3,438 research outputs found

    An SVM-Based classifier for estimating the state of various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine chassis

    Get PDF
    The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels

    Bearing fault diagnosis based on intrinsic time-scale decomposition and improved Support vector machine model

    Get PDF
    In order to achieve the bearing fault diagnosis so as to ensure the steadiness of rotating machinery. This article proposed a model based on intrinsic time-scale decomposition (ITD) and improved support vector machine method (ISVM), so as to deal with the non-stationary and nonlinear characteristics of bearing vibration signals. Firstly, the feature extraction method intrinsic time-scale decomposition (ITD) is used and the energy entropy are extracted so as to process the vibration signal in this paper. Then, the local tangent space alignment (LTSA) method is introduced to extract the characteristic features and reduce the dimension of the selected entropy features. Finally, the features are used to train the ISVM model as to classify bearings defects. Cases of actual were analyzed. The results validate the effectiveness of the proposed algorithm

    A hybrid prognostics approach for motorized spindle-tool holder remaining useful life prediction

    Get PDF
    The quality and efficiency of high-speed machining are restricted by the matching performance of the motorized spindle-tool holder. In high speed cutting process, the mating surface is subjected to alternating torque, repeated clamping wear and centrifugal force, which results in serious degradation of mating performance. Therefore, for the purpose of the optimum maintenance time, periodic evaluation and prediction of remaining useful life (RUL) should be carried out. Firstly, the mapping model between the current of the motorized spindle and matching performance was extracted, and the degradation characteristics of spindle-tool holder were emphatically analyzed. After the original current is de-noised by an adaptive threshold function, the extent of degradation was identified by the amplitudes of wavelet packet entropy. A hybrid prognostics combining Relevance Vector Machine (RVM) i.e. AI-model with power regression i.e. statistical model was proposed to predict the RUL. Finally, the proposed scheme was verified based on a motorized spindle reliability test platform. The experimental results show that the current signal processing method based on wavelet packet and entropy can reflect the change of the degradation characteristics sensitively. Compared with other two similar models, the hybrid model proposed can accurately predict the RUL. This model is suitable for complex and high reliability equipment when Condition Monitoring (CM) data is scarcer

    Crack detection in rotating shafts using wavelet analysis, Shannon entropy and multi-class SVM

    Get PDF
    Incipient fault diagnosis is essential to detect potential abnormalities and failures in industrial processes which contributes to the implementation of fault-tolerant operations for minimizing performance degradation. In this paper, an innovative method named Self-adaptive Entropy Wavelet (SEW) is proposed to detect incipient transverse crack faults on rotating shafts. Continuous Wavelet Transform (CWT) is applied to obtain optimized wavelet function using impulse modelling and decompose a signal into multi-scale wavelet coefficients. Dominant features are then extracted from those vectors using Shannon entropy, which can be used to discriminate fault information in different conditions of shafts. Support Vector Machine (SVM) is carried out to classify fault categories which identifies the severity of crack faults. After that, the effectiveness of this proposed approach is investigated in testing phrase by checking the consistency between testing samples with obtained model, the result of which has proved that this proposed approach can be effectively adopted for fault diagnosis of the occurrence of incipient crack failures on shafts in rotating machinery

    Friction, Vibration and Dynamic Properties of Transmission System under Wear Progression

    Get PDF
    This reprint focuses on wear and fatigue analysis, the dynamic properties of coating surfaces in transmission systems, and non-destructive condition monitoring for the health management of transmission systems. Transmission systems play a vital role in various types of industrial structure, including wind turbines, vehicles, mining and material-handling equipment, offshore vessels, and aircrafts. Surface wear is an inevitable phenomenon during the service life of transmission systems (such as on gearboxes, bearings, and shafts), and wear propagation can reduce the durability of the contact coating surface. As a result, the performance of the transmission system can degrade significantly, which can cause sudden shutdown of the whole system and lead to unexpected economic loss and accidents. Therefore, to ensure adequate health management of the transmission system, it is necessary to investigate the friction, vibration, and dynamic properties of its contact coating surface and monitor its operating conditions

    Fault diagnosis of rolling bearing based on relevance vector machine and kernel principal component analysis

    Get PDF
    In order to improve the speed and accuracy of rolling bearing fault diagnosis on small samples, a method based on relevance vector machine (RVM) and Kernel Principle Component Analysis (KPCA) is proposed. Firstly, the wavelet packet energy of the vibration signal is extracted with the wavelet packet transform, which is used as fault feature vectors. Secondly, the dimension of feature vectors is reduced in order to weaken the correlation between the features. The important principal components are selected using KPCA as the new feature vectors under the criterion that the cumulative variance is greater than 95 %. Finally, the faults of rolling bearing are diagnosed through combining KPCA with RVM. Simulation experimental indicates the advantages of the presented method. Moreover, the proposed approach is applied to diagnoses rolling bearing fault. The results show that wavelet packet energy can express rolling bearing fault features accurately, KPCA can reduce the dimension of feature vectors effectively and the proposed method has better performance in the speed of fault diagnosis than the method based on support vector machine (SVM), which supplies a strategy of fault diagnosis for rolling bearing. In this paper, the performance of the proposed method is also compared with other diagnostic methods

    Digital Image-Based Frameworks for Monitoring and Controlling of Particulate Systems

    Get PDF
    Particulate processes have been widely involved in various industries and most products in the chemical industry today are manufactured as particulates. Previous research and practise illustrate that the final product quality can be influenced by particle properties such as size and shape which are related to operating conditions. Online characterization of these particles is an important step for maintaining desired product quality in particulate processes. Image-based characterization method for the purpose of monitoring and control particulate processes is very promising and attractive. The development of a digital image-based framework, in the context of this research, can be envisioned in two parts. One is performing image analysis and designing advanced algorithms for segmentation and texture analysis. The other is formulating and implementing modern predictive tools to establish the correlations between the texture features and the particle characteristics. According to the extent of touching and overlapping between particles in images, two image analysis methods were developed and tested. For slight touching problems, image segmentation algorithms were developed by introducing Wavelet Transform de-noising and Fuzzy C-means Clustering detecting the touching regions, and by adopting the intensity and geometry characteristics of touching areas. Since individual particles can be identified through image segmentation, particle number, particle equivalent diameter, and size distribution were used as the features. For severe touching and overlapping problems, texture analysis was carried out through the estimation of wavelet energy signature and fractal dimension based on wavelet decomposition on the objects. Predictive models for monitoring and control for particulate processes were formulated and implemented. Building on the feature extraction properties of the wavelet decomposition, a projection technique such as principal component analysis (PCA) was used to detect off-specification conditions which generate particle mean size deviates the target value. Furthermore, linear and nonlinear predictive models based on partial least squares (PLS) and artificial neural networks (ANN) were formulated, implemented and tested on an experimental facility to predict particle characteristics (mean size and standard deviation) from the image texture analysis
    corecore