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RESUMO 

 

Actualmente, o cancro é uma das doenças mais problemáticas, sendo responsável pela 

morte de cerca de 1.7 milhões de pessoas por ano. O cancro colorectal representa a segunda 

maior taxa de incidência de cancro em Portugal, mas, se detectada cedo, a morte pode ser 

evitada. 

Pensa-se que os focos de criptas aberrantes (ACF) podem ter um papel importante na 

sequência adenoma-carcinoma, sendo um precursor do cancro colorectal. O seu 

reconhecimento através de imagens endoscópicas pode potenciar a sua detecção e 

diagnóstico. No entanto, a observação das imagens de diagnóstico é realizada manualmente 

por um médico especializado, tornando o processo muito demorado e sujeito a erros. Como 

tal, técnicas computacionais de processamento e análise de imagem são ferramentas 

importantes que podem ser usadas para facilitar e aumentar a eficiência de tal tarefa. 

O objectivo principal desta dissertação foi estudar e implementar metodologias 

computacionais para detectar ACF em imagens adquiridas in vivo através de endoscopia. 

Em primeiro lugar, foram testadas diversas técnicas de melhoramento de imagem, sendo 

concluído que a aplicação de um filtro mediana em conjunto com Histogram Stretching 

potencia a eliminação de ruído de alta frequência e aumenta o contraste da imagem original. 

De seguida, foram testados diversos algoritmos de segmentação baseados nas fronteiras do 

objecto de interesse, em regiões e no histograma. Nenhuma técnica testada foi capaz de 

detectar unicamente os ACF. No entanto, o Canny edge detector e watershed conseguiram 

delimitar os focos e o método de contornos activos (snakes) mostrou-se promissor na 

delimitação das fronteiras dos ACF, embora com algumas limitações devido à difícil adaptação 

dos parâmetros para diferentes imagens. 

Em suma, com base neste estudo poderão ser desenvolvidas novas técnicas, 

nomeadamente tirando partido das cores das imagens endoscópicas, ou ajustando os 

algoritmos para esta aplicação em específico. 

  

Palavras-Chave: Cancro Colorectal, Focos de Criptas Aberrantes, Processamento e Análise de 

imagem, Melhoramento de Imagem, Segmentação de Imagem 
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ABSTRACT 

 

Currently, cancer is one of the most problematic diseases, being responsible for the deaths 

of about 1.7 million people per year. The colorectal cancer represents the second highest 

incidence rate of cancer in Portugal, but it can be avoided if early detected. 

It is believed that aberrant crypt foci (ACF) have a crucial role in the sequence adenoma-

carcinoma, being a precursor of colorectal cancer. As such, its recognition through endoscopic 

images can potentiate the detection and diagnosis of this type of cancer. However, the 

observation of the images is usually done manually by a physician, making the process very 

time consuming and prone to errors. As such, the computational techniques of image 

processing and analysis are important tools that could be used to reduce this time and attain 

more efficient results. 

The aim of this Dissertation was to study and implement computational methodologies that 

allow the detection of ACF of images captured in vivo by endoscopy. 

At first, several techniques of image enhancement were tested, and it was concluded that 

the hybrid application of a median filter and histogram stretching potentiate the high intensity 

noise elimination and increases the image contrast. 

Afterwards, various segmentation algorithms were used based on boundaries, regions and 

histogram. None of the techniques tested were able to detect only the ACF. However, the 

canny edge detector and the watershed transform were capable of delimiting the crypts and 

the algorithm of active contours (snakes) has shown promising results in defining the ACF 

boundaries, although it has some limitations due to the difficult adjustment of the parameters 

for different images. 

Concluding, some improvements could be made considering the implementations and 

evaluations performed during this Dissertation, with special attention to the possible 

advantages if the color information of the endoscopic images is included or if some algorithms 

are adapted to this application. 

 

Key Words: Colorectal cancer, Aberrant Crypt Foci, Image Processing and Analysis, Image 

Enhancement, Image Segmentation 
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Chapter 1 

1. INTRODUCTION 

 

1.1. Motivation 

 

Cancer is one of the most problematic diseases in the modern world. In the United States, 

one in four deaths is due to cancer (Jemal, Siegel et al. 2008). In Europe, is estimated that 3.2 

million people were diagnosed with cancer in 2006 and 1.7 million people died from this 

disease. Since 2004, the annual number of new cases has increased by 300,000 and due to 

ageing of the European population, these numbers will probably increase over the next few 

decades (Gouveia, Coleman et al. 2008). This current situation has promoted the emergence of 

several research studies with the main goal of early diagnosis and treat, avoiding the cancer. 

The cancer research could be divided into different areas. One of the two most prominent are: 

the biological mechanisms, related to the appearance and proliferation of the tumor cells, and 

the automatic detection of abnormal tissues in images acquired by diagnostic techniques, 

using methods of computational image analysis. This dissertation is focused on the second 

domain and studies a particular type of cancer: Colorectal. 

In Portugal, this is a growing problem since the latest cancer registries showed that 14.6 % 

of cancer deaths in 2005 were due to Colorectal Cancer (CRC). Moreover, its incidence ranks 

second among all cancers in men and women and, from 2000 to 2005, the number of CRC 

deaths increased at an annual average growth rate of 3% (Pinto, Paquete et al. 2010), Figure 

1.1. 

The research development on this particular type of cancer achieved some conclusions. As 

such, it is generally accepted that most CRC arise from preexisting adenomas (Shpitz, Bomstein 

et al. 1998). In the large intestine, adenomas are polypoid dysplastic foci that are thought to 

be precursors of cancer. Moreover, in the last few years the early events of human colorectal 

tumorigenesis have been extensively investigated and since 1987, when Bird first described 

aberrant crypt foci (ACF) in rodents, it is thought that they may have a crucial role, as they are 

thought to be a possible precursor of colorectal cancer (Bird 1987). The ACF have been 

described topologically as clusters of abnormally large colonic crypts identified on the mucosal 

surface of the human colon after staining with methylene blue (Roncucci, Modica et al. 1998). 
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Considering this, the identification of ACF in endoscopic images will probably allow the 

diagnosis and detection of this cancer (Adler, Gostout et al. 2002). Furthermore, since CRC 

develops over 10–20 years, it provides sufficient time for disease identification and 

interruption, long before it poses a clinical threat (Hawk, Umar et al. 2004). In this context, the 

regular analysis through endoscopy or colonoscopy and the detection of ACF on the colon and 

rectum mucosa will contribute to the early detection of these structures, contributing to the 

reduction of CRC related deaths. 

 

 

 

 

 

 

 

 

 

 

 

 

The endoscopic image analysis is generally performed manually by an experienced medical 

doctor. However, this process is slow and fallible since when using the capsule endoscopy, the 

amount of information is normally high. To improve the speed and quality of the ACF 

detection, or to automatically detect the presence of these structures in real time, during the 

exam, there are several methods of computational analysis that could be used, contributing to 

the CRC diagnosis. 

 

1.2.  Aims 

 

The main purpose of this work was to: 

• Study, test and implement image enhancement algorithms to eliminate noise and 

improve the quality of the endoscopic images acquire in vivo; 

• Study and test image segmentation algorithms that will allow the identification of ACF 

structures in an endoscopic image; 

  Figure 1.1 – CRC mortality: age-specific rate per 100,000 inhabitants (from 
(Pinto, Paquete et al. 2010)). 
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• Compare the different algorithms applied and identify the best option to identify ACF 

in endoscopic images. 

1.3.  Dissertation overview 

 

This dissertation was divided into five chapters.  

In the next chapter, chapter 2, the anatomy, physiology and histology of the colon and 

rectum is detailed in order to understand the main characteristics of these organs. Moreover, 

it is described the two principal techniques used to acquire colon images, used in colorectal 

cancer diagnosis. 

Chapter 3 presents a review of literature of the most important algorithms used on medical 

image processing, with emphasis on enhancement and segmentation methods. 

In chapter 4 image enhancement and segmentation methods are implemented and used in 

endoscopic images and the results are evaluated and compared. 

Finally, chapter 5 presents the main conclusions about the experimental results obtained 

and the comparison done among the different algorithms used. It is then highlighted some of 

the main advantages and disadvantages of the algorithms cited and indicated some of the 

possible directions for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Endoscopic Image Analysis of Aberrant Crypt Foci 

 

4 
 

 

 

 

 

 

 

 

 



 

5 
 

Chapter 2 

2. COLON AND RECTUM BIOLOGY AND ENDOSCOPY 

TECHNIQUE 

 

2.1. Introduction 

 

The biological mechanisms of the colon and rectum are strictly related with its anatomy, 

physiology and histology. These three topics are essential to characterize the functionality of 

the colon and rectum in the human organism, in order to understand the normal pathways 

and the trigger mechanisms involved in Colorectal Cancer (CRC) and Aberrant Crypt Foci (ACF) 

formation. Furthermore, the diagnosis of CRC is based on images captured by endoscopic 

technique. Such techniques permit detailed and reliable analysis and represent the best 

nonsurgical tool available today to manage some diseases of the digestive tube. Nevertheless, 

they are considerably invasive and frequently ill tolerated by patients (Carpi, Galbiati et al. 

2007). Consequently, several advances were pursued leading to the appearance of the capsule 

endoscopy (CE). 

In this chapter is presented the biological basis of the colon and rectum, and the two 

principal techniques used to acquire colon images to identify ACF structures: colonoscopy and 

capsule endoscopy. 

 

2.2.   Anatomy and Physiology of the Colon and Rectum 

 

The large bowel, located in the abdominal cavity, can be seen as a pipe with a 6 cm 

diameter and approximately 1.20 cm length. It is subdivided into: the caecum and appendix, 

the ascending colon, hepatic flexure, transverse colon, splenic flexure, descending and sigmoid 

colon and the rectum and anal canal, Figure 2.1. Although the large bowel has a bigger 

diameter than the small one, the epithelial surface area is much smaller, since the colon is 

about half the length of the small intestine, lacks villi in its mucosa and has a sacculated shape 

(Widmaier, Raff et al. 2004; Ellis 2011). 
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The colon represents the terminal segment of the digestive tract and is approximately 1.50 

m in length (Moreira Jr and Wexner 2005). However, the human colon should not be 

considered as one functional unit since the proximal and distal colon differs in many 

properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are differences in the anatomy, neural and blood supply, and absorption 

characteristics as the length of the colon is traversed. The motility patterns, residence time 

and properties of luminal contents also differ (Edwards 1997). From the caecum to the sigmoid 

portion, the size decreases gradually, starting with 7 cm in diameter and finishing with 2.5 cm. 

The colon has been identified as an organ of importance for the nutrition and health of man 

having a large metabolic activity, through its intestinal micro flora, and it has a significant 

ability to absorb water and electrolytes from fecal material (Edwards 1997). It can absorb up to 

5 liters of water in 24 hours. The motility of the colon is more complex than observed in either 

the stomach or the small bowel, and is divided into two functional units: rhythmic peristalsis 

and tonic contractions (Moreira Jr and Wexner 2005). Moreover, it houses a variety of 

bacteria, known as commensals, which ferment carbohydrates and release hydrogen, carbon 

dioxide and methane gas. They also synthesize vitamin K and some B vitamins and are 

responsible for breaking down the bilirubin into urobilinogen (Porrett and McGrath 2005). 

Figure 2.1 – The large bowel (from (Ellis 2011)). 
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Although the human colon has a lower absorption capacity than that of the small intestine, 

the material remains in the colon for much longer. Colonic residence time is 2-3 days, whereas 

food is in the small intestine for as little as 5 hours. This long colonic residence time provides a 

significant opportunity for the slow absorption of drugs and other materials, either targeted 

specifically at the large intestinal mucosa or designed to act systemically (Edwards 1997).  

The Colon vascularization is dependent on the superior and inferior mesenteric arteries 

(Mazzucchelli and Maurer 2004). 

The rectum, situated at the end of the sigmoid colon, is approximately 13 cm in length and 

begins where the colon loses its mesentery. It is divided into an upper third, middle third and 

lower third, lies in the posterior aspect of the pelvis and ends 2-3 cm anteroinferiorly to the tip 

of the coccyx, where it bends downwards to form the anal canal (Moreira Jr and Wexner 2005; 

Porrett and McGrath 2005). The rectum exhibits a different mode of motor activity as rhythmic 

peristalsis is absent most of the time. The mechanism of evacuation is complex and involves 

voluntary and involuntary muscle activity, mediated by mucosal and pelvic receptors. The 

interior iliac arteries supply the rectum and anus, and the venous drainage is manly by internal 

iliac veins. The nerves supplying the large bowel are via the sympathetic and parasympathetic 

nerves (Porrett and McGrath 2005). 

 

2.3.   Histology of the Colon and Rectum 

 

The large bowel consists of a mucosal membrane with no folds except in its distal (rectal) 

portion. No villi are present in this portion of the intestine. The intestinal glands are long and 

characterized by a great abundance of goblet and absorptive cells and a small number of 

enteroendocrine cells. The absorptive cells are columnar and have short, irregular microvilli 

(Junqueira and Carneiro 2004). 

Analyzing the colon in particular, it consists of a series of concentric layers. Starting in the 

lumen, these layers are: columnar mucosa, basement membrane, lamina propria, muscularis 

mucosae, submucosa, muscularis propria, inner circular layer, outer incomplete longitudinal 

layer (taenia coli) and serosa (Ellis 2011), Figure 2.2. 

The outer layer of the large bowel, the serosa, is over the colon and is covered by 

adventitia. The muscularis propria in the colon has the longitudinal muscle layer arranged into 

three longitudinal bands, the teniae coli. The mucosal surface of the colon at birth is similar to 

that of the small intestine but rapidly changes with the loss of the villi leaving a flat mucosa 

with deep crypts. There are stem cells aligned along the crypt wall, and they are believed to 
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reside in the bottom of the crypt, while transit cells are disposed along the middle part of the 

crypt axis and the differentiated cells are at the top. As such, the stem cells present at the base 

of crypts divide and the progeny migrates upward, enter cell cycle arrest, and differentiate 

before finally reaching the luminal surface epithelial layer, where they undergo apoptosis and 

shed into the lumen (MacFarlane and Stover 2008), Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 – Photomicrograph of a section of large intestine with various structures (left) 
and a diagram of the histological features of the colon (right). (M - Mucosa, MM - 
muscularis mucosae, SM -submucosa, ME - muscularis externa (from (Junqueira and 
Carneiro 2004; Amerongen 2010). 

Figure 2.3 – Anatomy of colon and stem cells cycle (from (MacFarlane and Stover 2008)). 
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There is a decrease in the number of non-goblet crypt cells as the gut ages, which is related 

to an increase in faecal water. Moreover, in normal colonic crypts, the cells renew completely 

each three to four days, through a programmed mechanism. If this programmed mechanism 

changes, a disease may appear: the shapes of the crypts change, they become aberrant crypts, 

aggregate in clusters, and thus aberrant crypt foci (ACF) appear (Figueiredo, Figueiredo et al. 

2010). This event could lead to the appearance of Colorectal Cancer, which is explained in 

section 2.4. 

Finally, the mucosa has a simple columnar epithelium composed of the same cell types as 

are found in the small intestine, except that Paneth cells are present only in the proximal part 

of the large intestine, goblet cells are more numerous and absorptive cells are correspondingly 

fewer. The colonic crypts in the distal colon are longer than those in the proximal colon. At the 

rectoanal junction, there is an abrupt transition from simple columnar to stratified squamous 

epithelium. Lymphoid follicles are common, especially in the distal colon and the rectum 

(Edwards 1997; Amerongen 2010). 

 

2.4. Colorectal Cancer 

 
 

The complex process of cancer formation is characterized by alterations in the morphology 

and behavior of normal cells. In a balanced organism, all cells have molecular mechanisms 

regulating their growth, differentiation and death. However, cells can accumulate a succession 

of genetic mutations leading to corrupted Deoxyribonucleic Acid (DNA) information (Grady 

2004; Doucas and Berry 2006). This information leads to abnormal patterns of gene expression 

and, as a result, the effects of normal genes that control cell growth, survival and spread are 

enhanced and those of genes that suppress these effects are repressed. Even after a cancer 

has been formed, the genetic instability of the malignant cell means that changes in the nature 

of the cancer continue to occur, creating difficulties regarding treatment strategies. Most 

cancers result from a series of genetic errors occurring over a prolonged period; hence, the 

incidence of most cancers increases with age. Aberrant gene expression leads to a number of 

key changes in fundamental biological processes within cancer cells (Doucas and Berry 2006; 

Harrington 2008). 

Cancer is fundamentally a molecular and a genetic disease, characterized by two classes of 

genes, oncogenes and tumor suppressor genes, which provide an essential function in normal 

cells. Oncogenes are the mutation result of the proto-oncogenes, which control cell 

proliferation, survival and spread. In this way, after the occurrence of mutation, the cancer cell 
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is capable of uncontrolled cell division, enhanced survival and dissemination. Tumor 

suppressor genes code for inhibitory proteins that normally act to prevent cell growth. When 

gene mutation occurs, this function is lost, allowing cancer cells to grow uncontrollably and 

contributes to tumor formation (Doucas and Berry 2006; Harrington 2008). 

The cancer formation is not a simple process, since it involves an initial mutation that must 

be coupled to cell proliferation and must promote the clonal expansion of the cells. From 

studies of colon cancer, it appears that at least five mutations in stem cells are needed to 

trigger the cancer formation (Grady 2004). 

