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Abstract - Image segmentation is a fundamental task in image analysis responsible for partitioning an 
image into multiple sub-regions based on a desired feature. Active contours have been widely used 
as attractive image segmentation methods because they always produce sub-regions with 
continuous boundaries, while the kernel-based edge detection methods, e.g. Sobel edge detectors, 
often produce discontinuous boundaries. The use of level set theory has provided more flexibility and 
convenience in the implementation of active contours. However, traditional edge-based active 
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Active Contours and Image Segmentation: The 
Current State of the Art 

D. Baswaraj α, Dr. A. Govardhan σ & Dr. P. Premchand ρ  

Abstract - Image segmentation is a fundamental task in image 
analysis responsible for partitioning an image into multiple 
sub-regions based on a desired feature. Active contours have 
been widely used as attractive image segmentation methods 
because they always produce sub-regions with continuous 
boundaries, while the kernel-based edge detection methods, 
e.g. Sobel edge detectors, often produce discontinuous 
boundaries. The use of level set theory has provided more 
flexibility and convenience in the implementation of active 
contours. However, traditional edge-based active contour 
models have been applicable to only relatively simple images 
whose sub-regions are uniform without internal edges. Here in 
this paper we attempt to brief the taxonomy and current state 
of the art in Image segmentation and usage of Active 
Contours. 
Keywords : Active Contours, Snakes, Level Sets. 

I. Introduction 

n most image study operations, example classifiers 
need individual objects to be divided from the image, 
so the explanation of those objects can be 

transformed into a proper structure for computer 
processing. Image segmentation is a basic task, 
responsible for the separating process. The function of 
segmentation is to dividing an image into its basic and 
disjoint sub-regions, which are identical according to 
their property, e.g. intensity, color, and quality. 
Segmentation algorithms are usually based on either 
discontinuity with sub regions, i.e. edges, or equality 
within a sub-region, though there are a few 
segmentation algorithms depends on both discontinuity 
and equality.  

The difference between image segmentation 
and sample classification is often not clear. The purpose 
of segmentation is simply to divide an image into 
several sub-regions, while the role of sample 
classification is to identify the partitioned sub-regions. 
Thus, segmentation and sample classification generally 
functions as individual and sequential process as shown 
in table 1.1.  

However, they might work as an integrated 
procedure as shown in table 1.2 depending on the 
image study problem and the performance of the 
segmentation   process.   In   both   way,   segmentation  
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significantly affects the outcome of pattern classification, 
and  frequently   determines   the   ultimate   success  or 
failure of the image analysis. Since segmentation is an 
essential job in image analysis, it is involved in mainly 
image analysis applications, mostly those connected to 
pattern classification, e.g. medical imaging, remote 
sensing, security surveillance, military object detection. 
The stage to which segmentations carried depends on 
the difficulty being solved. That is, segmentation should 
end when the region of interest (ROI) in the function 
have been isolated. Due to this property of trouble 
dependence, independent segmentation is one of the 
mainly difficult tasks in image study. Noise and mixed 
pixels cause by the poor resolution of sensor images 
create the segmentation problem even more complex. 
In this document, we recommend novel segmentation 
methods with a variation framework called active 
contours.  

Active contours are connectivity-preserving 
relaxation [10] methods, valid to the image 
segmentation problems. Active contours have been 
used for image segmentation and boundary tracking 
since the first introduction of snakes by Kass et al. [11]. 
The fundamental idea is to start with first boundary 
shapes represented in a type of closed curves, i.e. 
contours, and iteratively change them by applying 
shrink/expansion operations according to the 
constraints of images. Those shrink/expansion 
operations, called contour evolution, are done by the 
minimization of an energy function like fixed region-
based segmentation methods or by the simulation of a 
geometric fractional differential equation (PDE) [12]. 

Table 1.1 :  Medical imaging situation 1: an X-ray image 
of a hand segmentation and pattern classification as 

sequential and separate actions 

Input data: an X-ray image of a hand 

1. Segmentation: separate bones from the X-ray image. 

• Supervised method: qualified features or sample data of 
bones are provided. 

• Unsupervised method: divide bright regions from the 
background. 

• Result: bones are extracted, but we do not know what 
kinds of bones they are. 

2. Shape description: explain the extracted bones in a form of 
numerical features 

3. Pattern classification: recognize each bone based on the 
features 

Output data: the character of bones, e.g. thumb, index finger, ring 
finger, etc. 
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Table 1.2 : Medical imaging scenario 2: an MR image of 
a brain. Segmentation and pattern classification as an 

included procedure 

Input data: an MR image of a brain 
1. Segmentation & pattern classification: partition white 

and gray matters in the MR image. 
• Supervised: trained features or sample data of 

white and gray Matters are provided. 
• Unsupervised: partition the brightest regions and 

brighter regions from the background. 
Output data: extracted white and gray matter. 

An benefit of dynamic contours as image 
segmentation methods is that they dividing an image 
into sub-regions with continuous boundaries, while the 
border detectors based on threshold or local filtering, 
e.g. Canny [13] or Sobel operator, regularly result in 
irregular boundaries. Apply of level set theory has 
provided more flexibility and convenience in the 
completion of active contours. Depending on the 
implementation method, active contours can use 
diverse properties used for other segmentation methods 
such as edges, statistics, and texture. In this paper, the 
proposed active contour models using the statistical 
information of image intensity inside a sub-region. 

