
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

12-13-2012 12:00 AM

Automatic Foreground Initialization for Binary Image Automatic Foreground Initialization for Binary Image

Segmentation Segmentation

Wei Li
The University of Western Ontario

Supervisor

Olga Veksler

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Wei Li 2012

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Graphics and Human Computer

Interfaces Commons

Recommended Citation Recommended Citation
Li, Wei, "Automatic Foreground Initialization for Binary Image Segmentation" (2012). Electronic Thesis and
Dissertation Repository. 1004.
https://ir.lib.uwo.ca/etd/1004

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ir.lib.uwo.ca%2Fetd%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ir.lib.uwo.ca%2Fetd%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/1004?utm_source=ir.lib.uwo.ca%2Fetd%2F1004&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

AUTOMATIC FOREGROUND INITIALIZATION FOR BINARY IMAGE
SEGMENTATION

(Thesis format: Monograph)

by

Wei Li

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Masters of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

c©Wei Li 2012

THE UNIVERSITY OF WESTERN ONTARIO
School of Graduate and Postdoctoral Studies

CERTIFICATE OF EXAMINATION

Supervisor:

. .
Dr. Olga Veksler

Supervisory Committee:

Examiners:

. .
Dr. Steven Beauchemin

. .
Dr. Mark Daley

. .
Dr. Kenneth McIsaac

The thesis by

Wei Li

entitled:

Automatic Foreground Initialization for Binary Image Segmentation

is accepted in partial fulfillment of the
requirements for the degree of

Masters of Science

.
Date

. .
Chair of the Thesis Examination Board

ii

Abstract
Foreground segmentation is a fundamental problem in computer vision. A popular approach
for foreground extraction is through graph cuts in energy minimization framework.

Most existing graph cuts based image segmentation algorithms rely on users initialization.
In this work, we aim to find an automatic initialization for graph cuts. Unlike many previous
methods, no additional training dataset is needed. Collecting a training set is not only expen-
sive and time consuming, but it also may bias the algorithm to the particular data distribution
of the collected dataset.

We assume that the foreground differs significantly from the background in some unknown
feature space and try to find the rectangle that is most different from the rest of the image by
measuring histograms dissimilarity. We extract multiple features, design a ranking function to
select good features, and compute histograms based on integral images.

The standard graph cuts binary segmentation is applied, based on the color models learned
from the initial rectangular segmentation. Then the steps of refining the color models and re-
segmenting the image iterate in the grabcut manner, until convergence, which is guaranteed.

The foreground detection algorithm performs well and the segmentation is further improved
by graph cuts. We evaluate our method on three datasets with manually labelled foreground
regions, and show that we reach the similar level of accuracy compared to previous work. Our
approach, however, has an advantage over the previous work that we do not require a training
dataset.

Keywords: image features, graph cuts, discrete optimization, object detection, automatic
segmentation, iterative energy minimization, expectation maximization

iii

Acknowledgements
My deepest gratitude goes first and foremost to Dr. Olga Veksler, my supervisor, for her con-
stant encouragement and guidance. She has walked me through all the stages of this thesis. I
learnt a lot from her serious attitude toward research. Meanwhile, I really enjoy the process of
discussing with her like old friends. Without her consistent and illuminating instruction, this
thesis could not have been possible.

I would like to express my heartfelt thank to Dr. Yuri Boykov, who led me into the world
of computer vision and image processing. I was delighted to attend his lectures and I appreci-
ate the various and impressing ways he employed to explain every detail clearly.

Special thanks are given to the members of my examining committee, Dr. Steven Beauchemin,
Dr. Mark Daley and Dr. Kenneth McIsaac.

I am also greatly indebted to Dr. Steven Beauchemin, Dr. Roberto Solis-Oba, and Dr. James
H. Andrews, who have instructed and helped me in the past year.

I would extend my sincere thanks to students in Vision Group, Paria Mehrani who provided
me images for testing and comparing the algorithms. Also Dr. Lena Gorelick, Dr. Yu Liu,
Dr. Andrew Delong, Hossam Isack, Junwei Sun and Greg Elfers, for patiently answering my
questions and I learnt quite a lot from the discussions with them.

I would also like to thank staff members in the main office and system group, for their help
and support.

My thanks would go to my beloved family for their loving considerations and great confi-
dence in me all through these years.

Last but not the least, I especially appreciate the support of my husband, Shenggang Shang,
who is always there loving me, helping me, and encouraging me to do what I like.

iv

Contents

Certificate of Examination ii

Abstract iii

Acknowledgements iv

List of Figures vii

List of Tables x

List of Appendices xi

1 Introduction 1
1.1 Overview . 1

1.1.1 Application Prospect of Automatic Image Segmentation 2
1.1.2 Motivation and Challenge of This Work 2

1.2 Our Approach . 3
1.2.1 Methodology . 3
1.2.2 The Advantages of Our Method . 5

1.3 Outline of the Thesis . 7

2 Image Features 8
2.1 Feature, Feature Vector and Feature Space . 8
2.2 Feature Types . 8

2.2.1 Texture Descriptors . 9
2.2.2 Color Features . 11

2.3 Feature Selection . 12

3 Overview of Energy Minimization Framework 15
3.1 From Segmentation to Labeling Problem . 16
3.2 Energy Function Construction . 17

3.2.1 Objective Function . 17
3.3 Optimization Approaches . 18

3.3.1 Max-flow/Min-cut Algorithm . 19
3.4 Binary Image Segmentation with Graph Cuts 21

4 Related Work 24

v

4.1 Interactive Segmentation Methods . 24
4.1.1 Interactive Graph Cuts . 24
4.1.2 Grabcut . 27
4.1.3 Other Approaches . 29

4.2 Automatic Segmentation Methods . 31
4.2.1 Saliency Segmentation . 31
4.2.2 Other Automatic Segmentation Methods 32
4.2.3 Useful Cues for Foreground Initialization 34

4.3 The Weak Points of the Existing Methods . 37

5 Automatic Foreground Detection 38
5.1 Basic Assumptions . 38
5.2 Feature Extraction and Clustering . 39

5.2.1 Teature Extraction . 39
5.2.2 Texture Clustering . 41
5.2.3 Color Quantization . 42

5.3 Feature Selection . 44
5.3.1 Ranking Function . 45

5.4 Foreground Rectangle Detection . 49
5.4.1 Similarity Measurement . 49
5.4.2 Sliding Window . 50

6 Segmentation Using Graph Cuts 54
6.1 Energy Function . 54

6.1.1 Data Term . 54
6.1.2 Smoothness Term . 57
6.1.3 Energy Function Sub-modularity . 58

6.2 Automatic Segmentation Algorithm . 58

7 Experimental Results 63
7.1 Parameter Selection . 63
7.2 Experimental Results . 69

7.2.1 Image Database and Running Time . 69
7.2.2 Evaluation of the Results . 69
7.2.3 Experimental Results . 70

8 Conclusion and Future Work 85
8.1 Summary . 85
8.2 Future Work . 86

Bibliography 88

Curriculum Vitae 93

vi

List of Figures

1.1 Left: original image, middle: foreground region, right: background region . . . 1
1.2 Left: an ambiguous example, right: an unambiguous example 2
1.3 Camouflage example . 3
1.4 The flow chart of the thesis . 4
1.5 From left to right: grabcut initialization rectangle, grabcut user editing, grabcut

segmentation result and our result . 5
1.6 From left to right: segmentation result from previous work [56], our foreground

detection result, our segmentation result and ground truth 6

2.1 SIFT feature1 . 9
2.2 The Leung-Malik (LM) Filter Bank2 . 10
2.3 3 × 3 image patch vector . 11
2.4 The RGB color3 . 12
2.5 Feature selection models4 . 13
2.6 Feature selection algorithms5 . 14

3.1 Solving image segmentation problem in energy minimization framework 15
3.2 Left: original image, right: reshuffled image 17
3.3 Swan . 18
3.4 An example of flow6from “Introduction to Min-Cut/Max-Flow Algorithms” . . 19
3.5 Left: a s-t cut, right: not a s-t cut . 20
3.6 An example of graph cuts . 21
3.7 An example of graph cuts . 22

4.1 Segmentation with hard constraints . 26
4.2 An example of segmentation using interactive graph cuts 27
4.3 Workflow of grabcut method7 . 28
4.4 Superpixels (left) and border editing (right) in lazy snapping algorithm8 29
4.5 Deformable contour of snakes algorithm . 30
4.6 Example of livewire algorithm9 . 30
4.7 Saliency segmentation workflow . 31
4.8 Left: original image, middle: row watershed segmentation, right: watershed

segmentation using region marks to control over segmentation10 32
4.9 Left: original image, right: mean shift result11 33
4.10 Left: original image, middle: image after quad spliding,

right: image after merging12 . 33
4.11 Left: original image, right: normalized cut result13 33

vii

4.12 Left: original image, right: threshoding result14 33
4.13 Graph cuts based on saliency maps and AdaBoost15 34
4.14 An example of a star shape, the center of the star shape is

marked with a red dot c, and the star shape is outlined in green. Some
of the straight lines passing through c are shown in black16. 35

4.15 Image pair for co-segmentation . 36
4.16 Flow diagram17of algorithm in paper [55] . 37

5.1 Images of the same object in different backgrounds 38
5.2 Major part of foreground on the image boundary 39
5.3 Texture rotation18 . 40
5.4 Texture rotation and geometric deformation19 41
5.5 Left: original image, middle: patch based texture map (random color) with k =

10, right: SIFT features map (sampling at every 10th pixel) with k = 6 42
5.6 Pixels assigned to one particular texture cluster after k-means clustering of the

patches, with k = 10. This cluster roughly corresponds to tiger stripes 42
5.7 image before quantization20 . 43
5.8 image after quantization21 . 43
5.9 Color quantized image (color = 8) . 44
5.10 Left: artificial features map, middle: good features, right: bad features 44
5.11 Image divided into 25 boxes . 45
5.12 A feature with high rank (2), that is small variance in selected box centers.

Selected boxes are shown in shaded blue, green circles denote the box centers. . 46
5.13 A feature with low rank (10), that is a large spread of selected box centers.

Selected boxes are shown in shaded blue, green circles denote the box centers. . 47
5.14 Ranked patch based features map (tiger image), from left to right and top to

down, the features are sorted in non-decreasing order of box variances. 48
5.15 Foreground/background histograms . 50
5.16 The sum of the pixels within rectangle D can be computed with

four array references. The value of the integral image at location 1 is the sum
of the pixels in rectangle A. The value at location 2 is A + B, at location 3 is
A + C, and at location 4 is A + B + C + D. The sum within D can be computed
as 4 + 1 − (2 + 3). 51

5.17 Foreground detection results using three representation windows 52
5.18 Sliding window range and step . 53
5.19 Left: artificial feature map, right: good features(red) and bad features focus

region(black) . 53

6.1 Computing data terms from foreground/background color modes 55
6.2 Column 1: segmentation results without boundary constraints, column 2: bound-

ary constraints added . 57
6.3 Segmentation using iterative graph cuts . 59
6.4 Segmentation using grabcut, column 1: user initialization rectangle (shown in

red) and interactons (shown in blue), column 2: refined segmentation results . . 60
6.5 Segmentation results in iteration 1 to 5, compared with ground truth 61

viii

6.6 Graph showing convergence process of the energy on the starfish image. Hor-
izontal axis plots iteration number. Vertical axis plots the energy value. Con-
vergence is achieved after 9 iterations, but most of the progress is made during
the first three iterations. 62

7.1 Left: original image, middle: one group of SIFT features in 6 × 6 boxes, right:
the same features in 3 × 3 boxes . 64

7.2 Left: detection result with 3 × 3 boxes, right: detection result with 5 × 5 boxes . 64
7.3 Left: detection result with 8 × 8 boxes, right: detection result with 5 × 5 boxes . 64
7.4 Color cluster results, from left to right, color number equals to 10, 20 and 40. . 65
7.5 Column 1: detection results based on half of the color, column 2: detection

results based on all color features, column 3: detection results with seven dif-
ferent windows. 66

7.6 Left: detection result on top 30% of texture, right: detection result on top 50%
of texture . 66

7.7 Left: detection result on top 80% of texture, right: detection result on top 50%
of texture . 66

7.8 Successful results on animal camouflage . 68
7.9 Left: λ = 6 (not smooth enough), right: λ = 8 (not smooth enough) 68
7.10 Left: λ = 10 (just right), right: λ = 12 (over-smoothed) 68
7.11 Segmentation results in iteration 1 to 5, compared with ground truth 74
7.12 Segmentation results in iteration 1 to 5, compared with ground truth 75
7.13 Segmentation results in iteration 1 to 5, compared with ground truth 76
7.14 Left: grabcut initialization rectangle, middle: grabcut

segmentation result, right: our result . 77
7.15 Left: grabcut initialization rectangle, middle: grabcut

segmentation result, right: our result . 77
7.16 Left: grabcut initialization rectangle, middle: grabcut

segmentation result, right: our result . 77
7.17 From left to right: grabcut initialization rectangle, grabcut

user editing, grabcut segmentation result and our result 77
7.18 Column1: Mehrani’s results, column 2: our results, column 3: ground truth . . 78
7.19 Column1: Mehrani’s results, column 2: our results, column 3: ground truth . . 79
7.20 Column1: Mehrani’s results, column 2: our results, column 3: ground truth . . 80
7.21 Column1: Mehrani’s results, column 2: our results, column 3: ground truth . . 81
7.22 Column1: Mehrani’s results, column 2: our results, column 3: ground truth . . 82
7.23 Column1: Mehrani’s results, column 2: our results, column 3: ground truth . . 83
7.24 Failure detection examples, from left to right: landscape, animal

camouflage, too small object and too sparse object 84
7.25 Left: successful rectangle detection, right: segmentation failure 84

8.1 Illustration of proposed workflow . 85

ix

List of Tables

4.1 Weights of edges in E . 26

7.1 Average errors for pixel, foreground, background, and mean of them in differ-
ent iterations (300 images in BSD) . 69

7.2 Average errors for pixel, foreground, background, and mean of them when
reaching convergence (50 images in GSD, 1000 images in ASD) 69

x

List of Appendices

xi

Chapter 1

Introduction

1.1 Overview

The goal of image segmentation is to cluster pixels into meaningful image regions, i.e., regions
corresponding to objects, natural parts of objects, or individual surfaces.

As a human, we can finish the tasks of object recognition and segmentation very fast, while
developing a computer system that can automatically and in real time detect and segment an
object is something that computer vision scientists have been working on for decades. Many
researchers tried various segmentation techniques to make computers mimic human vision pro-
cessing. However, we have to admit that there is still a long way to go before computer perfor-
mance can compare with a human, even on a relatively simple task of foreground segmentation.

In this thesis, we focus on “binary” automatic segmentation of an input image. Intuitively,
given an input image, the task is to separate it into two regions, one corresponding to the fore-
ground, and the other one to the background (see figure 1.1), based on the feature differences
in the two parts.

Figure 1.1: Left: original image, middle: foreground region, right: background region

1

2 Chapter 1. Introduction

1.1.1 Application Prospect of Automatic Image Segmentation
Automatic image segmentation can be applied in object recognition [14], image compression
[70], image editing [45], image searching [48] and other tasks of machine vision.

In industry and daily life, the applications of image segmentation lie in different aspects. Such
as disease diagnosis [7, 8, 39, 37], including localization of tumors and other pathologies, mea-
suring tissue volumes, and computer-guided surgery, etc. In remote sensing interpretation [24],
image segmentation is being used to locate objects in satellite images (roads, forests, etc.). In
order to maintain security, face recognition [40], fingerprint recognition technique can be help-
ful. On the other hand, traffic control systems, such as brake light detection [13], is another
application of automatic image segmentation in practice.