The colorectal cancer, so called since it occurs at the colon and rectum, is characterized by 

these general mutations and processes, but it has several particularities that are going to be 

detailed henceforward. 

Ninety-eight percent of all malignancies that develop within the large intestine arise from 

glandular mucosa and are thus classified as adenocarcinomas by histology (Limburg and 

Ahlquist 2004). Malignant transformation of the colorectal epithelium typically occurs as a 

multistep, multipath, multifocal process that requires sequential or concomitant damage to 

several genes within and across cellular generations (Hawk, Umar et al. 2004). 

The carcinogenesis multistep process begins with the clonal expansion of genetically 

altered epithelial cells, followed by the formation of clusters of these abnormal cells. The 

resulting cluster formation is generally denominated Aberrant Crypt Foci (ACF) and represents 

the earliest stage of dysplasia that can be recognized using current technology. In response to 

poorly understood molecular signals, a subset of ACF advances to become adenomatous 

polyps, which are often referred to simply as adenomas (Limburg and Ahlquist 2004), Figure 

2.4. 

Therefore, ACF are thought to have a crucial role in the multistep process, the adenoma-to-

carcinoma sequence, and is explored in section 2.5. 

The colorectal cancer screening can reduce substantially the number of deaths, and it is 

suggested to be performed every 10 years, after completing 50 years old. Colonoscopy 

remains the gold standard for colorectal exploration. It has the advantage of allowing 

assessment of the entire colon with the possibility of simultaneous biopsy and removal of any 

polyps (polypectomy) (Mitry 2008). 

Concluding, the progressive findings about CRC and its screening can provide new ways of 

control cancer dissemination, since at early stages, there are no symptoms or they are non-

specific. An effort at detection through screening programs is essential and, in the future, it 

will certainly contribute to the reduction of the death number (Labianca, Beretta et al. 2004). 
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2.5. Aberrant Crypt Foci 

 

Aberrant Crypt Foci (ACF) has been studied since 1987, when Bird (1987) first identified 

these structures in the colon of carcinogen treated rodents. In that study, the mucosal surface 

of whole rodent colons was examined microscopically after stained with methylene blue. In 

the next years, several studies have been done using animal models, in an attempt to 

understand the role of ACF as possible putative preneoplastic lesions, i.e. as an indicator of 

tumor formation. In these studies, animals were injected repeatedly with a colon specific 

carcinogen and sequential analysis of histological sections of colonic tissues were performed. 

The findings have been promising and generally favor the use of ACF as end points in assessing 

the risk of colon cancer incidence or as biomarkers in the identification of cancer modulators 

(Pretlow, Barrow et al. 1991; Bird 1995). Considering these facts, the next steps involved 

studies in human colons. 

In 1998, Shpitz el al (1998), Roncucci et al (1998) and Takayama et al (1998) studied several 

aspects related to the hypotheses that ACF may be an indicator of colon malignancy. The main 

conclusions achieved by these authors showed that significantly more ACF were observed in 

patients with carcinoma than in patients with benign colonic disease and that experimental 

evidence supports the view that density of ACF is strictly related to initiation in colon 

carcinogenesis. As such, the large number of ACF and those who have dysplastic features may 

Figure 2.4 – The process of colorectal carcinogenesis, as represented by schematic (upper 
image) and endoscopic images: A) Normal colorectal mucosa, B) Aberrant Crypt Foci, C) 
Adenomatous polyp, D) Adenocarcinoma (from (Limburg and Ahlquist 2004)). 
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be precursors of adenoma and cancer. Presently, several studies indicate that the number of 

ACF increases in patients with colon carcinoma, and that there are more rectal ACF in persons 

with adenomas (Adler, Gostout et al. 2002; Rudolph, Dominitz et al. 2005). 

However, It is also known that a number of compounds with the ability to reduce the 

occurrence of ACF, e.g. 2-(carboxyphenyl)retinamide or genistein, may actually enhance the 

development of colon cancers (Mori, Yamada et al. 2004). Moreover, Rudolph et al. (2005) 

suggests that neither ACF size nor number has been shown to be predictive of progression. 

Therefore, neither of these ACF characteristics can be considered valid intermediate end 

points for cancer prevention studies at this time. As such, a better description of the 

distribution of ACF in the general population, and the relation of ACF to demographic, dietary, 

and personal habits will be necessary to advance our understanding of the biological meaning 

of these lesions (Stevens, Swede et al. 2007). 

Regarding the influence of age, different studies suggested that the number of ACF in a 

colon varies with time. Shpitz et al. (1998) observed that the overall prevalence of ACF 

increased slightly with age, although these differences were not statistically significant. 

Roncucci et al. (1998) and Takayama et al. (1998) did not observe significant differences that 

could confirm a relation between the number of ACF and age in patients with colon 

carcinogenesis. Nevertheless, Takayama et al. (1998) observed an increased prevalence of ACF 

after 40 years old, and suggested that after this age, periodic endoscopic surveillance of 

patients is recommended. 

Another relevant aspect verified was the existence of gradient of ACF number along the 

colon. According to Shpitz et al. (1998) and Roncucci et al. (1998), the number of ACF per 

square centimeter of mucosal surface increased gradually from proximal colon to distal. This 

fact is consistent with the usual incidence of colorectal cancer, normally situated at the distal 

colon and rectum. 

According to heredity, Stevens et al. (2007) observed a higher mean number of ACF in 

patients with a family history of CRC than in those without this risk factor. Furthermore, ACF 

does not appear to be dependent on patient gender, as Roncucci et al. (1998) suggested. 

The detection of ACF in the colon mucosa is usually performed by magnifying 

colonoscopies, an instrument exceptionally well suited for determining the presence or 

absence of ACF in humans, according to Adler et al. (2002), Figure 2.5. To perform this 

detection, it is essential to establish a definition of ACF. In this way, according to Mori et al. 

(2004), ACF are defined as single or multiple crypts that: have altered luminal openings; exhibit 

thickened epithelia; and are larger than adjacent normal crypts (Fulmanski, Laurain et al.). 

Additionally, Figueiredo et al. (2009) suggested that ACF were lesions in which the crypts were 
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more darkly stained with methylene-blue than normal crypts, and that they are often elevated 

from the focal plane of the microscope, Figure 2.5 and Figure 2.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Finally, different studies were performed using only rectal mucosa, since it is easier to use 

in experimental studies with magnification chromoendoscopy. Figueiredo et al. (2009) used 

this technique to investigate the possibility of ACF being a carcinogenesis precursor, and found 

that rectal ACF could be an indicator of a carcinoma elsewhere in the colon. 

In conclusion, ACF behavior is still uncertain, but several steps have been made in order to 

understand its role on the sequence adenoma-carcinoma. Moreover, Akshay et al. (2009) 

concluded that there are considerable variability among endoscopists about whether or not a 

lesion is ACF, and about the presence of endoscopic criteria in the lesion under observation. 

Figure 2.6 – Graphic detection of ACF: 1 – Crypt diameter; 2 – epithelial 
thickness; 3 – epithelial staining intensity (from (Schoen, Mutch et al. 2008)). 

Figure 2.5 – En face photomicrograph of sporadic aberrant crypt focus in sheet of colonic 
mucosa stained with methylene blue (left) (from (Nucci, Robinson et al. 1997)) and typical 
endoscopic appearance of an ACF (from (Rudolph, Dominitz et al. 2005); This image was 
acquired with a Fujinon EC-410 CM magnifying colonoscope after the rectal mucosa had 
been stained with 0.2% methylene blue. 
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However, digitally enhanced images, as used by some investigators, may be a solution, but 

whether they can be implemented for use in large-scale studies is unclear. 

 

2.6. Magnification Chromoscopic Endoscopy 

 

The diagnosis of diseases related to the gastrointestinal tract is based on a particular 

technique: Endoscopy. In what concerns to ACF, Adler et al. (2002), Takayama et al. (1998) and 

Figueiredo et al. (2010) suggested that they can be detected in vivo with magnification 

chromoscopic endoscopy. The resultant acquired images will be the basis of the computational 

analysis performed in this Dissertation project. 

The endoscopy technique is used to examine the interior of the gastrointestinal tract and is 

based on the insertion of an endoscope with special characteristics. According to the American 

Society for Gastrointestinal Endoscopy (Bosco, Barkun et al. 2003), the flexible endoscopes are 

composed of three sections: the control section, the insertion tube and the connector section. 

The control section is outside the patient and directs the insertion tube. The upper front 

portion of the control section is composed of air/water and suction valves. There are remote 

switches to modify or acquire the image sequences (Bosco, Barkun et al. 2003). 

The insertion tube is attached to the control section and is the portion of the endoscope 

that is inserted into the patient. It consists of one (or two) instrument channel(s), one (or two) 

light guide bundle(s), an air channel, a water channel, either an image guide bundle or a 

charge-coupled device (CCD) chip with wire connections, and angulation wires. 

The endoscope tip contains an opening(s) to the accessories/suction channel, an air/water 

nozzle positioned to clear the lens of debris and permit air insufflation, a light guide 

illumination system, and an objective lens system (Fulmanski, Laurain et al.), Figure 2.7. 

Finally, the connector section of the endoscope has a light guide, an air pipe, and electrical 

contacts compatible with the processor/light source. This section also has side connectors for a 

water container, suction, CO2, insertion tube venting, and a safety-cord connecting mount, 

which grounds the endoscope, reducing the electrical shock hazard to the operator. 

Concluding, the endoscope is a complex equipment which allows the visualization of the 

gastrointestinal tract, acquiring the images necessary for diagnosis. The signals captured by the 

endoscope are converted to a color image by one or two systems: (1) Color CCD has a 

multicolor mosaic filter affixed to the surface of the CCD with illumination by a steady white 

light (Fulmanski, Laurain et al.), (2) RGB sequential imaging has a rotating multicolor wheel 
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filter (red-green-blue) located between the light source and the light guide, yielding a visual 

strobe effect (Bosco, Barkun et al. 2003). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

In what concerns to Chromoendoscopy, it is a technique in which tissue stains are applied 

to the gastrointestinal mucosa at endoscopy to better characterize, delineate, or high-light 

specific gastrointestinal findings. At times, it may be used with an endoscope that also 

magnifies the image (magnification endoscopy). Stains of the current generation often are 

classified according to their interaction with gastrointestinal mucosa (Schwartz and 

Lichtenstein 2004). The ACF lesions are stained using methylene blue, a vital stain that is taken 

up by absorbent tissue such as the small intestinal and colonic epithelium. A total of 10-20 ml 

of methylene blue is sprayed with a spraying catheter directly over the mucosa, and after 1-2 

min the mucosa is washed with water to allow examination of the staining effects (Kida, 

Kobayashi et al. 2003). 

The magnification includes two different concepts: high resolution and amplification. As 

such, a magnification endoscopy is described by the ability to discriminate small objects with 

10-17 µm and the amplification of the lens can achieve 105 times. The dimension of a normal 

human crypt is approximately 74 and 433 µm, for horizontal and vertical cross sections. In this 

way, the magnification chromoscopic endoscopy is a valuable tool in the diagnosis of ACF 

lesions. 

 

Figure 2.7 – The interior of a videoendoscope (from (Baillie 2007)). 
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2.7. Capsule Endoscopy 

 

In spite of the significant advances in digestive tube diagnostic, there are still some 

problems to solve. One of the major concerns was related to the inaccessibility of exploring 

the small bowel, since there are only 2 types of endoscopes using probes which are introduced 

into the oral or rectal cavities by means of insertion tubes. Such techniques allow detailed and 

reliable analyses and represent the best nonsurgical tool available today to manage some 

diseases of the digestive tube. Nevertheless, both gastroscopy and colonoscopy are 

considerably invasive and frequently ill tolerated by patients. Moreover, they have to be 

performed by skilled personnel (Carpi, Galbiati et al. 2007). Consequently, several advances 

were pursued leading to the appearance of the capsule endoscopy (CE), Figure 2.8. 

Since 2000, when Iddan et al. (2000) first reported the CE, it has developed rapidly with 

important technical improvements. Initially, CE was created to explore the small bowel, but 

currently there are other solutions where it is applied to esophagus and the colon (Michel and 

Gérard 2008). The system consists of the following components: a capsule endoscope, a 

sensing system composed of sensing pads attached to the trunk, a data recorder, a battery 

pack, and a personal computer workstation with proprietary software that reviews and 

interprets the images (Mishkin, Chuttani et al. 2006). With ethical committee approval, the 

first human volunteer study was performed in August 1999. The wireless capsule endoscope 

has received a CE mark and FDA approval in August 2001 for use in patients (Swain 2003). The 

main specifications of the capsule endoscope can be found in (Mishkin, Chuttani et al. 2006). 

The intestinal endoscopic capsule was designed to be swallowed and to go through the 

digestive tube, capturing approximately 50000 frames during 8 hours of examination. After 

that time, it is normally expelled by the organism and the resulting data are downloaded, 

processed and finally viewed on a monitor (Michel and Gérard 2008). Considering the large 

amount of information captured by a capsule endoscopy and the posterior time of analysis by 

a physician (usually, between 40 and 60 min, depending on the experience), several solutions 

have been created to reduce this time, and to process automatically the resultant images in an 

attempt to identify some pathologies, like small bowel inflammation, ulcers, and cancer cells 

(Dias, Correia et al. 2007; Natalin and Landman 2009; Iakovidis, Tsevas et al. 2010). Another 

innovative investigation with CE is trying to control its navigation, since the impossibility of any 

motion control of the capsule makes the visceral exploration not accurate enough (Carpi, 

Galbiati et al. 2007). 
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Despite the advantages of the endoscopic capsule, it can cause some problems such as 

obstruction, particularly in presence of some diseases as Crohn’s, or influence on electrical 

devices as pacemakers (Adler and Goustout 2003). 

In this Dissertation, it will be performed endoscopic image analysis acquired by endoscopy 

in an attempt to automatically detect aberrant crypt foci, since they are thought to be 

colorectal cancer precursors. However, in the future this analysis would be extent to capsule 

endoscopy and  will contribute to help physicians in their process of diagnosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary 
 

The colon and rectum represent the terminal portion of the gastrointestinal tract. Their 

main function is to absorb water from the remaining food digested. The mucosa is 

characterized by the absence of villi and the presence of deep crypts. When the cell 

differentiation mechanisms change, those crypts became aberrant, and ACF appear. These 

lesions could be precursors of Colorectal Cancer and, as such, its detection may prevent the 

evolution of this disease. 

The principal techniques used to diagnose diseases associated with the gastrointestinal 

tract are endoscopy or capsule endoscopy. The second has the advantage of being no invasive 

and more tolerated by patients. The images acquired by endoscopy will be used to detect ACF 

using algorithms of image processing. 

 

 

Figure 2.8 – Internal view of an endoscopic intestinal capsule showing the 
different technical elements: 1 – Optical Dome; 2 – Lens Holder; 3 – Optical 
Lens; 4 – Light Emitting Diodes (LEDs); 5 – CMOS Imager; 6 – Batteries; 7 – ASIC 
Transmitter; 8 – Antenna (from (Michel and Gérard 2008). 
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Chapter 3 

3. METHODS OF COMPUTATIONAL ANALYSIS 

3.1.  Introduction 

 

The detection of pathologies through endoscopic images has been performed by medical 

doctors, usually trained for that. However, in spite of being good in their tasks, they are also 

affected by fatigue, boredom, environmental factors, are susceptible to committing errors, and 

they are regularly subjective and qualitative (Rangayyan 2005). Hence, there are several 

computational techniques of image processing and analysis capable of detecting patterns, 

edges, clusters, etc., that can aid medical doctors in their diagnosis. 

Concerning to endoscopic images, acquired by capsule endoscopy, there are approximately 

50000-60000 images per examination, and it takes experienced medical clinician over an hour 

to view and analyze all the video data. Moreover, the physicians might miss some 

abnormalities if they were present only in one or two frames of the image sequence, or if that 

cannot be detected by the naked eyes due to their size, color, texture and distribution. 

Furthermore, distinct clinicians may have different findings when come to the same image 

data. All these problems motivate the researchers to develop reliable and uniform assisting 

approaches to reduce the great burden of the physicians (Baopu and Meng 2007). 

Techniques of biomedical image processing and analysis can be powerful tools that can aid 

the answering to these issues discussed above. Considering this, an overview of the principal 

techniques used in biomedical image processing is detailed in this section and, later, a review 

about what is specifically applied to endoscopic images is presented. 

 

3.2.  Digital Image 

 

To understand the basis of techniques of image processing is important to define first the 

properties of a digital image. At the most basic level, a digital image is represented by a 

rectangular array of numbers, divided into small regions: pixels. The intensity number inserted 

in each pixel reflects the brightness of the image at the corresponding point (Castleman 1996). 
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In Figure 3.1, the amplification of an image reveals the matrix composed by pixels with the 

intensity values. Since this image is in the gray scale, each array of the matrix corresponds to a 

gray level from 0 (zero) to 1 (one), where 0 is white and 1 is black. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, there are several formats in which an image can be represented. The two 

principal formats of color images referred in the literature are RGB (Red, Green and Blue) and 

HSI (Hue, Saturation and Intensity). In the RGB model, each color appears in its primary 

spectral components of red, green and blue. As such, an image is represented by 3 matrixes, 

each one representing the intensity level in the red, green and blue domain. 

The HSI model is composed of three main characteristics: Intensity, Saturation and Hue. 

