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1. Introduction

Interval-based temporal logics stem from four major scientific areas:

Philosophy. The philosophical roots of interval temporal logics can be traced back
to Zeno and Aristotle. The nature of Time has always been a favourite subject
in philosophy, and in particular, the discussion whether time instants or time
periods should be regarded as the primary objects of temporal ontology has a
distinct philosophical flavour. Some of the modern formal logical treatments of
interval-based structures of time include: [HAM 72] providing a philosophical
analysis of interval ontology and interval-based tense logics; [HUM 79] which
elaborates on Hamblin’s work, introducing a sequent calculus for an interval
tense logic over precedence and sub-interval relations; [ROE 80], a follow-
up on Humberstone’s work, discussing and analyzing persistency (preserva-
tion of truth in sub-intervals) and homogeneity; [BUR 82] proposing axiomatic
systems for interval-based tense logics of the rationals and reals, studied ear-
lier in [ROE 80]. A comprehensive study and logical analysis of point-based
and interval-based ontologies, languages, and logical systems can be found in
[BEN 91].
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Linguistics. Interval-based logical formalisms have featured in the study of natural
languages since the seminal work of Reichenbach [REI 47]. They arise as suit-
able frameworks for modeling progressive tenses and expressing various lan-
guage constructions involving time periods and event duration which cannot be
adequately grasped by point-based temporal languages. Period-based temporal
languages and logics have been proposed and studied in [DOW 79, KAM 79,
RIC 88], to mention a few. The linguistic aspects of interval logics will not be
treated here, apart from some discussion of the expressiveness about various
interval-based temporal languages.

Artificial intelligence. Interval temporal languages and logics have sprung up from
expert systems, planning systems, theories of actions and change, natural lan-
guage analysis and processing, etc. as formal tools for temporal representation
and reasoning in artificial intelligence. Some of the notable contributions in
that area include: [ALL 83] proposing the thirteen Allen’s relations between
intervals in a linear ordering and a temporal logic for reasoning about them;
[ALL 85] providing an axiomatization and a representation result for interval
structures based on the meets relation between intervals, further studied and
developed in [LAD 87], which also provides a completeness theorem and al-
gorithms for satisfiability checking for Allen’s calculus represented as a first-
order theory; [GAL 90] critically analyzing Allen’s framework and arguing the
necessity of considering points and intervals on a par, and [ALL 94] develop-
ing interval-based theory of actions and events. A comprehensive survey on
temporal representation and reasoning in artificial intelligence can be found in
[CHI 00].

Computer science. One of the first applications of interval temporal logics to com-
puter science, viz. for specification and design of hardware components, was
proposed in [HAL 83, MOS 83] and further developed in [MOS 84, MOS 94,
MOS 98, MOS 00a]. Later, other systems and applications of interval logics
were proposed in [BOW 00, CHA 98, DIL 92a, DIL 92b, DIL 96a, DIL 96b,
RAS 99]. Model checking tools and techniques for interval logics were devel-
oped and applied in [CAM 96, PEN 98]. Particularly suitable interval logics for
specification and verification of real-time processes in computer science are the
duration calculi (see [CHA 91, CHA 94, CHA 99, HAN 92, HAN 97, SØR 90])
introduced as extensions of interval logics, allowing representation and reason-
ing about time durations for which a system is in a given state. For an up-to-date
survey on duration calculi see [CHA 04].

Intervals can be regarded as primitive entities or as definable in terms of their
endpoints. Accordingly, interval-based temporal logics can be divided into two main
classes: ‘pure’ interval logics, where the semantics is essentially interval-based, that
is, formulas are directly evaluated with respect to intervals, and ‘non-pure’ interval
logics, where the semantics is essentially point-based and intervals are only auxiliary
entities. An important family of ‘non-pure’ interval logics is that of the logics in which
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the locality principle is imposed. Such a principle states that an atomic proposition is
true at an interval if and only if it is true at the beginning point of that interval.

In this survey we outline (without claiming completeness) main developments,
results, and open problems on interval temporal logics and duration calculi, focusing
on ‘pure’ interval logics and on those non-pure ones which adopt locality. We present
various formal systems studied in the literature and discuss their distinctive features,
emphasizing on expressiveness, axiomatic systems, and (un)decidability results. Since
duration calculi are discussed in more details in [CHA 04], we will present this topic
in a rather succinct way, while going in more detail on interval logics, mainly on
propositional level.

The paper is organized as follows. In Section 2 we introduce the basic syntactic
and semantic ingredients of interval temporal logics and duration calculi, including
interval temporal structures, operators, and languages with their syntax and semantics.
In Section 3 we discuss propositional interval logics, in Section 4 we present a general
tableau method for them, while in Section 5 we briefly survey first-order interval logics
and duration calculi. Section 6 contains some concluding remarks and directions for
future research.

2. Preliminaries

2.1. Temporal ontologies, interval structures and relations between intervals

Interval temporal logics are subject to the same ontological dilemmas as the instant-
based temporal logic, viz.: should the time structure be considered linear or branch-
ing? Discrete or dense? With or without beginning? etc. In addition, however, new
dilemmas arise regarding the nature of the intervals:

– Should intervals include their end-points or not?

– Can they be unbounded?

– Are point-intervals (i.e. with coinciding endpoints) admissible or not?

– How are points and intervals related? Which is the primary concept? Should an
interval be identified with the set of points in it, or there is more into it?

The last question is of particular importance for the semantics of interval logics.

Given a strict partial ordering D =〈D,<〉, an interval in D is a pair [d0, d1] such
that d0, d1 ∈ D and d0 ≤ d1. [d0, d1] is a strict interval if d0 < d1. Often we will refer
to all intervals on D as non-strict intervals, to distinguish from the latter. In particular,
intervals [d, d] will be called point-intervals. A point d belongs to an interval [d0, d1]
if d0 ≤ d ≤ d1 (i.e. the endpoints of an interval are included in it). The set of all
non-strict intervals on D will be denoted by I(D)+, while the set of all strict intervals
will be denoted by I(D)−. By I(D) we will denote either of these. For the purpose of
this survey, we will call a pair 〈D, I(D)〉 an interval structure.
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In all systems considered here the intervals will be assumed linear, although this
restriction can often be relaxed without essential complications. Thus, we will con-
centrate on partial orderings with the linear interval property:

∀x∀y(x < y → ∀z1∀z2(x < z1 < y∧x < z2 < y → z1 < z2∨z1 = z2∨z2 < z1)),

that is, orderings in which every interval is linear. Clearly every linear ordering falls
here. An example of a non-linear ordering with this property is:

•

•

•

• •
���

���
���

•��� •

•

��� •

while a non-example is:

• • •���

���

•

•���

���
• •

An interval structure is:

– linear, if every two points are comparable;

– discrete, if every point with a successor/predecessor has an immediate succes-
sor/predecessor along every path starting from/ending in it, that is,

∀x∀y(x < y → ∃z(x < z ∧ z ≤ y ∧ ∀w(x < w ∧ w ≤ y → z ≤ w))),

and

∀x∀y(x < y → ∃z(x ≤ z ∧ z < y ∧ ∀w(x ≤ w ∧ w < y → w ≤ z)));

– dense, if for every pair of different comparable points there exists another point
in between:

∀x∀y(x < y → ∃z(x < z ∧ z < y));

– unbounded above (resp. below), if every point has a successor (resp. predeces-
sor);
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– Dedekind complete, if every non-empty and bounded above set of points has a
least upper bound.

Besides interval logics over the classes of linear, (un)bounded, discrete, dense, and
Dedekind complete interval structures, we will be discussing those interpreted on the
single structures N,Z,Q, and R with their usual orderings.

It is well known that there are 13 different binary relations between intervals on a
linear ordering (and quite a few more on a partial ordering) [ALL 83]: equals, ends,
during, begins, overlaps, meets, before, together with their inverses.

current interval:

ends:

during:

begins:

overlaps:

meets:

before:

These relations lead to a rich interval algebra, the so-called Allen’s Interval Alge-
bra, which will not be discussed in detail here. A survey of Allen’s Interval Algebra
and of a number of its tractable fragments, including Vilain and Kautz’s Point Al-
gebra [VIL 86], van Beek’s Continuous Endpoint Algebra [BEE 89], and Nebel and
Bürckert’s ORD-Horn Algebra [NEB 95], can be found in [CHI 00].

Another natural binary relation between intervals, definable in terms of Allen’s
relations, is the one of sub-interval which comes in three versions. Given a partial
ordering D and intervals [s0, s1] and [d0, d1] in it:

– [s0, s1] is a sub-interval of [d0, d1] if d0 ≤ s0 and s1 ≤ d1. The relation of
sub-interval will be denoted by �;
– [s0, s1] is a proper sub-interval of [d0, d1], denoted [s0, s1]�[d0, d1], if [s0, s1] �

[d0, d1] and [s0, s1] �= [d0, d1];
– [s0, s1] is a strict sub-interval of [d0, d1], denoted [s0, s1] � [d0, d1], if d0 < s0

and s1 < d1.

Amongst the multitude of ternary relations between intervals there is one of par-
ticular importance for us, which corresponds to the binary operation of concatenation
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of meeting intervals. Such a ternary interval relation, which has been introduced by
Venema in [VEN 91], can be graphically depicted as follows:

k

i j

It is denoted by A and it is defined as follows:

– Aijk if i meets j, i begins k, and j ends k,

that is, k is the concatenation of i and j.

2.2. Propositional interval temporal languages and models

The generic language of propositional interval logics includes the set of proposi-
tional lettersAP , the classical propositional connectives¬ and∧ (all others, including
the propositional constants
 and⊥, are definable as usual), and a set of interval tem-
poral operators (modalities) specific for each logical system.

There are two different natural semantics for interval logics, namely, a strict one,
which excludes point-intervals, and a non-strict one, which includes them. A non-
strict interval model is a pair M+= 〈D, V 〉, where D is a partial ordering and V :
I(D)+ → P(AP) is a valuation assigning to each interval a set of atomic propositions
considered true at it. Respectively, a strict interval model is a structureM−= 〈D, V 〉
defined likewise, where V : I(D)− → P(AP). When we do not wish to specify the
strictness, we will write simplyM, assuming either version.

Allen’s relations give rise to respective unary modal operators, thus defining the
modal logic of time intervals HS introduced by Halpern and Shoham in [HAL 91].
Some of these modal operators are definable in terms of others and it suffices to choose
as basic the modalities corresponding to the relations begins, ends, and their inverses.
Thus, the formulas of HS are generated by the following abstract syntax:

φ ::= p | ¬φ | φ ∧ ψ | 〈B〉φ | 〈E〉φ | 〈B〉φ | 〈E〉φ.

The formal semantics of these modal operators (given in [HAL 91] in terms of
non-strict models) is defined as follows:

(〈B〉) M+, [d0, d1] � 〈B〉φ ifM+, [d0, d2] � φ for some d2 such that d0 ≤ d2 < d1;

(〈E〉) M+, [d0, d1] � 〈E〉φ ifM+, [d2, d1] � φ for some d2 such that d0 < d2 ≤ d1;

(〈B〉) M+, [d0, d1] � 〈B〉φ ifM+, [d0, d2] � φ for some d2 such that d1 < d2;
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(〈E〉) M+, [d0, d1] � 〈E〉φ ifM+, [d2, d1] � φ for some d2 such that d2 < d0.

A useful new symbol is the modal constant π for point-intervals interpreted in
non-strict models as follows:

(π) M+, [d0, d1] � π if d0 = d1.

Note that the constant π is definable as either [B]⊥ or [E]⊥, so it is only needed in
weaker languages. The presence of π in the language allows one to interpret the strict
semantics into the non-strict one by means of the translation:

– τ(p) = p for p ∈ AP ;
– τ(¬φ) = ¬τ(φ);
– τ(φ ∧ ψ) = τ(φ) ∧ τ(ψ);
– τ(〈∗〉φ) = 〈∗〉 (¬π ∧ τ(φ)) for any (unary) interval diamond-modality 〈∗〉 .
The interpretation is effected by the following claim, proved by a straightforward

induction on φ :

PROPOSITION 1. — For every interval modelM, proper interval [d0, d1] in M, and
formula φ:

M−, [d0, d1] � φ iff M+, [d0, d1] � τ(φ).