II. Image Segmentation using Active 
contours: the Taxonomy 

               There are two major approaches in image 
segmentation: edge- and region- based. Edge based 
segmentation partitions an image based on 
discontinuities with sub-regions, while region-based 
segmentation does the similar function based on the 
uniformity of a desired property within a sub-region. In 
this chapter, we briefly discuss existing image 
segmentation technologies as background. 

a) Edge-based Segmentation 
             Edge-based segmentation looks for 
discontinuities in the intensity of an image. It is more 
likely edge detection or boundary detection rather than 
the exact meaning of image segmentation. An edge can 
be defined as the border between two regions with 
relatively separate properties. The assumption of edge-
based segmentation is that every sub-region in an 
image is sufficiently uniform so that the transition 
between two sub-regions can be determined on the 
basis of discontinuities alone. When this statement is not 
valid, region-based segmentation, discussed in the next 
section, regularly provides more reasonable 
segmentation outcome. Basically, the idea underlying 
most edge-detection techniques is the computation of a 
local derivative operator.  

           Edge detection by gradient operations usually 
works well only in the images with sharp intensity 
transitions and relatively low noise. Due to its sensitivity 
to noise, various smoothing operation is usually 

essential as preprocessing, and the smoothing effect 
consequently blurs the edge information. However, the 
computational cost is comparatively lower than other 
segmentation methods because the computation can 
be complete by a local filtering operation, i.e. 
convolution of an image with a kernel.  

b) Region-based Segmentation 
           Region-based segmentation looks for equality 
inside a sub-region, based on a desired property, e.g. 
intensity, color, and texture. Clustering techniques 
encountered in pattern classification literature have 
related objectives and can be applied for image 
segmentation [14].Region rising [15] is a technique that 
merges pixels or small sub-regions into a bigger sub 
region. The simplest implementation of this approach is 
pixel aggregation [19], which starts with a set of seed 
points and grows regions from these seeds by 
appending nearby pixels if they satisfy the given criteria. 

 
          Additional criteria that use properties to raise 
the regions lead area growing into more sophisticated 
methods, e.g. region competition. Region competition 
[16, 17] merges neighboring sub-regions under criteria 
involving the equality of regions or sharpness of 
boundaries. Strong criteria tend to generate over-
segmented results, while weak criteria lean to produce 
poor segmentation outcome by over-merging the sub-
regions with blurry boundaries. An alternative of region 
rising is split-and-merge [18], which partitions an image 
firstly into a set of arbitrary, disjointed sub-regions, and 
then combine and/or split the sub-regions in an attempt 
to satisfy the segmentation criteria. 

c) Active Contours 
The method of active contours has become 

quite popular for a range of applications, mainly image 
segmentation and motion tracking, through the last 
decade. This methodology is based upon the use of 
deformable contours which match to various object 
shapes and motions. This section provides a theoretical 
setting of active contours and an indication of existing 
active contour methods. There are two main 
approaches in active contours based on the mathematic 
implementation: snakes and level sets. Snakes explicitly 
shift predefined snake points based on an energy 
minimization method, while level set approaches move 
contours completely as a particular level of a function. 

As image segmentation methods, there are two 
kinds of active contour models according to the force 
evolving the contours: edge- and region-based. Edge-
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Despite the simple character of the algorithm, 
there are basic problems in region rising: the selection 
of initial seeds and suitable properties to grow the 
regions. Selecting initial seeds can be frequently based 
on the character of applications or images. For example, 
the ROI is generally brighter than the background in IR 
images. In this case, choosing bright pixels as initial 
seeds would be a suitable choice.
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based active contours apply an edge detector, typically 
based on the image gradient, to locate the boundaries 
of sub-regions and to draw the contours to the detected 
boundaries. Edge-based approaches are closely 
connected to the edge-based segmentation. Region-
based active contours apply the statistical information of 
image intensity inside each subset instead of searching 
geometrical boundaries. Region-based approaches are 
also closely connected to the region-based 
segmentation.  

d) Snakes 
The initial model of active contour was 

proposed by Kass et al. [11] and named snakes 
suitable to the appearance of contour evolution. 

Solving the problem of snakes is to locate the 
contour C that minimizes the total energy term E with the 
certain set of weightsα , β , and λ . In numerical 
experiments, a set of snake points residing on the image 
plane are defined in the first stage, and then the next 
location of those snake points are determined by the 
local minimum E. The associated form of those snake 
points is considered as the contour. Figure 2.1 shows 
an example of classic snakes [20]. There are about 70 
snakes points in the image, and the snake points form a 
contour around the moth. The snakes points are firstly 
placed at more distance from the boundary of the 
object, i.e. the moth. Then, every point moves towards 
the optimum coordinates, where the energy utility 
converges to the minimum. The snakes points ultimately 
stop on the boundary of the object.  