Intensity is the average of the R, G and B grey levels, although different schemes with unequal 

weighting of the colors are also used. The intensity does not have any information about color 

and, as such, Hue and saturation are responsible for that information. Hue is expressed as an 

angle and it refers to the spectral wavelength that most closely matches with the original 

image. The saturation parameter is described as the radius of the point from the origin of a 

color circle. Around the periphery of the circle, fall the saturated color and at the center lie 

neutral (gray) shade (zero saturation) (Castleman 1996). 

Any solution of digital image processing and analysis can be divided in fundamental steps. 

According to Gonzalez and Wood (2002), such steps are image enhancement, image 

restoration, compression, morphological processing, segmentation, representation and 

description, and recognition. However, the aims of this Dissertation are based on just some of 

the steps enumerated. Hence, only the relevant methods of these steps will be detailed. 

Figure 3.1 – Digital image matrix. 
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3.3.  Image Enhancement 

 

Image pre-processing is usually performed in order to reduce or eliminate noise and to 

reduce system invariance to acquisition settings. Yu and Jan (2009) suggested that the pre-

processing stage consists of several subtasks, including image enhancement, noise reduction, 

gradient magnitude estimation and preliminary LOI (layer of interest) extraction. Moreover, 

pre-processing could be used to normalize size and intensity value scale, in order to obtain 

process and analyze the images with less variability. 

One of the main topics in this issue is image enhancement, which purpose is to process an 

acquired image for better contrast and visibility of features of interest for visual examination 

(Sternberg 1983). Moreover, the principal objective of image enhancement is to modify 

attributes of an image to make it more suitable for a given task and a specific observer (Maini 

and Aggarwal 2010). However, in some cases the enhancement could lead to loss of relevant 

information. 

To better understand the methods involved in image enhancement, this section will explore 

the most relevant algorithms used in this medical image processing step. 

The aim of image enhancement is to enhance contrast, edges and general detail visibility in 

the image, without causing any distortion or artifact. There are two different domains, in 

which this image processing task can be done: Spatial and Frequency. Based on Rangayyan 

(2005), the fundamental algorithms used in this step of image processing are depicted in 

Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.2 – Image Enhancement algorithms. 
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The spatial domain methods are performed in the image matrix, varying the pixel intensity 

value directly, while the frequency domain methods imply the Fourier Transform. In order to 

understand the basic principles involved in these algorithms, they are explained in the next 

sections. 

 

3.3.1.  Spatial Domain 

 

3.3.1.1. Thresholding 

 

Based on image histogram, which indicate the gray level intensity distribution, it is possible 

to improve the visibility of selected details and alter the overall appearance of the image. 

When the gray level of the object of interest in an image is known or can be determined, 

the image may be thresholded to separate the object from the image background. Otsu (1979) 

proposed a method to automatically determine the threshold value from the histogram 

information. This method is simple and may be considered to be a form of image 

enhancement in the sense that the objects of interest are perceived better in the resulting 

image. The equation used to describe this method is: 

 

�(�, �) =  0	!"	"(�, �) ≤ $1"(�, �)	!"	"(�, �) > $1,     (3.1) 

 

where �(�, �) is the output image, "(�, �) is the input image and $1 is the threshold 

established or determined automatically. 

If the region of interest has a specific range of gray levels (between "1 and	"2), it could be 

performed a threshold in a window: 

 

� = ' 0	!"	"(�, �) ≤ "1((),*)+	(,(-+(, 	!"	"1 < "(�, �) < "20	!"	"(�, �) > "2 .     (3.2) 

 

3.3.1.2. Histogram-based 

 

The histogram of an image represents the number of occurrence of each intensity level 

providing the distribution of intensities in such image. Usually, the histogram is normalized, 
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dividing each of its components by the total number of pixels in the input image, allowing a 

better comparison between images. 

Histograms are the basis for numerous spatial domain processing techniques and could be 

used for image enhancement, as shown in this section. In comparison to other methods, the 

advantages of histogram based techniques are simplicity and less computational demanding. 

The two principal methods are histogram equalization and histogram stretching. They have a 

common objective: improve the image contrast, enhancing the separation between the object 

of interest and the image background (Gonzalez and Woods 2002). 

 

a) Histogram Equalization 

 

The histogram equalization is a non-linear transformation that stretches the histogram of 

the input image such that the gray level occurs in the output image with equal probability, 

performing a contrast adjustment. The uniform distribution of the output image histogram is 

limited by the discrete computation of the gray-level transformation (Yeganeh, Ziaei et al. 

2008). 

This algorithm can be applied to the entire image (global) or be performed locally 

(adapted). The adapted histogram equalization operates on small data regions (tiles) rather 

than the entire image. Each tile’s contrast is enhanced so that the histogram of the output 

region approximately matches the specified histogram. The neighboring tiles are then 

combined using bilinear interpolation in order to eliminate artificially induced boundaries 

(Pizer, Johnston et al. 1990). 

In cases of images with varying background, the adapted algorithm is the best choice, since 

it is not affected by this variation. 

 

b)  Histogram Stretching 

 

The histogram stretching consists in distributing the pixel appearance frequencies over the 

entire width of the histogram. Thus, the gray values of the input image are scaled to the range 

defined, expanding the histogram and enhancing the contrast. This is an attempt to improve 

an image making full use of the possible intensity values. 

The first step is to determine the lower (0) and upper (1) limits over which image intensity 

values will be extended. Posteriorly, the minimum (2)  and maximum (3) values of the image 
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are calculated and if these were equal to the limits determined, then there will be no 

stretching. Otherwise, for each pixel, the original value 4 is mapped to output value 5 using: 

 5 = (4 6 2) 78+9:+;< = 0.       (3.3) 

 

However, if the original image has outliers, i.e., pixels with an intensity value very high or 

low when compared to the whole image, the stretching will be done based on those values, 

resulting in lower contrast (Gonzalez and Woods 2002). 

 

3.3.1.3. Linear Filtering 

 

The spatial filtering is focused on local operators that allow using the context of the image 

in which each pixel is inserted. It involves the convolution of the input image with a specific 

mask to enhance the image (usually of size 3x3), moving the filter mask from point to point in 

an image, calculating the sum of products of the filter coefficients and the corresponding 

image pixels in the area spanned by the filter mask, Figure 3.3. 

 

 

 

 

 

 

Figure 3.3 – The application of the convolution mask in an image in the spatial 
domain (adapted from (Gonzalez and Woods 2002)) 

 

The convolution mask (Figure 3.3) is the key factor in linear filtering since its coefficients 

determine the filtering desired, being usually descried in the literature two types of filters that 

could be applied: Smoothing and Sharpening. 

 

a) Smoothing 

 

The smoothing filters are commonly used to reduce noise with high intensity variation 

values, since they calculate the average of the pixels contained in the neighborhood of the 
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filter mask, being sometimes called average filters. The output image is blurred since every 

high intensity variations are averaged, which lead to an image without well-defined edges. 

Considering this, this method should be used in situations where the losses of sharp edges 

compensate the noise reduction. 

There are three different methods used in this topic: mean filter, Gaussian filter and 

median. The first two are very similar, but while the mean filter calculates the arithmetic 

average of the pixel and its neighbor, the Gaussian filter is based on a normal distribution, with 

two parameters: average and standard deviation. The median filter is very useful to reduce 

noise with high-intensity values, as salt & pepper. In each pixel with a neighborhood defined, 

the algorithm sorts in crescent order the intensity values and attribute the median value to the 

pixel, allowing the elimination of the higher and smaller values (Gonzalez and Woods 2002). 

 

b) Sharpening 

 

In opposite to smoothing algorithms, sharpening spatial filters are used to highlight 

transitions in intensity, making the edges more evident. The most common methods are based 

on spatial differentiation, in particular first and second order derivatives. The definition of the 

first order derivatives of the function "(�) in one dimension is expressed as: 

 >(>? = "(� = 1) 6 "(�).       (3.4) 

 

Moreover, any definition used for a first derivative must be zero in areas of constant 

intensity, nonzero at the onset of an intensity step or ramp and must be nonzero along ramps. 

The second order derivative is defined as: 

 

>@(>?@ = "(� = 1) = "(� 6 1) 6 2"(�).     (3.5) 

 

Similarly, any definition used for a second derivative must be zero in constant areas, 

nonzero at the onset and end of an intensity step or ramp, and must be zero along ramps of 

constant slope. 

The most common algorithms used for first and second order derivative are, respectively, 

Sobel and Laplacian. The implementation of these methods will sharp the edges of the image. 
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Finally, there is another method to sharpen images that consist of subtracting an Unsharp 

(smoothed) version of an image from the original image (Rangayyan 2005). This process is 

called Unsharp Masking and comprises the steps schematized in Figure 3.4. 

 

 

 

 

 

 

Figure 3.4 – Conventional Unsharp Masking technique (from 
(Badamchizadeh and Aghagolzadeh 2004)). 

 

3.3.1.4. Morphological processing 

 

The mathematical morphology investigates the geometrical structure of sets and consists of 

four basic transformations: erosion, dilation, opening and closing. In image processing, these 

transformations are defined in terms of a structuring element which interacts with the input 

image in order to extract useful information. A structuring element is an object, other than the 

image object, of simpler shape than the original image object, and it is chosen according to its 

geometrical properties.  

The erosion of an image has the effect of shrinking the image with respect to the geometry 

of the structuring element and could be implemented using OR boolean logic. In opposition to 

this is the dilation, which effect expands the image and could be implemented using the AND 

boolean logic (Schonfeld 1991). 

The operations of opening and closing are related to the erosion and dilation. As such, the 

opening consists of erosion followed by dilation with the same structuring element, and the 

closing is the opposite, i.e., a dilation followed by erosion. 

 

3.3.2.  Frequency Domain 

 

The frequency domain image processing is based on the Fourier transform and the 

mathematical operations that could be performed in this domain. Hence, frequency domain is 

the space defined by values of the Fourier transform ad its frequency variables. 
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3.3.2.1.  Frequency Filtering 

 

Filtering in the frequency domain is simple and straightforward. Generally, the Fourier 

transform of the image is multiplied by the filter function and then the inverse Fourier of the 

product will present the resulting image (Bansal, Bajpai et al. 2007). Thus, given an 

image	"(�, �), of size	A × C, the basic filtering equation in which we are interested has the 

form: 

 �(�, �) = ℑ+,[�(F, G)H(F, G)],      (3.6) 

 

where ℑ+, is the inverse of Fourier Transform, H(F, G) is the Fourier Transform of the input 

image, "(�, �), �(F, G) is a filter function and �(�, �) is the filtered (output) image. 

The result of this filtration is based on the filter function that could represent a High pass or 

Low pass filter. The edges and noise in the image are the result of high frequencies, while low 

frequencies are responsible for the general gray-level appearance over smooth areas. Hence, a 

low pass filter will attenuate high frequencies and the resulting image will smooth. On the 

contrary, the high pass filter will enhance the edges (Gonzalez and Woods 2002). 

Concluding, the frequency filtering could be compared to the linear filters of smoothing and 

sharpening, but the implementation is easier. 

 

3.3.2.2.  Homomorphic Filtering 

 

The Homomorphic filtering is a technique that defines an image H(�, �) as a product of 

illumination 	(�) and reflectance �(�, �), and can be expressed as: 

 H(�, �) = 	(�, �) × �(�, �).       (3.7) 

 

The illumination component of an image generally is characterized by slow spatial 

variations, while the reflectance component tends to vary abruptly, particularly at the 

junctions of dissimilar objects. However, these two components expressed at the equation 3.7 

cannot be used directly since the Fourier transform of the product of two functions is not 

separable. Hence, if the equation is represented as a logarithmic function, then the product is 

transformed in a sum operation: 

 ln(�, �) = lnL	(, ��)M = ln	(�(�, �)).     (3.8) 
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The implementation of the Homomorphic filtering is summarized in the diagram presented 

in Figure 3.5. 

The filter �(F, G) is chosen respecting the tendency of decreasing the contribution made by 

the low frequencies (illumination) and amplifying the contribution made by high frequencies 

(reflectance). The result will show simultaneous dynamic range compression and contrast 

enhancement (Gonzalez and Woods 2002; Rangayyan 2005). 

 

 

 

 

Figure 3.5 – Steps in Homomorphic filtering (from (Gonzalez and Woods 2002)). 

 

3.4. Image Segmentation 

 

One of the most critical steps in the process of reducing images to high-level information is 

segmentation. It subdivides an image into its constituent regions or objects and the level to 

which it is applied depends on the desired result, that is, segmentation should stop when the 

objects of interest in an application have been isolated (Gonzalez and Woods 2002). 

Rangayyan (2005) proposed that image segmentation could be divided into four main 

categories, Figure 3.6. These techniques are detailed in this section. 

 

 

 

 

 

 

 

 

 

Figure 3.6 – A classification of image segmentation approaches. 
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3.4.1.  Thresholding 

 

The process of image thresholding is used to separate an object from the image 

background. As such, one simple way is to define a range of brightness values in the original 

image, select the pixels within this range as belonging to the foreground, and reject all the 

other pixels to the background, dividing an image into two levels: usually black and white 

(binary image) (Russ 2002). Mathematically, it could be defined as: 

 �(�, �) =  1, "(�, �) < N0, "(�, �) ≥ N,      (3.9) 

 

where �(�, �) is the output image, "(�, �) the input image and N the defined threshold value. 

Moreover, the definition of the threshold value can be manual, requiring previous 

knowledge or iterative experiments, or automatically, which combines the image information 

to get the threshold value to be used. Otsu (1979), as mentioned previously, suggested a 

method to automatically find the value of the threshold based on the image histogram, and it 

is generally applied on the entire image. However, the global technique could not be the best 

option when the image has illumination variability. Thus, it was developed an adaptive 

threshold that is processed locally. 

Wellner (1993) described a new quick adaptive threshold based on the more complex 

algorithm proposed by R. J. Wall (Castleman 1996). The basic idea is to run through the image 

while calculating a moving average of the last pixels seen. When the value of a pixel is 

significantly lower than this average, it is set to black, otherwise it is left white. Only one pass 

through the image is necessary, and the algorithm is simple enough to be implemented in 

hardware. 

 

3.4.2. Boundary-based 

 

An image boundary is defined as a discontinuity in pixel intensity and corresponds to the 

contour that separates the object from the background. Thus, the aim of the algorithms 

included in this topic is to segment an image based on the edges of each region by locating the 

pixels whose intensity varies abruptly. 

The image gradient is a powerful tool in the edge-based algorithms, since it is capable of 

detecting the intensity variability over the image. Moreover, in what concerns to deformable 

models, the active contour (snake) algorithm also uses this information to move the initial 

contour toward the object of interest. 
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3.4.2.1. Edge-based 

 

An image edge is generally defined as a boundary between two regions with different grey-

level properties. The algorithms of segmentation based on edge detection try to separate the 

interested regions according to its boundaries. Hence, the edge detection algorithms can be 

simple as Sobel, Laplacian, Prewitt and Roberts, or more complex as Canny, which are the 

most preeminent examples of this type of segmentation. 

The Laplacian edge detection is based on the calculation of the second derivative of the 

image that will produce an abrupt zero-crossing at an edge (Davis 1975). It is commonly 

implemented digitally by a 3x3 convolution kernel that will convolve with every pixel of the 

image, resulting in an output image with the edges detected. 

The Sobel edge detector uses two kernels with horizontal and vertical direction. It 

calculates the magnitude and direction gradient of each pixel and its neighborhood. Since an 

edge is characterized by a higher magnitude value when compared to its neighborhood, this 

detector will be able to detect every edge and construct an output image with a black 

background and white edges. Alternatively, Roberts and Prewitt edge detector are also based 

on the image gradient, but uses different mask coefficients to highlight the image edges. 

Finally, Canny (1986) proposed a new method based on finding the zero-crossing of the 

laplacian of Gaussian (LoG), a bandpass filter that calculates the second derivative of a 

smoothed image (Canny 1986; Russ 2002). 

 

3.4.2.2. Deformable models-based 

 

The algorithms included in this group can be viewed as a modeling of curve evolution. They 

could be divided into parametric and geometric. 

Starting with parametric models, they track the evolution through sample contour points. 

The moving equation for the contour can be derived through energy functions or defined 

directly through dynamic forces (Ma, Tavares et al. 2009). 

One of the most common deformable models is the snake method. It was developed by 

Michael et al (1988), who described this method as a matching of a deformable model to an 

image by means of energy minimization. From any starting point, the snake deforms itself into 

conformity with the nearest salient contour. Normally, it is used an edge detector based on the 

image gradient to detect the boundary of the desired object. As such, a snake is an energy-
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minimizing spline that pulls it toward features such as edges, and constrained by internal 

spline forces that impose piecewise smoothness (Rangayyan 2005). 

Concerning to geometric deformable models, there are two principal methods described: 

Level-set and Chan and Vese model. 

The Level-set method was fists introduced by Osher and Sethian (1988) and is based on a 

partial differential equation (PDE), the Hamilton Jacobi equation. The main idea is to implicitly 

embed the moving contour into a higher dimensional level set function and view the contour 

as its zero level set. Then, instead of tracking the discrete contour points, one can track the 

zero level set of the level set function. Formally, the evolution of the interface is driven by a 

time-dependent PDE where the so-called velocity term reflects the image features 

characterizing the object to be segmented. The level set methods have been successfully 

applied to structural shape and topology optimization problems (Gelas, Bernard et al. 2007; 

Wang, Lim et al. 2007; Ma, Tavares et al. 2009). 