Usually, but not always, the non-strict semantics is taken by default.

Venema introduced in [VEN 91] three binary modalities C, D, and T , associated
with the ternary relation A, with the following non-strict semantics:

(C) M+, k � φCψ if there exist two intervals i, j such that Aijk and M+, i � φ,
andM+, j � ψ, that is,

M+, [d0, d1] � φCψ if M+, [d0, d2] � φ, and M+, [d2, d1] � ψ for some
d2 ∈ D such that d0 ≤ d2 ≤ d1.

(D) M+, j � φDψ if there exist two intervals i, k such that Aijk and M+, i � φ,
andM+, k � ψ, that is,

M+, [d0, d1] � φDψ if M+, [d2, d0] � φ, and M+, [d2, d1] � ψ for some
d2 ∈ D such that d2 ≤ d0.

(T ) M+, i � φTψ if there exist two intervals j, k such that Aijk and M+, j � φ,
andM+, k � ψ, that is,

M+, [d0, d1] � φTψ if M+, [d1, d2] � φ, and M+, [d0, d2] � ψ for some
d2 ∈ D such that d1 ≤ d2.
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The interval logic CDT based on these modal operators will be discussed in the
next section.

Similar modal operators for a relation of any arity were introduced in [NIS 80],
and a logic with the ‘Chop’ operator T was studied in [ROS 86].

The semantics of interval temporal logics is sometimes subjected to restrictions
justified by specific applications for which a logical system is designed, such as:

– locality, meaning that all atomic propositions are point-wise and truth at an in-
terval is defined as truth at its initial point;

– homogeneity, requiring that truth of a formula at an interval implies truth of that
formula at every sub-interval of it.

A different kind of restriction is imposed by the so-called split-structures (see
Section 3.3). In the split-structures not all sub-intervals of an interval are ‘available’
but only those two which are determined by the ‘split-point’ in that interval.

We will not assume any semantic restrictions, unless otherwise specified.

2.3. First-order languages and models for interval logics and duration calculi.

The first-order languages for interval logics extend the propositional ones essen-
tially the same way as in classical logic, but accounting for the fact that the first-order
domain may change over time. Formally, these languages involve terms built as usual
from variables, constants, and functional symbols. Constants and functional symbols
are classified as global (or rigid), whose interpretation does not depend on the time,
and temporal (or flexible), whose interpretation can vary over time. Predicate symbols,
also classified as global or temporal, are denoted by pi, qj, . . ., where i, j . . . represent
the arities. The abstract syntax of formulas of a generic first-order interval language
includes the clauses

φ ::= pn(θ1, . . . , θn) | ∃xφ| ¬φ | φ ∧ ψ,

where θ1, . . . , θn are terms, plus the clauses for the specific interval modal operators.

A formula is global (rigid) if it only contains global constant, functional, and pred-
icate symbols.

Among the constants, there is a specific and important one, present in most of the
first-order languages for interval logics and duration calculi, viz. the flexible constant
l denoting the length of the current interval. Often it is combined with a structure of an
additive group (typically, the additive group of reals) as part of the temporal domain,
which allows for computing lengths of concatenated intervals, etc.

A specific additional feature of the syntax of duration calculi is the special category
of terms called state expressions which are used to represent the duration for which a
system stays in a particular state.
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The semantics of first-order interval formulas is a combination of the standard
semantics of a first-order (temporal) logic with the semantics of the specific underlying
propositional interval logic.

3. Propositional Interval Logics

As already noted, every interval logic L has two versions, namely, the non-strict
version L+ and the strict one L−, and when writing just L we will mean either one, as
specified in the text.

3.1. Monadic interval logics

In this section we introduce and analyze the most well-known and/or interesting
interval logics involving only unary modal operators, starting from the weakest. We
will assume that the semantic structures are of the most general type we consider,
viz. interval structures over partial orderings with the linear interval property, unless
otherwise specified.

3.1.1. The sub-interval logic D

The logic D is the logic of the sub-interval relation. Since D allows one to look inside
the current interval only, from the linear interval hypothesis, it follows that we can
restrict ourselves to the class of linear structures.

The abstract syntax of the simplest version of D is:

φ ::= p | ¬φ | φ ∧ ψ | 〈D〉φ,

but one could also include in the language the modal constant π.

The sub-interval relation and the temporal logics associated with it were stud-
ied, from the perspective of philosophical temporal logics, in [HAM 72, ROE 80],
[HUM 79] (together with precedence), and [BEN 91]. In the computer science litera-
ture, it was apparently first mentioned in [HAL 91] and its expressiveness (interpreted
over linear non-strict models) discussed in [LOD 00].

Besides the strict and non-strict versions, the logic D allows essential semantic
variations, depending on which sub-interval relation (�, �, or �) is assumed. Ac-
cordingly, the truth definition for D is based on the clause:

(〈D〉) M, [d0, d1] � 〈D〉φ if there exists a sub-interval [d2, d3] of [d0, d1] such that
M, [d2, d3] � φ.

At present, we are not aware of any specific published results about expressiveness,
axiomatic systems, and decidability for any variants of the logic D, but we note that
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they all involve non-trivial valid formulas expressible in D, associated with ‘length vs
depth’. To give some idea, here is an infinite scheme of valid formulas of the logic D,
with a strict sub-interval relation, which says that if an interval contains sufficiently
many distinct sub-intervals (and hence, sufficiently many distinct points), then it con-
tains a chain of nested sub-intervals of pre-defined length:

d(n)∧
i=1

〈D〉

⎛
⎝pi ∧

∧
j �=i

¬pj

⎞
⎠ → 〈D〉n
,

for d(n) ≥
(
2n−1

2

)
+ 1

3.1.2. The logics BB and EE

Interval logics make it possible to express properties of pairs of time points, rather
than single time points. In most cases, this feature prevents one from the possibility
of reducing interval-based temporal logics to point-based ones without resorting to
any kind of projection principle. However, there are a few exceptions where such a
reduction can be defined thanks to a suitable choice of the interval modalities, thus
allowing one to benefit from the good computational properties of point-based logics.
This is the case of the logics BB and EE (and of their fragments).

The logic BB is generated by the following abstract syntax:

φ ::= p | ¬φ | φ ∧ ψ | 〈B〉φ | 〈B〉φ,

while EE is obtained from BB by substituting 〈E〉 for 〈B〉 and 〈E〉 for 〈B〉. In the
following, we restrict our attention to BB. However, all definitions and results can be
easily adapted to EE.

The decidability, as well as other logical properties, of BB can be obtained by
translating it into the propositional temporal logic of linear time Lin-PTL with tempo-
ral modalities F (sometime in the future) and P (sometime in the past), which has the
finite model property and is decidable (see e.g. [GAB 94]). The formulas of Lin-PTL
are defined by

f ::= p | ¬f | f ∧ g | Pf | Ff,
and a model for Lin-PTL is a pair 〈D,V〉, where D = 〈D,<〉 is a linearly ordered set
and V : D �→ P(AP) is a valuation function. The semantics is standard:

–M,d � p if p ∈ V(d);
–M,d � ¬f if it is not the case thatM,d � f ;

–M,d � f ∧ g ifM,d � f andM,d � g;

–M,d � Pf if there exists d′ such that d′ < d andM,d′ � f ;

–M,d � Ff if there exists d′ such that d < d′ andM,d′ � f .

The formulas of BB are simply translated into formulas of Lin-PTL by a mapping
τ which replaces 〈B〉 by P and 〈B〉 by F .
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Now, for every modelM = 〈D, V 〉 of BB, where D = 〈D,<〉, and point d ∈ D,
we construct a model for Lin-PTLM[d) = 〈[d),V〉, where [d) = {d′ ∈ D | d ≤ d′}
and the valuation V is defined as follows: for all d′ ∈ [d) and p ∈ AP : p ∈ V(d′) iff
p ∈ V ([d, d′]). Conversely, every modelM = 〈D,V〉 for Lin-PTL based on a linear
ordering with a least element can be obtained in such a way from some model of BB.

LEMMA 2. — For every model M = 〈D, V 〉 of BB, with D = 〈D,<〉, point d ∈ D,
and formula φ ∈ BB:

M, [d, d′] � φ iff M[d), d′ � τ(φ)

for any d′ ≥ d.

Proof: Structural induction on φ. For propositional variables the claim holds by defi-
nition. The cases of the propositional connectives are straightforward.

Let φ = 〈B〉ψ. By definition, τ(φ) = Pτ(ψ), and, by hypothesis, M, [d, d′] �
〈B〉ψ, that is, there exists d′′ such that d ≤ d′′ < d′ and M, [d, d′′] � ψ. By the
inductive hypothesis,M[d), d′′ � τ(ψ), and thusM[d), d′ � Pτ(ψ).

The case φ = 〈B〉ψ is similar.

The claim of the lemma now follows immediately.

COROLLARY 3. — A formula φ ∈ BB is satisfiable in a model M of BB iff τ(φ) is
satisfiable in some modelM[d).

Given a linear orderingLwe denote by +L the ordering obtained fromL by adding
a new least element. Accordingly, if C is a class of linear orderings, we define +C =
{+L | L ∈ C}.

Consequently, we obtain the following theorem.

THEOREM 4. — The satisfiability problem for the logic BB, interpreted in a given
class of interval structures over a class of linear orderings C, is reducible to the
satisfiability problem for the logic Lin-PTL interpreted over the class +C.

Thus, for instance, the decidability of BB over the class of all linear orderings
follows.

3.1.3. The logic BE

The logic BE features the two modalities 〈B〉 and 〈E〉, and its formulas are gener-
ated by the following abstract syntax:

φ ::= p | ¬φ | φ ∧ ψ | 〈B〉φ | 〈E〉φ.

As we have already shown, the modal constant π is definable as [B]⊥. Accord-
ingly, the point-intervals that respectively begin and end the current interval can be
captured as follows:
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– [[BP ]]φ � (φ ∧ π) ∨ 〈B〉(φ ∧ π), and
– [[EP ]]φ � (φ ∧ π) ∨ 〈E〉(φ ∧ π).

BE is strictly more expressive than (the non-strict version of) D. On the one hand,
if we assume the sub-interval relation to be the strict one (the other two cases can be
dealt with in a similar way), the modality 〈D〉 can be defined as follows:
– 〈D〉φ � 〈B〉〈E〉φ.

On the other hand, the undefinability of 〈B〉 and 〈E〉 in D can be easily proved
as follows. Let 〈I(D)+,�, V 〉 be a D-model, where I(D)+ is the set of all non-strict
intervals overD,� is the strict sub-interval relation over I(D)+, and V is the valuation
function. The notions of p-morphism and bisimulation between D-models are defined
in the usual way for modal logic (see e.g. [BLA 01]), and they satisfy the standard
truth-preservation properties. Given two linearly ordered sets D = {d0, d1}, with
d0 < d1, and D′ = {d′0}, we take into consideration two D-modelsM+ = 〈I(D)+,�
, V 〉 andM′+ = 〈I′(D′)+,�, V ′〉 such that:

1) I(D)+ = {[d0, d0], [d1, d1], [d0, d1]]} and I′(D′)+ = {[d′0, d′0]};
2) the valuations of all intervals in both models are equal to {p}.

LetR ⊆ D×D′ be the relation {(d0, d
′
0), (d1, d

′
0)}. It is immediate to show that such a

relation induces a bisimulationZ ⊆ I(D)+×I′(D′)+ betweenM+ andM′+. First, all
intervals of both models are evaluated to {p}, and thus any pair of Z-related intervals
satisfies the same atomic propositions. Second, the strict sub-interval relation is empty
in both models, and thus the back and the forth conditions are trivially satisfied.

Since M+, [d0, d1] satisfies 〈B〉p (resp., 〈E〉p), while M′+, [d0, d1] does not, it im-
mediately follows that 〈B〉 (resp., 〈E〉) cannot be defined in D.

