbor (k-

NN) search and cluster analysis, this dissertation is mainly concerned with the design

and analysis of algorithms based on integration of support-weighted ID within two

particular data mining problems, k-NN graph construction and subspace clustering.

The compact object and cluster representations from these algorithms are further

exploited to define a new binary fingerprinting and indexing framework for the high-

dimensional data stored on the cloud.

2

1.1 k-NN Graph Construction

The k-nearest neighbor (k-NN) graph is a key data structure used in many

applications, including machine learning, data mining, and information retrieval.

Some prominent examples for k-NN graph utilization include object retrieval [9],

data clustering [10], outliers detection [11], manifold ranking [12], and content-based

filtering methods for recommender systems [13]. The k-NN graph is usually obtained

by connecting each object to its k closest objects in a dataset, where the used distance

measure defines the closeness (as shown below in Figure 1.1 (a)) .

(a) K-NN graph (b) The principle of NN-Descent

Figure 1.1 (a) An illustration of K-NN graph with K=3, for a set of six objects in
Euclidean space, (b) The NN-Descent’s principle.

The construction of k-NN graphs using brute-force techniques requires quadratic

time, and is practical only for small datasets [14]. One recent technique that efficiently

constructs an approximate k-NN graph in a generic metric space is NN-Descent [14].

NN-Descent is an iterative algorithm that follows a simple transitivity principle (as

shown above in Figure 1.1 (b)): two neighbors of a given data object have a higher

chance of being neighbors of each other. When ground truth class information is

available, the accuracy of a k-NN graph can be measured in terms of the proportion

of edges that connect nodes sharing the same class label. A common approach

3

for maximizing k-NN graph accuracy is to incorporate dimensionality reduction

techniques in the graph construction process. This can be done either independently

as a preprocessing step using techniques such as Sparse Principal Component Analysis

(Sparse PCA) [15], or integrated within the graph construction process itself, such as

feature weighting [16] or other supervised feature selection approaches [17]. However,

supervised feature selection would depend on ground truth information, which may

not be always available.

In [18], an unsupervised method is presented, NNF-Descent, that iteratively and

efficiently improves k-NN graph construction using the Local Laplacian Score (LLS) as

a feature selection criterion. LLS favors those features that have high global variance

among all objects, but less variance among the neighborhood of a given target object.

The NNF-Descent method identifies locally noisy features relative to each object in

the dataset — that is, those features having larger LLS scores. The noisy features

are then gradually modified using a local sparsification process so as to decrease

the distances between related objects, and thereby increase k-NN graph accuracy.

NNF-Descent has already shown significant improvement in the semantic quality

of the graphs produced, and superior performance over its competitors on several

image databases [18]. However, NNF-Descent is a conservative method in that only

a fixed small number of noisy features are sparsified in each iteration. With greater

rates of feature sparsification, the k-NN graph accuracy tends to decrease. This also

occurs when increasing the neighborhood size k beyond (roughly) 10. NNF-Descent

is designed for datasets with dense feature vectors. In sparse datasets, vectors may

contain very few non-zero features, in which case the sparsification process may

incorrectly remove valuable features [18].

We address the problem of improving the trade-off between k-NN graph

accuracy and the degree of data sparsification by proposing NNWID-Descent.

NNWID-Descent is a similarity graph construction method that utilizes the NNF-Descent

4

framework while integrating support-weighted ID, as a new feature selection criterion,

to identify and retain relevant features of each object. Unlike LLS, which is a

variance-based measure, support-weighted ID penalizes those features that have lower

locally discriminative power as well as higher density. Through extensive experiments

on various datasets, we show that NNWID-Descent allows a significant amount of

local feature vector sparsification while still preserving a reasonable level of graph

accuracy.

1.2 Subspace Clustering

Cluster analysis is a branch of statistics that has a significant contribution in

many research areas including businesses intelligence [19], data mining [20], machine

learning [21], image pattern recognition [22], Web search [23], and even security [24].

Cluster analysis or clustering is defined as a process of dividing a set of data objects,

according to some distance measurement, into multiple meaningful groups (clusters)

such that objects are similar within clusters and dissimilar to objects in other

clusters [25].

Several clustering algorithms [26, 27, 28, 29] have been proposed to be used

as a standalone tool for analyzing a given dataset, or as a preprocessing step for

other algorithms such as feature selection and classification. However, traditional

clustering techniques may lose their scalability and effectiveness because of (1) the

issues associated with the ”curse of dimensionality”, and (2) the dataset objects may

be effectively represented by only a subset of the dimensions or features, which is

often much smaller than the actual space [30].

The questions that naturally arise—due to the curse of dimensionality— are:

how to effectively and efficiently find the actual objects that correspond to each cluster

of a given datasets? And how to define the best minimum subset of dimensions

(features) for each cluster without reducing the clustering performance?. Generally,

5

clustering the dataset objects using only the relevant features to the clusters will lead

to a better clustering performance.

One possible solution for clustering high-dimensional noisy data is by using a

sparse clustering framework. This framework aims to cluster objects using a chosen

subset of features that is relevant to the entire dataset objects. Dimensionality

reduction approaches, in terms of features extraction and feature selection, are

employed within the clustering process in the sparse clustering framework in order to

(i) improve the clustering quality, and (ii) reduce the storage and computational

requirements of high-dimensional datasets. Correlation-based clustering methods

using PCA, and Spectral Clustering [31], are examples of sparse clustering algorithms

that are based-on features extraction techniques. However, these methods require

intensive computation time for large datasets, which negatively impacts their scala-

bility. Conversely, the sparse clustering algorithms that are based on feature selection

techniques, such as feature weighting [3, 4] or Lasso-type constraint (L1-norm) [32],

perform clustering on only a small set of useful features. The sparse clustering

framework, in general, is important for many applications that use streaming data or

text data where many noisy features are present. The sparse clustering algorithms

are global, therefore, these algorithms are unusable for revealing useful information

from each cluster.

In practice, however, the subset of features that is relevant to one cluster is

not necessarily relevant to another cluster. For instance, there are billions of online

news articles, where each is described by a collection of keywords. It is necessary for

personalized news recommendation systems to be able to group these articles based

on a different set of keywords that match specific user preferences [33]. Therefore,

there is a need to define a framework that simultaneously finds the clusters of data

objects, and determines each subset of features (subspace) that describes each cluster.

This framework is known as subspace clustering (Figure 1.2). The subspace clustering

6

framework integrates feature evaluation techniques with clustering algorithms in order

to localize the search of the subspace that is relevant to each cluster individually.

Several popular subspace clustering algorithms have been proposed in the literature.

CLIQUE [34] and MAFIA [35] for example, discover all dense regions of dataset

objects in all possible subspaces. Other common algorithms, such as PROCLUS[36]

and δ-clusters [37], start with initial approximate clusters, then iteratively evaluate

and select features for each cluster in order to regenerate the optimal quality clusters.

However, subspace clustering algorithms can lead to a loss of information and a

distortion in the resulting clusters. This is due to the fact that these algorithms

explicitly and rigidly select small subsets of relevant features and excessively prune

away other features in order to define the underline cluster subspaces.

(a) Cluster A defined by features (X, Y) (b) Cluster B defined by features (Y,Z)

Figure 1.2 Subspace clustering illustrated for a 3-D dataset with two clusters,the
first cluster defined by axes (features) X and Y, and the second cluster defined by by
axes (features) Y and Z.

In order to avoid the loss of information and the clustering distortion, one

possible technique that can be adopted by subspace clustering algorithms is to

conservatively and gradually remove the noisy features until obtaining the best subset

of informative and important features per object or cluster. Motivated by this tech-

nique, we address the subspace clustering issues by presenting a subspace clustering

7

algorithm called k-LIDoids that extends the utility of the support-weighted ID feature

selection criterion within a clustering framework. By using support-weighted ID to

identify a relevant subset of features locally for each cluster, k-LIDoids is able to

construct clusters together with finding a low-dimensional subspace for each of the

clusters. Experimentally, we show that our method can define the minimum subset

of features per cluster while maintaining or increasing the clustering accuracy.

1.3 Binary Fingerprinting and Indexing

The increasing number of private multimedia data (documents, images, audio and

videos) stored on the cloud on a daily basis requires novel solutions for providing a

secure search for these data. Cloud storage, in general, can be abused by different

malicious actors such as “Man-in-the-Cloud” (MITC) attacks, data breaches and data

loss, or phishing attacks. Passive adversary (a.k.a honest-but-curious attack) where

semi-honest people try to see or infer information from the data is a constant threat

for the data stored on the cloud.

Information hiding is one of the information security branches that is concerned

about the information search and exchange obscuring— either in transit or stored—

from unintended observers [38]. Areas related to information hiding include, covert

channels [39], steganography [40], anonymity [41, 42, 43], and watermarking [44].

Fingerprinting, which is an application of watermarking, refers to an attempt

of creating a unique identification for a data object. Fingerprinting can be active

or passive. In active fingerprinting, the unique identification (i.e., serial number) is

embedded into a digital object using watermarking techniques. Passive fingerprinting,

which is the focus of this work, uses some features of the object to define an identifier

for that object [38]. In addition to providing copyright and data privacy, fingerprinting

can be used to trace any illegal use of the data [45], or verify the integrity of the

data [46]. Typically, fingerprints have much shorter and compact numeric sequences

8

than the actual objects. One possible representation for the fingerprint is the binary

(bits) vector, called binary fingerprint or binary code, constructed from the object

feature vector.

There has been much research investigating the obtaining of compact binary

codes in a variety of digital data domains. The state-of-the-art methods are based on

Locality Sensitive Hashing (LSH) [47, 48] and have been successfully used to generate

audio and images fingerprints [49, 50]. Other methods such as machine learning

techniques [51, 52, 53], Spectral Hashing (SH) [54], bag-of-words approach [55], triplet

histogram [56], local point aggregates [57], and fingerprint generation [58], have also

been considered for fingerprinting purposes.

Binary fingerprinting is also a highly desirable for representing sensitive high-

dimensional digital and multimedia data. For a better construction of the fingerprints

and in order to avoid the ”curse of dimensionality”, it is necessary to locally reduce

the dimensionality of these high-dimensional objects, and then perform fingerprinting

for each object in the reduced space. In large datasets, however, the number of the

generated fingerprints can be high and the similarity measure evaluations in a linear

scan search can be extensive to compute. Therefore, developing an efficient and

effective indexing data structure is important for reducing the number of similarity

evaluations and speeding up the search by pruning the search space once the query

is presented. In general, the efficiency of the search in the binary fingerprint data

depends on the length of each fingerprint and the computational complexity of the

used index structure, which has to be accurate, secure, and salable for large databases.

Existing techniques for indexing the binary data such as Semantic Hashing [53]

or Locality Sensitive Hashing [59] may lose their efficiency and effectiveness with

the increasing number of 0’s dimensions in the binary fingerprints. Furthermore,

common indexing methods that applied on dimensionality-reduced representations

9

assume that the dataset is globally reduced, thus, these methods are impractical for

indexing binary fingerprints.

Limited existing studies have embedded the local dimensionality reduction

techniques in the index construction process for datasets. These studies aim to

create a multilevel index format based on using subspace clustering methods. Two

main strategies are adopted in the construction of these types of indexes. First, a

subspace clustering algorithm is used to generate a single clustering for the whole

dataset, then a dimensionality reduction technique, such as PCA, is applied on

each cluster separately. A tree-based index is then created for each of the reduced

representations by using one or more dimensions of the cluster [60]. Examples of

this type of indexing are LDR [61] and MMDR [62]. Second, a hierarchal nesting

of subspace clustering framework is used in the index construction process so as to

consider multiple representations of the objects according to different dimensions in

each level. This strategy applies a subspace clustering algorithm recursively in each

level of the tree in order to re-cluster existing subspace clusters. SUSHI [60] and

4+-tree [63] are examples of such type of indexing methods.

Despite the high performance of the two aforementioned strategies that are

adopted in the multilevel indexing, these strategies have two main shortcomings.

First, they consider full feature representations for the objects in the leaf level in

order to prune the search space; computing the similarity between the query and

the objects using the full high-dimensional space will degrade the search efficiency

and data privacy. Second, the utilized subspace clustering algorithms lose their

performance when excessively eliminating many features from the clusters.

Perhaps one source of difficulty is to automatically generate and index a huge

database of fingerprints for high-dimensional data in order to achieve a secure–against

any passive adversaries– and efficient search and retrieval. This database could be

saved on a network server or the cloud. The potential scenario, shown in Figure 1.3, is

10

to store an efficient fingerprints’ index with its encrypted data objects in the server’s

database. When presented with any query object, its fingerprint is computed and

compared against the stored index. The results of a fingerprints set, with a size K,

can be associated with their encrypted data objects and sent to the client. On the

client end, the fingerprints part is extracted from the results using a specific extracting

algorithm, and the data part is decrypted. The fingerprints are then modified with

the actual feature vector values of the data in order to refine the results and obtain

a smaller and more accurate results set—with a size Ḱ � K.

Figure 1.3 A possible scenario for searching of encrypted data on a server or the
cloud.

As a possible application for NNWID-Descent and k-LIDoids, we define

LID-Fingerprint, a new binary fingerprinting and multi-level indexing framework

for the data represented in high-dimensional spaces. LID-Fingerprint can be

used for hiding the information on the server side (or the cloud) as a way of

preventing passive adversaries. The binary fingerprints are derived from the sparse

representations of the data objects, which are resulted from using the feature selection

criterion, (support-weighted ID), within a similarity graph construction method,

11

NNWID-Descent. Furthermore, we define a multi-level index structure based on

the subspace clustering algorithm, k-LIDoids, to provide an efficient and secure

similarity search for large fingerprint repositories. LID-Fingerprint ensures data

suppression and data masking by reducing the overall quality of the data in order to

prevent any sensitive information to be inferred. Experiment results have shown that

LID-Fingerprint is able to generate compact binary fingerprints, and also provides

an efficient and secure indexing technique that allows a reasonable level of search

accuracy.

The remainder of this dissertation is organized as follows. In Chapter 2, the

related work and the support-weighted ID criterion are discussed. The works of k-NN

graph construction and subspace clustering algorithms are presented in Chapters 3

and 4, respectively. Chapter 5 presents the work of the binary fingerprinting and

multi-level indexing framework. Finally, the dissertation is concluded in Chapter 6.

12

CHAPTER 2

RELATED WORK

In this chapter, we discuss the main work related to this dissertation. Section 2.1

surveys the literature on feature selection techniques with more emphasis on those

techniques that are integrated with search and clustering algorithms as the basis for

the works presented in Chapters 3 and 4. Section 2.2 introduces some of the state-

of-the-art subspace binary fingerprinting and Indexing algorithms that motivate the

work proposed in Chapter 5. Section 2.3 then presents the feature selection criterion,

Support-Weighted Intrinsic Dimensionality (support-weighted ID, or wID) [6] as the

basis for the design and analysis of the algorithms presented in this dissertation.

2.1 Feature Selection Techniques

Feature selection can be defined as the process of selecting a subset of relevant

features and removing noisy and redundant ones in order to reduce the computation

time and improve the learning accuracy [64]. Feature selection techniques, which

are widely applied in data mining and machine learning problems such as search

and clustering, can be categorized as wrapper-based [65] or filter-based [66]. The

wrapper-based techniques select subsets of features using heuristic search strategies,

and evaluate the quality of each combination of reduced features using a target

learning algorithm. The filter-based techniques, on the other hand, evaluate feature

relevance using a statistical measure to assign a score to each feature. The features

are then ranked based on the assigned scores and either selected or removed from

the dataset. Filter-based techniques are more desirable in the context of k-NN graph

construction and clustering analysis because there is no a specific learning algorithm

13

is required, and the computational time is much lower compared to wrapper-based

approaches.

In the subsequent sections, we survey feature selection techniques, which can be

embedded in both supervised and unsupervised learning algorithms, with a particular

emphasis on unsupervised methods, as the main interest of this dissertation, are

considered.

2.1.1 Supervised Feature Selection

Feature selection methods are commonly used in supervised learning (i.e classification)

algorithms to maximize their predictive accuracy. The fundamental principle of

these methods is using evaluation criteria to measure the relevance or the correlation

between the features and the dataset class labels. For example, Song et al. [67]

presented a filter method, BAHSIC, that runs a backward selection algorithm

that discards features based on their correlation, measured by the Hilbert-Schmidt

independence criterion, with the class labels. In [17], a supervised feature selection

method was presented that uses an improved k-NN graph-based text representation

model to reduce the number of features and predict the category of the text in the

test set.

Han et al. [16] proposed a Weight Adjusted K-Nearest Neighbor (WAKNN)

classification scheme where the weights of the features are learned in small steps using

an iterative algorithm to gradually improves the classification objective function. In

[68], the authors use class labels for finding the features, with low variance values, that

distinguish each cluster’s objects in a modified fuzzy c-means clustering framework.

Rashedi et al. [69] integrated image feature adaptation and selection in a simul-

taneous process. The authors use a hybrid meta-heuristic swarm intelligence-based

search technique, called mixed gravitational search algorithm (MGSA), such that each

image database has its own parameters for feature extraction. These parameters

14

values are encoded together with a binary vector corresponding to the selected

features.

Jiang et al. [70] proposed a relevance feedback learning method for online image

feature selection. The returned results for a given query image are labeled as ’relevant’

or ’irrelevant’ by the user. The most related features to the query concept are then

selected using a psychological similarity between the two labeled sets.

Relief [66], Fisher score [71], and Information Gain [72] based methods, are

among the most representative algorithms of the supervised feature selection model.

However, the previously discussed methods yield good learning results for labeled

data objects only, and require ground truth input, which is not always available.

2.1.2 Unsupervised Feature Selection

Typically, class information is not available in unsupervised feature selection methods,

and thus, it is difficult to decide the importance of a feature — especially when many of

the features may be redundant or irrelevant [73]. Most existing unsupervised feature

selection approaches are customized to a particular search or clustering algorithm. In

general, several articles in the literature attempt to solve the feature selection using

clustering techniques as a primary model [74, 75, 76].

Unsupervised feature selection methods can be further classified into global and

local methods. In the subsequent paragraphs, we give few examples of global feature

selection. Then, we provide some common local feature selection with more emphasize

on those clustering algorithms that are closely related to the methods defined in this

dissertation.

Global Feature Selection In global feature selection methods, the features are

selected based on their relevancy that has been computed globally using the entire

dataset. The Laplacian Score (LS) [77] is one of the most popular unsupervised

filter-based methods for generic data. LS selects the features to be used for all objects

15

in the dataset based on their ability to discriminate among object classes. LS favors

those features that have high variance on the entire dataset and low variance within

local neighborhoods.

In [78], Yang et al. proposed the unsupervised discriminative feature selection

(UDFS) algorithm that incorporates discriminative analysis and L2,1-norm minimiza-

tion into a joint framework. Based on the optimization of an objective function, the

most discriminative feature subset is selected from the whole feature set in a batch

mode. However, this algorithm requires the number of classes as an input, which is

often difficult to define, and also has a large time complexity for high-dimensional

datasets.

Global feature selection techniques can be integrated within the clustering

process to generate what is so called a sparse clustering algorithm. Sparse clustering

algorithms aim to find clusters with respect to a small fraction of the features—among

the entire dataset—instead of full features set. Dash and Liu [3] addressed the

selecting of subset of important features for the whole dataset in order to assist

the clustering process. Their method, RANK, consists of two steps: first, it ranks the

features using entropy-based ranking measure. Then, it evaluates the features using a

scattering invariant criterion function for clustering, in order to select the best subset

of features.

In a similar way, Cai et al. in [79] proposed a Multi-Cluster Feature Selection

(MCFS) method which uses a two-step strategy to select features according to

spectral clustering. The first step is to learn the correlation between features using

spectral clustering, then features are selected using spectral regression with L1-norm

regularization in the second step. MCFS shows a better improvement over Laplacian

Score (LS).

The authors in [4] presented a method that minimizes the ratio, called gener-

alized Fisher ratio, of the average of intra-cluster to the the average of inter-cluster

16

by optimizing variable (feature) weights in k-means clustering. Similarly, in [80], the

feature-weight learning used in a fuzzy c-means (FCM) clustering algorithm to assign

various weights to different features, based on weighted Euclidean distance, in order

to improve the clustering performance.

Witten and Tibshirani [32] proposed a general framework for feature selection

in sparse clustering. They applied Lasso-type constraint (L1-norm), as a feature

selection method embedded in the clustering process, with focusing on the k-means

and hierarchical clustering methods. Lasso-type constraint is applied in the full batch

setting of maximizing between cluster distances rather than minimizing the objective

function of the clustering algorithms.

Zhang and Lu in [81] proposed a large-scale sparse clustering (LSSC) algorithm

based on a two-step optimization strategy. First, obtaining initial clustering results

using k-means algorithm. Then, refining the initial results using a spare coding

algorithm, which was sped up using the nonlinear approximation and dimension

reduction techniques. For more algorithms that are defined as global feature selection,

we refer the reader to [82, 83, 84, 76].

Local Feature Selection Local feature selection methods are based on the idea

that the discriminative power and the importance of a feature may vary from one

neighborhood to another; they aim to select features based on their relevancy to a

given neighborhood. Integrating of local feature selection methods with clustering

algorithms called subspace clustering. Subspace clustering algorithms aim to search

for a relevant subset of features locally to each cluster, which allow them to find the

best clustering exist in multiple subspaces. A summary of more recent researches in

subspace clustering models and algorithms can be found in [85, 86, 87]. In general,

there are two types of subspace clustering, bottom-up approaches, and top-down

approaches.

17

Bottom-up approaches These approaches start from low-dimensional subspaces

and search for high-dimensional subspaces if there are possible clusters exist.

Searching for high-dimensional subspaces can be reduced using different pruning

techniques. CLIQUE [34], for example, is a simple bottom-up density and grid-based

method that automatically and efficiently indexes high-density cluster subspaces

of high-dimensional datasets, and eliminates subspaces with low density objects.

CLIQUE is able to discover irregular-shaped clusters, and objects can belong to

multiple clusters.

MAFIA [35] is an extension of CLIQUE that uses a density and grid-based

method to improve the efficiently and clustering quality. It also goes one step further

by allowing parallelism of the clustering process in order to improve the scalability.

ENCLUS [88] is similar to CLIQUE except that it uses an entropy measure for the

clustering evaluation rather than the density.

SUBCLU [89], an extension of the DBSCAN [90], is a density-based subspace

clustering algorithm for detecting clusters in high-dimensional data. SUBCLU is a

greedy algorithm that computes all density-connected clusters that are hidden in

the subspaces of high-dimensional data. In contrast to CLIQUE and other grid-

based approaches, SUBCLU provides a better clustering quality but requires a higher

execution time. Modifications of SUBCLU include FIRES [91] and INSCY [92].

A review of other bottom-up approaches including CBF [93], CLTree [94], and

DOC [95] can be found in [85, 86].

Top-down approaches In top-down approaches, subspace clustering algorithms

start from the full dimensional subspaces, and search iteratively for the low-

dimensional subspaces by using multiple iterations to evaluate and select features

in the context of each cluster objects, then refine the resulted clusters. For example,

Li et al. [96] introduced a localized feature selection algorithm for clustering that is

18

able to reduce noisy features within individual clusters. Their algorithm computes,

adjusts, and normalizes the scatter separability for individual clusters before applying

a backward search technique to find the optimal (local) feature subsets for each

cluster.

Kim et al. [97] proposed an evolutionary algorithm that is used as a wrapper

around clustering algorithm (k-means) to select a subset of features. This algorithm

uses multi-objective fitness functions or Pareto optimization for clustering validity

criteria, namely: cluster cohesiveness-related to intra-cluster distance; separation

between clusters-related to inter-cluster distance; number of clusters; and number

of selected features. The fitness of an individual (i.e., a candidate set of selected

features) is computed by running a clustering algorithm with the selected features

and measuring the corresponding clustering validity criteria.

Friedman and Meulman [98] defined a method for clustering objects on subsets

of attributes by computing a weight for each variable (i.e., attribute) in each cluster.

They implemented their variable selection criterion in the context of a hierarchical

clustering. Mitra et al. [75] introduced an algorithm that partitions the original

feature set into clusters based on a k-NN graph principle. To detect and remove

redundant features, their algorithm uses a pairwise feature similarity measure, the

Maximum Information Compression index, which finds the linear correlation between

features in the clusters. This algorithm has a low computational complexity, since it

does not involve any search for feature subsets [75]. However, their model may be

too restrictive for the real datasets, since correlations among features within clusters

may not exist, or may be non-linear when they do exist [99].

Among the popular top-down methods are, PROCLUS [36], FINDIT [100],

and δ-clusters [37]. PROCLUS [36] is the first iterative top-down subspace

algorithm. Similar to k-medoids clustering algorithm, it first generates k initial

cluster representatives from a sample of high-dimensional dataset, then iteratively

19

refines the clustering by searching for the appropriate subspaces defining each cluster

using the local neighborhood to the cluster representatives. In each iteration, the

subset of dimensions with average distances smaller than the average distance of all

dimensions in the neighborhood to the medoid is determined as the possible subspace

for each cluster. Once all subspaces are defined, the clusters are discovered from the

subspaces using the distance measures on subsets of dimensions. PROCLUS is able

to find the possible outliers cluster as well.