The classic snakes give an perfect location of 
the edges only if the first contour is given sufficiently 
near the edges because they make use of only the local 
information along the contour. Estimating a correct 
position of first contours without prior knowledge is a 
complex problem. Also, classic snakes cannot detect 
more than one boundary concurrently because the 
snakes maintain the equal topology throughout the 
evolution stage. That is, snakes cannot divide to several 
boundaries or combine from multiple first contours. 
Level set theory [12] has given a result for this problem. 

 

Figure 2.1 :  An example of classic snakes 

e) Level Set Methods 

Level set theory, a formulation to apply active 
contours, was proposed by Osher and Sethian [12]. 
They represented a contour implicitly via a two-

dimensional Lipschitz - continuous - function 
( , ) :x yφ Ω→ℜ  defined on the image plane. The 

function ( , )x yφ  is called level set function, and a 

particular level, generally the zero level, of ( , )x yφ  is 
defined as the contour. 

f) Edge-based Active Contours 
Edge-based active contours are strongly 

connected to the edge-based segmentation. Most edge 
based active contour models consist of two parts: the 
regularity part, which determines the form of contours, 
and the edge recognition part, which attracts the 
contour towards the boundaries. Edge-based active 
contour models have a little disadvantages compared to 
the region-based active contour models, discussed in 
the next section. Because of the constant term, edge-
based active contour models evolve the contour 
towards only one way, each inside or outside. Therefore, 
an primary contour must be placed completely inside or 
outside of ROI, and some level of a previous knowledge 
is still necessary .Also, edge-based active contours 
inherit a few disadvantages of the edge-based 
segmentation methods due to the parallel method used. 
Since both edge-based segmentation and edge-based 
active contours rely on the image gradient process, 
edge-based active contours may omit the blurry 
boundaries, and they are sensitive to local minima or 
noise as edge-based segmentation does. Gradient 
vector flow quick geodesic dynamic contours [21, 22] 
proposed by Paragios replaced the border detection 
(boundary attraction) word with gradient vector field [23, 
24, 25, 26, 27], that refers to a spatial diffusion of the 
boundary information and guides the propagation to the 
object boundaries from equally sides, to give extra 
freedom from the restriction of first contour position. 

g) Region-based Active Contours 
Most region-based active contour models 

consist of two parts: the regularity part, which 
determines the smooth form of contours, and the energy 
minimization part, which searches for equality of a 
preferred feature within a subset. A good characteristic 
of region-based active contours is that the first contours 
can be situated anyplace in the image as region-based 
segmentation relies on the global energy minimization 
rather than local energy minimization. Therefore, less 
previous knowledge is required than edge-based active 
contours. 

Although usual region-based active contours 
partition an image into several sub regions, those 
several regions belong to only two subsets: both the 
inside or the outside of contours. Chan and Vese 
proposed multi-phase active contour model  [28, 29, 
30, 31, 32], which increases the amount of subsets   that 
active contours can locate simultaneously. Multiple 
active contours evolve independently based on the 
piecewise-constant model or the piecewise-smooth 
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model, and multiple subsets are defined by a set of 
disjoint combination of the level set functions.  

Due to the global energy minimization; region-
based active contours usually do not have any 
restriction on the placement of first contours. That is, 
region-based active contour can detect interior 
boundaries regardless of the position of initial contour. 

That is, region-based active contour can detect 
inner boundaries regardless of the position of initial 
contours. The use of pre-defined initial contours 
provides a method of independent segmentation. Also, 
they are less responsive to local minima or noise than 
edge-based active contours. However, due to the 
supposition of uniform image intensity, most methods 
are relevant only to images where each subset is stand 
for able by a simple expression, e.g. single Gaussian 
distribution or a constant. If a subset, i.e. class, consists 
of multiple distinguishing sub-classes, these methods 
would produce over-segmented or under-segmented 
results. We propose novel region-based active contour 
models which produce better results using multivariate 
mixture density functions. 

h) Active Contours integrating Edge- and Region-
based Segmentation 

In order to develop the segmentation 
performance, the integration of edge- and region based 
information sources using active contours has been 
proposed by a few authors. Geodesic active region is a 
supervised active contour model, proposed by Paragios 
[33, 34, 35], integrating edge- and region-based 
segmentation module in an energy function. A statistical 
analysis based on the Minimum Description Length 
(MDL) measure and the Maximum Likelihood (ML) 
principle for the observed density function, i.e. an image 
histogram, indicates the number of sub-regions and the 
statistical PDF within those sub-regions using a mixture 
of Gaussian elements. Regional probability is estimated 
from the statistical PDF based on previous knowledge, 
i.e. training samples. Then, the margin information is 
resolute by a probabilistic edge detector, expected from 
the regional probabilities of neighborhood [36, 37]. For 
example, an image pixel is more likely an edge pixel if 
the neighborhood pixels, located on the opposed sides, 
have high regional probabilities for a different class.   

The geodesic active region model is later useful 
to a medical imaging problem [38, 39] with a gradient 
vector flow-based boundary factor. The approach was 
based on a joined propagation of two active contours, 
and integrates visual information with anatomical 
constraints.  