BE is expressive enough to capture some relevant conditions on the underlying
interval structure, as originally pointed out by Halpern and Shoham in the context of
the logic HS [HAL 91]), from where the examples below are adapted. First, one can
constrain an interval structure to be discrete by means of the formula:

– discrete � π ∨ l1 ∨ (〈B〉l1 ∧ 〈E〉l1),
where l1 is true over an interval [d0, d1] if and only if d0 < d1 and there are no points
between d0 and d1. Such a condition can be expressed in BE as follows:

l1 � 〈B〉
 ∧ [B][B]⊥.

It is not difficult to show that an interval structure is discrete if and only if the
formula discrete is valid in it. Furthermore, one can easily force an interval structure
to be dense by constraining the formula

– dense � ¬l1.
to be valid. Finally, one can constrain an interval structure to be Dedekind complete
by means of the formula



A Road Map of Interval Temporal Logics 13

– Dedekind complete � (〈B〉cell ∧ [[EP]]¬q ∧ [E]([[BP]]q → 〈B〉cell))
→ 〈B〉([E](¬π → 〈D〉cell))

where cell is true over an interval [d0, d1] if and only if its endpoints satisfy a given
proposition letter q (the cell delimiters), all sub-intervals satisfy a proposition letter p
(the cell content), and there exists at least one sub-interval satisfying p, that is,

cell � [[BP]]q ∧ [[EP]]q ∧ [D]p ∧ 〈D〉p.

BE also allows one to define a modality [All], referring to all sub-intervals of the
given interval, which in that logic is essentially equivalent to the universal modality
over the submodel generated by the current interval:

– [All]φ � φ ∧ [B]φ ∧ [E]φ ∧ [B][E]φ.

As for (un)decidability results, Lodaya [LOD 00] proves the following theorem,
which tailors the undecidability proof for HS provided by Halpern and Shoham (cf.
Theorem 12) to BE.

THEOREM 5. — The satisfiability problem for BE-formulas interpreted over non-
strict dense linear structures is not decidable.

Undecidability is proved by reducing the non-halting problem of a Turing Machine
(TM) on a blank tape to the satisfiability problem for BE. According to Halpern and
Shoham’s approach, any computation of a TM is modeled as an infinite sequence of
configurations of the machine, called instantaneous descriptions (IDs for short). Each
ID is a finite sequence of tape cells that contain a unique tape symbol, and one of
the cells has additional information representing the head position and the state of the
machine. A suitable proposition is used to talk about consecutive IDs, e.g., to relate
the n-th cell of a given ID to the same cell of the successive ID. By exploiting such a
proposition, the transition function δ of a TM can be expressed by examining a group
of three cells belonging to a given ID and determining the value of the same three cells
in the successive ID. A suitable interval formula, parameterized by a TM, can then be
built in such a way that such a formula is satisfiable if and only if the TM does not halt
on a blank tape. As a matter of fact, most of Halpern and Shoham’s proof is carried
out in the BE fragment. The other modalities are only used to specify the sequence of
IDs and to express the relationships between consecutive IDs. Lodaya shows how to
treat the entire infinite computation as being inside a dense interval, which makes it
possible to use the 〈D〉 modality to express the relationships between consecutive IDs
as well as to talk about sequences of IDs.

Since density is expressible in BE by a constant formula, we have the following
corollary of Theorem 5.

COROLLARY 6. — The satisfiability problem for BE over the class of all non-strict
linear structures is not decidable.

The satisfiability of a formula φ in a dense model is indeed equivalent to the satisfia-
bility of [All]¬l1 ∧ φ in any non-strict model.
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We conclude our description of BE by remarking that a number of meaningful
problems, such as the decidability of the satisfiability problem for BE-formulas inter-
preted over special classes of linear orderings, or over strict models, and the definition
of sound and complete axiomatic systems for BE, are, at the best of our knowledge,
still open.

3.1.4. Propositional neighbourhood logics

The interval logics based on the meets relation and its inverse met-by are called
neighbourhood logics. Notably, first-order neighbourhood logics were introduced and
studied by Zhou and Hansen in [CHA 98], while their propositional variants, inter-
preted over linear structures (both strict and non-strict), were studied only quite re-
cently by Goranko, Montanari, and Sciavicco [GOR 03b].

The language of propositional neighbourhood logics includes the modal operators
♦r and ♦l borrowed from [CHA 98]. Its formulas are generated by the following
abstract syntax:

φ ::= p | ¬φ | φ ∧ ψ | ♦rφ | ♦lφ.

The dual operators �r and �l are defined in the usual way. To make it easier to
distinguish between the two semantics from the syntax, we will reserve this notation
for the case of non-strict propositional neighbourhood logics, generically denoted by
PNL+, while for the strict ones, denoted by PNL−, 〈A〉 and 〈A〉 are used instead of
♦r and ♦l, respectively. The class of non-strict propositional neighbourhood logics
extended with the modal constant π will be denoted by PNLπ+.

The modalities 〈A〉 and 〈A〉 were originally introduced in the logic HS [HAL 91]
as derived operators. The semantics of HS admits point-intervals and hence, accord-
ing to our classification, it is non-strict. However, the modalities 〈A〉 and 〈A〉 only
refer to strict intervals, and thus the semantics of the fragment AA can be considered
essentially strict.

The formal semantics of the modal operators♦r and ♦l is defined as follows:

(♦r) M+, [d0, d1] � ♦rφ if there exists d2 such that d1 ≤ d2 andM+, [d1, d2] � φ;

(♦l) M+, [d0, d1] � ♦lφ if there exists d2 such that d2 ≤ d0 andM+, [d2, d0] � φ,

while the semantic clauses for the operators 〈A〉 and 〈A〉 are:

(〈A〉) M−, [d0, d1] � 〈A〉φ if there exists d2 such that d1 < d2 andM−, [d1, d2] �
φ;

(〈A〉) M−, [d0, d1] � 〈A〉φ if there exists d2 such that d2 < d0 andM−, [d2, d0] � φ.

Propositional neighbourhood logics are quite expressive. For example, PNL− al-
lows one to characterize various classes of linear structures:
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(A-SPNLu) [A]p→〈A〉p, in conjunction with its mirror image, defines the class of
unbounded structures;

(A-SPNLde) (〈A〉〈A〉p → 〈A〉〈A〉〈A〉p) ∧ (〈A〉[A]p → 〈A〉〈A〉[A]p), in conjunc-
tion with its mirror image, defines the class of dense structures, extended with
the 2-element linear ordering1;

(A-SPNLdi) ([A]⊥ → [A]([A][A]⊥ ∨ 〈A〉(〈A〉
 ∧ [A][A]⊥))) ∧ ((〈A〉
 ∧ [A](p ∧
[A]¬p∧ [A]p)) → [A][A]〈A〉(〈A〉¬p∧ [A][A]p)), in conjunction with its mirror
image, defines the class of discrete structures;

(A-SPNLc) 〈A〉〈A〉[A]p∧〈A〉[A]¬[A]p→〈A〉(〈A〉[A] [A]p∧ [A] 〈A〉¬ [A] p) defines
the class of Dedekind complete structures.

Moreover, the language of PNL−over unbounded structures is powerful enough to
express the difference [�=] operator:

[�=]q � [A][A][A]q∧[A][A][A]q∧[A][A][A]q∧[A][A][A]q,

saying that q is true at every interval different from the current one, and consequently
to simulate nominals (the application of the operator n to q constrains q to hold over
the current interval and nowhere else):

n(q) � q∧[�=](¬q).

It follows (see, e.g., [GAR 93]) that every universal property of strict unbounded linear
structures can be expressed in PNL−.

Sound and complete axiomatic systems for propositional neighbourhood logics
have been obtained in [GOR 03b].

THEOREM 7. — The following axiomatic system is sound and complete for the logic
PNL+ of non-strict linear structures:

(A-NT) enough propositional tautologies;

(A-NK) theK axioms for �r and �l;

(A-NNF0) �rp→♦rp, and its inverse;

(A-NNF1) p→�r♦lp, and its inverse;

(A-NNF2) ♦r♦lp→�r♦lp, and its inverse;

(A-NNF3) �r♦lp→♦l♦r♦rp ∨♦l♦l♦rp, and its inverse;

(A-NNF4) ♦r♦r♦rp→♦r♦rp, and its inverse;

1. The 2-element linear ordering cannot be separated in the language of PNL−.



16 Journal of Applied Non-Classical Logics. Volume 14 – n◦ 1/2004

(A-NNF∞) �rq∧♦rp1∧ . . .∧♦rpn→♦r(�rq∧♦rp1∧ . . .∧♦rpn), and its inverse,
for each n ≥ 1.

The rules of inference are Modus Ponens, Uniform Substitution, and �r and �l Gen-
eralization. Interestingly, some of these axioms, including the infinite scheme (A-
NNF∞), were not included in the axiomatization of the first-order neighbourhood
logic given in [BAR 00] as they could be derived using the first-order axioms.

THEOREM 8. — [GOR 03b] A sound and complete axiomatic system for the logic
PNLπ+ can be obtained from that for PNL+ by adding the following axioms:

(A-π1) ♦lπ ∧ ♦rπ;

(A-π2) ♦r(π ∧ p)→�r(π → p), and its inverse;

(A-π3) ♦rp ∧ �rq → ♦r(π ∧ ♦rp ∧ �rq), and its inverse.

Once ♦r,♦l are substituted by 〈A〉, 〈A〉, and �r,�l accordingly by [A], [A], the
axioms for PNL− are very similar to those for PNL+ (accordingly modified to re-
flect the fact that point-intervals are now excluded), except for the scheme (A-NNF∞)
which is no longer valid.

THEOREM 9. — [GOR 03b] The following axiomatic system is sound and complete
for the logic PNL− of strict linear models:

(A-ST) enough propositional tautologies;

(A-SK) theK axioms for [A] and [A];

(A-SNF1) p→[A]〈A〉p, and its inverse;

(A-SNF2) 〈A〉〈A〉p→[A]〈A〉p, and its inverse;

(A-SNF3) (〈A〉〈A〉
 ∧ 〈A〉〈A〉p)→p∨〈A〉〈A〉〈A〉p∨〈A〉〈A〉〈A〉p, and its inverse;

(A-SNF4) 〈A〉〈A〉〈A〉p→〈A〉〈A〉p, and its inverse.

Let us denote by PNLλ−, with λ ∈ {u, de, di, c, ude, udi, uc}, PNL− interpreted
respectively over unbounded, dense, discrete, Dedekind complete, dense and unbounded,
discrete and unbounded, and Dedekind complete and unbounded linear structures, re-
spectively. Likewise, PNLλ+ denotes the respective class of non-strict models.

THEOREM 10. — [GOR 03b] The following hold:

1) For every λ1, λ2 ∈ {u, de, di, c, ude, udi, uc}, PNLλ1−�PNLλ2− iff the class
of linear orders characterized by the condition λ2 is strictly contained in the class of
linear orders characterized by the condition λ1.
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2) PNLude−�PNL+, where the inclusion is in terms of the obvious translation
between the two languages (which replaces the strict modalities with the non-strict
ones, and vice versa).

3) PNL += PNLu+ = PNLde+ = PNLude+ = PNLdi+ = PNLudi+.

Note that the logic PNLudi− does not yet characterize the interval structure of Z,
because the formula

〈A〉p∧[A](p→〈A〉p)∧[A][A](p→〈A〉p)→[A]〈A〉〈A〉p

is valid in Z, but not in PNLudi− since it fails in a PNLudi−-model based on Z+ Z.

THEOREM 11. — [GOR 03b] The axiomatic system for PNL− extended with (A-
SPNLu) (resp. (A-SPNLde), (A-SPNLdi), (A-SPNLude), and (A-SPNLudi)) is sound
and complete for the class of unbounded (resp. dense, discrete, dense unbounded, and
discrete unbounded) structures.

Finally, we point out that most of the decidability problems related to propositional
neighbourhood logics and their fragments are still open.

3.1.5. The logic HS

The most expressive propositional interval logic with unary modal operators stud-
ied in the literature is Halpern and Shoham’s logic HS introduced in [HAL 91]. HS
contains (as primitive or definable) all unary modalities introduced earlier. As men-
tioned in Section 2, HS features the modalities 〈B〉, 〈E〉 and their inverses 〈B〉, 〈E〉,
which suffice to define all other modal operators, so that it can be regarded as the tem-
poral logic of Allen’s relations. Unlike most other previously studied interval logics,
HS was originally interpreted in non-strict models not over linear orderings, but over
all partial orderings with the linear interval property, and all results about HS stated
below apply to that class of models, unless otherwise specified.

