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          The schematic of the hierarchical sensor fusion system for gesture recognition. 

 

Take-Home Messages  

 We proposed a hierarchical model to utilize radar as an ‘Enhancer’ to complement with the PSA (Pressure 

Sensor Array) in improving the static gestures recognition rates, on the contrary, in the dynamic gesture case 

scenario the PSA acts as an ‘Enhancer’ to boost the radar performance. 

 Sequential forward selection (SFS) significantly reduces the computational intensity in terms of less features 

and improves the classification performance.  

 For the second-stage of the hierarchical model, soft and hard fusion methods are implied respectively to 

promote the classification accuracy and eliminate the false alarms. Different weights of the ‘Enhancer’ output 

are verified and compared in terms of the accuracy in the soft fusion process.  

 Soft fusion improves the accuracy by 16.7% and 11.1% with respect to static and dynamic gesture 

identification, whereas hard fusion reduces the accuracy variance across all the participants and produces a 

subsequent improvement about 5.5% in the dynamic gestures. 

 Future work involves more gestures and more participants with neural network-based algorithm and 

additional sensors configurations and fusion approaches.
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Abstract This paper presents a hierarchical sensor fusion approach for human micro-gesture recognition by combining an Ultra 

Wide Band (UWB) Doppler radar and wearable pressure sensors. First, the wrist-worn pressure sensor array (PSA) and Doppler 

radar are used to respectively identify static and dynamic gestures through a Quadratic-kernel SVM (Support Vector Machine) 

classifier. Then, a robust wrapper method is applied on the features from both sensors to search the optimal combination. 

Subsequently, two hierarchical approaches where one sensor acts as “enhancer” of the other are explored. In the first case, scores 

from Doppler radar related to the confidence level of its classifier and the prediction label corresponding to the posterior 

probabilities are utilized to maximize the static hand gestures classification performance by hierarchical combination with PSA 

data. In the second case, the PSA acts as an ‘Enhancer’ for radar to improve the dynamic gesture recognition. In this regard, 

different weights of the ‘Enhancer’ sensor in the fusion process have been evaluated and compared in terms of classification 

accuracy. A realistic cross-validation method is chosen to test one unknown participant with the model trained by data from 

others, demonstrating that this hierarchical fusion approach for static and dynamic gestures yields approximately 15% 

improvement in classification accuracy in the best cases. 
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I. INTRODUCTION1 

Micro-gesture recognition [1], [2] has gained significant 

interest in the context of industrial precision control [3], 

human-machine interaction, automotive driving assistance 

[4] and remote medical aid including emergency 

examination and surgery [5]. Compared with the past 

decades, more sensing technologies are available in the 

commercial market due to the rapid development of 

wireless network and miniaturized fabrication. 

The most mature sensing approach, notably wearable 

devices including Inertial Measurement Unit (IMU) [6], 

magnetic Hall sensor [7], pressure sensor and barometer 

[3], [8], [9] require users to carry the sensor during their 

daily lives. They may dislike the feeling of being 

constrained or simply forget to wear the device when 

needed. In the past few years, contactless sensors involving 

RF-based devices [10] and video camera-based system [11] 

have been proposed to achieve less intrusive and more 

comfortable user experience than wearable devices to 

monitor human movements, including gestures. Compared 

with cameras, RF-based and radar devices can be perceived 

 
1  This paper is an extended paper from the one presented in the IEEE 
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as less intrusive, especially in private home environments, 

and are less sensitive to environmental light conditions [1]. 

Micro-gestures are comprised of sequences of static parts 

(when hand and fingers are stationary) and dynamic 

transitions between static states [1]. Radar can well detect 

the transitions due to the Doppler Effect caused by the 

movement of hand and fingers, whereas the static targets 

are more challenging and can be ignored as background 

clutter (unless the radar is very sensitive and with very fine 

range and angular resolution).  On the contrary, wearables 

such as the PSA (Pressure Sensor Array) can provide 

meaningful readings for the static and dynamic gestures 

simultaneously, converting the tendons pressure into 

voltages. The different information from these sensors can 

be mutually complementary, improving the overall 

classification performance. 

   In this paper, we expand our work on the hierarchical 

classification of human activities and fall detection [12] by 

exploring hierarchy in the multimodal sensing framework 

rather than in the division of classes in sub-groups. Instead 

of dividing the gestures into different sub-groups and 

applying further classification algorithms, the proposed 

hierarchical fusion combines the outputs of individual 

sensor accounting for their diverse information and 

exploring the effect of different weights of one against 

another. Regarding to the sensor fusion algorithm, soft 

fusion [13] using the classifiers’ confidence level, and hard 

fusion [14] with respect to the prediction labels are tested 

and compared, considering different weights of the 

‘Enhancer’ sensor’s output in the soft fusion. 