A Variation of PROCLUS is FINDIT [100], which employs additional heuristics

to enhance clustering efficiency and accuracy. FINDIT uses a specific distance

measure called the Dimension Oriented Distance (DOD). The DOD measure of

each cluster representative is used to find the correlated dimensions (i.e., subspace)

of each cluster. The clusters are then formed by assigning the objects to cluster

representatives based on the subspaces found.

Yang et al. [37] presented a subspace clustering method named δ-clusters that

uses a distance measure to capture the coherence manifested by a subset of objects

on a subset of dimensions simultaneously. Correlation measures are used to find

the coherence of each object or feature to a particular cluster. The algorithm starts

with initial cluster representatives and iteratively enhances the clustering quality by

randomly swapping attributes and data objects to improve each cluster. This iterative

process is terminated when there are no more improvements occurred in the cluster.

However, all the previous popular approaches require a proper tuning for the

input parameters, such as the grid size and the density in CLIQUE and MAFIA,

the initial number of cluster representatives in RPOCLUS, the minimum distance

between two clusters in FINDIT, and the individual cluster size in δ-clusters [86],

which are all difficult to determine.

20

2.2 Binary Fingerprinting and Indexing

In this section, we first discuss the related work of binary fingerprinting with the

main focus on the techniques that provide an efficient and secure similarity search.

Then, the main search algorithms in binary data also provided as a motivation for

the importance of defining a new indexing technique to enhance the search in binary

fingerprints. Last, local dimensionality indexing methods are presented as the basis

for the indexing technique proposed in Chapter 5.

2.2.1 Binary Fingerprinting Generating

A number of works on designing and generating fingerprints have been proposed in the

literature. The common goals for these works are accelerating the nearest neighbor

search beside hiding the information from unauthorized observers on network servers

or the cloud. Perhaps the Locality Sensitive Hashing (LSH) [101, 102] algorithm is the

state-of-the-art method to obtain fingerprints. This algorithm seeks to find an efficient

binary representations of high-dimensional data objects by computing hash functions

based on random projections. Each random projection contributes few bits in the

object fingerprint. The hash functions help in maintaining the similarity between

objects in the new binary space [51]. Other LSH-based binary fingerprinting methods

are also proposed such as Min-Hash [103], Super-Bit [104], Simhash [48], geometric

min-hashing [105], and Spectral Hashing [54]. Although LSH and its variants work

efficiently for high-dimensional datasets, it has been reported that when the number

of bits is fixed and relatively small, LSH may perform very poorly in generating

accurate fingerprints for the data objects [51].

A common step for many fingerprinting methods is to include dimensionally

reduction techniques within binary codes generating. For instance, in [51], Torralba

et al. proposed a method that adapts machine leaning techniques for dimensionally

reduction, such as Boosting [49] and Restricted Boltzmann Machines [53], as well

21

as LSH in order to convert image Gist descriptors into compact binary codes for

large databases. This method allows fast object recognition with an accuracy value

comparable with using full descriptors. Strecha et al. [106] used Linear Discriminant

Analysis (LDA) as a dimensionality reduction technique for original vectors prior

learning the binary codes based on a global matrix projection using a gradient-based

method called AdaBoost [107]. Caballero et al. [58] proposed FiG, an automatic

active fingerprint generation system. Their system automatically generates candidate

queries, sends them to a set of training hosts, identifies useful queries, and applies

machine learning techniques, which include dimensionally reduction, to identify a

different set of possible fingerprints. However, the previously mentioned methods are

supervised that depend on the objects labels information in order to define the binary

codes for the datasets.

Unsupervised fingerprinting methods are also defined, where the dataset labels

are not required. The authors in [108] introduced two quantization methods to

convert real-valued Spectral minutiae features into binary codes called, Spectral Bits,

and Phase Bits. They applied two feature reduction techniques, Column Principle

Component Analysis (CPCA) and Line Discrete Fourier Transform (LDFT) [109]

prior generating the compact fixed-length binary representations for minutiae tem-

plates using the quantization methods. The proposed methods mask out (change

to 0’s) the features that have absolute values are below certain thresholds, while

converting other features to 1’s. Gong and Lazebnik [110] defined an iterative

quantization (ITQ) method for learning the binary codes. The method starts

by transforming the data using PCA-binary coding scheme, then an alternating

minimization approach is used for refining these transformed data in order to reduce

the quantization error.

Farooq et al. [56] presented a technique that satisfy two criteria, anonymity and

recoverability. The technique converts already generated fingerprints to anonymous

22

binary representations based on minutiae triplets that can be used in a template-based

matching. These binary representations are then transformed to anonymous represen-

tations by assigning a unique key to each user. Basically, anonymous fingerprinting

construction requires tow main phases. First, selecting invariant features from the

original fingerprint that will be used later for computing the binary fingerprint.

Second, the anonymous binary fingerprint is generated by assigning a key to each

user. This key helps in randomizing the user template, which can be redefined if this

template has been compromised. However, this technique needs to calculate all the

possible triples invariant features, and therefore, it has high computational costs.

2.2.2 Algorithms for Fast Search with Binary Data

Binary data, or binary fingerprints, allow a sub-linear and efficient search using binary

(bits) operations with respect to the database size. The typical distance metric used in

binary data search is the Hamming distance, which can be computed quickly between

any two binary vectors as a bitwise XOR operation followed by a set bit count on

the result. In this section, we will give a brief review for the main data structures

used to perform the nearest neighbor search in binary data. The most naive method

is a brute-force linear scan that computes the Hamming distance between the binary

representation of the query vector with every fingerprints in the database. This

method is only practical for very small datasets.

Salakhutdinov and Hinton [53] presented a nearest-neighbor search for binary

data called Semantic Hashing. Each binary vector is corresponded to a memory

address such that retrieving similar neighbors to a query vector is performed by

retrieving all objects within the Hamming ball around that query vector. This

approach is extremely fast, but it is impractical for long binary vectors since the

Hamming distance between objects becomes large, which increases the number of

objects within the Hamming ball that becomes difficult to explore [111].

23

Locality Sensitive Hashing (LSH) [101] is a popular randomized hashing

framework for a fast approximate nearest-neighbor search. LSH inserts database

objects into several hash tables such that similar objects are assigned the same hash

key, and hashed to the same buckets with a high probability. The hash keys usually

are low-dimensional binary (bits) vectors, where these bits are generated using several

hash functions. Given a query object, it is directly hashed to the stored buckets, and

its matched buckets are retrieved, which their elements then are compared based on

a brute force matching using the Hamming distance. Many LSH-based algorithms

have been developed in order to improve the accuracy and speed of the original

one [112, 47, 48, 113, 105]. However, designing appropriate hash functions may limits

the flexibility of these algorithms.

Hierarchical clustering is another popular technique used for the search in binary

data. Brin [114] proposed Geometric Near-Neighbor Access Tree (GNAT). GNAT

does a hierarchical decomposition of the search space, where some of data objects

are used to represent the cluster centers instead of computing the cluster means.

This change helps in speeding up the search and allows the tree to work in any

metric space including the Hamming space. The authors in [115] extended GNAT by

building multiple hierarchical cluster trees for the binary vectors. To search for the

nearest neighbor objects for the query object, all trees are traversed simultaneously

in a best-first approach. This method is implemented in an open source library called

Fast Library for Approximate Nearest Neighbors (FLANN) [116]. However, even with

the excellent performance of the existing hierarchical clustering techniques to search

for binary data, these techniques assume that the binary data is already generated,

which is different than the scope and the objective of the work presented in Chapter

5 of this dissertation.

24

2.2.3 Local Dimensionality Reduction for Indexing

In order to handle queries in high-dimensional datasets, two main strategies of

dimensionality reduction are used within indexing methods: global dimensionality

reduction, and local dimensionality reduction. In a global dimensionality reduction

strategy, all dataset objects are reduced to the same space. The index is then created

only based on this reduced space. Examples of these indexing methods include

TV-Tree [117] and iDistance [118]. However, the global dimensionality reduction

strategy does not consider the local correlations between the objects in the dataset.

Local dimensionality reduction strategy, on the other hand, considers the

local correlations in the dataset by reducing the dimensions of each object or

group of objects individually. We provide here some common techniques in Local

dimensionality reduction as they are closely related to the work in this dissertation

(Chapter 5). For example, LDR [61], is a multilevel index structure that uses

a subspace clustering to divide the whole dataset into local correlated clusters.

After performing dimensionality reduction in each cluster individually, a separate

high-dimensional index is constructed for every subspace. MMDR [62] differs from

LDR in that it constructs a single index for every reduced dimension in every cluster.

Both LDR and MMDR use PCA as a dimensionality reduction method but they do

not consider multiple representations for objects in different dimensions [60].

In [63], Cui et al. introduced 4+-tree a multilevel index structure based on a

hierarchal top-down subspace clustering. In this index, the dataset is partitioned into

clusters and then each cluster is divided further into sub-clusters in each inner level of

the tree. In each level, the data objects are represented using different dimensionalities

based on applying PCA. The number of dimensions increases toward the leaf level

of the index, and the full feature representations of the objects are used in the leaf

level. The lower dimensions of 4+-tree in each level can help in pruning the search

25

space and reducing the computational cost of distance evaluations between queries

and dataset objects.

Günnemann et al. [60] introduced SUSHI, a more general framework for a

multilevel index structure based on a hierarchal nesting top-down subspace clustering.

Similar to 4+-tree, SUSHI provides a multi-representation of objects based on the

reduced dimensions in each level. However, instead of increasing the number of

dimensions toward the leaf level, the number of dimensions for each cluster in each

level is determined by the subspace clustering algorithm used. To prune the search

space, SUSHI uses a compact description of each cluster, called Subspace Enclosing

Rectangular (SER), so that the queries traverse through different filters of the index.

Exposing a subset or a full set of dimensions in the index levels of both 4+-tree or

SUSHI leads to insecure search either on the network server or the cloud.

2.3 Support-Weighted Local Intrinsic Dimensionality

The intrinsic dimensionality of a dataset can be defined as the minimum number

of dimensions/features needed to represent the data without information loss [119].

Generally, a dataset, X, with a number of dimensions m, have Intrinsic Dimensionality

(ID) equals to d, if its objects lie entirely within d-dimensional subspace (where d <

m). There are many ID estimation measures that have been proposed in the literature:

classical measures, which includes the Hausdorff dimension, Minkowski-Bouligand or

”box counting” dimension, and the correlation dimension; fractal-based measures of

the space filing capacity or self-similarity of the data [120, 121]; and topological or

local measures where ID is estimated based on using the neighborhood of each dataset

sample, such as Near Neighbor Algorithm [122], and the methods based on Topological

Representing Networks (TRN) [123]. Popular projection techniques, such as linear

and nonlinear PCA [124, 125, 126], can also produce as a byproduct an estimate of

the ID of the datasets.

26

In the theory of intrinsic dimensionality, the expansion-based models (such as

the minimum neighbor distance (MiND) [127]), expansion dimension (ED) [128], and

the generalized expansion dimension (GED) [129]), quantify the ID in the vicinity of

a point of interest in the data domain, by measuring the rate of growth in the number

of data points encountered as the distance from the reference sample increases. As a

motivating example, the volume of an m-dimensional ball, in Euclidean space, grows

proportionally to rm, when its size is scaled by a factor of r. If we consider the

volumes V1 and V2 are defined for two balls of differing radii r1 and r2, respectively,

and centered at a common reference point, then, the expansion dimension m from

the ratios of the volumes and the distances from this reference point can be deduced

as follows:
V2

V1

=

(
r2
r1

)m

⇒ m =
ln (V2/V1)

ln (r2/r1)
(2.1)

For finite datasets, GED formulations are obtained by estimating the volume

of balls as the numbers of points they enclose [129]. Since classical expansion models

estimation is restricted to a neighborhood around the sample of interest, then they

can provide a local view of the dimensional structure of the data by treating the

probability mass as a proxy for the volume.

2.3.1 Local Intrinsic Dimensionality

Instead of regarding intrinsic dimensionality as a characteristic of a collection of data

points distances from a supplied reference point, the GED was recently transfered to

a statistical setting of continuous distance distributions, of a random variable X. By

letting the radii r1 and r2 of the two balls (defined above) be r1 = x and r2 = (1+ε)x,

and ε → 0+, then, ID can be modeled as a function of distance X = x. This leads to

a formal definition of the local intrinsic dimensionality LID [130].

27

Definition 1 (Local Intrinsic Dimensionality (LID) [130, 131]) Let X > 0 be

a random variable denoting the distance x from a given reference point to other data

samples. If the cumulative distribution function F (x) of X is positive and continuously

differentiable at distance x > 0, the LID of F at distance x is defined by:

IDF (x) , lim
ε→0

ln(F ((1 + ε).x)/F (x))

ln(1 + ε)
,

r · F ′(x)

F (x)
(2.2)

whenever the limit exists.

The last equality in Equation 2.2 follows by applying l’Hôpital’s rule to the

limit [130]. The notation F (x) of the probability measure is analogous to the volume

V in Equation 2.1; however, the underlying distance measure need not be Euclidean.

Under the distributional interpretation, the original dataset defines a sample of

distances at a given point. The intrinsic dimensionality (referred as ‘Local ID’ or

LID) of this distance distribution F is estimated. The definition of LID at x can

be extended to be defined as the limit, when the radius x tends to zero (x → 0+),

whenever this limit exists:

ID∗
F (x) , lim

x→0+
IDF (x) (2.3)

The cumulative distance function F (x) in the relative rate, which is described by

IDF , increases as the distance x increases from 0. Thus, IDF can be estimated using

the distances of x to its k nearest neighbors within the sample [8]. In the ideal case,

IDF equals the dimension of the submanifold when the data in the vicinity of x is

distributed uniformly within a submanifold. However, in general these distributions

are not ideal, the manifold model of data does not perfectly apply, and IDF is not an

integer. Nevertheless, the local intrinsic dimensionality does give a rough indication of

the dimension of the submanifold containing x that would best fit the data distribution

in the vicinity of x. For more details regarding to the LID model, the readers may

refer to [130, 6].

28

Estimation of LID The smallest k nearest neighbor distances from a given point

can be regarded as ‘extreme events’ associated with the lower tail of the underlying

distance distribution. Therefore, the modeling of neighborhood distance values can

be investigated from the viewpoint of extreme value theory (EVT) (a branch of

statistics). It is shown, in [132], that the EVT representation of the cumulative

distribution F completely determines function IDF , and that the EVT index is in

fact identical to ID∗
F

Under very reasonable assumptions, the tails of continuous probability distri-

butions converge to the Generalized Pareto Distribution (GPD), a form of power law

distribution [133]. From this, Amsaleg et al. [8] developed several estimators of LID to

heuristically approximate the true underlying distance distribution by a transformed

GPD. Among these, the Maximum Likelihood Estimator (MLE), which has a relative

stability and convergence properties, exhibited a useful trade-off between statistical

efficiency and complexity. Given a reference sample x ∼ P , where P represents the

data distribution, the MLE estimator of the LID at x is defined as follows:

IDF (x) = −
(
1

k

k∑
i=1

ln xi

w

)−1

. (2.4)

where x1, ... , xk are observations of a random distance variable X taking values

in the range (0, w]. Each xi denotes the distance between x and its i-th nearest

neighbor within a sample of points drawn from P , and xk = w is the maximum of

the neighbor distances (k-nearest neighbor distance). In practice, the sample set is

drawn uniformly from the available training data (omitting x itself), which itself is

presumed to have been randomly drawn from P . We emphasize that the LID defined

in Equation 2.3 is a theoretical quantity, and that LID as defined in Equation 2.4 is

its estimate. In the remainder of this dissertation , we will refer to Equation 2.4 to

calculate the LID estimates.

29

2.3.2 Support-Weighted Local Intrinsic Dimensionality Measure

We propose in this dissertation a new feature evaluation strategy based on the

Local Intrinsic Dimension (‘Local ID’, or ‘LID’) model originally appearing in [7]

and discussed above. To recall, given a distribution of distances with a univariate

cumulative distribution function F that is positive and continuously differentiable in

the vicinity of distance value x, the indiscriminability of F at x is given by

IDF (x) ,
x · F ′(x)

F (x)
. (2.5)

The indiscriminability reflects the growth rate of the cumulative distance function at

x; it can be regarded as a probability density associated with the neighborhood of

radius x (that is, F ′(x)), normalized by the cumulative density of the neighborhood

(that is, F (x)/x). The local intrinsic dimension has been shown to be equivalent

to a notion of local intrinsic dimensionality, which can be defined as the limit

ID∗
F = limx→0+ IDF (x). However, the notion of local ID as proposed in [130, 6]

is considerably more general, in that the original model of [7] has been extended

to handle multivariate real-valued functions that are not necessarily the cumulative

distribution functions of distance distributions.

When considering a distance distribution on a space of many features, it is

natural to ask which variables or features are contributing most to the overall

discriminability of the function or cumulative distribution function (as the case may

be). Two variables or features with the same local ID value may not necessarily have

the same impact on the overall ID value. To illustrate this, let Φ and Ψ be the

respective cumulative distribution functions of two univariate distance distributions

on distance variable x.

The indiscriminability IDΦ(x) can be thought of as having a ‘support’ equal to

the probability measure associated with distance x — namely, Φ(x); similarly, the

support for IDΨ(x) would be Ψ(x). Even when the indiscriminabilities IDΦ(x) and

30

IDΨ(x) are equal, if (say) the support Φ(x) greatly exceeded Ψ(x), one would be

forced to conclude that the features associated with IDΦ are more significant than

those of IDΨ, at least within the neighborhood of radius x.

For the comparison of the discriminabilities of different features in our proposed

algorithms in this dissertation, we will adopt the following support-Weighted ID

complexity measure. This measure has the highly desirable theoretical advantage

of being additive across features (for more details we refer the reader to [6]).

Definition 2 (Support-Weighted ID [6]) Let F be a real-valued multivariate

function over a normed vector space (Rm, ‖ · ‖), and let x 6= 0 ∈ Rm be a vector

of positive norm. The support-weighted indiscriminability of F at x is defined as

wIDF (x) , F (x) IDF (x) = x · ∇F (x) . (2.6)

Estimating support-weighted ID for the purpose of assessing indiscriminability

can be complicated by the need to standardize the distance within which the

indiscriminabilities are measured — in a k-NN graph, each neighborhood is associated

with its own potentially-unique k-NN distance. If each feature were to assessed at

widely-varying distances, there would be no basis for the fair comparison of feature

performance.

In practice, however, estimation of ID requires samples that are the result

of a k-nearest neighbor query on the underlying dataset. Across such samples,

standardization can be achieved using the local ID representation theorem:

Theorem 1 (Local ID Representation Theorem [130]) Let Φ : R → R be a

real-valued function, and let v ∈ R be a value for which IDΦ(v) exists. Let x and

w be values for which x/w and Φ(x)/Φ(w) are both positive. If Φ is non-zero and

31

continuously differentiable everywhere in the interval [min{x,w},max{x,w}], then

Φ(x)

Φ(w)
=

(x

w

)IDΦ(v)

·GΦ,v,w(x), where (2.7)

GΦ,v,w(x) , exp
(∫ w

x

IDΦ(v)− IDΦ(t)

t
dt
)

, (2.8)

whenever the integral exists.

For a univariate cumulative distribution function Φ at distance x, we can use

Theorem 1 with v = 0 to relate the support Φ(x) with the support at another

desired distance w. If n is the size of the dataset that we are given, we choose

the distance at which over n selection trials one would expect k samples to fall within

the neighborhood — that is, w would satisfy Φ(w) = k/n. The support-weighted ID

would thus be:

wIDΦ(x) = Φ(x) IDΦ(x) =
k IDΦ(x)

n
·
(x

w

)ID∗
Φ ·GΦ,0,w(x) . (2.9)

In [130] it is shown that (under certain mild assumptions) the function GΦ,0,w(x)

tends to 1 as x,w → 0 (or equivalently, as n → ∞); also, IDΦ(x) would tend to ID∗
Φ,

for which reliable estimators are known [8, 134]. Thus, for reasonably large dataset

sizes, we could use the following approximation:

wIDΦ(x) ≈ k ID∗
Φ

n
·
(x

w

)ID∗
Φ

. (2.10)

32

CHAPTER 3

IMPROVING k-NN GRAPH ACCURACY USING LOCAL

INTRINSIC DIMENSIONALITY

In this chapter, we address the problem of improving the tradeoff between k-NN

graph accuracy and the degree of data sparsification. We propose NNWID-Descent, a

similarity graph construction method that utilizes the NNF-Descent framework, while

integrating the feature selection criterion, Support-Weighted Intrinsic Dimensionality

(support-weighted ID) (see Chapter 2 Section 2.3.2), to identify and retain relevant

features of each object. Support-weighted ID penalizes those features that have lower

locally discriminative power as well as higher density.

The remainder of this chapter is organized as follows. Section 3.1 provides an

overview of the NNF-Descent framework. We outline the proposed NNWID-Descent

method in Section 3.2. In Section 3.3, the performance of our method — with

experimental results and analysis on several real datasets — is compared to

NNF-Descent and other competing methods from the literature. Finally, we conclude

the chapter in Section 3.4.

3.1 Overview of NNF-Descent

As the basis for the work presented in this chapter, in this section we provide an

overview of the NNF-Descent algorithm [18]. We also describe its feature selection

criterion, the Local Laplacian score LLS, and discuss its utilization in feature ranking

and sparsification processes.

33

3.1.1 Local Laplacian Score, Feature Ranking, and Sparsification

Local Laplacian Score LLS is used for feature ranking with respect to individual

data object. Assume we have a dataset X with n data objects, each represented by a

D-dimensional feature vector f = (f1, f2, . . . , fD). We further assume that the vectors

are normalized. Then, for an object xi ∈ X, the LLS score for each of its feature fi

can be computed using the following formula:

LLS(fi) =
∑
j

(fi − fj)
2Sij

var(f) (3.1)

where var(f) is the variance of feature f, and Sij is the (Gaussian) RBF kernel

similarity between two object vectors xi and xj defined as:

Sij =

exp(
−‖xi−xj‖2

2σ2), if i and j are connected;

0, otherwise.
(3.2)

Here, σ is a bandwidth parameter. Sij favors neighboring objects xi and xj that are

likely to share the same class label. A smaller value for LLS(fi) indicates that the

feature is stable among the neighbors of object xi. The features are ranked for each

object in decreasing order of their LLS values, and the top-ranked proportion Z of the

ranked list is deemed to be noise. In the sparsification process, the impact of noisy

features is minimized by changing their values in the feature vectors to the global

mean, which is zero due to normalization.

3.1.2 NNF-Descent

The NNF-Descent framework interleaves k-NN graph construction method using

NN-Descent [14] with a feature ranking and sparsification process. Algorithm 1 gives

the complete algorithm for NNF-Descent. After normalizing the original vectors

of the dataset X, the algorithm starts by computing the initial approximate k-NN

graph using NN-Descent [14] (lines 1-2). The NN-Descent procedure depends on the

34

so-called local join operation. Given a target point p, the local join operation checks

whether any neighbor of p’s neighbors is closer to p than any point currently in its

neighbor list, and also whether pairs of neighbors of p can likewise improve each

other’s tentative neighbor list. Noisy features are gradually identified using LLS,

ranked, and then sparsified.

Algorithm 1: NNF-Descent
Input : Dataset X, distance function dist, neighborhood size k, sparsification rate Z, number of

iterations T

Output: k-NN graph G

1 Normalize the original feature vectors of X;

2 Run NN-Descent(X, dist, k) to convergence to obtain an initial k-NN graph G;

3 repeat

4 Generate a list L of all data points of X in random order;

5 foreach data point p ∈ L do

6 Rank the features of p in descending order of their LLS scores, as computed over the current

k-NN list of p;

7 Change the value of the top-ranked Z-proportion of features to 0;

8 Recompute the distances from p to its k-NN and RNN points;

9 Re-sort the k-NN lists of p and its RNNs;

10 For each pair (q, r) of points from the k-NN list and RNN list of p, compute dist(q, r);

11 Use (q, dist(q, r)) to update the k-NN list of r, and use (r,dist(q, r)) to update the k-NN list of q;

12 end

13 until maximum number of iterations T is reached;

14 Return G

3.2 Improving NN-Descent Graph with Weighted ID

The NNF-Descent framework, which integrates feature ranking and sparsification

with k-NN graph construction, serves as the basis for the method presented in

this chapter, NNWID-Descent. In NNWID-Descent, instead of feature variance, a

measure of the discriminability of features is used for feature ranking. In this section,

35

we first provide a brief overview of this measure of discriminability, Support-Weighted

Local Intrinsic Dimensionality or support-weighted ID (Section 2.3.2). The utiliza-

tion of support-weighted ID as a feature selection criterion is then presented in

Section 3.2.1. Finally, the details of the proposed NNWID-Descent algorithm is given

in Section 3.2.2.