1.1.2 Motivation and Challenge of This Work
Besides the practical needs, our work was motivated by the graph cuts algorithm [8] for object
segmentation , which makes accurate and efficient automatic segmentation possible, in princi-
ple. Segmentation with graph cuts is attractive because it allows formulation of an objective
function that encodes the desired property of segmentation, such as color coherence of the ob-
ject/background, smoothness of the boundary, etc, as well as a method for globally optimizing
this objective function.

Graph cuts, as well as the following publications that directly build upon it, such as grabcut
[62], lazy snapping [49], star shape prior [74], paint selection [51], etc. are effective inter-
active segmentation approaches. However, there are some drawbacks in those methods. The
segmentation performance is very dependent on user-specified seeds or other form of initializa-
tion. Often, additional interactions are necessary when the initialization is not precise enough.
Moreover, the user interactions are time-consuming and therefore infeasible in certain appli-
cations [35]. The pros and cons of interactive segmentation with graph cuts are the direct
inspiration of this work.

Figure 1.2: Left: an ambiguous example, right: an unambiguous example

1.2. Our Approach 3

The challenges of this work mainly rise from two aspects. First, image segmentation, including
binary image segmentation, is a highly ambiguous problem. Consider the left image in figure
1.2. Should the birds or the nest or all of them be in the foreground? Different viewers will
have different opinions on this subject. Therefore a plethora of interactive, that is user-guided,
segmentation methods were designed [8, 62, 49, 36, 58, 21]. However, there are many cases
that are unambiguous, or at least where most of the viewers would agree on a single foreground
object (see the right image in figure 1.2). The goal or our thesis is automatic foreground seg-
mentation in cases that are unambiguous.

The second challenge of proposed method lies in the fact that natural images are usually quite
complex both in foreground and background appearance. The complexity comes from the ob-
ject and the surrounding, such as wide range of color, texture, as well as imaging conditions,
viewing angles, inter-reflections in the scene, etc. The input of the task is usually a single im-
age, or several closely-related images, for example, a stereo pair [12], a common foreground
object with varying backgrounds [63], or an image sequence [46]. Independent of the input
type, the objects blend into the background seamlessly, which due to the loss of 3D informa-
tion. There are also cases of animal camouflage, where an object (an animal) has developed
appearance similar to its background in order to fool the visual system of its predators by blend-
ing in with the background, see crocodile example in figure 1.3. Therefore, it is quite difficult
to segmentation natural images automatically.

Figure 1.3: Camouflage example

1.2 Our Approach

1.2.1 Methodology
In this thesis, we propose an automatic foreground region detection method, which will be a
starting point for a more accurate binary segmentation with graph cuts. The foreground detec-
ton is based on texture and color features, in other words, our feature space is the combination
of texture and color space. Our features might be redundant and our feature space is not or-
thogonal, but over-complete representations are frequently more successful in vision compared

4 Chapter 1. Introduction

to non-redundant representations.

Different from graph cuts [8] or grabcut [62] methods, this work employs an automatic search-
ing strategy to detect a rough foreground location instead of asking for foreground/background
seeds or foreground rectangle from a user.

Our approach is also different from supervised machine learning approach, that trained on
a large collection of pre-labeled images to learn to detect the foreground object [5, 29]. A
downside of these approaches is that they require a large training set and the results are sensi-
tive to the particular dataset used for training [71]. Our approach is to find a feature space in
which the object is quite different from the background, which can be accomplished easier.

To a large extent, our method is close in spirit to saliency detection methods [32, 25]. The
difference between them is that instead of combining different features with different weights,
like they do, we are selecting features to make some rectangle stand out from the background.

The aim of our work is to achieve an accurate automatic object segmentation method. Fig-
ure 1.4 shows the flow chart of our method, which can be roughly divided into three steps.

Figure 1.4: The flow chart of the thesis

1.2. Our Approach 5

First, we extract and select points of interest in feature space. In particular, an image patch
[72] is employed to capture texture characteristics and image quantization algorithm is applied
to quantize color characteristics. Since a feature is only useful if it helps to separate the object
from the background, a ranking function is designed with the goal to rank each feature as being
useful or not. The ranking function looks at the feature distribution throughout the image. If a
feature spread more or less uniformly throughout the image, such feature is judged as useless.
If a feature is highly concentrated in some spatial area of the image, it is likely to be useful and
is ranked higher. After feature ranking, lower-scoring features are filtered out because they are
unhelpful for foreground/background discrimination.

Our second step is to search for a rectangular region where the foreground is probably lo-
cated by measuring the divergence of feature histograms inside and outside this region. The
greater the divergence, the more likely the rectangle contains the foreground. The reason we
choose rectangular shape is that histograms can be computed efficiently for rectangles based
on integral images [76].

The last step is to model the foreground/background regions from the rectangular initializa-
tion and perform iterative segmentation in the binary graph cuts [8, 62] style.

1.2.2 The Advantages of Our Method

We evaluate our algorithm on three datasets: Berkeley (BSD)1 [54], Grabcut (GSD)2 and
Achanta et al.(ASD) [1]. Our approach performs in the similar level or even better compared
with the results from previous work. For example, in figure 1.5, we segment the same image as
well as the result from grabcut [62] algorithm, that user initialization and editing are needed.
In figure 1.6, we get more precise segmentation for koala image than the work in [56], which
initialize graph cuts based on saliency map trained on manually labeled dataset. Our algo-
rithm reaches the similar average accuracy compared to the method [56]. For more results and
comparison, see chapter 7.

Figure 1.5: From left to right: grabcut initialization rectangle, grabcut user editing, grabcut
segmentation result and our result

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
2http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/

segmentation/grabcut.htm

6 Chapter 1. Introduction

Figure 1.6: From left to right: segmentation result from previous work [56], our foreground
detection result, our segmentation result and ground truth

Meanwhile, our algorithm shows significant advantages in many aspects, which are listed as
follows:

• Automatic segmentation Although the existing interactive segmentation methods have
made an impressive progress in the last decade, enabling the computer to segment im-
ages automatically has obvious advantages, such as applicability in domains where user
interaction is not possible or desirable. Automatic segmentation methods have a wider
application base than the interactive ones. Our work targets to find an effective way to
implement automatic segmentation in energy minimization framework.

• Foreground detection without dataset bias There are automatic foreground segmen-
tation techniques based on learning from a labelled dataset [56], however, training on a
particular dataset can give a method that is tuned (biased) to the particular data distribu-
tion in that dataset [71]. If the object of interest is very different from those appearing
in the training dataset, such learning-based methods are more likely to fail. On the con-
trary, our proposed method mines the input image itself, which makes it applicable to
any object class, as long as we can find features that distinguish it from the background.

• No training dataset required We work on single input image and only mine the input
image itself, making use of low-level visual cues, such as intensity, color and texture.
Hence, we do not need to collect and label a large training set, which is usually very
labor intensive and time consuming.

• Multi-object segmentation compatibility Most existing region based segmentation al-
gorithms can segment out a single blob with the homogeneous features, especially the
early methods like region growing [27], watershed [75] and splitting-and-merging [30]
methods, etc. In other words, they only face to single object segmentation. Although
the first stage of our algorithm also targets to find a single rectangle region to mark the
foreground location, it only acts as the initialization of graph based segmentation. At the
later stage, segmentation with graph cuts is able to find several disconnected objects, as
long as long as they have similar appearance.

1.3. Outline of the Thesis 7

1.3 Outline of the Thesis
This thesis is organized as follows. Chapter 2 is a brief introduction to image features. Then
chapter 3 introduces binary image segmentation with graph cuts in energy minimization frame-
work. Chapter 4 reviews and analyses the previous works on automatic and interactive seg-
mentation. Chapter 5 focuses on the first phase of the proposed method which is foreground
included rectangle detection. In chapter 6, details of foreground/background segmentation are
explained. Some experimental results are provided in chapter 7. Finally, conclusion and future
work is in chapter 8.

Chapter 2

Image Features

The first stage of this thesis is based on image feature analysis to detect the potential object
location. In particular, we choose the combination of texture and color as our feature space,
and detect the rectangle where the features inside and outside of the rectangle show the largest
dissimilarity. This chapter gives a brief overview of image features.

2.1 Feature, Feature Vector and Feature Space

In computer vision, a feature is a term that is usually used to denote a piece of information
which is useful for solving a specific task. Understandable, there is no universal or exact def-
inition of what constitutes a feature, since the exact definition that makes sense often depends
on the problem or the type of application. Informally, a feature is understood as an “interest-
ing” part of an image.

In practice, the set of features of a given data instance is often grouped into a feature vector.
This is because no single feature is usually enough to describe sufficient amount information.
Instead, two or more different features are extracted, resulting in two or more feature descrip-
tors at each image point. A common practice is to organize the information provided by all
feature vectors as the elements of one single vector, referred to as a feature vector.

The set of all possible feature vectors constitutes a feature space. Within this thesis, there is a
basic assumption that the foreground and background of the input image can be well separated
in certain feature space.

2.2 Feature Types

Many computer vision algorithms use feature extraction as the initial step, as a result, all kinds
of feature detectors have been developed. There is a large variability in the ways features
are detected, the computational complexity and the repeatability. At an overview level, these
features can be divided into different groups (with some overlap), for example, feature at each
pixel (texture, intensity, color, gradient, motion, and stereo depth cue) and feature of a group

8

2.2. Feature Types 9

of pixels, such as edge, corner, blob and ridge. Here, a short introduction is given about texture
and color features tested in this work, with explanations about how we make the choice.

2.2.1 Texture Descriptors
In this section we describe a few popular features for capturing texture information in an image.

• SIFT

In Scale Invariant Feature Transform (SIFT) [53] algorithm, features are detected through
a staged filtering approach that identifies stable points in scale space. Image keys are cre-
ated that allow for local geometric deformations by representing blurred image gradients
in multiple orientation planes and at multiple scales. SIFT feature is invariant to im-
age scaling, translation, and rotation, and partially invariant to illumination changes and
affine or 3D projection.

Intuitively, SIFT features capture how edges are oriented in the neighborhood of a given
pixel, thus capturing texture information. In particular, SIFT first transforms an image
into a large collection of local feature vectors, then maxima and minima of a difference
of Gaussian function are applied in scale space to select key locations. The pixels that
fall in a circle of radius 8 pixels around the key location are inserted into the orientation
planes. The orientation is measured relative to that of the key by subtracting the keys
orientation. Usually, 8 orientation planes are used, each sampled over a 4 × 4 grid of
locations, with a sample spacing 4 times that of the pixel spacing used for gradient de-
tection. The blurring is achieved by allocating the gradient of each pixel among its 8
closest neighbors in the sample grid, using linear interpolationin orientation and the two
spatial dimensions. The resulting SIFT descriptor has length of 128. Figure 2.1 shows
how SIFT feature is extracted.

In our work, SIFT feature is used to present the texture characteristic around every pixel,
which is relatively computationally expensive.

Figure 2.1: SIFT feature1

1figure cited from http://www.vlfeat.org/overview/sift.html

10 Chapter 2. Image Features

• The Leung-Malik (LM) Filter Bank

Another popular way to capture texture is filter banks response. The LM [47] set is a
multi scale, multi orientation filter bank with 48 filters. It consists of first and second
derivatives of Gaussians at 6 orientations and 3 scales making a total of 36, 8 Laplacian
of Gaussian (LOG) filters, and 4 Gaussians.

In LM Small (LMS), the filters occur at basic scales σ =
{
1,
√

2, 2, 2
√

2
}
. The first

and second derivative filters occur at the first three scales with an elongation factor of 3
(i.e. σx = σ and σy = 3σx). The Gaussians occur at the four basic scales while the 8
LOG filters occur at σ and 3σ. For LM Large (LML), the filters occur at the basic scales
σ =

{√
2, 2, 2

√
2, 4

}
. The illustration of filter bank is shown in figure 2.2.

Figure 2.2: The Leung-Malik (LM) Filter Bank2

In our work, the filter response vectors are use as descriptor of image texture, which are
clustered later in the proposed algorithm.

• Patch Representation

Though there has been ample evidence to suggest that filter banks can lead to good
performance, however, many empirical results have shown that a multi-scale, multi-
orientation large support filter bank is not necessary. Small image patches [72] can also
lead to successful classification.

Also, the supremacy of filter banks for texture synthesis was brought into question by
the approach of Efros and Leung [20]. They demonstrated that superior synthesis results
could be obtained using local pixel neighbourhoods directly, without resorting to large
scale filter banks.

Usually, the central pixel is discarded and only the neighborhood is used, feature vectors
drawn from the set of N: i.e. the set of N × N image patches with the central pixel left

2figure cited from http://www.robots.ox.ac.uk/˜vgg/research/texclass/filters.html

2.2. Feature Types 11

out. For example, in the case of a 3×3 image patch, only the 8 neighbors of every central
pixel are used to form feature vectors. Figure 2.3 illustrates how to get a 3 × 3 image
patch vector.

Figure 2.3: 3 × 3 image patch vector

In this thesis, these patch vectors are quantized to get “textons” that describe image tex-
ture.

Filter banks have a number of disadvantages compared to smaller image patches: first,
the large support they require means that far fewer samples of a texture can be learnt from
training images (there are many more 3 × 3 neighborhoods than 50 × 50 in an 100 × 100
image). Second, the large support is also detrimental in texture segmentation, where
boundaries are localized less precisely due to filter support straddling region boundaries;
A third disadvantage is that the blurring (e.g. Gaussian smoothing) in many filters means
that fine local detail can be lost [73].

2.2.2 Color Features

• RGB Space

The RGB color model is an additive color model in which red, green, and blue light
are added together in various ways to reproduce a broad array of colors. The name of the
model comes from the initials of the three additive primary colors, red, green, and blue.
The range of each color channel is [0, 255], so the total number of color in RGB space
is 2563. RGB color model is the most commonly used in computer vision and image
processing.

Figure 2.4 shows the RGB color space, intuitively.

• CIELAB Space

3figure cited from http://www.clear.rice.edu/elec301/Projects02/artSpy/color.html

12 Chapter 2. Image Features

Figure 2.4: The RGB color3

CIELAB describes all the colors visible to the human eye and was created to serve as a
device-independent model to be used as a reference. The three coordinates of CIELAB
represent the lightness of the color (L∗ = 0 yields black and L∗ = 100 indicates diffuse
white; specular white may be higher), its position between red/magenta and green (a∗,
negative values indicate green while positive values indicate magenta) and its position
between yellow and blue (b∗, negative values indicate blue and positive values indicate
yellow).

CIELAB is a nonlinear transformation of RGB where the Euclidean distance between
two colors is equal to their perceptual distances. Algorithms that process color images
often produce better results in CIELAB4, but it dosen’t show significant advantage in our
task.

2.3 Feature Selection
Feature selection (also known as subset selection) is a process commonly used in machine
learning. It aim to select the best subset contains the least number of dimensions that most
contribute to accuracy, therefore, reduce overfitting facilitate data visualization and data under-
standing, reduce the measurement and storage requirements, and training and utilization times.

Feature selection is also an important stage of image preprocessing. Many feature selection
algorithms include ranking function as a principal or auxiliary selection mechanism because of
its simplicity, scalability, and good empirical success.