Hierarchical Sensor Fusion for Micro-Gestures 

Recognition with Pressure Sensor Array and 
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This paper is organized as follows: Section II describes 

the experimental setup and data collection; Section III 

discusses the feature selection and proposed hierarchical 

architecture; the conclusion is summarized in Section IV 

and some potential further work are indicated. 

II. EXPERIMENTAL SETUP 

The data were collected at the University of Glasgow 

meLAB laboratory (shown in Fig. 1) with ten male 

participants, aged from 21 to 36. In the experiment, the 

participants were asked to perform 4 different static 

gestures (number 0, 1, 2, and 5 with their left hand), and the 

transitions between pairs of these static gestures. The 

subjects were asked to keep the same static gesture for 

approximately 4s then change to the next static gesture. The 

dataset includes seven instances of static gestures and six 

transitions. Therefore, the length of the data frame for 

single participant is approximately 28s.  

As shown in Fig. 1 an off-the-shelf UWB Doppler radar 

and one PSA (Pressure Sensor Array) wristband were 

utilized to acquire the data and transmit it to the connected 

laptops simultaneously. The PSA wristband was placed on 

the left hand of the participants to measure the pressure 

amplitudes at five different positions on the human wrist 

(for tendons of the five fingers), whereas the radar captured 

range and velocity information of the hand’s movement 

during the gesture transitions.  

For the PSA wristband, five Force Sensitive Resistor 

(FSR402) nodes and one Arduino DUE were utilized to 

construct the sensor array and then convert the pressure to 

the voltage reading accordingly. The data were collected 

through LABVIEW interface with a sampling rate of 50 Hz. 

The radar was placed on a plastic table at approximately 

1.2m height to the ground and it pointed to the middle of 

the hand at a distance of approximately 40cm. The UWB 

Pulse-Doppler radar (Xethru X4M300) operated at a center 

frequency of the transmitter equal to 7.29 GHz, with 

approximate 1.5 GHz useful bandwidth at -10dB. The 

transmitted PRF (Pulse Repetition Frequency) was equal to 

200 Hz. The radar signal is digitized as a matrix of complex 

numbers with amplitude and phase, for further processing 

using MATLAB. 

The voltage readings of PSA wristband from one 

participant and relative radar Doppler signature are 

illustrated in Fig. 2 as an example. The PSA produces a flat 

response when the hand is static translating the pressure 

from tendons into voltages. The radar data are based on the 

Doppler-effect, in particular micro-Doppler effect [15],  and 

are more sensitive to moving targets, in our case to the 

transitions between each static gesture. 

The dimension of the dataset is 6*7*6 and 6*6*6 

(number of participants*number of observations in 28s 

*degrees of freedom) for static and dynamic gesture 

respectively. The degrees of freedom contains five pressure 

sensor nodes and one UWB radar. 

III. CLASSIFICATION RESULTS 

A. Feature extraction and selection  

Due to the difference in wrist size, tendons’ strength, and 

sensor node positions for each participant, the numerical 

data from PSA are quite different in amplitude from one 

participant to another. To process them on the same scale, 

the raw data are standardized by subtracting the mean value 

and dividing the standard deviation. Instead of using raw 

data to feed the SVM classifier, 29 statistical features [16], 

[17] listed in Table I are chosen as more compact and 

representative information to characterize the data. These 

include: the two dimensional mean value, maximum, 

minimum and range of all sensor nodes data for each static 

gestures (4 features in total), as well as the mean and 

standard deviation of the correlation function to represent 

the relationship between pairs of sensor nodes (20 features 

in total as there are 5 sensor nodes, 10 different combos). 

For increasing the robustness of the dynamic gesture 

 
Fig. 1 Experimental setup (on the participant wrist: wearable pressure 

sensor array bracelet, blue chip on the box: UWB pulse-Doppler radar). 

  

 
Fig. 2 Static gestures data (top), radar Doppler signature (bottom). 



classification, 5 more features, 1 for each resistor of the 

PSA, have been utilized. These are the difference between 

the mean of first 50 data points and the mean of last 50 data 

points in order to estimate the pressure difference between 

the previous and next static gestures. 