3.2.1 Defining Support-weighted ID (wID) for each Feature

Let X = {x1, x2, x3, . . . , xn} be a dataset consisting of n objects such that each

object xi is represented as a feature vector in RD. The set of features is denoted as

F = {1, 2, . . . , D} such that j ∈ F is the j-th feature in the vector representation.

K ≥ k is the neighborhood size for each object per feature. Since the factor k/n

in Equation 2.10 can be regarded as constant, the support-weighted ID criterion for

feature fj of object xi can be simplified:

wIDi(fj) = IDfj ·
(

a

wfj

)IDfj

(3.3)

where IDfj is the local intrinsic dimensional estimate for the neighborhood, and wfj is

the distance to the k-th nearest neighbor with respect to feature fj, respectively. a is

any positive constant representing the distance value x. For simplicity, a can be set as

an average of total averages of K-NN distances for every feature fj across a sample

of many objects. Equation (3.3) helps to find the most discriminative features by

considering both the density of neighborhood around each object and the complexity

of local ID with respect to a particular feature fj.

For feature ranking, a straightforward method is used for selecting the most

local discriminative features for each object using wIDi, in which the D features are

ranked in descending order of wIDi(fj), and a proportion Z of the top-ranked features

are determined as candidates for sparsification. Assuming that the feature vectors

36

have been normalized, the sparsification process (described in Section 3.1.1) will set

the values of the least important features to 0.

3.2.2 NNWID-Descent

Algorithm 2 shows how NNWID-Descent proceeds. The input parameters are K, k Z,

and T , where k ≤ K is the working neighborhood size during the construction of the

output k-NN graph, K is the working neighborhood used for computing the wID value

for each object’s feature, Z is a fixed proportion of features that are sparsified in each

iteration, and T is the total number of desired iterations. The feature sparsification

rate Z should be relatively small.

The algorithm has two phases: an initialization phase, and a sparsification and

refinement phase. In the initialization phase, the algorithm computes a k-NN graph

using NN-Descent after normalizing the original vectors of the dataset X (lines 2-3).

This step is crucial, since a neighborhood of reasonably high quality is needed for the

subsequent refinement phase to be effective.

In line 4, the value of a is precomputed for use in calculating wID values,

during the sparsification and refinement phase. As will be described in Section 3.3.4,

the value a can be computed as the average of k-NN distances of all features, over

a sample of the data objects. The k-NN graph entries are then improved using the

sparsification and refinement phase (Lines 6-16). This phase includes three steps:

feature ranking, sparsfication, and graph updating. In lines 9-10, the features are

ranked in decreasing order according to the wID values obtained from the set of K-NN

distances determined by each feature alone. For each object p, the top Z-proportion of

features are then sparsified (line 11). As will be described in Section 3.3.4, the value

Z is chosen depending on the density of the dataset X. As in [18], only non-zero

features are candidates for sparsification, since features with value 0 do not provide

discriminative information in the vicinity of p, and thus do not affect the quality of the

37

Algorithm 2: NNWID-Descent
Input : Dataset X, distance function dist, neighborhood size k for the graph, neighborhood size K for

computing wID scores, sparsification rate Z, number of iterations T

Output: k-NN graph G

1 {Initialization Phase}

2 Normalize the original feature vectors of X;

3 Run NN-Descent(X, dist, k) to convergence to obtain an initial k-NN graph G;

4 Set the value of a to the average of k-NN distances computed for all features over a sample of objects.

5 {Sparsification and Refinement Phase}

6 repeat

7 Generate a list L of all data points of X in random order;

8 foreach data point p ∈ L do

9 For each feature, compute the wID (Equation 3.3) using K-NN distances of p per feature with

respect to X;

10 Rank the features of p in descending order of their wID scores;

11 Change the value of the top-ranked Z-proportion of features to 0;

12 Recompute the distances from p to its k-NN and RNN points;

13 Re-sort the k-NN lists of p and its RNNs;

14 For each pair (q, r) of points from the k-NN list and RNN list of p, compute dist(q, r);

15 Use (q, dist(q, r)) to update the k-NN list of r, and use (r,dist(q, r)) to update the k-NN list of q;

16 end

17 until maximum number of iterations T is reached;

18 Return G

k-NN graph. Ignoring zero features will ensure that once sparsified, a feature will not

be evaluated again in subsequent iterations. Sparsifying a feature vector for p in one

iteration will more likely change the nearest neighbors for each feature of p; for this

reason, to determine the correct wID value in subsequent iterations, recomputation

of the K-NN distances is required for each feature.

Lines 12-15 correspond to Lines 8-11 in NNF-Descent (Algorithm 1) which

identify the local join operation and graph update step to improve the graph accuracy.

38

In the implementation, we set k ≤ K to be the length for both RNN and NN lists

used in graph updating step.

The time complexity of NNWID-Descent can be divided according to its phases

as follows: For the initialization phase, data normalization and NN-Descent —in

terms of distance computation until convergence— take O(Dn) and O(k2Dn) time,

respectively. Computing the values of a using average of K-NN distances takes

O(Dn2). For each iteration of the sparsification and refinement phase, feature ranking

and selection using wID takes O(KDn + D logD) per object, with total time in

O(KDn2+Dn logD) over all objects. As with NN-Descent, assuming that the lengths

of the RNN lists are in O(k), each iteration of NNWID-Descent takes O(k2Dn) time

for the neighbor list update step. However, the optimizations that have been defined

for NN-Descent in [14] can also applied for NNWID-Descent to speed up the local

join operation and update steps.

3.2.3 Variants of NNWID-Descent

In this section, we present variants of NNWID-Descent that will also be evaluated in

the experimentation.

Two-Levels-NNWID-Descent To show the importance of having a good quality

neighborhood for obtaining accurate ID estimation, and thus correct wID value per

feature, one heuristic solution is to compute wID values once using the neighbors

of each object per feature computed from the original features set. Formally, we

present a variation of Algorithm 2, Two-Levels-NNWID-Descent, by moving lines 9

and 10 to the initialization step. Since the neighbors of each object per feature will

not be recomputed in each iteration to find the correct wID value after sparsification

process, the time complexity of feature ranking and sparsification steps will reduced

to (D logD) per object, with total time in O(Dn logD) over all objects.

39

NNWID-variant As an alternative of computing the wID using the current

neighbors for each object recomputed for each feature per iteration, another heuristic

solution is to compute the wID by using the current updated neighbors of each object

computed in k-NN updating step in NNWID-Descent algorithm (lines 11-15). More

Formally, we create a variant, NNWID-variant, form Algorithm 2 by removing line 9

and modifying line 4 and 10 to:

– Estimate the value of a, which can be set as the average of current k-NN
distances computed for each object by NN-Descent using all or a sample of
objects.

– Rank p’s features in descending order based on their wID scores computed from
p’ current k-NN distances;

Unlike NNWID-Descent, the time complexity will decrease as computing the values

of a using average k-NN distances will take O(Dn) (line 4), and the feature ranking

and selection performed using wID will take O(Dk +D logD) per object with total

O(Dnk +Dn logD) for all objects (line 10).

NNID-Descent In order to illustrate the effect of the weight parameter (a
wfj

)IDfj

for feature ranking, we also contrast NNWID-Descent against another variant,

NNID-Descent, of Algorithm 2. NNID-Descent ranks the features according to com-

puting the local Intrinsic Dimensionality IDfj values without the weight parameter

in Equation (3.3). The goal here is to see if the IDfj value alone will improve the

results.

3.3 Experiments

For the comparison of NNWID-Descent with its variants and other competing

methods, we conducted experiments to study the influence on performance of varying

the feature sparsification rate Z and the working neighbor list size K.

40

3.3.1 Datasets

Nine real datasets of varying sizes and densities were considered, of which five are

image sets:

– The Amsterdam Library of Object Images (ALOI) [135] contains 110,250
images of 1000 small objects. Each image is described by a 641-dimensional
feature vector based on color and texture histograms.

– The MNIST dataset [136] contains 70,000 images of handwritten digits. Each
image is represented by 784 gray-scale texture values.

– Google-23 [137] contains 6,686 faces extracted from images of 23 celebrities.
The dimension of the face descriptors is 1,937.

– The Isolated Letter Speech Recognition dataset (ISOLET) [138]
contains 7797 objects generated by having 150 subjects speak the name of each
letter of the alphabet twice. Each object is described by 617 features, and were
scaled so that all values lie in the interval [−1.0, 1.0].

– The Human Activity Recognition Using Smartphones dataset (HAR)
[139] contains 10,299 instances of accelerometer and gyroscope data from 30
subjects performing 6 different activities. Each instance is represented by a
feature vector of 561 time and frequency domain variables.

– The Relative Location of CT dataset (RLCT) [138] contains 53500 axial
CT slice images from 74 different patients. Each CT slice is described by
two histograms in polar space. The feature vectors of the images are of 385
dimensions.

– Wearable Computing: Classification of Body Postures and Movements
(PUC-Rio) dataset [140] contains 165,633 samples collected on eight hours
of activities of four healthy subjects in different static postures and dynamic
movements. Each sample’s features vector has 18 attributes that represent user
data such as name, gender, age, height, weight, body mass, and sensor axis
values. There are five possible positions (sitting-down, standing-up, standing,
walking, and sitting).

– Online News Popularity dataset (ONP) [141] contains 39,644 articles’
textual extracted data, each has 60 attributes (58 predictive attributes, and 2
non-predictive) that describe different article aspects. The articles are binary
classified as popular and unpopular using a decision threshold of 1400 social
interactions.

– Statlog (Shuttle) dataset [138] from NASA contains 9 continuous numerical
attributes related to the positions of radiators in the space shuttle. The dataset
has 58,000 instances that divided into 7 classes.

41

3.3.2 Competing Methods

The performance of NNWID-Descent is contrasted with that of 3 competitors:

– NNF-Descent: uses LLS criterion for feature ranking and sparsification (as
described in Section 3.1).

– Random: as per NNF-Descent, except that for each object the features to be
sparsified are selected randomly. The rationale for the comparison with this
method is to establish a baseline for the performance of the feature ranking and
sparsification criterion.

– Sparse PCA: is similar to wID in such that it takes into account the dataset
sparsity. In this method, the feature extraction and graph construction are
conducted as two separate processes. To allow a fair comparison with other
methods, after choosing the highest principal components, an exact k-NN graph
is computed (at a computation cost of O(Dn2)).

3.3.3 Performance Measure

We use the graph accuracy as a performance measure. The class labels of the

data objects were used to measure the quality of the resulting k-NN graph at every

iteration. The accuracy of the resulting k-NN graph is evaluated, as in [18], using the

following formula:

graph accuracy =
#correct neighbors

#data× k
, (3.4)

where the ‘correct’ neighbors share the same label as the query object.

3.3.4 Default Parameters

Except for the case of Sparse PCA, the feature vectors were normalized within each

dataset in each experiment performed, and the Euclidean (L2) distance was employed.

In NNWID-Descent and its variant Two-Levels-NNWID-Descent, for all datasets, the

value of a in the weight parameter of Equation (3.3) is set to be the average of k-NN

distances over a random sample of 100 objects. Furthermore, for all features, the value

a is precomputed in advance using the original feature vectors without sparsification.

42

For simplicity, the number of neighbors (K) used for computing wID is set to be equal

to the input parameter k, which is also used for computing LLS.

3.3.5 Effects of Varying the Sparsification Rate Z

Parameter Setting In this experiment, we tested the effect on performance of

varying Z while keeping K fixed. The choices of Z is varied with different datasets as

it depends heavily on the density of the feature vectors. For example, in each iteration,

smaller choice of Z (= 0.0025%) for the sparse datasets (MNIST, ALOI, ISOLET, and

RLCT) was required to produce gradual changes in graph accuracy with acceptable

performance. On the other hand, the dense datasets require a larger starting point to

produce perceptible changes in performance from iteration to iteration. For example,

Z is set to (= 0.01%) for Google-23 and HAR, (= 0.055%) for Wearable Computing,

(= 0.02%) for ONP, and (= 0.1%) for Statlog. The total number of iterations T is set

to 70 for all datasets, except for ALOI, Wearable Computing, ONP, and Statlog, for

which T is set to 40, 15, 20, and 7, respectively. For all methods in the comparison,

the value of K is fixed at 100.

Comparison Against the Variants with Respect to Graph Accuracy To

show the importance of selecting a good quality neighborhood as well as the weight pa-

rameter in order to find the wID scores for every feature, we compare NNWID-Descent

with its variants. In contrast to NNWID-Deacent and Two-Levels-NNWID-Descent

as described in 3.3.4, the value of a in NNWID-variant is set to be the average k-NN

distances computed per feature using the neighbors form the initial constructed K-NN

graph by NN-Descent. Figures 3.1 and 3.2 plots the graph accuracy in each iteration

for all the variants across a range of Z values.

Results and Analysis For most of the datasets, NNWID-Descent achieves

consistently better performance in graph accuracy than all other variants. However,

43

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
Two-Levels-NNWID-Descent

NNID-Descent
NNWID-variant

(a) Google-23

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
Two-Levels-NNWID-Descent

NNID-Descent
NNWID-variant

(b) HAR

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
Two-Levels-NNWID-Descent

NNID-Descent
NNWID-variant

(c) ISOLET

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
Two-Levels-NNWID-Descent

NNID-Descent
NNWID-variant

(d) MNIST

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.02 0.04 0.06 0.08 0.1 0.12

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
Two-Levels-NNWID-Descent

NNID-Descent
NNWID-variant

(e) ALOI

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
Two-Levels-NNWID-Descent

NNID-Descent
NNWID-variant

(f) RLCT

Figure 3.1 Performance of NNWID-Descent and its variants with varying values of
Z, and K = 100 for Google-23, HAR, ISOLET, MNIST, ALOI, and RLCT datasets.

except for Google-23, and ONP, we noticed that Two-Level-NNWID-Descent gives

a very similar or higher graph accuracy than NNWID-Descent, which indicates that

the wID scores can be computed initially using the original feature sets since the

44

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
Two-Levels-NNWID-Descent

NNID-Descent
NNWID-variant

(a) ONP

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
Two-Levels-NNWID-Descent

NNID-Descent
NNWID-variant

(b) Statlog

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
Two-Levels-NNWID-Descent

NNID-Descent
NNWID-variant

(c) Wearable Computing

Figure 3.2 Performance of NNWID-Descent and its variants with varying values of
Z, and K = 100 for ONP, Statlog, and Wearable Computing datasets.

neighborhood generally have a good quality. On the other hand, NNID-Descent also

shows a comperable performance to NNWID-Descent which indicates that the IDfj

alone–without weight parameter–can lead to a good accuracy in some datasets.

Despite of using the weight parameter in NNWID-variant, it gives less

performance mostly compared to the other NNWID-Descent variants. The reason

is that the value of the weight parameter, (a
wfi

)IDfi , is sensitive to an error correlated

with the quality of the intrinsic dimensionality (ID) estimator used; having inaccurate

ID estimator leads to instability for the weight parameter values and thus weak feature

selection criterion. It is important to realize that obtaining accurate estimates of wID

requires that the neighborhood be of generally good quality. In NNWID-Descent, the

45

re-computation of neighborhoods after sparsification at each iteration is essential to

the quality of wID estimation. However, using distance values computed from the

current K-NN graph may lead to less accurate ID estimation if the initial graph has

a low quality.

Comparison Against the Competitors with Respect to Graph Accuracy

Figures 3.3 and 3.4 show plots of the graph accuracy in each iteration for all the

methods, across a range of Z values. For Sparse PCA, the parameter controlling

sparsity was set to Z, and the number of principle components selected were set to

D − Z.

Results and Analysis On six of the nine datasets, compared with its competitors,

NNWID-Descent achieves consistent improvements for graph accuracy and resistance

to performance degradation as sparsification increases — for ISOLET, it is out-

performed only by Random, while in Wearable Computing it is outperformed by

NNF-Descent. For the MNIST and Statlog datasets, Sparse PCA has a performance

comparable to that of NNWID-Descent for small sparsification rates. NNF-Descent

also show a performance similar to NNWID-Descent for Statlog dataset.

Execution Time Except Sparse PCA method as it has different execution strategy,

the cost of sparsification and refinement dominates the overall computational

performance of all methods that employ this strategy. For these methods, the

execution time for the sparsification and refinement phase is displayed in Table 3.1.

The displayed times account for the operations of feature ranking, sparsification, and

updating of neighbor lists. The table shows the average running time in seconds per

iteration for all datasets under consideration.

Since the time for sparsification and neighbor list updating is expected to be

the same for all three methods, the observed differences in execution time related

46

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
NNF-Descent

Random
Sparse PCA

(a) Google-23

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
NNF-Descent

Random
Sparse PCA

(b) HAR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
NNF-Descent

Random
Sparse PCA

(c) ISOLET

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
NNF-Descent

Random
Sparse PCA

(d) MNIST

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.02 0.04 0.06 0.08 0.1 0.12

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
NNF-Descent

Random
Sparse PCA

(e) ALOI

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
NNF-Descent

Random
Sparse PCA

(f) RLCT

Figure 3.3 Performance of NNWID-Descent and the competing methods with
varying values of Z, and K = 100 for Google-23, HAR, ISOLET, MNIST, ALOI,
and RLCT datasets.

to differences in the costs of the feature ranking step. As can be observed from

Table 3.1, NNWID-Descent has the highest execution cost. This is due to the necessity

of computing neighborhood distances for each object per feature in each iteration.

47

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
NNF-Descent

Random
Sparse PCA

(a) ONP

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
NNF-Descent

Random
Sparse PCA

(b) Statlog

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

G
ra

p
h
 A

cc
u
ra

cy

Z

NNWID-Descent
NNF-Descent

Random
Sparse PCA

(c) Wearable Computing

Figure 3.4 Performance of NNWID-Descent and the competing methods with
varying values of Z, and K = 100 for ONP, Statlog, and Wearable Computing
datasets.

Despite its larger running time relative to its competitors, NNWID-Descent shows

a better potential for the improvement of graph accuracy, and better resistance to

performance degradation as sparsification increases. Two-Level-NNWID-Descent and

NNWID-variant are more efficient than other methods except the Random method.

In Two-Level-NNWID-Descent, the time complexity reduced significantly since

the wID scores are computed initially using the original features and not included in

the feature ranking step. On the other hand, considering the current k-NN graph

neighbors as in NNWID-variant for computing the wID scores per iteration has

less time complexity comparing to recomputing the neighborhood per feature (i.e.,

NNWID-Descent, NNID-Descent), or using LLS creterian as in NNF-Descent.

48

Table 3.1 Average Time in Seconds per Iteration for each Dataset

Dataset NNWID-
Descent

Two-
Level-
NNWID-
Descent

NNWID-
variant

NNID-
Descent

NNF-
Descent

Random

Google-23 1431.56 59.25 101.90 944.77 320.96 70.77

ISOLET 1152.43 59.84 74.34 673.36 204.92 73.34

HAR 1275.44 105.87 109.044 832.60 248.75 141.46

MNIST 8281.03 907.16 3733.17 11635.55 5274.55 4429.77

ALOI 55363.56 8454.36 9019.37 56271.92 13053.55 11183.65

RLCT 9549.33 2149.88 1999.10 10026.29 3125.65 3873.19

Wearable
Computing

74868.12 18129.39 19764.95 73372.45 19493.05 27922.98

ONP 23444.42 1297.87 1529.69 23422.07 1070.54 2404.91

Statlog 8408.95 2395.50 2655.02 8341.59 2498.0 4378.10

3.3.6 Effects of Varying the Neighbor List Size K

Parameter Setting In this experiment, we compare the performance of NNWID-

Descent against NNF-Descent and Sparse PCA as the neighbor list size increases

beyond K = 100. We show the results for all datasets, except Google-23, HAR, and

ISOLET, as the values of K are too large relative to the size of the these datasets.

Concretely, K is set to 100, 200, 400, and 800, and Z is fixed at 4% for MNIST and

RLCT, 40% for Wearable Computing, ONP, and Statlog, and at 2% for ALOI. These

Z values represent approximately the peak graph accuracy achieved in Figures 3.3,

and 3.4. The performances across these choices of K are plotted in Figure 3.5.

49

Results and Analysis We note that for all datasets in comparison, NNWID-Descent

still provides better accuracy than other methods as the neighborhood list size K is

increased. With MNIST and Wearable Computing, Sparse PCA outperforms other

methods as K increases, which indicates that this method can lead to a reasonable

graph accuracy for a some datasets with a specific Z rate.. With increasing K, Sparse

PCA and NNF-Descent show a comparable performance for NNWID-Descent in both

ONP, and Statlog, repectivley.

For all methods, the performance degrades as K increases. In addition,

we observe that the relative performances of all methods shown when varying K

(Figure 3.5) is still consistent with the performances observed when varying Z

(Figures 3.3 and 3.4).

3.4 Conclusion

In this chapter, we presented the NNWID-Descent similarity graph construction

method, which utilizes the NNF-Descent framework with a new unsupervised feature

selection criterion. This method aimed to improve or maintain k-NN graph accuracy

while achieving a significant amount of sparsification of object feature vectors.

We proposed the use of support-weighted ID (wID) to identify relevant features

with higher discriminative power local to each object. NNWID-Descent ranks the

features according to their wID values, then sparsifies those features achieving the

smallest values. With respect to the correctness of k-NN graph produced using nine

real datasets, NNWID-Descent has been shown to generally outperform its closest

competitors, NNF-Descent and Sparse PCA.

50

 0

 0.1

 0.2

 0.3

 0.4

 0.5

100 200 400 800

G
ra

p
h
 A

cc
u
ra

cy

K

NNWID-Descent
NNF-Descent
Sparse PCA

(a) ALOI

 0.7

 0.75

 0.8

 0.85

 0.9

100 200 400 800

G
ra

p
h
 A

cc
u
ra

cy

K

NNWID-Descent
NNF-Descent
Sparse PCA

(b) MNIST

 0

 0.1

 0.2

 0.3

 0.4

 0.5

100 200 400 800

G
ra

p
h
 A

cc
u
ra

cy

K

NNWID-Descent
NNF-Descent
Sparse PCA

(c) RLCT

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

100 200 400 800

G
ra

p
h
 A

cc
u
ra

cy

K

NNWID-Descent
NNF-Descent
Sparse PCA

(d) Wearable Computing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

100 200 400 800

G
ra

p
h
 A

cc
u
ra

cy

K

NNWID-Descent
NNF-Descent
Sparse PCA

(e) ONP

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

100 200 400 800

G
ra

p
h
 A

cc
u
ra

cy

K

NNWID-Descent
NNF-Descent
Sparse PCA

(f) Statlog

Figure 3.5 Performance of NNWID-Descent with different values of K and fixed Z
(Z = 4% for RLCT, MNIST, 2% for ALOI, 40% for ONP and Statlog, and 50% for
Wearable Computing).

51

CHAPTER 4

k-LIDoids: A SUBSPACE CLUSTERING ALGORITHM USING
LOCAL INTRINSIC DIMENSIONALITY

In this chapter, we address the subspace clustering issues discussed in Chapter 1, such

as the loss of information resulted from rigidly selecting small subsets of features

to define the underline cluster subspaces, by presenting a new subspace clustering

algorithm called k-LIDoids. k-LIDoids extends the utility of the support-weighted ID

feature selection criterion within a clustering framework. k-LIDoids simultaneously

captures a subset of objects (cluster) on a subset of features (subspace). The algorithm

interleaves the process of features elimination (sparsfication) based-on the support-

weighted ID criterion (see Chapter 2 Section 2.3.2) with the clustering process in

order to iteratively enhance the clustering quality. This enhancement is performed

by gradually identifying higher locally discriminative features in the context of each

cluster individually.

To define the local closeness of cluster objects in the subspace defined for that

cluster, the support-weighted ID criterion can be used to identify those features

that have lower locally discriminative power as well as higher density per object

in the cluster. Estimating the support-weighted ID criterion for each feature requires

computing the local neighborhood objects for each object in the whole dataset.

Since it is important to eliminate the features gradually from each object to achieve

the local improvement, then the local neighborhood objects need to be updated

consistently in order to accommodate the change of the subset of features defined

for that object. However, frequently updating the local neighborhood for all dataset

objects is computationally expensive. Therefore, for efficiency, it is important to

use a clustering method that allows us to limit the number of objects that we are

considering for defining the cluster subspaces.

52

Among all clustering methods in the literature, we select k-medoids clustering

algorithm as a basic framework for our proposed method. The k-medoids algorithm

employs actual objects—from the dataset—called medoids to represent the cluster

centers. Using k-medoids has the following two main characteristics: First, using the

medoids is desirable for defining the cluster subspace based-on the support-weighted

ID criterion because the local neighborhood objects for those medoids are easy to

obtained. Second, as an iterative method, k-medoids supports interleaving the process

forming of the clustering results with the process of defining the cluster subspaces

using the support-weighted ID criterion, which also requires to change the local

neighborhood objects of the cluster representatives in order to accommodate the

update in the cluster subspaces.

