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Summary 

 

The aims of this project was to study segmentation methods applied to medical images 
that allow the building of 3D geometric models of the inner ear and select the most 
efficiency for the segmentation of Computerized Tomography (CT) images. 

The human auditory system belongs to a special senses group, which is characterized by 
having structures with highly localized receptors that provide specific information about 
the surrounding environment. This system consists of organs responsible for hearing 
and balance. 

The human ear is divided into the outer ear, middle ear and inner ear. The latter consists 
of three main structures: the semicircular canals, the vestibule, which contains the 
utricle and saccule, and the cochlea. 

In biomechanical studies of the inner ear are often used medical images obtained 
through different imaging techniques; in particular, Computerized Tomography (CT-
standard, Micro-CT, Spiral-CT), Magnetic Resonance (MR-standard and Micro-MR) 
and even Microscopy of Histological Sections. Such images are used with the purpose 
of building 3D geometric models with realistic morphological characteristics and 
dimensions. For this goal, computational techniques were used in this project to analyze 
medical imaging; particularly, techniques of image processing and segmentation. 

As the visualization of the inner ear, in the common medical images, is highly complex, 
the segmentation of the structures involved is often done manually; however, 
methodologies that allow the automatic segmentation of such images have been 
developed. In this project, these methodologies were analyzed taking into account the 
results obtained and the advantages and disadvantages of them were identified. Thus, it 
was identified the most efficient method to be applied to the segmentation of the inner 
ear structures. 
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1.1 – Introduction 
 

The ear is a small but complex set of interlinked structures that are involved in both 
maintenance of normal balance and the sense of hearing. In order to hear, the ear 
collects the sound waves that arrive as air pressure variations and converts the waves 
into neurochemical impulses that travel along the cochlear-vestibular nerve to the brain 
(Seeley, Stephens et al. 2004; Irwin 2006). The organs of hearing and balance constitute 
the human auditory system, which can be divided into three main parts: external ear, 
middle ear and inner ear. The ear is by far the most complex organ of the human 
sensory system (Seeley, Stephens et al. 2004; Moller 2006). 

The deafness is a hearing-impaired that is a severely disability and is considered a 
growing problem. The hearing loss can occur in one or both ears, and may be classified 
as mild, moderate, severe, or profound (Kaneshiro 2010). Nobody knows the exact 
number of hearing impaired people. However, Adrian Davis, of the British MRC 
Institute of Hearing Research estimates that the total number of people suffering from 
hearing loss superior to 25 dB will exceed 700 million by 2015. In 1995, there were 440 
million hearing-impaired people in world-wide. In Europe, there were more than 70 
million hearing-impaired people in a population of 700 million. The number of hearing-
impaired people in North American is more than 25 million in a total population of 300 
million (Davis 2010). 

In every 1000 live births, about 2-3 infants will have some degree of hearing loss at 
birth. However, hearing loss can also develop in children who had normal hearing as 
infants (Kaneshiro 2010), because unilateral hearing loss is estimated to have a 
prevalence ranging between 0.1 and 5% in school-aged children. According to US 
government statistics (National Center for Health Statistics), between 1988 and 2006, 
mild or worse unilateral hearing loss (superior or equal to 25 dB), is informed in 1.8% 
of adolescents. Additionally, it was estimated 0.8% of mild or worse bilateral loss. In 
children, the hearing loss may maximize the loss of development of essential skills in 
speech, language, and social interactions (Melhem, Shakir et al. 1998; Hain 2010).  

On the other hand, in older people, there is an epidemic hearing loss. The population 
aged 60 and older is hearing impaired, between 25 and 40%. Furthermore, hearing loss 
is also increasing with time and a hearing-impaired people have more trouble getting 
jobs, are paid less, and cannot communicate or enjoy music to the same extent as the 
rest of the population (Hain 2010). 

All these values expose the real necessity of further studies in this area. Besides, the 
diagnosis and treatment of diseases of the middle and inner ear are made more difficult 
by the small size and hidden position of the associated organs in the temporal bone 
(Seemann, Seemann et al. 1999). Therefore, computational models have been used to 
simulate the behavior of the middle and inner ear in order to better understand the 
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relationship between its structure and function. Such as understand could aid to improve 
the design and function of prosthetics and the definition of better methodologies and 
plans in surgical procedures (Tuck-Lee, Pinsky et al. 2008). 

In biomechanical studies of the ear, medical images that are obtained through different 
imaging techniques, Computerized Tomography (CT-standard, Micro-CT, Spiral-CT) 
(Christensen, He et al. 2003; Xianfen, Siping et al. 2005; Poznyakovskiy, Zahnert et al. 
2008), Magnetic Resonance (MR-standard, Micro-MR) (Lane, Witte et al. 2005; Liu, 
Gao et al. 2007; Shi, Wang et al. 2010) and Histological Microscopy (Lee, Chan et al. 
2010), have been often used. In these biomechanical studies are considered the use of 
guinea pig, cadaver, cat and chinchilla, for to characterize the biomechanical properties 
of the ear structures (Liu, Gao et al. 2007; Sim and Puria 2008). However, to build 
suitable biomechanical models, it is necessary to segment the ear structures in the 
images, previously acquired. The segmentation is the identification and separation of 
one or more structures in images.  

The geometrical models to be used in biomechanical studies should present 
morphologies and dimensions similar to the real structures to be simulated. Usually, to 
obtain these models, the image segmentation is executed manually (Jun, Song et al. 
2005; Liu, Gao et al. 2007; Tuck-Lee, Pinsky et al. 2008). The manual segmentation 
requires that the medical technicians outline the structure contours slice-by-slice by 
using pointing devices, such as a mouse or a trackball. This process is very time-
consuming, and the results suffer from intra- or inter- observer variability. To answer 
the manual segmentation disadvantages, modern mathematical and physical techniques 
have been incorporated into computational algorithms. These incorporations have 
greatly enhanced the accuracy of the segmentation results (Yoo, Wang et al. 2001; 
Xianfen, Siping et al. 2005; Noble, Warren et al. 2008; Poznyakovskiy, Zahnert et al. 
2008; Bradshaw, Curthoys et al. 2010; Shi, Wang et al. 2010)(Melhem, Shakir et al. 
1998; Rodt, Ratiu et al. 2002; Christensen, He et al. 2003; Decraemer, Dirckx et al. 
2003; Sim and Puria 2008; Comunello, Wangenheim et al. 2009; Lee, Chan et al. 2010) 
The computational segmentation algorithms can be classified into three essential 
classes: Thresholding, Clustering and Deformable Models. Frequently, techniques from 
different classes are combined in order to optimize the segmentation process (Ma, 
2010). 

Solutions of image processing and analysis are essential to attain realistic geometric 
models for the anatomical structures of the ear. Particularly, the segmentation of the ear 
structures in images is crucial to build patient-customized biomechanical models to be 
successfully used in computational simulations. From this simulation, the understanding 
of the connections between the ear structures and their functions becomes easier as well 
as the optimization of prosthetic implants. 

The study and optimization of cochlear implant systems can be an important application 
area of the realistic and accurate modeling of the ear. In fact, the position of the 
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implanted electrodes has been identified as one of the most important variables in 
speech recognition, and the geometric modeling of the ear can facilitate the optimization 
of the electrode positions, which can be an essential step towards efficient traumatic 
cochlear implant surgeries. Up to now, only manual insertion tools or insertion aids 
exist, providing the possibility to insert the electrode using a fixed insertion technique 
that is not adjustable to the patient (Hussong, Rau et al. 2009; Rau, Hussong et al. 
2010). Thus, based on accurate computational simulations the planning of surgical 
procedures can be enhanced (Tuck-Lee, Pinsky et al. 2008). 

The biomechanical modeling of the ear also presents a key role in diagnosis and 
treatment of middle and inner ear diseases, because these two processes are hampered 
by the small size of the structures and by their hidden locations in the temporal bone 
(Seemann, Seemann et al. 1999). In addition, through the computational modeling of 
the inner ear, anatomical abnormalities of the bony labyrinth can be easier identified. 
Therefore, it is possible to create templates that standardize the abnormal configurations 
(Melhem, Shakir et al. 1998). 

Extracting the structure contours in medical images, for example, by finding the image 
edges, can help doctors in detecting more efficient anomalies in visual inspections. 
However, the segmentation of structures in medical images is normally performed 
manually, requiring, for example, that medical technicians sketch the desired contours 
using pointing devices, such as a mouse or a trackball, which is very time-consuming 
and prone to errors. To overcome the disadvantages of manual segmentation, modern 
mathematical and physical techniques have been incorporated into the development of 
computational segmentation algorithms. These incorporations have greatly enhanced the 
accuracy of the segmentation results (Ma, Tavares et al. 2010). 

Segmenting structures from medical images and reconstructing a compact geometric 
representation of these structures is difficult due to the sheer size of the datasets and the 
complexity and variability of the anatomic shapes of interest. Furthermore, the 
shortcomings typical of sampled data, such as sampling artifacts, spatial aliasing, and 
noise, may cause the boundaries of structures to be indistinct and disconnected. The 
challenge is to extract boundary elements belonging to the same structure and integrate 
these elements into a coherent and consistent model of the structure. Traditional low-
level image processing techniques, which consider only local information, can make 
incorrect assumptions during this integration process and generate infeasible object 
boundaries. As a result, these model-free techniques usually require considerable 
amounts of expert intervention. Furthermore, the subsequent analysis and interpretation 
of the segmented objects is hindered by the pixel- or voxel-level structure 
representations generated by most image processing operations (McInerney and 
Terzopoulos 1996). 

Image segmentation is a basic problem in image processing field and the key to the 
procedure from processing to analyzing. Extracting object contour of medical images, 
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obtaining specific edge information can help doctors understand diseases more visually 
and play an important role, especially for human vision (Xiao-Juan and Dan 2010). 