TABLE I LIST OF STATISTICAL FEATURES FROM PSA 

PSA Features No. 

2-d Mean of the voltage amplitude 1 

Max of the voltage amplitude 1 

Min of the voltage amplitude 1 

Range of the voltage amplitude 1 

Mean of the cross-correlation between data from Node 
x and Node y 

10 

Standard deviation of the cross-correlation between 

data from Node x and Node y 

10 

The difference between the mean of first 50 data points 

and the mean of last 50 data points 

5 

 

MTI (Moving Target Indication) is utilized on the radar 

data to remove the background noise and static clutter 

through a notch filter. For the positive Doppler, the cut-off 

frequency is 0.0075Hz, whereas the cut-off frequency of the 

negative Doppler is -0.0075Hz. To map the information to 

the Doppler-Time domain, STFT (Short Time Fourier 

Transform) [18]with 0.5s Hamming window and 95% 

overlapping between successive FFTs (Fast Fourier 

Transform) is implemented on the filtered signal. The 

Doppler spectrogram in Fig. 2 is generated by summing the 

STFT data among the useful range bins containing 

contributions from the target. The radar spectrogram 

includes information on the movement of palm and fingers, 

which can be helpful to recognize similar gesture transitions 

such as 0 to 5 or 1 to 5 in our example. Useful radar 

features are extracted from the Doppler spectrogram 

according to our previous work on human activities [19]. 

Two generally important features are in particular the 

Doppler centroid and bandwidth [20], whose formulae are 

listed below in (1), (2): 

( ) ( , )
( )

( , )

i d
DC

i

f i S i j
f j

S i j





                           (1) 

2
( ( ) ( )) ( , )

( )
( , )

i d DC
BC

i

f i f j S i j
f j

S i j





                   (2) 

Both centroid and Bandwidth are calculated for every jth 

time bin; ( )df i  is the Doppler frequency for the ith 

Doppler bin, ( , )S i j  denotes the Doppler spectrogram 

matrix. The Doppler centroid represents the center of mass 

of the palm and fingers motions, whereas the bandwidth 

captures the energy spread surrounding the center of mass; 

in our case, they are significantly coherent with the fingers 

trajectory.   

To reduce the computational load and increase 

performances, only the most significant and non-redundant 

features from radar data are selected using a wrapper 

method approach, Sequential Feature Selection [21], 

[22](SFS), in conjunction with a Quadratic-kernel SVM 

classifier [23].  

B. General Classification with PSA and Radar  

A Quadratic-kernel SVM is chosen as a robust 

supervised learning algorithm to train the classification 

model and identify the testing gestures accordingly. The 

support vectors construct an optimal hyperplane between 

the data points distributed in the feature space, whereas a 

kernel function with the polynomial order equal to 2 is 

utilized to map the information to a higher dimension. More 

details of SVM and attached kernel functions can be found 

at [24], [25].  

 Different cross-validation methods (e.g. Holdout and K-

fold) are utilized in our previous work [19] and literatures 

[22] to partition the data into training and test set. However, 

in this paper, ‘leaving one participant out’ method is 

introduced for more realism and challenging classification. 

In this case, one participant is selected for evaluating the 

classification performance, whereas the data from other 

participants are utilized for training the SVM classifier 

 
Fig. 3 Radar SFS results with dynamic gesture. 

   

Fig. 4 PSA SFS results with static gesture.  

     

Fig. 5 PSA SFS results with dynamic gesture. 

 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

 

5 

translating to a 9:1 training to testing ratio. Additionally, 

the training and test process will continue until every 

participant is tested upon. The final classification accuracy 

is the average of all six iterations. 

Figs. 6-7 illustrates the correctly classified events 

(diagonal components) and misclassifications (non-diagonal 

components) by using ‘leaving one participant out’ with 

PSA and radar independently (average across all 

participants).  The columns represent the output class, 

corresponded to the prediction label, whereas the rows 

indicate the target class, corresponding to the ground truth. 

The sum of the column elements of the confusion matrix 

is equal to 100%.  When we identify the static gestures, it is 

observed that the main misclassification takes place 

between ‘G1’ and ‘G2’, ‘G3 and G4’, while few 

interleaving misclassifications exist between ‘G1’ and ‘G3’. 