Formally, HS-formulas are generated by the following abstract syntax:

φ ::= p | ¬φ | φ ∧ ψ | 〈B〉φ | 〈E〉φ | 〈B〉φ | 〈E〉φ.

Furthermore, as pointed out by Venema in [VEN 90], the neighbourhood modalities
〈A〉 and 〈A〉 are definable in the non-strict semantics as follows:

– 〈A〉φ � [[EP ]]〈B〉φ, and
– 〈A〉φ � [[BP ]]〈E〉φ.

HS can express linearity of the interval structure by means of the following formula:

– linear �
(〈A〉p → [A](p ∨ 〈B〉p ∨ 〈B〉p)) ∧ (〈A〉p → [A](p ∨ 〈E〉p ∨ 〈E〉p)),
as well as all conditions that can be expressed in its fragment BE.
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As expected, HS is a highly undecidable logic. In [HAL 91] the authors have ob-
tained important results about non-axiomatizability, undecidability and complexity of
the satisfiability in HS for many natural classes of models. Their idea for proving
undecidability is based on using an infinitely ascending sequence in the model to sim-
ulate the halting problem for Turing Machines. An infinitely ascending sequence is an
infinite sequence of points d0, d1, d2, . . . such that di < di+1 for all i. Any unbounded
above ordering contains an infinite ascending sequence. A class of ordered structures
contains an infinite ascending sequence if at least one of the structures in the class
does.

THEOREM 12. — The validity problem in HS interpreted over any class of ordered
structures with an infinitely ascending sequence is r.e.-hard.

From Theorem 12, it immediately follows that HS is undecidable for the class of
all (non-strict) models, the class of all linear models, the class of all discrete linear
models, the class of all dense linear models, the class of all dense and unbounded
linear models, etc.

THEOREM 13. — The validity problem in HS interpreted over any class of Dedekind
complete ordered structures having an infinitely ascending sequence is Π1

1-hard.

For instance, the validity in HS in any of the orderings of the natural numbers, integers,
or reals is not recursively axiomatizable.

Undecidability occurs even without existence of infinitely ascending sequences.
We say that a class of ordered structures has unboundedly ascending sequences if for
every n there is a structure in the class with an ascending sequence of length at least
n.

THEOREM 14. — The validity problem in HS interpreted over any class of Dedekind
complete ordered structures having unboundedly ascending sequences is co-r.e. hard.

Another proof of undecidability of HS, using a tiling problem, can be found in
[MAR 99], see also [GAB 00].

In [VEN 90] (see also [MAR 97]) Venema has shown that HS interpreted over
a linear ordering is at least as expressive as the universal monadic second-order logic
(where second-order quantification is only allowed over monadic predicates) and there
are cases where it is strictly more expressive. As a corollary, it can be proved that HS
is strictly more expressive than every point-based temporal logic on linear orderings.

In the same paper Venema provided an interesting geometrical interpretation of
HS, using which he obtained sound and complete axiomatic systems for HS with
respect to relevant classes of structures. Here is the idea. An interval can be viewed
as an ordered pair of coordinates over a 〈D,<〉 × 〈D,<〉 plane, where 〈D,<〉 is
supposed to be linear. Since the ending point of an interval must be greater than or
equal to the starting point, only the north-west half-plane is considered. Clearly, this
geometrical interpretation has a good meaning only when HS-formulas are interpreted
over linear frames. The geometrical operators are defined as follows:
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– �φ � 〈B〉φ (φ holds at a point right below the current one);
– �φ � 〈B〉φ (φ holds at a point right above the current one);
– �φ � 〈E〉φ (φ holds somewhere to the right of the current point);
– �φ � 〈E〉φ (φ holds somewhere to the left of the current point);
– �φ � �φ ∨ φ ∨ �φ (φ holds at a point with the same longitude, i.e. on the

same vertical line);

– �φ � �φ ∨ φ ∨ �φ (φ holds at a point with the same latitude, i.e. on the same
horizontal line).

Notice that, in order to obtain the mirror image (inverse) of a formula written in
the geometrical notation, one should simultaneously replace all � by � and all � by
�, and vice versa. Using this geometrical interpretation, Venema has provided sound
and complete axiomatic systems for HS over the class of all structures, the class of
all linear structures, the class of all discrete structures, and Q. The basic axiomatic
system (A-HS) for HS includes the following axioms and their mirror-images:

(A-HS1) enough propositional tautologies;

(A-HS2a) �(p → q) → (�p → �q);

(A-HS2b) �(p → q) → (�p → �q);

(A-HS3a) ��p → �p;

(A-HS3b) ��p → �p;

(A-HS4a) ��p → p;

(A-HS4b) ��p → p;

(A-HS5) �
 → ��⊥;

(A-HS6) �⊥ → �⊥;

(A-HS7a) ��p→ ��p;

(A-HS7b) ��p↔ ��p;

(A-HS7c) ��p → ��p;

(A-HS8) (�p ∧ �q) → [�(p ∧ �q) ∨ �(p ∧ q) ∨ �(�p ∧ q)],

and the following inference rules: Modus Ponens, Generalization for �,�,�, and
�, and a pair of additional, un-orthodox rules which guarantee that all vertical and
horizontal lines in the model are ‘syntactically represented’:

hor(p) → φ

φ

ver(q) → ψ

ψ
,

where p, q do not occur in φ, ψ respectively, and
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– hor(φ) � φ ∧ �φ ∧ �φ ∧ �(¬φ ∧ �¬φ ∧ �¬φ) ∧ �(¬φ ∧ �¬φ ∧ �¬φ);
– ver(φ) � φ ∧ �φ ∧ �φ ∧ �(¬φ ∧ �¬φ ∧ �¬φ) ∧ �(¬φ ∧ �¬φ ∧ �¬φ).

The formula hor(φ) holds at an interval [d0, d1] if and only if φ holds at any [d2, d1]
where d2 ≤ d1 and nowhere else. Geometrically, it represents a horizontal line on
which φ is true, and only there. Likewise ver(φ) says that φ is true exactly at the
points of some vertical line.

THEOREM 15. — The axiomatic system (A-HS) is sound and complete for the class
of all non-strict interval structures.

THEOREM 16. — A sound and complete axiomatic system for the class of discrete
structures can be obtained from (A-HS) by adding the following axiom:

(A-HSz) discrete.

A sound and complete axiomatic system for the class of linear structures can be ob-
tained from (A-HS) by replacing axiom (A-HS8) by the following axiom:

(A-HSlin) (��p) → (�p ∨ p ∨ �p), (��p) → (�p ∨ p ∨ �p).

A sound and complete axiomatic system for Q can be obtained from the system for
the class of linear structures by adding the following axiom:

(A-HSQ) �
 ∧ �
∧ dense.

In conclusion, we note that, besides D, BB, EE, BE, and AA, there exist other inter-
esting fragments of HS, such as, for instance, DD, where D is the transpose of D (DD
was already mentioned in [HAL 91]), and AD, which have not been investigated so
far. Moreover, to the best of our knowledge, the strict logic HS− has not been stud-
ied yet either, and thus no complete axiomatic systems and decidability/undecidablity
results have been explicitly established for it.

3.2. Interval logics with binary operators

3.2.1. The chop operator and (Local) Propositional Interval Logics.

Arguably, the most natural binary interval modality is the chop operatorC. As proved
in [MAR 97], such an operator is not definable in HS. The logic that features the
operator C and the modal constant π, interpreted according to the non-strict seman-
tics, is the propositional fragment of the first-order Interval Temporal Logic (ITL)
introduced by Moszkowski in [MOS 83] (cf. Section 5.1), usually denoted by PITL.
PITL-formulas are defined as follows:

φ ::= p | π | ¬φ | φ ∧ ψ | φCψ.

The modalities 〈B〉 and 〈E〉 are definable in PITL as follows:
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– 〈B〉φ � φC¬π, and
– 〈E〉φ � ¬πCφ.

As a matter of fact, the study of PITL was originally confined to the class of dis-
crete linear orderings with finite time, with the chop operator paired with a next opera-
tor, denoted by©, instead of π. Intervals in such structures will be identified with the
(finite) sequences of points occurring in them. For any φ, ©φ holds at a given (dis-
crete) interval σ = s1s2 . . . sn, with n ≥ 1, if φ holds at the interval σ′ = s2 . . . sn (if
any). It is immediate to see that, over discrete linear orderings, the modal constant π
and the next operator are inter-changeable. On the one hand, π � ©⊥; on the other
hand, for any φ,©φ � l1Cφ.

The logic PITL is quite expressive, as the following result from [MOS 83] testifies.

THEOREM 17. — The satisfiability problem for PITL interpreted over the class of
non-strict discrete structures is undecidable.

The proof is actually an adaptation of a theorem by Chandra et al. [CHA 85] show-
ing the undecidability of the satisfiability problem for a propositional process logic.
Given two context-free grammarsG1 andG2, one can build up a PITL-formula which
is satisfiable if and only if the intersection of the languages generated by the two gram-
mars is not empty. Since the latter problem is not decidable (see [HOP 79]), the claim
immediately follows.

Since PITL is strictly more expressive than BE over the class of discrete linear
structures, the above result does not transfer to the latter. On the contrary, the un-
decidability of the satisfiability problem for PITL over dense structures as well as
over all linear structures immediately follows from the undecidability of BE over such
structures.

COROLLARY 18. — The satisfiability problem for PITL-formulas interpreted over
the class of (non-strict) dense linear structures is undecidable.

COROLLARY 19. — The satisfiability problem for PITL interpreted over the class of
(non-strict) linear structures is undecidable.

The propositional counterpart of the fragment of ITL that only includes the chop
operator, has not been investigated yet, as far as we know.

Decidable variants of PITL, interpreted over finite or infinite discrete structures,
have been obtained by imposing the so-called locality projection principle [MOS 83].
Such a locality constraint states that each propositional variable is true over an interval
if and only if it is true at its first state. This allows one to collapse all the intervals
starting at the same state into the single interval consisting of the first state only.

Let Local PITL (LPITL for short) be the logic obtained by imposing the locality
projection principle to PITL. The syntax of LPITL coincides with that of PITL, while
its semantic clauses are obtained from PITL ones by modifying the truth definition of
propositional variables as follows:
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(loc-PS1) M+, [d0, d1] � p iff p ∈ V (d0).

where the valuation function V has been adapted to evaluate propositional variables
over points instead of intervals.

Various extensions of LPITL have been proposed in the literature. In [MOS 83],
Moszkowski focused his attention on the extension of LPITL (over finite time) with
quantification over propositional variables, and he proved the decidability of the re-
sulting logic, denoted by QLPITL, by reducing its satisfiability problem to that of
the point-based Quantified Propositional Temporal Logic QPTL, interpreted over dis-
crete linear structures with an initial point. In fact, QLPITL is translated into QPTL
over finite time, the decidability of which can be proved by a simple adaptation of the
standard proof for QPTL over infinite time.

THEOREM 20. — QPTL is at least as expressive as QLPITL interpreted over the
class of (non-strict) discrete linear structures.

Since the translation of QLPITL into QPTL is effective andQPTL is (non-elementarily)
decidable, we have the following result.

COROLLARY 21. — The satisfiability problem for the logic QLPITL, interpreted
over the class of (non-strict) discrete linear structures is (non-elementarily) decid-
able.

The (non-elementary) decidability of LPITL immediately follows from Corollary
21. A lower bound for the satisfiability problem for LPITL, and thus for any extension
of it, has been given by Kozen (see [MOS 83]).

THEOREM 22. — Satisfiability for LPITL is non-elementary.

In several papers [MOS 83, MOS 94, MOS 98, MOS 00a, MOS 03], Moszkowski
explored the extension of LPITL with the so-called chop-starmodality, denoted by ∗.
For any φ, φ∗ holds over a given (discrete) interval if and only if the interval can be
chopped into zero or more parts such that φ holds over each of them. The resulting
logic, which we denote by LPITL∗, is interpreted over either finite or infinite discrete
linear structures. A sound and complete axiomatic system for LPITL∗ with finite time
is given in [MOS 03].