Segmentation is made during automated analysis by delineating structures of interest 
and discriminating them from background tissue, and this separation process is 
generally effortless and swift for the human visual system. Therefore, the separation 
process performed by the human visual system can become a considerable challenge in 
algorithm development (Bankman 2000).  

For the analysis of the medical images, segmentation is important for feature extraction, 
image measurements, and image-based diagnosis. For example, it may be useful to 
classify image pixels into anatomical regions, such as bones, muscles, and blood 
vessels, while in others into pathological regions, such as cancer, tissue deformities, and 
multiple sclerosis lesions (Bankman 2000). 

The main objective of this work was to review image algorithms that have been used to 
segment the structures of the human ear. Hence, the identified algorithms will be 
analyzed, and their advantages and disadvantages will be pointed out, and some of their 
results will be presented and discussed. At the end of this dissertation the best method 
will be selected. 

 

 

1.2 – Report Organization 

 

This dissertation is structured into different and separate six chapters that are presented 
and summarized into five remainder sections: 

- Chapter II – Anatomy and Physiology of the Ear 
In this chapter, a description of the ear is provided. Hence, the chapter starts 
with the explanation of the ear anatomy, followed by the description of the 
external, middle and inner ear. Afterwards, the chapter focuses on the 
physiologic events that happen in the ear: hearing and balance. Finally, the 
chapter presents the pathologies more frequent in this sensory organ. The main 
objective of this chapter is to understand the important physiological role and 
the importance of hearing and balance in society. This chapter also made 
possible the study of the shape and size of the structures that constitute the 
auditory and balance system. 

- Chapter III – Medical Imaging Segmentation Algorithms 
This chapter describes the segmentation algorithms usually used in medical 
images and it was divided into three different sections. The first is named 
Algorithms based on Thresholding, the second includes Algorithms based on 
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Clustering and lastly the Algorithms based on Deformable Models are 
introduced. Through this chapter the segmentation algorithms and the main 
characteristics of each are expressed and studied. 

- Chapter IV – Algorithms to Segment the Human Ear 
The chapter reviews algorithms that have used to segment the ear structures. 
These algorithms take into account the image type to be analyzed, the 
characteristics of the shape of the structures, the texture characteristics and the 
intensities range of the region of interest. This chapter is divided into three 
sections: Segmentation of Tympanic Membrane, Segmentation of Middle Ear, 
and Segmentation of Inner Ear, and includes applications of the algorithms 
reviewed in the segmentation of different ear structures. 

- Chapter V – Experimental Results 
This chapter is organized into four sections, of which the first section presents a 
study about the existing segmentation techniques in medical images of the inner 
ear, in the second section is described a pre-processing technique for reducing 
noise and artifacts in the medical images. In the third section, the application of 
segmentation algorithms in the medical images of the ear is described. Finally, 
in the last section, the experimental results are discussed and the best algorithm 
to segment these human structures is selected. 

- Chapter VI – Final Conclusions and Future Work 
Finally, this chapter presents the final conclusions and perspectives of future 
work. 

 

 

1.3 - Contributions 
 

The main contributions of this project can be highlighted as: 

- The anatomic and physiology study of auditory and balance systems to a better 
understanding of the structures to be analyzed and to enhance the physiological 
relevance of them. 

- The segmentation algorithms study was significant to know the wide variety of 
algorithms that can be used in segmentation of medical images and to assess the 
characteristics of each one. 

- Segmentations performed on the CT images of the ear were essential for 
comparison and selection of the best segmentation method to be applied on this 
type of images. 

- The reached conclusions contributed to indicate the best segmentation method 
and the pre-processing method that must be applied on CT images of the ear, 
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thus with this dissertation was realized a variety of studies that allow to 
understand the computer processing and analysis of the ear images.   
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Chapter II - Hearing: Anatomy, Physiology, and 
Clinical Focus of Ear Disorders 
 

 Introduction; 

 Anatomy; 

 Physiology; 

 Clinical Focus of Ear Disorders; 

 Summary 
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2.1 Introduction 
 

The human auditory system is one of the special senses that are defined by including 
structures that have highly localized receivers, which provide specific information about 
the surrounding environment (Seeley, 2004).  

As a sensory organ, the ear is the most vital, because the hearing loss may maximize the 
loss of development of essential skills in speech, language, and social interactions 
(Melhem, 1998).  

In this chapter, a description of the ear is provided. Hence, the chapter starts with the 
explanation of the ear anatomy, followed by the description of the external, middle and 
inner ear. Afterwards, the chapter focuses the physiologic events that happen in the ear: 
hearing and balance. Finally, the chapter presents the pathologies more frequents in this 
sensory organ.  

 

2.2 Anatomy 
 

In humans, the ear percepts and interprets the sound waves in a frequency range from 16 
Hz to 20 kHz (intensity range: 0 – 130 dB) (Henrique 2002). 

The ear includes three main parts: the outer ear, the middle ear and the inner ear, Figure 
2.1. The external ear includes the auricle and the external auditory meatus. The external 
ear terminates medially at the eardrum, or tympanic membrane. Moreover, the middle 
ear is an air-filled space within the petrous portion of the temporal bone. In the air-filled 
space there are the auditory ossicles. The vestibular apparatus and the cochlea belong to 
the inner ear, being the first structure responsible for the balance function and the 
second one for hearing (Moller 2006). 

 

2.2.1 Outer Ear 
 

The outer ear is characterized by three structures: the auricle, the external auditory 
meatus, and the tympanic membrane. In older individuals, the size of the outer ear 
increases, especially in men (Moller 2006).  

The auricle consists primarily of elastic cartilage covered by skin, Figure 2.2, and the 
shape of the auricle helps to collect sound waves and direct them toward the external 
auditory meatus (Seeley, Stephens et al. 2004). 
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The different parts of the auricle have specific names. The concha, which is a part of the 
auricle, is acoustically the most important.  

 

 

Figure 2.1: External, middle and inner ear (from (Seeley, Stephens et al. 2004)). 

 
 

The external auditory meatus converges in the ear canal, which has a shape similar to a 
lazy “S”, a length approximately 25 mm and a diameter around 6 mm. A nearly circular 
opening in the skull bone represents the most medial part. The outer part is cartilage, 
and the outer cartilaginous portion is also nearly circular in young individuals, but with 
age, the cartilaginous part often changes shape. In addition, the lumen of the ear canal 
frequently becomes smaller. 

The ear canal is covered by skin that secrets cerumen and has hairs on its surface. There 
are two types of cells that contribute to secretion of cerumen: sebaceous cells, located 
close to the hair follicles, and the ceruminous glands. The sebaceous glands form their 
secretion by passive breakdown of cells because they cannot secrete actively. There are 
two kinds of cerumen: dry and wet. The overproduction of cerumen may block the 
meatus. 
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The tympanic membrane separates the external ear from the middle ear and is a thin, 
semitransparent, nearly oval, three layered membrane. It is cone-shaped, with a height 
of 2 mm with the apex pointed inward (Seeley, Stephens et al. 2004; Moller 2006). 

 

 

Figure 2.2: Human external ear (from (Moller 2006)). 

 

 

2.2.2 Middle Ear 
 

The inner face of the tympanic membrane is integrated in the middle ear. Furthermore, 
the middle ear has three bones (ossicles): the malleus, the incus and the stapes, Figure 
2.3. The tensor tympani muscle and the stapedius muscle are two small muscles that are 
also located in the middle ear. The manubrium of malleus is imbedded in the tympanic 
membrane, and the head of malleus is connected to the incus that in turn connects to the 
stapes. The footplate is located in the oval window of the cochlea and is a part of stapes.  

The facial nerve or the nervous intermedius travels across the middle ear cavity through 
the chorda tympani that is a branch of the facial nerve. 

The tympanic membrane, can be seen from the ear canal. It is slightly concave and has a 
surface of about 85 mm2, Figure 2.4. The main part of the tympanic membrane is the 
pars tensa, which has an area of approximately 55 mm2, and composed of radial and 
circular fibers overlaying each other. These fibers provide a lightweight stiff membrane 
that is ideal for converting sound into the vibration of the malleus. Furthermore, the 
fibers have mechanical properties to recognize vibration because they are comprised of 
collagen. The pars flaccid are a smaller part of the tympanic membrane and are located 
above the manubrium of malleus. This smaller part is thicker than the pars tensa, but its 
fibers are not arranged as orderly as the collagen fibers of the pars tensa. 
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Figure 2.3: Middle ear (from (Carr 2010)). 

 

The middle ear contains three auditory ossicles that are suspended by several ligaments: 
the malleus, incus, and stapes, Figure 2.5.  

The tip of the manubrium of the malleus is located in the apex of the tympanic 
membrane. The head of the malleus is suspended in the epitympanum. The short 
process of the incus is held in place by the posterior incudal ligament and rests in the 
fossa incudo of the malleus. The long process of the incus forms one side of the incudo-
stapedial joint. The head of the malleus and the incus are linked by a double saddle 
joint. The joint between these two bones appears rigid, but it allows flexibility for the 
movements of the stapes. The stapes is induced by contraction of the stapedius muscle. 
Furthermore, the stapes is suspended in the oval window of the cochlea buy two 
ligaments.  

Two small muscles are located in the middle ear: the tensor tympani muscle and the 
stapedius muscle.  

The tensor tympani muscle is attached to the manubrium of the malleus and extends 
between the malleus and the wall of the middle ear cavity (near the entrance to the 
Eustachian tube). The tensor tympani muscle is innervated by the trigeminal nerve.  
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Figure 2.4: The tympanic membrane (from (Moller 2006)). 

 

The stapedius muscle is attached to the head of the stapes, and most of the muscle is 
located in a bony canal. The stapedius muscle is considered the smallest striate muscle 
of the body. The facial nerve is responsible for the innervate of the stapedius muscle 
(Seeley, Stephens et al. 2004; Moller 2006). 