General speaking, there are two approaches of feature selection [66]:

4http://www.mathworks.com/matlabcentral/fileexchange/24010

2.3. Feature Selection 13

Forward selection Start with no variables and add them one by one, at each step adding the
one that decreases the error the most, until any further addition does not significantly decrease
the error.
Backward selection Start with all the variables and remove them one by one, at each step re-
moving the one that decreases the error the most (or increases it only slightly), until any further
removal increases the error significantly.

Figure 2.5 and 2.6 show common feature selection models and feature selection algorithms,
respectively.

We develop our own feature selection approach based on how useful a feature is in separat-
ing a rectangular region from the rest of the image.

Figure 2.5: Feature selection models5

5figure cited from paper [66]

14 Chapter 2. Image Features

Figure 2.6: Feature selection algorithms6

6figure cited from paper [66]

Chapter 3

Overview of Energy Minimization
Framework

The proposed algorithm implements automatic segmentation using the tool of graph cuts,
which works in the energy optimization framework. The task of binary image segmentation
is posed as a binary labeling problem, and solved by minimization a energy function. The
resulting energy function can be globally and optimally solved with the max-flow/min-cut al-
gorithm. Figure 3.1 below shows the way to solve image segmentation problem in the energy
optimization framework.

Figure 3.1: Solving image segmentation problem in energy minimization framework

In the optimization framework, there are two major steps, the formulation of energy function
and the optimization of it. There are many advantages to the optimization based approach,
though it is difficult to formulate appropriate energy function, and to optimize them are not
trivial tasks, either. First, it provides a common framework which abstracts useful constraints
from details of each particular problem. Once an energy function is formulated, the standard
optimization approaches can be applied to solve it. Secondly, it enables us to apply our prior
knowledge to solve the problem by encoding it in the energy function. Thus we can expect the

15

16 Chapter 3. Overview of EnergyMinimization Framework

desired solution to have some nice global properties, such as the overall smoothness. Finally,
the value of the energy function provides an effective way to evaluate the solution and can be
used as a guide in the optimization algorithm [52].

Graph cuts is an optimization algorithm in energy minimization framework, which has been
successfully used for a wide variety of vision problems, including image restoration [11, 12,
28, 34], stereo and motion [6, 11, 12, 33, 38, 41, 65, 50, 64], image synthesis [45], image
segmentation [9], voxel occupancy [42], multicamera scene reconstruction [69], and medical
imaging [7, 8, 39, 37]. The output of graph cuts algorithms is generally a solution with some
interesting theoretical quality guarantee. In some cases, the solutions are the global minimum,
even though in some case [11, 28, 33, 34, 50], it is a local minimum, but still within a known
factor of the global minimum [12]. The experimental results produced by graph cuts algorithm
are also quite good [43].

In this chapter, we will go over the energy optimization framework and introduce graph cuts
algorithm.

3.1 From Segmentation to Labeling Problem

The goal of segmentation is to simplify and/or change the representation of an image into
something that is more meaningful and easier to analyze [67]. Image segmentation is typically
used to locate objects and boundaries (lines, curves, etc.) in images. In computer vision, seg-
mentation is the process of partitioning an image into multiple segments (sets of pixels, also
known as superpixels). More precisely, image segmentation is the process of assigning a label
to every pixel in an image such that pixels with the same label share certain visual characteris-
tics.

A labeling problem is, roughly speaking, the task of assigning an explanatory “label” to each
element in a set of observations [17]. Many classical clustering problems are also labeling
problems because each data point is assigned a cluster label. Obviously, we can pose the task
of image segmentation as a labeling problem, too.

To describe a labeling problem, one needs a set of observations (the data) and a set of pos-
sible explanations (the labels). A discrete labeling problem associates one discrete variable
with each datum, and the goal is to find the best overall assignment to these variables (a “label-
ing”) according to some criteria. In computer vision, the observations can be things like pixels
in an image, salient points within an image, depth measurements from a range-scanner, or in-
tensity measurements from CT/MRI. The labels are typically either semantic (car, pedestrian,
street) or related to scene geometry (depth, orientation, shape, texture) [17].

The goal in a labeling problem is to construct a map f : P 7→ L that assigns to each ele-
ment p ∈ P a corresponding label fp. The set P indexes the observations, and the label set
L indexes the explanations. In general, we have |L||P| possible labelings (configurations of f),
and we prefer one labeling over another based on some application-specific criteria [17].

3.2. Energy Function Construction 17

In image segmentation, the map f is to assign labels fp to image pixels such that ∀p ∈ P, fp ∈

L, where fp is the label assigned to pixel p,L is the set of possible labels, and P = {1, 2, . . . , P}
is the set of image pixels. If the label set for all pixels is the same, i.e. L, then the set of possi-
ble labelings is L = L × L × · · · × L. That is, the total number of different labelings is as huge
as Lp.

For binary image segmentation, the label setL = {0, 1}, where 0 and 1 stand for the background
and the foreground, respectively. In this thesis, we will focus on binary labeling problem.

3.2 Energy Function Construction

3.2.1 Objective Function

The first step of optimization problem is to formulate an objective function, which maps any so-
lution to a real number. In this way, we get a quantity measurement of how good the solution is.

An objective function f : X 7→ Y with Y ⊆ R is a function which subjects to optimiza-
tion [78]. The codomain Y of an objective function as well as its range must be a subset of the
real numbers (Y ⊆ R).

Generally speaking, the objective function should be incorporated with the constraints that
an acceptable solution must satisfy. A good objective function should assign high goodness
score to solutions that match the constraints well. In computer vision, the objective function is
usually referred to as energy function.

In particular, when designing an energy function, we should make sure it maps a good so-
lution to low energy, and a bad solution will get a high energy. For example, in figure 3.2, the
right image is the reshuffled image of the one on the left. Although the histograms of the left
and right images are the same, the left image is more spatially coherent in its color distribution,
so the energy of the solution on the left should be much lower than the energy of the solution
on the right.

Figure 3.2: Left: original image, right: reshuffled image

18 Chapter 3. Overview of EnergyMinimization Framework

There are two commonly used constraints in designing an energy function in image segmen-
tation, the data constraint and the smoothness constraint. The data constrain comes from the
observed data. It requires the solution to be close to the observed data.

Figure 3.3: Swan

For example, in swan image (figure 3.3), it is easy to come up with the constraint that the
pixels that belong to the swan should have lighter colors, and the background pixels should
have darker colors. Otherwise, they are violating the data constraints provided by the color
information of the image [52].

The smoothness constraint usually encodes our preference for spatial coherence of the labels.
Intuitively, most physical world objects are coherent in space. If a pixel in an image belongs
to an object, the nearby pixels are very likely to belong to the same object. In other words,
the smoothness knowledge tells us that both the background and the object should be spatially
coherent. At the same time, we can encode more prior constraints in the energy functions, such
as a preference for a particular shape [74].

3.3 Optimization Approaches
The second step of the energy minimization framework is to minimize the energy. In general,
this is a very hard problem. The computational task of minimizing the energy is usually quite
difficult as it usually requires minimizing a nonconvex function in a space with thousands of
dimensions. If the functions have a very restricted form, they can be solved efficiently using
dynamic programming [3]. However, researchers typically have needed to rely on general pur-
pose optimization techniques such as simulated annealing [4], but it is very slow in practice
[43].

Great effort has been made towards developing effective energy optimization algorithms. Among
these approaches, graph cuts algorithm [8] is an effective tool for image segmentation. Kol-

3.3. Optimization Approaches 19

mogorov and Zabih [43] describe the conditions on binary energy functions that can be opti-
mized exactly with graph cuts, and the energy function satisfing the conditions can be solve in
polynomial time.

In our case, we can optimize an energy function exactly and efficiently, using the results from
[8] and [43].

3.3.1 Max-flow/Min-cut Algorithm

Max-flow/min-cut algorithm can be used to optimize the energy function when dealing with
binary labeling problems. Here, we will give a brief summary of related definitions and how to
find max-flow/min-cut of a graph.

Figure 3.4: An example of flow1from “Introduction to Min-Cut/Max-Flow Algorithms”

Let G = (V,E) be a network with s, t ∈ V being the source and the sink of G, respectively,
where V denotes vertices set and E is edges set. The capacity of an edge is a mapping
c : E 7→ R+, denoted by c (u, v). It represents the maximum amount of flow that can pass
through an edge.

A flow is a mapping f : E 7→ R+, denoted by f (u, v), subjects to the following two con-
straints:

1. fuv ≤ cuv , for each (u, v) (capacity constraint: the flow of an edge cannot exceed its
capacity)

2.
∑

(u,v)∈E
fu,v =

∑
(u,v)∈E

fv,u, for each v ∈ V{s, t} (conservation of flows: the sum of the flows

entering a node must equal the sum of the flows exiting a node, except for the source and
the sink nodes)

The value of flow is defined by | f | =
∑

v∈V
fsv, where s is the source of G. It represents the

amount of flow passing from the source to the sink.

1Cited from Hong Chen (UCLA CIVS)’s ppt with a bit modification, http://perso.telecom-paristech.
fr/˜tupin/cours/matim/articles/theorie_gra.pdf

20 Chapter 3. Overview of EnergyMinimization Framework

Figure 3.5: Left: a s-t cut, right: not a s-t cut

An s − t cut C = (S,T) is a partition of V such that s ∈ S and t ∈ T . The cut-set of C is
the set {(u, v) ∈ E | u ∈ S, v ∈ T }. Note that if the edges in the cut-set of C are removed, | f | = 0.

The capacity of an s − t cut is defined by c (S,T) =
∑

(u,v)∈S×T
cuv. For any s − t cut and flow, the

capacity of s − t cut is the upper-bound of the flow across the s − t cut.

The maximum flow problem is to maximize | f |, that is, to route as much flow as possible
from s to t .

The minimum s − t cut problem is minimizing c (S,T), that is, to determine S and T such
that the capacity of the s − t cut is minimal.

In optimization theory, max-flow/min-cut theorem is stated as follows:

Theorem [16]: If f is a flow function of a s − t graph, then the follows statements are equiva-
lent2:

A. f is a maximum flow

B. there is a s − t cut that its capacity equals to the value of f

C. The residual graph contains no directed path from source to sink.

Max-flow/min-cut theorem means that in a flow network, the maximum amount of flow pass-
ing from the source to the sink is equal to the minimum edges’ capacity in all possible way of
removing edges. Removing these edges from the network should guarantee no flow can pass
from the source to the sink.

There are two main approaches to solve max-flow/min-cut problem for the two-terminal graphs.
In Cormen et al. [16], an augmenting path strategy is described to compute the minimum cut of
a graph. Goldberg and Tarjan [26] propose an alternative approach named push-relabel to solve
the minimum cut problem. Theoretically, the computational cost of minimum cut algorithms
is a low order polynomial [52].

2for the proof see[16]

3.4. Binary Image Segmentation with Graph Cuts 21

In [12], Boykov et al. developed new min-cut algorithms, two types of large moves (α −
expansion and α−β swap), which can be used to solve multi-label problem. These algorithms
find good approximate solutions by iteratively decreasing the energy on appropriate graphs.
Experiment results show that the final solutions do not change significantly by varying the
initial labelings. In practice, their algorithm is significantly faster than other standard move
algorithms. As a special case of multi-label problem, in this work, we use the α − β swap
algorithm bases on their implementation. For binary submodular energies [8, 43], the swap
algorithm finds the exact optimum of the energy function.

3.4 Binary Image Segmentation with Graph Cuts
In this thesis, we deal with the problem of segmenting the foreground object from the back-
ground. It can be posed as a binary segmentation problem and can be addressed in the energy
optimization framework. This was first done in the work of [8].

The main advantage of segmentation using graph cuts is that it incorporates the appearance of
the foreground/background regions into data terms of energy function, meanwhile, constraints
on the boundary is incorporated in smoothness term, and the energy function can be easily
globally optimized. Here, we briefly review the graph cuts segmentation algorithm of [8].

First, we describe the basic terminology that pertains to graph cuts in binary image segmenta-
tion method.

A weighted graph (figure 3.6) G = (V,E) is made up of vertices V and edges E. There
are two additional nodes: an object terminal (a source S) and a background terminal (a sink
T). Therefore,V = P ∪ {S,T }. The set of edges E consists of two types of undirected edges:
n-links (neighborhood links) and t-links (terminal links). Each pixel p has two t-links {p,S} and
{p,T } connecting it to each terminal. Each pair of neighboring pixels {p, q} in N is connected
by an n-link. Without introducing any ambiguity, an n-link connecting a pair of neighbors p
and q will be denoted by {p, q}. Therefore, E = N

⋃
p∈P
{{p,S}, {p,T }}. Each edge e ∈ E has a

non-negative cost we.

Figure 3.6: An example of graph cuts

22 Chapter 3. Overview of EnergyMinimization Framework

A cut is a subset of edges C ⊂ E such that the terminals become separated on the induced graph
G(C) = 〈V,E \ C〉. The cost of the cut C is the sum of cut edge weights: |C| =

∑
e∈C

we.

The max-flow/min-cut algorithm [22] can be used to find the minimum cut (the cut with small-
est cost) in polynomial time. The segmentation prosess is illustrated as follows (figure 3.7):

Figure 3.7: An example of graph cuts

As mentioned before, image segmentation is posed as a labeling problem, for binary segmen-
tation, each pixel in the image has to be assigned a label either foreground or background.

To illustrate binary labeling problem, let P be the set of all pixels in the image, and let N
be the standard 4- or 8-connected neighborhood system on P, pixel pairs {p, q} are neighbour
pixels in P. Let fp ∈ L be the label assigned to pixel p. In binary labeling problem, the la-
bel set L = {0, 1}, where 0 and 1 stand for the background and the foreground, respectively.
f =

{
fp | p ∈ P

}
denotes the collection of all label assignments.

Energies which can be optimized through graphs cuts usually have the following form:

E (f) = EData (f) + ES mooth (f) (3.1)

where,

EData (f) =
∑
p∈P

Dp

(
fp

)
(3.2)

ES mooth (f) =
∑
{p,q}∈N

Vpq

(
fp, fq

)
(3.3)

3.4. Binary Image Segmentation with Graph Cuts 23

In Eq.(3.1), the first term is called the data term (definded in Eq.(3.2)) which incorporates
regional constraints. Specifically, it measures how well pixels fit into the foreground or back-
ground models. Dp

(
fp

)
is the penalty for assigning label fp to pixel p. The more likely Dp

(
fp

)
is for p, the smaller is Dp

(
fp

)
.

ES mooth (f) is called the smoothness term (definded in Eq.(3.3)), measures the extent to which
f is not smooth. Vpq

(
fp, fq

)
is the penalty for assigning labels fp and fq to neighboring pixels.

Most nearby pixels are expected to have the same label, therefore there is no penalty if neigh-
boring pixels have the same label, and a penalty otherwise.

Kolmogorov and Zabih [43] prove that if binary energy function is regular3, it can be opti-
mized exactly with a graph cut.

The energy defined in Eq. 3.1 has |P| variables, and it can be viewed as a sum of several two-
variable Vpq

(
fp, fq

)
and single-variable Dp

(
fp

)
functions. If all of these functions are regular,

then E (f) is regular, see [43]. To check the regularity of the energy functions, we only have to
examine the interaction penalty Vpq

(
fp, fq

)
. According to [43], all the one variable functions

are regular. Therefore, if Vpq

(
fp, fq

)
satisfies Vpq (0, 0) + Vpq (1, 1) ≤ Vpq (1, 0) + Vpq (0, 1), then

E (f) is regular, and it can be optimized by graph cuts.

In our work, the energy function is formulated according to the basic form. The details are
described in chapter 6.

