13 research outputs found

    Reasoning about LTL Synthesis over finite and infinite games

    Get PDF
    In the last few years, research formal methods for the analysis and the verification of properties of systems has increased greatly. A meaningful contribution in this area has been given by algorithmic methods developed in the context of synthesis. The basic idea is simple and appealing: instead of developing a system and verifying that it satisfies its specification, we look for an automated procedure that, given the specification returns a system that is correct by construction. Synthesis of reactive systems is one of the most popular variants of this problem, in which we want to synthesize a system characterized by an ongoing interaction with the environment. In this setting, large effort has been devoted to analyze specifications given as formulas of linear temporal logic, i.e., LTL synthesis. Traditional approaches to LTL synthesis rely on transforming the LTL specification into parity deterministic automata, and then to parity games, for which a so-called winning region is computed. Computing such an automaton is, in the worst-case, double-exponential in the size of the LTL formula, and this becomes a computational bottleneck in using the synthesis process in practice. The first part of this thesis is devoted to improve the solution of parity games as they are used in solving LTL synthesis, trying to give efficient techniques, in terms of running time and space consumption, for solving parity games. We start with the study and the implementation of an automata-theoretic technique to solve parity games. More precisely, we consider an algorithm introduced by Kupferman and Vardi that solves a parity game by solving the emptiness problem of a corresponding alternating parity automaton. Our empirical evaluation demonstrates that this algorithm outperforms other algorithms when the game has a small number of priorities relative to the size of the game. In many concrete applications, we do indeed end up with parity games where the number of priorities is relatively small. This makes the new algorithm quite useful in practice. We then provide a broad investigation of the symbolic approach for solving parity games. Specifically, we implement in a fresh tool, called SPGSolver, four symbolic algorithms to solve parity games and compare their performances to the corresponding explicit versions for different classes of games. By means of benchmarks, we show that for random games, even for constrained random games, explicit algorithms actually perform better than symbolic algorithms. The situation changes, however, for structured games, where symbolic algorithms seem to have the advantage. This suggests that when evaluating algorithms for parity-game solving, it would be useful to have real benchmarks and not only random benchmarks, as the common practice has been. LTL synthesis has been largely investigated also in artificial intelligence, and specifically in automated planning. Indeed, LTL synthesis corresponds to fully observable nondeterministic planning in which the domain is given compactly and the goal is an LTL formula, that in turn is related to two-player games with LTL goals. Finding a strategy for these games means to synthesize a plan for the planning problem. The last part of this thesis is then dedicated to investigate LTL synthesis under this different view. In particular, we study a generalized form of planning under partial observability, in which we have multiple, possibly infinitely many, planning domains with the same actions and observations, and goals expressed over observations, which are possibly temporally extended. By building on work on two-player games with imperfect information in the Formal Methods literature, we devise a general technique, generalizing the belief-state construction, to remove partial observability. This reduces the planning problem to a game of perfect information with a tight correspondence between plans and strategies. Then we instantiate the technique and solve some generalized planning problems

    Probabilistic Interval Temporal Logic and Duration Calculus with Infinite Intervals: Complete Proof Systems

    Full text link
    The paper presents probabilistic extensions of interval temporal logic (ITL) and duration calculus (DC) with infinite intervals and complete Hilbert-style proof systems for them. The completeness results are a strong completeness theorem for the system of probabilistic ITL with respect to an abstract semantics and a relative completeness theorem for the system of probabilistic DC with respect to real-time semantics. The proposed systems subsume probabilistic real-time DC as known from the literature. A correspondence between the proposed systems and a system of probabilistic interval temporal logic with finite intervals and expanding modalities is established too.Comment: 43 page

    A Road Map of Interval Temporal Logics and Duration Calculi

    Get PDF
    We survey main developments, results, and open problems on interval temporal logics and duration calculi. We present various formal systems studied in the literature and discuss their distinctive features, emphasizing on expressiveness, axiomatic systems, and (un)decidability results

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 30th European Symposium on Programming, ESOP 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 24 papers included in this volume were carefully reviewed and selected from 79 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    28th International Symposium on Temporal Representation and Reasoning (TIME 2021)

    Get PDF
    The 28th International Symposium on Temporal Representation and Reasoning (TIME 2021) was planned to take place in Klagenfurt, Austria, but had to move to an online conference due to the insecurities and restrictions caused by the pandemic. Since its frst edition in 1994, TIME Symposium is quite unique in the panorama of the scientifc conferences as its main goal is to bring together researchers from distinct research areas involving the management and representation of temporal data as well as the reasoning about temporal aspects of information. Moreover, TIME Symposium aims to bridge theoretical and applied research, as well as to serve as an interdisciplinary forum for exchange among researchers from the areas of artifcial intelligence, database management, logic and verifcation, and beyond

    Logic and Automata

    Get PDF
    Mathematical logic and automata theory are two scientific disciplines with a fundamentally close relationship. The authors of Logic and Automata take the occasion of the sixtieth birthday of Wolfgang Thomas to present a tour d'horizon of automata theory and logic. The twenty papers in this volume cover many different facets of logic and automata theory, emphasizing the connections to other disciplines such as games, algorithms, and semigroup theory, as well as discussing current challenges in the field
    corecore