The Eustachian tube is located in the inner ear cavity, Figure 2.6. The tube consists of a 
bony part (the protympani), and is responsible for keeping air pressure in the middle ear 
cavity close to the ambient pressure. The Eustachian tube is 3.5 to 3.9 cm long and 
presents approximately 45 degrees relatively to the horizontal direction. In young 
children, the Eustachian tube is shorter and is directed nearly horizontally. The 
Eustachian tube opens due to contraction of the tensor veli palatini muscle, Figure 2.7. 
This muscle is located in the pharynx and innervated by the motor portion of the fifth 
cranial nerve. Positive air pressure can open the Eustachian tube, but negative pressure 
may close it harder. 

The tympanum, the epitympanum and the system of the mastoide air cells are the 
middle ear cavities. The tympanum is the main cavity that lies between the tympanic 
membrane and the wall of the inner ear, which is called promontorium.  
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The epitympanum is a smaller part located between the tympanum and the head of 
malleus. The middle ear cavity presents a volume around 2 cm3, but this value varies 
considerably from person to person. If the volume of mastoide cells is considered, the 
total volume can be as large as 10 cm3 (Seeley, Stephens et al. 2004; Moller 2006). 

 

 

Figure 2.5: Muscles and ossicles of the middle ear (from (Moller 2006)). 
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Figure 2.6: Middle ear cross-section showing the Eustachian tube (from (Moller 2006)). 

 

 

 

 

Figure 2.7: Orientation of the Eustachian tube and localization of the 
tensor veli platini muscle (from (Moller 2006)). 
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2.2.3 Inner Ear 
 

The inner ear contains tunnels and chambers that are located inside the temporal bone, 
Figure 2.8, and known as the bony labyrinth. The bony labyrinth is lined with the 
periosteum and has a membranous labyrinth inserted. 

 

 

Figure 2.8: The bony and membranous labyrinths of the inner ear 
(from (Seeley, Stephens et al. 2004)). 

 

The membranous labyrinth is filled with a clear fluid called endolymph. The space 
between the membranous and the bony labyrinth is also filled by a fluid known as 
perilymph. The perilymph is very similar to cerebrospinal fluid,but  the endolymph has 
a high concentration of potassium and low concentration of sodium; therefore, the 
concentration of endolymph fluid is opposite to that of the concentration of the 
perilymph fluid.  
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The bony labyrinth is divided into three regions: cochlea, vestibule, and semicircular 
canals. The cochlea is the structure responsible for the hearing function. The vestibule 
and the semicircular canals are involved in the balance. 

The membranous labyrinth of the cochlea is divided into three parts: the scala vestibuli, 
the scala tympani, and the scala media, Figure 2.9. The oval window communicates 
with the vestibule, which in turns connects with the scala vestibuli. The scala vestibuli 
extends from the oval window to the helicotrema at the apex of the cochlea whereas the 
scala tympani extends from the helicotrema (the area of aperture is approximately 0.05 
mm2 in humans), back from the apex and is parallel to the scala vestibuli, to the 
membrane of the round window. The perilymph is inserted in these two chambers, the 
scala vestibuli and tympani. The scala media is separated from the scala vestibuli by 
Reissner’s membrane and from the scala tympani by the basilar membrane. 

The fluid of scala media is an ionic composition similar to an intracellular fluid that is 
rich in potassium and low in sodium, but the fluid in the scala vestibuli and in the scala 
tympani is similar to the extracellular fluid. The basilar membrane separates sounds 
according to their frequency, and along the basilar membrane can be found the organ of 
Corti. There are many different kinds of cells in the organ of Corti. The hair cells, i.e. 
the sensory cells, are arranged in rows along the basilar membrane and can be of two 
main types: the outer and the inner hair cells, Figures 2.10A and B, respectively.  

The human cochlea has approximately 12000 outer hair cells that are arranged in 3-5 
rows along the basilar membrane. It is estimated that approximately 3500 inner hair 
cells, arranged in a single row exist. The inner hair cells are different from the outer hair 
cells, one of the reasons being different shapes. While the inner hair cells are flask-
shaped, the outer hair cells are cylindrical. In the apical region of the cochlea the outer 
hair cells are longer than in the more basal regions, approximately 8 µm long in the 
apical region and less than 2 µm in the base.  

The diameter of the longest outer hair cells is approximately one tenth of the human hair 
cells diameter. Inner hair cells have the same dimension in the entire cochlea. Hence, 
the hair cells have hairlike projections at their apical ends and these projections, in 
children, consist of one cilium (kinocilium) and about 80 very long microvili, often 
referred to as stereocilia. In adults, the cilium is absent from most hair cells. The 
stereocilia are located at the base of the cochlea in the inner hair cells. All inner hair 
cells have approximately the same number of stereocilia (approximately 60) and 
whereas each outer hair cell has 50-150 stereocilia and are arranged in 3-4 rows that 
assume a W or V shape. 

Other types of cells that are found in the cochlea are the Deiter’s cells and Henson’s 
cells, which support cells of the organ of Corti. 

One important structure that is located between the perilymphatic and the 
endolymphatic space along the cochlear wall is the stria vascularis. This structure has a 
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rich blood supply and its cells are rich in mitochondria. The presence of mitochondria 
indicates that it is involved in metabolic activity. 

 

Figure 2.9: An enlarged section of the cochlear duct (membranous labyrinth) and a greatly 
enlarged individual sensory hair cell (from (Seeley, Stephens et al. 2004)). 

 

The basilar membrane is a connective tissue forming the floor of the scala media. In the 
base of the cochlea, the basilar membrane has a width of approximately 150 µm. The 
basilar membrane is about 450 µm wide at the apex and is stiffer in the basal end than at 
the apex. 

The cochlea is innervated by three types of nerve fibers: afferent auditory nerve fibers, 
efferent nerve fibers and automatic nerve fibers. The first type, afferent auditory nerve 
fibers are bipolar cells, the cell bodies of which are located in the spiral ganglion 
(located in a bony canal – the Rosenthal’s canal). The auditory nerve has approximately 
30000 afferent nerve fibers. There are two types of afferent fibers: Type I and Type II. 
Type I auditory nerve fibers are myelinated, have large cell bodies and comprise 95% of 
the auditory nerve fibers. On the other hand, Type II represents approximately 5% of the 
auditory nerve, is unmyelinated and has small cell bodies. Many Type I auditory nerve 
fibers terminate on each inner hair cell while a single Type II auditory nerve fiber 
connects with many outer hair cells. Each inner hair cell receives approximately 20 
nerve fibers. The efferent auditory fibers, also called olivocochlear bundle, receive 
different connections from the descending auditory nervous system. Humans have 
approximately 500-600 efferent fibers that have their cell bodies in the nuclei of the 
superior olivary complex (SOC) of the brain stem. The efferent fibers are of two kinds: 
medial olivocochlear fibers and lateral olivocochlear efferent fibers. Medial 
olivocochlear fibers are large myelinated fibers that originate in the medial superior 
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olivary complex. This kind terminates on outer hair cells. Each outer hair cell receives 
many efferent fibers and each efferent fiber connects with several outer hair cells. The 
lateral olivocochlear fibers are small unmyelinated fibers that originate in the lateral 
nucleus of the superior olivary complex. Efferent fibers connect more sparsely to inner 
hair cells. The autonomic fibers are also responsible for the autonomic nerve supply in 
the inner ear. These fibers mainly innervate blood vessels; however, they also contact 
hair cells (Seeley, Stephens et al. 2004; Moller 2006).  

 

 

Figure 2.10: Schematic drawing of the cross-section of an outer hair cell (A) and of 
an inner hair cell (B) (from (Moller 2006)). 

 

 

2.3 Physiology 
 

The ear is involved in the maintenance of normal balance and sense of hearing. In order 
to hear, the ear collects the sound waves that arrive as pressure changes in air, and 
converts these into neurochemical impulses that travel along cochlear-vestibular nerve 
to the brain. There are both active and passive mechanisms involved in this process. The 
prime function of the vestibular system is to detect and compensate for movement. This 
includes the ability to maintain optic fixation despite movement and to initiate muscle 
reflexes to maintain balance.  
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For the purposes of describing the function of the ear it is usually divided into four 
different parts: outer ear, the middle ear and the auditory and the vestibular parts of the 
inner ear. 

 

2.3.1 Auditory Function 
 

Vibration of matter such as air, water or a solid material creates sound. No sound occurs 
in a vacuum. When a person speaks, the vocal cords vibrate, causing the air passing out 
of the lungs to vibrate. The vibrations consist of bands of compressed air followed by 
bands of less compressed air. These vibrations are propagated through the air as sound 
waves, somewhat like ripples are propagated over the surface of water (Moller 2006; 
Martin and Clark 2011).  

Pitch is a function of the wave frequency measured in hertz. The higher the frequency of 
a waveform, the higher the pitch of the sound you hear. The normal range of the human 
hearing is 20-20000 Hz and 0 (zero) or more decibels. Therefore, sounds louder than 
125 db are painful to the ear. The range 250-8000 Hz is the range that is tested for the 
possibility of hearing impairment because it is the most important for communication 
(Seeley, Stephens et al. 2004). 

Timbre is the resonance quality or overtones of a sound. A smooth sigmoid curve is the 
image of a “pure” sound wave, but such a wave almost never exists in nature (Seeley, 
Stephens et al. 2004). The steps involved in hearing are the following: 

- The auricle collects sound waves that are then conducted through the external 
auditory meatus to the tympanic membrane, causing it to vibrate; 

- The vibrating tympanic membrane causes the malleus, incus and stapes to 
vibrate; 

- Vibration of the stapes produces vibration in the perilymph of the scala 
vestibule; 

- The vibration of the perilymph produces simultaneous vibration of the vestibular 
membrane and the endolymph in the cochlear duct; 

- Vibration of the endolymph causes the basilar membrane to vibrate; 

- As the basilar membrane vibrates, the hair cells attached to the membrane move 
relative to the tectorial membrane, which remains stationary; 

- The hair cell microvilli, embedded in the tectorial membrane become bent; 

- Bending of the microvilli causes depolarization of the hair cells; 
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- The hair cells induce action potentials in the cochlear neurons; 

- The action potentials generated in the cochlear neurons are conducted to the 
CNS; 

- The action potentials are translated in the cerebral cortex and are perceived as 
sound. 