Jehan-Besson et al. also proposed an active 
contour model [40, 41] minimizing an energy criterion 
concerning both region and boundary functional. These 
functional are consequent through a shape derivative 
approach as an alternative of classical calculus of 
variation. They focus on statistical property, i.e. the PDF 

of the color histogram of a sub-region. Active contours 
are propagated minimizing the distance between two 
histograms for corresponding or tracking purposes. 

III. Current State Of the Art 

In order to overcome the difficulties caused by 
various intensity in Image segmentation, Chunming Li et 

 

 

 


 

Implementing Level Set Formulation: In contrast to 
Level set Formulation[42], to protect the reliability of 
the level set function , which is necessary for exact 
calculation and stable level set evolution, here an 
approach called level set regularization introduced 
that is part of different level set formulation. In this 
level set regularization, its gradient flow is used as 
the level set development equation that attempts to 
minimize the energy functional.

 


 

Energy Minimization: The proposed model is using 
standard gradient descent (or steepest descent) 
method to minimize the energy functional.

 


 

Fitting Functions and Level Set Function 
regularization: The two fitting functions introduced 
here are different from the data

 
fitting functions 
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 Introduction of nonnegative kernel function with 
Region-Scalable Fitting Energy. The choice of the 
kernel function is flexible, as long as it satisfies the 
above three basic properties.   
Gaussian kernel. The fitting energy defined in the 
following. First, considering a weighted mean 
square error of the estimate of the image intensities 
outside and inside the contour by the fitting values 
for x as center point, respectively, the result of the 
kernel function useful on x and y coordinate 
difference as weight assigned to intensity at 
selected y-coordinate. Second, due to the 
localization property of the kernel function, the 
contribution of the intensity of y-coordinate to the 
fitting energy decreases and approaches to zero as 
y-coordinate point goes away from the center point 
x. Therefore, the energy is dominated by the 
intensities of the points in a region of. In particular, 
the Gaussian kernel decreases considerably to zero 
as y-coordinate goes away from center point x. 

The authors are opted 

al[1] proposed a region-based active contour model, 
that draws upon intensity information in local regions at 
a convenient scale. A data appropriate energy is defined 
in terms of a contour and two fitting functions that locally 
estimated the image intensities on the two sides of the 
contour. This energy is then integrated into a dissimilar 
level set formulation with a level set regularization term, 
from which a curve development equation is derived for 
energy minimization. Due to a kernel function in the data 
fitting term, intensity information in local regions is
extracted to guide the motion of the contour, which 
thereby enables our model to cope with dissimilar 
intensity. The Region Scalable Fitting Model consists 
fallowing phases, which are
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observed in the PS model. This difference is due to 
the different natures of the data fitting energy terms 
in the two models. Here in this model the regularity 
of the level set function is naturally ensured by the 
level set regularization term in level set formulation 
described above. This term is related with the fining 
term as a soft constraint on the regularity of the level 
set function, which regularizes the developing level 
set function by fining its departure from a signed 
distance function, instead of forcing to be a signed 
distance function. 

Observation: Chunming Li et al[1] presented a 
new region-based active contour model that draws upon 
intensity information in local regions at a convenient 
scale to segment images with various intensity, and has 
advantageous performance for images with weak object 
limits. To ensure exact computation and avoid 
expensive repeated initialization procedures in 
promptness of the level set function, the authors 
succeed by introducing the level set regularization term 
in the proposed level set formulation. 

In the research area of multi agent IVUS image 
segmentation, Bovenkamp et al [2] introduced a novel 
User-Agent Cooperation methodology, which initiated 
the expert communication with a multi-agent image 
interpretation system using only a limited vocabulary of 
high-level user communications.  The aim is to minimize 
the influence of expert’s views those encouraging the 
variations in image segmentation. This model is 
attempting to do this by keeping the total number of 
communications as low and simple as possible. The 
multi-agent image interpretation system has 
complicated high-level knowledge-based control over 
low-level image segmentation algorithms. The user, in 
turn, can correct, supplement, and/or confirm the results 
of image-processing agents. High-level communication 
thereby replaces more conventional contour correction 
methods like inserting points and/or (re)drawing 
contours. The system has been applied to intravascular 
ultrasound (IVUS) images. 

   

  

 

 
 

 
 

 

 
 

 
 

   

 

  

 

 

 

 

 

 

  

 

 

 
 

 

semi-automatic system with low-level user 
communication. With comparatively few (2–3) high-level 
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Here in this model proposed by Bovenkamp et 
al[2], agents use the moving-average of the cross-
sectional lumen and vessel area to estimate when user 
communication is required. When a newly found result is 
within limits of this moving-average, the new result is 
unspecified to be ok, and the user is not consulted. 
Otherwise the user is asked to confirm that a result is 
not-ok and should, for instance, actually be much-larger. 
The terms ok, not-ok, and much-larger are instances of 
the formalized and high-level communication vocabulary 
between agents and user. Possible agent–user 
communications in differing situations are listed in Table 
I, while Table II lists agent–user communications when 
image-processing results are not trusted or need to be 
quantified.

The tables show which choices can be 
presented to the user by the agent and list the possible 
specifications of each choice as well as the result it will 
have on the agent.