3A function of two variables E (x1, x2) is regular on the variable value set {0, 1}, if it satisfies: E (0, 0) +

E (1, 1) ≤ E (0, 1) + E (1, 0).

Chapter 4

Related Work

Image segmentation is a fundamental problem in computer vision, and it has experienced
tremendous growth in the past 10 years. From the extent of user dependence, segmentation
algorithms can be categorized into automatic methods and interactive methods. In practice,
automatic and interactive methods are often used together to improve the segmentation results.
For example, some automatic segmentation methods may require interaction for setting initial
parameters and some interactive methods may start with the results from automatic segmenta-
tion as an initial segmentation.

In this chapter, we will give a general summary of the related methods and a brief analysis
on them. In particular, since our proposed method target to find an effect automatic initializa-
tion for binary image segmentation using graph cuts, we will also talk about some useful cues
for starting graph cuts automatically.

4.1 Interactive Segmentation Methods
Interactive image segmentation becomes more and more popular in recent years. Because
interactive segmentation gives the user the means to incorporate his knowledge into the seg-
mentation process, it often makes the segmentation result more satisfying or to reduce the
computing time.

For “interaction”, the user is usually required to click a few “seeds” on the desired object,
or near its border, and let the algorithm complete the rest segmentation task. At the same
time, the user can edit the results by adding, removing or moving control points (seeds), and
re-execute the segmentation algorithm to update the results.

Some popular interactive methods are introduced in this section.

4.1.1 Interactive Graph Cuts

The method of interactive graph cuts for binary image segmentation was first proposed by
Boykov and Jolly [8], which is the most important inspiration of this work.

24

4.1. Interactive SegmentationMethods 25

In [8], the user imposes certain hard constraints for segmentation in the way of setting cer-
tain pixels (seeds) that absolutely have to be part of the object, and certain pixels that have to
be part of the background. Intuitively, these hard constraints provide clues on what the user
intends to segment.

Obviously, the hard constraints by themselves are not enough to obtain a good segmentation.
The general energy function mentioned in chapter 3 can be viewed as a soft constraint that
incorporates both region and boundary properties for segmentation. In the work of [8], they
combine the hard constraints with the soft constraints.

Consider an arbitrary set of data elements P and some neighborhood system represented by
a set N of all unordered pairs {p, q}, which are neighboring elements in P. In particular,
P can contain pixels (or voxels) in a 2D (or 3D) grid, and N can contain all unordered
pairs of neighboring pixels (voxels) under a standard 8- (or 26-) neighborhood system. Let
f = (f1, . . . , fp, . . . , f|P|) be a binary vector whose components fp that specify assignments to
pixels p in P. Each fp can be either “obj” or “bkg” (abbreviations of “object” and “back-
ground”). In other words, vector f defines a segmentation. Then, the soft constraints that
imposed on boundary and region properties of f are described by the energy function E (f):

E (f) = λ · EData (f) + ES mooth (f) (4.1)

where,
EData (f) =

∑
p∈P

Dp

(
fp

)
(4.2)

ES mooth (f) =
∑
{p,q}∈N

Wpq · δ
(

fp, fq

)
(4.3)

δ
(

fp, fq

)
=

{
1 i f fp , fq,
0 otherwise

The coefficient λ ≥ 0 in (4.1) specifies a relative importance of the region properties (data)
term EData (f) versus the boundary properties (smoothness) term ES mooth (f). The regional term
assumes that the the individual penalties for assigning pixel p to object and background, cor-
respondingly Dp(“obj”) and Dp(“bkg”).

The boundary term comprises the “boundary” properties of segmentation f . Coefficient Wpq ≥

0 should be interpreted as a penalty for a discontinuity between p and q. Normally, Wpq is large
when pixels p and q are similar (e.g. in their intensity) and Wpq is close to zero when the two
are very different. The penalty Wpq can also decrease as a function of distance between p and q.

The graph used in [8] has the same structure with the general one introduced in the previous
chapter, but incorporated with the user input hard constraint (seeds) on corresponding s-link
and t-link. Table 4.1 gives weights of edges in E.

K = 1 + max
p∈P

∑
{p,q}∈N

Wpq

26 Chapter 4. RelatedWork

edge weight (cost) for
{p, q} Wpq {p, q} ∈ N

{p,S}
λ · Dp (“bkg′′) p ∈ P, p < O ∪ B

K p ∈ O
0 p ∈ B

{p,T }
λ · Dp (“ob j′′) p ∈ P, p < O ∪ B

0 p ∈ O
K p ∈ B

Table 4.1: Weights of edges in E

The segmenting process is illustrated in figure 4.1. In the graph, the hard constraints indicate
that some pixels were marked as internal and some as external for the given object of interest.
The subsets of marked pixels will be referred to as object and background seeds. The segmen-
tation boundary can be anywhere but it has to separate the object seeds from the background
seeds. In particular, the seeds can be loosely positioned inside the object and background re-
gions. Using max-flow/min-cut algorithm, the target image can be segmented automatically by
computing a global optimum among all segmentations satisfying the hard constraints.

Figure 4.1: Segmentation with hard constraints

This segmentation technique is quite stable and normally produces the same results regardless
of particular seed positioning within the same image object. Meanwhile, new globally optimal

4.1. Interactive SegmentationMethods 27

segmentation can be very efficiently recomputed when the user adds or removes any hard con-
straints (seeds). This allows the user to get any desired segmentation results quickly via very
intuitive interactions. The process of interactive segmentation is illustrated in figure 4.2.

Figure 4.2: An example of segmentation using interactive graph cuts

Figure 4.2 shows how graph cuts works interactively. The first row illustrates the original im-
ages with user interactions: red (foreground brush), blue (background brush). The second row
displays the according segmentation results. The degree of user interaction increases from left
to right. From the marked pixels, the appearance models for the foreground and the back-
ground regions are constructed and used in the Dp

(
fp

)
terms. For the smoothness term, in this

example, image gradient Potts model is used. The user marked seeds are assigned such that
Dp

(
fp

)
make it impossible for them to take a label other than the one indicated by the user.

That is if the user marks p as the background pixel, then the cost of assigning it to the fore-
ground is infinity, and the cost of assigning it to the background is 0. This insures that the final
segmentation is consistent with user marked seeds.

4.1.2 Grabcut
Grabcut [62] is another inspiration of our method. Actually, it is an iterative graph cuts method.
During the process of iteration, the energy can be reduced step by step, hence, it can be used to
refine the binary segmentation.

The energy function defined in grabcut is as follows:

E (f) =
∑
p∈P

Dp

(
fp

)
+

∑
{p,q}∈N

Vpq

(
fp, fq

)
(4.4)

where,
Dp

(
fp

)
= −logPr

(
Ip | fp

)
− logπ

(
fp

)
(4.5)

Vpq

(
fp, fq

)
= γ

∑
{p,q}∈N

δ
(

fp, fq

)
exp (−βdis (p, q)) (4.6)

and,

β =

(
2
〈(

Ip − Iq

)2
〉)−1

(4.7)

28 Chapter 4. RelatedWork

Pr (·) is a Gaussian probability distribution, and π (·) stand for mixture weighting coefficients.
Ip and fp are intensity and label of p, respectively. The distance here is Euclidean distance in
color space. 〈·〉 denotes expectation over an image sample, and γ is a constant.

In grabcut algorithm, the initial user input is a rectangle placed loosely around the foreground
object (see figure 4.3). The inside is assumed to be mostly the foreground, while the outside of
the rectangle is assumed to be the background, and the labels of these pixels will be fixed during
the entire segmentation process. From this rough initialization, initial foreground/background
models are constructed and binary graph cuts are applied to get the foreground/background
segmentation. From this segmentation, the foreground/background models are updated and
binary optimization is performed once again. This process is iterated until convergence, in the
expectation maximization (EM) [18] manner.

Figure 4.3: Workflow of grabcut method1

The energy function in the grabcut framework optimizes both over the appearance of the fore-
ground/background, as well as the segmentation of the image into the new foreground/background
parts. Although this problem is no longer optimizable exactly with graph cuts, in [62] they
show that the algorithm is guaranteed to converge at least to a local minimum.

1figure cited from paper [62] with a bit modification

4.1. Interactive SegmentationMethods 29

The aim of this thesis is to make grabcut from semi-automatic segmentation algorithm to a
fully-automatic one. To be precise, we will try to find the initial “rectangle” of the grabcut
algorithm automatically, instead of requiring the user to provide it. After that, we follow the
steps of the grabcut algorithm. That is we will run iterative binary graph cuts segmentation to
update the foreground/background models until convergence is achieved.

4.1.3 Other Approaches

Besides interactive graph cuts and grabcut, there are other popular interative segmentation
methods, just to list a few, here.

• Lazy Snapping

Lazy snapping [49] is another popular graph based segmentation method, which enables
the user to edit the result by border editing to get better results.

Actually, lazy snapping algorithm uses a similar graph construction as in graph cuts. The
graph vertices in lazy snapping are at a course scale: superpixels (over-segment from wa-
tershed algorithm), and then editing border to fix errors on pixel scale. Figure 4.4 below
shows the superpixels (left) and border editing (right) in lazy snapping algorithm.

Figure 4.4: Superpixels (left) and border editing (right) in lazy snapping algorithm2

• Snakes

Contour based interactive segmentation “snakes” was suggested by Kass et al. [36]
in 1987. The model treats the desired contour as a time evolving curve, and the seg-
mentation process is to iteratively reduce the defined energy until convergence, during
which the initialized contours actively deform themselves. Convergence is achieved
when reaching a balance between the “external” powers that attracts the contour to its
place and the “internal” powers which keeps it smooth. The example of segmenting us-
ing snakes is illustrated in figure 4.5.

2Figure cited from paper [49]

30 Chapter 4. RelatedWork

Figure 4.5: Deformable contour of snakes algorithm

“Snakes” can only find the local minimum of the energy function, so it requires the
initialized contour not too far from the object border.

• Livewire

Figure 4.6: Example of livewire algorithm3

Livewire is a shortest path based method, which can reach the global minimum between
two user inputted points. It was developed independently by two groups: Mortensen &
Barret [58] and Udupa et. al. [21]. Livewire algorithm expects that the user input points
should be exactly on the object boundary, which is a strong requirement, while, the graph
based segmentation algorithm can perform well as long as there are certain seeds inside
and outside the object.

In figure 4.6, the user-cursor path is shown in white. The corresponding detected bound-
ary is shown in orange. The current livewire path in an intermediate point is drawn from
“free point” through “boundary point” (green segment) to “start point” (orange segment).

3Figure cited from paper [58]

4.2. Automatic SegmentationMethods 31

4.2 Automatic Segmentation Methods
Although automatic segmentation is a desirable goal in computer vision, we have to admit that
fully automatic segmentation is still an open problem.

4.2.1 Saliency Segmentation
Saliency segmentation [57] is another work related to our approach, we both try to explore
an effective initialization to graph cuts, and to a large extent, we are similar in using image
features such as color and texture. The main difference between the work in [57] and ours
is that the former learns a saliency map that is used to initialize data terms from a manually
labeled dataset. In our proposed method, we find foreground region only based on the input
image. Other difference is that [57] combines color and texture feature to produce a saliency
map. Our approach is to find good features that are useful for distinguishing the foreground
from the background.

In [57], the input image is first oversegmented into superpixels. Next, a trained classifier is
used to output a confidence value, independently for each superpixel, and the confidence map
is also taken to be the saliency map. Then the saliency map is partitioned into classifications
of salient object and background. The classifier results will be further refined using iterative
graph cuts (see figure 4.7).

Figure 4.7: Saliency segmentation workflow

The energy function in [57] has the basic form defined in [8], and it can be minimized using
graph cuts. In particular, the smoothness term is as follow:

Vpq

(
fp, fq

)
∝ exp

(
−4I2/2σ2

)
· δ

(
fp, fq

)
(4.8)

32 Chapter 4. RelatedWork

where, 4I denotes the intensity difference of two neighboring pixels, σ2 is the variance of in-
tensity difference of pixels.

The data term consists of two parts,

Dp (1) = −lnPr
(
Cp|1

)
− γ · ln

(
mp

)
(4.9)

Dp (0) = −lnPr
(
Cp|0

)
− γ · ln

(
1 − mp

)
(4.10)

where, 1 is the salient object and 0 is the background, Cp is the quantized color of pixel p, mp

is the confidence of pixel p, and constant γ controls the relative importance of the two parts.

Although saliency segmentation implements automatic segmentation seemingly, it needs large
training dataset as pre-condition, which is usually collected and labeled by a human.

4.2.2 Other Automatic Segmentation Methods

There are very few truly automatic segmentation methods that can serve the goal well. They
either over-segment the image into small pieces, and then merge by certain techques such as,
watershed [75](figure 4.8), meanshift [23](figure 4.9), splitting and merging [30](figure 4.10),
normalized cuts [68](figure 4.11), or simply choose a threshold [27](figure 4.12), which is
likely to “leak” on the weak boundary.

Figure 4.8: Left: original image, middle: row watershed segmentation, right: watershed
segmentation using region marks to control over segmentation4

4Figure cited from http://www.engineering.uiowa.edu/˜dip/LECTURE/Segmentation3.html#

splitmerge

4.2. Automatic SegmentationMethods 33

Figure 4.9: Left: original image, right: mean shift result5

Figure 4.10: Left: original image, middle: image after quad spliding,
right: image after merging6

Figure 4.11: Left: original image, right: normalized cut result7

Figure 4.12: Left: original image, right: threshoding result8

5Figure cited from http://cmp.felk.cvut.cz/cmp/courses/33DZOzima2007/slidy/meanShiftSeg.
pdf

6Figure cited from http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/

medium/segment/split.htm
7Figure cited from [61]

34 Chapter 4. RelatedWork

4.2.3 Useful Cues for Foreground Initialization

In this thesis, we aim to explore a relatively effective method to start graph cuts, therefore, to
make it independent from user guidance. By this indirect way, the goal of automatic segmen-
tation might be fulfilled. In this part, we will focus on automatic initialization of graph cuts,
and divide them into certain useful cues. Here, we go over some typical methods.

• Machine learning techniques

Machine learning techniques are often used to automatically find initial solution for
graph cuts. For example, Fukuda et al. [29] use AdaBoost to automatically find the
approximate location of the object. A model of saliency-based visual attention is inte-
grated with graph cuts since some object regions appear to increase visual attention more
than background regions. In this way, the saliency map is used as a prior probability of
the object model (spatial information) (see figure 4.13).

Figure 4.13: Graph cuts based on saliency maps and AdaBoost9

We must notice that machine learning approache based on manually labeled dataset for
automatic segmentation has a significant drawback, it can only be used to find a specific
foreground object/objects that were present in the training dataset. Unfamiliar objects
cannot be handled. Obviously, it is not a general method.

8Figure cited from book [27]
9Figure cited from paper [29]

4.2. Automatic SegmentationMethods 35

• Shape prior

Shape prior is also a useful help to automatic object segmentation, which incorporates
the shape knowledge into energy function, therefore, it might lead to better results.

In the work [74], a star shape (figure 4.14) is defined, and a pairwise shape constraint
term S pq (Eq.4.11) is designed.

Figure 4.14: An example of a star shape, the center of the star shape is
marked with a red dot c, and the star shape is outlined in green. Some

of the straight lines passing through c are shown in black10.

S pq

(
fp, fq

)
=


0 i f fp = fq,
∞ i f fp = 1 and fq = 0,
β i f fp = 0 and fq = 1

(4.11)

For any point p inside the object, Eq.4.11 insures that every single point q on the straight
line connecting c and p is also inside the object. β is a parameter finding by binary
search.

