94 research outputs found

    Role of edge inclination in optical microdisk resonator for label-free sensing

    Get PDF
    In this paper we report on the measurement and modelling of enhanced optical refractometric sensors based on whispering-gallery-modes. The devices under test are optical microresonators made of silicon nitride on silicon oxide. In our approach, these microresonators are vertically coupled to a buried waveguide with the aim of creating integrated and cost-effective devices. The optimization analysis is a delicate balance of resonance quality factor and evanescent field overlap with the sorrounding environment to analyze. By numerical simulations we show that the microdisk thickness is critical to yield high figure of merit for the sensor, while edge inclination is less important. We also show that figures of merit as high as 1600/RIU are feasible.Comment: 10 page

    Recent Progress in Optical Sensors for Biomedical Diagnostics

    Get PDF
    In recent years, several types of optical sensors have been probed for their aptitude in healthcare biosensing, making their applications in biomedical diagnostics a rapidly evolving subject. Optical sensors show versatility amongst different receptor types and even permit the integration of different detection mechanisms. Such conjugated sensing platforms facilitate the exploitation of their neoteric synergistic characteristics for sensor fabrication. This paper covers nearly 250 research articles since 2016 representing the emerging interest in rapid, reproducible and ultrasensitive assays in clinical analysis. Therefore, we present an elaborate review of biomedical diagnostics with the help of optical sensors working on varied principles such as surface plasmon resonance, localised surface plasmon resonance, evanescent wave fluorescence, bioluminescence and several others. These sensors are capable of investigating toxins, proteins, pathogens, disease biomarkers and whole cells in varied sensing media ranging from water to buffer to more complex environments such as serum, blood or urine. Hence, the recent trends discussed in this review hold enormous potential for the widespread use of optical sensors in early-stage disease prediction and point-of-care testing devices.DFG, 428780268, Biomimetische Rezeptoren auf NanoMIP-Basis zur Virenerkennung und -entfernung mittels integrierter Ansätz

    Aptasensors for point-of-care detection of small molecules

    Get PDF
    Aptamers, a group of nucleic acids which can specifically bind to a target molecule, have drawn extensive interest over the past few decades. For analytics, aptamers represent a viable alternative to gold-standard antibodies due to their oligonucleic nature combined with advantageous properties, including higher stability in harsh environments and longer shelf-life. Indeed, over the last decade, aptamers have been used in numerous bioanalytical assays and in various point-of-care testing (POCT) platforms. The latter allows for rapid on-site testing and can be performed outside a laboratory by unskilled labor. Aptamer technology for POCT is not limited just to medical diagnostics; it can be used for a range of applications, including environmental monitoring and quality control. In this review, we critically examine the use of aptamers in POCT with an emphasis on their advantages and limitations. We also examine the recent success of aptasensor technology and how these findings pave the way for the analysis of small molecules in POCT and other health-related applications. Finally, the current major limitations of aptamers are discussed, and possible approaches for overcoming these challenges are presented. © 2020 by the authors

    Applications of Aptasensors in Clinical Diagnostics

    Get PDF
    Aptamers are artificial oligonucleotides (DNA or RNA) selected in vitro that bind a broad range of targets with high affinity and specificity; a sensitive yet simple method to utilize aptamers as recognition elements for the development of biosensors (aptasensors) is to transduce the signal electrochemically. So far, aptasensors have been applied to clinical diagnostics and several technologies are in development. Aptasensors will extend the limits of current clinical diagnostics. Although the potential diagnostic applications are unlimited, the most current applications are foreseen in the areas of biomarker detection, cancer clinical testing, detection of infectious microorganisms and viruses. This review attempts to list examples of the research progresses of aptamers in biosensor platforms that have been published in recent years; in particular, we display cases of aptasensors that are already incorporated in clinical diagnostics or have potential applications in clinical diagnostics