Observation: Bovenkamp et al[2] aimed to 
found whether it is possible to get more accurate, 
reproducible results in an professional manner with only 
a limited set of high-level user communications. And 
also aimed to introduce agents those regularly adjust 
their behavior by learning from these communications 
such that less user interference may be necessary. As a 
result it was observed that this leads to minimal 
variations due to expert’s role in segmentation and 
increased ability of repeats and effectiveness. It has 
been shown that with only high-level user 
communication in a multi-agent IVUS image 
segmentation system it is possible to obtain results 
which are at the least competitive with a committed 

Question User Choice Result

Object? Ok Agent assumes the object is 
detected correctly, other agent has 
retracts opinion, conflict resolved.

Not-ok Agent retracts opinion, other agent 
retains opinion, conflict resolved.

No-
Object?

Ok Agent assumes there is no object, 
other agent has to retracts opinion, 
conflict resolved.

Not-ok Agent retracts opinion, other agent 
retains opinion, conflict resolved.

Table I : Agent-User Interaction, initiated when a mutual 
conflict cannot be resolved

User Choice Specification Result

ok judge:(very) 
(very)small, (very) 
(very)large, average

Agent accept object and 
sets object 
quantification to user 
choice.

not-ok steer:(much) 
(much)smaller, (much) 
(much)larger

Agent adjusts image 
processing parameters 
and retries detection, 
result not guaranteed, 
agents re-enter 
evaluation loop.

Remove-object Agent removes object 
and notifies others.

is-other object Calcified_plaque, 
deep_Calcified_plaque, 
stent, shadow, side 
branch

Agent transfers object to 
other agent.

Table II : Agent-User Interaction, initiated when an agent 
need user input during evaluation of image processing 

result
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user communications per improvement, multi-agent 
IVUS image segmentation can significantly be improved, 
while the user is initiating corrective actions in only about 
43% (255 versus 594) of the cases when compared with 
the committed semi-automatic system. No image 
processing or agent knowledge is required of the user to 
correct image segmentation results. Experiments show 
that even when images are very difficult to segment, 
aggressive results can be obtained in this fashion. 
However, although enough for most cases limited 
control by the user over the segmentation process (only 
very high level) was sometimes too preventive to get to 
the desired result and is a source of observer errors. 

Srinivasa, G et al [3] proposed an active mask 
algorithm for the segmentation of fluorescence 
microscope images of punctate patterns. In order to 
develop this algorithm, Srinivasa, G et al [3] considered 
active-contour methods  for their flexibility, multi 
resolution methods due to their magnitude speed, 
multiscale methods by considering their efficiency in 
smoothing, and region-growing methods for their 
statistical modeling. The framework developed as top 
layer of the algorithm proposed moves from the idea of 

the ldquo contour rdquo to that of ldquo inside and 
outside, rdquo or masks, allowing for easy 
multidimensional segmentation. The framework was 
aimed to adapt the topology of the image through the 
use of several masks. To claim the benefit of the 
algorithm proposed, Srinivasa, G et al [3] argued that 
since a fluorescent microscope images the cells by 
revealing the specimen with light of a specific 
wavelength, exciting the fluorescent probes to emit light 
of a longer wavelength; a CCD camera records photon 
emissions resultant in a digital image. As only some 
parts of the sample are tagged and the tagging is not 
uniform, the resulting image looks like a allocation of 
bright dots on a dark background, a punctate pattern. 
Hence they focused on images in which such patterns 
represent individual cells in a multi cell specimen. 

The algorithm is almost invariant under 
initialization, allowing for random initialization, and uses 
a few easily tunable parameters. Experiments show that 
the active mask algorithm matches the ground truth well 
and outperforms the algorithm widely used in 
fluorescence microscopy, seeded watershed, both 
qualitatively, as well as quantitatively.

 

 


 

Difficulty in identifying the contour in a digital 
images

 


 

Updating the level set function in active-contour 
algorithms, which is ineffective and slow. 

 


 

Difficulty in reconstructing the level set function in 
the multi resolution version? 

 


 

Difficulty in protect topology during Updating in 
large increments in the multiscale version.

 

Observation: Srinivasa, G et al [3] worked on 
fluorescence microscope images of punctate patterns, 
and assume that: (a) the statistical properties of the 
foreground (cell) and background are distinct and 
relatively uniform; (b) the foreground is bright, while the 
background is dark. The first assumption is crucial, the 
second not at all; one can easily change the algorithm 
should the position be reversed in another modality 
(such as bright field microscopy). Thus, in this proposal, 
the authors are basically looking for two different 
statistical models in the image (foreground and 
background). We note, however, that the techniques 
existing here may be generalized to the case of more 
models. The proposed new algorithm termed as active 
mask segmentation that designed for segmentation of 
fluorescence microscope images of punctate patterns, a 
large class of data. It seems to disappear from the idea 
of the contour and instead uses that of a mask, as well 
as several masks. The algorithm easily performs 
multidimensional segmentation, can be initialized with 
random seeds, and uses a few easily tunable 
parameters. 