 

a) External Ear 

 

The auricle collects sound waves that are conducted through the external auditory 
meatus toward the tympanic membrane. The various folds in the pinna’s structure 
amplify some high-frequency components of the sound. They also help in the 
localization of sound in the vertical plane. As sounds hit the pinna from above and 
below, their paths to the external auditory meatus vary in length. This means that they 
take different times to reach the meatus. Again, this is a feature of high-frequency 
sounds. The difference in time of arrival of the low-frequency and high-frequency 
components of the sounds allows for localization. The pinna is also involved in 
localization of sound from in front and behind. As sound waves pass the pinna from 
behind, they are diffracted around the pinna to the meatus whereas sounds from in front 
do not do this. The slight distortion produced allows for localization (Seeley, Stephens 
et al. 2004; Moller 2006; Martin and Clark 2011).  

Localization of sound in the lateral plane is a function of the pinnas being on different 
sides of the head. A sound directly from the left reaches the left ear before the right. The 
sound is also quieter at the right ear because the head is between the sound and the ear – 
the head shadow effect. These two factors combine to allow localization in this plane 
(Seeley, Stephens et al. 2004; Moller 2006; Martin and Clark 2011). 

The external auditory canal is evolved in a mechanism to protect the ear. The wax and 
hairs localized in the auditory canal have some protective properties by trapping air-
bone particles before they get too deep into the canal. The wax also has some mild 
antibacterial properties and helps with moisture regulation in the canal: fresh wax is 
moisture giving and old wax absorbs water. The outer ear is thus a self-cleaning system. 
Furthermore, the external ear canal has one other function. As a cylinder closed at one 
end, it has a resonant frequency whose wavelength is four times the length of the canal 
or approximately 100 mm. This equates to a sound of approximately 3 kHz, and the 
canal contributes to some amplification of sounds around this frequency (Seeley, 
Stephens et al. 2004; Moller 2006; Martin and Clark 2011). 

Sound waves travel relatively slowly in air, 332 m/s, and a significant time interval may 
elapse between the time a sound wave reaches one ear and the time that it reaches the 
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other. The brain can interpret this interval to determine the direction from which a 
sound is coming (Seeley, Stephens et al. 2004; Moller 2006; Martin and Clark 2011). 

 

b) Middle Ear 

 

Sound waves strike the tympanic membrane and cause it to vibrate. This vibration 
causes vibration of the three ossicles of the middle ear, and by this mechanical linkage, 
vibration is transferred to the oval window. More force is required to cause vibration in 
a liquid like the perylimph of the inner ear than is required in air; thus, the vibrations 
reaching the perylimph must be amplified as they cross the middle ear. The footplate of 
the stapes and its annular ligament, which occupy the oval window, are much smaller 
than the tympanic membrane. Because of this size different, the mechanical force of the 
vibration is amplified about 20-fold as it passes from the tympanic membrane, through 
the ossicles, and to the oval window (Seeley, Stephens et al. 2004; Moller 2006; Martin 
and Clark 2011). 

The two covered openings, which are in the medial to the tympanic membrane, the 
round and oval windows provide air passages from the middle ear. One passage opens 
into the mastoid air cells in the mastoid process of the temporal bone. The other 
passageway, the auditory, or Eustachian tube, opens into the pharynx and equalizes air 
pressure between the outside air and the middle ear cavity. Unequal pressure between 
the middle ear and the outside environment can distort the eardrum, dampen its 
vibrations, and make hearing difficult. Distortion of the eardrum, which occurs under 
these conditions, also stimulates pain fibers associated with it. Because of this 
distortion, when a person changes altitude, sounds seem muffled, and the eardrum may 
become painful. These symptoms can be relieved by opening the auditory tube to allow 
air to pass through to equalize the air pressure. Swallowing, yawning, chewing, and 
holding the nose and mouth shut while gently trying to force air out of the lungs are 
methods used to open the auditory tube (Seeley, Stephens et al. 2004; Moller 2006; 
Martin and Clark 2011). 

Foreign objects thrust into the ear, pressure, or infections of the middle ear can rupture 
the tympanic membrane. Sufficient differential pressure between the middle ear and the 
outside air can also cause rupture of the tympanic membrane. This can occur in flyers, 
drives, or individuals who are hit on the side of the head by an open hand (Moller 
2006). 

Two small skeletal muscles are attached to the ear ossicles and reflexively dampen 
excessively loud sounds. This sound attenuation reflex protects the delicate ear 
structures from damage by loud noises. The tensor tympani muscle is attached to the 
malleus and is innervated by the trigeminal nerve. The stapedius muscle is attached to 
the stapes and is supplied by the facial nerve. The sound attenuation reflex responds 
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most effectively to low-frequency sounds and can reduce by a factor of 100 minutes, in 
response to the prolonged noise (Martin and Clark 2011).  

 

Figure 2.11: A diagram to illustrate the impedance matching mechanism (or transformer 
mechanism) of the middle ear: P1 = pressure at the tympanic membrane; P2 = pressure 

at the oval window (OW); A1 = area of the tympanic membrane; A2 = area of the 
oval window; L1 = manubrium lever of the malleus; L2 = long process 

of the incus lever (from (Irwin 2006)). 

 

c) Inner Ear 

 

As the stapes vibrates, it produces waves in the perilymph of the scala vestibule. 
Vibrations of the perilymph are transmitted through the thin vestibular membrane and 
cause simultaneous vibrations of the endolymph. The mechanical effect is as though the 
perilymph and endolymph were a single fluid. Vibration of the endolymph causes 
distortion on the basilar membrane. Waves in the perilymph of the scala vestibule are 
transmitted through the helicotrema and into the scala tympani. Because the helicotrema 
is very small, this transmitted vibration is probably of little consequence. Distortions of 
the basilar membrane, together with weaker waves coming through the helicotrema, 
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cause waves in the scala tympani perilymph and ultimately result in vibration of the 
membrane of the round window. Vibration of the round window membrane is important 
to hearing because it acts as a mechanical release for waves from within the cochlea. If 
this window were solid, it would reflect the waves, which would interfere with and 
dampen later waves. The round window also allows relief of pressure in the perilymph 
because fluid is not compressible, thereby preventing compression damage to the spiral 
organ (Irwin 2006; Martin and Clark 2011). 

 

 

Figure 2.12: Effects of sound waves on cochlear structures (from (Seeley, Stephens et al. 2004)). 

 

The distortion of the basilar membrane is most important to hearing. As this membrane 
distorts, the hair cells resting on the basilar membrane move relative to the tectorial 
membrane, which remains stationary. The hair cell microvilli, which are embedded in 
the tectorial membrane, become bent, causing depolarization of the hair cells. The hair 
cells then induce action potentials in the cochlear neurons that synapse on the hair cells, 
apparently by direct electrical excitation through electrical synapse, rather than by 
neurotransmitters (Seeley, Stephens et al. 2004). 

The hairs of the hair cells are bathed in endolymph. Because of the difference in the 
potassium ion concentrations between the perilymph and endoplymph, an 
approximately 80 mV potential exists across the vestibular membrane between the two 
fluids. This is called the endocochlear potential. Because the hair cells are surrounded 
by endolymph, the hairs have a greater electric potential than if they were surrounded 
by perilymph. It is believed that this potential difference makes the hair cells much 
more sensitive to slight movement than they would be if surrounded by perilymph 
(Irwin 2006; Moller 2006). 
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The part of the basilar membrane that distorts as a result of endolymph vibration 
depends on the pitch of the sound that created the vibration and, as a result, on the 
vibration frequency within the endolymph. The width of the basilar membrane and the 
length and diameter of the collagen fibers stretching across the membrane at each level 
along the cochlear duct determine the location of the optimum amount of basilar 
membrane vibration produced by a given pitch. Higher-pitched tones cause optimal 
vibration near the base, and lower-pitched tones cause optimal vibration near the apex 
of the basilar membrane. As the basilar membrane vibrates, hair cells along a larger part 
of the basilar membrane are stimulated. In areas of minimum vibration, the amount of 
stimulation may not reach the threshold. In other areas, a low frequency of afferent 
action potentials may be transmitted, whereas in the optimally vibrating regions of the 
basilar membrane, a high frequency of action potentials is initiated (Martin and Clark 
2011). 

Afferent action potentials conducted by cochlear nerve fibers from all along the spiral 
organ terminate in the superior olivary nucleus in the medulla oblongata. These action 
potentials are compared to one another, and the strongest action potential, 
corresponding to the area of maximum basilar membrane vibration, is taken as standard. 
Efferent action potentials then are sent from the superior olivary nucleus back to the 
spiral organ to all regions where the maximum vibration did not occur. These action 
potentials inhibit the hair cells from initiating additional action potentials in the sensory 
neurons. Thus, only action potentials from regions of maximum vibration are received 
by the cortex, where they become consciously perceived (Seeley, Stephens et al. 2004). 
By this process, tones are localized along the cochlea. As a result of this localization, 
neurons along a given portion of the cochlea send action potentials only to the cerebral 
cortex in response to specific pitches. Action potentials near the base of the basilar 
membrane stimulate neurons in a certain part of the auditory cortex, which interpret the 
stimulus as a high-pitched sound, whereas action potentials from the apex stimulate a 
different part of the cortex, which interprets the stimulus as a low-pitched sound (Irwin 
2006). 