THEOREM 23. — The following axiomatic system is sound and complete for the class
of (non-strict) discrete linear structures:

(A-CLPITL1) enough propositional tautologies;

(A-CLPITL2) (φCψ)Cξ ↔ φC(ψCξ);

(A-CLPITL3) (φ ∨ ψ)Cξ → (φCξ) ∨ (ψCξ);

(A-CLPITL4) ξC(φ ∨ ψ) → (ξCφ) ∨ (ξCψ);

(A-CLPITL5) πCφ↔ φ;
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(A-CLPITL6) φCπ ↔ φ;

(A-CLPITL7) p → ¬(¬pC
), with p ∈ AP;

(A-CLPITL8) ¬(¬(φ → ψ)C
) ∧ ¬(
C¬(ξ → χ)) → ((φCξ) → (ψCχ));

(A-CLPITL9) ©φ → ¬©¬φ;

(A-CLPITL10) φ ∧ ¬(
C¬(φ → ¬©¬φ)) → ¬(
C¬φ);

(A-CLPITL11) φ∗ ↔ π ∨ (φ ∧©
)Cφ∗,

together with Modus Ponens and the following inference rules:

φ

¬(
C¬φ)
,

φ

¬(¬φC
)
.

All axioms have a fairly natural interpretation. In particular, locality is basically dealt
with by Axiom (A-CLPITL7).

The chop-star operator is a special case of a more general operator, called the
projection operator. Such a binary operator, denoted by proj, yields general repetitive
behaviour: for any given pair of formulas φ, ψ, φ proj ψ holds over an interval if
such an interval can be partitioned into a series of sub-intervals each of which satisfies
φ, while ψ (called the projected formula) holds over the new interval formed from
the end points of these sub-intervals. Let us denote by LPITLproj the extension of
LPITL with the projection operator proj. By taking advantage from such an operator,
LPITLproj can express meaningful iteration constructs, such as for and while loops:

– for n times do p � p proj len(n);
– while p do q � (p ∧ q)∗ ∧ ¬(
C(len(0) ∧ p)),

where the formula p occurring in the while loop typically is a point formula, that is,
a formula whose satisfaction is totally determined from the first state of the satisfying
interval, and, for all n ≥ 0, len(n) constrains the length of the current interval to be
exactly n. len(n) is defined as follows:

– len(n) � ©n
 ∧©n+1⊥.

Furthermore, the chop-star operator can be easily defined in terms of projection oper-
ator as follows:

– φ∗ � φ proj 
.
LPITLproj was originally proposed byMoszkowski in [MOS 83] and later system-

atically investigated by Bowman and Thompson [BOW 98, BOW 03]. In particular,
a tableau-based decision procedure and a sound and complete axiomatic system for
LPITLproj , interpreted over finite discrete structures, is given in [BOW 03].
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The core of the tableau method is the definition of suitable normal forms for all op-
erators of the logic. These normal forms provide inductive definitions of the operators.
Then, in the style of [WOL 85], a tableau decision procedure to check satisfiability of
LPITLproj formulas is established. Although the method has been developed at the
propositional level, the authors advocate its validity also for first-order LPITLproj .

The normal form for LPITLproj formulas has the following general format:

(π ∧ φe) ∨
∨
i

(φi ∧©φ′i)

where φe and φi are point formulas and φ′i is an arbitrary LPITLproj formula. The
first disjunct states when a formula is satisfied over a point interval, while the second
one states the possible ways in which a formula can be satisfied over a strict interval,
namely, a point formula must hold at the initial point and then an arbitrary formula
must hold over the remainder of the interval. This normal form embodies a recipe for
evaluating LPITLproj formulas: the first disjunct is the base case, while the second
disjunct is the inductive step. Bowman and Thomson showed that any LPITLproj

formula can be equivalently transformed into this normal form.

In [BOW 03], Bowman and Thomson also provided a sound and complete ax-
iomatic system for LPITLproj, interpreted over discrete linear structures. Let φ, ψ,
ξ be arbitrary formulas and p ∈ AP . The proposed system includes the following
axioms:

(A-LPITL1) enough propositional tautologies;

(A-LPITL2) ¬π ↔ ©
;

(A-LPITL3) ©φ → ¬©¬φ;

(A-LPITL4) ©(φ → ψ) → ©φ → ©ψ;

(A-LPITL5) (©φ)Cψ ↔ ©(φCψ);

(A-LPITL6) (φ ∨ ψ)Cξ ↔ φCξ ∨ ψCξ;

(A-LPITL7) φC(ψ ∨ ξ) ↔ φCψ ∨ φCξ;

(A-LPITL8) φC(ψCξ) ↔ (φCψ)Cξ;

(A-LPITL9) (p ∧ φ)Cψ ↔ p ∧ (φCψ), with p ∈ AP ;

(A-LPITL10) πCφ↔ φCπ ↔ φ;

(A-LPITL11) φ proj π ↔ π;

(A-LPITL12) φ proj (ψ ∨ ξ) ↔ (φ proj ψ) ∨ (φ proj ξ);

(A-LPITL13) φ proj (p ∧ ψ) ↔ p ∧ (φ proj ψ);
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(A-LPITL14) φ proj © ψ ↔ (φ ∧ ¬π)C(φ proj ψ).

The inference rules, besides Modus Ponens and©-generalization, include the follow-
ing rule:

φ → ©kφ

¬φ .

THEOREM 24. — The above axiomatic system is sound and complete for the class of
(non-strict) discrete structures.

Finally, Kono [KON 95] presents a tableau-based decision procedure for QLPITL
with projection, which has been successfully implemented. The method generates a
deterministic state diagram as a verification result. Although it has been argued that
the associated axiomatic system is unsound (see [MOS 03]), Kono’s work actually
inspired Bowman and Thompson’s one.

3.2.2. The logics CDT and BCDT+

The most expressive propositional interval logic over (non-strict) linear orderings
proposed in the literature is Venema’s CDT [VEN 91]. A generalization of CDT to
(non-strict) partial orderings with the linear interval property, called BCDT+ has been
recently investigated by Goranko, Montanari, and Sciavicco [GOR 03a]. The lan-
guage of CDT and BCDT+ contains the three binary operatorsC ,D, and T , together
with the modal constant π. Formulas of CDT are generated by the following abstract
grammar:

φ ::= π | p | ¬φ | φ ∧ ψ | φCψ | φDψ | φTψ.

The semantics of both CDT and BCDT+ is non-strict.

The following result links the expressiveness of CDT in terms of definable binary
operators to that of the fragment FO3[<](xi, xj) of first-order logic over linear or-
derings with at most three variables, at most two of which, viz xi and xj are free
[VEN 91].

THEOREM 25. — Every binary modal operator definable in FO3[<](xi, xj) has an
equivalent in CDT, and vice versa.

As for the relationships with the other propositional interval logics, interpreted
over linear orderings, CDT is strictly more expressive than PITL, since the latter is not
able to access any interval which is not a sub-interval of the current interval. Moreover,
it is immediate to show that CDT subsumes HS:

– �φ = (¬π)Cφ;
– �φ = (¬π)Dφ;
– �φ = (¬π)Tφ;
– �φ = φC(¬π).
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A sound and complete axiomatic system for CDT over (non-strict) linear struc-
tures has been defined by Venema in [VEN 91]. Let us define hor(φ) as in the case
of HS. The axiomatic system for CDT includes the following axioms, and their in-
verses (obtained by exchanging the arguments of all C occurrences, and replacing
each occurrence of T byD and vice versa):

(A-CDT1) enough propositional tautologies;

(A-CDT2a) (φ ∨ ψ)Cξ ↔ φCξ ∨ ψCξ;

(A-CDT2b) (φ ∨ ψ)Tξ ↔ φTξ ∨ ψTξ;

(A-CDT2c) φT (ψ ∨ ξ) ↔ φTψ ∨ φTξ;

(A-CDT3a) ¬(φTψ)Cφ → ¬ψ;

(A-CDT3b) ¬(φTψ)Dψ → ¬φ;

(A-CDT3c) φT¬(ψCφ) → ¬ψ;

(A-CDT4) ¬πC
 ↔ ¬π;

(A-CDT5a) πCφ↔ φ;

(A-CDT5b) πTφ↔ φ;

(A-CDT5c) φTπ → φ;

(A-CDT6) [(π ∧ φ)C
 ∧ ((π ∧ ψ)C
)C
] → (π ∧ ψ)C
;

(A-CDT6a) (φCψ)Cξ ↔ φC(ψCξ);

(A-CDT6b) φT (ψCξ) ↔ (ψC(φTξ) ∨ (ξTφ)Tψ);

(A-CDT6c) ψC(φTξ) → φT (ψCξ);

(A-CDT7d) (φTψ)Cξ → ((ξDφ)Tψ ∨ ψC(φDξ));

and the following derivation rules: Modus Ponens, Generalization:

φ

¬(¬φCψ)
,

φ

¬(¬φTψ)
,

φ

¬(ψT¬φ)
, and their inverses,

and the Consistency rule: if p ∈ AP and p does not occur in φ, then
hor(p) → φ

φ
.

THEOREM 26. — The above axiomatic system is sound and complete for the class of
(non-strict) linear orderings.

THEOREM 27. — A sound and complete axiomatic system for the class of (non-strict)
dense linear orderings can be obtained from the system for the class of (non-strict)
linear orderings by adding the following axiom:
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(A-CDTd) ¬π → (¬πC¬π).

A sound and complete axiomatic system for the class of (non-strict) discrete linear
orderings can be obtained from the system for the class of (non-strict) linear orderings
by adding the following axiom:

(A-CDTz) π ∨ ((l1C
) ∧ (
Cl1));

A sound and complete axiomatic system forQ can be obtained from the system for the
class of (non-strict) linear orderings by adding the following axiom:

(A-CDTQ) (¬π → (¬πC¬π)) ∧ (¬πT
) ∧ (¬πD
).

In [VEN 91], Venema has also developed a sound and complete natural deduction
system for CDT, similar to the natural deduction system for relation algebras earlier
developed by Maddux [MAD 92].

Finally, as a consequence from previous results for HS and PITL, the satisfiability
(resp. validity) for CDT is not decidable over almost all interesting classes of linear
orderings, including all, dense, discrete, etc. Again, the strict versions of CDT and
BCDT+ have not been explicitly studied yet, but it is natural to expect that similar
results apply there, too.

3.3. Restricted interval logics: split logics

Split Logics (SLs for short) can be viewed as an attempt of identifying expressive,
yet decidable, propositional interval logics without resorting to any locality principle.
We have already seen that, in the interval logic setting, decidability can be gained
by reducing the set of modal operators (this is the case of BB and EE) or by impos-
ing locality conditions (this is the case of LPITL). In the case of SLs, decidability is
achieved by imposing suitable constraints on the interval structures over which for-
mulas are interpreted. In the following, we briefly describe the basic features of SLs,
and we provide a short summary of the relevant results about them.

SLs have been proposed by Montanari, Sciavicco, and Vitacolonna in [MON 02]
as the interval logic counterparts of the monadic first-order (MFO) theories of time
granularity studied in [MON 96, FRA 02] (as a matter of fact, there exist also inter-
esting connections between SLs and the propositional dense time logic proposed by
Ahmed and Venkatesh in [AHM 93]). SLs are propositional interval logics equipped
with operators borrowed from HS and CDT, but interpreted over specific structures,
called split structures. Models based on split structures are called split models. The
distinctive feature of split structures is that every interval can be ‘chopped’ in at most
one way (obviously, there is no way to constrain the length of the two resulting sub-
intervals). In [MON 02], the authors show that such a restriction does not prevent
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SLs from the possibility of expressing a number of meaningful temporal properties.
Furthermore, they prove the decidability of various SLs by embedding them into de-
cidable MFO theories of time granularity as well as their completeness with respect
to the guarded fragment of these theories.

Formulas of SLs are generated by the following abstract syntax:

φ ::= p | φ ∧ φ | ¬φ | 〈D〉φ | 〈D〉φ | 〈F 〉φ | 〈F 〉φ | φCφ | φDφ | φTφ.