E (f) =
∑
p∈P

Dp

(
fp

)
+ λ

∑
(p,q)∈N

Vpq

(
fp, fq

)
+

∑
(p,q)∈N

S pq

(
fp, fq

)
(4.12)

Eq. 4.12 is the energy function incorporated with star shape prior, and the global mini-
mum can be guaranteed by max-flow/min-cut algorithm.

Though in [74], the star centers are provided by the user, star prior is not based on a
shape of a specific object class, but rather on simple geometric properties of the objects.
In certain restricted domains, such as in medical imaging, it may be possible to calculate
the center automatically.

10Figures cited from paper [74]

36 Chapter 4. RelatedWork

• Closely-related images

Closely-related images supply another cue of assisting graph cuts. For instance, in pa-
per [63], the information from two common material shared images is compared (figure
4.15). This is implemented by jointly cosegmentation the image pair using a proper MRF
coherence prior and a histogram matching cost.

Figure 4.15: Image pair for co-segmentation

In order to arrive at an objective function for cosegmentation, the proposed method in
[63] begins with setting out a generative model for an image pair, and then evaluate the
hypothesis that the images share common material. The recovered cosegmentation will
be that pair of regions, one from each image.

The author choose a generative model for the foreground histograms as a whole, rather
than individual pixels. A further Ising prior on segmentations, gated by image contrast,
encourages smooth boundaries.

Since the MRF term is an essential part of the energy, it is desirable to use the well-
established technique for binary MRFs-min-cut/max-flow algorithm [10]. The global
term of proposed algorithm can be solved by using submodular-supermodular procedure
[59].

There are also other cases of closely-related images segmentation, for instance, [12]
makes a good use of spatial information hidden in stereo pair, while [46] works on im-
age sequences.

• Specific object

For a specific object, it is possible to come up with a automatic intialization. For ex-
ample, in paper [55], the target object is already known as liver, therefore, an adaptive
threshold method is proposed to automatically provide the initialization.

4.3. TheWeak Points of the ExistingMethods 37

Figure 4.16: Flow diagram11of algorithm in paper [55]

4.3 The Weak Points of the Existing Methods
Although interactive methods can improve the accuracy by incorporating prior knowledge from
the user, in some practical applications, such as handling a large number of images, they can be
laborious and time consuming. If we can find grabcut (graph cuts) an automatic starting point,
a big jump will be made in automatic segmentation method, at the same time, it can be applied
in more fields.

On the other hand, pure bottom up approaches such as mean shift [23] or normalized cuts [68]
can only segment objects that are highly salient with respect to the background [5]. Intensity-
based methods, such as (local) binary thresholding [27] or region growing [27], tend to produce
discontinuous contours and “leakage”. Active contour models, such as snakes [36] or level-set
[60] methods, are sensitive to initialization and are of limited use in areas of low gradient [44].

About the automatic initialization methods themselves, we agree that the cues mentioned in
previous section do help automatic segmentation, but the additional information makes these
approaches restricted to a particular object class/classes or computationally demanding.

So in this thesis, we will work on single natural images without user interaction or labeled
training data. In other words, we can only mine the input image itself, and take use of low-
level visual cues, such as intensity, color and texture, that is exactly where the challenge and
the beauty of our work lies in.

11figure cited from paper [55]

Chapter 5

Automatic Foreground Detection

As mentioned before, our work is within the framework of energy minimization, and our aim
is to find a good initialization for graph cuts. In this chapter, the algorithm of finding the object
contained rectangle is described. This process can be divided into three main steps: a) feature
extraction and clustering, b) feature selection and c) search for a rectangle containing the ob-
ject. We will explain each step of the algorithm in details.

Before going into the details, let’s first make the basic assumptions clear.

5.1 Basic Assumptions
Our work is based on the hypothesis that there exists an unknown feature space in which the
feature vectors from foreground and background have detectable dissimilarity. The assumption
is reasonable for a large majority of images. This is because an object is an entity different from
the background and its appearance characteristics were developed independently from various
backgrounds, see images in figure 5.1.

Figure 5.1: Images of the same object in different backgrounds

Another assumption of this thesis is that the major part of the object is not located on the
boundary of the input image. We make this assumption purely for convenience of searching
and modifying the binary labels. If this assumption is violated, it is easy to fix by enlarging the
central part of the image or padding the boundary of the image with thick enough border.

38

5.2. Feature Extraction and Clustering 39

Figure 5.2: Major part of foreground on the image boundary

5.2 Feature Extraction and Clustering

The goal of binary image segmentation is to give each pixel a label to show which part it
belongs to, namely, foreground or background. In order to fulfill this task, we need enough
information to help to group the pixels in the target image. The more distinguishable infor-
mation there is, the easier it is to segment. Of course, we should not expect that all the useful
information can be found, but we hope to find a sufficient useful subset.

The first step of our work is to get the characteristics of every pixel, in other words, to find
a proper “feature description”. In this work, two kinds of features (texture and color) are used
to represent pixel characteristics. In order to extract the texture feature, image patch based
method is used, which considers neighbor pixels near the target pixel. For color features, we
read color values from three color channels in RGB space.

For the purpose of feature clustering, k-means algorithm is employed for extracted texture
vectors, and color quantization technique is used on color features. The details are described
in the following sections.

5.2.1 Teature Extraction

Generally speaking, texture characteristicis represented by a group of pixels instead of single
pixel, so they can supply more information, therefore give us more chance to fulfill our goal.
On the other hand, textures have large stochastic variations (see figure 5.3), which makes mod-
eling them is a difficult task.

40 Chapter 5. Automatic Foreground Detection

Figure 5.3: Texture rotation1

In this thesis, we test three popular texture extraction techniques. In particular, SIFT feature
doesn’t work well in our task, and it is computationally expensive, because it extracts a 128
dimensional vector at each key point.

Between filter responses and image patch [72] based methods, we choose the latter. Because
patch based method uses the RGB values directly instead of derivatives, it is more efficient to
compute. Also, there are evidences to suggest that the patch based classifiers give better results
than filter banks even when only a small number of training images are used [73].

From the testing results, image patch with the size of 7 × 7 neighborhood performs well. The
central pixel is not included in the representation. Thus, the image patch vector in our work
is 48 dimension. Meanwhile, the patch vectors are sorted before we cluster them. The reason
for reordering the row vectors is that it can make the texture feature rotationally invariant, and
reduce the sensitivity toward the texture geometric deformations (see figure 5.4) to some extent.

1Figure cited from http://www.cs.columbia.edu/CAVE/projects/histograms/images/

mrhMatchBrodatz.gif

5.2. Feature Extraction and Clustering 41

Figure 5.4: Texture rotation and geometric deformation2

5.2.2 Texture Clustering

Because the texture we used is a 48 dimensional vector at each pixel, theoretically, the number
of the texture types is 25648 in a grayscale image. Considering that too many texture classes
will reduce the discriminability when detecting the foreground, unsupervised learning tech-
nique k-means is employed to quantize the texture features. They are clustered into groups that
contain similar texture vectors and indexed by integer. In experimental stage, we test different
parameters, and set the largest number of iterations of k-means to 100, the texture features are
clustered into 10 groups, and indexed with integers 1, 2, . . . , 10. After quantization, all texture
descriptors falling into a particular cluster correspond to the same feature type. For example,
features with index k correspond to cluster k (k ∈ [1, 10] ∩ N). We need to mention that, we
find k-means clustering algorithm is unstable for some images, because it is a randomized al-
gorithm. There may be slight difference in detection results if we test the same image many
times. This due to the initialization of k-means is random, but k-means performs well in most
of the cases.

In order to illustrate clustered results clearly, random colors are used to show different clusters,
each color corresponds to a cluster center. In figure 5.5, the image in the middle is an example
of patch based textures at each pixel that are clustered into 10 groups, while the right image
shows SIFT features (6 clusters), at every 10th pixel. From the testing results, patch based tex-
tures present pixel characteristics well, and are faster to extract.

2Figure cited from http://imgur.com/a/UDm5B

42 Chapter 5. Automatic Foreground Detection

Figure 5.5: Left: original image, middle: patch based texture map (random color) with k = 10,
right: SIFT features map (sampling at every 10th pixel) with k = 6

We should notice that object textures often undergo an appearance change when they are im-
aged by a camera in different illumination conditions. Figure 5.6 shows that k-means cluster-
ing technique can weaken those effects to a large extent, the stripes of tiger are successfully
clustered into the same feature group, though there are texture rotation as well as geometric
deformation.

Figure 5.6: Pixels assigned to one particular texture cluster after k-means clustering of the
patches, with k = 10. This cluster roughly corresponds to tiger stripes

5.2.3 Color Quantization
Usually, each image region contains pixels from a small subset of the color classes and each
class is distributed in a few image regions [19], which means detecting object region relying
on color cues is reasonable. There is a similar problem to textures that three channel images
have 2563 colors, counting all of them is time consuming and too many colors will make ob-
ject detection a hard task. In order to reduce the number of colors and to make the algorithm

5.2. Feature Extraction and Clustering 43

insensitive to small color changes, we preprocess the input image with minimum variance
quantization algorithm [31], and quantized colors are assigned with indices.

What needs to mention is that we test our algorithm in both RGB and CIELAB space. Although
many algorithms that process color images produce better results in CIELAB3, it doesn’t work
better in our case. In this work, we stick to RGB color space.

Figure 5.7: image before quantization4

Figure 5.8: image after quantization5

3http://www.mathworks.com/matlabcentral/fileexchange/24010
4Figure cited from website http://en.wikipedia.org/wiki/Color_quantization
5Figure cited from website http://en.wikipedia.org/wiki/Color_quantization

44 Chapter 5. Automatic Foreground Detection

Figure 5.7-5.8 illustrate the image before and after color quantization, we can see that after
color quantization, the number of color become lesser and the image become rougher. Figure
5.9 is one of our testing results in RGB space, and in the final algorithm, we quantize all the
images into 10 colors.

Figure 5.9: Color quantized image (color = 8)

5.3 Feature Selection
After the texture and color features extraction, we should have enough information to detect
object contained rectangle accordingly. The reason for including this feature selection step
is that not all the features will contribute to distinguish the foreground from features that are
evenly spread across the image. On the other hand, in the process of comparison, counting all
of them is a time consuming task. Therefore, designing a ranking function to get rid of the
useless features is necessary.

Figure 5.10: Left: artificial features map, middle: good features, right: bad features

Figure 5.10 shows examples of good features and bad features in our task. The ranking function
should map the features to different indices according to their characteristics. More specifically,
features that are concentrated in some areas of the image but not in others, will be ranked higher

5.3. Feature Selection 45

by our function, and only the high ranked features are good features to be chosen for histogram
computation.

5.3.1 Ranking Function
In this section, we will introduce the criteria to rank features and the formulation of our ranking
function.

First, we partition the target image into smaller sized rectangular regions, which we refer to
as ”boxes”. Notice that boxes are non-overlapping (see figure 5.11). Actually, before feature
selection, there is a process of box selection. To select the boxes, we should count, in each
feature cluster, how many features fall into every box, and choose the boxes containing more
features than average in that cluster. The criteria we used to judge whether a feature cluster
is good is the chosen boxes’ variance, the smaller the box variance is, the better the feature is
(see figure 5.12-5.13). Notice that only the boxes containing more than average feature points
are useful to compute the box variance.

Figure 5.11: Image divided into 25 boxes

The notations and details for the ranking function that we designed are as follows.

Suppose we have features f1, f2, . . . , fk. We will define a ranking function R (·) on features,
such that, if R

(
fp

)
< R

(
fq

)
, fp is considered a better feature than fq. Intuitively, a feature is

good if it is concentrated in several nearby boxes.

Before defining R (·), we need to define the following notations. Let the boxes be indexed
with 1, 2, . . . , b (b ∈ N), and let n (i, j) ∈ N be the number of pixels with feature i ∈ [1, k] ∩ N
that are detected in box j ∈ [1, b] ∩ N, and ci ∈ N be the total number of pixels with feature i
in the image. If feature i was spread uniformly in the whole image, we would expect to have
average feature number µi ∈ R in each box, where

µi = ci/b (5.1)

46 Chapter 5. Automatic Foreground Detection

Our intuition is that a good feature i should be concentrated in several boxes. However, due
to outliers and other random effects, we expect that there will be some boxes with very low
feature concentration, and we want to exclude such boxes from feature ranking computation.
In our algorithm, we will exclude all boxes with feature count n (i, j) less than µi.

Let S i be the set of box indexes that survive the selection step, that is, if j ∈ S i, then n (i, j) ≥ µi.
Intuitively, box j (j ∈ S i) is the active box that participates in the ranking of the feature i. For
a high rank, we expect the boxes with indexes in S i to be spacially coherent, or in other words,
they should be not too far from each other.

To measure how spatially close the selected boxes are, we will compute the variance of their
centers. Let

(
x j, y j

)
be the geometric center of box j. We separately compute variances for the

x and y coordinates and add them up, namely, we use

σ (S i) = var{x j| j ∈ S i} + var{y j| j ∈ S i} (5.2)

Now we are ready to define our full ranking function,

R (fi) = rank
i∈[1,k]

(σ (S 1) , σ (S 2) , . . . , σ (S k)) (5.3)

where, rank (·) returns the index of σ (S i) in the sequence σ (S 1) , σ (S 2) , . . . , σ (S k) which is
sorted in non-decreasing order. That is, the smaller the variance, the better is the feature.

Figure 5.12: A feature with high rank (2), that is small variance in selected box centers.
Selected boxes are shown in shaded blue, green circles denote the box centers.

5.3. Feature Selection 47

Figure 5.13: A feature with low rank (10), that is a large spread of selected box centers.
Selected boxes are shown in shaded blue, green circles denote the box centers.

In the two example feature maps (figure 5.12-5.13), we use blue shadow to mark the chosen
boxes. The feature (ranked 2) in figure 5.12 has smaller box center variance and therefore is
ranked higher than the feature (ranked 10) in figure 5.13. It also corresponds to our intuition
about these two features. Almost all pixels with feature 2 in figure 5.13 belong to the same
object, while those in figure 5.13 are spread all over different objects in the scene.

Figure 5.14 below shows the patch based features map (tiger image, k = 10) ranked by our
ranking function. In this thesis, we choose top 50 percent of texture features to compute fore-
ground/background histograms.

48 Chapter 5. Automatic Foreground Detection

Figure 5.14: Ranked patch based features map (tiger image), from left to right and top to
down, the features are sorted in non-decreasing order of box variances.

5.4. Foreground Rectangle Detection 49

5.4 Foreground Rectangle Detection
When we get the useful features, the region containing the foreground can be detected by the
sliding window approach. That is we slide a window of fixed size across numerous positions
in the entire image, searching for the best placement. In our work, we employ α-divergence
to measure the extent of histogram difference, and histograms are computed based on integral
images [76]. In this section, we explain the foreground search details.