With the integration of the support-weighted ID criterion within k-medoids

framework, k-LIDoids often computes k non-overlapping hyper-spherical compact

clusters based not only on the dataset objects but also on the feature subspaces defined

for each cluster. k-LIDoids has the following advantages over previous subspace

clustering approaches.

– Using the supported weighted ID criterion, k-LIDoids is able to measure the
ability of each feature to locally discriminate between clusters in the dataset,
and therefore, defining the local intrinsic dimensions per cluster.

– k-LIDoids can locally determines each clustering subspace in order to improve
the clustering quality without scanning all objects in the dataset. Thus, it is
easy to be parallelized to ensure the efficiency and the scalability.

The rest of this chapter is organized as follows. In Section 4.1, we present the

preliminaries. Section 4.2 describes our proposed algorithm. Section 4.3 presents

the experimental framework for our algorithm with a comparison of the quality of the

clustering results with three other well-known algorithms. Finally, we conclude the

chapter in Section 4.4.

53

4.1 Preliminaries

In this section, we first describe the k-medoids clustering that is used as the basic

framework for the subspace clustering algorithm proposed in this chapter. Then, we

show how we define support-weighted ID for each feature per cluster.

4.1.1 Notations

Let X = {x1, x2, x3, . . . , xn} be a dataset consisting of n objects such that each

object xi is represented as a feature vector in RD. Let the set of features is denoted

as F={1, 2, . . . , D} such that j ∈ F is the j-th feature in the vector representation,

and D is the total number of features. p is neighborhood size for each object xi ∈ X in

the p-nearest neighbor graph G. Suppose that these n objects should be partitioned,

according to some distance measurement, into k(k < n) clusters, which is assumed to

be given. The set of clusters is denoted as C, where each cluster Cc, 1 ≤ c ≤ k, has

a cluster representative mc. The Euclidean (L2) distance is employed in this work

although other distance measures can be adopted similarly. Given a pair of objects

xi, and xr ∈ RD, recall the definition of Euclidean distance:

d(xi, xr) = (
D∑
j=1

|xij − xrj|2)
1
2 (4.1)

4.1.2 k-medodis Clustering

The k-medoids clustering algorithm searches for an optimal set of k objects (i.e.,

medoids) from the dataset, which results in the best possible clustering. In general,

k-medoids is used to find the local minimum of the following objective function:

OF =
k∑

c=1

∑
xi∈Cc

(d(xi,mc))
2 (4.2)

where each medoid mc is an actual object that minimizes the total distance to other

objects in the cluster. As we will describe in Section 4.1.3, using medoids is desirable

for the feature selection criterion, support-weighted ID, that needs actual objects

54

from the dataset in order to select important features per object. k-medoids also

is less sensitive to outliers; the objects that are far away from the majority of the

data. Usually, outliers distort the actual cluster means in algorithms such as k-means

clustering.

Generally, the k-medoids clustering algorithm includes three steps: select initial

medoids, update medoids, and assign objects to medoids. In the first step, the initial

medoids are selected randomly among all objects in the dataset. Then, each object

xi ∈ X is assigned to a cluster Cc with the closest medoid mc to that object, and the

sum of the total distances between objects and medoids is computed. The algorithm

updates each cluster’s medoid by searching for a new representative mc from the

entire dataset. In the last step, each object is re-assigned to the nearest medoid to

obtain the clustering results. The algorithm executes the second and the third steps

iteratively until convergence; when the object assignments no longer change.

Among several k-medoids algorithm variants in the literature [28, 142], we

choose the algorithm presented in [143] as the main framework for our method. This

algorithm is a local heuristic that runs like k-means clustering algorithm, and it

requires to compute the distance between every pairs only once. This k-medoids

algorithm also shows, experimentally, an efficiency and effectiveness in handling

large datasets. From different medoids initialization methods that are tested by

the authors, we use the random initialization in order to avoid both, the increasing

in the complexity time, and the bias introduced by selecting the k initial medoids

intelligently (i.e., the most middle objects in the dataset). When updating the

medoids in the second step (update medoids), this later k-medoids algorithm limits

the search for a new representative mc among the objects within the cluster Cc instead

of the entire dataset. However, when the size of any cluster increases, finding the

appropriate medoids in each iteration will further increases the overall clustering

time complexity.

55

For efficiency, the second step (update medoids) of the k-meodids algorithm–

described above– can be simplified by using a simple heuristic indexing technique

that depends on an intuitive idea presented by [144]. This idea shows the relation

between k-means and k-medoids clustering; the medoid of a set of objects is often

close to the mean. That is, if we have a cluster Cc, the object xi ∈ Cc, with the

smallest average distance to all other objects in Cc, is often close to the mean µ of

Cc. This idea is proven in [144] to be true for one cluster taken in isolation from the

dataset (k=1), but it is not proven to be true when considering multiple clusters at

the same time (k >1). From a practical perspective, however, this simple heuristic

indexing technique can still be used when the cluster size becomes relatively large (i.e.,

|Cc|≥ α, i.e., α=10,000). To clarify, searching for a new medoid of each cluster in

the second step— of the above k-medoids clustering algorithm—can be simplified by

searching among the closet β objects (i.e., β=100) to the cluster mean. We will refer

to the adapted k-medoids clustering algorithm [143] with including the above heuristic

indexing technique as km-medoids. Algorithm 3, illustrated in the following page,

shows the pseudocode of how km-medoids clustering proceeds. It is also important

to mention that, for increasing the efficiency, the second step in Algorithm 3 can be

executed in parallel for all clusters in the same time.

4.1.3 Defining Support-weighted ID (wID) for each Feature per Cluster

Since the factor p/n in Equation 2.10 can be regarded as constant, the support-

weighted ID criterion for feature fj of object xi can be simplified:

wIDi(fj) = IDfj ·
(

t

wfj

)IDfj

(4.3)

where IDfj is the local intrinsic dimensional estimate for the neighborhood, and wfj is

the distance to the p-th nearest neighbor object with respect to feature fj, respectively.

56

Algorithm 3: km-medoids Clustering Algorithm
Input : Dataset X, the number of clusters k

Output: Clusters C

1 //Step 1: Select initial Medoids

2 Select k medoids objects, {m1, m2, ... , mk} randomly from X;

3 C=Obtain the initial cluster result by assigning each object xi to the nearest medoids;

4 dcurrent=Calculate the sum of distances from all objects to the their medoids;

5 repeat

6 Set dprevious=dcurrent;

7 //Step 2: Update Medoids

8 foreach cluster Cc ∈ C (executes in parallel) do

9 if |Cc|≥ α then Compute the mean µ of cluster Cc;

10 Search for a new medoid among the closest β objects to µ, such that the new medoid is the

object that minimizes the total distance to other objects in the cluster; ;

11 else Search a new medoid among the objects in the cluster Cc , which is the object that

minimizes the total distance to other objects in the cluster; ;

12 Replace mc with the new medoid;

13 end

14 //Step 3: Assign objects to medoids

15 Assign each object to the nearest medoid and obtain the clustering result;

16 dcurrent=Calculate the sum of distance from all objects to their medoids;

17 until convergence (dprevious = dcurrent);

18 Return C;

Additionally, the value of t can be set as the average of p-NN distances of all features

across a sample of data objects, or can be set to any positive constant.

For each current cluster Cc, let L be a set of a medoid mc, and its local neighbor

objects defined by p-NN list and located in Cc (Figure 4.1 shows an illustration).

Formally, L={mc ∪ xi | xi ∈ Cc, and xi ∈ mc’s p-NN list}

We use a simple aggregation function, the average, to evaluate the discriminabil-

ity of each feature per cluster. The average of wID score, wIDf−average, is computed

along each feature fj across the objects in L, as the following,

wIDf−average =
1

|L|
∑
xi∈L

wIDi(fj) (4.4)

57

Equation (4.4) considers both the density of the local neighborhood around each

object in the set L, and the complexity of local ID with respect to a particular

feature fj. The local neighborhood around each cluster representative in Equation

(4.4) is used as a feedback to support finding the most discriminative features per

cluster Cc (This will be further discussed in Section 4.2.2).

(a) Set L in cluster C1 (b) Set L in cluster C2

Figure 4.1 Examples of set L in two clusters, where L is defined as local
neighborhood for each cluster representative, and p-NN is local neighbor objects list
for each medoid.

4.2 k-LIDoids Algorithm

In this section, we give an overview of our proposed method, k-LIDoids. As

stated before, the method interleaves the clustering process in terms of km-medoids

(Section 4.1.2), with the feature selection criterion, support-weighted ID (wID)

(Section 2.3.2), and with other original ideas in order to enhance the overall clustering

quality. The algorithm starts with initial forms of clusters. It then iteratively and

gradually eliminates (sparsifies) the least important (noisy) features, which have

highest wID scores, for each cluster in order to find the intrinsic dimensions (subspace)

for every cluster separately. In every iteration, the object is assigned to the cluster

based on the current subspace defined for that cluster. This iterative process continues

until the termination criterion is satisfied.

58

The complete pseudocode for our algorithm is given in Algorithm 4. The input

parameters are k, Z, M , and p-NN graph G, where k is number of clusters, Z is a

fixed proportion of features that are sparsified in each iteration per cluster, T is the

total number of desired iterations, and p-NN graph G is the working neighborhood

used for computing the wID values–in every iteration—for each object’s features. The

feature sparsification rate Z should be relatively small.

The algorithm works in two phases, an initialization phase, and an iterative

phase as described below:

4.2.1 Initialization Phase

Using full features of X, the algorithm computes the initial best clusters C—using

km-medoids clustering method presented in 4.1.2—after normalizing the original

feature vectors of the dataset X. This is essential step since clusters with a reasonably

high quality are needed for the subsequent iterative phase in order to define the correct

subset of features, and reduce searching for the best set of medoids in each cluster.

In this context, we introduce and define the subspace mask vectors MV as follows:

Definition 3 (Subspace Mask Vectors MV)
Let the C be the clusters of objects in the dataset X, and F is the full features space
of X, then, MV is a set of vectors defined together with C such that the objects in a
cluster Cc ∈ C are closely clustered in the subspace defined in the vector MVc ∈ MV .
The subspace in MVc will have much lower dimensionality than the full space F

(|MVc|� |F |).

Each MVc is initialized to 1’s (full features). When the feature fj is selected

later in the iterative phase and defined as a noisy (bad) feature for a cluster Cc, then,

MVc[j] will be changed to the value of 0.

4.2.2 Iterative Phase

The goal of this phase is to find iteratively the best set of medoids and the important

set of features (intrinsic dimensions) for each cluster, such that the objects are

59

Algorithm 4: k-LIDoids Subspace Clustering method
Input : Dataset X, the number of clusters k, sparsification rate Z, maximum number of iterations M , p-NN graph G

Output: Clusters C, Subset of Feature per cluster

1 //Initialization Phase

2 Normalize the original feature vectors of X;

3 Let D=the length of the feature vector of each xi ∈ X;

4 Let F={1, 2, . . . , D} be the set of features, where fj ∈ F ;

5 Run km-medoids clustering(X,k) to obtain initial clusters C;

6 Set the value of a to the average of p-NN distances computed over a sample of X objects.

7 Define subspace mask vectors MV , where MVc associated with Cc ∈ C, |MV |=k, and |MVc| =D;

8 Initialize each MVc to 1s;

9 //Iterative Phase

10 repeat

11 foreach cluster Cc ∈ C (execute in parallel) do

12 //Step 1: Feature Ranking and Sparsification

13 Define a rank vector RVc, where is |RVc| =D;

14 Let L={mc ∪ xi | xi ∈ Cc, and xi ∈ mc’s p-NN list};

15 for each object xi ∈ L do

16 Compute the wID score (Equation 4.3) of each feature fj , where MVc[j]=1;

17 end

18 Compute the average of wID scores (wIDf−average) for every fj , across the objects in L (Equation 4.4) , and

store wIDf−average in RVc[j];

19 Rank values in RVc in descending order;

20 Change the value of the top-ranked Z-proportion of MVc to 0 according to RVc;

21 ;

22 //Step 2: Update Medoids

23 if |Cc|≥ α then Using MVc, compute the mean µ of cluster Cc;

24 Search for a new medoid among the closest β objects to µ, such that the new medoid is the object that

minimizes the total subspace distance measure (Equation 4.5) to other objects in the cluster; ;

25 else Using MVc, search a new medoid among the objects in the cluster Cc , which is the object that

minimizes the total subspace distance measure (Equation 4.5) to other objects in the cluster; ;

26 Replace mc with the new medoid;

27 ;

28 //Step 3: Refine Nearest Neighbors

29 Using the subspace distance measure defined on MVc (Equation 4.5):

30 Update G by re-sorting mc’ p-NN and R-NNs lists;

31 And for each object xi ∈ p-NN list of mc and xi ∈ Cc:

32 Update G by re-sorting xi’ p-NN and R-NNs lists;

33 end

34 //Step 4: Assign objects to medoids

35 Using the subspace distance measure defined on MV (Equation 4.5):

36 Assign each object to the nearest medoid mc, and obtain the clustering result;

37 ;

38 Compute the overall average, wIDaverage, among the objects in the clusters C according to Equation 4.8

39 until reaches the maximum M, or the minimum wIDaverage (Equation 4.8);

40 Return (C, MV);

assigned to the cluster based on the subspace represented by this small subset of

features. The algorithm consists of a number of iterations defined in the user input

parameter M , in which each of the following four steps are executed.

60

Feature Ranking and Sparsification For each cluster Cc, the average of the

wID scores, wIDf−average, is computed along each feature fj—if its corresponding

mask value,MVc[j], is set to 1— across the objects in the local neighborhood set, L,

defined in Section 4.1.3.

To each cluster Cc, we also associate a rank vector RVc that stores the values of

wIDf−average of all features. The values in RVc are used to determine the best features

locally per cluster, and also to exclude the noisy features.

For feature ranking per cluster Cc, a straightforward method is used for selecting

the most local discriminative features stored in RVc, in which the D features are

ranked in descending order of wIDf−average, and a proportion Z of the top-ranked

features are determined as candidates for sparsification as noisy features. The

sparsification process will set the values of the least important features in MVc to

0 (the feature global mean after normalization). The subspace that is defined in MVc

will help later in determining the objects that belong to the cluster Cc. The values

in MVc are gradually changed to 0’s—depending on the feature sparsification value

of Z in every iteration—which is important to avoid the loss of information from

clusters; decreasing the full feature space sharply to a very lower-dimensional space

may distorts the well forming of the clusters.

Update Medoids To update the current medoid of the cluster Cc, the algorithm

searches for a new object that minimizes the total distance to other objects in Cc using

the distance measure computed on the feature subspace defined in MVc. For example,

the Euclidean distance function d (defined in Equation 4.2) between a mediod mc and

an object xi in a cluster Cc, using a subspace defined in MVc, is computed as follows:

d(mc, xi) = (
D∑

MVc[j]=1,j=1

|mcf − xif |2)
1
2 (4.5)

61

The search for a new medoid can be limited to the closet β objects (i.e., β=100)

to the cluster mean, as described in Section 4.1.2, but with using the distance measure

on the feature subspace defined for the cluster. This new medoid will replace the

current medoid mc.

Refine Nearest Neighbors For each current medoid mc and its local neighbor-

hood defined in the set L (as described in Section 4.1.3), the p-NN lists—defined in

the whole dataset—are recomputed using the new subspace defined in MVc. This is

an important step in order to keep the consistency of the local neighborhood of the

specified objects with the new subspace defined for cluster Cc, and thus, use correct

neighbors for computing wID scores in the feature ranking step in the subsequent

iteration. For efficiency, we limit the search for the new neighbors—in order to update

the p-NN lists—among the R-NN objects. In the implementation, we set p to be the

length for both R-NN and NN lists used in the refine nearest neighbors step

Assign Objects to Medoids Given the current updated set of medoids, the

algorithm assigns each object to the closet medoid based on the clustering subspaces

defined in MV . In other words, this step computes the distance value (using

Equation 4.5) between each object xi and meodid mc using the feature subset defined

in MVc, and the object is assigned to a cluster Cc which this value is the least. In a

given iteration, this step serves to refine the objects in the clusters.

4.2.3 Termination Criteria for the Clustering Convergence

The algorithms shall be terminated when either of the following defined criteria is

occurred: First, the maximum number of iterations defined in the parameter M is

satisfied. Second, after reaching the minimum value, the average wID (wIDaverage),

which is computed among all clusters, increases. In this context, we explain the

second heuristic criterion in more detail.

62

Equation 2.10 can be used for finding the support-weighted ID score per object

xi, with respect to all features, as the following:

wID(xi) = IDi ·
(

t

wi

)IDi

(4.6)

where IDi here is defined as the local intrinsic dimensional estimate for the

neighborhood around an object xi, and wi is the distance to the p-th nearest neighbor

of the object xi defined in the graph G. As we stated before, the value of t can be

set to any positive constant.

Using the local neighborhood objects of each medoid mc defined in the set L

(Section 4.1.3), the average wID score for a particular cluster Cc is computed as the

following,

wIDc−average =
1

|L|
∑
xi∈L

wID(xi) (4.7)

If wIDc−average is high, then the relative number of objects in the neighborhood of the

cluster representative mc is expected to be large. Thus, the density of the cluster Cc

is high, and the objects in Cc have a high dimensionality. On contrary, if wIDc−average

is low, then the objects in Cc have a low dimensionality. Removing excessively many

features—including the most discriminative features—from a cluster Cc will increase

the cluster density; the cluster may contains additional random objects from other

clusters. Therefore, the wIDc−average value of the cluster Cc will become high.

The overall average weighted ID across all clustersis defined as,

wIDaverage =
1

|k|

k∑
c=1

wIDc−average (4.8)

The algorithm computes the wIDaverage score in every iteration. When the minimum

value of this score is found, the value of the next iteration is checked. If the wIDaverage

score starts to increase, then, it is expected that the overall clustering quality starts

to drop, and the loop terminates. In general, Equation 4.8 helps to assist the subset

63

of features preserved so far of all clusters and the overall clustering quality. Increasing

wIDaverage after reaching the minimum score means that the algorithm starts to

prune important features from the clusters, and thus, the cluster density increases by

including irrelevant objects from different other clusters.

4.2.4 Time Complexity

The time complexity of k-LIDoids can be divided according to its phases as follows:

For the initialization phase, data normalization and km-medoids clustering —in terms

of distance computation until convergence— take O(Dn) and O(n2D), respectively.

Computing the values of t using the average of p-NN distances takes O(Dpn). For

each iteration of the iterative phase, feature ranking and sparsification using wID

takes O(pD +D logD) per medoid, with a total time is O(p2Dk + pkD logD) taken

over all medoids and their neighbors. Updating medoids step takes O(n2D), but the

simple indexing technique defined in Section 4.2.2 can also be applied here to speed

up this step. Since we are assuming that the lengths of the RNN lists are in O(p),

each iteration of k-LIDoids takes O(p3Dk) for the refine nearest neighbors step. For

improving the scalability of the algorithm, steps 1-3 of every iteration can be executed

in parallel for all clusters. Finally, the step of assigning objects to the medoids takes

O(kn).

4.3 Experimental Framework
4.3.1 Competing Methods

The performance of k-LIDoids is compared and contrasted with four competitors:

– Random: as per k-LIDoids, except that for each object, the features to be
sparsified are selected randomly. The rationale for the comparison with this
method is to establish a baseline for the performance of the feature ranking and
sparsification criterion used in k-LIDoids.

Among several subspace clustering algorithms in the literature, we select the

most well-known clustering methods, PROCLUS and CLIQUE. We exclude other

64

algorithms such as MAFIA, FINDIT and δ-cluster. While MAFIA is just a successor

of CLIQUE with more efficiency, FINDIT and δ-cluster require more information

about the datasets for accurately determining their parameters setting.

– PROCLUS: is the most similar well-known algorithm to k-LIDoids. As
described in Section 2.1.2, PROCLUS uses k-medoids algorithm, specifically
CLARANS [142], as the basic framework for the defined subspace clustering.

– CLIQUE: is a grid-based subspace clustering algorithm. As described in
Section 2.1.2, CLIQUE divides each dataset dimensions into multiple cells, then
combines adjacent high-density cells of all dimensions to form the final clustering
result.

From different global feature evaluation techniques that are combined with clustering

methods, we select the simple correlation model that combines PCA with the k-means

algorithm, as the other algorithms highly depend on the accuracy of the parameters

tuning, which is in general difficult to define.

– Correlation Model (PCA and k-means clustering): In this method,
the feature extraction and k-means clustering are conducted as two separate
processes. To allow a fair comparison with other methods, after choosing the
highest principal components, the k-means clustering algorithm is executed.

4.3.2 Datasets

Six real datasets of varying sizes and densities were considered:

– ALOI-100 is subset of the Amsterdam Library of Object Images (ALOI) [135],
which contains 110,250 images of 1000 small objects. Each image is described
by a 641-dimensional feature vector based on color and texture histograms.
ALOI-100 contains 10,800 images of 100 simple objects generated by selecting
the objects uniformly from among the classes.

– Wearable Computing Classification of Body Postures and Movements
(PUC-Rio) dataset [145] contains 165,633 samples collected on eight hours
of activities of four healthy subjects in different static postures and dynamic
movements. Each sample’s features vector has 18 attributes that represent user
data such as name, gender, age, height, weight, body mass, and sensor axis
values. There are five possible positions (sitting-down, standing-up, standing,
walking, and sitting).

– Online News Popularity dataset (ONP) [146] contains 39,644 articles’
textual extracted data, each has 60 attributes (58 predictive attributes, and 2

65

non-predictive) that describe different article aspects. The articles are binary
classified as popular and unpopular using a decision threshold of 1400 social
interactions.

– MAGIC Gamma Telescope dataset [147] is generated to simulate registration of
high energy gamma particles in an atmospheric Cherenkov telescope. It contains
19,020 cases of 10 numerical predictors (attributes) and 2 classes. The predictors
are produced by the registration device and characterize the registered particle.

– MiniBooNE [138] particle identification dataset contains 130,065 of signal and
background events Each event has 50 particle ID variables. This dataset is taken
from the MiniBooNE experiment and is used to distinguish between two classes,
electron neutrinos (signal), and muon neutrinos (background).

– Sensorless Drive Diagnosis dataset (SDD) [138] includes 58,509 electric
drives, with 48 features extracted form electric current drive signals. The drive
has intact and defective components. This results in 11 different classes with
different conditions.

4.3.3 Parameters Setting

In k-LIDoids, implemented in JAVA, for all datasets, the value of t in the weight

parameter of Equations (4.3 and 4.6) is set to be the average of p-NN distances

over a random sample of 100 objects. Furthermore, for simplicity, the value t is

precomputed in advance using the original feature vectors in the initialization phase

of the algorithm. The choices of Z are varied with different datasets as it heavily

depends on the density of the feature vectors. The number of clusters k is fixed to be

equal to the ground truth labels for the datasets. The value of p for the p-NN graph

is set to 30 for the relatively small datasets (n ≤ 50, 000) such as MAGIC and ONP,

and 100 for the other large datasets. The threshold for the cluster size, α, is set to

100, 000 objects, and the threshold for the number of objects that are close to the

cluster mean, β, is set to 100 objects. Table 4.1 summarizes the datasets information

and the parameters setting for the Z value and the maximum number of iterations

M .

In PROCLUS, executed using ELKI source-code [148], the average number of

dimensions to be kept in each cluster per execution is set to be equal to (D-current

66

iteration∗D ∗ Z), and the multiplier for the initial number of seeds and medoids are

set to,
√
n and 100, respectively.

In the correlation model (PCA and k-means clustering), executed using the

scikit-learn Python library [149], the number of principle components per execution

is set to (D-current iteration∗D ∗Z) as well, and the maximum number of iterations

used for k-means is fixed to 1000 or until convergence.

In CLIQUE, also executed using ELKI source-code [148], we found that every

dataset in comparison requires a strict tuning for the pair of parameters, the density

threshold (ε) and the grid size (gridSize). Table 4.2 shows the different parameters

setting that we have chosen for every dataset. We fixed the density threshold of each

dataset, and increased the grid size by a constant in every iteration. We tried many

other parameter settings as well, but the algorithm crashed due to insufficient memory

problem (memory size=16GB). We did not include ALOI-100 and MiniBooNE in

Table 4.2 as CLIQUE always crashes for these datasets as they have a large number

of objects and dimensions combined.

In order to smooth the curves of each experiment, the results were averaged

over 40-140 runs, depending on the result variations in each dataset.

4.3.4 Evaluation

For each of the considered datasets, the clustering results of the proposed method

are compared with the other competing algorithms, and assessed against the ground

truth classification labels using two different quality measures: Adjusted Rand index

(ARI) [150] from statistics; and the Expected Precision (EPrec), Expected Recall

(ERec), and Expected Cosine (ECos) measures [151] from information retrieval.