Sound volume, or loudness, is a function of sound wave amplitude. As high-amplitude 
sound waves reach the ear, the perilymph, endolymph, and basilar membrane vibrate 
more intensely, and the hair cells are stimulated more intensely. As a result of the 
increased stimulation, more hair cells send action potentials at a higher frequency to the 
cerebral cortex, where this information is perceived as a greater sound volume (Moller 
2006). 

Prolonged or frequent exposure to excessively loud noises can cause degeneration of the 
spiral organ at the base of the cochlea, resulting in high-frequency deafness. The actual 
amount of damage can vary greatly from person to person. High-frequency loss can 
cause a person to miss hearing consonants in a noisy setting. Loud music amplified to 
120 db, can impair hearing. The defects may not be detectable on routine diagnosis, but 
they include decreased sensitivity to sound in specific narrow frequency ranges and a 
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decreased ability to discriminate between two pitches. However, loud music is not as 
harmful as the sound of a nearby gunshot, which is a sudden sound occurring at 140 db. 
The sound is too sudden for the attenuation reflex to protect the inner ear structures, and 
the intensity is strong enough to cause auditory damage. In fact, gunshot noise is the 
most common recreational cause of serious hearing loss (Seeley, Stephens et al. 2004; 
Irwin 2006; Moller 2006; Martin and Clark 2011). 

 
 

2.3.2 Balance 
 

The organs of balance are divided structurally and functionally into two parts. The first, 
the static labyrinth, consists of the utricle and saccule of the vestibule and is primarily 
involved in evaluating the position of the head relative to gravity, although the system 
also responds to linear acceleration or deceleration, such as when a person is in a car 
that is increasing or decreasing speed. The second, the kinetic labyrinth, is associated 
with the semicircular canals and is involved in evaluating movements of the head 
(Seeley, Stephens et al. 2004). 

 

 

Figure 2.13: Structure of the Macula: Vestibule showing the location of the utricular and saccular 
maculae (a). Enlargement of the utricular macula, showing hair cells and otoliths in 

the macula (b). An enlarged hair cell, showing the kinocilium and stereocilia (c) 
(from (Seeley, Stephens et al. 2004)). 

The macula, which exists in a simple cuboide epithelium of the utricle and saccula, is 
oriented parallel to the base of the skull in the utricle, and the macula of the saccule is 
perpendicular to the base of the skull (Moller 2006). 
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The maculae resemble the spiral organ and consist of columnar supporting cells and hair 
cells. The “hairs” of these cells, which consist of numerous microvilli, called stereocilia, 
and one cilium, called a kinocilium, are embedded in a gelatinous mass weighted by the 
presence of otoliths composed of protein and calcium carbonate, Figure 2.13. The 
gelatinous mass moves in response to gravity, bending the hair cells and initiating 
action potentials in the associated neurons. Deflection of the hairs toward the kinocilium 
results in depolarization of the hair cell, whereas deflection of the hairs away from the 
kinocilium results in hyperpolarization of the hair cell. If the head is tipped, otoliths 
move in response to gravity and stimulate at low level by the presence of the otolith-
weighted covering of the macula; but as this covering moves in response to gravity, the 
pattern and intensity of hair cell stimulation changes, Figure 2.14. This pattern of 
stimulation and the subsequent pattern of action potentials from the numerous hair cells 
of the maculae can be translated by the brain into specific information regarding head 
position or acceleration. Much of this information is not perceived consciously, but is 
dealt with subconsciously. The body responds by making subtle tone adjustments in 
muscles of the back and neck, which are intended to restore the head to its proper 
neutral, balanced position (Seeley, Stephens et al. 2004; Martin and Clark 2011). 

 

Figure 2.14: Function of the Vestibule in Maintaining Balance (from (Seeley, Stephens et al. 2004)). 

 

The kinetic labyrinth consists of three semicircular canals placed at nearly right angles 
to one another, one lying nearly in the transverse plane, one in the coronal plane, and 
one in the sagittal plane. The arrangement of the semicircular canals enables a person to 
detect movement in all directions. The base of each semicircular canal is expanded into 
an ampulla. Within each ampulla, the epithelium is specialized to form a crista 
ampullaris. This specialized sensoty epithelium is structurally and functionally very 
similar to that of the epithelium maculae, Figure 2.15. Each crista consists of a ridge or 
crest of epithelium with a curved gelatinous mass, the cupula, suspended over the crest. 
The hairlike processes of the crista hair cells, similar to those in the maculae, are 
embedded in the cupula. The cupula contains no otoliths and therefore does not respond 
to gravitational pull. Instead, the cupula is a float that is displaced by fluid movements 
within the semicircular canals. Endolymph movement within each semicircular canal 
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moves the cupula, bends the hairs, and initiates action potentials (Seeley, Stephens et al. 
2004; Irwin 2006). 

As the head begins to move in a given direction, the endolymph does not move at the 
same rate as the semicircular canals. This difference causes displacement of the cupula 
in a direction opposite to that of the movement of the head, resulting in a relative 
movement between the cupula and the endolymph. As movement continues, the fluid of 
the semicircular canals begins to move and “catches up” with the cupula and stimulation 
is stopped. As movement of the head ceases, the endolymph continues to move because 
of its momentum, causing displacement of the cupula in the same direction as the head 
had been moving. Displacement of the cupula is most intense when the rate of head 
movement changes, and this system detects changes in the rate of movement rather than 
movement alone. As with the static labyrinth, the information obtained by the brain 
from the kinetic labyrinth is largely subconscious (Seeley, Stephens et al. 2004). 

 

 

Figure 2.15: Semicircular canals and its function: Semicircular canals showing localization of the 
crista ampullaris in the ampullae of the semicircular canals (a). Enlargement of the crista 
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ampullaris, showing the cupula and hair cell (b). The crista ampullaris responds to fluid 
movements within the semicircular canals (c) (from (Seeley, Stephens et al. 2004)). 

 

 

2.4 Clinical Focus of Ear Disorders 
 

As people age the number of hair cells decreases in the cochlea. This decline does not 
occur equally in both ears. As a result, because direction is determined by comparing 
sounds coming into each ear, elderly people may experience a decreased ability to 
localize the origin of certain sounds. In some people, this may lead to a general sense of 
disorientation. In addition, CNS defects in the auditory pathways can result in difficulty 
understanding sounds with echoes or background noise. Such deficit makes it difficult 
for elderly people to understand rapid or broken speech (Seeley, Stephens et al. 2004). 

Also with age, the number of hair cells in the saccule, utricle, and ampullae decrease. 
The number of otoliths also declines. As a result, elderly people experience a decreased 
sensitivity to gravity, acceleration, and rotation. Due of these decreases elderly people 
experiences dizziness and vertigo. They often feel that they cannot maintain posture and 
are prone to falling (Seeley, Stephens et al. 2004; Moller 2006). Some examples of ear 
disorders are: otosclerosis, tinnitus, motion sickness, otitis media and earache. 

 

 

Figure 2.16: Image of otosclerosis occurring between the stapes and the oval window 
of the cochlea; Notice the buildup of calcium (from (Cannon 2007)). 

 

Otosclerosis is an ear disorder in which spongy bone grows over the oval window and 
immobilizes the stapes, Figure 2.16. This disorder can be surgically corrected by 
breaking away the bony growth and immobilizes stapes. During surgery, the stapes is 
replaced by a small rod connected by a fat pad or a synthetic membrane to the oval 
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window at one end and to the incus at the other end (Seeley, Stephens et al. 2004; 
Moller 2006). 

Another disorder, tinnitus consists of noises such as ringing, clicking, whistling, or 
booming in the ears. These noises may occur as a result of disorders in the middle or 
inner ear or along the central neuronal pathways (Seeley, Stephens et al. 2004; Moller 
2006). 

Motion sickness is another disorder that affects the structures of the ear. This consists of 
nausea, weakness, and other dysfunctions caused by stimulation of the semicircular 
canals during motion, such as in a boat, automobile, airplane, swing, or amusement park 
ride. It may progress to vomiting and incapacitation. Antiemetics such as 
anticholinergic or antihistamine medications can be taken to counter the nausea and 
vomiting associated with motion sickness. Scopolamine is an anticholinergic drug that 
reduces the excitability of vestibular receptors. Cyclizine, dimenhydrinate and 
diphenhydramine are antihistamines that affect the neural pathways from the vestibule. 
Scopolamine can be administered transdermally in the form of a patch placed on the 
skin behind the ear (Seeley, Stephens et al. 2004; Moller 2006).  

 

 

Figure 2.17: Image of otitis media (from (UMMC 2011)). 

 

Infections of the middle ear, known as otitis media, are quite common in young 
children. These infections usually result from the spread of infection from the mucous 
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membrane of the pharynx through the auditory tube to the mucouslining of the middle 
ear. The symptoms of the otitis media, Figure 2.17, consisting of low-grade fever, 
lethargy, and irritability, are often not easily recognized by the parent as signs of middle 
ear infection. The infection can also cause a temporary decrease or loss of hearing, 
because fluid buildup has dampened the tympanic membrane or ossicles (Seeley, 
Stephens et al. 2004; Moller 2006; Martin and Clark 2011). 

Finally, earache can result from otitis media, external otitis (inflammation of the 
external auditory meatus), dental abscesses, or temporo mandibular joint pain. The 
Eustachian tube dysfunction occurs when the tube fails to open during swallowing or 
yawing, which results in a difference between the air pressure inside and outside the 
middle ear. It causes discomfort in the ear, hearing problems and will usually result in 
fluid accumulation behind the eardrum (Seeley, Stephens et al. 2004; Moller 2006).  

 

2.5 Summary 
The external ear consists of the auricle and external auditory meatus and the auditory 
tube connects the middle ear to the pharynx. The principal function is to equalize 
pressure. 