5.4.1 Similarity Measurement
In our algorithm, the essential part of object detection is finding the region where the inside and
outside histograms show the largest dissimilarity. Therefore, choosing a proper measurement is
a key point. Here, we make a choice from α-divergence family, which can be used to measure
difference between two probability distributions P and Q. In this thesis, we use the foreground
and background histograms to simulate P and Q, respectively. The α-divergence was proposed
by Chernoff [15] and have been extensively investigated and extended by many researchers.
The basic asymmetric α-divergence can be defined as [2]:

D(α)
A (P || Q) =

1
α (α − 1)

∫ (
pα (x) q(1−α) (x) − αp (x) + (α − 1) q (x)

)
dµ (x), α ∈ R \ {0, 1}

(5.4)
The well known Pearson Chi-square, Hellinger and inverse Pearson, also called the Neyman
Chi-square distances, are the special cases of α-divergence family, when α = 2, 0.5,−1, given
respectively by

D(2)
A (P || Q) = DP (P || Q) =

1
2

∫
(p (x) − q (x))2

q (x)
dµ (x) (5.5)

D(1
2)

A (P || Q) = 2DH (P || Q) = 2
∫ (√

p (x) −
√

q (x)
)2

dµ (x) (5.6)

D(−1)
A (P || Q) = DN (P || Q) =

1
2

∫
(p (x) − q (x))2

p (x)
dµ (x) (5.7)

The basic α-divergence is asymmetric, that is, D(α)
A (P || Q) , D(α)

A (Q || P) . But our aim is
binary image segmentation, the foreground and background labels can be swapped, in other
words, our problem is symmetric. We test Hellinger distances first, but it doesn’t behave very
well, therefore, we try to find a proper symmetry measurement in α-divergences family.

Generally speaking, there are two types of aymmetrized α-divergence:

Type 1

DS 1 (P || Q) =
1
2

[DA (P || Q) + DA (Q || P)] (5.8)

Type 2

DS 2 (P || Q) =
1
2

[DA

(
P ||

P + Q
2

)
+ DA

(
Q ||

P + Q
2

)
] (5.9)

50 Chapter 5. Automatic Foreground Detection

An alternative wide class of symmetric divergences can be described from them. In our work,
the formula we use to compute the histograms is Eq. 5.10, which is a type 2 symmetric α-
divergence.

D(α)
AS 2 (P || Q) = D(α)

A

(
P ||

P + Q
2

)
+ D(α)

A

(
Q ||

P + Q
2

)
=

1
α (α − 1)

∫ ((
p1−α + q1−α

)
+

(p + q
2

)α
− (p + q)

)
dµ (x)

(5.10)

In particular, we set α = −1, and use the discrete form of the measurement:

D(−1)
AS 2 (P || Q) =

1
2

DT D (P || Q) =
1
2

∑ (p (x) − q (x))2

p (x) + q (x)
(5.11)

where, p (x) and q (x) stand for bins with the same index from foreground/background his-
tograms, see figure 5.15.

Figure 5.15: Foreground/background histograms

5.4.2 Sliding Window
In this work, we use sliding windows to search for a potential object region. For the purpose
of improving accuracy and efficiency, we use the following techniques.

• Integral Image

The shape of searching window is designed as a rectangle. Actually, the foreground
region detection algorithm itself is not sensitive to the shape of the search window, but
rectangle can speed up the searching process based on integral images [76].

Figure 5.16 illustrates how to make use of integral image. At every point of integral

5.4. Foreground Rectangle Detection 51

image, it records the accumulation value in the rectangle from origin to that point. In
precise, the integral image at location x, y contains the sum of the pixels above and to the
left of x, y, inclusive:

ii (x, y) =
∑

x′≤x,y′≤y

i
(
x′, y′

)
(5.12)

Where ii (x, y) is the integral image and i (x, y) is the original image. The integral im-
age can be computed in one pass over the original image using the following pair of
recurrences:

s (x, y) = s (x, y − 1) + i (x, y) (5.13)

ii (x, y) = ii (x − 1, y) + s (x, y) (5.14)

Where s (x, y) is the cumulative row sum, s (x,−1) = 0 and ii (−1, y) = 0.

Figure 5.16: The sum of the pixels within rectangle D can be computed with
four array references. The value of the integral image at location 1 is the sum
of the pixels in rectangle A. The value at location 2 is A + B, at location 3 is

A + C, and at location 4 is A + B + C + D. The sum within D can be computed
as 4 + 1 − (2 + 3).

In the searching step of our algorithm, for every position of sliding window, the inside
and outside histograms of searching window are needed to count, so computing based on
integral image is efficient. Of course, this approach can only outperform the straightfor-
ward method when the cluster number is few, in our case, k = 10, so on every position,
the total computation for foreground histogram is 4 × 10, which reduces the computing
time to a large extent.

• Representation Windows

Again, considering the search efficiency, we do not search over all possible window
sizes and aspect ratios, but choose three typical window sizes: a high rectangle, a wide
rectangle and a square one. Actually, these three typical window sizes can cover most
of the object types. In practice, at least one of the three searching windows can make a

52 Chapter 5. Automatic Foreground Detection

good choice. Figure 5.17 shows some results of searching with the three representative
windows, the window with the largest histogram divergence is colored with yellow.

Figure 5.17: Foreground detection results using three representation windows

• Search Range and Step

Based on the assumption that the major part of the objects are not on the boundary of the
input image, we ignore the image border of width 80 pixels when searching. With this
constraint, not only the efficiency, but also the accuracy of the algorithm is improved.
Because it is a useful technique in cases when the image is dominated by low texture or
pure texture region, such as sky, grass or water.

When searching for a foreground rectangle, we make the step size to be 10 pixels, as

5.4. Foreground Rectangle Detection 53

opposed to every pixel. For there is a trade off between the searching accuracy and ef-
ficiency. The rough object location is enough to initialize graph cuts algorithm, and the
segmentation will be refined later. Figure 5.18 illustrates the search range and step size
of our algorithm.

Figure 5.18: Sliding window range and step

• No Stop at Bad features

No stop constraint directly arises from feature selection. As we discussed in previous
section, the ranking function will choose the features which focus in certain part of the
image. Therefore, after feature selection, the different bad features will connect to each
other to make up some bad feature focus regions (see figure 5.19). Remembering that
this region is made up of bad features, so forbiding the searching window to stop in bad
features region makes sense. In our special case, the no stop constraint is defined like
this: if more than 2

3 of the features in the current search window are bad features, then
the divergence on that position will be set to a small constant.

Figure 5.19: Left: artificial feature map, right: good features(red) and bad features focus
region(black)

For more detection results and related analysis, see chapter 7.

Chapter 6

Segmentation Using Graph Cuts

As explained in previous chapters, the rectangle segmentation result will be used to automaticly
start graph cuts algorithm. Notice that the proposed method tries to mine the useful information
from feature space, what is important to us is not “what” but “where” in the detection stage.
To be more precise, the top-left and down-right corners of the best detection rectangles are
recorded in the previous stage. In the following step, the rough rectangle segmentation result
will be refined by graph cuts. Graph cuts execute based on the color models learned from the
inside and outside of the rectangle, respectively.

In this chapter, we will explain the specific energy function and the algorithm that refines
binary segmentation.

6.1 Energy Function
According to chapter 3, segmentation of an image is a labeling problem which can be addressed
in the energy minimization framework. Here, our goal is to partition the image into two sets,
the object and background, by utilizing graph cuts algorithm. The energy function has the gen-
eral form as introduced before:

E (f) =
∑
p∈P

Dp

(
fp

)
+

∑
{p,q}∈N

Vpq

(
fp, fq

)
(6.1)

Where, N is a 4-neighborhood system, P is the set of image pixels, Dp

(
fp

)
is the data term,

and Vpq

(
fp, fq

)
is the smoothness term for two neighboring pixels p and q.

Again, for the purpose of reducing color number, image quantization is used. In this stage,
the target images are quantized into 250 colors by minimum variance quantization algorithm
[31], and the foreground/background histograms are counted based on the quantized image.

6.1.1 Data Term
Given the rectangle detected in the previous step, we initialize all pixels inside it to belong to
the foreground, and all the pixels outside belong to the background. We then compute the his-

54

6.1. Energy Function 55

togram counts inside the foreground and histogram inside the background regions, normalize
the two histograms separately into the range [0, 1]. After normalization, the data terms related
to the histograms are computed as below:

Dp

(
fp

)
= −logPr

(
Qp | fp

)
(6.2)

where Qp denotes the quantized color of the pixel p. In our binary segmentation task, fp ∈

{0, 1}, therefore
Dp (1) = Pr

(
Qp | 1

)
Dp (0) = Pr

(
Qp | 0

)
The data term for each pixel is assigned according to the foreground/background histograms.
For any pixel, if it’s color is more frequent according to the foreground histogram, its data term
for label 1 (foreground) is smaller than the data term for label 0 (background). If a pixel’s
color is more frequent in the background histogram, then the data term for the background
label is smaller than for the foreground label. Thus pixels with colors that occur more often
in the foreground are encouraged to be assigned to the foreground label, and other pixels are
encouraged to be assigned to the background label.

Figure 6.1: Computing data terms from foreground/background color modes

Figure 6.1 illustrates computing data terms from foreground/background histograms, respec-
tively. In this figure, red curve corresponds to the foreground and the blue curve corresponds
to the background. Consider pixel p, its quantized color is more frequent in the foreground,
therefore, the negative log probability is lower for the red curve. This pixel will be encouraged
to be assigned to the foreground in the segmentation.

According to the assumption that the major part of the object is not located on the bound-
ary of the input images, we introduce the hard constraints on the image boundary, that is, we
chain the border (one pixel width) on the image boundary to be the background. In particular,
the border pixels need to pay 10000 for choosing foreground label, and 0 for background label,
therefore, all these pixels will choose background label after energy minimization. Notice that
these hard constrains are fixed for all the input images beforehand, so this rule will not violate
the goal of automatic segmentation, and the results can be improved significantly, see figure
6.2.

56 Chapter 6. Segmentation Using Graph Cuts

6.1. Energy Function 57

Figure 6.2: Column 1: segmentation results without boundary constraints, column 2:
boundary constraints added

6.1.2 Smoothness Term

The smoothness term in Eq. 6.1 penalizes discontinuities between neighbour pixels p and q. To
make it clear, if the two pixels are similar in color and have different labels, the penalty is high
for the discontinuity. Otherwise, the penalty is smaller, because pixels different in appearance
are more likely to belong to different segments (foreground or background), then the penalty
for discontinues in this case is small.

58 Chapter 6. Segmentation Using Graph Cuts

The smoothness term used in this work is defined in paper [8]:

Vpq

(
fp, fq

)
= δ

(
fp, fq

) (
1 + γ · exp−

dist(Cp ,Cq)
β

)
(6.3)

δ
(

fp, fq

)
=

{
1 i f fp , fq,
0 otherwise

In Eq. 6.3, Cp denotes the original color of pixel p in the input image, and we use L1 norm1

to represent color distance. In particular, dist
(
Cp,Cq

)
= 1

3 ||Cp −Cq||1, and the constant β =

1
3

〈
||Cp −Cq||1

〉
, which is the average of color difference between neighboring pixels in the

image. This ensures that if the color difference between neighboring pixels is smaller than
average, we have to pay a heavier penalty to put them in different segments. If color difference
is larger than average, then the separation cost is not so large. We assign constant γ = 10 in
this work, so Eq. 6.3 can be rewritten as below:

Vpq

(
fp, fq

)
= δ

(
fp, fq

) 1 + 10 · exp
−
||Cp−Cq ||1

〈||Cp−Cq ||1〉

 (6.4)

6.1.3 Energy Function Sub-modularity
It is easy to see that the energy function used in this chapter is sub-modular [12, 43]. Therefore,
it can be minimized by graph cuts algorithm.

As explain in chapter 3, to prove the sub-modularity, it is sufficient to prove that

E (0, 0) + E (1, 1) ≤ E (0, 1) + E (1, 0) (6.5)

Since 1 + γ · exp−
dist(Cp ,Cq)

β ≥ 0, we only need to prove the formula

δ (0, 0) + δ (1, 1) ≤ δ (0, 1) + δ (1, 0) (6.6)

and it is obvious from the definition of δ (·).

6.2 Automatic Segmentation Algorithm
Similar to grabcut, the algorithm presented in this thesis works iteratively to update the seg-
mentation. The difference between our method and grabcut is in the aspect of hard constraint.
In grabcut, the outside of the rectangle chosen by user works as background seeds and the la-
bels of these pixels will be fixed during the entire iterative process, while, there will be no user
input label in our case. Moreover, we should not expect that the rectangle covers the entire ob-
ject perfectly with our automatic initialization method. It is most likely that the rectangle that
we find only covers part of the object (figure 6.3). But our rectangle contains a good portion

1 p-norm: ||X||p =
(∑n

i=1 |xi|
p
) 1

p , p ≤ 1

6.2. Automatic Segmentation Algorithm 59

of the object, because a large portion does stick out. During the iteation, we allow all pixels to
update their labels, except the one pixel width image border, which is hard-constrained to be
the background.

Figure 6.3: Segmentation using iterative graph cuts

Figure 6.3 is an illustration of the proposed segmentation algorithm. First, we initialize binary
labels of an image according to the rectangle segmentation, compute histogram counts and the
data costs, a graph cut is used to compute the labeling which minimizes the energy. After that,
we recompute the histogram counts for the new foreground/background regions and run a new
round of graph cuts, obtaining, potentially, a new segmentation. This process will be repeated
until the energy convergence is reached.

For comparison, we segment the same wolf image using grabcut implementation by Wang
[77](see figure 6.4), the red rectangle is the user initialization, and the background brush (blue)
are used to refine the segmentaion. it can be seen that in order to get the segmentation results
in the same level, at least three interactions are needed.

60 Chapter 6. Segmentation Using Graph Cuts

Figure 6.4: Segmentation using grabcut, column 1: user initialization rectangle (shown in red)
and interactons (shown in blue), column 2: refined segmentation results

The main reason for using iterative segmentation is that it can improve the initial segmenta-
tion by refining the color models. To make it clear, suppose that the one shot segmentation
does not segment the whole object. In the following re-estimating step, the new color models
will be constructed based on the previous round of segmentation, those wrong labeled pixels
might fit the new object color model better. Therefore, these pixels will more likely be labeled
as foreground in a new round of segmentation. The same case is true for the background pixels.

During the process of re-estimating, the smoothness terms will keep the same, while the
data terms will be updated in every round, we describe the new energy function as Ê (f) =

ÊData + ES mooth, and the proposed iterative segmentation algorithm is represented as follows:

6.2. Automatic Segmentation Algorithm 61

Algorithm 1 Proposed Algorithm (segmentation stage)
1: Initialize data terms EData from object contained rectangle;
2: Compute β value of the image;
3: Compute smooth terms ES mooth of the graph;
4: minE (f) = EData + ES mooth;
5: while Segmentation algorithm did not converge do
6: update data terms ÊData from previous segmentation;
7: minÊ (f) = ÊData + ES mooth;
8: end while

Iterative segmentation is a very useful technique, which guarantees the energy to converge at
least to a local minimum. the following is an example (figure 6.5) to illustrates the process
of updating segmentation, and the chart (figure 6.6) shows the energy reduction. For more
experimental results, see chapter 7.

Original starfish image

Figure 6.5: Segmentation results in iteration 1 to 5, compared with ground truth

62 Chapter 6. Segmentation Using Graph Cuts

Figure 6.6: Graph showing convergence process of the energy on the starfish image.
Horizontal axis plots iteration number. Vertical axis plots the energy value. Convergence is
achieved after 9 iterations, but most of the progress is made during the first three iterations.

Chapter 7

Experimental Results

This chapter presents extensive experimental results of the proposed automatic segmentation
algorithm. In addition, we will explain more details about parameter selection and results
analysis.

7.1 Parameter Selection

In order to implement automatic segmentation, besides algorithm design, parameter selection
is another challenge of this work. Because during the whole segmentation process, no user
guidance or results editing is allowed. On the other hand, natural images show a significant
amount of variation, and we have to set parameter values that work well for a large portion
of images. Hence, choosing proper common parameters becomes a key point to acquire good
results.