The average classification accuracy across all the static 

gestures (PSA) is approximately 82.9%, whereas for the 

gesture transitions the results are slightly lower, at about 

80%. The main misclassification in Fig. 6 for the static 

gestures is between ‘G1’ and ‘G2’; it is due to the similarity 

of the tendon’s pressure when the participant performs ‘0’ 

and ‘1’. In Fig. 7, the main error occurs between ‘0-2’ and 

‘2-1’; apart from that, around 30% gesture transition ‘1-5’ 

have been misclassified to ‘2-0’. This is because each 

participant has their own individual style to perform the 

gestures: someone tends to leave their hand flat, which 

produces a stronger Doppler signature, whereas others tend 

to create an angle between the hand and the radar line-of-

sight, and then the signature is weakened. Therefore, those 

weaker signatures make the classifier more confuse and 

cause more misclassifications. 

C. Hierarchical Classification Models (Soft Fusion using 

Confidence Level) 

Fig. 8 illustrates the first hierarchical model comprised of 

two classification stages. It is proposed to boost the 

classification performance of static gestures with the help of 

radar (radar as the “enhancer” sensor). The first stage of 

classification takes place after the feature selection, and the 

classifier will generate a score matrix and the corresponding 

prediction label. The score matrix contains the confidence 

level for each individual class and the prediction label is the 

specific class with the highest confidence level. 

 In this regard, the PSA and radar score matrices have 4 

and six columns with respect to the number of classes to 

recognize, four static gestures for PSA and six transitions 

for radar.  

 
Fig. 6 Confusion matrix of PSA-only for static gesture recognition 

      
Fig. 7 Confusion matrix of radar-only for gesture transition recognition 

W1=1
W2=0.76

Accuracy=91.43%

Fig. 9 Classification accuracy with different weights (radar as 

‘Enhancer’). 
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Fig. 8 Hierarchical classification model by using confidence level (radar as ‘Enhancer’). 

 



Given this class imbalance between radar and PSA, the 

score matrices from different sensors cannot be simply 

added together. To address this, we assume that in this 

context the important information is given by the static 

gesture and not by the transition. Hence, the six-classes 

(transitions) matrix from the radar can be translated into a 

four-classes (static gesture) matrix considering the final 

gesture after each transition. Furthermore, as the radar in 

this approach acts as an “enhancer” of the PSA to recognise 

static gestures, a weighted function has been implemented 

on the new 4-class score matrix to control the radar 

influence in the In the new confidence level matrix of radar, 

if the prediction label of the ith observation is class ‘G1’, 

then NSij is derived by equation (3):  

 1

, , ,2 1 2 6

( 1)

max{ }( 2,3,4)ij i i i

W j
NS W RS RS RS j



 

 This transform converts a ‘six classes’ problem to a ‘four 

classes’ problem with keeping the original information 

from radar simultaneously. W1 and W2 denotes two weight 

factors, used to adjust the impact of radar in the fusion 

procedure. Increasing W2 or decreasing W1 will strengthen 

the influence of radar, and vice versa.  To determine the 

best weight factors for the fusion, different numbers of 

weight factors have been verified and compared in Fig. 9 in 

terms of classification accuracy. It is reported that the 

classification accuracy achieves the highest level 

(approximately 91.43%) when W1 and W2 are set equal to 

1 and 0.76, separately. 

       
  Fig. 10 Confusion matrix of soft fusion (radar as ‘Enhancer’). 

 
 Fig. 11 Classification accuracy with different weight factors (PSA as   

‘Enhancer’) 

Fig. 10 shows the classification results (confusion 

matrix) when the Doppler radar acts as an ‘Enhancer’ to 

help the PSA with the static gesture recognition. The mean 

accuracy across all the participants improves by 

approximately 8.6% compared to figure 6, whereas the 

misclassification between ‘G1’ and ‘G2’ has been reduced 

to a lower level. The class ‘G2’ has the worst recognizable 

rate in the case of using a single sensor as shown in Fig. 6, 

however, the correctly recognition rate with ‘G2’ is 

increased to 90% (about 20% improvement) through fusion 

with Doppler radar.     

The PSA sensor could be used as “Enhancer” for the 

radar to classify transitions between static gestures. In the 

second classification stage, the confidence level of PSA and 

radar are weighted and summed to construct the fusion 

score matrix, whereas the weight function is utilized to 

control the influence of PSA. The relationship between 

accuracy and weight between radar and PSA information is 

shown in Fig. 11 The fusion performance reaches the peak 

when the ratio of PSA and radar confidence level in the 

fusion score equals to 0.5 and 0.6.  

Fig. 12 illustrates the classification confusion matrix of 

soft fusion for dynamic gestures. Very high classification 

performance is obtained for two transitions, whereas some 

minor misclassifications are still present in the others. 