The middle ear connects the external and inner ear. In the external auditory meatus, the 
tympanic membrane is stretched, the malleus, incus, and stapes connect the tympanic 
membrane to the oval window of the inner ear and the middle ear is connected to the 
mastoid air cells. 

The inner ear has three parts: the semicircular canals, the vestibule, which contains the 
utricle and saccule, and the cochlea. The cochlea is a spiral-shaped canal within the 
temporal bone and is divided into three compartments by the vestibular and basilar 
membranes. The perilymph is in the interior of the scala vestibule and scala tympani, 
but the cochlear duct contains endolymph and the spiral organ or organ of the corti. The 
spiral organ consists of hair cells that attach to the tectorial membrane. 

The auditory function is characterized by a variety of processes. First, sound waves are 
funneled by the auricle down the external auditory meatus, causing the tympanic 
membrane to vibrate. The second step consists in the passing of the tympanic membrane 
vibrations through the auditory ossicles to the oval window of the inner ear. Then, 
movement of the stapes in the oval window causes the perilymph, vestibular membrane, 
and endolymph to vibrate, producing movement of the basilar membrane. Movement of 
the basilar membrane causes displacement of the hair cells in the spiral organ and the 
generation of action potentials, which travel along the vestibulocochlear nerve. 

Finally, some vestibulecochlear nerve axons synapse in the superior olivary nucleus and 
efferent neurons from this nucleus project back to the cochlea, where they regulate the 
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perception of pitch. The round window is responsible for protect the inner ear from 
pressure buildup and dissipates waves. 

The balance can be static or kinetic. In the first case, static balance evaluates the 
position of the head relative to gravity and detects linear acceleration and deceleration. 
For this case, the maculae of the utricle and saccule consists of hair cells with hairs 
embedded in gelatinous mass that contains otoliths. The gelatinous mass is responsible 
for movement in response to gravity. On the other hand, kinetic balance evaluates 
movements of the head. When the head moves, endolymph within the semicircular 
canal moves the cupula. Present in the inner ear are three semicircular canals at right 
angles to one another and the ampulla of each semicircular canal contains the crista 
ampullaris, which has hair cells with hairs embedded in a gelatinous mass, the cupula. 
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Chapter III – Image Segmentation Algorithms 
 

 Introduction; 

 Segmentation Algorithms; 

 Summary. 
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3.1 Introduction 
 

Segmenting structures from medical images and reconstructing a compact geometric 
representation of these structures is difficult due to the sheer size of the datasets and the 
complexity and variability of the anatomic shapes of interest. Furthermore, the 
shortcomings typical of sampled data, such as sampling artifacts, spatial aliasing, and 
noise, may cause the boundaries of structures to be indistinct or disconnected. The 
challenge is to extract boundary elements belonging to the same structure and integrate 
these elements into a coherent and consistent model of the structure. Traditional low-
level image processing techniques which consider only local information can make 
incorrect assumptions during this integration process and generate infeasible object 
boundaries. As a result, these model-free techniques usually require considerable 
amounts of expert intervention. Furthermore, the subsequent analysis and interpretation 
of the segmented objects is hindered by the pixel- or voxel-level structure 
representations generated by most image processing operations (McInerney and 
Terzopoulos 1996). 

This chapter surveys computational medical image segmentation algorithms, which are 
now used routinely in a multiple of different applications, such as the quantification of 
tissue volumes, diagnosis, localization of pathology, study of anatomical structure, 
treatment planning, partial volume correction of functional imaging data, and computer-
integrated surgery. Medical image segmentation algorithms are reviewed in this chapter. 

 
 

3.2 Segmentation Algorithms 
 

Image segmentation is a basic problem in Computational Vision and the key to the 
procedure from processing to analyzing. Extracting object contours from medical 
images can help doctors understand diseases and play an important role for better 
diagnosis and treatment plans (Xiao-Juan and Dan 2010). 

Segmentation is made during automated analysis by delineating structures of interest 
and discriminating them from background tissue, and this separation process is 
generally effortless and swift for the human visual system. However, the separation 
process performed by the human visual system can become a considerable challenge in 
algorithm development (Bankman 2000).  

For the analysis of the medical images, segmentation is important for feature extraction, 
image measurements, and image display. Furthermore, it may be useful to classify 
image pixels into anatomical regions, such as bones, muscles, and blood vessels, while 
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in others into pathological regions, such as cancer, tissue deformities, and multiple 
sclerosis lesions (Bankman 2000).  

The segmentation of organs or structures in medical images is still often performed 
manually. The manual segmentation medical technicians require to sketch the contours 
slice by slice using pointing devices, such as a mouse or a trackball, and are very time-
consuming, besides that the results may change from intra- or inter- observer variability. 
To solve the manual segmentation disadvantages, modern mathematical and physical 
techniques have been integrated into computational approaches. These integrations have 
greatly enhanced the accuracy of the segmentation results (Ma, Tavares et al. 2010). 

Medical images can be induced by noise and artifacts. One kind of artifacts is the 
partial-volume effects, which occur where multiple tissue types contribute to a single 
pixel, resulting in a blurring of intensity across boundaries. Unfortunately, partial-
volume effects are common in medical images, particularly for computerized 
tomography images and magnetic resonance images (Pham, Xu et al. 2000). Thus, it 
becomes essential to incorporate physical and mathematical techniques to increase the 
accuracy of segmentation results. The preprocessing of the input images is usually the 
first event performed to reduce the image noise and increase the contrast of the 
structures of interest. This stage is really necessary because an accurate interpretation of 
the medical images may become difficult if noise levels are relatively high, and the 
enhancement improves the quality of the input image and thus facilitates diagnosis. 
Segmentation is often included in the analysis stage and can be divided into three 
classes: thresholding, clustering and deformable models (Ma, Tavares et al. 2010). 
Following, the common segmentation algorithms are introduced. 

 

 

3.2.1 Algorithms based on Tresholding 
 

Thresholding is a common region segmentation method. In this technique is nominated 
a threshold value and the image is divided into groups of pixels that have values less 
than the threshold value, and groups of pixels with values greater or equal to the 
threshold value (Bankman 2000). Thresholding is a simple yet often effective means for 
obtaining a segmentation of images in which different structures have contrasting 
intensities or other quantifiable features, and it is frequently performed interactively, 
based on the operator’s visual assessment of the resulting segmentation (Pham, Xu et al. 
2000).  

There are several thresholding techniques; some of them, are based on the image 
histogram and others are based in local properties or local gradient. The global 
thresholding is the most intuitive approach, and is called global as only one threshold 
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value is selected for the entire image, based on the image histogram. When the threshold 
value depends on local properties of some image regions, it is called local. On the other 
hand, thresholding is called dynamic or adaptive if the local thresholds are selected 
independently for each pixel (Bankman 2000; Xiao-Juan and Dan 2010). 

Thresholding is often used as an initial step in a sequence of image-processing 
operations and its main limitations are that, in its simplest form, only two classes are 
generated and, typically, it does not take into account the spatial characteristics of the 
input image. In addition, this causes it to be sensitive to noise and intensity 
inhomogeneity. These artifacts corrupt the histogram of the image and making 
separation more difficult (Pham, Xu et al. 2000). 

At the present, there are several solutions to selecting the threshold value, such as: 
histogram trough method, Otsu method, maximum entropy method, vector retention 
method and grade statistic method. However, Otsu method proposed in 1979 is the most 
popular threshold-based method. This method is deduced by least square (LS) technique 
based on gray histogram. As is well known, this method not only has the best threshold 
value in the statistical sense, but also it is the most stable method in the image threshold 
segmentation at present. Moreover, its basic principle is to split the image’s pixels into 
two classes, and confirms the best threshold value through the variance maximum value 
between the two classes. 

Supposed that           is the range of a grayscale image        and    is the 
probability of every grayscale, and the threshold value   has splitted the image in two 
classes which are          and             . The two classes probability are 
      

 
    and        , respectively. The average gray value of the two classes 
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   . The criterion function has been defined as variance between the two 

classes, expressed as: 

                                     
 .                  (3.1) 

 

Calculating Eq.(3.1), the maximum  , which is the threshold value, can be obtained 
(Fang, Yue et al. 2009). 

Local thresholding algorithms can be further classified as edge-based, region-based and 
hybrid. Edge-based algorithms are associated to the edge information, and the structures 
are described by edge points. Edges are significant local changes of intensity in an 
image, and they typically occur on the boundary between two different regions in an 
image. The fundamental goals of edge-detection are two: produce a line drawing of a 
scene from an image of that scene and extract important features from the edges of an 
image (e.g. corners, lines, curves). The wavelet transform, Canny edge detection, Sobel 
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edge detection and Laplacian edge detection are based on threshold values and use the 
edge information. Furthermore, Laplacian edge detection and Canny edge detection are 
algorithms that find edge pixels and eliminate the noise influence. Laplacian edge 
detection uses the second derivation information of the image intensity. On the other 
hand, Canny edge detection uses the gradient magnitude to find edge pixels and 
suppresses them through non-maximal suppression and hysteresis thresholding (Ma, 
Tavares et al. 2010). 

The gradient operator is an important filter that is used by Canny, Sobel and Laplacian 
detector, it produces a vector at each point, whose direction gives the maximum change 
of the function at that point, and whose magnitude gives the magnitude of this 
maximum change. Furthermore, the gradient operator is often computed by convolving 
two windows with an image as: 

 

                                                                   (3.2) 

 

where        indicates some neighborhood of pixel      , and   denotes convolution 
(Kanopoulos, Vasanthavada et al. 1988). 

