346 research outputs found

    Watershed algorithm for moving object extraction considering energy minimization by snakes

    Get PDF
    金沢大学理工研究域電子情報学系MPEG-4, which is a video coding standard, supports object-based functionalities for high efficiency coding. MPEG-7, a multimedia content description interface, handles the object data in, for example, retrieval and/or editing systems. Therefore, extraction of semantic video objects is an indispensable tool that benefits these newly developed schemes. In the present paper, we propose a technique that extracts the shape of moving objects by combining snakes and watershed algorithm. The proposed method comprises two steps. In the first step, snakes extract contours of moving objects as a result of the minimization of an energy function. In the second step, the conditional watershed algorithm extracts contours from a topographical surface including a new function term. This function term is introduced to improve the estimated contours considering boundaries of moving objects obtained by snakes. The efficiency of the proposed approach in moving object extraction is demonstrated through computer simulations. © 2007 IEEE

    Moving object extraction by watershed algorithm considering energy minimization

    Get PDF
    金沢大学大学院自然科学研究科情報システムMPEG-4, which is a video coding standard, supports object-based functionalities for high efficiency coding. MPEG-7, a multimedia content description interface, handles the object data in, for example, retrieval and/or editing systems. Therefore, extraction of semantic video objects is an indispensable tool that benefits these newly developed schemes. In the present paper, we propose a technique that extracts the shape of moving objects by combining snakes and watershed algorithm. The proposed method comprises two steps. In the first step, snakes extract contours of moving objects as a result of the minimization of an energy function. In the second step, the conditional watershed algorithm extracts contours from a topographical surface including a new function term. This function term is introduced to improve the estimated contours considering boundaries of moving objects obtained by snakes. The efficiency of the proposed approach in moving object extraction is demonstrated through computer simulations. © Springer-Verlag Berlin Heidelberg 2007

    Endoscopic image analysis of aberrant crypt foci

    Get PDF
    Tese de Mestrado Integrado. Bioengenharia. Faculdade de Engenharia. Universidade do Porto. 201

    Learning deep structured active contours end-to-end

    Full text link
    The world is covered with millions of buildings, and precisely knowing each instance's position and extents is vital to a multitude of applications. Recently, automated building footprint segmentation models have shown superior detection accuracy thanks to the usage of Convolutional Neural Networks (CNN). However, even the latest evolutions struggle to precisely delineating borders, which often leads to geometric distortions and inadvertent fusion of adjacent building instances. We propose to overcome this issue by exploiting the distinct geometric properties of buildings. To this end, we present Deep Structured Active Contours (DSAC), a novel framework that integrates priors and constraints into the segmentation process, such as continuous boundaries, smooth edges, and sharp corners. To do so, DSAC employs Active Contour Models (ACM), a family of constraint- and prior-based polygonal models. We learn ACM parameterizations per instance using a CNN, and show how to incorporate all components in a structured output model, making DSAC trainable end-to-end. We evaluate DSAC on three challenging building instance segmentation datasets, where it compares favorably against state-of-the-art. Code will be made available.Comment: To appear, CVPR 201

    Automatic Foreground Initialization for Binary Image Segmentation

    Get PDF
    Foreground segmentation is a fundamental problem in computer vision. A popular approach for foreground extraction is through graph cuts in energy minimization framework. Most existing graph cuts based image segmentation algorithms rely on user’s initialization. In this work, we aim to find an automatic initialization for graph cuts. Unlike many previous methods, no additional training dataset is needed. Collecting a training set is not only expensive and time consuming, but it also may bias the algorithm to the particular data distribution of the collected dataset. We assume that the foreground differs significantly from the background in some unknown feature space and try to find the rectangle that is most different from the rest of the image by measuring histograms dissimilarity. We extract multiple features, design a ranking function to select good features, and compute histograms based on integral images. The standard graph cuts binary segmentation is applied, based on the color models learned from the initial rectangular segmentation. Then the steps of refining the color models and re-segmenting the image iterate in the grabcut manner, until convergence, which is guaranteed. The foreground detection algorithm performs well and the segmentation is further improved by graph cuts. We evaluate our method on three datasets with manually labelled foreground regions, and show that we reach the similar level of accuracy compared to previous work. Our approach, however, has an advantage over the previous work that we do not require a training dataset

    Active Contours and Image Segmentation: The Current State Of the Art

    Get PDF
    Image segmentation is a fundamental task in image analysis responsible for partitioning an image into multiple sub-regions based on a desired feature. Active contours have been widely used as attractive image segmentation methods because they always produce sub-regions with continuous boundaries, while the kernel-based edge detection methods, e.g. Sobel edge detectors, often produce discontinuous boundaries. The use of level set theory has provided more flexibility and convenience in the implementation of active contours. However, traditional edge-based active contour models have been applicable to only relatively simple images whose sub-regions are uniform without internal edges. Here in this paper we attempt to brief the taxonomy and current state of the art in Image segmentation and usage of Active Contours

    Computational processing and analysis of ear images

    Get PDF
    Tese de mestrado. Engenharia Biomédica. Faculdade de Engenharia. Universidade do Porto. 201
    corecore