The Chan and Vese (2001) model can be described as an active contour without edges. As 

such, contrary to snakes, this method is not based on an edge function to stop the evolving 

curve on the desired boundary. It is based on Mumford–Shah (1989) segmentation techniques 

and the level set method and is capable of detecting objects whose boundaries are not 

necessarily defined by gradient or when they are very smoothness, for which the classical 

active contour models are not applicable. The algorithm extracts the desired object through 

simultaneously minimizing the intensity variations inside and outside the contour. The most 

appreciable advantage of Chan and Vese model is that it can obtain a boundary of discrete 

points, which is quite useful when the objects of interest are represented by discrete pixel 

clusters and have no clearly defined boundaries (Ma, Tavares et al. 2009). 

3.4.3. Region-based 

 

Algorithms based on regions are used to separate objects from the background, taking into 

account the pixels’ properties of a region. The three principal methods cited are region 

growing, split and merge and Watershed transform. The result of these three methods is the 

identification of the objects of interest, distinguishing them from the image background. 

3.4.3.1. Region Growing 

 

Region growing, initially proposed by Adam and Bischof (1994), is a procedure that groups 

pixels with similar characteristics as gray level, texture or color. The simplest approach starts 

with a “seed” point, that could be a single pixel, and according to the properties of the seed, 
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the group is formed through attachment of other pixels with the same characteristics. The 

process of growing should stop when no more pixels satisfy the criteria for inclusion in that 

region (Gonzalez and Woods 2002; Jun 2010). 

 

3.4.3.2. Split and Merge 

 

The region splitting and merging is an alternative image segmentation algorithm that 

aggregate pixels according to their similarity. It was first proposed by Pavilidis (1974) and is 

widely used directly or indirectly in image processing. This algorithm initiates with the 

subdivision of the image into a set of arbitrary disjoint regions and then, it starts to merge 

according to the similarities between them. Hence, it is defined a threshold that establishes 

the conditions of merging. 

 

3.4.3.3. Watershed 

 

Watershed is a method that often produces more stable segmentation results. It is based 

on a geographical concept, where the watershed is an area of land that could be flooded with 

water, maintaining the watershed lines visible at the end. These lines will correspond to the 

objects’ boundaries and will contribute to segment the image into regions (Castleman 1996). 

 

3.5.  Application on Endoscopy Images 

 

Different investigation work has been made to detect the presence of colon cancer from 

two perspectives: in histological colon tissues, or through detection of polyps or, more 

recently, ACF in endoscopic images. In this Dissertation project, the aim is to detect Aberrant 

Crypt Foci using endoscopic images. 

In the literature, there are several algorithms that have been applied to segment medical 

images. Regarding the segmentation of endoscopy images, Liedlgruber (2009) proposed 

several important measures to improve the quality of the acquired images. In Figure 3.7, the 

usual steps performed to process and analyze endoscopic images are depicted. Due to the fact 

that images taken using a traditional endoscope often suffer from various kinds of 

degradations, usually, techniques of pre-processing are applied on the original images. The 

most common problems found in endoscopy images are related to undesired noise caused by 
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Charge-Coupled Device (CCD) or Complementary Metal Oxide Semiconductor (CMOS) chips, 

inhomogeneous brightness and poor contrast and blurred images due to the focus problems 

and peristaltic movements. Authors have been proposed several solutions to overcome these 

problems, including linear filtering with appropriate filters or low pass filtering in the 

frequency domain to reduce noise, histogram equalization to enhance contrast and high pass 

filtering to reduce blur. 

 

 

 

 

 

 

 

Figure 3.7 – Common steps involved in a decision support system to analyze endoscopic 
images (from (Liedlgruber and Uhl 2009)). 

 

For example, Wang et al. (2002) proposed a segmentation method applied to endoscopic 

images based on adaptive histogram thresholding, morphological processing and centroid 

calculation. 

Tjoa et al. (2002) based their approach on color feature hue measure, since colonoscopic 

images contain rich color information, and it can provide better results for the segmentation of 

the colonoscopic images than approaches using merely intensity information. 

In the 90’s decade, Krishnan (1997; 1999) based their work in a procedure, including two 

steps: image segmentation and labeling. The color image segmentation was based on the 

histogram analysis using a scale-space filter. From these segmented regions, it was possible to 

extract some features and attribute a label based on fuzzy rules, i.e. attribute some conditions 

to the features measured in order to aggregate them. For example, if the area is middleand 

the mean value of intensity and saturation is low, then the region is classified as lumen. 

In what concerns to Capsule Endoscopy, the aim is to analyze all images and identify image 

frames that contain abnormalities, reducing significantly the examination time by the 

physician. One example is the detection of Gastrointestinal bleeding that is based on 

segmentation, histogram thresholding, texture properties (e.g. local binary patterns or 

variants), histogram based features (Mackiewicz, Berens et al. 2008), or chromaticity 

moments. 
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Since the wireless capsule endoscope cannot influence the travel speed and direction, the 

resulting images have poor quality and pre-processing steps are required. 

Finally, concerning to specifically ACF detection, Figueiredo et al. (2010) proposed recently 

a method to detect ACF in endoscopic images based on partial differential equations, more 

exactly, active contours without edges (Chan and Vese model). However, there is still much 

work to do, since there are few articles in the literature reporting image segmentation to 

detect these structures in endoscopic images in vivo. 

 

 

Summary 
 

Any solution of image processing and analysis is based on two fundamental steps: image 

enhancement and image segmentation. The first is used to reduce noise, to improve the image 

quality and enhance contrast. As such, the output image potentiates the detection of the 

object of interest and simplifies the image segmentation process. It could be divided into two 

domains: spatial and frequency, processing in the matrix of the input image or after the 

Fourier transform, respectively. 

The image segmentation algorithms try to separate the objects from the image background 

using different approaches that are essentially based on boundaries and/or regions. 

In what concerns to endoscopic images, the problems related to image acquisition and the 

time spend by physicians motivate the research and application of image processing and 

analysis algorithms that enhance the image quality and identify frequent pathologies. 

The detection of ACF is rarely described in the literature, and since it is indicated as a 

possible precursor of colorectal cancer, the development and implementation of image 

processing and analysis methods to detect these lesions will contribute positively to the 

efficient and fast diagnosis of this disease. 
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Chapter 4 

4. IMPLEMENTATIONS, RESULTS AND DISCUSSION 

 

4.1. Introduction 

 

The study on image processing algorithms reveals that different approaches have been 

used to achieve image enhancement and segmentation of the object of interest. In chapter 3, 

a briefly explanation was made of those techniques. In this chapter, the most relevant 

methods are explained in more detail and the results of their implementation are presented 

and discussed. 

Considering the human aberrant crypt foci (ACF) endoscopic images used in this project, 

they were acquired at the Faculty of Medicine of the University of Coimbra and at the 

Department of Gastroenterology of University Hospital of Coimbra. 

Originally, the images were in the ��� domain. However, a large part of the mentioned 

algorithms cannot be implemented in this domain, since it has three matrixes instead of the 

common one with the pixels’ intensities. Thus, in some cases it was necessary to convert the 

images to different domains, in particular, to gray scale or to	��	 (Hue, Saturation and 

Intensity) space. 

In the ��� model, each color appears in its primary spectral component of red, green and 

blue. To understand the color distribution, this model is represented in Figure 4.1 as a cube, 

where the extremities represent one color. Hence, the ��� images are composed of three 

matrixes, each one representing the intensity of red, green and blue, and from these it is 

possible to derive other colors. 

Although the ��� model is suitable for color display, it is not good for image segmentation 

and analysis since the components	�,	� and �	are high correlated, that is, if the intensity 

changes, all the three components are changed accordingly. Also, the measurement of a color 

in ��� space does not represent color differences in an uniform scale; hence, it is impossible 

to evaluate the similarity of two colors from their distance in such space (Cheng, Jiang et al. 

2001). Considering this, the ��� model could be converted to other models available, as ��	, 

which separates color information from its intensity. 
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Figure 4.1 – Schematic of the ��� color cube (from (Gonzalez and Woods 2002)). 

 

The ��	 model is represented by three matrixes, each one representing Hue, Saturation 

and Intensity. The color information is contained in hue and saturation values, while the 

intensity is determined by the amount of light. As a result, the ��	 model is an ideal tool for 

developing image processing and analysis algorithms based on color descriptions (Gonzalez 

and Woods 2002). 

Hue represents basic colors, and is determined by the dominant wavelength in the spectral 

distribution of light wavelengths. The saturation is a measure of the purity of the color, and 

signifies the amount of white light mixed with the hue. It is the height of the peak relative to 

the entire spectral distribution. 

The ��	 color space can be described geometrically as in Figure 4.2. Generally, hue is 

considered as an angle between a reference line and the color point in  ��� space. The 

saturation component represents the radial distance from the cylinder center so that the 

nearer the point is to the center, the lighter is the color. Finally, intensity is the height in the 

axis direction where zero (minimum) intensity is black and full (maximum) intensity is white. 

The ��	 coordinates can be obtained from the ��� space using: 

 

�FR = 042�0� 7 √T(U+V)(W+U)X(W+V)<,       (4.1) 

 	��R�5!�� = (WXUXV)T ,         (4.2) 

 �0�F40�!Y� = 1 6 Z[\	(W,U,V)] .       (4.3) 

 

The hue is undefined if the saturation is zero, and the saturation is undefined when the 

intensity is zero. 
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Figure 4.2 – HSI color space (from(Cheng, Jiang et al. 2001)). 

 

Concluding, the image processing algorithms in the ��	 domain may be performed only in 

the intensity matrix, maintaining the color information intact. However, to segment objects 

with different colors, it could be useful to apply the segmentation algorithms to the hue 

component only, since it represents the basic colors (Cheng, Jiang et al. 2001). 

Another approach used is the conversion of the ��� image to gray scale. In this case, the 

three matrixes will end up in one representing the intensity in gray levels. The disadvantage of 

this conversion is that an important part of the image information is lost. However, in this 

chapter, the image enhancement and segmentation algorithms will be implemented in those 

two domains and the result will be compared. The conversion is based on a weighted sum of �,� and � components: 

 �40�	^RGR^ = 0.2989 × � = 0.5870 × � = 0.1140 × �.    (4.4) 

 

An example image in the ��� space, in gray scale and in the ��	 space is shown in Figure 

4.3. The algorithms’ implementations were developed and evaluated in Matlab®. 

 

 

 

 

 

 

Figure 4.3 – An endoscopic image in the three domains: ��� (left), gray scale (middle) 
and ��	 (right) 



Endoscopic Image Analysis of Aberrant Crypt Foci 

 

38 
 

4.2. Image Enhancement 

 

Generally, the medical images have problems with noise, which impoverishes the images’ 

quality and makes the diagnosis a difficult process, particularly when it is automatic, as is 

intended in this project. The image enhancement could potentiate the segmentation of the 

object of interest, which corresponds to ACF lesions in this particular study. Considering this, 

this section explores the capacities of the image enhancement algorithms previously 

introduced in chapter 3, and evaluate the effects produced by changing their parameters using 

an endoscopic test image, displayed in Figure 4.3. 

4.2.1. Spatial Domain 

4.2.1.1. Smoothing 

 

The most common algorithms used to smooth images are: average, Gaussian and median 

filters. The implementation of these filters is based on a basic linear filtering operation, the 

convolution. This calculus is done between every pixel and the characteristic mask of the filter. 

Giving an image �(�,�) and the mask	b, the output image �(�,�) is the result of the 

calculation given by equation 4.5 (see Figure 4.4) where the mask coefficients will be the basis 

of the filtering desired. 

 �(�,�) = b(1,1) × �(� 6 1, � 6 1) = b(1,0) × �(� 6 1, �) = b(1,61)× �(� 6 1, � = 1) = b(0,1) × �(�, � 6 1) = b(0,0) × �(�, �)= b(0,61) × �(�, � = 1) = b(61,1) × �(� = 1, � 6 1)= b(61,0) × �(� = 1, �) = b(61,61) × �(� = 1, � = 1) 

(4.5) 

 

  

 

 

 

 

 

 

 

 

Figure 4.4 – The convolution operation (from (Wang 2009)). 
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The average filter computes the sum of the pixels in the local neighborhood established and 

divides by the total number of pixels in use. The mask filter of size 3x3 is represented in Figure 

4.5a. The mask size is a parameter that could be changed and that directly influences the 

filters’ result. 

The Gaussian filter is similar to average, but attributes different weights to the pixels in the 

neighborhood, following a normal distribution. Moreover, it depends on the standard 

deviation and mask size to smooth more or less the image. An example of mask coefficients is 

presented in Figure 4.5b. 

 

 

 

 

 

 

Figure 4.5 – Masks used in average (a) and Gaussian (b) filtering. 

 

The Gaussian filter is characterized by a bell shape curve dependent on mean and standard 

deviation c: 

 

�(�, �) = ,-de@ R+f@gh@@i@ ,       (4.6) 

 

where � is the distance from the origin in the horizontal axis and � in the vertical axis. As the 

standard deviation increase, the Gaussian curve is larger, Figure 4.6. 

 

 

 

 

 

 

 

 

 

Figure 4.6 – The influence of standard deviation on Gaussian curve. 

a) b) 
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The median filter is based on different assumptions, Figure 4.7. The use of this algorithm is 

very valuable when in the presence of high intensity noise or outliers, as, for example, the “salt 

and pepper” noise, since the highest and lowest intensity levels are usually removed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 – Flowchart of median filter. 

 

The mask size variation plays an important role in the smooth intensity of the filter. The 

results represented in Figure 4.8 for the three different filter algorithms have the same 

conclusion: as the mask size increase, the image becomes smoother, in a direct 

proportionality. However, the Gaussian filter seems to be almost invariant as the mask size 

increase. This is related to the fact that sigma (standard deviation) parameter plays a central 

role in the Gaussian filter, having a direct proportionality with smoothness, i.e., the increase of 

sigma leads to smoother images, as can be seen in Figure 4.9. The results show just a small 

part of the original image in order to visualize better the smooth effect. 
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Figure 4.8 – The influence of mask size in average (1st row), Gaussian (2nd row) and  
median filters (3rd row). 

 

 

 

 

 

 

 

Figure 4.9 – The influence of sigma in the Gaussian filter. 

 

4.2.1.2. Sharpening 

 

The methods used to sharp the images, turning the edges more evident, are commonly 

divided into two main equations: the first and second order derivatives. 

The first order derivative function of "(�, �) is defined as: >(>? = "(� = 1) 6 "(�).       (4.7) 
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When it is computed at location	�, the value of the function at that location is subtracted 

from the next point. As such, when the neighbor pixels have similar intensity values, the 

function generates null responses while in transitions it responds positively. 

First derivatives in image processing are implemented using the magnitude of the gradient. 

For a function	"(�, �), the gradient of " at coordinates (�, �) is defined as the two-

dimensional column vector: 

 

j" = klflhm = nopofopohq.        (4.8) 

 

This vector provides information about the direction of the greatest rate of change of " at 

location	(�, �). Moreover, the magnitude of the vector can be calculated to indicate the rate of 

change value at each pixel in the image: 

 

A(�, �) = r�?- = �s-.       (4.9) 

 

Sobel operator is an example of a first derivative method and it operators through mask 

convolution with the input image. It has two convolution masks, one oriented horizontally and 

another one vertically, �? and	�s, respectively. When applied on an original image, the 

resulting magnitude image enhances the edges and intensity transitions, and neutralizes the 

homogeneous regions, Figure 4.10. 

 

 

 

 

 

 

Figure 4.10 – Sobel sharpening filter: a) and b) horizontal and vertical masks, respectively; 
c) original input image; d) output image. 

 

In this case, the resultant image had the intensity variations quite well distinguished. 

However, this algorithm is not a good option when in the presence of noisy images since it 

emphasizes the high intensity values. 

a) b) c) d) 
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Another approach frequently used to perform image sharpening is the second order 

derivative. The definition of this function "(�, �) is: 

 

>@(>?@ = "(� = 1) = "(� 6 1) 6 2"(�).     (4.10) 

 

The non-null responses of this derivative occur in transitions of the first order derivative. 

The simplest derivative operator is the Laplacian, which, for an image "(�, �) is defined as: 

 

j-" = >@(>?@ = >@(>s@.        (4.11) 

 

To express this equation in its discrete form, it is divided in two directions. In the � 

direction it is: 

 

>@(>?@ = "(� = 1, �) = "(� 6 1, �) 6 2"(�, �),     (4.12) 

 

and, similarly, in the � direction it is defined as: 

 

>@(>s@ = "(�, � = 1) = "(�, � 6 1) 6 2"(�, �).     (4.13) 

 

The junction of the equations 4.11, 4.12 and 4.13 defines the discrete Laplacian with two 

variables as: 

 j-"(�, �) = "(� = 1, �) = "(� 6 1, �) = "(�, � = 1) = "(�, � 6 1) 6 4"(�, �). (4.14) 

 

This equation could be implemented using the mask shown in Figure 4.11a. 

 

 

 

 

 

 

 

Figure 4.11 – Laplacian sharpening filter: a) mask; b) original image; c) filtered image. 

a) b) c) 
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In the experimental image that has been used up to now, the results obtained with the 

Laplacian filtering are similar to Sobel, but with less noise and thinner edges.   

 

4.2.1.3. Unsharp Masking 

 

As mentioned by Liedlgruber (2009), the endoscopic images acquired are sometimes 

blurred since the current endoscopes do not provide the ability to focus. Hence, the edges 

enhancement could assist the identification of ACF lesions from the images’ background.  