Let C denotes the set of clusters that are partitioning the data objects according

to the clustering algorithm, and O denotes the classification of the dataset, then we

define each measure as follows,

67

Table 4.1 Datasets used in the Experiments

Datasets Instances
(n)

Features
(D)

#True
Classes

Sparsification
rate (Z)

Number of
iterations
(M)

ALOI-100 10,800 641 100 0.0025% 40

Wearable
Computing

165,633 18 5 0.055% 15

ONP 39,644 60 2 0.02% 29

MAGIC 19,020 10 2 0.1% 7

MiniBooNE 130,065 50 2 0.04% 24

SDD 58,509 48 11 0.04% 23

Table 4.2 CLIQUE Parameters Setting for the Density Threshold (ε), and
the Grid Size (gridSize)

Datasets density
threshold (ε)

gridSize The increase in
gridSize in
every iteration

Wearable
Computing

0.2 10 +1

ONP 0.7 10 +10

MAGIC 0.5 2 +2

SDD 0.2 100 +10

Adjusted Rand index (ARI): ARI is used to measure the global quality of

clustering results, and is calculated as:

ARI =
2 ∗ (ad− bc)

(a+ b)(b+ d) + (a+ c)(c+ d)
(4.9)

68

where a is the number of pair of objects that belong to the same true class in O and

placed in the same cluster in C , b is the number of pairs that belong to the same

true class in O but placed in different clusters in C, c is the number of pairs that

placed in the same cluster in C but they belong to different true classes in O, and d is

the number of pairs that belong to different true classes in O and placed in different

clusters in C.

Expected Measurements: Let O defines a unique class, where O ∈ O, and C

defines a unique cluster, where C ∈ C. Then, expected precision (EPrec), expected

recall (ERec), and expected cosine (ECos) are given by:

EPrec =
1

n

∑
C∈C

∑
O∈O

|C ∩ O|2

|C|
(4.10)

ERec =
1

n

∑
C∈C

∑
O∈O

|C ∩O|2

|O|
(4.11)

ECos =
1

n

∑
C∈C

∑
O∈O

|C ∩O|2√
|O|·|C|

(4.12)

For both, ARI and expected measurements, the highest possible value is 1, which

indicates a better clustering, and a perfect agreement between classification labels and

clustering results. A low expected precision score means few clusters are generated

and thus cluster fusion. On the other hand, a low expected recall score means

many clusters are produced and thus cluster fragmentation. Finally, achieving a

high expected cosine score means that the clustering method is avoiding extremes of

cluster fusion and cluster fragmentation, and that the number and size of the clusters

are almost follow those of the ground truth classification labels.

69

4.3.5 Comparison Against the Competing Methods with Respect to ARI
and the Maximum Number of Iterations M

In this experiment, we compared between the proposed method and other competitors

in terms of ARI. The second termination criterion (wIDaverage) has been disabled in

order to test the resistance of the proposed algorithm toward pruning many features

away from the clusters. Figure 4.2 shows plots of the ARI results of clustering for all

the methods, across a range of iterations over the Z values of each dataset presented

early in Table 4.1.

Results and Analysis Over all datasets used, in compared with its competitors,

k-LIDoids achieves consistent improvements for clustering accuracy and resistance

to the performance degradation as the sparsification increases. For ALOI-100, the

Correlation Model has a performance comparable to k-LIDoids. However, on four of

the six datasets, we notice that the Correlation Model has a very low performance. It

worth mentioning that in the iteration 0, the actual k-means clustering–without any

feature reduction method–is applied on the datasets. Therefore, if the initial resulted

clusters are poorly performed, applying any dimensionality reduction technique such

as PCA will not show much improvement in the overall clustering performance. In

addition, the defined Correlation Model uses k-means clustering which itself sensitive

to the outliers.

In general, PROCLUS has an unstable behavior with changing the number of

the average number of features to be kept in the clusters. For example, in MAGIC

and ONP, PRCOLUS achieves a low performance even with retaining a large number

of dimensions in the clusters.

We noticed that the performance of CLIQUE algorithm is the worst in terms of

the scalability with respect to the number of objects and features. This is a common

problem of grid-based clustering algorithms with high-dimensional datasets; when

70

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 5 10 15 20 25 30 35 40

A
R

I

Number of iterations

Random

PROCLUS

Correlation Model

k-LIDoids

(a) ALOI-100

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14

A
R

I

Number of Iterations

Random
PROCLUS

Correlation Model
k-LIDoids
CLIQUE

(b) Wearable Computing

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25

A
R

I

Number of Iterations

Random
PROCLUS

Correlation Model
k-LIDoids
CLIQUE

(c) ONP

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20

A
R

I

Number of Iterations

Random
PROCLUS

Correlation Model
k-LIDoids
CLIQUE

(d) SDD

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20

A
R

I

Number of Iterations

Random
PROCLUS

Correlation Model
k-LIDoids

(e) MiniBooNE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7

A
R

I

Number of Iterations

Random
PROCLUS

Correlation Model
k-LIDoids
CLIQUE

(f) MAGIC

Figure 4.2 Adjusted Rand Indices (ARI) for all methods in comparison with respect
to the total value of sparsification rate Z as, 12% for ALOI-100 (Total Sparsified
Features =80/641), 83% for Wearable Computing (Total Sparsified Features =15/18),
97% for ONP (Total Sparsified Features =58/60), 70% for MAGIC (Total Sparsified
Features =7/10), 96% for MiniBooNE (Total Sparsified Features =48/50), and 96%
for SDD (Total Sparsified Features =46/48).

the number of dimensions increases, the number of cells grows exponentially and thus

finding clusters in adjacent high-density cells becomes prohibitively expensive [152].

71

Therefore, we can conclude that PROCLUS, the Correlation Model, and

CLIQUE clustering accuracies considerably depend on both the parameters setting—

which is, however, difficult to determine— and the actual datasets used in the

experimentation.

4.3.6 Comparison Against the Competing Methods with Respect to the
Expected Measurements

Figure 4.3 shows the plots of EPrec, ERec, and ECos for a specific iteration of each

dataset. Specifically, we use iterations 30 for ALOI-100, 9 for Wearable Computing,

5 for MAGIC, 27 ONP, 18 for SDD, and 19 for MiniBooNE; these iterations represent

the highest ARI values in Figure 4.2

72

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

ALOI-100

Wearable-Computing

MAGIC
ONP

SDD
MiniBooNE

EP
re

c

Random
PROCLUS

Correlation Model

k-LIDoids
CLIQUE

(a) Expected Precision

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

ALOI-100

Wearable-Computing

MAGIC
ONP

SDD
MiniBooNE

ER
ec

Random
PROCLUS

Correlation Model

k-LIDoids
CLIQUE

(b) Expected Recall

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

ALOI-100

Wearable-Computing

MAGIC
ONP

SDD
MiniBooNE

EC
os

Random
PROCLUS

Correlation Model

k-LIDoids
CLIQUE

(c) Expected Cosine

Figure 4.3 Expected Precision, Recall, and Cosine values for all methods in
comparison in a specific iteration (M , Z) as (30, 0.093) for ALOI-100, (9, 0.5) for
Wearable Computing, (5,0.71) for MAGIC, (27,0.9) for ONP, (18,0.75) for SDD, and
(19,0.76) for MiniBooNE.

73

Results and Analysis Except for ALOI-100, k-LIDoids outperforms other meth-

ods in terms of EPrec and ECos scores, which means that our clustering method,

in most cases, avoids extremes in cluster fusion and cluster fragmentation. When

compared with the other competing methods, even though k-LIDoids has the lowest

value for the ERec measurement, nevertheless, its performance is considerably

acceptable in most datasets (i.e., ≥ 70%).

4.3.7 Comparison Against the Competing Methods with Respect to the
Clustering Convergence

In this experiment, we enabled both termination criteria for the k-LIDoids algo-

rithm, the maximum number of iterations M and the overall average weighted ID

(wIDaverage). Except for ALOI-100, we used the same setting defined in Table 4.1

for the parameter M for all datasets in comparison. For ALOI-100, we set M to

200 iterations, as to test if we can eliminate more noisy features from this dataset

without reducing the clustering performance. Figure 4.4 shows the plot of the

comparison results between k-LIDoids, PROCLUS, and the Correlation Model with

respect to ARI after all methods converged. We did not include CLIQUE as it has a

different execution style. For a fair comparison, both parameters, the average number

of dimensions in PROCLUS and the number of the principal components in the

Correlation Model are explicitly set to 400 for ALOI-100, 9 for Wearable Computing,

5 for MAGIC, 48 for ONP, 20 for SDD, and 38 for MiniBooNE; these values reflect

the number of dimensions that is kept in each dataset after executing the k-LIDoids

algorithm.

74

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

ALOI-100

Wearable-Computing

MAGIC
ONP

SDD
MiniBooNE

AR
I

PROCLUS
Correlation Model

k-LIDoids

Figure 4.4 ARI values for k-LIDoids, PROCLUS, and the Correlation Model with
respect to the clustering convergence. k-LIDoids reaches a specific iteration and
sparsification rate before terminated (M , Z, wIDaverage), as (200, 0.62, N/A) for
ALOI-100, (9, 0.5, 3.89E+36) for Wearable Computing, (5,0.71, 0.310386162) for
MAGIC, (24,0.8, 0.223351866) for ONP, (10,0.42, 3.09E+36) for SDD, and (19,0.76,
0.022918872) for MiniBooNE.

Results and Analysis Except for ALOI-100, k-LIDoids is terminated before

reaching the maximum number of iterations, and outperforms other methods in all

datasets, see Figure 4.4. The Correlation Model, however, achieved the highest ARI

value in ALOI-100 dataset. In four out of the six datasets used in the experiments

(i.e., MAGIC, Wearable Computing, ONP, and MiniBooNE), we observe that the

minimum value for the termination criterion wIDaverage occurs when k-LIDoids

achieves relatively the highest performance in Figure 4.2. However, in SDD dataset,

the k-LIDoids algorithm is terminated before it reaches its highest performance (where

M=18 in Figure 4.2). In ALOI-100, however, k-LIDoids is terminated when it

reaches its maximum number of iterations (M=200). In fact, applying k-LIDoids

on ALOI-100 dataset does not show a clear variations for the wIDaverage value in

every iteration. The possible explanation for this behavior is that ALOI-100 consists

of too many clusters, with a relatively small number of objects per cluster, that

prevents significant clustering changes to occurs in each iteration. In general, these

75

observations still show some usefulness of using the defined heuristic termination

criterion wIDaverage.

4.3.8 Case Studies for the Clustering Accuracy

In this section, we present the confusion matrices of the outcomes of k-LIDoids applied

on the datasets with a small number of ground truth labels. The goal here is to test

the accuracy of the proposed algorithm while it progresses in gradually removing

the noisy features as well as clustering the data objects in the subspaces. In each

confusion matrix, each entry value is equal to the number of objects belong to the

true class O, and assigned to a cluster C. Clearly, each row should have one entry

that is much lager than the other entries.

We show the confusion matrix for the initial clustering results without any

sparsification, and also the confusion matrices after sparsification for each iteration

that has ARI score among the largest ARI scores shown in Figure 4.2. Tables 4.3

through 4.6 show the results of four datasets with a small number of ground

truth labels, namely, MAGIC, MiniBooNE, and ONP, and Wearable Computing.

Obviously, the results are for one execution of multiple runs of the k-LIDoids

algorithm. The iteration numbers are chosen to reflect the significant changes in

the clustering process, as the clustering performance is not reflected clearly in the

initial iterations.

As can be seen from the tables, every class objects are directed to the correct

cluster with the exception for some objects. For three datasets with a binary

classification, the percentage of these misplaced objects is relatively small which does

not affect the correspondence between the true classes and the resulted clusters. This

indicates a clean mapping form the ground truth labels to the generated clusters with

increasing the number of iterations, and with sparsifying more features in order to

define cluster subspaces. For Wearable Computing dataset, the number of misplaced

76

Table 4.3 k-LIDoids: Confusion Matrix for MAGIC

Iteration:0, ARI=0.3749

Cluster 1 2

Class

1 8649 0

2 3683 6688

Iteration:3, ARI=0.4982

Cluster 1 2

Class

1 9535 0

2 2798 6687

Iteration:5, ARI=0.9939

Cluster 1 2

Class

1 12303 0

2 29 6688

77

Table 4.4 k-LIDoids: Confusion Matrix for ONP

Iteration:0, ARI=0.4604

Cluster 1 2

Class

1 12124 0

2 6366 21154

Iteration:16, ARI=0.7853

Cluster 1 2

Class

1 16234 0

2 2256 21154

Iteration:29, ARI=0.8303

Cluster 1 2

Class

1 18490 1760

2 0 19394

78

Table 4.5 k-LIDoids: Confusion Matrix for MiniBooNE

Iteration:0, ARI=0.59626

Cluster 1 2

Class

1 36499 14667

2 0 78898

Iteration:18, ARI=0.92614

Cluster 1 2

Class

1 36499 2370

2 0 91195

Iteration:24, ARI=0.891172

Cluster 1 2

Class

1 36499 3534

2 0 90031

79

Table 4.6 k-LIDoids: Confusion Matrix for Wearable Computing

Iteration:0, ARI=0.32688

Cluster 1 2 3 4 5

Class

1 19801 0 0 0 0

2 30830 11827 14575 0 0

3 0 0 32795 12415 10340

4 0 0 0 0 18952

5 0 0 0 0 14098

Iteration:9, ARI=0.53408

Cluster 1 2 3 4 5

Class

1 22,722 0 0 0 0

2 27909 1987 0 0 0

3 0 9840 41657 0 0

4 0 0 5713 12415 35141

5 0 0 0 0 8249

80

objects is still high, but as can be seen from Table 4.6, more and more objects are

moved to the correct clusters.

Another interesting result is the subset of features defined by k-LIDoids for the

resulted clusters in each iteration. Tables 4.7 through 4.10 illustrate the subset of

features that is kept per cluster for each dataset, particularly, in iterations 3 and 4

for MAGIC, 29 for ONP, 24 for MiniBooNE, and 9 for Wearable Computing.

Table 4.7 k-LIDoids: Subset of Features
per Cluster in MAGIC

Iteration:3, ARI=0.49825

Cluster 1 2,3,4,5,7,8,9

Cluster 2 4,5,6,7,8,9,10

Iteration:5, ARI=0.99386

Cluster 1 2,3,4,5,8

Cluster 2 5,7,8,9,10

Table 4.8 k-LIDoids: Subset of Features
per Cluster in ONP

Iteration:29, ARI=0.8302986

Cluster 1 51, 54

Cluster 2 2, 51

Table 4.9 k-LIDoids: Subset of Features
per Cluster in MiniBooNE

Iteration:24, ARI=0.891172

Cluster 1 27, 34

Cluster 2 34, 41

From the results of the feature subsets–even with the lack of information

about the actual numerical features that distinguish each ground truth class–and

81

Table 4.10 k-LIDoids: Subset of
Features per Cluster in Wearable
Computing

Iteration:9, ARI=0.53408

Cluster 1 7,8,9,10,11,12,13,16,17

Cluster 2 7,8,9,12,13,15,16,17,18

Cluster 3 7,8,9,13,14,15,16,17,18

Cluster 4 7,8,9,11,12,13,16,17,18

Cluster 5 7,8,9,10,11,12,13,16,17

the clustering accuracy values, we still can conclude the intrinsic dimensions that

represent each cluster. This is crucial for some applications that require not only

good clustering results for the dataset but also additional information regarding to

the minimum subset of features representing each cluster.

4.4 Conclusion

In this chapter, we proposed k-LIDoids as a subspace clustering algorithm for

discovering similar objects in a subset of features (subspace) for high-dimensional

datasets. k-LIDoids integrates k-medoids clustering algorithm with the feature

selection criterion, Support-Weighted Intrinsic Dimensionality (support-weighted

ID). Support-weighted ID is used to identify the relevant features with a higher

discriminative power per cluster in order to define each cluster subspace.

Experimental results have shown that k-LIDoids is able to return the clusters

of data objects together with the subset of features defining each cluster with

maintaining or increasing the overall clustering accuracy in compared to clustering

the full-dimensional dataset. The performance of k-LIDoids is also more stable and

resistance toward excessively eliminating many noisy features from the clusters in

compared with other state-of-the-art algorithms such as PROCLUS and CLIQUE.

82

CHAPTER 5

LID-FINGERPRINT: A LOCAL INTRINSIC
DIMENSIONALITY-BASED FINGERPRINTING AND INDEXING

METHOD FOR SIMILARITY SEARCH

In this chapter, we define LID-Fingerprint, a fingerprinting and multi-level indexing

framework that can be used for hiding the information on a server side (the cloud)

as a way of preventing passive adversaries. LID-Fingerprint combines the k-LIDoids

algorithm, presented in Chapter 4, as a subspace clustering that can define a minimum

subspace for each cluster, and NNWID-Descent [153], presented in Chapter 3, as a

similarity graph construction method based on support-weighted ID, which can be

used to obtain sparse representations for dataset objects. In LID-Fingerprint, k-

LIDoids is used in a hierarchal nesting of a subspace clustering framework that allows

to define a common binary fingerprint for each group of objects in each intermediate

level of the index. On the other hand, the leaf level holds the fingerprints that

derived from the sparse representations of the objects, which are resulted from using

NNWID-Descent.

By combining dimensionality reduction (i.e., feature selection) and fingerprints

generation, our method provides two of the standard measures for protecting the

data privacy: data suppression and data masking. Furthermore, since our method

does not assume the uniqueness of the generated fingerprints (several objects of the

same neighborhood can have similar fingerprints), therefore, it does provide data

anonymity. With using an appropriate similarity measure, the generated indexed

fingerprints allow to achieve a reasonable similarity search accuracy. The main

contributions are:
– The proposed method allows an efficient and secure search and retrieval– as

only fingerprints represented as binary vectors are used–without revealing any
information about the actual values for the objects features.

83

– The search results of the related fingerprints to a given query are considered a
proper superset of the actual results, which then can be refined, in the client
side, using the actual object representations in order to achieve a smaller more
accurate results.

– Using real datasets, the proposed method is compared against other state-of-
the-art methods such as Locality Sensitive Hashing based approaches.

The remainder of this chapter is organized as follows. We discuss the proposed

LID-Fingerprint in Section 5.1. In Section 5.2, the performance of our method, along

with the experimental results and analysis using several real datasets, is compared

to NNWID-Descent and other competing methods from the literature. Finally, we

conclude the discussion in Section 5.3.

5.1 LID-Fingerprint Framework

In this section, we present LID-Fingerprint, a new fingerprinting and indexing

framework, that includes three fundamental processes: fingerprinting, indexing, and

nearest neighbor search. The fingerprinting process defines a set of binary fingerprint

vector representations for the objects represented as vectors in high-dimensional

spaces. These fingerprints can be used in a filtering phase to select candidates for

similarity search based on the Hamming distance. In large datasets, the number of

these fingerprints can be high and the similarity can be extensive to compute. Thus,

the indexing process builds a multi-level (hierarchical nesting of subspace clustering)

data structure (index) that allows reducing the number of computations, and speeding

up the search for these fingerprints. Given a fingerprint for a query object, the nearest

neighbor search process searches the index for the best matched fingerprints based on

a defined similarity measure (i.e., Hamming distance).

Similar to SUSHI [60] and 4+-tree [63], LID-Fingerprint allows multiple

representations for the objects according to different dimensions. Nevertheless,

LID-Fingerprint uses binary vector representations (fingerprints) instead of the actual

84

values for the dimensions. This framework not only reduces the search space, but also

allows a better usage for the main memory.

5.1.1 Notations

Let X = {x1, x2, x3, . . . , xn} be a dataset consisting of n objects such that each

object xi is represented as a feature vector in RD. Let the set of features is denoted

as F={1, 2, . . . , D} such that j ∈ F is the j-th feature in the vector representation

and D is the total number of features. We also define p as a neighborhood size for each

object xi ∈ X in the p-nearest neighbor graph G. Suppose that these n objects should

be partitioned, according to some distance measurement, into k(k < n) clusters, which

is assumed to be given. The set of clusters is denoted as C, where each cluster Cc,

1 ≤ c ≤ k, has a cluster representative mc.

5.1.2 Fingerprinting Process

For a better explanation of LID-Fingerprint framework, we first provide the intuition

behind using the NNWID-Descent framework (presented in Chapter 3) in the

objects fingerprinting. Then, we show the adoption of k-LIDoids subspace clustering

(presented in Chapter 4) in generating cluster fingerprints.

Objects Fingerprinting Given a dataset X, we rank and select the best features

locally for each object xi ∈ X using weighted ID (Equation 3.3, Chapter 3) on the

normalized feature vectors, and sparsify each vector to remove the noisy features

(Section 3.2, Chapter 3). This process will project each object xi onto a subset of

features F ′ ⊂ F (the set of features) to provide a compact representation, x′
i, where

for all j ∈ F , feature x′
ij=xij, whenever j ∈ F ′, and x′

ij = 0, otherwise.

The compact representation x′
i of each object xi ∈ X can be further transformed

into a binary vector x′′
i of {0, 1}D bits, such that for all j ∈ F , feature x′′

ij = 1,

whenever j ∈ F ′, and x′
ij = 0, otherwise. We call x′′

i the LID-based fingerprint of xi.

85

Objects Fingerprinting Algorithm Algorithm 5 illustrates the fingerprinting

process. The only change made to NNWID-Descent (Algorithm 2, Chapter 3) is by

modifying and adding few lines for defining the object fingerprints. More precisely, the

binary fingerprints for all objects are initialized to 1’s (line 2). Once Z ∗T proportion

of the object features are sparsified, their corresponding fingerprint bits are set to 0’s

(lines 18-21). The algorithm returns the set of binary fingerprints X ′′ instead of the

p-NN graph G (line 22).

Algorithm 5: Objects Fingerprinting Process (only the modified and the
new steps are shown - See Algorithm 2 in Chapter 3)

Input : Dataset X, distance function dist, neighborhood size p for the
graph, neighborhood size K for computing wID scores,
sparsification rate Z, number of iterations T

Output: Binary Fingerprints X ′′

2 Normalize the original feature vectors of X; Initialize X ′′ fingerprints to
1’s;

18 foreach data point x ∈ X do
19 For each feature f in x, if f 6= 0 then set X ′′

xf
to 1 ;

20 else set X ′′
xf

to 0;

21 end
22 Return X ′′

Clusters Fingerprinting For each cluster Cc, k-LIDoids creates what we refer to

as subspace mask vector or Cluster Fingerprint, CF , as the following (Figure 5.1) ,

Definition 4 (Cluster Fingerprint CF)
Let the C be the clusters of objects in the dataset X, and F is the full feature space
of X, then, CF is a set of binary fingerprint vectors defined together with C such
that the objects in a cluster Cc ∈ C are closely clustered and compact in a subspace
defined in a fingerprint vector CFc ∈ CF . The subspace in CFc will have much lower
dimensionality than the full space F (|CFc|� |F |).

86

Each CFc is initialized to 1’s (full features). When the feature fj is selected and

defined as a noisy (bad) feature for a cluster Cc, then, CFc[j] will be changed to the

value 0.

Figure 5.1 Binary fingerprint vectors, CF1 and CF2 defined together with clusters
C1 and C2, respectively.

k-LIDoids clusters the objects using the subspace dimensions defined in CF

such that objects are highly correlated and connected within those dimensions.

Clusters Subspace Based on Fingerprinting In this research, we allow

k-LIDoids to generate a set of outliers beside the subspace clusters in order to increase

the clustering quality and thus the overall indexing performance. Therefore, the

subspace clustering generated by k-LIDoids can be defined, comparable to [60], as

follows,

Definition 5 (Subspace Clustering based on k-LIDoids)
Let CF be a set of the cluster fingerprints defined by k-LIDoids for clusters C of
X. A subspace cluster Cc is a group of objects that are relevant according to the
dimensions, defined in CFc. Then, the subspace clustering subspace_C is defined as,
subspace_C = (C1, ..., Cc, .., Ck, Outliers_set) where 1 ≤ c ≤ k, and Outliers_set is
the list of objects that are not relevant to any cluster Cc, Outliers_set = X−

⋃k
c=1Cc

5.1.3 Indexing Process

In order to generate object fingerprints and synchronously create the multi-level index

structure (tree), we combine the k-LIDoids algorithm as a method of creating cluster

87

fingerprints CF , with the objects fingerprinting process (Algorithm 5) which allows

us to generate binary fingerprints for dataset objects. In each inner level of the

index, each inner node stores cluster fingerprints generated by recursively applying

k-LIDoids subspace clustering on a subset of the dataset. The Leaf node, on the other

hand, stores the fingerprints of the objects derived from the sparse representations

of NNWID-Descent results. As determined by Definition 5, we obtain from the k-

LIDoids algorithm both multiple clusters and an outliers set. The outliers fingerprints

set is also derived from applying the objects fingerprinting process on the outliers,

and stored in the inner node with its respective sub-clusters.

In this context, we define the nodes in LID-Fingerprint index structure as

follows:

– Inner Node IN and the root: is determined by the cluster fingerprints CF
and the outliers fingerprints set Outliers_setx′′ as the following: IN= (CF1,
CF2, ..., CFc, ... , CFk, and Outliers_setx′′).