A split structure is a pair 〈D,H(D)〉, where H(D) is proper subset of I(D) (a
precise characterization of H(D) can be found [MON 02]). A split model is a pair
M= 〈D, V 〉, where V : H(D) → P(AP). The semantic clauses for the modalities
〈D〉, 〈D〉, 〈F 〉, and 〈F 〉 are the following ones (the semantic clauses for C,D, and T
have already been given):

(〈D〉) M, [d0, d1] � 〈D〉φ if there exist d2, d3 such that [d2, d3]�[d0, d1], and M,
[d2, d3] � φ;

(〈D〉) M, [d0, d1] � 〈D〉φ if there exist d2, d3 such that [d0, d1]�[d2, d3], and M,
[d2, d3] � φ;

(〈F 〉) M, [d0, d1] � 〈F 〉φ if there exist d2, d3 such that d1 < d2, d2 < d3, and
M, [d2, d3] � φ;

(〈F 〉) M, [d0, d1] � 〈F 〉φ if there exist d2, d3 such that d3 < d2, d2 < d0, and
M, [d3, d2] � φ.

The modal constant π can also be introduced as a useful shorthand.

In the following we sketch the correspondence between split logics and MFO the-
ories of time granularity. In particular, we enlighten the close relationship that exists
between split structures and the temporal structures for time granularity, called layered
(or granular) structures [MON 96]. Layered structures replace the single ‘flat’ tempo-
ral domain of linear, point-based temporal logics by a (possibly infinite) set of tem-
poral layers. Each layer is a discrete, linear, point-based domain bounded in the past
and infinite in the future. The relationships between time points belonging to the same
layer are governed by the usual order relation, while those between points belonging
to different layers are expressed by means of suitable projection relations. A formal
definition of layered structures can be found in [MON 96, FRA 02]. Here we give an
intuitive account of them. The domain of layered structures is a set

⋃
i∈I T

i, where
I ⊆ Z, which consists of many copies of N (possibly infinitely many), denoted T i,
each one being a layer of the structure. If there is a finite number n of layers, the struc-
ture is called n-layered (n-LS), otherwise, the structure is called ω-layered. Among
ω-layered structures, we consider the upward unbounded layered structure (UULS),
which consists of a finest layer and an infinite sequence of coarser and coarser layers,
and the downward unbounded one (DULS), which consists of a coarsest layer and



A Road Map of Interval Temporal Logics 29

an infinite sequence of finer and finer ones. In all cases, layers are totally ordered
according to their degree of ‘coarseness/fineness’, and each point of a given layer is
associated with k points of the immediately finer layer, if any (k-refinability). This
accounts for a view of layered structures as (possibly infinite) sequences of (possibly
infinite) complete k-ary trees. In the case of the UULS, there is only one infinite tree
built up from leaves, which form the finest layer of the structure. In the case of the
DULS (resp. n-LS), the infinite sequence of infinite trees (resp. finite) is ordered ac-
cording to the ordering of the roots, which form the coarsest layer of the structure.
In [MON 96, FRA 02], monadic second-order (MSO) theories of layered structures
have been systematically studied and the decidability of a number of them has been
proved.

SLs can be viewed as the interval logic counterparts of the first-order fragments of the
MSO theories of 2-refinable layered structures. More precisely, we focus our atten-
tion on the theoriesMFO[

⋃
i T

i, <1, <2, ↓0, ↓1], interpreted over the 2-refinablen-LS,
MFO[

⋃
i T

i, <1, <2, ↓0, ↓1], interpreted over the 2-refinable DULS, and MFO[
⋃

i T
i,

<2, ↓0, ↓1] interpreted over the 2-refinable UULS. The symbols in the square brackets
are (pre)interpreted as follows: ↓0 (x, y) (resp. ↓1 (x, y)) is a binary projection rela-
tion such that y is the first (resp. second) point in the refinement of x; <1 is a strict
partial order such that x <1 y if x belongs to a tree that precedes the tree y belongs
to; x <2 y holds if y is a descendant of x. As for split structures, we consider (i) the
class of bounded below, unbounded above, dense, and with maximal intervals split
structures, (ii) the class of bounded below, unbounded above, discrete, and with max-
imal intervals split structures, and (iii) the class of bounded below, unbounded above,
discrete split structures. A split structure with maximal intervals is a split structure
〈D,H(D)〉, such that, for every [d0, d1] ∈ H(D) there exists [d2, d3] ∈ H(D) such
that [d0, d1] � [d2, d3] and there is no [d4, d5] ∈ H(D) such that [d2, d3]�[d4, d5] (the
interval [d2, d3] is called a maximal interval).

THEOREM 28. — The following results hold:

1) SL interpreted over the class of bounded below, unbounded above,
dense, and with maximal intervals split structures can be embedded into
MFO[

⋃
i T

i, <1, <2, ↓0, ↓1] interpreted over the 2-refinable DULS;
2) SL interpreted over the class of bounded below, unbounded above, dis-

crete, and with maximal intervals split structures can be embedded into
MFO[

⋃
i T

i, <1, <2, ↓0, ↓1] interpreted over the 2-refinable n-LS;
3) SL interpreted over the class of bounded below, unbounded above, discrete

split structures can be embedded into MFO[
⋃

i T
i, <2, ↓0, ↓1] interpreted over the

2-refinable UULS.

Since such MFO theories of time granularity are decidable, we have the following
corollary.

COROLLARY 29. — The satisfiability problem for SL formulas, interpreted over the
above classes of split structures, is decidable.
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4. A general tableau method for propositional interval logics

In this section we describe a sound and complete tableau method for BCDT+,
developed by Goranko, Montanari and Sciavicco in [GOR 03a], which combines fea-
tures of tableau methods for modal logics with constraint label management and the
classical tableau method for first-order logic. The proposed method can be adapted
to variations and subsystems of BCDT+, thus providing a general tableau method for
propositional interval logics.

First, some basic terminology. A finite tree is a finite directed connected graph
in which every node, apart from one (the root), has exactly one incoming arc. A
successor of a node n is a node n′ such that there is an edge from n to n′. A leaf is
a node with no successors; a path is a sequence of nodes n0, . . . ,nk such that, for all
i = 0, . . . , k − 1, ni+1 is a successor of ni; a branch is a path from the root to a leaf.
The height of a node n is the maximum length (number of edges) of a path from n to
a leaf. If n,n′ belong to the same branch and the height of n is less than or equal to
the height of n′, we write n ≺ n′.

Let C = 〈C,<〉 be a finite partial order. A labelled formula, with label in C, is a
pair (φ, [ci, cj ]), where φ ∈ BCDT+ and [ci, cj] ∈ I(C)+.

For a node n in a tree, the decoration ν(n) is a triple ((φ, [ci, cj ]),C, un), where
C is a finite partial order, (φ, [ci, cj ]) is a labelled formula, with label in C, and un is a
local flag function which associates the values 0 or 1 with every branch B containing
n. Intuitively, the value 0 for a node n with respect to a branch B means that n can
be expanded on B (in fact, n must be expanded on B, sooner or later, in order to
saturate the current decorated tree). For the sake of simplicity, we will often assume
the interval [ci, cj] to consist of the elements ci < ci+1 < · · · < cj , and sometimes,
with a little abuse of notation, we will writeC = {ci < ck, cm < cj , . . .}. A decorated
tree is a tree in which every node has a decoration ν(n). For every decorated tree, we
define a global flag function u acting on pairs (node, branch through that node) as
u(n, B) = un(B). Sometimes, for convenience, we will include in the decoration of
the nodes the global flag function instead of the local ones. For any branch B in a
decorated tree, we denote byCB the ordered set in the decoration of the leaf ofB, and
for any node n in a decorated tree, we denote by Φ(n) the formula in its decoration.
If B is a branch, then B · n denotes the result of the expansion of B with the node n
(addition of an edge connecting the leaf ofB to n). Similarly,B ·n1 | . . . | nk denotes
the result of the expansion ofB with k immediate successor nodes n1, . . . ,nk (which
produces k branches extendingB). A tableau for BCDT+ will be defined as a special
decorated tree. We note again that C remains finite throughout the construction of the
tableau.

DEFINITION 30. — Given a decorated tree T , a branch B in T , and a node n ∈ B
such that ν(n) = ((φ, [ci, cj ]),C, u), with u(n , B) = 0, the branch-expansion rule
for B and n is defined as follows (in all the considered cases, u(n′ , B′) = 0 for all
new pairs (n′ , B′) of nodes and branches).
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– If φ = ¬¬ψ, then expand the branch to B · n0, with ν(n0) = ((ψ, [ci, cj ]),
CB, u).

– If φ = ψ0 ∧ ψ1, then expand the branch to B · n0 ·n1, with ν(n0) =
((ψ0, [ci, cj ]),CB , u) and ν(n1) = ((ψ1, [ci, cj ]),CB, u).

– If φ = ¬(ψ0 ∧ ψ1), then expand the branch to B · n0|n1, with ν(n0)
= ((¬ψ0, [ci, cj ]),CB , u) and ν(n1) = ((¬ψ1, [ci, cj ]),CB, u).

– If φ = ¬(ψ0Cψ1) and c is the least element of CB , with ci ≤ c ≤ cj , which has
not been used yet to expand the node n on B, then expand the branch to B · n0|n1,
with ν(n0) = ((¬ψ0, [ci, c]),CB, u) and ν(n1) = ((¬ψ1, [c, cj ]),CB, u).

– If φ = ¬(ψ0Dψ1), c is a minimal element of CB such that c ≤ ci, and there
exists c′ ∈ [c, ci] which has not been used yet to expand the node n on B, then
take the least such c′ ∈ [c, ci] and expand the branch to B · n0|n1, with ν(n0)
= ((¬ψ0, [c′, ci]),CB, u) and ν(n1) = ((¬ψ1, [c′, cj ]),CB, u).

– If φ = ¬(ψ0Tψ1), c is a maximal element of CB such that cj ≤ c, and there
exists c′ ∈ [cj , c] which has not been used yet to expand the node n on B, then take
the greatest such c′ ∈ [cj , c] and expand the branch to B · n0|n1, so that ν(n0)
= ((¬ψ0, [cj , c′]),CB, u) and ν(n1) = ((¬ψ1, [ci, c′]),CB, u).

– If φ = (ψ0Cψ1), then expand the branch to B · (ni · mi)| . . . |(nj · mj)|(n′
i ·

m′
i)| . . . |(n′

j−1 · m′
j−1), where:

1) for all ck ∈ [ci, cj ], ν(nk) = ((ψ0, [ci, ck]),CB , u) and ν(mk) = ((ψ1,
[ck, cj ]), CB, u);

2) for all i ≤ k ≤ j − 1, let Ck be the interval structure obtained by inserting
a new element c between ck and ck+1 in [ci, cj ], ν(n′

k) = ((ψ0, [ci, c]),Ck, u), and
ν(m′

k) = ((ψ1, [c, cj]),Ck, u).
– If φ = (ψ0Dψ1), then repeatedly expand the current branch, once for each

minimal element c (where [c, ci] = {c = c0 < c1 < · · · ci}), by adding the decorated
sub-tree (n0 · m0)| . . . |(ni · mi)|(n′

1 · m′
1)| . . . |(n′

i · m′
i)|(n′′

0 · m′′
0)| . . . |(n′′

i · m′′
i )

to its leaf, where:

1) for all ck such that ck ∈ [c, ci], ν(nk) = ((ψ0, [ck, ci]),CB , u) and ν(mk)
= ((ψ1, [ck, cj ]),CB, u);

2) for all 0 < k ≤ i, let Ck be the interval structure obtained by inserting
a new element c′ immediately before ck in [c, ci], and ν(n′

k) = ((ψ0, [c′, ci]), Ck, u)
and ν(m′

k) = ((ψ1, [c′, cj]),Ck, u);
3) for all 0 ≤ k ≤ i, let Ck be the interval structure obtained by inserting a

new element c′ in CB , with c′ < ck, which is incomparable with all existing predeces-
sors of ck, ν(n′′

k) = ((ψ0, [c′, ci]),Ck, u), and ν(m′′
k) = ((ψ1, [c′, cj ]),Ck, u).