The Unsharp Masking (UM) algorithm is a widely used technique for improving the 

perceptual quality of an image by emphasizing its high-frequency components (Polesel, 

Ramponi et al. 1997). It can be described by equation 4.15, where �(�,�) is the enhanced 

image, �(�,�) is the input image, t(�,�) is the correction signal computed as the output of a 

linear high pass filter, and u is a suitable positive scaling factor which controls the contrast 

enhancement at the output. 

 �(�,�) = �(�,�) = ut(�,�)      (4.15) 

 

The simplest implementation of this method is traduced in three steps: 

1. Blur the original image; 

2. Subtract the blurred image from the original (the difference is called the mask); 

3. Add the mask to the original, with a specified weight. 

It was developed an implementation in Matlab® consisting of these three steps, using two 

different domains, grey-scale and HSI, as previously referred. 

The first step was performed by a Gaussian filter, that is, a low pass filter that smooths the 

edges and blurs the image, as explained in section 4.2.1.1. To use this filter, it is necessary to 

define the mask size and standard deviation. In the experimental evaluation done, the best 

results were obtained using a mask size of 10 pixels and sigma 20, for an image with size 

741x1170 pixels. 

To understand the influence of the parameter	u, the method was used adopting u equal to 

0.5, 1 and 2, Figure 4.12. The results obtained show that the unsharp is more evident as u 

increases, i.e., when the mask component of the equation 4.15 has more weight. However, the 

global application of Unsharp masking to image processing makes the method extremely 

sensitive to noise, enhancing not just the region of interest, but the whole image. 



Chapter 4 –Implementations, Results and Discussion 

45 
 

The answer to this problem was first proposed by Polesel et al. (1997), who based their 

approach in an adaptive algorithm that change the value of the scaling factor u at each 

location, according to the intensity values of the pixels in a neighborhood. Bae et al. (2003) 

suggested a new fast adaptive unsharp masking algorithm, which was the basis of the 

implementation developed in Matlab®, Figure 4.13. 

The main difference between the global and local approach is based on u calculation. The 

algorithm implemented initiated with Sobel filtering, obtaining the gradient magnitude. Then, 

it was followed by maximum filtering, which selected the maximum magnitude value in a 3x3 

pixels neighborhood. Finally, the nonlinear function used was a median filter (5x5 window 

size), that eliminated local noise. In Figure 4.14, the results of Adaptive UM in comparison to 

Global UM are represented. 

The adaptive algorithm reduced significantly the undesired enhance. However, the object 

of interest (ACF lesion) boundary is less evident. 

 

 

 

 

 

 

 

 

 

Figure 4.12 – Unsharp masking implementation in the HSI domain, with results in RGB domain 
(first row), and gray scale (second row). (The results in red evidence the difference 

between the input and output image.) 

 

 

 

 

 

 

Figure 4.13 – An adaptive Unsharp masking algorithm (adapted from 
(Bae, Shamdasani et al. 2003)). 
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Figure 4.14 – Results of Unsharp Masking (2nd column) and Adaptive Unsharp 
Masking (3rd column) filtering. 

 

4.2.1.4. Thresholding 

 

The histogram is a powerful measure of the intensity level occurrences in an image. In some 

cases, there are distinct intensities associated with the image background and foreground 

(object of interest), representing two separate groups visible in the histogram. In such cases, 

threshold is the limit defined from which every pixel with intensity values superior to that will 

be, for example, zero (black) and all the others will be one (white). The mathematical 

expression that traduces this technique is: 

 

�(�, �) =  0	!"	"(�, �) ≤ $1"(�, �)	!"	"(�, �) > $1,     (4.16) 

 

where �(�, �) is the output image, "(�, �) is the input image and $1 is the threshold 

established or determined automatically. 

When the object of interest is in a specified window of intensity values, the threshold can 

be performed according to equation 4.17, where "1 and "2 define the region of interest: 

 

� = ' 0	!"	"(�, �) ≤ "1((),*)+	(,(-+(, 	!"	"1 < "(�, �) < "20	!"	"(�, �) > "2 .     (4.17) 
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The algorithm developed traverses all pixels in the image, comparing their values to the 

threshold establish. According to the comparison result, they acquire a new level. 

The threshold value could be determined manually or automatically, using the method 

proposed by Otsu (1979). This algorithm computes image histogram and probability of each 

intensity level and exhaustively search for the threshold that minimizes the intra-class 

variance, defined as a weighted sum of variances of the two classes. The classes are the 

intensity groups separated by the threshold value.  

In Figure 4.15, the implementation of the thresholding technique, which was developed in 

this project, was performed in Matlab®, at two different levels. The manually choice of 

threshold was 0.5 and 0.8 and it was based on the histogram appearance, since the valleys 

usually indicate the separation between two regions. On the other hand, after applying the 

Otsu’s algorithm, it was obtained a threshold value of 0.58, corresponding to one of the 

valleys. 

The results obtained in this experimental case did not contribute positively to image 

enhancement, since the background presents significant luminance variations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15 – Thresholding use with two different threshold values: a) original gray image; 
b) image with 0.5 threshold; c) histogram of input image; d) image with 0.8 threshold. 

 

In what concerns to windowing threshold, Figure 4.16, the best result was obtained using 

values between 0.1 and 0.7. However, as noticed previously, this technique did not improve 
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the quality of the test image. In fact, thresholding do not have the capacity to eliminate noise, 

but it can contribute to contrast enhancement. 

 

 

 

 

 

Figure 4.16 – Using a threshold windowing between 0.1 and 0.7: a) input gray image; 
b) histogram; c) thresholded image. 

 

The problems encountered with the luminance variance of the input image background can 

be overcome if an adaptive method is used; this approach is exploited in the section 

concerning image segmentation algorithms. 

 

4.2.1.5. Histogram Equalization 

 

The histogram equalization method is used to increase the global contrast of an image, 

since the intensities are better distributed on the histogram. This method is particularly useful 

when the image background and foreground have the similar luminosity. The main advantage 

of this technique is the contrast image enhancement in a straightforward technique, that is, if 

the histogram equalization function is known, then the original histogram can be recovered. 

However, it does not discriminate the background from the region of interest, and it may 

increase the contrast of the background noise and decrease the foreground perception. 

The implementation of this algorithm is based on some mathematical assumptions. 

Consider an image "(�,�) of size A × C pixels with gray levels ^ = 0,1,2,… $ 6 1. The 

histogram of the image may be defined as: 

 w((^) = ∑ ∑ y:["(�, �) 6 ^],z+,*{|}+,){| 							0 ≤ ^ < $ 6 1,                                           (4.18) 

 

where the function y: is defined as: 

 

y:(~) = � 1	!"	~ = 00	Y�bR4�!5R.       (4.19) 

 

a) b) c) 
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Thus, the function w((^) provides the number of pixels in the image "(�, �) that possess the 

gray level	^. In order to normalize the gray levels in the histogram, they are divided by the 

maximum value available, as 4 = ��+,, such that 0 ≤ 4 ≤ 1. Hence, the	�((4) represents the 

normalized histogram or the probability density function (PDF). 

If one wants to apply the transformation 5 = N(4) to the random variable	4, it is given by: 

 5 = N(4) = � �((�)3�; 			0 ≤ 4 < 1�| .     (4.20) 

 

This is the cumulative (probability) distribution function of	4. 

In what concerns to the discrete version, the histogram equalization is approximated by: 

 5� = N(4�) = ∑ �((4�) = ∑ *�� ; 		~ = 0,1, … , $ 6 1��{|��{| ,    (4.21) 

 

where w = AC, representing all the pixels of the image "(�,�) and ~ is the variable which 

includes all gray levels. The output image will attribute new intensity levels based on the 

cumulative distribution function that is equal to	5� (Rangayyan 2005). 

The global application of histogram equalization clearly enhances the images’ contrast, as 

can be verified in Figure 4.17. However, since the image background has a varied luminosity, 

the local version of this algorithm can improve the aim of this method. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 – Using the Histogram equalization algorithm: a)Original RGB image; b) output 
image using HSI processing; c) original gray image; d) output image with gray scale 

processing; e) input image histogram; f) output image histogram. 
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The adaptive histogram equalization uses the same function as the global application but 

applied in a local window that acts through all pixels. The transformation is based on local 

histogram, centered at the current pixel being processed and the resulting transform is applied 

only to the central pixel (Pizer, Amburn et al. 1987). In this method, the contrast enhancement 

mapping is a function of the intensity values immediately surrounding the pixel, so that the 

number of times that this calculation should be repeated is the same as the number of pixels in 

the image. Hence, it is computationally demanding (Reza 2004) and despite the advantages of 

local processing, this method has some problems when in the presence of areas with uniform 

intensity. In these cases, the contrast should not be amplified in order to avoid noise 

enhancement. Considering this, there is an alternative algorithm that limits the contrast 

obtained by histogram equalization and is called Contrast Limited Adaptive Histogram 

Equalization (CLAHE) and has produced good results on medical images. 

The fundamental steps of the CLAHE algorithm are (Garg, Mittal et al. 2011): 

1. Obtain all the inputs:  Image, Number of regions in row and column directions, 

Number of bins for the histograms used in building image transform function 

(dynamic range), Clip limit for contrast limiting (normalized from 0 to 1); 

2. Pre-process the inputs: Determine real clip limit from the normalized value if 

necessary, pad the image before splitting it into regions; 

3. Process each contextual region (tile) thus producing gray level mappings: Extract a 

single image region, make a histogram for this region using the specified number of 

bins, clip the histogram using clip limit, create a mapping (transformation function) 

for this region; 

4. Interpolate gray level mappings in order to assemble final CLAHE image: Extract 

cluster of four neighboring mapping functions, process image region partly 

overlapping each of the mapping tiles, extract a single pixel, apply four mappings to 

that pixel, and interpolate between the results to obtain the output pixel; repeat on 

the entire image. 

The Matlab® implementation used was based on the one proposed by Zuiderveld (1994). 

There are three important parameters that could be selected: tiles number, distribution 

and clip limit. At first, tiles number represents the window size of the local operations. This 

parameter was evaluated using the test image, Figure 4.18, and it can be observed that as the 

size increased, the contrast was more uniform, which was expected since the equalization is 

more homogeneous when window size includes distinct regions. The best result was obtained 

with the size 40x40. 
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Figure 4.18 – The influence of tiles number in the CLAHE algorithm using HSI domain 
(1st row) and gray scale (2nd row). 

The distribution parameter includes three types available in the algorithm proposed by 

Zuiderveld (1994): Uniform, Rayleigh and Exponential. These distributions allow the histogram 

to have different shapes. 

The uniform distribution equalizes the histogram using all the gray levels with 

approximately the same probability. The Rayleigh distribution has a histogram with bell shape, 

giving more importance to median gray level intensities. In what concerns to exponential, the 

histogram has an ascendant shape, increasing the overall luminosity of the image. The 

application of different distributions to the endoscopic test image resulted in small differences 

between them, so in the further experiments was adopted the default uniform distribution. 

Finally, the 3rd parameter is the clip limit, a contrast factor that prevents over-saturation of 

the image specifically in homogeneous areas. These areas are characterized by a high peak in 

the histogram of the particular image tile due to many pixels falling inside the same gray level 

range. The default value used was 0.01, which produced the images shown in Figure 4.18. As 

clip limit increases, the contrast also increases but the image information is lost. As such, 

smaller values for this parameter were experimented, Figure 4.19. 

 

 

 

 

 

 

 

Figure 4.19 – The influence of clip limit in CLAHE algorithm, using HSI domain (1st row) 
and gray scale (2nd row). 
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According to the image under analysis and the results expected, the clip limit should be 

used higher for more contrast. 

4.2.1.6. Histogram Stretching 

 

The histogram stretching algorithm is a simple method used to enhance contrast. In some 

cases, the image represented is using only part of the gray levels available. This technique 

stretches the histogram of the original image so that all the gray levels available are used. 

The algorithm flowchart of this algorithm is shown in Figure 4.20, and a result example is 

presented in Figure 4.21. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 – Histogram stretching flowchart. 

 

 

 

 

 

 

 

 

 

Figure 4.21 – Result of histogram stretching: a) original image; b) output image; 
c) original histogram; d) output image histogram. 
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4.2.1.7. Morphological Processing 

 

The essence of mathematical morphology is comprised of a set algebra consisting of four 

basic transformations: erosion, dilation, opening and closing (Schonfeld 1991). These 

techniques are suitable for extracting image features that are useful in representing and 

describing region shapes. Information about the objects’ size, shape, connectivity, smoothness 

and orientation can be obtained by using various structuring elements and morphological 

operators (Pitas 1993). Morphological operations apply a structuring element to an input 

image, creating an output of the same size. In a morphological operation, the value of each 

pixel in the output image is based on a comparison of the corresponding pixel in the input with 

its neighbors, Figure 4.22. By choosing the size and shape of the neighborhood, one can 

construct a morphological operation that is sensitive to specific shapes in the input image.  

The most basic morphological operations are dilation and erosion. Dilation adds pixels to 

the boundaries of objects in an image, while erosion removes pixels on objects’ boundaries. 

The number of pixels added or removed from the objects in an image depends on the size and 

shape of the structuring element used to process the image (Mathworks 2011). 

The dilation and erosion respond in opposite ways, i.e., the output pixel of dilation is the 

maximum value of all the pixels in the neighborhood, while in erosion it outputs the minimum 

value. 

 

 

 

 

 

 

 

Figure 4.22 – Morphological dilation of a grey scale image (from (Mathworks 2011)). 

 

Based on dilation and erosion arises two more morphological operations: opening and 

closing. As seen, dilation expands the components of an image and erosion shrinks them; 

however, to maintain the same size, opening and closing are the best solution. 
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Opening consists in erosion followed by dilation with the same structuring element. The 

particular interest of this operation consists on the elimination of isolated points without 

changing the objects’ size in the image. 

Closing has the opposite operation, i.e., it consists on dilation followed by erosion. The 

principal advantage of this operation is to join neighboring objects and then return to same or 

similar size of the regions. 

The structuring elements can have diverse shapes and sizes, resulting in images smoothed 

or sharped according to the parameters and the morphological operations chosen. To 

understand the influence of these parameters, the dilate operation was used with a ‘disk’ 

shape structuring element available in Matlab® function strel and adopting different 

dimensions, Figure 4.23. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23 – The result of a morphologic dilation with a ‘disk’ shape structuring element 
of size: a) 2, b) 5, c)10 and d) 20. 

The results suggested that as the structuring element size increases, more effect it has on 

the image, and the output image starts to show more clearly the shape chosen, in this case, 

the disk shapes. 

The results of the four morphological operations can be compared from the images in 

Figure 4.24. From figure, one can realize that, depending on the operation, the image became 

smoother (dilation and closing) or sharper (erosion and opening). Hence, these operations can 

be useful to enhance objects of interest and to eliminate speckle noise. 

 

 



Chapter 4 –Implementations, Results and Discussion 

55 
 

 

 

 

 

 

 

 

 

Figure 4.24 – Comparison of the four principal morphologic operations: a) original image; 
b) result after dilation, c) result after erosion; d) the structuring element shape used; 

e) result after open; f) result after close. 

 

4.2.2. Frequency Domain 

 

The frequency domain techniques are performed after the input image is converted by the 

Fourier transform, which is defined by equation 4.22, where "(�) is a continuous function and � is a continuous variable. 

 ℑ{"(�)} = � "(�)R+-�d��3�X�+�       (4.22) 

 

After transforming the input image into its frequency representation, the image processing 

is performed, finalizing with the computation of the inverse transform to return to the spatial 

domain.  

In the frequency domain, the values should be interpreted in a different way, since the 

filtering process does not act directly on pixels’ intensity values. However, some general 

statements can be made about the relationship between the frequency components of the 

Fourier transform and spatial features of an image. At first, the slowest varying frequency 

component is proportional to the average intensity of an image. Moreover, the low 

frequencies correspond to the slowly varying intensity components of an image while the 

higher frequencies correspond to faster intensity changes, i.e., regions with abrupt intensity 

changes. 

Considering these properties, the frequency filtering can enhance the images according to 

the filter applied as it is discussed in the following sections. 
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4.2.2.1. Frequency Filtering 

 

Filtering in the frequency domain consists of processing the Fourier transform of the input 

image and then computing the inverse transformation to obtain the filtering result. Hence, for 

a digital image	"(�, �), of size	A × C, the basic filtering equation is defined as: 

 �(�, �) = ℑ+,[�(F, G)H(F, G)],      (4.23) 

 

where ℑ+, is the inverse Fourier transform, H(F, G) is the input image after the Fourier 

transform, �(F, G) is a filter function and �(�, �) is the output image, being all images of size A × C (Gonzalez and Woods 2002).  

The filtering process, Figure 4.25, returns a different output image according to the filter 

used. There are two fundamental filters that promote smoothing and sharpening: Low pass 

and High pass, respectively. 

 

 

 

Figure 4.25 – Usual frequency filtering process. 

 

A low pass filter attenuates all frequencies higher than the cutoff frequency established. 

Since the edges and other sharp intensity transitions (such as noise) contribute to the high 

frequency content, their attenuation generates smoothed (blurred) images. There are three 

categories of low pass filtering: Ideal, Gaussian and Butterworth. 