    Optical sensors based on lossy-mode resonances

    Get PDF
    Lossy-mode resonance (LMR)–based optical sensing technology has emerged in the last two decades as a nanotechnological platform with very interesting and promising properties. LMR complements the metallic materials typically used in surface plasmon resonance (SPR)–based sensors, with metallic oxides and polymers. In addition, it enables one to tune the position of the resonance in the optical spectrum, to excite the resonance with both transverse electric (TE) and transverse magnetic (TM) polarized light, and to generate multiple resonances. The domains of application are numerous: as sensors for detection of refractive indices voltage, pH, humidity, chemical species, and antigens, as well as biosensors. This review will discuss the bases of this relatively new technology and will show the main contributions that have permitted the optimization of its performance to the point that the question arises as to whether LMR–based optical sensors could become the sensing platform of the near future

    Biosensors for the detection of antibiotic residues in milk

    Get PDF
    Milk and dairy products are important nutrients for all age groups. However, the use of antibiotics for the treatment of food-producing animals generates the risk to human health, as these compounds and their metabolites can be transferred into milk. Rapid testing of the presence of antibiotics in raw milk to grant its quality has become a major task for farmers and dairy industry. The conventional analytical methods are either too slow or do not enable quantitative detection of antibiotic residues, so alternative methods that are rapid, cost effective, and easy to perform should be considered. The present chapter gives an overview of the recent developments and issues of the construction of different biosensors for the detection of antibiotic residues in milk

    Fiber-optic lossy mode resonance sensors

    Get PDF
    In the last 4 years, experimental evidences about the potential use of optical sensors based on Lossy Mode Resonances (LMR) have been presented in the literature. These LMR sensors have some similarities with Surface Plasmon Resonance (SPR) sensors, the gold standard in label-free, real-time biomolecular interaction analysis. In these new LMR sensors, if the non-metallic nanocladding of an optical waveguide fulfills the conditions explained in this work, coupling of light to the cladding modes happens at certain resonance wavelengths, which enables the use of LMR devices as refractometers and opens the door to diverse applications such as in biology and proteomics research. These highly sensitive refractometers have already shown sensitivities higher than 20,000 nm/RIU or 5x10-7 RIU and, given the youth of this field, it is expected to achieve even better values

    Biosensors for Rapid Detection of Avian Influenza

    Get PDF
    The scope of this chapter was to review the advancements made in the area of biosensors for rapid detection of avian influenza viruses (AIVs). It is intended to provide general background about biosensor technology and to discuss important aspects for developing biosensors, such as selection of the suitable biological recognition elements (anti-AIV bioreceptors) as well as their immobilization strategies. A major concern of this chapter is also to critically review the biosensors’ working principles and their applications in AIV detection. A table containing the types of biosensor, bioreceptors, target AIVs, methods, etc. is given in this chapter. A number of papers for the different types of biosensors give hints on the current trends in the field of biosensor research for its application on AIV detection. By discussing recent research and future trends based on many excellent publications and reviews, it is hoped to give the readers a comprehensive view on this fast-growing field

    Mass Transfer Limitations of Porous Silicon-Based Biosensors for Protein Detection

    Get PDF
    Porous silicon (PSi) thin films have been widely studied for biosensing applications, enabling label-free optical detection of numerous targets. The large surface area of these biosensors has been commonly recognized as one of the main advantages of the PSi nanostructure. However, in practice, without application of signal amplification strategies, PSi-based biosensors suffer from limited sensitivity, compared to planar counterparts. Using a theoretical model, which describes the complex mass transport phenomena and reaction kinetics in these porous nanomaterials, we reveal that the interrelated effect of bulk and hindered diffusion is the main limiting factor of PSi-based biosensors. Thus, without significantly accelerating the mass transport to and within the nanostructure, the target capture performance of these biosensors would be comparable, regardless of the nature of the capture probe-target pair. We use our model to investigate the effect of various structural and biosensor characteristics on the capture performance of such biosensors and suggest rules of thumb for their optimization.
    • …
    corecore