Wenxian Yang et al[4] proposed a constrained 
random walks algorithm that facilitates the use of three 
types of user inputs: 1) foreground and background 
seed input, 2) soft constraint input, and 3) hard 
constraint input, as well as their combinations. To 
support the context of their research model Wenxian 
Yang et al[4] argued that one common fault in the 
existing interactive image segmentation algorithms is 
the lack of more intellectual ways to understand the 
intention of user inputs.  The foreground and 
background seed input of the proposed model is meant 
to allow a user to draw strokes to specify foreground 
and background seeds. The soft constraint input is 
meant to allow a user to draw strokes to point out the 
region that the boundary should pass through. The hard 
constraint input meant to allow a user to specify the 
pixels that the boundary must align with. The proposed 
method attempted to support all three types of user 
inputs in one logical computational framework 
consisting of a constrained random walks and a local 
editing algorithm, which would allow more accurate 
contour refinement.  

This proposed model formulates the 
segmentation problem on a graph, where each node 
represents a pixel and neighboring nodes are linked with 
undirected edges. In particular, a graph is represented 
by its vertices and edges also integrate two other types 
of user inputs as constraints into the random walks 
algorithm. We call such an extension as constrained 
random walks. In particular, boundary brush strokes that 
roughly mark parts of the boundary are introduced as 
the soft constraint. A vertex on which the soft constraint 
is forced has the property that the difference between its 
probability and 1/2 is within a small given range (-e, e). 
The second type of user inputs, boundary pixel selector, 
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With issues rose in order to segment 
fluorescence microscope images such as
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which selects pixels on the desired contour, is 
introduced as the hard constraint. A vertex on which the 
hard constraint is imposed has a probability of 1/2. 

Observation: The proposed model can be 
summarized as follows. First, the proposed constrained 
random walks algorithm together with the proposed 
local editing algorithm supports the three types of user 
inputs and their combinations in a coherent and unified 
framework.  Second, the region prior term is integrated 
in the edge weights so that the proposed constrained 
random walks algorithm does not lose the connectivity 
property and is less demanding on the positions and 
quantities of the user input strokes than the original 
random walks algorithm [43]. Third, the proposed local 
editing algorithm also allows additional local refinement 
to reach a satisfactory segmentation. 

Ping-Feng Chen et al[5] proposed a novel 
model to jointly segment and register objects of interest 
in layered images.  Since the Layered images refer to 
imageries taken from different perspectives and possibly 
by different sensors, the registration and segmentation 
are therefore the two main tasks which contribute to the 
bottom level, data alignment, of the multi sensor data 
fusion hierarchical structures. In contrast to most 
exploitation of two layered images those assumed that 
scanners are at very high altitudes and that only one 
transformation ties the two images, the proposed model 
consider the data as taken at mid-range and therefore 
require segmentation in the process of examining 
different object regions in a divide-and-conquer fashion. 
The proposed multiphase joint segmentation by Ping- 
Feng Chen et al[5] is a combination of multiphase 
method with a combined segmentation registration 
practice in short that referred as MPJSR agreed out in a 
local moving window earlier to a global optimization. To 
auxiliary address layered video sequence and tracking 
objects in frame, MPJSR is using a trouble-free 
adaptation of optical flow calculation along the lively 
contours in a pair of layered illustration sequences.  

The related kind of works introduced former to 
MPJSR are delineating a intention of interest [44], 
mosaic king scenes [45], [46], and inclusion data [47]. 
Techniques which jointly exploit the information from 
special sensors formally fall within data fusion [48]. Data 
fusion incorporate a well-established categorization of 
“fusion levels” that groups different iterative processes 
of opposed maturity levels. The foundation level, i.e., 0-
level of “data alignment” [49], is the preprocessing, 
registration, and geo-registration of metaphors, which 
prepares the data for other blend levels. Image 
registration, which finds the correspondence or the 
transformation between two images [46], [50]–[56], 
therefore contributes to this stage in the data fusion 
hierarchical structure. 

Observation: Ping-Feng Chen et al[5] have 
projected a joint segmentation and register method 
adapted to multiphase active contours (MPJSR) using a 

heartrending local window. By first resembling the 
detected object surface within a window in the basis and 
the reference images by planes, and then by evolving a 
m-phase active contour via the proposed joint 
segmentation- registration technique, The proposed 
MPJSR would able to  1) delineate an object of interest, 
2) obtain the acquired transformations between two 
images. This method successfully segments and 
registers a pair of layered images, and moreover allows 
us to align segmented objects from one image to 
another, thus, achieving a 0-level data alignment stage 
in the data fusion hierarchy. 