The ideal low pass filter multiplies all the values inferior to the cutoff frequency by the filter 

function	�(F, G) = 1, while the superior values will be multiplied by	�(F, G) = 0, attenuating 

completely those frequencies and obtaining a transition represented as a vertical line, Figure 

4.26 (left). 

The cutoff frequency is defined as a circle of radius �| from the origin that attenuates all 

the frequencies outside this radius: 

 

�(F, G) =  1		!"	�(F, G) ≤ �|0		!"	�(F, G) > �|,      (4.24) 

 

where �| is a positive constant and �(F, G) is the distance between a point (F, G) in the 

frequency domain and the center of the frequency rectangle, that is equal to: 
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�(F, G) = r(F 6 w 2)⁄ - = (G 6 � 2)⁄ -,     (4.25) 

 

where w and � are the padded sizes, i.e., the discrete frequency variables are in the range F = 0,1,2,… , w 6 1 and G = 0,1,2,… , � 6 1. However, it is clear that ideal low pass filtering is 

not very practical. 

The Gaussian low pass filter is based on the normal distribution graph, Figure 4.26 (middle), 

i.e., the attenuation is not as abrupt as the ideal filter, but decreases softly until the 

frequencies are totally annulated. The filter can be express as: 

 �(F, G) = R+�@(�,�)/-��@,       (4.26) 

 

where �| is the cutoff frequency, and when �(F, G) = �| the filter is down to 0.607 of its 

maximum value. 

Finally, the Butterworth low pass filter is characterized by a curve with oscillations, Figure 

4.26, and its transfer function of order � and cutoff frequency �| is given as: 

 �(F, G) = ,,X[�(�,�) ��⁄ ]@�.       (4.27) 

 

As the filter order increases, the oscillation rises, causing the appearance of ringings in the 

spatial domain. As such, the order 2 generates a good compromise between effective low pass 

filtering and acceptable ringing. 

Concluding, the tree types of low pass filter, Figure 4.26, cover the range from very sharp 

(ideal) to very smooth (Gaussian) filtering, with the Butterworth in the intermediate behavior 

since the defined order could produce the effect desired. 

 

 

 

 

 

 

Figure 4.26 – Perspective plots of ideal (left), Gaussian (middle) and Butterwhorth (right) low 
pass filter of order two filters (from(Gonzalez and Woods 2002)). 
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The High pass filters are also divided into these three types. However, they act In opposite 

ways, attenuating the low frequencies and enhancing edges and sharp intensity transitions 

(Gonzalez and Woods 2002). To obtain the high pass filter transfer function, ���(F, G), it is 

only necessary to perform the operation described as: 

 ���(F, G) = 1 6 ���(F, G).       (4.28) 

 

The results displayed in Figure 4.27 did not show visible differences between the three 

types of low pass filters. In what concerns to cutoff frequency, as it decreased, the image 

became smoother. When it was used a high pass filter, the effect was different, that is, as the 

cutoff frequency decreased, the image became sharper. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27 – Influence of the cutoff frequency in the ideal (1st row), Gaussian (2nd row) 
and Butterworth (3rd row) low pass filters. 

 

Concluding, these methods generated results similar to those obtained in smoothing and 

sharpening in the spatial domain (section 4.2.1). Hence, there was not an important advantage 

in processing the test image with low and high pass filters in the frequency domain. 

 

4.2.2.2. Homomorphic Filtering 

 

The Homomorphic filtering based their approach in the information of illumination and 

reflectance. As mentioned in section 3.3.2, it uses the logarithm to implement the filtration, so 

that the two components of the test image could be used. 
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This filter allows the control of the low and high frequency image components, attenuating 

the contribution made by the low frequencies (illumination) and amplifying the contribution 

made by high frequencies (reflectance). Hence, the result will be simultaneous dynamic range 

compression and contrast enhancement (Gonzalez and Woods 2002). 

Ahmed (2008) proposed a Matlab® implementation that uses a Butterworth low pass �(F, G) function that filters the input image, after performing logarithm and Fourier 

transform. The output image, Figure 4.28, was obtained using a Butterworth filter of order 2 

and �| = 40 and it results is a brighter image, when compared to the original test image. 

 

 

 

 

 

 

 

 

 

 

Figure 4.28 – Result of the homomorphic filter implementation: a) original ��� image; 
b) output image processing in ��	 domain; c) original gray image; d) output gray image. 

 

4.2.3.  Comparison among enhancement algorithms on endoscopic images 

 

To compare the enhancement quality provided by each enhancement algorithm previously 

described, it is important to define quantitative measurements beyond the visual perception, 

which is highly subjective. Hence, different authors have been proposing parameters that can 

help in measuring the quality of the resultant images (Eskicioglu and Fisher 1995; Sakuldee and 

Udomhunsakul 2008; Garg, Mittal et al. 2011). Nevertheless, just some of them were used in 

this project, Table 4.1. In this table, �(�, �) is the input image, �(�,�) the enhanced image, A�C the size of the images, and �R0�(�) the average intensity value of image	�(�, �). 

One of the main problems of these measurements is their only suitability to gray images. 

However, it was clear that the enhancement using the ��	 model achieved better results, 

since it took advantage of color information. Hence, the results obtained from these 

calculations are extrapolated to the image processing in general.  
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A lower value for mean square error indicates less error, and, since it is inversely correlated 

to peak signal to noise ratio (PSNR), as can be seen in Table 4.1, it means higher PSNR (Adler, 

Gostout et al.). Logically, a higher value of PSNR is good because it signifies that the Signal to 

Noise Ratio is higher, that is, the signal is bigger than noise, which is the purpose of image 

enhancement (Sakuldee and Udomhunsakul 2008). 

In what concerns to absolute mean brightness error (AMBE), its values should be as small as 

possible, which indicates that difference between the original and enhanced image brightness 

should be minimum. 

Table 4.1 – Used image quality objective measurements. 

Mean Square Error A�� = 1AC � �(�(�, �) 6 �(�,�))-z
*{,

}
){,  

Peak Signal to Noise Ratio w�C� = 10^Y�255-A�� 

Absolute Mean Brightness Error �A�� = |�R0�(�) 6 �R0�(�)| 
Contrast  � = " 6 1" = 1 

 

Finally, contrast is calculated based on foreground (") and background (1) intensities of 

the enhanced image (Rangayyan 2005). It was established that " and 1 should be calculated in 

a defined square with size 20x20, so that the foreground and background could be 

represented by a small sample instead of just one pixel, which would be more sensitive to 

errors. Hence, the mean intensity values in this square represented " and 1. Higher values of � 

mean that the image has more contrast. 

Considering these assumptions, the measurement result is depicted in Figure 4.29, where 

the values of the objective measurements referred in Table 4.1 were normalized, and the 

processing time of each algorithm was included, considering that it was processed in a PC with 

Operative System Windows XP, Intel Pentium Dual Core 2310 processor and 1 GB DDR2 of 

memory RAM. The algorithms in the frequency domain were not considered, since they were 

very similar to those presented in the spatial domain and did not show an important 

contribution to this study. 

The lower value of MSE and maximum of PSNR resulted from Adaptive Unsharp Masking 

implementation while the minimum processing time obtained was 0.08 seconds for Laplacian 

filter. On the other hand, the worst results were attained for Sobel and Laplacian, which 

presented the highest MSE and lowest PSNR. In what concerns to AMBE, the smallest value 

was obtained for Adaptive Unsharp Masking and the highest for Sobel and Laplacian. 
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Figure 4.29 – Objective measurements on image enhancement obtained by each 
algorithm implemented. 

 

Table 4.2 – Legend of Figure 4.29, explaining the parameters chosen for each algorithm. 

Legend Algorithm Name Parameters 

Th Threshold window N, = 0.1 6 N- = 0.7 

HE Histogram Equalization -- 

CLAHE 
Contrast-Limited Adaptive 

Histogram Equalization 
No. tiles = [40 40], Clip Limit = 0.01 

HS Histogram Stretching -- 

Avg Average Filter Mask size = [10 10] 

Gaussian Gaussian Filter Mask size = [10 10], sigma=20 

Median Median Filter Mask size = [10 10] 

Sobel Sobel Filter -- 

Laplacian Laplacian Filter -- 

UM Unsharp Masking Gaussian [10 10], sigma = 20 

Ad UM Adaptive Unsharp Masking 
Gaussian [10 10], sigma = 20 

Median filter [5 5] 

Dilation Morphological dilation Shape = disk, size = 5 

Erosion Morphological erosion Shape = disk, size = 5 

Close Morphological close Shape = disk, size = 5 

Open Morphological open Shape = disk, size = 5 

 



Endoscopic Image Analysis of Aberrant Crypt Foci 

 

62 
 

From these results, it could be concluded that for the test image used, the best method of 

image enhancement was the Adaptive Unsharp Masking. However, according to the aim 

desired in this study, there are other algorithms suitable and good to use in the image 

preprocessing step, and it should be made an agreement between enhancement and the 

posterior segmentation process. Having this in mind, the CLAHE algorithm, whose output 

image has a more homogeneous background, the Histogram Stretching, that clearly enhances 

contrast, the smoothing algorithms (average, Gaussian and median), that smooths the 

background variations and eliminates noise, and morphological operations, in particular 

open/close that can eliminate noise, are important methods that could be used to enhance the 

object of interest.  

Until now, the enhancement methods were applied to one test image. However, to 

evaluate the performance of the algorithms explored, they were applied to more two 

endoscopic images, displayed in Figure 4.30. Thus, the best algorithms will be those which 

demonstrate more coherence on the enhancement result when applied to different images. 

 

 

 

 

 

 

 

Figure 4.30 – Endoscopic images representing the ACF lesion which are used to apply 
image processing algorithms. 

 

In Figure 4.31, the best results correspond to the highest values of PSNR, which happened 

for Adaptive Unsharp Masking (Ad UM) and the smoothing filters, average, median and 

Gaussian. Although the Ad UM presented more coherence between the three images, it is a 

sharpening algorithm which will be problematic for the image segmentation algorithms since it 

enhances high intensity noise. Thus, the smoothing filters revealed as the best option. 

Moreover, another important objective of image enhancement is contrast, which results 

are shown in Figure 4.32. The best contrast achieved was obtained by the Histogram 

Stretching algorithm, which had higher values in almost every image tested. 
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Figure 4.31 – Comparison of the Peak signal to noise ratio of image enhancement algorithms 
applied on different endoscopic images. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32 – Comparison of contrast values of image enhancement algorithms applied 
on different endoscopic images. 

 

However, it is always important to evaluate not just the objective measurements but the 

visual perception of enhanced images. The results of Histogram Stretching can be seen in 

Figure 4.33, where the contrast enhancement is evident when compared to original images, 

Figure 4.30. 

Considering the results from PSNR measurements and looking for the existence of “salt and 

pepper” noise in the three endoscopic images, the median filter revealed to be the best option 

considering the smoothing algorithms studied, as can be seen in Figure 4.34, where it was 
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applied with a 10x10 window size. However, the resultant contrast was poor. Thus, it was 

developed a hybrid method, which includes Histogram Stretching and Median filter, taking 

profit of the advantages of both techniques, Figure 4.37. 

. 

 

 

 

 

 

Figure 4.33 – Results of the Histogram Stretching algorithm applied to the test 
endoscopic images. 

 

 

 

 

 

 

 

Figure 4.34 – Results of the median filter on the test endoscopic images. 

The application of the hybrid method to the endoscopic images in the gray scale and ��	 

model is shown in Figures 4.35 and 4.36, respectively. When the enhanced images are 

compared to the original, Figure 4.30, the ACF lesion is more evident due to better contrast, 

and because the background is smoother. 

In the next section, these images will be used as inputs to the image segmentation 

algorithms with the purpose of detecting the ACF structures. 

 

 

 

 

 

 

 

Figure 4.35 – Results of the hybrid method on the test endoscopic images. 
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Figure 4.36 – Result of the hybrid method, using ��	 model, on test endoscopic images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.37 – Block diagram of the hybrid method developed: Median filter and 
Histogram Stretching. 
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4.3. Image Segmentation 

 

When the preprocessing step is completed, the images are prepared for the next step in 

which the objects of interest are detected and segmented. In this project, the purpose was to 

detect ACF lesions and determine their boundaries, separating them from the image 

background. As mentioned in Chapter 3, there are a large number of algorithms available to 

perform this segmentation, based on boundaries, regions or thresholding. Hence, some of 

those methods were chosen and applied on the enhanced test endoscopic images, Figure 4.36, 

and their results are presented and discussed in this section. 

4.3.1. Thresholding 

 

The threshold algorithm divides the image into two or more groups, according to their 

intensity levels. Their basic and global operation was mentioned in sections 3.4.1. and 4.2.1.4 

in a perspective of image enhancement. It was concluded that global thresholding applied on 

the test endoscopic images did not segment well the ACF lesions. Hence, it is here detailed a 

locally approach proposed by Wellner (1993), called quick adaptive thresholding. 

This algorithm runs through the image and calculates a moving average of the last 5 pixels 

seen. When the value of a pixel is significantly lower than this average, it is set to black, 

otherwise it is left white. Let �* represent the value of a pixel at point � and "�(�) be the sum 

of the values of the last 5 pixels at point	�: 

 "�(�) = ∑ �*+��+,�{| .        (4.29) 

 

The value of the resulting image N(�) is either black or white (0 or 1) depending on 

whether it is � percent darker than the average value of the previous 5 pixels: 

 

N(�) = � 1			!"	�* < 7(�(*)� < 7,||+�,|| <0			Y�bR4�!5R																														,     (4.30) 

 

The values of � should be defined, and another approach is to calculate the median instead 

of average of the 5 previous pixels.  

The Matlab® implementation, based on the Wellner’s algorithm, was developed by Peter 

Kovesi (2008). This algorithm has three important inputs: Filter size, used to determine the 

local weighted mean or local median, � percentage and filter type, which could be Gaussian or 

median. 
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The default values to these three parameters were: 

• filter size of one twentieth of the maximum image dimension; 

• � percentage of 15; 

• Gaussian filter type. 

They were used to perform adaptive thresholding in an enhanced test endoscopic image 

and the results are shown in Figure 4.38. 

 

 

 

 

 

Figure 4.38 – Result of adaptive thresholding using default values: Input enhanced image (left) 
and output image( right). 

 

The used adaptive thresholding segmentation algorithm divided the image into two regions 

according to its intensity levels. Since the input image, resulting from the image enhancement 

mentioned in section 4.2.3, did not present different gray levels in the background and 

foreground, the result was not satisfactory. 

To understand the effect of the three parameters mentioned previously, they were varied 

and the results are here presented, using the enhanced image as input. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.39 – Results of Adaptive thresholding with different filter size: a) 20, b) 58, 
c) 100, d) 150. 
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Initially, it was chosen lower and higher values of filter size, varying from 20 to 150; the 

results are represented in Figure 4.39. As the filter size increased, the object became more 

evident than the background, but it was not fully separated. In what concerns to � percentage, 

the higher values led to less detection, that is, the threshold was more restricted, as can be 

seen in Figure 4.40. 

 

 

 

 

 

 

 

 

 

Figure 4.40 – Results of adaptive thresholding with variable 	� percentages: a) input image, 
b) � = 5, c) � = 15, d) � = 30, e) � = 50, f) � = 75. 

Finally, when the algorithm focuses on the local pixels, there are two types of analysis: 

average intensity or median. As such, the thresholding process can be based on the mean 

intensity occurring locally or, instead, it can use the median value. The results of both filter 

types are presented in Figure 4.41. The median filter type produced an output image with 

more evidence to background variations, that is, a noisy image.  

 

 

 

 

 

Figure 4.41 – Results of adaptive thresholding with Gaussian (b) and median (c) filters. 

 

Concluding, the proposed aim was not accomplished with any parameter changes since the 

ACF lesion was not separated from the image background. Moreover, the adaptive threshold, 

as global threshold, was not the best option concerning ACF detection since the images 

present a variable background and are characterized by similar intensity levels between 

background and foreground. 
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4.3.2. Boundary-based 

 

This section introduces algorithms that based their performance in finding boundaries 

through edge detectors or using deformable models that use curve evolution to determine the 

limits of objects of interest, i.e., ACF lesions. 

4.3.2.1. Edge-based 

 

There are several possible approaches in edge-based algorithms, as Sobel, Laplacian, 

Roberts, Prewitt and Canny. However, the performance of Canny’s (1986) edge detector is in 

general superior when applied to image segmentation, and, as such, it is the only filter studied 

in this section. Nevertheless, the Sobel operator is suitable to preprocessing stages, as is 

discussed later. 

Canny’s method is based on four fundamental steps. At first, to avoid the influence of noise in 

edges detection, a Gaussian filter is applied, smoothing the image. This method, as Sobel, is 

based on gradient calculation. Hence, the second step is characterized by the calculation of the 

gradient magnitude and direction (angle), according to the equations 4.31 and 4.32, where �? =  "�  �⁄  and	�s =  "�  �⁄  are the first order derivative functions in the horizontal and 

vertically directions of the smoothed image "�(�, �), respectively. 