For the task of accurate automatic segmentation, we test and analyze different parameters,
which are listed below:

• Box Size

The size of box in feature selection stage affects the average pixels number when com-
puting box variance, in other words, it is important in the process of box selection. The-
oretically, too large box size will not measure pixel focus extent well, while too small
box size is compositionally more expensive, since there are many more places to check
for a smaller box placement.

Figure 7.1 is an example of SIFT features aggregated in boxes of different sizes. We
can notice that in small box case, less features show up in every box, while in large
box, the features may only occupy part of box, which will decrease the meaning of box
selection.

63

64 Chapter 7. Experimental Results

Figure 7.1: Left: original image, middle: one group of SIFT features in 6 × 6 boxes, right: the
same features in 3 × 3 boxes

In the experimental stage, we test the box with the sizes of 3×3, 5×5 and 8×8 for patch
based features, and only little change are found in rectangle detection results, all of the
three sizes are reasonable (see figure 7.2-7.3). In the implementation, we choose to use
box with size 5 × 5.

Figure 7.2: Left: detection result with 3 × 3 boxes, right: detection result with 5 × 5 boxes

Figure 7.3: Left: detection result with 8 × 8 boxes, right: detection result with 5 × 5 boxes

• Number of Clusters

The number of clusters determines how many groups the features are divided into. If

7.1. Parameter Selection 65

we use too many clusters, then there may be too many feature types, therefore, too few
samples for each feature type (see figure 7.4). This may hinder finding interesting fea-
tures, that is features that focused in some particular region in the image. In addition,
if we have too many features, computing histogram counts becomes too expensive, as
explained in chapter 5. So in the final algorithm, we set both texture and color cluster
numbers to 10, and these choice make the algorithm perform well.

Figure 7.4: Color cluster results, from left to right, color number equals to 10, 20 and 40.

• Window Size and Number

Ideally, we should test all the window sizes and shapes, before choosing the best ob-
ject position. But it is unfeasible in practice, as explained in chapter 5, we choose three
typical windows instead. In figure 7.5, columns 1, 2 are search results using 3 windows,
while column 3 is the result of search using 7 different windows. From these illustra-
tions, it seems that most search windows concentrate around the same most promising
area, and thus we can save search time by using only a few distinct window sizes. In the
final implement, the three representative window size are [1

2 ,
1
4], [1

4 ,
1
2] and [2

5 ,
2
5] of the

image width and height, respectively. Notice that it is a “square” in ratio.

66 Chapter 7. Experimental Results

Figure 7.5: Column 1: detection results based on half of the color, column 2: detection results
based on all color features, column 3: detection results with seven different windows.

• Useful Feature Proportion

In this thesis, we only select the top 50% of texture features. From the experimental
results, detection based top half of the color features causes significant failure (see figure
7.5 column 1 and column 2), so we give up feature selection in color space.

In order to make a good choice, we test different percentage of features. 80% and 30%
perform slightly worse than half texture (see figure 7.6-7.7).

Figure 7.6: Left: detection result on top 30% of texture, right: detection result on top 50% of
texture

Figure 7.7: Left: detection result on top 80% of texture, right: detection result on top 50% of
texture

7.1. Parameter Selection 67

• Patch Size

Patch size is related to the length of texture vector, therefore it affects the computational
efficiency directly. Meanwhile, the quality of texture depends on how many nearby pix-
els are considered. During experiment, patch size 5×5, 7×7 and 9×9 are tested. We find
that the computational time is more sensitive to different patch sizes than texture quality
in our algorithm, and our final patch size is 7 × 7.

• Texture Color Balance

The balance between texture and color decides the weight we put on these features.
For example, large balance means the detection depends on texture more than color. We
test three balances 0.3, 0.5 and 0.7, and judging from the testing results, all of them can
make relatively good choice. In this work, we rely on them in the same extent, so the
balance is set to 0.5.

What is surprising is that detection based on combination of texture and color features
succeed in many cases of animal camouflage, figure 7.8 shows some examples.

68 Chapter 7. Experimental Results

Figure 7.8: Successful results on animal camouflage

• Data and Smoothness Terms Balance

The balance λ between data terms and smoothness terms decides the weight between
the regional and boundary constraints. Large λ will cause segmentation result to be over-
smoohted, while when λ is too small, the reault is not smooth enough. In figure 7.9-7.10,
the segmentation results for different λ are illustrated.

Actually, for different dataset, the best λ is likely to be different. And we should choose
the one which tends to work best for all dataset, in our work, we choose λ = 10 for all
the experiments.

Figure 7.9: Left: λ = 6 (not smooth enough), right: λ = 8 (not smooth enough)

Figure 7.10: Left: λ = 10 (just right), right: λ = 12 (over-smoothed)

7.2. Experimental Results 69

7.2 Experimental Results

7.2.1 Image Database and Running Time
Our algorithm is tested on three dataset: Berkeley Segmentation Dataset1(BSD, 300 images)
[54], Grabcut Dataset2(GSD, 50 images), and Achanta et al.(ASD, 1000 images)[1].

The foreground detection algorithm is implemented with MATLAB, and the average running
time for a 321 × 481 image in BSD is 38 seconds, on a 3.10 GHz processer with 4 GB RAM.
The image sizes in ASD are different, most of them with the size of 300 × 400, and the aver-
age foreground detection time is 27 seconds. On all the datasets, segmenting one image using
graph cuts (developed in C++) runs in 0.3-0.6 second.

7.2.2 Evaluation of the Results
We evaluate the segmentation results by computing the error rate compared with the ground
truth (hand-labeled by certain people), that is counting the percentage of mislabeled pixels. We
compute the “pixel error”(PE) and the “class error”(CE). For “pixel error”, the formula used is

PE =
|LGT ∩ LS eg|

|LGT |
(7.1)

For “class error”, the “foreground” and “background” errors are computed separately, and then
we record the mean error. The mean error can be compute as follows:

CE =
1
2

1∑
i=0

|Li
GT ∩ Li

S eg|

|Li
GT |

(7.2)

where, LGT denotes the ground truth label map, and LS eg means label map from our algorithm,
i = 0, 1 denote background and foreground, respectively.

BSD Paria’s PE Pixel error Foreground error Background error Mean F/B E
Iteration 1 0.2164 0.2376 0.5955 0.0962 0.3459

Convergence 0.2012 0.2385 0.5306 0.1172 0.3239

Table 7.1: Average errors for pixel, foreground, background, and mean of them in different
iterations (300 images in BSD)

Paria’s PE Pixel error Foreground error Background error Mean F/B error
GSD - 0.1626 0.3468 0.1148 0.2308
ASD 0.0758 0.0955 0.1902 0.0760 0.1331

Table 7.2: Average errors for pixel, foreground, background, and mean of them when
reaching convergence (50 images in GSD, 1000 images in ASD)

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
2http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/

segmentation/grabcut.htm

70 Chapter 7. Experimental Results

Table 7.1-7.2 show the error rates for different set of experiments. What is surprising is that
the mean error using only one iteration of graph cuts is less than the error iterating until con-
vergence. A possible reason is that some of images in the testing dataset are not suitable to our
task, for example, landscape images, and more iterations will make the segmentation results
worse. However, reasonable segmentations are obtained for most of the images .

7.2.3 Experimental Results

The experiments in this work can be viewed from different angles, for example, foreground
detection and segmentation error rates, segmentation from different graph cuts iteration, and
energy convergence. We display some typical results in each case and compare our results with
the counterpart from related works. In addition, some fail examples are shown at the end.

• Foreground Detection and Segmentation Error

Pixel error: 0.0573, Class error: 0.0430

Pixel error: 0.0194, Class error: 0.0203

7.2. Experimental Results 71

Pixel error: 0.0542, Class error: 0.0825

Pixel error: 0.4037, Class error: 0.3319

Pixel error: 0.3725, Class error: 0.2157

72 Chapter 7. Experimental Results

Pixel error: 0.0450, Class error: 0.0654

Pixel error: 0.0516, Class error: 0.0630

Pixel error: 0.0406, Class error: 0.0446

Pixel error: 0.0372, Class error: 0.0803

Pixel error: 0.1264, Class error: 0.0869

7.2. Experimental Results 73

Pixel error: 0.0194, Class error: 0.0150

Pixel error: 0.0336, Class error: 0.0337

Pixel error: 0.1565, Class error: 0.2792

Pixel error: 0.0410, Class error: 0.0617

Pixel error: 0.0793, Class error: 0.1721

74 Chapter 7. Experimental Results

• Iteration and Energy
As explained in chapter 6, the goal of iterative graph cuts is to improve the segmenta-
tion. Judging by the testing results, most of the images can be well segmented within 5
iterations.

Figure 7.11-7.13 illustrate the process of segmentation refinement, which are segmen-
tation results from iteration 1 to 5. The black and white images show ground truth. The
energies at every iteration step are recorded, too.

Left: original flower image, middle: foreground detection, right: the convergence process of
energy

Figure 7.11: Segmentation results in iteration 1 to 5, compared with ground truth

7.2. Experimental Results 75

Left: original pottey image, middle: foreground detection, right: the convergence process of
energy

Figure 7.12: Segmentation results in iteration 1 to 5, compared with ground truth

76 Chapter 7. Experimental Results

Left: original ostrich image, middle: foreground detection, right: the convergence process of
energy

Figure 7.13: Segmentation results in iteration 1 to 5, compared with ground truth

7.2. Experimental Results 77

• Comparison with Grabcut Results

In figure 7.14-7.17, our results are compared with the counterparts from paper [62],
it is not difficult to find that our algorithm can segment as well as grabcut without user
guidance.

Figure 7.14: Left: grabcut initialization rectangle, middle: grabcut
segmentation result, right: our result

Figure 7.15: Left: grabcut initialization rectangle, middle: grabcut
segmentation result, right: our result

Figure 7.16: Left: grabcut initialization rectangle, middle: grabcut
segmentation result, right: our result

Figure 7.17: From left to right: grabcut initialization rectangle, grabcut
user editing, grabcut segmentation result and our result

78 Chapter 7. Experimental Results

• Comparison with Saliency Segmentation Results
We also compare our algorithm with that of Mehrani [56], who initialize graph cuts with
salient object detection trained on manual labeled dataset. In both BSD and ASD, our
experimental results reach the similar level to Mehrani’s in error rates.

PE: 0.0458, CE: 0.0289

PE: 0.0613, CE: 0.0418

PE: 0.0339, CE: 0.0230

PE: 0.0448, CE: 0.0263

ground truth

ground truth

PE: 0.0565, CE: 0.0401

PE: 0.0143, CE: 0.0140

PE: 0.0796, CE: 0.0535

PE: 0.0209, CE: 0.0148

ground truth

ground truth

Figure 7.18: Column1: Mehrani’s results, column 2: our results, column 3: ground truth

7.2. Experimental Results 79

PE: 0.0645, CE: 0.0440

PE: 0.0394, CE: 0.0277

PE: 0.0740, CE: 0.0501

PE: 0.0524, CE: 0.0361

ground truth

ground truth

PE: 0.1023, CE: 0.1125

PE: 0.0977, CE: 0.0774

PE: 0.0280, CE: 0.0213

PE: 0.0213, CE: 0.0199

ground truth

ground truth

Figure 7.19: Column1: Mehrani’s results, column 2: our results, column 3: ground truth

80 Chapter 7. Experimental Results

PE: 0.0128, CE: 0.0139

PE: 0.0342, CE: 0.0229

PE: 0.0141, CE: 0.0094

PE: 0.0267, CE: 0.0179

ground truth

ground truth

PE: 0.0464, CE: 0.0293

PE: 0.1424, CE: 0.1819

PE: 0.0476, CE: 0.0389

PE: 0.0348, CE: 0.0338

ground truth

ground truth

Figure 7.20: Column1: Mehrani’s results, column 2: our results, column 3: ground truth

7.2. Experimental Results 81

PE: 0.0428, CE: 0.0735

PE: 0.1478, CE: 0.1314

PE: 0.0579, CE: 0.0668

PE: 0.1411, CE: 0.0920

ground truth

ground truth

PE: 0.1469, CE: 0.1198

PE: 0.1229, CE: 0.2804

PE: 0.0966, CE: 0.1604

PE: 0.1369, CE: 0.3033

ground truth

ground truth

PE: 0.0705, CE: 0.0759

PE: 0.2623, CE: 0.1770

PE: 0.0585, CE: 0.1039

PE: 0.0243, CE: 0.0269

ground truth

ground truth

Figure 7.21: Column1: Mehrani’s results, column 2: our results, column 3: ground truth

82 Chapter 7. Experimental Results

PE: 0.3835, CE: 0.2896 PE: 0.2341, CE: 0.2968 ground truth

PE: 0.2737, CE: 0.2262

PE: 0.1051, CE: 0.0778

PE: 0.0852, CE: 0.0670

PE: 0.0605, CE: 0.0446

ground truth

ground truth

Figure 7.22: Column1: Mehrani’s results, column 2: our results, column 3: ground truth

7.2. Experimental Results 83

PE: 0.2658, CE: 0.2907

PE: 0.0588, CE: 0.0528

PE: 0.1641, CE: 0.1874

PE: 0.0388, CE: 0.0430

ground truth

ground truth

PE: 0.2097, CE: 0.2039

PE: 0.0355, CE: 0.0319

PE: 0.2208, CE: 0.2139

PE: 0.2755, CE: 0.2045

ground truth

ground truth

PE: 0.0656, CE: 0.1293 PE: 0.0794, CE: 0.1701 ground truth

Figure 7.23: Column1: Mehrani’s results, column 2: our results, column 3: ground truth

84 Chapter 7. Experimental Results

• Failure Cases
Of course, our algorithm cannot automatically segment all image types, here we list some
failure cases in foreground detection stage and segmentation stage.

The proposed method tends to fail in the cases of landscape, and very confusing an-
imal camouflage images. When the foreground object is too small or too sparse, the
result is not satisfying.

Figure 7.24: Failure detection examples, from left to right: landscape, animal
camouflage, too small object and too sparse object

There are also some examples that succeed in foreground rectangle detection, but fail in
segmentation stage. This is not surprising, because in the segmentation algorithm, we
only use color information without texture, which means texture is also a very useful
image feature when doing segmentation.

Figure 7.25: Left: successful rectangle detection, right: segmentation failure

Chapter 8

Conclusion and Future Work

To a large extent, scientific research makes progress with the guidance of the demand in prac-
tice. Automatic segmentation is desirable in many fields in real life, such as, “Google glass”,
and “machine vision”, to name just a few. Therefore, our work targets to explore a new ap-
proach to implement automatic segmentation by giving graph cuts algorithm a proper initial-
ization.

Figure 8.1: Illustration of proposed workflow

8.1 Summary
In order to fulfill our goal, we design an algorithm to compare features inside and outside the
sliding window. The sliding window will stop at the position where the maximum difference
shows up. And this dissimilarity is measured using α-divergence of foreground/background
histograms.

Before the phase of searching the rectangle containing the foreground, some preparation are
needed, they are feature extraction, feature clustering and feature selection. In this work, two
feature types, texture and color are combined in equal percentage (50%), that is, we think the
two features are equally important. After feature extraction, we employ k-means to cluster
patch based texture vectors, while image quantization technique is used to quantize RGB color
vectors. A ranking function is defined to select the texture features.

In the stage of segmentation, iterative graph cuts are used to minimize the energy function.
This energy function addresses both the boundary and regional properties. In the first round

85

86 Chapter 8. Conclusion and FutureWork

graph cuts, the initial data terms are set based on the rectangle segmentation acquired from the
previous phase, and in the following rounds of graph cuts, the data terms are computed based
on the last labeling. This iteration continues until the energy has converged, and during this
process, the segmentation result is updated.