– If φ = (ψ0Tψ1), then repeatedly expand the current branch, once for each max-
imal element c (where [cj , c] = {cj < cj+1 < · · · cn = c}), by adding the decorated
sub-tree (nj·mj)| . . . |(nn·mn)|(n′

j·m′
j)| . . . |(n′

n−1·m′
n−1)|(n′′

j ·m′′
j )| . . . |(n′′

n·m′′
n)

to its leaf, where:
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1) for all ck such that ck ∈ [cj , c], ν(nk) = ((ψ0, [cj , ck]),CB, u) and ν(mk)
= ((ψ1, [ci, ck]),CB, u);

2) for all j ≤ k < n, let Ck be the interval structure obtained by inserting a
new element c′ immediately after ck in [cj , c], and ν(n′

k) = ((ψ0, [cj , c′]),Ck, u) and
ν(m′

k) = ((ψ1, [ci, c′]),Ck, u);
3) for all j ≤ k ≤ n, let Ck be the interval structure obtained by inserting a

new element c′ inCB , with ck < c′, which is incomparablewith all existing successors
of ck, ν(n′′

k) = ((ψ0, [cj , c′]),Ck, u), and ν(m′′
k) = ((ψ1, [ci, c′]),Ck, u).

Finally, for any node m (�= n) in B and any branch B′ extending B, let u(m, B′)
be equal to u(m, B), and for any branch B′ extending B, u(n, B′) = 1, unless
φ = ¬(ψ0Cψ1), φ = ¬(ψ0Dψ1), or φ = ¬(ψ0Tψ1) (in such cases u(n, B′) = 0).

Let us briefly explain the expansion rules for ψ0Cψ1 and ¬(ψ0Cψ1) (similar con-
siderations hold for the other temporal operators). The rule for the (existential) for-
mula ψ0Cψ1 deals with the two possible cases: either there exists ck in CB such that
ci ≤ ck ≤ cj and ψ0 holds over [ci, ck] and ψ1 holds over [ck, cj ] or such an element
ck must be added. The (universal) formula ¬(ψ0Cψ1) states that, for all ci ≤ c ≤ cj ,
ψ0 does not hold over [cj , c] or ψ1 does not hold over [c, cj ]. As a matter of fact, the ex-
pansion rule imposes such a condition for a single element c in CB (the least element
which has not been used yet), and it does not change the flag (which remains equal
to 0). In this way, all elements will be eventually taken into consideration, including
those elements in between ci and cj that will be added toCB in some subsequent steps
of the tableau construction.

Let us define now the notions of open and closed branch. We say that a node
n in a decorated tree T is available on a branch B to which it belongs if and only if
u(n, B) = 0. The branch-expansion rule is applicable to a noden on a branchB if the
node is available on B and the application of the rule generates at least one successor
node with a new labelled formula. This second condition is needed to avoid looping
of the application of the rule on formulas ¬(ψ0Cψ1),¬(ψ0Dψ1), and ¬(ψ0Tψ1).

DEFINITION 31. — A branchB is closed if some of the following conditions holds:

(i) there are two nodes n,n′ ∈B such that ν(n) = ((ψ, [ci, cj]),C, u) and ν(n′)
= ((¬ψ, [ci, cj ]), C′, u) for some formula ψ and ci, cj ∈ C ∩C′;

(ii) there is a node n such that ν(n) = ((π, [ci, cj]),C, u) and ci �= cj ; or

(iii) there is a node n such that ν(n) = ((¬π, [ci, cj ]),C, u) and ci = cj .

If none of the above conditions hold, the branch is open.

DEFINITION 32. — The branch-expansion strategy for a branch B in a decorated
tree T is defined as follows:

1) Apply the branch-expansion rule to a branch B only if it is open;

2) IfB is open, apply the branch-expansion rule to the closest to the root available
node in B for which the branch-expansion rule is applicable.
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DEFINITION 33. — A tableau for a given formula φ ∈BCDT+ is any finite deco-
rated tree T obtained by expanding the three-node decorated tree built up from an
empty-decoration root and two leaves with decorations ((φ, [cb, ce]), {cb < ce}, u)
and ((φ, [cb, cb]), {cb}, u), where the value of u is 0, through successive applications
of the branch-expansion strategy to the existing branches.

It is easy to show that if φ ∈ BCDT+, T is a tableau for φ, n ∈ T , and C is the
ordered set in the decoration of n, then 〈C, <〉 is an interval structure.

THEOREM 34 (SOUNDNESS AND COMPLETENESS). — If φ ∈BCDT+ and a tableau
T for φ is closed, then φ is not satisfiable. Moreover, if φ ∈ BCDT+ is a valid formula,
then there is a closed tableau for ¬φ.

5. First-Order Interval Logics and Duration Calculi

Research on interval temporal logics in computer science was originally motivated
by problems in the field of specification and verification of hardware protocols, rather
than by abstract philosophical or logical issues. Not surprisingly, it focused on first-
order, rather than propositional, interval logics. In this section, we summarize some
of the most-important developments in first-order interval logics and duration calculi,
referring the interested reader to respectively [MOS 03] and [CHA 04] for more de-
tails.

5.1. The logic ITL

First-order ITL, interpreted over discrete linear orderings with finite time intervals,
was originally developed by Halpern,Manna, andMoszkowski in [MOS 83, HAL 83].
The language of ITL includes terms, predicates, Boolean connectives, first-order quan-
tifiers, and the temporal modalities C and©. Terms are built on variables, constants,
and function symbols in the usual way. Constants and function symbols are classified
as global/rigid and temporal/ flexible. Terms are usually denoted by θ1, . . . , θn. Pred-
icate symbols are also partitioned into global and temporal ones. They are denoted by
pi, qj , . . ., where pi is a predicate of arity i, qj is a predicate of arity j, and so on. The
abstract syntax of ITL formulas is:

φ ::= θ | pn(θ1, . . . , θn) | ∃xφ| ¬φ | φ ∧ ψ | © φ | φCψ.

The semantics of ITL-formulas is a combination of the standard semantics of a
first-order temporal logic with the semantics of PITL. An account of possible uses
and applications is e.g. [MOS 86].

In [DUT 95a] Dutertre studies the fragment of ITL which we will denote here
by ITLD, involving only the chop operator. First, ITLD is considered over abstract,
Kripke-style modelsM+ = 〈W,R, I〉, whereW is a set of worlds (abstract intervals),
R is a ternary relation corresponding to Venema’s ternary relation A (cf. Section
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2.1, and I is a first-order interpretation. Further, Dutertre considers a more concrete
semantics, over interval structures with associated ‘length’ measure represented by a
special temporal variable l which takes values in a commutative group 〈D,+,−, 0〉.
The language is assumed to have the flexible constant l, and the rigid symbols 0 and
+, respectively interpreted as the neutral element and the addition in 〈D,+, 0〉. The
semantics of ITLD-formulas is a combination of the semantics of ITL (without next),
and the interpretation of l in a modelM+ for an interval [d0, d1] is d1 − d0.

As for the expressive power of ITLD, note that one can easily define the modal
constant π (cf. Section 2.2) by means of l:

– π � (l = 0).

Hence, the HS modalities corresponding to begins and ends are also definable in
the language, and thus, from the results of Section 3.1.3, we can conclude that ITLD

is at least as expressive as PITL. The undecidability of the logic easily follows.

Dutertre developed a sound and complete axiomatic system for ITLD (the details
of the soundness and completeness proof can be found in [DUT 95a]). In addition to
the standard axioms of first-order classical logic, including the axioms of identity and
the axioms describing the properties for the temporal domain D, Dutertre’s systems
involves the following specific axioms for ITLD:

(A-ITL1) (φCψ) ∧ ¬(φCξ) → φC(ψ ∧ ¬ξ);

(A-ITL2) (φCψ) ∧ ¬(ξCψ) → (φ ∧ ¬ξ)Cψ;

(A-ITL3) ((φCψ)Cξ) ↔ (φC(ψCξ));

(A-ITL4) (φCψ) → φ if φ is a rigid formula;

(A-ITL5) (φCψ) → ψ if ψ is a rigid formula;

(A-ITL6) ((∃x)φCψ) → (∃x)(φCψ) if x is not free in ψ;

(A-ITL7) (φC(∃x)ψ) → (∃x)(φCψ) if x is not free in φ;

(A-ITL8) ((l = x)Cφ) → ¬((l = x)C¬φ);

(A-ITL9) (φC(l = x)) → ¬(¬φC(l = x));

(A-ITL10) (l = x+ y) ↔ ((l = x)C(l = y));

(A-ITL11) φ → (φC(l = 0));

(A-ITL12) φ → ((l = 0)Cφ).

The inference rules are Modus Ponens, Generalization, Necessitation, and the follow-
ing Monotonicity rule:

φ → ψ

φCξ → ψCξ
,
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together with the symmetric one. It should be noted that certain restrictions apply to
the instantiation with flexible terms in quantified formulas.

As in the propositional case, variants of ITL obtained by imposing the locality
constraint have been explored in the literature. Sound and complete axiomatic systems
for local variants of ITL for finite and infinite time have been established in [DUT 95a,
DUT 95b, MOS 00b], while automata-theoretic techniques for proving completeness
of ITL have been applied in [MOS 00a, MOS 03].

For more details about completeness and decidability results on ITL see [MOS 03].
See also [MOS 86] and [DUA 96], for applications of ITL to temporal logic program-
ming, and [MOS 96b, MOS 98], where the ITL-based programming language Tem-
pura is described in detail.

5.1.1. Some extensions and variations of ITL

An extension of ITL with projection has been studied in [GUE 00b] where a com-
plete axiomatic system for it has been established. A probabilistic extension of ITL
has been studied in [GUE 00d].

An interesting variation of ITL is the Signed Interval Logic (SIL) introduced by
Rasmussen [RAS 99, RAS 02]. The semantics of SIL is based on signed intervals,
i.e., intervals provided with a direction (forward or backward). A sound and complete
axiomatic system for SIL was established in [RAS 99], a natural deduction system in
[RAS 01b], and a sequent calculus in [RAS 01a].

Dillon, Kutty, Moser, Melliar-Smith, and Ramakrishna introduce and study in a se-
ries of publications [RAM 92, DIL 92a, DIL 92b, DIL 93, DIL 94c, DIL 94b, DIL 95,
MOS 96a, DIL 96a, DIL 96b, DIL 94a] the so-called Future Interval Logics. These
employ the locality principle and feature ‘interval modalities’ encoded by pairs of for-
mulas and refer to intervals whose endpoints satisfy these formulas. Notably, these
logics are more tractable and have lower complexity than e.g. ITL. Complexity re-
sults for Future Interval Logic have been obtained by Aaby and Narayana [AAB 85],
while applications of these logics have been explored in Ramakrishna’s PhD the-
sis [RAM 93].

5.2. The logic NL

The logic ITL has an intrinsic limitation: its modalities do not allow one to ‘look’
outside the current interval (modalities with this characteristic are called contracting
modalities). To overcome such a limitation, Zhou and Hansen [CHA 91] proposed
the first-order logic of left and right neighbourhoodmodalities, called neighbourhood
logic (NL for short), whose propositional fragment has been analyzed in Section 3.1.4.
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First-order syntactic features are as in the ITL case. Right and left neighbourhood
modalities are denoted by♦r and♦l, respectively. The abstract syntax of NL formulas
is:

φ ::= θ | pn(θ1, . . . , θn) | ¬φ | φ ∧ ψ | ♦lφ | ♦rφ | ∃xφ,

where terms θ1, . . . , θn are defined as in ITL.

The semantic clauses for the neighbourhood modalities ♦l and ♦r are defined as
in the propositional case. The rest of the semantics of NL is defined exactly as in
the ITL case. While practically meant to be the ordered additive group of the real
numbers, the temporal domain is abstractly specified by means of a set of first-order
axioms defining the so-calledA-models [CHA 98].
The first-order neighbourhood logic NL is quite expressive. In particular, it allows

one to express the chop modality as follows:

– φCψ � ∃x, y(l = x+ y) ∧♦l♦r((l = x) ∧ φ ∧ ♦r((l = y) ∧ ψ)),

as well as any of the modalities corresponding to Allen’s relations. Consequently, NL
can virtually express all interesting properties of the underlying linear ordering, such
as discreteness, density, etc.