Figueiredo et al[6] proposal expected to 
introduce a variational image segmentation method for 
assess the aberrant crypt foci (ACF) in the person colon 
captured in vivo by endoscopy. The proposed 
segmentation technique enhanced the active contours 
without edges model of Chan and Vese to account for 
the ACF's particular structure. Level sets to represent the 
segmentation boundaries and discretize in space by 
finite elements and in (artificial) time by fixed differences 
are employed. The model proposed by Figueiredo et 
al[6] aimed to classify the ACF, their boundaries, and 
some of the internal crypts' orifices. Figueiredo et al[6] 
suggestion focused on a fussy image processing 
method, for assess the ACF captured in vivo by 
endoscopy: image segmentation. This method consists 
in the dividing wall of the given image into put out of 
joint regions, representing distinct objects. Moreover, we 
use image segmentation methods based on partial 
differential equations, more exactly, active contours 
without edges (ACWEs) and level-set methods. These 
combine techniques of curve evolution (where the basic 
idea is to start with an initial curve in the image and to 
deform it to the boundaries of the objects in the image, 
and stop it there, see [57], [58], and [11]), Mumford–
Shah functional for image segmentation (an optimization 
problem to obtain a sliding doors of the given image into 
different regions, see [59]) and level-set methods 
(essentially these consist in considering the problem in a 
higher measurement, such that the evolving curve is the 
zero level set of an unknown function; these methods 
allow cusps, corners, and usual topology changes, as 
merging and breaking curves, see [60], [61], and [62]). 
We note that the expression “without edges” in 
“ACWEs” refers to the fact that in these models it is not 
used any edge-detector function, based on the gradient 
of the given image, to identify the different objects (the 
“edges,” in an image, are the boundaries of the distinct 
objects, corresponding to the places where these 
objects meet). This latter property allows the model to 
segment images where there are no clear gradient 
boundaries, which is often the case for ACF endoscopic 
images. 

Observation: The aid of the model proposed 
can be refer to enhancements of the Chan and Vese 
model and to the parallel numerical tests performed with 
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these models to version for the in vivo endoscopic ACF 
segmentation. More specifically, these main issues are 
the following. 
 A new numerical system for solve the weak 

difference formulation of the Chan and Vese model 
is defined. The weak formulation has the help of 
requiring less functional regularity for the unknown 
level set function. The numerical scheme involves a 
finite element discretization in space and implicit 
finite differences in (artificial) time. It is 
correspondent to a L–M Newton-type optimization 
method. 

 A new ACWEs model is definite. It relies on the 
Chan and Vese model, but incorporates additional 
terms whose goal is to confine specific features of 
the ACF that are important to clinicians: the 
anomalous crypts’ restrictions stain darker than 
normal crypt and in general inside each focal point, 
the crypts’ orifices have shapes that are similar to 
each other. 

 The mixed regularize model is based on the Chan 
and Vese model, but involve an additional 
regularization term, which penalize deviations of the 
angle of the level set function from unity, and thus 
address the heterogeneity of the level-set function 
for a given shape. This avoids the standard line of 
periodically reinitializing the level-set function to a 
signed distance function, and permits the full power 
of a Newton-type optimization method to be applied 
to minimization of the objective (since the 
uniqueness constraint is automatically 
incorporated). 

Optical coherence tomography (OCT) is a 
noninvasive, depth-resolved imaging modality that has 
become a high up ophthalmic diagnostic technique. 
Yazdanpanah et al[7] presented a semi-automated 
segmentation algorithm to detect intra-retinal layers in 
OCT images acquired from rodent models of retinal 
degeneration. The proposed segmentation technique 
was adapted Chan-Vese's energy-minimizing active 
contours without edges for the OCT images, which in 
turn suffered from low contrast and were highly 
tarnished by noise. Hence a multiphase scaffold with a 
circular shape prior was adopted in order to model the 
borders of retinal layers and educated guess the shape 
parameter using least squares. A related scheme was 
used to balance the weight of poles apart terms in the 
energy functional. 

 
Observation: Earlier to the Yazdanpanah et al[7] 

proposal, several robotic and semi-automated 
approaches have been employed in OCT segmentation 
[63]–[72]. Some method rely on pixel-level edge 
exposure algorithms [10] or are based on performing a 
1-D importance peak detection procedure for each A-
scan [64]–[66]. These low-level approaches could 
potentially lead to the finding of not working restrictions 
and erroneous edges. Moreover, since OCT images are 
highly corrupted by speckle noise, these algorithms 
required preprocessing to reduce the effect of noise. 
The de-noising procedure, however, affects the 
sharpness of the edges, which subsequently reduces 
the segmentation appearance. In [67] and [68], a 
Support Vector Machine (SVM) algorithm is used to 
perform segmentation of retinal layers. By deportment in 
mind the mean intensity of six neighbors at each voxel, 
the SVM approach can handle noisy OCT images. 
However, this approach is not only dependent on a user 
to mark a set of points for the rationale of training and 
segmentation but also fails to segment the layers 
accurately if the feature and environment points are not 
chosen properly. Further, SVM is computationally 
expensive and is not able to segment all layers at the 
same time. Garvin et al. [69] and Haeker et al. [70], [71] 
model the segmentation problem as finding the 
minimum s–t cut of a geometric graph. The cost function 
is the summation of an edge-based term and one or 
more region-based terms. They have developed a 
sequential approach to segment the intra retinal layers. 
First, the three easier-to-segment surfaces are found 
(upper surface of NFL and better and lower surfaces of 
OS). The position of the previous segmented surface is 
incorporated into the cost function to explain the 
remaining surfaces. The problem arises when the 
preceding surface are segmented inaccurately. This 
may result in an erroneous segmentation of the 
remaining surfaces. Recently, Garvin et al. [72] have 
proposed an extension to their algorithm. By learning 
the surface feasibility constraints using a training set, 
they can segment the layers in two stages incorporating 
both the image edge and true regional information in the 
cost function. The residential iterative algorithm[7] to 
segment OCT images of rodent retinal layers using a 
multi-phase framework with a rounded shape prior 
attempt to demonstrate that the approach is able to 
truthfully segment all of the intra-retinal layers, even 
when the small size and similar texture make them 
difficult to make a distinction visually. And also this 
model attempted to show that the inclusion of a shape 
prior constraint improves show on regions with intensity 