The wavelet representation, mentioned above, corresponds to a decomposition of the 
image into a set of independent frequency bands, and wavelet representation is very 
useful in edge detection. Furthermore, Akhtar and Ali (2008) worked with wavelet 
representation and exploited three spatial orientations: horizontal, vertical and diagonal 
orientations. Akhtar and Ali (2008) proposed three stages: edge detection, linking 
framework using wavelets and image fusion. In the wavelet domain, the detection and 
linking of edges found very natural and straightforward operation (Akhtar and Ali 
2008). The decomposition-stage is the first step. In this first step, the input image is 
decomposed into four quarter-size output images with different information, Eqs. 3.3 
and 3.4, Figure 3.1. The second step is the recomposition-stage that is characterized by 
recomposition of horizontal and vertical details, Eq. 3.5. In the final step, the 
recomposed images are decomposed again, as in the first step, to obtain wavelet 
coefficients, and then these resulting images are fused using Eq. 3.6. 
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where        is a two dimensional scaling function and in 2D is required three 2D 
wavelets:        ,         and          (horizontal (H), vertical (V) and Diagonal 
(D) details). The input image is represented by          and has a size of     
pixels. So, j, m, n, M and N are a set of integers, while          ,    is an arbitrary 
starting scale (usually, equal to 1) and the coefficients    define an approximation of   
at scale    (Akhtar and Ali 2008). 

 

 

Figure 3.1: Wavelet decomposition (left) and image fusion process (right) 
(from (Akhtar and Ali 2008)). 

  

Another edge detector is the Canny edge detector, which presents good detection, good 
localization and single response to an edge, so it is usually considered optimal and 
popular. A typical implementation of the Canny edge detector follows the following 
steps: smooth the given image,        , with an appropriate Gaussian,       , Figure 3.2, 
to reduce desired amount of image details and noise; determine the gradient magnitude, 
        and gradient direction,         at each pixel; if the gradient magnitude, Eq. 3.9, 
at a pixel is larger than those at its two neighbors in the gradient direction, Eq. 3.10, 
mark the pixel as a major edge and if the gradient magnitude at the pixel is larger than 
those pixels adjacent to it in any direction mark the pixel as a minor edge; partition the 
minor edge contours at the branch points, remove all branches that do not contain a 
major edge, then rename as a major edges the portions of minor edge contours that are 
delimited by major edges; combine newly obtained major edges with previously 
obtained major edges and finally, remove from among the combined major edges those 
that are sufficiently weak by hysteresis thresholding (Ding and Goshtasby 2001). 
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Figure 3.2: Single gaussian with its first derivate (from (Glynn 2007)). 
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The Sobel operator as image edge detection filter is characterized by convolutions 
between the input image,       , and four     masks weighted. These convolutions 
measure the differences in intensity along the horizontal, vertical, and left and right 
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diagonal directions. These four measurements,   ,   ,     and    , Eqs. 3.11, 3.12, 
3.13 and 3.14, are then combined to estimate edge magnitude and direction. 
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The gradient magnitude, Eq. 3.15, is estimated as given by Eq. 3.16, 
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                                                            (3.16) 

 

and    is the measure in the direction perpendicular to the selected maximum measure. 
The other hand, the gradient direction is given by the equation: 
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and the gradient direction is given from a template of eight angle directions based on the 
selected maximum measure and its corresponding sign. For this edge detection filter, 
the best value for K is determined as the value that minimizes the magnitude error, 
which can be computed using error analysis for Euclidean norm approximations 
(Kanopoulos, Vasanthavada et al. 1988). 

 

 

Figure 3.3: The zero-crossing of the second derivate of an edge (from (Mlsna and Rodríguez 2009)). 

 

Edge points also can be detected by finding the zero-crossing of the second derivate and 
the Laplacian operation corresponds to the second derivate, Figure 3.3. Therefore, the 
derivate operator acts as a high pass filter and edge detectors based on it are sensitive to 
noise (Mlsna and Rodríguez 2009). The Laplacian is defined as: 
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                                                     (3.21) 

 

and the Laplacian can be implemented using the mask shown in Figure 3.4. 

Laplacian is an isotropic operator, and its implementation has low computational cost. 
Furthermore, this operator does not provide information about edge direction and 
Laplacian-based edge detection has the nice property that it produces edge of zero 
thickness, making edge-thinning steps unnecessary. This is because the zero-crossings 
themselves define the edge location (Mlsna and Rodríguez 2009). 

 

  

Figure 3.4: Laplacian mask (3x3). 

 

An edge detector based only on the zero crossing of the continuous Laplacian produces 
closed edge contours if the input image meets certain smoothness constrains. The 
contours are closed because edge strength is not considered, so even the slightest, most 
gradual intensity transition produces a zero crossing. In effect, the zero-crossing 
contours define the boundaries that separate regions of nearly constant intensity in the 
original image. The second derivate zero-crossing occurs at the local extreme of the first 
derivate, but many zero crossings are not local maxima of the gradient magnitude. Some 
local minima of the gradient magnitude can be largely eliminated by appropriately 
thresholding the edge strength (Mlsna and Rodríguez 2009). 

Noise presents a problem for the Laplacian edge detector in several ways. First, noise 
produces many false edge contours, because it introduces variation to the constant-
intensity regions in the noise-free energy. Second, noise alters the locations of the zero-
crossing points, producing location errors along the edge contours. The problem of 
noise-induced false edges can be addressed by applying an additional test to the zero-
crossing points. Only the zero-crossing satisfies this new criterion and are considered 
edge points. One commonly used technique classifies a zero-crossing as an edge point, 
if the local gray level variance exceeds a threshold amount. Another method is to select 
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the strong edges by thresholding the gradient magnitude or the slope of the Laplacian 
output at the zero-crossing. These techniques serve to reject zero-crossing points that 
are more likely caused by noise than by a real edge in the original scene. Of course, 
thresholding the zero-crossings in this manner tends to break up the closed contours 
(Mlsna and Rodríguez 2009). 

Marr and Hildreth advocated the need for an operator that can be tuned to detect edges 
at a particular scale. Their method is based on filtering the image with a Gaussian kernel 
selected for a particular edge scale:  

 

        
 
     

                                                         (3.22) 

 

 

Figure 3.5: Characteristic curve of log filter (from (McAullife 2010)). 

 

The Gaussian smoothing operation serves to band-limit the image to a small range of 
frequencies, reducing the noise sensitivity problem when detecting zero-crossings 
(Mlsna and Rodríguez 2009). This new operator is called the Laplacian-of-Gaussian 
(LOG), Figure 3.5, and it can be shown that: 
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The detected boundaries consist of discrete pixels and may be incomplete or 
discontinuous. To connect the breaks or eliminate the holes it is necessary to apply 
morphological operations (Ma, Tavares et al. 2010). Dilation and erosion are classic 
operators for performed mathematical morphological operations. These operators work 
with the original image and with a structuring element (Bosworth and Acton 2003; Bai, 
Zhou et al. 2009). Dilation is characterized by production of clear images (maximum 
operation), it is observed when the resulting images are compared with original images, 
whereas is verified the opposite for erosion (minimum operation). Thus erosion and 
dilation are not invertible operations, and both simplify and remove information from 
the input images. The removed information increased with the size of structuring 
element. Therefore, the shape and size of this element are important features to obtain 
efficient results. Furthermore, the realization of several dilations or erosions with small 
structuring elements is not equivalent to dilation or erosion realized with a big 
structuring element. One disadvantage of the morphological operations is the high noise 
sensitive (Bosworth and Acton 2003). The morphological representation supports the 
basic objectives of the image pre-processing and is an inefficient method for segmenting 
anatomic structures of medical images (Papari and Petkov 2011).  

In medical images, the edges of structures are usually not clearly defined due to noise 
influence and partial-volume effects (PVE) (Ma, Tavares et al. 2010), which are 
artifacts that occur where multiple tissue types contribute to a single pixel and result in a 
blurring of intensity across boundaries (Pham, Xu et al. 2000). Therefore, algorithms 
based on edge detection are seldom used alone but instead as an efficiency pre-
processing step for the later segmentation step (Ma, Tavares et al. 2010). 

The region-based algorithms are another type of thresholding-based algorithms, and 
their idea comes from the observation that quantifiable features inside a structure tend to 
be homogeneous (Ma, Tavares et al. 2010). Therefore, algorithms aim to search for the 
pixels with similar feature values. Classically, examples of this type are the region 
growing algorithms and split and merge algorithms (Bankman 2000). Region Growing 
starts with a pixel or a group of pixels which are called seeds and can be chosen by an 
operator. Seeds also can be provided by an automatic seed finding procedure. For region 
growing procedure the next step is to examine the neighboring pixels, so they are 
analyzed one at a time and added to the growing region, if they are sufficiently similar 
based on a uniformity test. The procedure continues until no more pixels can be added. 
The result is then represented by all pixels that have been accepted during the growing 
procedure. The uniformity test can be compared with the difference between the pixel 
intensity value and the mean intensity value, and when the difference is less than a 
predefined value, the pixel is included in the region, otherwise, is defined as an edge 
pixel. The results of region growing depend strongly on the selection of the 
homogeneity criterion. If this criterion is not properly chosen, the regions leak out into 
adjoining areas, or merge with regions that do not belong to the object of interest 
(Bankman 2000; Pham, Xu et al. 2000). Region growing is seldom used alone, but 
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usually within a set of image-processing operations, particularly for the delineation of 
small, simple structures such as tumors and lesions. The primary disadvantage of region 
growing is that it requires manual interaction to obtain the seed point. Thus, for each 
region that needs to be extracted, a seed must be planted (Pham, Xu et al. 2000). 
Another problem of region growing is that different starting points may not grow into 
identical regions. Otherwise, the advantage of region growing is that it is capable of 
correctly segmenting regions that have the same properties and are spatially separated. 
Another advantage is that it generates connected regions. However, region growing can 
also be sensitive to noise, caused extracted regions to have holes or even become 
disconnected. Conversely, partial-volume effects can cause separate regions to become 
connected (Bankman 2000; Pham, Xu et al. 2000).  