 

A(�, �) = r�?- = �s-,        (4.31) 

∝ (�, �) = �0�+, klhlfm       (4.32) 

 

Being the edges detected by the gradient function, it typically contains wide ridges around 

local maxima. Thus, the next step is to thin those ridges by computing nonmaxima 

suppression. Considering a 3x3 region, it could be defined four orientations for an edge passing 

in the central pixel of the region: horizontal, vertical, +45° and -45° and the edge direction is 

determined through the function	∝ (�, �). Thus, establishing that 3,, 3-, 3T and 3£ correspond 

to the four basic directions: horizontal, -45°, vertical and +45°, respectively, the nonmaxima 

suppression scheme for a 3x3 region centered at every point (�, �) in ∝ (�, �) is given by the 

following stages: 

1. Find the direction 3� that is closest to	∝ (�, �); 
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2. If the value of A(�, �) is lower than at least one of its two neighbors along 3�, let �z(�, �) = 0 (suppression); otherwise, let �z(�, �) = A(�, �), where �z(�, �) is the 

nonmaxima suppressed image. 

Finally, it is performed a threshold to reduce false edge points. Using a simple threshold, if 

it is set too low, there will still be some false edges, and if it is set too high, actual valid edges 

will be eliminated. Thus, Canny’s algorithm attempts to improve on this situation by using 

hysteresis thresholding which uses two thresholds: a low (N�) and a high (N�). Hence, it creates 

two images, based on: 

 �z�(�, �) = �z(�, �) ≥ N�,       (4.33) �z�(�, �) = �z(�, �) ≥ N�.       (4.34) 

 

After thresholding, all the nonzero pixels are eliminated from �z�(�, �) by letting: 

 �z�(�, �) = �z�(�, �) 6 �z�(�, �).      (4.35) 

 

Finally, all strong pixels in �z�(�, �) are assumed to be valid edge pixels. However, if the 

threshold N� was set too high, the edge defined by the valid strong pixels could have gaps. As 

such, the values in �z�(�, �) are useful to fill those gaps, according to the following procedure: 

1. Locate the next unvisited pixel,	�, in �z�(�, �); 

2. Mark as valid edge pixels all the weak pixels in �z�(�, �) that are connected to � 

using 8-connectivity, i.e., that are in one position in the 8 pixels surrounding	�; 

3. If all nonzero pixels in �z�(�, �) have been visited, set to zero all pixels in �z�(�, �) 

that were not marked as valid edge pixels; Otherwise, return to step 1. 

The final image is obtained by adding all nonzero pixels of �z�(�, �) to	�z�(�, �). 

The Matlab® image processing toolbox comprises the Canny’s algorithm implementation, 

and it was used to evaluate the effect of this technique when applied on the test endoscopic 

image. Since it uses the Gaussian filter to smooth and then uses two thresholds, the Canny’s 

implementation is dependent on threshold and sigma value chosen. 

In Figure 4.42, the detection was performed directly in the enhanced image (resulting from 

section 4.2.3) using default values of threshold and sigma, that is a maximum threshold 

corresponding to the maximum magnitude gradient value, a minimum threshold equal to 40% 
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of the maximum threshold and a sigma value of √2. The edge detection was followed by a 

dilation morphologic operation to better visualize the result. 

 

 

 

 

 

 
Figure 4.42 – Canny edge detector applied on an enhanced test image. 

 

Although the ACF lesion was detected there are also few particles evidenced from the 

image background. 

In order to understand the effect produced by threshold and sigma parameters, different 

values were considered. Initially, setting the sigma value as √2, it was used a threshold of 0.1, 

0.2, 0.3 and 0.4. As the threshold value increased, less edge detection was produced, as shown 

in Figure 4.43. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.43 – Results of the Canny’s edge detector with different values of threshold: 
a) 0.1, b) 0.2, c) 0.3, d) 0.4. 

 

Considering a threshold value of 0.2, the sigma coefficients were varied from 0.5 to 2. The 

effect of this parameter is shown in Figure 4.44, where the increase of sigma values led to 

more background detection, what is undesired. 
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Figure 4.44 – Results of the Canny’s edge detection with different values of Gaussian sigma: 

a) 0.5, b) √2, c) 2. 

 

Concluding, there should be established a compromise between the two parameters cited 

in order to segment successfully the region of interest, i.e. the ACF lesion. 

  

4.3.2.2. Deformable models-based 

 

The deformable models are recognized by their ability to segment, match and track objects 

in images by exploiting constraints derived from the image data together with a priori 

knowledge about the objects’ location, size and shape. Furthermore, they are capable of 

detecting biological structure differences over time and from different individuals due to their 

capability of overcoming significant variability (McInerney and Terzopoulos 1996). There are 

two fundamental methods included in this section that are here described: original active 

contour algorithm, usually known as Snake algorithm, and Active Contours without Edges 

(ACWE) technique. 

 

a)  Active Contour Snake 

 

The snake algorithm was first developed by Kass et al (1988) and is based on image forces 

and external constraint forces. The image forces push the snake toward salient image features 

like lines, edges, and subjective contours. The external constraint forces are responsible for 

positioning the snake near the desired local minimum. Hence, representing the parametric 

position of a snake by G(5) = (�(5), �(5)), its energy function is given as: 

 ��*9�¤∗ = � ��*9�¤LG(5)M35 = � �¤?�LG(5)M = ��*�(G(5)) = ��)9l¤LG(5)M35,|,| . (4.36) 
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where ��*� represents the internal energy, �¤?� the external energy of the contour due to 

bending or discontinuities, and ��)9l¤ is the external image forces. The evolution from an 

initial contour to the contour of the object is expressed by an energy minimization process. 

The internal energy can be written as: 

 

��*� =∝ (5) ¦:�(�):� ¦- = §(5) ¦:@�(�):�@ ¦-.     (4.37) 

 

It is composed of a first-order term controlled by ∝ (5) and a second-order term controlled 

by §(5). The values used in these two parameters will define the extent to which the contour 

is allowed to stretch or bend at that point, since the relative sizes of ∝ and § control the 

influence of the corresponding constraints.  

The first term of the equation 4.37 represents the elastic energy (continuity), where a high 

value implies a high rate of change of the contour. The second term represents the curvature 

energy and measures the energy due to bending. For instance, the choice of ∝ (5) and §(5) 

values controls the shape of the snake. Low values of ∝ (5) results in considerable changes of 

points in space, while higher values imply that the snake aims to attain evenly spaced contour 

points (Williams and Shah 1992). In what concerns to §(5) parameter, low values imply that 

curvature is not minimized, and the contour can form corners, whereas higher values 

predispose the snake to smooth contours. 

The external energy can be repulsive or attractive, Figure 4.45, in order to repel or attract 

the active contour to the image. Hence, the formulation of attractive external image is given 

by: 

 �¤?�(�) = ~|! 6 �|-.       (4.38) 

 

This energy is minimal when	� = !, and it assumes the value of ~ when		! 6 � = ±1. The 

repulsive external energy is formulated as: 

 �¤?�(�) = �|�+?|@.        (4.39) 

 

The repulsive energy is maximal when  � = ! and it is unity when	! 6 � = ±~. However, 

since this is a division operation, the repulsion term must be clipped as the denominator 

approaches zero. 
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Figure 4.45 – Attraction and repulsion energy (from (Ivins and Porrill 2000)). 

 

The image energy ��)9l¤, generated by processing an image 	(�, �) produces a force that 

can be used to drive snakes towards features of interest. It consists of three different energy 

functionals that attract snakes to lines, edges, and terminations. The total energy can be 

expressed as a weighted combination of the three energy functionals: 

 ��)9l¤ = ���*¤���*¤ = �¤:l¤�¤:l¤ = ��¤�)��¤�).    (4.40) 

 

The simplest functional correspond to ���*¤, which is the image intensity itself. Thus, 

depending on the ���*¤ value, the snake will be attracted either to light lines or dark lines. 

The edge energy functional represents the image edges and is defined as: 

 �¤:l¤ = 6|j	(�, �)|-,       (4.41) 

 

where 	(�, �) represents the input image. Thus, the snake will be attracted to contours with 

large image gradients. 

Finally, in order to find terminations of line segments and corners, the ��¤�) is used and 

defines the curvature of the contour. Hence, to express this energy functional it is considered �(�, �) = �e(�, �) ∗ 	(�, �) as a slightly smoothed version of the image. Then, it is considered 

that  © = �0�+,(�s �?⁄ ) is the gradient angle and � = (2Y5©, 5!�©) and �ª = (65!�©, 2Y5©) 

are unit vectors along and perpendicular to the gradient direction.  
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The curvature of the level contour in �(�, �) can be written as: 

 

��¤�) = >«>*¬ = ­hh­f@+-­fh­f­hX­ff­h@L­f@X­h@M® @⁄ .      (4.42) 

 

The weight values attributed to each energy functional determine the contour moving and 

detection (Kass, Witkin et al. 1988). Moreover, ��)9l¤, is multiplied by the parameter ¯(5) 

that influences the effect of this energy in the overall snakes contour. 

The Kass et al.(1988) algorithm implementation in Matlab® was developed by Ritwik Kumar 

(2010), from Harvard University. The method works only when the initial contour is defined 

outside the object. The coefficients ∝, §, ¯, ~, 	°��*¤ , 	°¤:l¤	,°�¤�) and number of 

iterations can be defined in order to obtain the final contour in the objects’ boundaries. The 

values chosen for each parameter is crucial for the convergence of the initial contour with the 

ACF edge. As such, different values were tested, Table 4.3, and the results obtained are shown 

in Figure 4.46. 

Initially, all coefficient values were defined equal and low and the result exhibited a final 

contour not well adjusted to the ACF boundary. Considering that the edge is a fundamental 

characteristic in this segmentation process, the weight of edge energy was set higher and the 

results demonstrated an improvement since the final contour was outside the ACF structure. 

 

Table 4.3 – Coefficient values used in the Snake algorithm. 

 

 

 

 

 

 

 

 

Afterwards, since the contour was highly rigid, the ± was increased, but as it became the 

predominant energy between the three, equation 4.36, it did not stop at the ACF boundary. To 

overcome this problem, the ¯ value was set higher, so that the	��)9l¤		could have more 

weight in the overall snake energy. As such, it was obtained a final contour almost totally fit to 

the ACF boundary. Finally, one last adjustment was made in the �¤:l¤	 and iterations number, 

being obtained a good relation between the snake detection and the real ACF boundary. 
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Figure 4.46 – Results of the Snake algorithm using the coefficients indicated in Table 4.3. 

 

b) Active Contour without Edges 

 

The active contours without edges (ACWE) follows the same principle as snakes, that is, it 

starts with a curve around the object to be detected, and then the curve moves toward its 

interior normal until it reaches the object boundary and stops. In common deformable models, 

it is used an edge detector, as the gradient, to indicate where to stop the evolving curve. 

However, Chan and Vese (1999) (CV) proposed a different ACWE model without a stopping 

edge-function, i.e., a model which is not based on the gradient of the image for the stopping 

process. Thus, it is based on an energy minimization problem, which can be reformulated in 

the level set formulation, leading to an easier way to solve the problem. This is the main 

advantage of this method which is here detailed (Wang, Huang et al. 2010). 

Considering the evolving curve � in Ω, as the boundary of an open subset ³ of Ω, the inside 

of � denotes the region ³, and the outside denotes the region Ω\µ. The aim of this method is 

the minimization of the image energy. To understand better the model principles, it will first 

be explained the basic idea in a simple case (Chan and Vese 2001). 

Assume that the image F| is formed by two regions of approximately piecewise-constant 

intensities, of distinct values F|�  and F|¶. Assume further that the object to be detected is 

represented by the region with the value F|�  and the boundary �| . Then one have F| · F|�  

inside the object [or inside (�| )], and F| · F|¶ outside the object [or outside (�| )].  
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Afterwards, the “fitting” term is given as: 

 

H,(�) = H-(�) = � |F|(�, �) 6 2,|-3�3� =�*��:¤(­) � |F|(�, �) 6 2-|-3�3�¶����:¤(­) ,   (4.43) 

 

where � is any other variable curve, and the constants 2,, 2-, depending on �, are the 

averages of F| inside and outside �, respectively. In this simple case, it is obvious that �|, the 

boundary of the object, is the minimizer of the fitting term: 

 inf	{H,(�) = H-(�)} · 0 · H,(�|) = H-(�|).     (4.44) 

 

The variation of the parameters is depicted in Figure 4.47, where the minimization of H,(�) = H-(�) corresponds to the object boundary detect, that is,		� = �|. 

To enhance the correct curve evolution, Chan and Vese method introduces the level set 

method that allows the detection of cusps, corners and automatic topological changes. 

 

 

 

 

 

 

 

 

 

 

Figure 4.47 – The minimization process of the fitting term (from (Chan and Vese 2001)). 

 

The CV model implementation is based on minimizing the above fitting term with some 

regularizing terms added. Therefore, it is introduced an energy functional H(2,, 2-, �)	defined 

as: 

 H(2,, 2-, �) = � ∙ $R��b�(�) = » ∙ �4R0L!�5!3R(�)M = 

								u, � |F|(�, �) 6 2,|-3�3� =�*��:¤(­) u- � |F|(�, �) 6 2-|-3�3�¶����:¤(­) , (4.45) 
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where � ≥ 0, » ≥ 0, u,, u- > 0 are fixed parameters. Usually, the values used in these terms 

are: u, = u- = 1 and » = 0. 

The new objective is to find the 2,, 2-, � values that will be the solution to the 

minimization problem: 

 !�";¼,;@,­H(2,, 2-, �).       (4.46) 

 

The level set formulation redefines the problem and considers � ⊂ Ω as the zero level set 

of some Lipschitz function �:Ω → ¿, such that: 

 

À � =  ³ = {(�, �) ∈ Ω:�(�, �) = 0},!�5!3R(�) = ω = {(x, y) ∈ Ω: �(�, �) > 0},YF�5!3R(�) = Ω\µ = {(x, y) ∈ Ω:�(�, �) < 0}.    (4.47) 

 

In Figure 4.48, it is illustrated the above assumptions and notations on the level set function �, defining the evolving curve �. 

 

 

 

 

 

 

 

 

Figure 4.48 – Curve Å = {(Æ, Ç):	È(Æ, Ç) =} propagating in normal direction 
(from (Chan and Vese 2001)). 

Therefore, the unknown variable � is replaced by the unknown variable � and the new 

energy, still denoted by H(�, 2,, 2-)	, becomes: 

 

H(�, 2,, 2-) = � ∙ ^R���b{� = 0} = É ∙ 04R0{� ≥ 0} = u, � |F| 6ÊË|2,|-3�3� =u- � |F| 6 2-|-3�3�ÊÌ| .    (4.48) 

 

 

 



Chapter 4 –Implementations, Results and Discussion 

79 
 

Using the Heaviside function � defined by: 

�(�) =  1, !"	� ≥ 00, !"	� < 0,       (4.49) 

and the one-dimensional Dirac measure y concentrated at 0 (zero) and defined (in the sense of 

distributions) by: 

y(�) = ::? �(�),         (4.50) 

the terms in the energy H is expressed as: 

À^R���b{� = 0} = � |j�(�)|Í = � y(�)|j�|,Í04R0{� ≥ 0} = � �(�)3�3�,Í ,    (4.51) 

and 

À � |F| 6 2,|-3�3� = � |F| 6 2,|-�(�)3�3�ÍÊË|� |F| 6 2-|-3�3� = � |F| 6 2-|-(1 6 �(�))3�3�ÍÊÌ| .   (4.52) 

 

Then the energy H(�, 2,, 2-) can be written as: 

 

H(�, 2,, 2-) = 	� ∙ Î y(�)|j�|Í = É ∙ Î �(�)3�3�Í = 

u, � |F| 6 2,|-�(�)3�3�Í = u- � |F| 6 2-|-(1 6 �(�))3�3�Í .  (4.53) 

 

Keeping � fixed and minimizing the energy H(�, 2,, 2-) with respect to the constants 2, and 2-, it is easy to express these constants function of � by: 

 

2,(�) = � ���(Ê):?:sÏ� �(Ê(?,s)):?:sÏ    (the average of the image F| in {� ≥ 0}),  (4.54) 

2-(�) = � ��(,+�(Ê)):?:sÏ� (,+�LÊ(?,s)M):?:sÏ    (the average of the image F| in {� < 0}). (4.55) 

 

The evolution of the curve is influenced by two terms: the “region term” u,(F| 6 2,)- =
u-(F| 6 2-)- which affects the motion of the curve and the term 	� ∙ � y(�)|j�|Í  which is 

the penalty on the total length of the curve �. For example, if the boundaries of the image are 
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smoothed, it should be chosen a larger value of �, to prevent � from being a complex curve. 

The value of É is usually set to zero. u, and u- affect the desired uniformity inside and outside �, respectively. Hence, it would 

be advisable to set u, < u- when it is expected a uniform background and varying grayscale in 

the foreground of the image. 