Here we give an axiomatic system for NL, due to Barua, Roy, and Zhou [BAR 00],
where the soundness and completeness proofs can be found. In what follows, the
symbol♦ stands for either♦l or♦r, while♦ stands for♦r (resp.,♦l) when♦ stands
for ♦l (resp., ♦r). The axiomatic system consists of the following axioms:

(A-NL1) ♦φ → φ, where φ is a global formula;

(A-NL2) l ≥ 0;

(A-NL3) x ≥ 0 → ♦(l = x);

(A-NL4) ♦(φ ∨ ψ) → ♦φ ∨ ♦ψ;

(A-NL5) ♦∃xφ → ∃x♦φ;

(A-NL6) ♦((l = x) ∧ φ) → �((l = x) → φ);

(A-NL7) ♦♦φ → �♦φ;

(A-NL8) (l = x) → (φ↔ ♦♦((l = x) ∧ φ);

(A-NL9) ((x ≥ 0) ∧ (y ≥ 0)) → (♦((l = x) ∧ ♦((l = y) ∧ ♦φ)) ↔ ♦((l =
x+ y) ∧ ♦φ)),

plus the axioms for the domain D (axioms for =,+,≤, and −), and the usual axioms
for first-order logic. The same restrictions that have been made for the ITL concern-
ing the instantiation of quantified formulas still apply here. The inference rules are,
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as usual, Modus Ponens, Necessitation, Generalization, and the following rule for
Monotonicity:

φ → ψ

♦φ → ♦ψ .

In [BAR 97], NL has been extended to a ‘two-dimensional’ version, called NL2,
where two modalities♦u and♦d have been added and interpreted as ‘up’ and ‘down’
neighbourhoods. NL2 can be used to specify super-dense computations, taking verti-
cal time as virtual time, and horizontal time as real time.

The relationship between the Neighbourhood Logic and tractable fragments of
Allen’s Interval Algebra has been studied in [PUJ 97].

5.3. Duration calculi

Duration Calculus (DC for short) is an interval temporal logic endowed with the
additional notion of state. Each state is denoted by means of a state expression, and it
is characterized by a duration. The duration of a state is (the length of) the time period
during which the system remains in the state. DC has been successfully applied to the
specification and verification of real-time systems. For instance, it has been used to
express the behaviour of communicating processes sharing a processor and to specify
their scheduler, as well as to specify the requirements of a gas burner [SØR 90].

DC has originally been developed as an extension of Moszkowski’s ITL, and thus
denoted by DC/ITL. Since the seminal work by Zhou, Hoare, and Ravn [CHA 91],
various meaningful fragments of DC/ITL have been isolated and analyzed. Recently,
an alternative Duration Calculus, based on the logic NL, and thus denoted by DC/NL,
has been proposed by Roy in [ROY 97]. As a matter of fact, most results for DC/ITL
and its fragments transfer to DC/NL and its fragments. In the following we introduce
the basic notions and we summarize the main results about DC/ITL. Further details
can be found in [CHA 04].

5.3.1. The calculus DC/ITL

Zhou, Hoare, and Ravn’s DC/ITL is based on Moszkowski’s ITL interpreted over
the class of non-strict interval structures based onR. Its only interval modality is chop.
Its distinctive feature is the notion of state. States are represented by means of a new
syntactic category, called state expression, which is defined as follows: the constants
0 and 1 are state expressions, a state variableX is a state expression, and, for any pair
of state expressions S and T , ¬S and S ∨ T are state expressions (the other Boolean
connectives are defined in the usual way). Furthermore, given a state expression S, the
duration of S is denoted by

∫
S. DC/ITL terms are defined as in ITL, provided that

temporal variables are replaced by state expressions. DC/ITL formulas are generated
by the following abstract syntax:

φ ::= pn(r1, . . . , rn) | 
 | ¬φ | φ ∨ ψ | φCψ | ∃xφ
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where r1, . . . , rn are terms, pn is a n-ary (global) predicate, C is the chop modality,
and x is a (global) variable.

Any state (expression) S is associated with a total function S : R �→ {0, 1},
which has a finite number of discontinuity points only. For any time point t, the state
expression interpretation I is defined as follows:

– I[0](t) = 0;
– I[1](t) = 1;
– I[S](t) = S(t);
– I[¬S](t) = 1 − I[S](t);
– I[S ∨ T ](t) = 1 if I[S](t) = 1 or I[T ](t) = 1, 0 otherwise.

The semantics of a duration
∫
S in a given (non-strict) model, with respect to an

interval [d0, d1], can be defined using the Riemann definite integral
∫ d1

d0
I[S](t)dt.

The semantics of the other syntactic constructs is given as in the case of ITL.

A number of useful abbreviations can be defined in DC/ITL. In particular, �S�
stands for: “S holds almost everywhere over a strict interval", and it is defined as
follows:

– �S� � (
∫
S =

∫
1) ∧ ¬(

∫
1 =

∫
0).

∫
1 is usually abbreviated by l, and it can be viewed as the length of the current

interval; finally, � �, which holds over point-intervals, can be defined as l = 0.

The satisfiability problem for both first-order DC/ITL (full DC/ITL) and its frag-
ment devoid of first-order quantification (Propositional DC/ITL) has been shown to
be undecidable. First-order DC/ITL, provided with, at least, the functional symbol +
and the predicate symbol=, with the usual interpretation, has been completely axiom-
atized in [HAN 92]. The axiomatic system includes the following specific axioms:

(A-DC1)
∫

0 = 0;

(A-DC2)
∫
S ≥ 0;

(A-DC3)
∫
S +

∫
T =

∫
(S ∨ T ) +

∫
(S ∧ T );

(A-DC4) ((
∫
S = x)C(

∫
S = y)) ↔ (

∫
S = x+ y);

(A-DC5)
∫
S =

∫
T provided that S ↔ T holds in propositional logic

and the following inference rule (whereS1 . . . Sn are state expressions and
∨n

i=1 Si ↔
1):

H(� �), H(φ) → H(φ ∨
∨n

i=1(φC�Si�))
H(
)

,
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in conjunction with its inverse (obtained by exchanging the ordering of the formulas
in every chop), whereH(φ) represents the formula obtained fromH(X) by replacing
every occurrence ofX inH by φ.

Duration calculus on abstract domains has been studied and axiomatized in [GUE 98].

Various interesting fragments of DC have been investigated by Zhou, Hansen, and
Sestoft in [CHA 93a]. First, they consider the possibility of interpreting DC formu-
las over different classes of structures. In particular, the fragment of DC interpreted
over N is the set of DC formulas interpreted over R evaluated with respect of N-
intervals, that is, intervals whose endpoints are in N. The fragment of DC interpreted
over Q is similarly defined. Then, the authors take into consideration some syntactic
sub-fragments of the above calculi and they atudy the decidability/undecidability of
their satisfiability problem. It turns out that the fragments of propositional DC whose
formulas are built up from primitive formulas of the type �S� only have a decidable
satisfiability problem when interpreted over N, Q, and R. A validity checking proce-
dure for some of these fragments was developed in [SKA 94]. By adding to the set
of primitive formulas those of the form l = k, the problem remains decidable over N,
but it becomes undecidable over the other classes of structures. The same fragment at
the first-order level is undecidable in all the considered cases. Finally, the fragment
of propositional DC whose formulas are built up from primitive formulas of the type∫
S =

∫
T only is also undecidable.

As for the complexity of the satisfiability problem, in [RAB 98] Rabinovich re-
ports a result by Sestoft (personal communication) stating that the satisfiability prob-
lem for the fragment of DC whose formulas are built up from primitive formulas of
the type �S� only, interpreted over N, has a non-elementary complexity. Rabinovich
shows that the satisfiability problem for the same fragment, interpreted overR, also is
non-elementarily decidable, by providing a linear time reduction from the equivalence
problem for star-free expressions to the validity problem for the considered fragment
of DC.

In [CHE 00], Chetcuti-Sperandio and Fariñas del Cerro isolate another fragment
of propositional DC by imposing suitable syntactic restrictions. Formulas of such a
fragment are generated by the following abstract syntax:

φ ::= 
 | ⊥ | lPk | I = 0 | I = l | φ ∨ ψ | φ ∧ ψ | φCψ,

where k is a constant, P ∈ {<,≤,=,≥, >}, and I is
∫
S, for a given state S. The

resulting logic is shown to be expressive enough to capture Allen’s Interval Algebra.
The authors propose a sound, complete, and terminating tableau system for the logic,
thus showing that its satisfiability problem is decidable. The tableau system is a mixed
procedure, combining standard tableau techniques with temporal constraint network
resolution algorithms.
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5.3.2. Some extensions and variations of Duration Calculus

In [CHA 98] (see also [ROY 97]) Duration Calculus and the first-order neighbour-
hood logic (NL) have been combined into the (clearly, undecidable) DC/NL which
has been completely axiomatized by merging the axiomatic systems for DC and NL.
The fragment of DC/NL obtained by restricting the formulas to be built up only from
primitive formulas of the type �S� has been proved to be decidable, while the exten-
sion of the latter with primitive formulas of the type l = k is undecidable, as already
mentioned.

Duration Calculus with infinite intervals has been studied in [CHA 95]. Other
extensions of Duration Calculus include: Extended Duration Calculus for real-time
systems [CHA 93b], Mean Value Calculus of Durations [CHA 94], Duration Calculus
with Iteration [HUN 99c, GUE 00c], Duration Calculus with Projection [GUE 02,
GUE 03], higher-order Duration Calculus [GUE 00a, NAI 00], probabilistic Duration
Calculus for continuous time [HUN 99b].

Another variation of DC is Pandya’s Interval Duration Logic [PAN 96] the models
of which are timed state sequences in dense time structures.

Applications of Duration Calculus to real-time and hybrid systems have been de-
veloped in [HUN 99a, HUN 02, HUO 02, SIE 01, THA 01].

Automatic verification and model-checking tools for interval logics and duration
calculi have been developed and analyzed in [KON 92, SKA 94, HAN 94, CAM 96,
YON 02] and program synthesis from DC specifications has been studied in [SIE 01].

Finally, in [FRÄ 96, FRÄ 02, FRÄ 98] Fränzle describes model checking meth-
ods for DC and he argues that, despite its undecidability, if the class of models is
restricted to the possible behaviours of embedded real-time systems, model-checking
procedures are feasible for rich subsets of Duration Calculus and related logics.

For further details, recent results, and applications of DC see [CHA 04].

6. Summary and concluding remarks

In this survey paper, we have attempted to give a general picture of the extensive
and rather diverse research done in the areas of interval temporal logics and duration
calculi. Among all important issues in the field, we have mainly focused on expres-
siveness, proof systems, and decidability/undecidability results.

To summarize, sound and complete axiomatic systems on propositional level are
known for CDT, with respect to certain classes of linear orderings, for HS, with respect
to the class of partial orderings with the linear interval property, for the family of
logics in PNL, with respect to various classes of linear orderings, both in the strict
and non-strict semantics, and for ITL and NL with respect to general semantics, while
the problem of finding an axiomatic system for specific linear orderings is still largely
unexplored.
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Furthermore, sound and complete tableau systems have been developed for BCDT+

and for some local variants of ITL. Given the generality of BCDT+, the tableau
method for such a logic is in fact a tableau method for a large variety of propositional
interval logics.

The satisfiability/validity problem has been shown to be undecidable for HS, CDT,
ITL, and NL, with respect to most classes of structures. As a matter of fact, rather
weak subsystems of HS turn out to be (highly) undecidable for some classes of struc-
tures. Decidable fragments have been obtained by imposing severe restrictions on
the expressive power or the semantics of the logics (as an example, by imposing the
locality projection principle).

Finally, we point out once more that, to the best of our knowledge, the problems of
constructing axiomatic systems, tableau systems, and (un)decidability proofs have not
been explicitly addressed yet for the strict semantics variants of most of the existing
interval logics (with the exceptions of PNL− and its subsystems).

In conclusion, the single major challenge in the area of interval temporal logics is
to identify expressive enough, yet decidable, fragments and/or logics which are gen-
uinely interval-based, that is, not explicitly translated into point-based logics and not
invoking locality or other semantic restrictions reducing the interval-based semantics
to the point-based one.
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