The experimental results of our algorithm are exciting, most of them reach the similar level
compared with the results from grabcut (initial foreground rectangle by the user) and saliency
detection (training saliency map with hand labeled dataset). To our knowledge, this is the first
approach that initializes graph cuts automatically, without pre-training on a labelled dataset,
just from the image content itself.

8.2 Future Work
Although the approach presented in this work has many advantages compared with the previous
works, as explained in chapter 1, there are still some issues to investigate, which are listed as
follows:

• Foreground detection phase

As explained through the thesis, using informative features will result in better detection,
so it seems promising to test more feature types and construct informative feature vec-
tor. Another aspect that deserves investigation is testing different clustering algorithms
to find a more stable one.

• Segmentation stage

From the animal camouflage images, we know that the foreground detection algorithm
can succeed in many case, but it is a pity that their final segmentation results are not sat-
isfying. This is not surprising because we only use the color mode to refine the segments
by graph cuts. Learning both color and texture modes may lead to better results in animal
camouflage images.

• Accuracy and efficiency

Considering the application in real life, segmentation efficiency is an aspect that should
not be ignored. We can increase the speed of our method by rewriting the foreground
detection algorithm in C++ instead of implementing in MATLAB, and parallelizing the
foreground searching part. At the same time, in parallel computing case, we can com-
pare more sliding window sizes and shapes to get more precise foreground location, so
as to acquire more accurate segmentation results. Notice that searching in parallel will
not reduce the efficiency as long as we were supplied with enough processor.

• Algorithm extension

The feature dissimilarity detection idea can be extended to higher dimensional segmen-
tation, for example, volume segmentation in 3D space. Though the situation in higher

8.2. FutureWork 87

dimension should be more complicated, extending our algorithm from pixel features to
voxel features is feasible and might be useful in video analysis or medical volume anal-
ysis.

In conclusion, the proposed method generates good foreground location detection and seg-
mentation results, and it can help computers to automatically understand natural images better.
Meanwhile, more strategies are waiting for exploration to improve the algorithm, extension to
N dimensional segmentation is expected, too.

Bibliography

[1] R. Achanta, F. Estrada, P. Wils, and S. Ssstrunk. Salient region detection and segmenta-
tion. In International Conference on Computer Vision Systems, pages 66–75, 2008.

[2] S. Amari and H Nagaoka. Methods of Information Geometry. Oxford University Press:
New York, NY, USA, 2000.

[3] A. Amini, T. Weymouth, and R. Jain. Using dynamic programming for solving variational
problems in vision. IEEE Trans. Pattern Analysis and Machine Intelligence, 12(9):855–
867, 1990.

[4] S. Barnard. Stochastic stereo matching over scale. IJCV, 3(1):17–32, 1989.

[5] Luca Bertelli, Tianli Yu, Diem Vu, and Burak Gokturk. Kernelized structural svm learn-
ing for supervised object segmentation. Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pages 2153–2160, 2011.

[6] S. Birchfield and C. Tomasi. Multiway cut for stereo and motion with slanted surfaces.
Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 489–495, 1999.

[7] Y. Boykov and M.-P. Jolly. Interactive organ segmentation using graph cuts. Proc. Medi-
cal Image Computing and Computer-Assisted Intervention, pages 276–286, 2000.

[8] Y. Boykov and M.P Jolly. Interactive graph cuts for optimal boundary and region seg-
mentation. ICCV, I:105–112, 2001.

[9] Y. Boykov and V. Kolmogorov. Computing geodesics and minimal surfaces via graph
cuts. Proc. Intl Conf. Computer Vision, pages 26–33, 2003.

[10] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algo-
rithms for energy minimization in vision. PAMI, 26:1124–1137, 2004.

[11] Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with efficient approximations.
Proc. IEEE Conf. Computer Vision and Pattern Recognition, pages 648–655, 1998.

[12] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via
graph cuts. IEEE Transactions on PAMI, 23(11):1222–1239, 2001.

[13] M. Casares, A. Almagambetov, and S. Velipasalar. A robust algorithm for the detection
of vehicle turn signals and brake lights. Advanced Video and Signal-Based Surveillance
(AVSS), pages 386–391, 2012.

88

BIBLIOGRAPHY 89

[14] Xiaohan Chen and N.A. Schmid. Empirical capacity of a recognition channel for single-
and multipose object recognition under the constraint of pca encoding. Image Processing,
IEEE Transactions, 18:635–651, 2009.

[15] H Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on a sum
of observations. Ann. Math. Statist, 23:493–507, 1952.

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Intro-
duction to algorithms. MIT Press, Cambridge, MA, USA, 2001.

[17] Andrew Delong. Advances in graph-cut optimization: multi-surface models, label costs,
and hierarchical costs. PhD thesis, The University of Western Ontario, 2011.

[18] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society, Series B (Methodological)
39(1):1–38, 1977.

[19] Y. Deng and B. S.Manjunath. Unsupervised segmentation of color-texture regions in
images and video. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI ’01), 23(8):800–810, 2001.

[20] A. Efros and T. Leung. Texture synthesis by non-parametric sampling. In Proceedings of
the International Conference on Computer Vision, 2:1039–1046, 1999.

[21] A.X. Falcao, J.K. Udupa, S. Samarasekera, S. Sharma, B.E. Hirsch, and R. de A. Lotufo.
User-steered image segmentation paradigms: Live-wire and live-lane. Graphical Models
and Image Processing, 60(4):233–260, 1998.

[22] L. Ford and D. Fulkerson. Flows in Networks. Princeton University Press, 1962.

[23] Fukunaga, Keinosuke, and Larry D. Hostetler. The estimation of the gradient of a density
function, with applications in pattern recognition. IEEE Transactions on Information
Theory, 21(1):32–40, 1975.

[24] J. Garcia-Consuegra, J. Cisneros, G.and Ballesteros, and R. Molina. Remote sensing
segmentation through a filter bank based on gabor functions. Acoustics, Speech and
Signal Processing, 2:1169–1171, 1998.

[25] Stas Goferman and Lihi Zelnik-Manor. Context-aware saliency detection. CVPR, pages
2376–2383, 2010.

[26] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. In
Proceedings of the eighteenth annual ACM symposium on Theory of computing, STOC’
86, pages 136–146, 1986.

[27] Rafael C. Gonzalez and Richard E Woods. Digital Image Processing. Publishing house
of Electronics Industry, 2002.

[28] D. Greig, B. Porteous, and A. Seheult. Exact maximum a posteriori estimation for binary
images. J. Royal Statistical Soc., Series B, 51(2):271–279, 1989.

90 BIBLIOGRAPHY

[29] D. Han, X. Lu W. Li, T. Wang, and Y. Wang. Automatic segmentation based on adaboost
learning and graph-cuts. In Proc. ICIAR, pages 215–225, 2006.

[30] R. M. Haralick and L. G. Shapiro. Computer and Robot Vision. Addison-Wesley Pub-
lishing Company, 1992.

[31] Paul S. Heckbert. Color image quantization for frame buffer display. Computer Graphics,
16(3):297–303, 1982.

[32] Xiaodi Hou and Liqing Zhang. Saliency detection: A spectral residual approach. CVPR,
pages 1–8, 2007.

[33] H. Ishikawa and D. Geiger. Occlusions, discontinuities, and epipolar lines in stereo. Proc.
European Conf. Computer Vision, pages 232–248, 1998.

[34] H. Ishikawa and D. Geiger. Segmentation by grouping junctions. Proc. IEEE Conf.
Computer Vision and Pattern Recognition, pages 125–131, 1998.

[35] Chanho Jung, Beomjoon Kim, and Changick Kim. Automatic segmentation of salient
objects using iterative reversible graph cut. ICME, pages 590–595, 2010.

[36] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour mod-
els. International Journal of Computer Vision, pages 321–331, 1988.

[37] J. Kim, J. Fisher, A. Tsai, C. Wible, A. Willsky, and W. Wells. Incorporating spatial
priors into an information theoretic approach for fmri data analysis. Proc. Medical Image
Computing and Computer-Assisted Intervention, pages 62–71, 2000.

[38] J. Kim, V. Kolmogorov, and R. Zabih. Visual correspondence using energy minimization
and mutual information. Proc. Intl Conf. Computer Vision, pages 1033–1040, 2003.

[39] J. Kim and R. Zabih. Automatic segmentation of contrast- enhanced image sequences.
Proc. Intl Conf. Computer Vision, pages 502–509, 2003.

[40] Sung Hoon Kim, Hyon Soo Lee, and Hyung Ho Kim. Robust extraction of face candidate
through segmentation and conditional merging in skin area. ICIS, 1:547–551, 2009.

[41] V. Kolmogorov and R. Zabih. Visual correspondence with occlusions using graph cuts.
Proc. Intl Conf. Computer Vision, pages 508–515, 2001.

[42] V. Kolmogorov and R. Zabih. Multi-camera scene reconstruction via graph cuts. Proc.
European Conf. Computer Vision, 3:82–96, 2002.

[43] V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph cuts?
Pattern Analysis and Machine Intelligence, IEEE Transactions, 26(2):147–159, 2004.

[44] Marcel Krcah, Gabor Szekely, and Remi Blanc. Fully automatic and fast segmentation
of the femur bone from 3D-CT images with no shape prior. Biomedical Imaging: From
Nano to Macro, pages 2087–2090, 2011.

BIBLIOGRAPHY 91

[45] V. Kwatra, A. Scho dl, G. Turk I. Essa, and A. Bobick. Graphcut textures: Image and
video synthesis using graph cuts. ACM Trans. Graphics, Proc. SIGGRAPH 2003, 2003.

[46] Xianpeng Lang, Feng Zhu, Yingming Hao, and Qingxiao Wu. Automatic image seg-
mentation incorporating shape priors via graph cuts. Proceedings of IEEE International
Conference on Information and Automation, pages 192–195, 2009.

[47] T. Leung and J. Malik. Representing and recognizing the visual appearance of materials
using three-dimensional textons. International Journal of Computer Vision, 43(1):29–44,
2001.

[48] Ran Li, Weiguang Xu, Jianjiang Lu, Yafei Zhang, and Zining Lu. Technique of large-
scale image set construction based on web image searching engine. ICIS, pages 622–626,
2009.

[49] Y. Li, J. Sun, C-K. Tang, and H-Y. Shum. Lazy snapping. ACM Transaction on Graphics,
23(3), 2004.

[50] M.H. Lin. Surfaces with Occlusions from Layered Stereo. PhD thesis, Stanford Univ.,
2002.

[51] Jiangyu Liu, Jian Sun, and Heung-Yeung Shum. Paint selection. siggraph, 2009.

[52] Yu Liu. Classic Mosaics and Visual Correspondence via Graph-Cut based Energy Opti-
mization. PhD thesis, The University of Western Ontario, 2011.

[53] David G Lowe. Object recognition from local scale-invariant features. Proceedings of
the International Conference on Computer Vision, pages 1150–1157, 1999.

[54] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural im-
ages and its application to evaluating segmentation algorithms and measuring ecological
statistics. In International Conference Computer Vision, 2:416–423, 2001.

[55] Laurent Massoptier and Sergio Casciaro. Fully automatic liver segmentation through
graph-cut technique. Proceedings of the 29th Annual International Conference of the
IEEE EMBS, pages 5243–5246.

[56] Paria Mehrani. Automatic Salient Object Detection and Segmentation. MSc thesis, The
University of Western Ontario, 2010.

[57] Paria Mehrani and Olga Veksler. Saliency segmentation based on learning and graph cut
refinement. BMVC, pages 1–12, 2010.

[58] E.N. Mortensen and W.A. Barrett. Intelligent scissors for image composition. Proc. Of
ACM Siggraph, pages 191–198, 1995.

[59] M. Narasimhan and J. Bilmes. A supermodular-submodular procedure with applications
to discriminative structure learning. UAI, 2005.

92 BIBLIOGRAPHY

[60] S. Osher and N. Paragios. Geometric Level Set Methods in Imaging Vision and Graphics.
Springer Verlag, 2003.

[61] Bo Peng and Lei Zhang. A survey of graph theoretical approaches to image segmentation.
http://www.sciencedirect.com/science/article/pii/S0031320312004219.

[62] C. Rother, V. Kolmogorov, and A. Blake. grabcut - interactive foreground extraction using
iterated graph cuts. Proc. of ACM, SIGGRAPH, I:309–314, 2004.

[63] C. Rother, T. Minka, A. Blake, and V. Kolmogorov. Cosegmentation of image pairs by
histogram matching - incorporating a global constraint into mrfs. IEEE Computer Society
Conference on In Computer Vision and Pattern Recognition, 1:993–1000, 2006.

[64] S. Roy. Stereo without epipolar lines: A maximum flow formulation. IJCV, 1(2):1–15,
1999.

[65] S. Roy and I. Cox. A maximum-flow formulation of the n-camera stereo correspondence
problem. Sixth International Conference on Computer Vision, pages 492–499, 1998.

[66] Martin Sewell. Feature selection. http://machine-learning.martinsewell.com/feature-
selection/feature-selection.pdf, 2007.

[67] Linda G. Shapiro and George C. Stockman. Computer Vision. New Jersey, Prentice-Hall,
2001.

[68] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Computer
Vision and Pattern Recognition, pages 731–737, 1997.

[69] D. Snow, P. Viola, and R. Zabih. Exact voxel occupancy with graph cuts. Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 3:345–352, 2000.

[70] K.and Yimmun S. Suapang, P.and Dejhan. A web-based dicom-format image archive,
medical image compression and dicom viewer system for teleradiology application. SICE
Annual Conference, pages 3005–3011, 2010.

[71] Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. CVPR, pages
1521–1528, 2011.

[72] M. Varma and A Zisserman. Texture classification: Are filter banks necessary? Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2:II–691–8,
2003.

[73] M. Varma and A. Zisserman. A statistical approach to material classification using image
patch exemplars. In Proceedings of the International Conference on Computer Vision,
31:2032–2047, 2009.

[74] Olga Veksler. Star shape prior for graph-cut image segmentation. European Conference
on Computer Vision, pages 454–467, 2008.

BIBLIOGRAPHY 93

[75] L. Vincent and P. Soille. Watersheds in digital spaces: an efficient algorithm based on
immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI, 13:583–598, 1991.

[76] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of sim-
ple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 1:511–518, 2001.

[77] Peng Wang. https://mywebspace.wisc.edu/pwang6/personal/.

[78] Thomas Weise. Global Optimization Algorithms Theory and Application. http://www.it-
weise.de/projects/book.pdf, 2009.

Curriculum Vitae

Name: Wei Li

Education: University of Western Ontario
London, Ontario
M.Sc. (Computer Science), expected, December 2012

Wuhan University
Wuhan, China
M.Sc. (Computational Mathematics), received, June 2006

Wuhan University
Wuhan, China
B.Sc. (Information and Computational Science), received, June 2004
B.A. (Finance), received, June 2004

Related Work Research Assistant
Experience: Department of Computer Science,

The University of Western Ontario, London, Ontario
September 2011 - December 2012

Teaching Assistant
Department of Computer Science,
The University of Western Ontario, London, Ontario
September 2011 - April 2012, September 2012 - December 2012

Research Assistant
Supercomputing Center, Chinese Academy of Sciences
Beijing, China
July 2006 - July 2009

94

	Automatic Foreground Initialization for Binary Image Segmentation
	Recommended Citation

	Automatic Foreground Initialization for Binary Image Segmentation