D. Hierarchical Classification Models (Hard Fusion 

using Prediction Label) 

Instead of merging the confidence level of different 

sensors in the second stage of hierarchical model, the hard 

fusion of radar and PSA takes place between the prediction 

labels through a probability combiner.  There are several 

potential combiners in the literature [14], [26], including the 

majority voting system or weighted voting system used in 

our previous work [19], Recall combiner and Naïve Bayes 

combiner [14]. The voting-based system is not suitable due 

to the decision clashes in our case scenario, whereas it is 

not ideal to use Recall combiner in binary classes problems 

[26] since the performance of Recall combiner is 

proportional to the number of classifiers (here we only have 

two classifiers from two sensors). Hence, in this paper, we 

chose Naïve Bayes are unavoidable combiner to calculate 

the posterior probability of each class through the 

prediction label and confusion matrix of the individual 

sensor.  In this case, the probability of certain class after 

fusion [14] is obtained by the equation (4) below: 

,
1

log ( | ) log( ( )) log( )
,m

N

k k m k
m

P C d P C p
C



              (4) 

Where ( | )kP C d  is the probability we are interested in, 

denoted for the possibility that class kC  is the true class. 

 ( )kP C  represents the number of classifiers which 

suggested kC  as the prediction label. The classifier used 

belongs to a classifier ensemble whose length is equal to N. 

, ,mm C kp  refers to the confusion matrix element 

corresponding to classifier m, row mC  and column k. The 

(3) 
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final prediction label is the class with the highest posterior 

probability.  Compared with soft fusion, hard fusion is more 

efficient computationally and saves time for selecting the 

optimal weight function.  

For the gesture transitions, the hard fusion yields 

approximately 95% classification accuracy, whereas the 

static gesture recognition through hard fusion indicates no 

significant improvement. Fig. 13 reports the hard fusion 

results of gesture transitions using a Naïve Bayes combiner. 

Compared to the soft fusion results, the accuracy of hard 

fusion approach increased by about 1.7%, where less 

misclassifications exist between Transitions ‘0-5’ and ‘0-2’, 

‘2-0’ and ‘2-1’, ‘0-5’ and ‘1-5’. Those misclassified gesture 

transitions are similar and not easy to resolve, even 

combining the perspectives of both sensors.   

Fig. 14 summarises the results for static and dynamic 

gesture recognition using a single sensor, and the soft 

fusion and hard fusion approaches with the hierarchical 

models proposed. The classification accuracy increases 

about 8.6% and 13.3% for static and dynamic gestures 

through soft fusion, while hard fusion significantly reduces 

the variance across all the participants as in Fig. 15; this 

also provides a subsequent improvement of 1.7% in the 

dynamic gesture recognition. In other words, an advantage 

of hard fusion is the enhancement in the stability of the 

hierarchical classification model across the different 

participants. 

 
 Fig. 15 Accuracy variance of different hierarchy model. 

IV. CONCLUSION 

This paper proposed a novel hierarchical sensor fusion 

architecture using outputs from the pressure sensor and 

Doppler radar. In this hierarchy of sensors, one can act as 

“enhancer” of the other depending on the specific 

application, for example whether it is more relevant 

capturing static gestures (radar enhancing the PSA) or 

dynamic gestures (PSA enhancing radar). Two fusion 

schemes based on soft and hard fusion are also 

implemented in the hierarchical model, and the results show 

significant improvement compared to the case of single 

sensor used individually. 

Future work can include the generalisation of these 

approaches to cases with more sensors and greater 

variability in terms of the number of participants and 

gestures performed. As the classification algorithm was 

relatively simple in this case, more elaborated approaches 

based on deep learning can be explored. These include 

Convolutional Neural Network (CNN) [27] for image 

processing and Recurrent Neural Network (RNN) for time-

dependent correlations, or combinations of the two. 

Without resorting to deep learning, extending the number of 

simpler classifiers could increase performances through 

other possible fusion/ensemble methods (e.g. voting system 

and Recall combiner). Finally, the implementation of the 

algorithm in a real-time setting leveraging on FPGA 

platforms [28]or compact high-performance computing 

boards can also be very interesting. 

      
Fig. 12 Confusion matrix of soft fusion (PSA as ‘Enhancer’). 

      
Fig. 13 Classification results of gesture transition recognition using hard 

fusion. 

 
Fig. 14 'Leave one participant out' test results (top: static gesture,   

bottom: dynamic gesture). 
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