– For each CFc, the node contains a reference (or pointer) to its child node,
which will represent the subset of objects represented by CFc.

– Leaf Node LN: is represented by the cluster object fingerprints set, Cx′′ , where
Cx′′={ x′′

i | xi ∈ Cc in the parent node of LN}, as well as the references to these
objects (i.e., encrypted objects in a server’s database).

Each cluster Cc is defined by the cluster fingerprint CFc that represents a

compact information used for that cluster. On the other hand, each object xi,

either cluster object or outliers object, is represented by its binary fingerprint, x′′
i ,

obtained by mapping the sparse object to a binary vector (as previously described in

Section 5.1.2).

Each subspace cluster across the tree will have a different fingerprint that holds

only the local relevant dimensions to that cluster (i.e., represented by 1 values).

Compared with the methods in [60, 63], each object will have multiple-fingerprint

representations from the root to its own fingerprint in the leaf node instead of the

88

full vector representation. Similar to the method presented in [60], these various

representations allow to prune objects along the path of the tree and reduce the

search space.

We do not store the actual objects or their fingerprints in the inner node

clusters because we want to see the effect of hierarchical nesting clustering on the

fingerprints indexing as well as reduce the number of evaluations for the fingerprint

query. However, the references (i.e., indices or pointers) to the objects are used only

for clustering purposes.

Candidate Pruning In existing multi-level indexes [60, 63], the leaf nodes usually

store the full representations for the objects. This representations help in pruning

the whole subtree of the index and minimizes the search space. Given a query object

q, the lower bounding distance for all objects within the underlying subtree is well

defined; the distance between q and any inner node in the subtree, defined by their

related dimensions, should be smaller than the distance to each object in the leaf

node in the same subtree.

In our index, we use the reduced dimensions information, performed by the

fingerprinting process, not only in the inner node for the clusters, but also in the leaf

node for the objects. To achieve the lower bounding property in this case, we strictly

set the number of the sparsified dimensions in the inner nodes to be larger than the

those for the leaf nodes during the index construction. Formally, let assume that the

number of relevant dimensions to an inner node clusters, defined in CF , is set to be

| CF |= mI (i.e., the cardinality of the cluster fingerprints or the number of 1’s),

then the number of the relevant dimensions for each object fingerprint, x′′, in the leaf

node, defined as | x′′ |=mL, should be larger than mI (mL > mI).

Furthermore, based on the techniques used for the fingerprinting in our index,

it is expected that the cluster fingerprint shared most of the relevant dimensions (1’s

89

values) with its leaf node fingerprints; the relevant dimensions for the cluster are

derived based on the aggregated information of the objects in that cluster. That is,

CF ⊂ x′′.

Figure 5.2 shows an example of the tree structure of the LID-Fingerprint. The

number of relevant dimensions for the inner node, mI , is set to 2, while for the

objects in the leaf node and the outliers list, the relevant dimensions, mL, is set to

4. In the root, two subspace clusters are generated, each represented by its own

fingerprint that mainly represents the relevant dimensions to its cluster, as well as a

set of outliers fingerprints {5,9}. The root first cluster’s objects are further clustered

into sub-clusters, with a different fingerprint represents each sub-cluster. Cluster 2

in the root, however, is appended with the leaf node that contains the cluster object

fingerprints {3,7,9, ..}. Similar to SUSHI and 4+-tree, it is clear that LID-Fingerprint

constructs unbalanced tree, where some objects may have multiple-cluster fingerprint

representations, while other have only one or few.

Figure 5.2 Multi-level index structure of LID-Fingerprint.

90

Clustering Evaluation Since k-LIDoids subspace clustering depends on a random

initialization to generate an initial form of the clusters, which then enhanced gradually

using the feature ranking and sparsification techniques, it might not be guaranteed

to obtain the best quality clustering from one execution. Datasets usually can have

multiple clustering which can be exposed by multiple executions for the clustering

algorithm with different relevant dimensions per cluster [60]. Moreover, there is no

guarantee that the relevant dimensions or the clusters in one execution will be exactly

the same to another execution. This variation in the generated clusters may lead to

a low search performance in the generated index [60]. Therefore, it is important

to evaluate the clustering results of multiple executions, and select the best quality

clusters for each inner node in the index.

Computing the fingerprint for a cluster or an object mainly depends on the

nearest neighbors for that object or the cluster representative mc (as previously

presented in Sections 3.2.1 and 4.1.3). Thus, for evaluating the clusters in each inner

node, we select a measure that reflects the connectedness of the cluster partitions. The

connectedness relates to what degree objects and their nearest neighbors are placed

in the same cluster in the clustering results, and it is evaluated by the connectivity

measures[154, 155] as follows: Let NNij be the jth nearest neighbor of object xi,

and let y(i,NNij
) has a value of 0 if xi and NNij are placed in the same cluster and

1/j, otherwise. Then, for a particular clustering configuration, subspace_C, without

considering the outliers set, the connectivity is defined as,

conn(subspace_C) =
n∑

i=1

p∑
j=1

y(i,NNij
) (5.1)

where n is the size of the dataset, and p is the neighborhood size in the p-NN

graph entries used for both NNWID-Descent and k-LIDoids. The total value

of conn(subspace_C), which can have a value in the range of [0,∞], should be

minimized [154, 155].

91

Fingerprinting and Indexing Algorithm To construct the multi-level index

(Algorithm 6), we start with clustering the full dataset X multiple times, using

k-LIDoids, until we get the best clustering quality, which is measured by the least

connectivity value. The fingerprints of these resulted clusters are stored in the

root, and the cluster object references are held temporary for the next recursive

sub-clustering. For each cluster in the root, k-LIDoids is applied several times on the

subset of objects of that cluster, and the best quality sub-clusters are selected (lines

9-17). These sub-cluster fingerprints are stored in an inner node (line 18), which is

then attached to the parent node (i.e., the root). However, if the number of objects in

any cluster is below a specific threshold, a leaf node is created to store the fingerprints

for those objects, which are computed using the objects fingerprinting process, and

attached to that cluster’s fingerprint (lines 1-4). This process is repeated until the

index is complete. Since the object fingerprinting process is independent process used

for computing the object fingerprints, it is worth to mention that for efficiency, object

fingerprints can be computed initially before building the index, and stored in the

leaf nodes once they are created.

5.1.4 Nearest Neighbor Search Process

Similarity Measure A common metric used in the literature to compare binary

vectors (binary fingerprints) is the Hamming distance H, which can be computed

using a bitwise XOR followed by a bit count. We use a slightly modified version of

the Hamming distance, called the subspace Hamming distance, Hs, to focus only on

the subspace or the relevant dimensions to the object fingerprints. For example, the

subspace Hamming distance Hs between a query object fingerprint, denoted as x′′
q ,

and any object fingerprint, x′′
i is computed as a bitwise AND operation between x′′

q

and the complement of x′′
i , x̄′′

i , followed by a set bit count on the result. Formally,

Hs(x
′′
q , x

′′
i) =

D∑
j=1

(x′′
qj&x̄′′

ij), (5.2)

92

Algorithm 6: Multilevel Index Construction Method
Input : Dataset X, the number of clusters k, sparsification rate for inner node mI , sparsification rate

for leaf node mL, p-nearest neighbor size

Output: Node N

1 if |X|≤ minimum_size then

2 Fingerprints[]= Fingerprinting_Process(X,p,mL);

3 Return Construct_Leaf_Node(Fingerprints)

4 end

5 Best_Clusters=Subspace_Clustering_using_k-LIDoids(X,k, p, mI);

6 Best_Outlier_Fingerprints[]=

Generate_Fingerprints_using_NNWID_Descent(Best_Clusters.Outliers, p,mL);

7 Best_Connectivity=Evalaute_Clustering(Best_Clusters);

8 for maximum_number_of_executions (execute in parallel) do

9 Current_Clusters=Subspace_Clustering_using_k-LIDoids(X,k, p, mI);

10 Current_Outlier_Fingerprints[]=

Generate_Fingerprints_using_NNWID_Descent(Best_Clusters.Outliers,p,mL);

11 Current_Connectivity=Evaluate_Clustering(Best_Clusters);

12 if Current_Connectivity < Best_Connectivity then

13 Best_Clusters=Current_Clusters;

14 Best_Outlier_Fingerprints[]=Current_Outlier_Fingerprints[];

15 Best_Connectivity=Current_Connectivity;

16 end

17 end

18 Node Inner_node=Construct_Inner_Node(Best_Clusters.Fingerprints, Best_Outlier_Fingerprints);

19 foreach cluster Cc ∈ Best_Clusters (execute in parallel) do

20 Run Multilevel Index Construction Method for Cc.objects

21 end

22 Return inner_node;

where & denotes the bitwise AND operation. Hs helps to minimize the distance

between x′′
q and x′′

i , if and only if x′′
i is a related object to x′′

q ; x′′
i shares the same

relevant dimensions to x′′
q , regardless to other relevant dimensions defined for x′′

i .

Searching Algorithm The complete pseudo-code for the search process is given in

Algorithm 7, which basically follows the searching method in [60, 63], but with using

fingerprints and the Hs distance function. Given a query object q, the fingerprint,

x′′
q , of q is computed by simply mapping each non zero feature to 1 (Section 5.1.2).

93

To search for the K-NN nearest neighbor fingerprints using LID-Fingerprint index,

we create two data structures, a priority queue, Q, to hold the current active node

with its Hs distance from x′′
q , and an array list, Results, to hold the K-NN nearest

neighbor candidates in ascending order of their distances to x′′
q . The distance between

the Kth fingerprint and x′′
q is used to prune a way the search space.

We define a variable Max-Dist, which is initialized to ∞, and works as a pruning

distance as it will be described later. Starting from the root node, which get inserted

into Q, we repeat the operations in lines (7-22) until Q becomes empty. The first node

is pulled from the Q, and tested. If the node is a leaf node, the distances between its

fingerprints and x′′
q are computed using a linear scan search (11-16). The fingerprints

that closet to x′′
q are used to update the Results list. The value of the pruning

distance, Max-Dist, is updated with the K-NN distance (if it exists). Otherwise,

the node is an inner node, and its outliers fingerprints (if exists) are checked first

using a linear scan and the results are inserted into the Results list. Then, for

each sub-cluster fingerprint, the distance from x′′
q to that sub-cluster fingerprint is

computed. If this distance is less than Max-Dist, then the node that is connected to

that cluster fingerprint is inserted to the queue Q. If the distance from x′′
q to any

cluster fingerprint in any inner node is larger than the current Max-Dist, then we

prune the subtree branch of that cluster. We assume that the Kth distance is less

than any object fingerprints derived from that cluster because these fingerprints have

many more dimensions (with values=1) in compared with the cluster fingerprint (as

we described in Section 5.1.3).

5.1.5 Updating the Index

In this section, we explain the possible procedure that can be used for updating

already created index in terms of inserting a new fingerprint or deleting existing one.

94

Algorithm 7: K-NN Search
Input : query object q, the nearest neighbors size K, index Tree

Output: K-NN results

1 Fingerprint x′′
q = Map_Query_Object_to_Fingerprint(q);

2 Q=new Priority Queue(); (to store the a list of (node, distance))

3 KNN_Results= new List(size K); (to store the list of (fingerprint, distance) in ascending order distance)

4 Max_Dist=∞;

5 Current_Fingerprints=new List();

6 Q.insert(Tree.root, 0.0);

7 while Q is not empty and Q.Get_First_Distance ≤ MAX_Dist do

8 Node N=Q.Poll_First_Node();

9 if N is a leaf node then Current_Fingerprints= N.Fingerprints; ;

10 else Current_Fingerprints= N.Outliers_Fingerprints;;

11 foreach Fingerprint x′′ in Current_Fingerprints do

12 if Hs(x′′
q , x

′′) ≤ Max_Dist then

13 KNN_Results.add(B, Hs(x′′
q , x

′′));

14 KNN_Results.sort();

15 Max_Dist=KNN_Results.get(K).distance ;

16 end

17 if N is a inner node then

18 foreach Cluster_Fingerprint CFc in N do

19 if Hs(x′′
q , CFc) ≤ Max_Dist then Q.insert(N.CFc.Node);

20 end

21 end

22 end

23 Return KNN_Results;

Insertion Algorithm 8 describes the insertion operation for the LID-Fingerprint

index. When a new object xNew has to be inserted to the index, its fingerprint,

x′′
new, is computed (line 1) (using object fingerprinting process) and inserted to the

appropriate leaf node in the index. The Index is traversed from the root down to

the leaf nodes by selecting the closet sub-cluster fingerprint along the path using Hs

as a distance measure (line 3-10). However, depending only on the distance may

not guarantee that the appropriate leaf node will be selected for the new object.

Therefore, for each inner node, it is important also to check if the closest sub-cluster

fingerprint shares most of its relevant dimensions with the new fingerprint, x′′
new (say

95

95% of the relevant dimensions). Otherwise, the new object fingerprint will be inserted

to the outliers list of the current active inner node. If the nearest leaf node is full,

then k-LIDoids clustering has to be applied on that leaf node objects, which will

introduce a new inner node in the tree.

However, the insertion operation may require to periodically reconstruct the

index using the original dataset regardless of the index performance to cope with

many inserted fingerprints in the tree [63].

Algorithm 8: Insertion Operation
Input : new object xNew, Index Tree

1 Fingerprint x′′
New= Find_New_Object_Fingerprint(xNew); (Fingerprint is generated using object

fingerprinting process Strategy);

2 Node N=Tree.root;

3 while N is not a leaf node do

4 Closest_CF= N.CF1;

5 foreach Cluster_Fingerprint CFc in N do

6 if Hs(x′′
New, CFc) ≤ Hs(x′′

New, Closest_CF) then Closest_CF=CFc ;

7 end

8 if Closest_CF ⊂ x′′
New then N=Closest_CF.Node; ;

9 else N.insert_to_Outliers_Fingerprints_List(x′′
New); Break ;

10 end

11 if N is a leaf node then

12 N.insert_New_Fingerprint(x′′
New);

13 if N is full then

14 Run Multilevel Index Construction Method for N objects using N.Fingerprint references

15 end

16 end

Deletion Similar as the insertion operation, to delete an object from the tree, the

object fingerprint is computed using the object fingerprinting process. For each inner

node, this fingerprint is initially checked against the outliers list before checking any

of the sub-cluster fingerprints of that node. If it is not found in the outliers list, the

object fingerprint is checked along the path from the root to the leaf node to find the

closest sub-cluster fingerprint. In the leaf node, the object is searched linearly and

96

deleted. If the leaf node size become less than a defined threshold, then the sub-cluster

fingerprint of that leaf node (which is one level above the leaf node) is deleted, and

its fingerprints are added to the outliers list in the inner node that contained the

sub-cluster fingerprints. Similar as the insertion process, if many deletion operations

were performed, it is necessary to rebuild the index using the original dataset.

5.1.6 Information Hiding Aspects of LID-Fingerprint

Two primary information hiding techniques are included in LID-Fingerprint: data

suppression, and data masking. Fingerprinting in general can make these techniques

more valuable in terms of protecting the identities, privacy, and personal information

by not releasing—to semi-honest users—the actual values of some of the dataset

information; these values that may lead to infer some of the sensitive information.

While some of dataset information (mostly public) is entirely removed in data

suppression, data masking is the process of concealing or encrypting the selected

information. The masked data remains encoded in the database and can be accessed

or re-identified by only authorized persons.

With using feature ranking and sparsification processes in both k-LIDoids and

NNWID-Descent, LID-Fingerprint includes data suppression by removing many noisy

features locally from each object. Data masking is also involved in LID-Fingerprint by

mapping (encoding) the remaining important features to binary representations. This

transformation for the feature vectors reduces the quality of datasets, and changes the

overall statistics that causes the data to become practically useless for unauthorized

observers. Beside the data suppression and data masking processes, LID-Fingerprint

does not guarantee the uniqueness of the generated fingerprints; neighbor objects in

a dataset may have exactly similar fingerprints. This makes K-NN search results

completely anonymous, unless the unauthorized person (i.e., attacker) has a direct

access to the actual values of the dataset.

97

5.2 Experimental Framework

For the comparison of LID-Fingerprint with other competing methods, we first

conducted experiments to study the influence of using LID-Fingerprint’s object

fingerprints, instead of using the actual data, in the nearest-neighbors graph

construction accuracy. Then, we tested the LID-Fingerprint similarity measure and

indexing performance against other state-of-the-art methods.

5.2.1 Competing Methods

The performance of LID-Fingerprint is contrasted with four competitors:

– Linear Scan: In order to search for K-NN fingerprints, a brute-force method
is used to compare the query fingerprint x′′

q with every other fingerprints in the
database. The fingerprints are generated by the LID-Fingerprint fingerprinting
process (Algorithm 5) as described in Sections 5.1.2 and 5.1.2.

– Min-Hash: Min-Hash algorithm is a min-wise independent permutations
locality sensitive hashing (LSH) scheme, designed for Jaccard similarity.
Min-Hash allows producing similar signatures for fingerprints that have a high
Jaccard similarity. A Min-Hash signature is a sequence of numbers produced
by multiple hash functions hl applied on a binary dataset.We also applied
Min-Hash technique on the fingerprints that are generated by LID-Fingerprint
fingerprinting process (Algorithm 5) in order to test the performance of existing
indexing method on these fingerprints.

– Super-Bit LSH: As LID-Fingerprint, Super-Bit involves both fingerprinting
and indexing processes. Super-Bit improves the random projection in LSH by
computing an estimation of cosine similarity. Super-Bit divides the random
projections into A groups, which are then orthogonalized in B batches of G
vectors. Thus, we obtain B G-super bits for each group. G is called the
Super-Bit depth, B is the number of Super-Bits, and A= G ∗B is the Super-bit
code length.

– SUSHI: is a general framework for a multilevel index structure based on a
hierarchal nesting top-down subspace clustering (as described in Section 2.2.3).
For a fair comparison with LID-Fingerprint, we tested SUSHI using k-LIDoids a
subspace clustering algorithm instead of PROCLUS [156] and MINECLUS [157]
that are used by the authors in [60]. We also used the clustering connectivity
for the clustering evaluation as the evaluation method used in [60] has a very
high computational complexity. The rationale for the comparison with this
method is to show what is the gain in terms of the time and the search
accuracy behind using the binary representations (fingerprints) for the reduced
dimensions instead of using the actual values for these dimensions.

98

5.2.2 Datasets

Seven real datasets of varying dimensions were considered:

– ALOI-100 is subset of the Amsterdam Library of Object Images (ALOI) [135],
which contains 110,250 images of 1000 small objects. Each image is described
by a 641-dimensional feature vector based on color and texture histograms.
ALOI-100 contains 10,800 images of 100 simple objects generated by selecting
the objects uniformly from among the classes.

– MNIST [136] contains 70,000 images of handwritten digits. Each image is
represented by 784 gray-scale texture values. MNIST is a combination of two
of NIST’s databases: Special Database 1 and Special Database 3 contain digits
written by high school students and United States Census Bureau employees,
respectively, with a total of 10 possible representations for the digits.

– RLCT The Relative Location of CT dataset (RLCT) [138] contains 53,500
axial CT slice images from 97 different patients. Each CT slice is described by
two histograms in polar space. The feature vectors of the images are of 385
dimensions.

– Wearable Computing Classification of Body Postures and Movements
(PUC-Rio) dataset [145] contains 165,633 samples collected on eight hours
of activities of four healthy subjects in different static postures and dynamic
movements. Each sample’s features vector has 18 attributes that represent user
data such as name, gender, age, height, weight, body mass, and sensor axis
values. There are five possible positions (sitting-down, standing-up, standing,
walking, and sitting).

– Online News Popularity dataset (ONP) [146] contains 39,644 articles’
textual extracted data, each has 60 attributes (58 predictive attributes, and 2
non-predictive) that describe different article aspects. The articles are binary
classified as popular and unpopular using a decision threshold of 1400 social
interactions.

– MiniBooNE [138] particle identification dataset contains 130,065 of signal and
background events Each event has 50 particle ID variables. This dataset is taken
from the MiniBooNE experiment and is used to distinguish between two classes,
electron neutrinos (signal), and muon neutrinos (background).

– Sensorless Drive Diagnosis dataset (SDD) [138] includes 58,509 electric
drives, with 48 features extracted form electric current drive signals. The drive
has intact and defective components. This results in 11 different classes with
different conditions

5.2.3 Accuracy of LID-Fingerprint based on Nearest Neighbors Graph
Construction vs. Sparsification

In this experiment, we compared between the p-NN graph that is updated in each

iteration of NNWID-Descent, after sparsifying a Z portion of the features in each

99

dataset object, and the p-NN graph constructed using the fingerprints generated by

LID-Fingerprint’s object fingerprinting process. The fingerprints exact p-NN graph

is computed using the similarity measure defined in Section 5.1.4. We run the

experiment in all datasets to show the effect in different dataset sizes and dimensions.

Parameters Setting While the nearest neighbors size p in the p-NN graph is set

to 10 for NNWID-Descent, the LID-Fingerprint graph is computed for p set to 10,

50, and 100. The proportion of the sparsified features, Z, in both NNWID-Descent

and LID-Fingerprint fingerprinting algorithms, is varied with different datasets as

it depends heavily on the density of the feature vectors. For example, in each

iteration, we set Z to 0.02 for ONP, 0.04 for MiniBooNE and SDD, 0.055 for Wearable

Computing, and 0.0025 for the sparse datasets, MNIST and RLCT, and ALOI-100.

Additionally, the nearest neighbors size, K, that used for computing the feature’s

support-weighted ID score, wID, is set to be 100 for all datasets. The number of

iterations T , is varied according to the dataset dimensions. T is set to 40 for MNIST,

70 for RLCT and ALOI-100, 29, 20, 18, and 15 for ONP, MiniBooNE, SDD, and

Wearable Computing, respectively.

Performance Measure For each of the considered datasets, the graph accuracy

is used as a performance measure. The class labels of the data objects were used to

measure the quality of the resulting p-NN graph at every iteration. The accuracy of

the resulting p-NN graph is evaluated, as in [18], using the following formula:

graph accuracy =
#correct neighbors

#data× p
, (5.3)

where the ‘correct’ neighbors share the same label as the query object.

Results and Analysis Figure 5.3 shows the p-NN graph accuracy at every iteration

for both NNWID-Descent and LID-Fingerprint graphs. For each dataset, except

100

for Wearable Computing dataset, we notice that when the number of the sparsified

features increases, the fingerprints graph accuracy improves and becomes closer to

NNWID-Descent graph accuracy (with a gab range from [0-≤ 20%]). However,

there might be a little degradation in the accuracy of NNWID-Descent graph. We

conclude that the generated fingerprints, using LID-Fingerprint process, can have

some uniqueness among nearest neighbor objects. This allows us to use those

fingerprints, instead of the original or sparse data, for the nearest neighbor similarity

search, which is faster to compute using binary operations, and more secure as

those fingerprints do no reveal any feature values. Wearable Computing dataset

shows almost no changes in the performance of fingerprints graph accuracy— with

a gab difference ≥ 30% between the fingerprints graph and NNWID-Descent graph

accuracy— as its number of dimensions is relatively too small to generate unique

fingerprints among the neighbor dataset objects.

101

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1

G
ra

ph
 A

cc
ur

ac
y

Z.rate

NNWID-Descent (p=10)
LID-Fingerprint (p=10)
LID-Fingerprint (p=50)

LID-Fingerprint (p=100)

(a) MNIST

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6

G
ra

ph
 A

cc
ur

ac
y

Z.rate

NNWID-Descent (p=10)
LID-Fingerprint (p=10)
LID-Fingerprint (p=50)

LID-Fingerprint (p=100)

(b) ONP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

G
ra

ph
 A

cc
ur

ac
y

Z.rate

NNWID-Descent (p=10)
LID-Fingerprint (p=10)
LID-Fingerprint (p=50)

LID-Fingerprint (p=100)

(c) RLCT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

G
ra

ph
 A

cc
ur

ac
y

Z.rate

NNWID-Descent (p=10)
LID-Fingerprint (p=10)
LID-Fingerprint (p=50)

LID-Fingerprint (p=100)

(d) MiniBooNE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2

G
ra

ph
 A

cc
ur

ac
y

Z.rate

NNWID-Descent (p=10)
LID-Fingerprint (p=10)
LID-Fingerprint (p=50)

LID-Fingerprint (p=100)

(e) ALOI-100

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

G
ra

ph
 A

cc
ur

ac
y

Z.rate

NNWID-Descent (p=10)
LID-Fingerprint (p=10)
LID-Fingerprint (p=50)

LID-Fingerprint (p=100)

(f) SDD

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

G
ra

ph
 A

cc
ur

ac
y

Z.rate

NNWID-Descent (p=10)
LID-Fingerprint (p=10)
LID-Fingerprint (p=50)

LID-Fingerprint (p=100)

(g) Wearable Computing

Figure 5.3 Comparison between NNWID-Descent graph (p=10) and
LID-Fingerprint fingerprints graph with different values of p (10, 50, and 100).