The objective of the projected segmentation 
technique is to segment a given OCT image define on 
the image domain into R disjoint sub-regions, which 
exactly label the retinal layers. The decomposition of the 
image I will be modeled using the level set framework as 
a set of R−1 Signed Distance Functions (SDFs), φ. The 
distance function captures the distance from any point 
in the image province to the object limit and assigns this 

distance to that point’s location. The SDF assigns 
opposite signs to the interior versus exterior of the 
object. Formally, the SDF is an implicit function with 
positive values in the interior region, negative values in 
the exterior region, and zero on the boundary with the 
property that ranges between 0 and 1.
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heterogeneity. This proposed segmentation technique 
backed with a contextual scheme to stability the weight 
of different terms in the energy functional, which seems 
to make the algorithm more robust when the image 
information is not sufficient to accurately detect the 
layers. This method is a region-based segmentation 
approach combining the intensity information and the 
implicit use of edge information, through the shape 
term, to improve the final segmentation accuracy. 

Delu Zeng et al[8] considered the task of object 
segmentation and achieve in a novel manner that 
backed by the Poincaré map method in a defined vector 
field in view of dynamical systems. An interpolated swirl 
and attract flow (ISAF) vector field is first generated for 
the observed image. Then, the states on the limit cycles 
of the ISAF are located by the convergence of Newton-
Raphson sequences on the given Poincaré sections. 
Meanwhile, the periods of limit cycles are determined. 
Consequently, the objects' boundaries are represented 
by integral equations with the corresponding converged 
states and periods.  

In   this   developed   model   [8],  intially 
an interpolated swirling and attract flow (ISAF) field is 
generated by extending a so-called edge tangent flow 
(ETF) only with a nonzero value at the boundaries to the 
whole image domain. It is a static vector field. Different 
from traditional vector fields, the components in this 
vector field near the boundary are not making a corner 
but tangent to the boundary. Thus, in the proposed 
vector field, it is possible for evolution to be carried out 
along the boundaries. Then, the proposed time-invariant 
vector field is considered as the right-hand-side vector-
valued function of an autonomous dynamical system. As 
a result, the segmentation problem is translated to the 
problem of the limit cycle location by applying the 
related theory in dynamical systems. ISAF is composed 
of two components, namely, diffused ETF (DETF; 
swirling component) and diffused edge perpendicular 

 

 

 
Observation: The object segmentation is 

achieved in a novel manner by the Poincaré map 
method in the field of dynamical systems. First, for an 
observed image, an ISAF vector field is proposed, 

where there exist to swirling components (with fixed 
directions) near the object’s borders. This is a key 
feature of the ISAF compared with the traditional vector 
field utilized in the ACM method. These swirling 
workings treated as limit cycles in view of dynamical 
systems correspond to the desired objects. Then, the 
Poincaré section and the corresponding Poincaré map 
for the ISAF are defined. Accordingly, given some initial 
states in the vector field, they naturally belong to the 
basins of attraction of the corresponding limit cycles. 
After that, the Newton–Raphson algorithm is utilized to 
locate the limit cycles via locating one point on each 
limit cycle. In the end, the objects’ boundaries are 
represented by integral equations. Without using the 
time-consuming level-set methods like most of the 
ACMs, the proposed algorithm can achieve multiple-
boundary extraction by placing some initial states in the 
vector field. In addition, it runs more competently since 
the Newton–Raphson algorithm is carried out in the 
Poincaré section, a lower dimensional subspace of the 
image domain, while the long-established ACMs evolve 
the contour in the whole image area. 

IV. Conclusion 

Active contour models (ACMs) integrated with 
various kinds of external force fields to pull the contours 
to the exact boundaries have shown their powerful 
abilities in object segmentation. However, local 
minimum problems still exist within these models. The 
current state of the art in image segmentation mostly 
cornered to furbish active contour models for domain 
specific image segmentation, more specific to medical 
images. The majority of the interactive approaches 
mainly targeting the accuracy of the segmentation 
process results. It is clearly evident that these interactive 
models probabilistic due to the role of the observers and 
in recent literature, it is hard to find interactive models 
with optimal resource utilization and computational 
efficiency. Hence the research scope in interactive 
image segmentation is optimistic. On other side the 
statistical and numerical analysis models introduced in 
recent literature are more specific to contextual issues of 
the domain to which the input images are belongs to. 
Hence it is clear evident of scope to perform research 
that introduce machine learning and data engineering 
approaches those can generalize the optimistic 
statistical and numerical methods to improve the 
computational performance and minimal resource 
usage in active contour based image segmentation. 
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