Since the aim is to minimize the energy H(�, 2,, 2-), it is used Euler-Lagrange equations and 

the gradient-descent method, where �(�, �) satisfies them Partial Differential Equation (PDE)  

for the artificial time �: 

 

À>Ê>� = y(�) k�3!G 7 jÐ|jÊ|< 6 É 6 u,(F| 6 2,)- = u-(F| 6 2-)-m !�	ΩÑ(Ê)|jÊ| >Ê>* = 0		Y�	 Ω .  (4.56) 

 

In practice, it is necessary to consider regularized versions of the functions � and y, 

denoted here by �Ò and yÒ, such that yÒ(�) = �ÒÓ(�). Thus, the analytical approximation using 

Heaviside and dirac delta functions is given by: 

 

�,,Ò(�) = ' 1, !"	� > Ô0, !"	t < 6Ô,- k1 = ?Ò = ,d 5!� 7d?Ò <m 	!"	|�| ≤ Ô,    (4.57) 

 

y,,Ò(�) = �,,ÒÓ (�) = � 0, !"	|�| > Ô,-Ò k1 = 2Y5 7d?Ò <m , !"	|�| ≤ Ô.    (4.58) 

 

However, the Chan and Vese proposal introduces the Heaviside approximation described 

as: 

 

�-,Ò(�) = ,- Õ1 = -d 042�0� 7?Ò<Ö.      (4.59) 

 

As Ô → 0, both approximations converge to � and y|. However, with the second 

approximation the algorithm has the tendency to compute a global minimizer, which could be 

due to the fact the Euler-Lagrange equation for � acts only locally, on a few level curves 

around {�(�, �) = 0} using �,,Ò(�) and y,,Ò(�), while in �-,Ò(�) and y-,Ò(�) the equation acts 

on all level curves. To further explanation of the algorithm and its fundamental steps it is 

recommended to see (Chan and Vese 2001).  
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The algorithm used in this project was developed by Yue Wu (2009) and was applied in the 

test endoscopic image in order to segment the ACF lesions. 

The three variable parameters are �, number of iterations and mask type, which could be a 

small, medium or large circle or approximated 160 circles all over the image, as can be seen in 

Figure 4.49. Thus, the influence of these coefficients was studied and the results are presented 

in Figure 4.50. 

 

 

 

 

 

Figure 4.49 – Chan and Vese algorithm mask types; From left to right: Small, 
Medium, Large, Whole. 

 

The results represent the global-region based segmentation obtained at the end of the 

contour moving. There were no significant differences between the mask types chosen, but 

when the whole type was used (Figure 4.51), the ACF became more evident. 

 

 

 

 

 

 

Figure 4.50 – Results of the Chan and Vese method using different mask types: 
small (left), medium (middle), large (right). 

 

Finally, considering that the parameter � influences the weight of contour length in the 

energy function, it was used � values varying from 0.01 to 0.5. In Figure 4.51, it is visible that 

the increasing of � led to smoothed segmentation and less evidence of the ACF lesion. 

Concluding, this method did not present satisfactory segmentation results, since it was not 

able to segment successfully the region of interest in the test image used. 
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Figure 4.51 – Results of the Chan and Vese method using different � values: 
a) 0.01, b) 0.2, c) 0.3, d) 0.5. 

 

4.3.3. Region-based 

 

In this section, the algorithms based their approach on finding boundaries between image 

regions according to the discontinuities in pixels’ intensity. These methods rely on the 

postulate that neighboring pixels within a region have similar values. Hence, it is a procedure 

that subdivides the image into its constituent parts or objects, called regions, using image 

attributes. 

Region-based segmentation algorithms may be divided into three groups: Region Growing, 

Splitting and Merging and Watershed transform. However, only the first and the last ones 

were studied, since they are more suitable for our purpose. 

4.3.3.1. Region Growing 

 

The region algorithm, first proposed by Adam and Bischof (1994), is a procedure that 

groups pixels or sub-regions into larger regions based on predefined criteria for growth. The 

selection of similarity criteria relies on the problem to be solved and the type of available 

image data. Thus, they can be intensity, color, texture, shape, or size. 

The fundamental steps involved in this algorithm are schematized in Figure 4.52. The region 

growing process starts with a seed point, which is manually or automatically selected, 

depending on the algorithm implemented. After that, the region grows by annexing to the 
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seed point those neighboring pixels that show similarity in a certain criterion, such as intensity. 

There are two important criteria that should be defined: intensity threshold and distance 

threshold. The process is iterated until it meets a stopping rule. Generally, the region growing 

should stop, when no more pixels satisfy the criteria for inclusion in that region. 

The main advantage of this technique is its simple and easy implementation. However, 

since the basic algorithm includes manual selection of the seed point, it suffers from the 

manual initialization problem. The success of the region growing technique depends on the 

proper selection of this seed point.  

Kroon (2009) implemented this algorithm in Matlab®, and it was used in this project to 

segment the test endoscopic image. However, it presents one significant difference when 

compared to the algorithm detailed in Figure 4.53. Instead of comparing the minimum 

difference intensity levels with a threshold, it always selects the neighbor pixel which has the 

intensity level closer to the region mean. Hence, the stop criterion is only based on a distance 

threshold, which could have different values, leading to different output images, as can be 

seen in Figure 4.52. 

As the distance threshold value increases, more distant neighbours could be included, and, 

as such, the region becames larger (region in white). On the other hand, higher threshold 

values do not segment the region of interest so well. Hence, it should be made an equilibrium 

to obtain the object detected. Studying, in particular, the test endoscopic image, the ACF was 

not detected using different theshold values, since this technique is based on intensities, which 

is not a good approach, as has been concluded. 

 

 

 

 

 

 

 

 

Figure 4.52 – Results of the region growing algorithm using the seed point in red and varying 

the threshold value: a) input image, b) threshold value of 0.2, c) 0.3, and d) 0.4. 

Considering the segmentation results obtained, one could conclude that the region growing 

method was unsuitable to detect and segment the region of interest, that is, the ACF structure. 
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Figure 4.53 – Flowchart of the region growing algorithm used (adapted from (Wahba 2008)). 
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4.3.3.2. Watershed 

 

In hydrology concepts, a watershed is an area of land that drains into a body of water, 

Figure 4.54. The boundaries of a watershed are defined by the points of highest elevation 

(designated in Figure 4.54 with a dotted line labeled divide). 

Based on this natural environment found in nature, watershed segmentation based their 

technique considering an image in three dimensions, that is, two spatial coordinates and 

intensity. Then, it is considered three types of points: 

• Points belonging to a regional minimum (river); 

• Points at which a drop of water would fall with certainty to a single minimum (valley) – 

catchment basin; 

• Points at which water would be equally likely to fall to more than one such minimum – 

watershed lines. 

 

 

 

 

 

 

 

 

 

 

Figure 4.54 – Diagram of the watershed effect in hydrology studies (from (Foundation 2001)). 

 

The main objective of this segmentation algorithm is to find watershed lines. Considering 

an image in 3D, where the height of the “mountains” is proportional to intensity values, the 

basic idea is that the image will be flooded from below by letting water rises through the holes 

at a uniform rate. When the rising water in distinct catchment basins is about to merge, a dam 

is built to prevent the merging. The flooding will eventually reach the watershed lines, when 

only dam boundaries will be visible, and they correspond to the boundaries extracted by the 

watershed segmentation algorithm. 
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Figure 4.55 – Topographic view of watershed transformations (from (Huang and Chen 2004). 

 

Watershed transformation is often applied on the gradient magnitude of an image in order 

to guide the watershed lines to follow the divide lines and the real boundaries of objects. It 

adopts the flooding process to simulate water flood, Figure 4.55. One of the most popular 

approaches was proposed by Vincent and Soille (1991), where watersheds are based on a 

morphological gradient, that is, gradient performance using mathematical morphologic 

operations. It includes two stages: sorting and flooding. The first step is based on pixel sorting 

in increasing order according to their gradient. At the flooding step, the pixels are accessed in 

increasing gradient order (immersion) using the sorted images and labels are assigned to 

catchment basins. However, there have been proposed many different approaches in what 

concerns to watershed segmentation, and those can be seen in (Roerdink and Meijster 2000). 

Meyer (1994) suggested a watershed transform definition established on topographical 

distance and that was subject of study in this project. This algorithm is based on the successive 

flooding of the grey value relief, where watersheds with adjacent catchment basins are 

constructed. This flooding process is performed on the gradient image, i.e. the basins should 

emerge along the edges.  

Considering a gray scale image	H(�), it is defined a set A of markers with different labels 

corresponding to the minimum values of	H(�), where the flooding should start. The 

fundamental steps are: 

1. Each marker defined is labeled; 

2. The neighboring pixels of each marked area are inserted into a priority queue with a 

priority level corresponding to the gray level of H(�); 

3. A pixel � with the highest priority level is extracted from the priority queue. If the 

neighbors of �, that have already been labeled, contains only points with the same 
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label, then	� is marked with their label. All non-marked neighbors that are not yet 

marked are put into the priority queue; 

4. Redo step 3 until the priority queue is empty. 

 

The watershed lines set are the non-labeled pixels. This algorithm does neither label nor 

propagate watershed pixels, which “stop” the flooding. Thus, the watershed lines produced by 

Meyer’s algorithm are always thinner than lines produced by other watershed algorithms 

(Najman and Couprie 2003). 

The main disadvantage of these techniques described is over-segmentation. This happens 

when the image is partitioned into too many regions, that is, over-segmentation occurs 

because every regional minimum, even if tiny and insignificant, forms its own catchment basin. 

Hence, a practical solution to this problem is to limit the number of allowable regions by 

incorporating a preprocessing stage. The usual approach used to control over-segmentation is 

the use of markers. A marker is a connected component belonging to an image and could be 

internal, when associated with objects of interest, or external when related to background. 

This segmentation algorithm is included in the Matlab® image processing toolbox and is 

described in (Eddins). When the method was applied to the enhanced test endoscopic image, 

it results in over-segmentation, as was expected, Figure 4.56. 

 

 

 

 

 

 

 

 

Figure 4.56 – Results of the wathershed algorithm on the enhanced test image. 

 

To solve this problem, it was necessary to smooth the image, diminishing the variations of 

background and enhancing the edge of the ACF lesion, which will act as a marker to 

watershed. Hence, the image was smoothed using a median filter of size 10x10. Then, the ACF 

edge was identified using Sobel magnitude gradient image and a threshold of 0.12 was used  to 

suppress minimum gradient values. Before using the watershed algorithm, the edges detected 

were eroded, to eliminate noise, and then dilated to link the edges, using a structuring 
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element with square shape and size 6 for erosion and 4 for dilation. Then, they were imposed 

as minimum values in the smoothed image, establishing the external markers. The result of 

watershed implementation after this preprocessing is represented in Figure 4.57. 

Some experiments were made using Canny’s edge detector instead of Sobel, and for this 

particular test image there was an improvement. However, when implemented in different 

test images, it did not work successfully. Hence, although Sobel operator detects some other 

regions in background, it demonstrates more homogeneity when used in different test 

endoscopic images. 

 

 

 

 

 

 

 

 

Figure 4.57 – Results of the Watershed algorithm after preprocessing the enhanced test image. 

 

4.3.4. Comparison among the results of the segmentation algorithms on endoscopic 

images 

 

Once again, the problematic of variance between endoscopic images is an essential and 

conditional characteristic to evaluate the capacity of each segmentation algorithm used. 

Hence, some methods experienced were not capable of successfully ACF segmentations. As 

such, each method with reasonable results were used on the three endoscopic images A, B and 

C shown in Figure 4.30 and also on the enhanced test images, Figure 4.36 (in gray scale) and 

Figure 4.37 (in the RGB domain).  

 

4.3.4.1. Canny 

 

The Canny’s edge detector is very sensitive to high intensity noise, as concluded in the 

section 4.3.2.1. Hence, the use of this algorithm was performed on enhanced images after 

being smoothed by an additional double median filter with 10x10 window size. Furthermore, 
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the Canny’s filter was used with a threshold of 0.2 and sigma 2 and the results obtained are 

presented in Figure 4.58. 

The application of this algorithm to the three enhanced test images revealed that it was 

capable of detecting the boundary of ACF but it was not exclusive, i.e., the variations of image 

background were also pointed out by the Canny’s detector. It is also important to refer that 

during the acquisition of endoscopic images the light is sometimes reflected in the liquid 

present in the colon. This reflection appears as light spots in the image, affecting the 

segmentation process, as can be seen in the images A and B from Figure 4.58. 

 

 

 

 

 

 

 

Figure 4.58 – Results of the Canny’s edge detector applied on different test 
endoscopic images. 

 

4.3.4.2. Snakes 

 

The Snakes algorithm used depends on the initial contour, which is defined by the user. This 

is a disadvantage in the overall methods, since the process is not fully automatic. However, it 

could be useful to detect ACF boundaries and further extract features from these structures. 

This algorithm was applied to the same three images, but since the image C (from Figure 4.36) 

has the ACF edge in the limit of the image, the algorithm did not function successfully. 

 

 

 

 

 

 

 

Figure 4.59 – Results of the Snake algorithm applied on two endoscopic images 
using the same parameters. 

A B 
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The best coefficient values chosen for image A, described in Table 4.3, were also used to 

find the contour of the AFC in image B, but the results (Figure 4.59) were not satisfactory since 

the contour did not stop at the AFC boundary.  

 

4.3.4.3. Watershed 

 

The Watershed algorithm was used after some preprocessing steps developed and 

implemented. The overall process can be described as: 

1. Median filter of enhanced image using 10x10 window size; 

2. Sobel filtering, calculating the magnitude gradient; 

3. Thresholding of the Sobel magnitude with a threshold value of 0.12; 

4. Morphological operation of erosion followed by dilation, using a structuring element 

of square shape and size 6 and 4, respectively; 

5. Impose the binary image obtained as the minimum of the input image; 

6. Watershed segmentation. 

This image processing algorithm was applied on the three test endoscopic images and the 

results are represented in Figure 4.60. 

 

 

 

 

 

 

 

Figure 4.60 – Results of the Watershed algorithm on three test endoscopic images. 

 

Similar to what happened when the Canny’s edge detector was used, the watershed 

algorithm was capable of detecting the ACF lesion, in particular, on the images A and B of 

Figure 4.59. However, the variations of image background were also identified, and, in the case 

of the image C of Figure 4.59, the segmentation was not so effective. 
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4.3.4.4. Chan and Vese ACWE 

 

The Chan and Vese model was also applied on the three test endoscopic images, and the 

results revealed poor segmentation, as can be seen in Figure 4.61, which was due to small 

differences between intensity levels of the image background and foreground. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.61 – Results of the Chan and Vese method on three endoscopic images, where 
the 1st row corresponds to the output images and the 2nd row represents the 

corresponding original images. 

 

4.4. Conclusion 

 

The processing of endoscopic images was divided into two fundamental steps: 

Enhancement and Segmentation. Each step can be composed by several algorithms that have 

been described in the literature. However, in this Dissertation, only those which are normally 

applied on medical images were studied. 

From the methods used in image enhancement, the median filter and histogram stretching 

were the best options in order to achieve high intensity noise elimination and contrast 

enhancement from the endoscopic images tested. To take profit from the advantages of these 

two methods, it was proposed a hybrid algorithm. Since the original images were in the ��� 

domain, the processing was performed in gray scale and in the intensity matrix obtained from 
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conversion to ��	 model. The results obtained had shown that when it is used the ��	 model, 

the images processed had higher quality. 

The second step used the enhanced image as input. From the algorithms tested, the 

Canny’s edge detector, watershed and Snake algorithms were the best techniques capable of 

detecting the ACF boundary in the endoscopic images tested. However, the first two were 

affected by the background variation, and the Snake algorithm had important parameters that 

did not work well for all test endoscopic images. 

Considering these results, it will be necessary to develop new algorithms based, or not, on 

these here described to accomplish the objectives proposed, that is, to obtain ACF lesion 

detection in endoscopic images. 
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Chapter 5 

5. CONCLUSIONS AND FUTURE PERSPECTIVES 

 
The colorectal cancer is a problematic disease which motivates several research projects in 

order to promote diagnosis, treatment and possibly cure. It has been suggested that the 

Aberrant Crypt Foci (ACF) could be a possible cancer precursor, and its early detection 

potentiates the treatment of this cancer type. Considering this, the aim of this dissertation was 

to study image processing algorithms that would be capable of automatic detection of these 

crypts, using endoscopic images. Thus, it would help physicians in their diagnosing process, 

which is usually slow. The image processing techniques include a first step of enhancement 

and posterior segmentation. 

The purpose of image enhancement is to improve the quality of the original image. After 

implementing different algorithms, those who produced best results were median filtering and 

histogram stretching, since the first eliminate high intensity noise while the second enhances 

contrast. Thus, it was proposed a hybrid method which aggregates the advantages presented 

from the two methods. 

As the first step was concluded, the purpose of image segmentation was to locate 

boundaries or objects of interest in the image. In this project, the aim was to detect the ACF 

from different endoscopic images and several approaches were explored and evaluated in 

order to highlight the present of these crypts from the image background. Although none of 

the methods proposed were able to achieve this aim fully successfully, the canny edge 

detector and the watershed transform were capable of detecting the ACF boundary, as well as 

other regions from the image background with no clinical relevance. Moreover, the active 

contour (snake) algorithm was able to define a final contour near the boundary, but it is very 

sensitive to parameter coefficients chosen. 

Considering these results, it can be concluded that this dissertation introduces the first 

steps in the recent research field of ACF detection from endoscopic images. It was an initially 

attempt in the development of computational algorithms capable of efficient and robust ACF 

detection from different endoscopic images.  

In the future, it would be interesting to apply color image segmentation algorithms, taking 

advantage from the color information present in endoscopic images. Thus, since the ACF are 

detected by methylene blue application to the colon, their blue intensity can potentiate the 
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segmentation process. Furthermore, after performing an optimization method to detect these 

crypts, it would be advantageous to extract features as texture and color to posteriorly classify 

the images and finish the automatic detection. Another approach is to continue the work 

performed by Figueiredo et. al (2010), in which the level sets method is being adjust to better 

identify the ACF lesions. 

In the process of optimization, it will be relevant to consider more endoscopic images and 

the results of image segmentation should be validated by specialized medical doctors in order 

to verify if the detection was done correctly.  
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