102

5.2.4 Comparison of LID-Fingerprint with its competitors

In this experiment, we tested the performance of the indexing and the similarity

measure, in terms of K-NN search, of LID-Fingerprint in compared with the other

competing methods. The experiment includes two parts: First, LID-Fingerprint index

is compared with the linear scan search, Min-Hash and Super-Bit, as fingerprinting

search and indexing methods. Then, we compared between LID-Fingerprint index

and SUSHI to see the gain of using fingerprints in multi-level indexing technique

instead of actual feature vectors. While the linear scan is considered an exact search

for the fingerprints, other methods are considered an approximate search as they

start by indexing (i.e SUSHI and LID-Fingerprint) or hashing (i.e Min-Hash and

Super-Bit) the dataset objects prior applying the K-NN search. The query object q

is randomly selected from each dataset. In LID-Fingerprint indexing, Linear scan,

and Min-Hash, the corresponding fingerprint x′′
q of q is selected from the fingerprints

generated by the fingerprinting process (Algorithm 5). On the other hand, the query

object is selected from the actual dataset in Super-Bit and SUSHI methods. For each

method and each of the dataset considered, we randomly selected 1000 objects to

serve as queries, and the best 20-NN matched objects to a given query are obtained.

The experiment results are averaged for each parameter setting.

Performance Measure Three evaluation parameters are measured: the average

query accuracy, the average number of distances, and the average search time. The

number of distances equals the number of target distance evaluations needed by the

search process to return the query result. The search time is shown as a proportion

of the time in milliseconds needed to return the query’s K-NN result. For one query

q, the accuracy of its K-NN result is defined as:

query accuracy =
|{x′′

i |yxi
= yq}|

K
, (5.4)

103

where y defined as a true label for the object. The query accuracy measures the ratio

of fingerprints that have the same label as the query object.

Fingerprinting Search and Indexing Comparison

Parameters Setting For the LID-Fingerprint indexing, the linear scan, and

Min-Hash, the fingerprints set is generated (by the object fingerprinting process) using

the parameter setting of Z and T specified in Table 5.1 for each dataset, where these

values are selected according to the highest fingerprint graph accuracies in Figure 5.3.

The nearest neighbors size, p, used to find the features wID values is set to 100.

In LID-Fingerprint, the number of clusters, k, for k-LIDoids clustering in each

inner node, is fixed to be equal to the ground truth labels for all datasets. In ALOI-100

and RLCT, however, the number of clusters is set to 10, in order to avoid the large

computational time associated with the large number of the ground truth labels

(i.e 100 and 97, respectively). The minimum_size is set to be Min(n/k, 1000),

where n is the number of dataset objects (assuming that the objects are normally

distributed among the ground truth labels). The outliers-threshold is set to 5, and the

maximum_number_of_executions for the subspace clustering for each inner node,

to find the best quality clusters, is set to 5 as well. The number of iterations M and

the features sparsification rate Z for k-LIDoids are varied according to the dataset

dimensions. However, we set M strictly larger than T , in order to ensure that the

cardinality of cluster fingerprints is less than the cardinality of object fingerprints.

More precisely, using M , T , and Z, the clusters final cardinality value, mI , in the

inner nodes, is computed as mI = D − (Ceil(D ∗ Z) ∗ M). Similarly, the objects

cardinality value, mL, in the leaf nodes, is computed as mL = D− (Ceil(D ∗Z) ∗ T),

where M > T , and Ceil is the ceiling function. This will increase the gab between

mL and ml, and ensure that mI < mL. Table 5.1 shows the M , T , Z, mL, and mI

setting for all datasets.

104

For Min-Hash and Super-Bit methods, we set the number of hash functions to

be equal to 2 for the datasets with a small number of dimensions, D, such as in ONP,

SDD, Wearable Computing, and MiniBooNE. For a large value of D (i.e., MINIST,

RLCT, and ALOI-100), the number of hash functions is set to 10. For all datasets, the

number of buckets is set to be equal to the ground truth labels, except for ALOI-100

and RLCT, where it is set to be equal to 10.

Table 5.1 Parameter Setting for all Datasets: the Number of Iterations
M for k-LIDoids, the Number of Iterations T for the Object Fingerprinting
Process, the Features Sparsification rate Z, and the Cardinality Values for
the Clusters and Objects Fingerprints, mI = D − (Ceil(D ∗ Z) ∗ M) and
mL = D − (Ceil(D ∗ Z) ∗ T), Receptively

Datasets D Z M T mL mI

ALOI-100 641 0.0025 67 62 517 507

MNIST 784 0.0025 45 40 704 694

RLCT 385 0.0025 65 60 325 320

Wearable
Computing

18 0.055 13 8 10 5

ONP 60 0.02 17 14 32 26

MiniBooNE 50 0.04 15 12 26 20

SDD 48 0.04 18 15 18 12

Results and Analysis Figure 5.4, (a) through (c), shows the average time, the

average number of distance, and the average query accuracy for the competing

methods. For all datasets, it can be seen that the linear scan search outperforms other

methods in terms of the query accuracy (Figure 5.4 (a)), which is expected since it

is an exhaustive search. Except for ONP and RLCT, the LID-Fingerprint indexing

outperforms or shows a comparable performance with Min-Hash. However, even that

Super-Bit and Min-Hash have acceptable performance for some of the datasets, they

have very low accuracy with the high-dimensional datasets such as ALOI-100 and

105

MNIST. Super-Bit, however, shows the least performance in most of the datasets,

especially for SDD, RLCT, and Wearable Computing, with an average accuracy is

< 0.2. In all competing methods, in the datasets with a large D, we noticed some

failed queries, which are the queries with 0.0 accuracy. Even that these types of queries

were ignored in this experiment; they are considered good sources for analyzing the

possible causes of failed search.

Figure 5.4 (b) shows that the linear scan and the LID-Fingerprint indexing

have the least time complexity in compared with other methods, which means that

the similarity measure defined, the subspace Hamming distance, is more effective and

efficient to compute, when compared to Jaccard and cosine similarities. However,

while Min-Hash has the longest computational time (on average >= 200ms) for all

datasets, Super-Bit also shows degradation in the time performance for MNIST and

RLCT.

As shown in Figure 5.4 (c), the linear scan search has the largest number of

average distance computations, which is essentially equals to the size of the datasets.

On the other hand, in small-dimensional datasets, the LID-Fingerprint indexing

shows a comparable performance with Super-Bit. However, this average performance

relatively increases for the LID-Fingerprint indexing when it is applied on the datasets

with a large D, such as ALOI-100, MNIST, and RLCT. In general, the number of

distance computations of the LID-Fingerprint indexing depends on the number of

generated clusters, the number of levels in the index, and the number of fingerprints

in each cluster. Min-Hash has an opposite behavior of the LID-Fingerprint indexing;

Min-Hash average distance computations increases for the datasets with a small D.

Super-Bit, on the other hand, has the least number of average distance computations

among all methods.

From all the above, we can see that there is a trade-off between the average

distance computations, and the average time and accuracy for the K-NN search.

106

Even that the linear scan has the largest distance computations but it has the highest

accuracy and the least computational time. On the contrary, Super-Bit has the least

average distance computations with relatively long time and low accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

ALOI-100

MNIST

RLCT
ONP

MiniBooNE

Werable-Computing

SDD

Av
er

ag
e Q

ue
ry

Ac
cu

ra
cy

Linear Scan
Min-Hash

LID-Fingerprint Indexing
SuperBit

(a) Query Accuracy

 0

 10

 20

 30

 40

 50

 60

 70

ALOI-100

MNIST

RLCT
ONP

MiniBooNE

Werable-Computing

SDD

Av
er

ag
e Q

ue
ry

Tim
e (

ms
)

Linear Scan
Min-Hash

LID-Fingerprint Indexing
SuperBit

(b) Query Time

 0

 10000

 20000

 30000

 40000

 50000

ALOI-100

MNIST

RLCT
ONP

MiniBooNE

Werable-Computing

SDD

Av
er

ag
e Q

ue
ry

Di
sta

nc
es

Linear Scan
Min-Hash

LID-Fingerprint Indexing
SuperBit

(c) Query Distances

Figure 5.4 The 20-NN search performance, in terms of the average accuracy,
distance, and time, among the competing methods. For all datasets, the Min-Hash’s
time is > 200ms. The number of distance evaluations of the linear scan is equal to
the size of the datasets.

107

Comparison of LID-Fingerprint vs. SUSHI

Parameters Setting In SUSHI, we used the same parameters setting as the

LIDFingerprint indexing, in terms of the number of clusters, k, the minimum_size,

outliers-threshold, maximum_number_of_executions, the number of iterations M ,

and the features sparsification rate Z for k-LIDoids (which are specified in Table 5.1).

We further considered five values of K for the search, where K=20,40, 60, 80, and

100. The query accuracy of the LID-Fingerprint indexing and SUSHI is evaluated for

all K, but the time and distance performance are averaged among the different K,

as we noticed that they only have slight increasing in values when the K increases.

Results and Analysis For all datasets, Figure 5.5 shows the average query

accuracy for both LID-Fingerprint indexing and SUSHI. We can see from the results

that there is a gab between both methods ranges from 0% to 40%. This gab

decreases–especially for the datasets with a small D–with increasing the value of

K. However, increasing K in general means that the results may include many

none-related objects to the query, which therefore decreases the overall average

accuracy. To decrease the accuracy gabs between the two methods, specifically for

large datasets, we need to increase the number of sparsified features of the objects in

order to achieve more uniqueness among the generated object fingerprints.

108

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 Q
ue

ry
 A

cc
ur

ac
y

K

SUSHI
LID-Fingerprint Indexing

(a) MNIST

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 Q
ue

ry
 A

cc
ur

ac
y

K

SUSHI
LID-Fingerprint Indexing

(b) ONP

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 Q
ue

ry
 A

cc
ur

ac
y

K

SUSHI
LID-Fingerprint Indexing

(c) RLCT

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 Q
ue

ry
 A

cc
ur

ac
y

K

SUSHI
LID-Fingerprint Indexing

(d) MiniBooNE

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 Q
ue

ry
 A

cc
ur

ac
y

K

SUSHI
LID-Fingerprint Indexing

(e) ALOI-100

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 Q
ue

ry
 A

cc
ur

ac
y

K

SUSHI
LID-Fingerprint Indexing

(f) SDD

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 Q
ue

ry
 A

cc
ur

ac
y

K

SUSHI
LID-Fingerprint Indexing

(g) Wearable Computing

Figure 5.5 Comparison between LID-Fingerprint indexing and SUSHI in terms of
K-NN search with different values of K (20, 40, 60, 80, and 100).

109

Figure 5.6 shows the time and the distance evaluations for both methods.

The LID-Fingerprint indexing has much less time performance than SUSHI, which

is expected since the bitwise operations for computing the similarity between

fingerprints are much faster than computing the regular Euclidean distance as in

SUSHI. However, we also noticed that SUSHI has much larger number of distance

evaluations when compared with LID-Fingerprint especially for the datasets with a

small D. This is due to the fact that when the number of the relevant dimensions

defined for each cluster is minimized, then using the lower bounding property for

pruning the search space is no longer useful, and the K-NN search for the related

objects to the query will expand to include all objects in the dataset. In general,

when compared to SUSHI, LID-Fingerprint results are fairly acceptable since one

of the main objectives of this research is hiding the information with achieving fast

similarity search with a reasonable level of accuracy.

110

 0

 20

 40

 60

 80

 100

ALOI-100

MNIST

RLCT
ONP

MiniBooNE

W
erable-Computing

SDD

Av
er

ag
e

Q
ue

ry
 T

im
e

(m
s)

SUSHI LID-Fingerprint Indexing

(a) Query Time

 0

 20000

 40000

 60000

 80000

 100000

ALOI-100

MNIST

RLCT
ONP

MiniBooNE

W
erable-Computing

SDD

Av
er

ag
e

Q
ue

ry
 D

is
ta

nc
es

SUSHI LID-Fingerprint Indexing

(b) Query Distances

Figure 5.6 The average search performance, in terms of time and distance
evaluations, for the LID-Fingerprint indexing and SUSHI. For all datasets, the results
are averaged over all values of K. The number of distance evaluations of SUSHI for
MiniBooNE and Wearable Computing datasets is > 100000.

5.2.5 Preprocessing Time

For each dataset, we also show the preprocessing time (in seconds) for creating the

index for all competitors (Table 5.2). We excluded the liner scan search as there is

no index created other than generating the fingerprints using the LID-Fingerprint

object fingerprinting process. For all methods considered in the comparison, we used

111

a Linux Server (Intel(R) Xeon(R) 2.70GHz) with eight cores, and with a memory size

(16GB).

Table 5.2 Preprocessing Time (in Seconds) for all Methods Except the
Linear Scan Search

Preprocessing time (in seconds)

Datasets LID-Fingerprint SUSHI Min-Hash Super-Bit

ALOI-100 207908.803 215562.941 2.307 0.469

MNIST 28911.394 93247.733 20.630 3.456

RLCT 534119.168 587324.413 7.187 13.482

Wearable
Computing

564768.957 568198.516 0.211 0.071

ONP 104734.760 95496.501 0.209 0.026

MiniBooNE 399675.664 710615.388 0.274 0.358

SDD 123895.192 107822.166 0.169 0.69

As expected, the LID-Fingerprint and SUSHI indexing techniques take longer

preprocessing time as both are applied on actual data objects with all their dimension

values. In contrast, the Min-Hash indexing is applied on previously created

fingerprints. We noticed that the Super-Bit’s preprocessing time highly depends on

the number of hash functions used for the projection. Despite the long preprocessing

time relative to its competitors, the LID-Fingerprint indexing shows a better potential

improvement for secure similarity search. In general, the preprocessing time can be

enhanced using more advanced High Performance Computing (HPC) servers, and/or

the distributed computing techniques and algorithms.

5.3 Conclusion

In this chapter, we presented LID-Fingerprint as a new binary fingerprinting and

indexing technique based on combining between NNWID-Descent and k-LIDoids al-

gorithms. LID-Fingerprint fingerprinting process derives the fingerprints by mapping

112

the sparse representations for the data objects resulted from NNWID-Descent into

binary representations. In large datasets, the number of generated fingerprints can be

high and the similarity measure can be extensive to compute. Thus, we also developed

a multi-level indexing data structure based on the subspace clustering algorithm,

k-LIDoids, that allows reducing the number of computations and speeding up the

search.

Using several real datasets, experimental results have shown that LID-Fingerprint

can be applied to obtain binary fingerprints for high-dimensional feature vectors, as

well as providing an efficient and secure indexing technique. When compared with

other existing state-of-the-art methods, LID-Fingerprint can also provide a reasonable

level of search accuracy. Beside the involved data suppression and data masking as

data privacy protecting measures, LID-Fingerprint technique does not guarantee the

uniqueness of the generated fingerprints, which is important for a reasonable level of

data anonymity.

113

CHAPTER 6

CONCLUSION AND FUTURE WORK

This dissertation mainly investigates the possibility of utilizing a new unsupervised

feature selection criterion, Support-Weighted Intrinsic Dimensionality (support-

weighted ID wID) [6]), in the design and analysis of search and clustering algorithms.

Based on support-weighted ID, we have designed solutions for two of the data

mining problems, including k-nearest neighbor graph construction and subspace

clustering. Experimental results presented in this dissertation provide an evidence

for the potential benefits of using support-weighted ID in improving the quality and

performance of these algorithms, as well as achieving compact representations for the

dataset objects. We further exploited the compact object representations in order to

define a new binary fingerprinting and indexing framework for the high-dimensional

data stored on the cloud.

To address the k-NN graph construction problem, we presented NNWID-Descent,

a similarity graph construction method that iteratively improves k-NN graph accuracy

using support-weighted ID while achieving a significant amount of sparsification of

object feature vectors. NNWID-Descent can also be applied to obtain more compact

representations for high-dimensional features vectors, which is important to reduce

the storage and computational complexity for many applications. However, the ID

estimator used in NNWID-Descent generally requires relatively large dataset sizes to

provide a reasonable accuracy. Of the nine datasets used in our experiments, three

are considered too small for the extreme-value-theoretic LID model to be applicable.

Further improvement of NNWID-Descent could be achieved through the development

of ID estimators that can more accurately handle smaller dataset sizes and smaller

neighborhood sample sizes.

114

For clustering, we have presented k-LIDoids, a subspace clustering algorithm

that exploits the use of support-weighted ID within k-medoids clustering to discover

similar objects in a subset of features (subspace) of high-dimensional datasets. We

have shown that our approach is able to achieve a better performance than the

previous state-of-the-art subspace clustering algorithms. k-LIDoids is suitable for

numerous applications that use high-dimensional datasets such as image segmenta-

tion, face clustering, and text and data compression. k-LIDoids can also be used to

find compact clusters with few information stored for each cluster.

Basically, the limitations of k-LIDoids method follow the same limitations

applied to the k-medoids clustering algorithm. To give examples to such limitations:

First, k-LIDoids only discovers high-spherical compact clusters, but can not find

other cluster shapes or dense clusters. Second, the algorithm also needs to determine

in advance the initial number of clusters, k, which requires more information to be

available in advance about the dataset that is being used, such as objects distribution

and the desired clustering accuracy of the user. In future research, we intend to

explore the use of support-weighted ID with other types of clustering algorithms

(i.e., density and hierarchal clustering). Further investigation is needed as well for

identifying the outliers cluster and the correlation between features in the cluster.

As a potential application of both NNWID-Descent and k-LIDoids, we presented

LID-Fingerprint, a new binary fingerprinting and indexing framework based on using

support-weighted ID. In LID-Fingerprint, the fingerprints are derived by mapping

the sparse representations for the data objects resulted from NNWID-Descent into

binary representations. LID-Fingerprint also includes a multi-level indexing data

structure based on k-LIDoids in order to reduce the number of computations and

speed up the search. The experimental study proved that our framework is able

to generate binary fingerprints for high-dimensional datasets with an efficient and

secure indexing technique compared to the state-of-the-art approaches. In addition to

115

providing two data privacy protecting measures: data suppression and data masking,

LID-Fingerprint also provides a reasonable level of data anonymity.

LID-Fingerprint is important to provide secure search and reduce the storage

and computational complexity for many cloud and smart-phone applications, and

also can be integral to mobile device security. One direction of future research is

by presenting a technique for filtering and refining the search results in the client

end. Also, improving the LID-Fingerprint accuracy as well adopting a compression

technique for providing more efficient and secure search are highly desirable as another

potential future extensions to this work.

To conclude, support-weighted ID is utilized as the basis in the design of k-NN

graph construction and subspace clustering algorithms. Specifically, support-weighted

ID (wID) is used to dynamically guide the decisions of selecting the relevant features

locally for dataset objects by providing a stable estimation for the contribution of

each feature to the overall intrinsic dimensionality. Therefore, we consider wID

to be highly important and more investigation should be made for integrating it

within other learning models and applications beyond k-NN graph search and cluster

analysis. Finally, the time complexity for the proposed algorithms or any other

learning models based on wID can be enhanced using more advanced parallel and

distributed computing techniques and algorithms.

116

BIBLIOGRAPHY

[1] M. Verleysen and D. François, “The curse of dimensionality in data mining and
time series prediction,” in International Work-Conference on Artificial Neural
Networks. Springer, 2005, pp. 758–770.

[2] I. K. Fodor, “A survey of dimension reduction techniques,” Lawrence Livermore
National Lab., CA (US), Tech. Rep., 2002.

[3] M. Dash and H. Liu, “Feature selection for clustering,” in Pacific-Asia Conference on
knowledge discovery and data mining. Springer, 2000, pp. 110–121.

[4] D. S. Modha and W. S. Spangler, “Feature weighting in k-means clustering,” Machine
learning, vol. 52, no. 3, pp. 217–237, 2003.

[5] K. Pearson, “On lines and planes of closest fit to systems of points in space,”
Philosophical Magazine, no. 2, p. 559–572, 1901.

[6] M. E. Houle, “Local intrinsic dimensionality II: multivariate analysis and distri-
butional support,” in International Conference on Similarity Search and
Applications. Springer, 2017, pp. 80–95.

[7] ——, “Dimensionality, discriminability, density and distance distributions,” in Data
Mining Workshops (ICDMW), 2013 IEEE 13th International Conference on.
IEEE, 2013, pp. 468–473.

[8] L. Amsaleg, O. Chelly, T. Furon, S. Girard, M. E. Houle, K.-I. Kawarabayashi, and
M. Nett, “Estimating local intrinsic dimensionality,” in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2015, pp. 29–38.

[9] D. Qin, S. Gammeter, L. Bossard, T. Quack, and L. van Gool, “Hello neighbor:
Accurate object retrieval with k-reciprocal nearest neighbors,” in CVPR 2011,
June 2011, pp. 777–784.

[10] M. Brito, E. Chávez, A. Quiroz, and J. Yukich, “Connectivity of the mutual
k-nearest-neighbor graph in clustering and outlier detection,” Statistics and
Probability Letters, vol. 35, no. 1, pp. 33–42, 1997.

[11] V. Hautamaki, I. Karkkainen, and P. Franti, “Outlier detection using k-nearest
neighbour graph,” in ICPR, vol. 3, Aug 2004, pp. 430–433 Vol.3.

[12] J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang, “Manifold-ranking based image
retrieval,” in ACM MM, 2004, pp. 9–16.

117

[13] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Application of dimensionality
reduction in recommender systems – a case study,” DTIC Document, Tech.
Rep., 2000.

[14] W. Dong, C. Moses, and K. Li, “Efficient K-nearest neighbor graph construction for
generic similarity measures,” in WWW, 2011, pp. 577–586.

[15] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component analysis,” Journal
of Computational and Graphical Statistics, vol. 15, no. 2, pp. 265–286, 2006.

[16] E.-H. Han, G. Karypis, and V. Kumar, “Text categorization using weight adjusted
k-nearest neighbor classification,” in PAKDD, 2001, pp. 53–65.

[17] Z. Wang and Z. Liu, “Graph-based KNN text classification,” in FSKD, vol. 5, Aug
2010, pp. 2363–2366.

[18] M. E. Houle, X. Ma, V. Oria, and J. Sun, “Improving the quality of K-NN graphs
through vector sparsification: application to image databases,” International
Journal of Multimedia Information Retrieval, vol. 3, no. 4, pp. 259–274, 2014.

[19] G. Nakhaeizadeh, Industrial applications of data mining. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 479–480. [Online]. Available:
https://doi.org/10.1007/BFb0094854

[20] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds., Advances
in Knowledge Discovery and Data Mining. Menlo Park, CA, USA: American
Association for Artificial Intelligence, 1996.

[21] D. H. Fisher, “Knowledge acquisition via incremental conceptual clustering,”
Machine Learning, vol. 2, no. 2, pp. 139–172, Sep 1987. [Online]. Available:
https://doi.org/10.1023/A:1022852608280

[22] K. Fukunaga, Introduction to Statistical Pattern Recognition (2Nd Ed.). San Diego,
CA, USA: Academic Press Professional, Inc., 1990.

[23] O. Zamir and O. Etzioni, “Grouper: a dynamic clustering interface to web search
results,” Computer Networks, vol. 31, no. 11, pp. 1361–1374, 1999.

[24] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with unlabeled data using
clustering,” in In Proceedings of ACM CSS Workshop on Data Mining Applied
to Security (DMSA-2001. Citeseer, 2001.

[25] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier,
2011.

[26] S. Lloyd, “Least squares quantization in pcm,” IEEE Transactions on Information
Theory, vol. 28, no. 2, pp. 129–137, March 1982.

118

[27] J. MacQueen, “Some methods for classification and analysis of multivariate
observations,” in Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Statistics. Berkeley,
Calif.: University of California Press, 1967, pp. 281–297. [Online]. Available:
https://projecteuclid.org/euclid.bsmsp/1200512992

[28] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley, 1990.

[29] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for
discovering clusters in large spatial databases with noise.” in Kdd, vol. 96,
no. 34, 1996, pp. 226–231.

[30] R. Vidal, “A tutorial on subspace clustering,” 2010.

[31] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an
algorithm,” in Advances in neural information processing systems, 2002, pp.
849–856.

[32] D. M. Witten and R. Tibshirani, “A framework for feature selection in clustering,”
Journal of the American Statistical Association, vol. 105, no. 490, pp. 713–726,
2010.

[33] W. Gu, S. Dong, Z. Zeng, and J. He, “An effective news recommendation method for
microblog user,” The Scientific World Journal, vol. 2014, 2014.

[34] R. Agrawal, J. E. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic subspace
clustering of high dimensional data for data mining applications,” Dec. 14
1999, uS Patent 6,003,029.

[35] S. Goil, H. Nagesh, and A. Choudhary, “Mafia: Efficient and scalable subspace
clustering for very large data sets,” 1999.

[36] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park, “Fast
algorithms for projected clustering,” in Proceedings of the 1999 ACM
SIGMOD International Conference on Management of Data, ser. SIGMOD
’99. New York, NY, USA: ACM, 1999, pp. 61–72. [Online]. Available:
http://doi.acm.org/10.1145/304182.304188

[37] J. Yang, W. Wang, H. Wang, and P. Yu, “delta;-clusters: capturing subspace
correlation in a large data set,” in Proceedings 18th International Conference
on Data Engineering, 2002, pp. 517–528.

[38] S. Katzenbeisser and F. Petitcolas, Information hiding. Artech house, 2016.

[39] B. W. Lampson, “A note on the confinement problem,” Commun. ACM,
vol. 16, no. 10, pp. 613–615, Oct. 1973. [Online]. Available:
http://doi.acm.org/10.1145/362375.362389

119

[40] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information hiding-a survey,”
Proceedings of the IEEE, vol. 87, no. 7, pp. 1062–1078, Jul 1999.

[41] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Commun. ACM, vol. 24, no. 2, pp. 84–90, Feb. 1981. [Online].
Available: http://doi.acm.org/10.1145/358549.358563

[42] D. M. Goldschlag, M. G. Reed, and P. F. Syverson, “Hiding routing information,”
in Proceedings of the First International Workshop on Information Hiding.
London, UK, UK: Springer-Verlag, 1996, pp. 137–150. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647594.731526

[43] J. Y. Halpern and K. R. O’Neill, “Anonymity and information hiding in multiagent
systems,” Journal of Computer Security, vol. 13, no. 3, pp. 483–514, 2005.

[44] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital Watermarking
and Steganography, 2nd ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2008.

[45] D. Boneh and J. Shaw, “Collusion-secure fingerprinting for digital data,” IEEE
Transactions on Information Theory, vol. 44, no. 5, pp. 1897–1905, Sep 1998.

[46] P. Cano, E. Batlle, T. Kalker, and J. Haitsma, “A review of audio fingerprinting,”
Journal of VLSI signal processing systems for signal, image and video
technology, vol. 41, no. 3, pp. 271–284, 2005.

[47] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions,” in Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on. IEEE, 2006, pp. 459–468.

[48] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,” in
Proceedings of the thirty-fourth annual ACM symposium on Theory of
computing. ACM, 2002, pp. 380–388.

[49] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with parameter-
sensitive hashing,” in null. IEEE, 2003, p. 750.

[50] K. Moravec and I. J. Cox, “A comparison of extended fingerprint hashing and locality
sensitive hashing for binary audio fingerprints,” in Proceedings of the 1st ACM
International Conference on Multimedia Retrieval. ACM, 2011, p. 31.

[51] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large image databases for
recognition,” 2008.

[52] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with
parameter-sensitive hashing,” in Proceedings of the Ninth IEEE International
Conference on Computer Vision - Volume 2, ser. ICCV ’03. Washington,
DC, USA: IEEE Computer Society, 2003, pp. 750–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=946247.946721

120

[53] R. Salakhutdinov and G. Hinton, “Semantic hashing,” International Journal of
Approximate Reasoning, vol. 50, no. 7, pp. 969 – 978, 2009, special
Section on Graphical Models and Information Retrieval. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0888613X08001813

[54] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances in Neural
Information Processing Systems 21, D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou, Eds. Curran Associates, Inc., 2009, pp. 1753–1760. [Online].
Available: http://papers.nips.cc/paper/3383-spectral-hashing.pdf

[55] L. Fei-Fei and P. Perona, “A bayesian hierarchical model for learning natural scene
categories,” in 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), vol. 2, June 2005, pp. 524–531 vol. 2.

[56] F. Farooq, R. M. Bolle, T. Y. Jea, and N. Ratha, “Anonymous and revocable
fingerprint recognition,” in 2007 IEEE Conference on Computer Vision and
Pattern Recognition, June 2007, pp. 1–7.

[57] A. Nagar, S. Rane, and A. Vetro, “Privacy and security of features extracted from
minutiae aggregates,” in 2010 IEEE International Conference on Acoustics,
Speech and Signal Processing, March 2010, pp. 1826–1829.

[58] J. Caballero, S. Venkataraman, P. Poosankam, M. G. Kang, D. Song, and A. Blum,
“Fig: Automatic fingerprint generation,” in Network and Distributed System
Security Symposium, 2007.

[59] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimensions
via hashing,” in Proceedings of the 25th International Conference on
Very Large Data Bases, ser. VLDB ’99. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1999, pp. 518–529. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645925.671516

[60] S. Günnemann, H. Kremer, D. Lenhard, and T. Seidl, “Subspace clustering for
indexing high dimensional data: a main memory index based on local
reductions and individual multi-representations,” in Proceedings of the 14th
International Conference on Extending Database Technology. ACM, 2011,
pp. 237–248.

[61] K. Chakrabarti and S. Mehrotra, “Local dimensionality reduction: A new approach
to indexing high dimensional spaces,” in VLDB. Citeseer, 2000, pp. 89–100.

[62] H. T. Shen, X. Zhou, and A. Zhou, “An adaptive and dynamic dimensionality
reduction method for high-dimensional indexing,” The VLDB Journal, vol. 16,
no. 2, pp. 219–234, 2007.

[63] B. Cui, B. C. Coi, J. Su, and K.-L. Tan, “Indexing high-dimensional data for
efficient in-memory similarity search,” IEEE transactions on knowledge and
data engineering, vol. 17, no. 3, pp. 339–353, 2005.

121

[64] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection in machine learning: A new
perspective,” Neurocomputing, vol. 300, pp. 70–79, 2018.

[65] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial
Intelligence, vol. 97, no. 1, pp. 273 – 324, 1997. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S000437029700043X

[66] M. Robnik-Šikonja and I. Kononenko, “Theoretical and empirical analysis of relieff
and rrelieff,” Machine Learning, vol. 53, no. 1, pp. 23–69, Oct 2003. [Online].
Available: https://doi.org/10.1023/A:1025667309714

[67] L. Song, A. Smola, A. Gretton, K. M. Borgwardt, and J. Bedo, “Supervised
feature selection via dependence estimation,” in Proceedings of the
24th International Conference on Machine Learning, ser. ICML ’07.
New York, NY, USA: ACM, 2007, pp. 823–830. [Online]. Available:
http://doi.acm.org/10.1145/1273496.1273600

[68] F. Marcelloni, “Feature selection based on a modified fuzzy c-means
algorithm with supervision,” Information Sciences, vol. 151, pp. 201
– 226, 2003. [Online]. Available: http://www.sciencedirect.com/science/arti-
cle/pii/S0020025502004024

[69] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “A simultaneous feature adapta-
tion and feature selection method for content-based image retrieval systems,”
Knowledge-Based Systems, vol. 39, pp. 85 – 94, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950705112002924

[70] W. Jiang, G. Er, Q. Dai, and J. Gu, “Similarity-based online feature selection
in content-based image retrieval,” IEEE Transactions on Image Processing,
vol. 15, no. 3, pp. 702–712, 2006.

[71] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley & Sons,
2012.

[72] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information
criteria of max-dependency, max-relevance, and min-redundancy,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 27, no. 8, pp.
1226–1238, 2005.

[73] J. G. Dy and C. E. Brodley, “Feature selection for unsupervised learning,” Journal
of Machine Learning Research, vol. 5, no. Aug, pp. 845–889, 2004.

[74] M. H. Law, M. A. Figueiredo, and A. K. Jain, “Simultaneous feature selection and
clustering using mixture models,” IEEE transactions on pattern analysis and
machine intelligence, vol. 26, no. 9, pp. 1154–1166, 2004.

[75] P. Mitra, C. Murthy, and S. K. Pal, “Unsupervised feature selection using feature
similarity,” IEEE transactions on pattern analysis and machine intelligence,
vol. 24, no. 3, pp. 301–312, 2002.

122

[76] S. K. Pal, R. K. De, and J. Basak, “Unsupervised feature evaluation: A neuro-fuzzy
approach,” IEEE Transactions on neural networks, vol. 11, no. 2, pp. 366–376,
2000.

[77] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selection,” in NIPS, vol.
186, 2005, p. 189.

[78] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, “l2, 1-norm regularized
discriminative feature selection for unsupervised learning.”

[79] D. Cai, C. Zhang, and X. He, “Unsupervised feature selection for multi-
cluster data,” in Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’10.
New York, NY, USA: ACM, 2010, pp. 333–342. [Online]. Available:
http://doi.acm.org/10.1145/1835804.1835848

[80] X. Wang, Y. Wang, and L. Wang, “Improving fuzzy c-means clustering
based on feature-weight learning,” Pattern Recognition Letters,
vol. 25, no. 10, pp. 1123 – 1132, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167865504000765

[81] R. Zhang and Z. Lu, “Large scale sparse clustering.”

[82] J. G. Dy and C. E. Brodley, “Feature subset selection and order identification for
unsupervised learning,” in ICML. Citeseer, 2000, pp. 247–254.

[83] M. Dash, H. Liu, and J. Yao, “Dimensionality reduction of unsupervised data,”
in Proceedings Ninth IEEE International Conference on Tools with Artificial
Intelligence, Nov 1997, pp. 532–539.

[84] S. Basu, C. A. Micchelli, and P. Olsen, “Maximum entropy and maximum like-
lihood criteria for feature selection from multivariate data,” in 2000 IEEE
International Symposium on Circuits and Systems. Emerging Technologies for
the 21st Century. Proceedings (IEEE Cat No.00CH36353), vol. 3, 2000, pp.
267–270 vol.3.

[85] H.-P. Kriegel, P. Kröger, and A. Zimek, “Clustering high-dimensional data: A survey
on subspace clustering, pattern-based clustering, and correlation clustering,”
ACM Trans. Knowl. Discov. Data, vol. 3, no. 1, pp. 1:1–1:58, Mar. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1497577.1497578

[86] L. Parsons, E. Haque, and H. Liu, “Subspace clustering for high dimensional data:
A review,” SIGKDD Explor. Newsl., vol. 6, no. 1, pp. 90–105, Jun. 2004.
[Online]. Available: http://doi.acm.org/10.1145/1007730.1007731

[87] E. Müller, S. Günnemann, I. Assent, and T. Seidl, “Evaluating clustering in subspace
projections of high dimensional data,” Proceedings of the VLDB Endowment,
vol. 2, no. 1, pp. 1270–1281, 2009.

123

[88] C.-H. Cheng, A. W. Fu, and Y. Zhang, “Entropy-based subspace clustering
for mining numerical data,” in Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser.
KDD ’99. New York, NY, USA: ACM, 1999, pp. 84–93. [Online]. Available:
http://doi.acm.org/10.1145/312129.312199

[89] K. Kailing, H.-P. Kriegel, and P. Kröger, “Density-connected subspace clustering
for high-dimensional data,” in Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 2004, pp. 246–256.

[90] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for
discovering clusters in large spatial databases with noise,” in Proceedings
of the Second International Conference on Knowledge Discovery and Data
Mining, ser. KDD’96. AAAI Press, 1996, pp. 226–231. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3001460.3001507

[91] H.-P. Kriegel, P. Kroger, M. Renz, and S. Wurst, “A generic framework for efficient
subspace clustering of high-dimensional data,” in Data Mining, Fifth IEEE
International Conference on. IEEE, 2005, pp. 8–pp.

[92] I. Assent, R. Krieger, E. Müller, and T. Seidl, “Inscy: Indexing subspace clusters
with in-process-removal of redundancy,” in 2008 Eighth IEEE International
Conference on Data Mining, Dec 2008, pp. 719–724.

[93] J.-W. Chang and D.-S. Jin, “A new cell-based clustering method for large,
high-dimensional data in data mining applications,” in Proceedings of
the 2002 ACM Symposium on Applied Computing, ser. SAC ’02.
New York, NY, USA: ACM, 2002, pp. 503–507. [Online]. Available:
http://doi.acm.org/10.1145/508791.508886

[94] B. Liu, Y. Xia, and P. S. Yu, “Clustering through decision tree construction,”
in Proceedings of the Ninth International Conference on Information and
Knowledge Management, ser. CIKM ’00. New York, NY, USA: ACM, 2000,
pp. 20–29. [Online]. Available: http://doi.acm.org/10.1145/354756.354775

[95] C. M. Procopiuc, M. Jonesý, P. K. Agarwal, and T. M. Muraliý, “A monte carlo
algorithm for fast projective clustering.” ACM Press, 2002, pp. 418–427.

[96] Y. Li, M. Dong, and J. Hua, “Localized feature selection for clustering,” Pattern
Recognition Letters, vol. 29, no. 1, pp. 10–18, 2008.

[97] Y. Kim, W. N. Street, and F. Menczer, “Feature selection in unsupervised learning via
evolutionary search,” in Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2000, pp. 365–369.

[98] J. H. Friedman and J. J. Meulman, “Clustering objects on subsets of attributes (with
discussion),” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 66, no. 4, pp. 815–849, 2004. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-9868.2004.02059.x

124

[99] L. Yu and H. Liu, “Efficient feature selection via analysis of relevance and redun-
dancy,” Journal of Machine Learning Research, vol. 5, no. Oct, pp. 1205–1224,
2004.

[100] K.-G. Woo, J.-H. Lee, M.-H. Kim, and Y.-J. Lee, “Findit: a fast and intelligent
subspace clustering algorithm using dimension voting,” Information and
Software Technology, vol. 46, no. 4, pp. 255–271, 2004.

[101] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high dimensions via
hashing,” in Vldb, vol. 99, no. 6, 1999, pp. 518–529.

[102] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes from
shift-invariant kernels,” in Advances in Neural Information Processing
Systems 22, Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I.
Williams, and A. Culotta, Eds. Curran Associates, Inc., 2009,
pp. 1509–1517. [Online]. Available: http://papers.nips.cc/paper/3749-
locality-sensitive-binary-codes-from-shift-invariant-kernels.pdf

[103] A. Broder, “On the resemblance and containment of documents,” in Proceedings of
the Compression and Complexity of Sequences 1997, ser. SEQUENCES ’97.
Washington, DC, USA: IEEE Computer Society, 1997, pp. 21–. [Online].
Available: http://dl.acm.org/citation.cfm?id=829502.830043

[104] J. Ji, J. Li, S. Yan, B. Zhang, and Q. Tian, “Super-bit locality-sensitive
hashing,” in Advances in Neural Information Processing Systems 25,
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
Eds. Curran Associates, Inc., 2012, pp. 108–116. [Online]. Available:
http://papers.nips.cc/paper/4847-super-bit-locality-sensitive-hashing.pdf

[105] O. Chum, M. Perd’och, and J. Matas, “Geometric min-hashing: Finding a (thick)
needle in a haystack,” in 2009 IEEE Conference on Computer Vision and
Pattern Recognition, June 2009, pp. 17–24.

[106] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua, “Ldahash: Improved matching
with smaller descriptors,” IEEE transactions on pattern analysis and machine
intelligence, vol. 34, no. 1, pp. 66–78, 2012.

[107] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting algorithms as
gradient descent,” in Proceedings of the 12th International Conference
on Neural Information Processing Systems, ser. NIPS’99. Cambridge,
MA, USA: MIT Press, 1999, pp. 512–518. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3009657.3009730

[108] H. Xu and R. N. J. Veldhuis, “Binary representations of fingerprint spectral minutiae
features,” in 2010 20th International Conference on Pattern Recognition, Aug
2010, pp. 1212–1216.

125

[109] H. Xu, R. N. J. Veldhuis, T. A. M. Kevenaar, and T. A. H. M. Akkermans, “A fast
minutiae-based fingerprint recognition system,” IEEE Systems Journal, vol. 3,
no. 4, pp. 418–427, Dec 2009.

[110] Y. Gong and S. Lazebnik, “Iterative quantization: A procrustean approach to learning
binary codes,” in Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on. IEEE, 2011, pp. 817–824.

[111] K. Grauman and R. Fergus, “Learning binary hash codes for large-scale image search,”
in Machine learning for computer vision. Springer, 2013, pp. 49–87.

[112] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards
removing the curse of dimensionality,” in Proceedings of the Thirtieth
Annual ACM Symposium on Theory of Computing, ser. STOC ’98.
New York, NY, USA: ACM, 1998, pp. 604–613. [Online]. Available:
http://doi.acm.org/10.1145/276698.276876

[113] M. M. Esmaeili, R. K. Ward, and M. Fatourechi, “A fast approximate nearest
neighbor search algorithm in the hamming space,” IEEE transactions on
pattern analysis and machine intelligence, vol. 34, no. 12, pp. 2481–2488, 2012.

[114] S. Brin, “Near neighbor search in large metric spaces,” in Proceedings of the 21th
International Conference on Very Large Data Bases, ser. VLDB ’95. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995, pp. 574–584.
[Online]. Available: http://dl.acm.org/citation.cfm?id=645921.673006

[115] M. Muja and D. G. Lowe, “Fast matching of binary features,” in Computer and Robot
Vision (CRV), 2012 Ninth Conference on. IEEE, 2012, pp. 404–410.

[116] M. Muja and D. Lowe, “Flann-fast library for approximate nearest neighbors user
manual,” Computer Science Department, University of British Columbia,
Vancouver, BC, Canada, 2009.

[117] K.-I. Lin, H. V. Jagadish, and C. Faloutsos, “The tv-tree: An index structure for
high-dimensional data,” The VLDB Journal, vol. 3, no. 4, pp. 517–542, Oct
1994. [Online]. Available: https://doi.org/10.1007/BF01231606

[118] C. Yu, B. C. Ooi, K. lee Tan, and H. V. Jagadish, “Indexing the distance: An efficient
method to knn processing,” 2001.

[119] F. Camastra, “Data dimensionality estimation methods: a survey,” Pattern recogni-
tion, vol. 36, no. 12, pp. 2945–2954, 2003.

[120] F. Camastra and A. Vinciarelli, “Estimating the intrinsic dimension of data with a
fractal-based method,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 10, pp. 1404–1407, Oct 2002.

126

[121] C. Faloutsos and I. Kamel, “Beyond uniformity and independence: Analysis of r-trees
using the concept of fractal dimension,” in Proceedings of the thirteenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems.
ACM, 1994, pp. 4–13.

[122] K. W. Pettis, T. A. Bailey, A. K. Jain, and R. C. Dubes, “An intrinsic dimensionality
estimator from near-neighbor information,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. PAMI-1, no. 1, pp. 25–37, Jan 1979.

[123] T. Martinetz and K. Schulten, “Topology representing networks,” Neural Networks,
vol. 7, no. 3, pp. 507–522, 1994.

[124] M. Kirby, Geometric data analysis: an empirical approach to dimensionality reduction
and the study of patterns. John Wiley & Sons, Inc., 2000.

[125] I. Jolliffe, “Principal component analysis,” Springer Series in Statistics, Berlin:
Springer, 1986, 1986.

[126] J. Karhunen and J. Joutsensalo, “Representation and separation of signals using
nonlinear pca type learning,” Neural networks, vol. 7, no. 1, pp. 113–127,
1994.

[127] A. Rozza, G. Lombardi, C. Ceruti, E. Casiraghi, and P. Campadelli, “Novel high
intrinsic dimensionality estimators,” Machine learning, vol. 89, no. 1-2, pp.
37–65, 2012.

[128] D. R. Karger and M. Ruhl, “Finding nearest neighbors in growth-restricted metrics,”
in Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing. ACM, 2002, pp. 741–750.

[129] M. E. Houle, H. Kashima, and M. Nett, “Generalized expansion dimension,” in Data
Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on.
IEEE, 2012, pp. 587–594.

[130] M. E. Houle, “Local intrinsic dimensionality I: an extreme-value-theoretic foundation
for similarity applications,” in International Conference on Similarity Search
and Applications. Springer, 2017, pp. 64–79.

[131] X. Ma, B. Li, Y. Wang, S. M. Erfani, S. Wijewickrema, M. E. Houle, G. Schoenebeck,
D. Song, and J. Bailey, “Characterizing adversarial subspaces using local
intrinsic dimensionality,” arXiv preprint arXiv:1801.02613, 2018.

[132] M. E. Houle, “Inlierness, outlierness, hubness and discriminability: an extreme-value-
theoretic foundation,” 2015.

[133] S. Coles, J. Bawa, L. Trenner, and P. Dorazio, An introduction to statistical modeling
of extreme values. Springer, 2001, vol. 208.

127

[134] B. M. Hill, “A simple general approach to inference about the tail of a distribution,”
Annals of Statistics, vol. 3, no. 5, pp. 1163–1174, 1975.

[135] J. M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders, “The Amsterdam
Library of Object Images,” International Journal of Computer Vision, vol. 61,
no. 1, pp. 103–112, 2005.

[136] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, Nov 1998.

[137] M. E. Houle, V. Oria, S. Satoh, and J. Sun, “Knowledge propagation in large
image databases using neighborhood information,” in ACM MM, 2011, pp.
1033–1036.

[138] M. Lichman, “UCI Machine Learning Repository,” 2013. [Online]. Available:
http://archive.ics.uci.edu/ml

[139] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public domain
dataset for human activity recognition using smartphones.” in ESANN, 2013.

[140] W. Ugulino, D. Cardador, K. Vega, E. Velloso, R. Milidiú, and H. Fuks, “Wearable
computing: Accelerometers’ data classification of body postures and move-
ments,” in Advances in Artificial Intelligence-SBIA 2012. Springer, 2012, pp.
52–61.

[141] K. Fernandes, P. Vinagre, and P. Cortez, “A proactive intelligent decision support
system for predicting the popularity of online news,” in Portuguese Conference
on Artificial Intelligence. Springer, 2015, pp. 535–546.

[142] R. T. Ng and J. Han, “Clarans: a method for clustering objects for spatial data
mining,” IEEE Transactions on Knowledge and Data Engineering, vol. 14,
no. 5, pp. 1003–1016, Sep 2002.

[143] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids clustering,”
Expert systems with applications, vol. 36, no. 2, pp. 3336–3341, 2009.

[144] C. Bauckhage, “Numpy / scipy recipes for data science: k-medoids clustering,”
University of Bonn, Bonn, Nordrhein-Westfalen, Germany, Technical Report,
Tech. Rep., 2015.

[145] W. Ugulino, D. Cardador, K. Vega, E. Velloso, R. Milidiú, and H. Fuks, “Wearable
computing: Accelerometers’ data classification of body postures and move-
ments,” Advances in Artificial Intelligence-SBIA 2012, pp. 52–61, 2012.

[146] K. Fernandes, P. Vinagre, and P. Cortez, “A proactive intelligent decision support
system for predicting the popularity of online news,” in Portuguese Conference
on Artificial Intelligence. Springer, 2015, pp. 535–546.

128

[147] R. Bock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jiřina, J. Klaschka,
E. Kotrč, P. Savický, S. Towers, A. Vaiciulis, and W. Wittek, “Methods
for multidimensional event classification: a case study using images from a
cherenkov gamma-ray telescope,” Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 516, no. 2, pp. 511 – 528, 2004.

[148] E. Schubert, A. Koos, T. Emrich, A. Züfle, K. A. Schmid,
and A. Zimek, “A framework for clustering uncertain data,”
PVLDB, vol. 8, no. 12, pp. 1976–1979, 2015. [Online]. Available:
http://www.vldb.org/pvldb/vol8/p1976-schubert.pdf

[149] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[150] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classification,
vol. 2, no. 1, pp. 193–218, Dec 1985. [Online]. Available:
https://doi.org/10.1007/BF01908075

[151] M. E. Houle, “The relevant-set correlation model for data clustering,” Statistical
Analysis and Data Mining: The ASA Data Science Journal, vol. 1, no. 3, pp.
157–176, 2008.

[152] A. Hinneburg and D. A. Keim, “Optimal grid-clustering: Towards breaking the curse
of dimensionality in high-dimensional clustering,” 1999.

[153] M. E. Houle, V. Oria, and A. M. Wali, “Improving k-nn graph accuracy using local
intrinsic dimensionality,” in International Conference on Similarity Search and
Applications. Springer, 2017, pp. 110–124.

[154] J. Handl, J. Knowles, and D. B. Kell, “Computational cluster validation in post-
genomic data analysis,” Bioinformatics, vol. 21, no. 15, pp. 3201–3212, 2005.

[155] G. Brock, V. Pihur, S. Datta, S. Datta et al., “clvalid, an r package for cluster
validation,” Journal of Statistical Software (Brock et al., March 2008), 2011.

[156] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park, “Fast algorithms
for projected clustering,” in ACM SIGMoD Record, vol. 28, no. 2. ACM,
1999, pp. 61–72.

[157] M. L. Yiu and N. Mamoulis, “Frequent-pattern based iterative projected clustering,”
in Data Mining, 2003. ICDM 2003. Third IEEE International Conference on.
IEEE, 2003, pp. 689–692.

129

	Improving k-nn search and subspace clustering based on local intrinsic dimensionality
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Related Work
	Chapter 3: Improving k-NN Graph Accuracy Using Local Intrinsic Dimensionality
	Chapter 4: k-LIDoids: A Subspace Clustering Algorithm Using Local Intrinsic Dimensionality
	Chapter 5: LID-Fingerprint: A Local Intrinsic Dimensionality-Based Fingerprinting and Indexing Method for Similarity Search
	Chapter 6: Conclusion and Future Work
	Bibliography

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