Instead of region merging, it is possible start with some initial segmentation and 
subdivide the regions that not satisfy a given uniformity test and this technique is called 
splitting. A combination of splitting and merging adds together the advantages of both 
approaches. Furthermore, split-and-merge not requires a seed point (Bankman 2000). 
The split-and-merge objective is to automatically segment an image into the minimum 
number of regions that faithfully represent areas of uniformity, producing boundaries 
with characteristics well matched to the intrinsic image resolution (Manousakas, Undrill 
et al. 1998).                                                                                                                                                                                                                                                                                            

Finally, hybrid algorithms combine different image cues to complete the segmentation, 
and a typical example is the watershed algorithm (Ma, Tavares et al. 2010). Watershed 
segmentation is a technique that utilizes image morphology, is applicable to non-
specific image type, and is also unsupervised. The watershed method can be classified 
into rain falling and water immersion. Some watershed methods use the prior 
information-based difference function, instead of the more frequently-used gradient 
function to improve the segmented results and employ the marker images as probes to 
explore a gradient space of unknown image and thus to determine the best matched 
object (Chen and Chen 2009). Watershed requires selection of at least one marker (seed 
point) interior to each object of the image, including the background as a separate 
object. The markers are chosen by an operator or are provided by an automatic 
procedure that takes into account the application-specific knowledge of the objects. 
Once the objects are marked, they can be grown using a morphological watershed 
transformation. Watershed methods can be thought as a surface where the bright pixels 
represent mountaintops and the dark pixel valleys. The surface is punctured in some of 
the valleys, and then slowly submerged into a water bath. The water will pour in each 
puncture and start to fill the valleys. However, the water from different punctures is not 
allowed to mix, and therefore the dams need to be built at the points of first contact. 
These dams of the boundaries of the water basins, and also the boundaries of image 
objects (Bankman 2000). The advantage of the watershed method is that can segment 
multiple objects in a single threshold setting. On the other hand, the disadvantage of the 
watershed method is that the different types of images need different thresholds, and if 
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the thresholds are not set correctly, then the objects are under-segmented or over-
segmented. Furthermore, slight changes in the threshold can significantly alter the 
segmentation results (Chen and Chen 2009). 

Threshold-based algorithms are effective when the interested structures have distinctive 
quantifiable features, and they are computationally efficient. However, these algorithms 
are sensitive to noise and most of them are difficult to apply to multi-channel images. 
Furthermore, medical images usually present noise and intensity inhomogeneity; thus, 
segmentation results of threshold-based algorithms are far from satisfactory and are 
rarely used alone. 

 

 

3.2.2 Algorithms based on Clustering 
 

In medical images, techniques from pattern recognition fields can be used to perform 
the segmentation, and the clustering techniques are the most popular ones for medical 
image segmentation (Ma, Tavares et al. 2010). The clustering algorithms have the same 
function as classifier methods and these are pattern recognition techniques that seek to 
partition a feature space derived from the image using data with known labels (Pham, 
Xu et al. 2000). In clustering algorithms, the partitioning is based on pairwise relations 
between individual patterns, rather centralized relations between samples and a few 
cluster representatives (like centroids, for example) (Matta and Dugelay 2009). 
Clustering is according to some measures and certain criteria to separate the collection 
of individuals into several categories, making the degree of similarity among the same 
individuals as large as possible, but the degree of similarity among different individuals 
as small as possible.  

The basis for many computational applications is the data analysis, and these techniques 
can be divided into two categories: exploration and confirmation. Clustering is the most 
commonly used technique among exploratory data analysis techniques, while the 
classification is the representative technique of confirmatory data analysis techniques. 
The training data provided with known marks is classification and the training obtains 
the description mode through learning, then use the model to classify the feature data 
that is a supervised learning. If the clustering belongs to the unsupervised learning, it 
main purpose is to divide the unmarked data into meaningful groups. The clustering 
technique can be divided in the following task phases: data representing, measure, 
technique and other optional phases. Data representing includes the feature selection 
and the feature extraction. The feature selection refers to among the collection of all 
data attributes selecting a subset to represent the data. On the other hand, the feature 
extraction is the new property generated by the existing data property. The second 
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phase, measure, uses the distance based or similarity based representation methods. 
Finally, in the third phase, the clustering results are obtained by a variety of clustering 
algorithms. Other optional phases are the data abstraction of the cluster results and 
assessment of the clustering results, for example (Zhu 2010). 

Furthermore, the clustering techniques can be divided in three main classes: supervised 
algorithms, unsupervised algorithms and semi-supervised algorithms (Sutton, Bezdek et 
al. 2000; Ma, Tavares et al. 2010). The supervised techniques are frequently used and 
include k-nearest neighbor (kNN), maximum likelihood (ML) algorithms, supervised 
artificial neuronal networks (ANN), support vector machines (SVM), active shape 
models (ASM) and active appearance models (AAM) (Ma, Tavares et al. 2010). For 
perform supervised classification is needed a training set to extract structure information 
and the key issues of supervised clustering are the tagging data to guide the clustering 
process, therefore the clustering process will get better effects, and how to access and 
use marked data (Zhu 2010). 

The k-nearest-neighbor is a simple classifier and, through this algorithm, each pixel is 
classified into the same class as the majority of the k-closest training data (Betanzos, 
Varela et al. 2000; Pham, Xu et al. 2000). The k-nearest neighbor algorithm needs to be 
established beforehand, the number of classes in which to divide the set to be classified 
that, in turn, is necessary to supply with a set of samples, indicating for each one the 
output cluster to which it belongs. For each one of the nearest k samples, the k-nearest 
neighbor algorithm determines the value of the correspondence functional and these 
nearest k samples are known as neighbors. Moreover, the level of confidence can be 
measured through the obtained results. The following equation is used in order to 
calculate a pixel’s factors of correspondence to clusters being considered: 

 

      

     
 

      
        

 
   

  
 

      
        

 
   

                                              (3.25) 

 

where     represents the factor of correspondence of the     sample to the     class;    
signifies one of the   samples nearest to the pixel in question;   represents the pixel 
itself;   is a factor that weights the distance from the pixel to the sample and, finally, 
      represents the degree of correspondence of pixel   to class  . Furthermore, this 
equation attributes not only a value to the distance of a pixel from all its neighbors, but 
also to its factor of correspondence to the object cluster for each one of these neighbors. 
The number of samples, the quality of the samples and the number of neighbors are 
different parameters that varied in the analysis of this algorithm (Betanzos, Varela et al. 
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Maximum likelihood algorithms are another supervised approach, in which the training 
step of the maximum likelihood algorithm intends to identify the parameters used in the 
statistical models. In the training of this supervised technique is necessary to identify 
the parameters that are used in the statistical models. During the processing of 
maximum likelihood algorithm, the pixel intensities are independent random variables 
with parameterized probability functions. The evolution of these parameters is realized 
by maximizing the likelihood function of the mixture model (Ma, Tavares et al. 2010). 
The iterative computation of maximum likelihood consists of an expectation step 
followed by a maximization step, and this process is called the EM algorithm 
(Dempster, Laird et al. 1977). The EM algorithm is originally described in its general 
form by Dempster (1977) and it is a common method of finding the maximum-
likelihood estimation of the parameters of an underlying distribution from a given data 
set when the data is incomplete or has missing values (Xie and Tsui 2004).  
Furthermore, the EM process is remarkable in part because of the simplicity and 
generality of the associated theory. If the underlying complete likelihood estimates are 
easily computed, then each maximization step of an EM algorithm is likewise simply 
computed. The complete-data specification        is related to the incomplete-data 
specification: 

 

                
    

                                       (3.26)       

 

where   is refered as the complete data and   is the observed data. 

The EM algorithm is directed at finding a value of   which maximizes        given an 
observed  , but it does so by making essential use of the associated family        
(Dempster, Laird et al. 1977). This method does not take advantage of the spatial 
information. On the other hand, if the segmentation is only performed via minimizing 
the weighted sum of class uncertainty, it will had that only the points on the strongest 
boundaries can get high class uncertainty. Moreover, this strategy cannot guarantee the 
global match between the model and the data (Xie and Tsui 2004). In order to solve the 
problem, in Xie (2004) is calculated the   that maximize       , the likelihood of 
parameters to the image. Meanwhile Xie (2004) pursues the purpose to make pixels 
with high class uncertainty accumulate mostly around the fuzzy boundaries. The loss 
function is defined as: 

 

                                                           (3.27) 
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where   is a scale factor. The          and             are the entropy and likelihood 
terms, respectively. The first term is defined as: 
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where   is the normalized GVF value of pixels, H is the normalized entropy of pixels. 
Meanwhile, the likelihood term is defined as: 

 

                     
 
                                        (3.29) 

 

Then, only when both G and H are high or low,          is low, thus the low value of 
the entropy term indicates high-class uncertainty is assigned to pixels with high GVF 
values or low uncertainty to pixels with low GVF values (Xie and Tsui 2004). 

The maximum likelihood algorithm combined with a GVF field was proposed for to 
perform segmentation by Xie (2004). Gradient vector flow is a type of external force 
and GVF fields are calculated by applying generalized diffusion equations to both 
components of the gradient. This computation causes diffuse force vectors to exist far 
from the object, and crisp force vectors near the edges (Chen 2006).  

Another supervised clustering algorithm is the supervised artificial neuronal-networks 
(ANNs) that are non-linear statistical data modeling tools (Wismuller, Vietze et al. 
2000; Ma, Tavares et al. 2010). Radial basis function neuronal networks (RBFN) are an 
excellent prequel-type network, because of its good theoretical foundation, simple 
structure, fastness, and it has been always closely focused and widely applied. Neuronal 
network has naturally become the technology that can be combined with supervised 
clustering. RBFN has a good performance and the training of its hidden nodes is usually 
achieved with the help of the clustering, therefore RBFN and supervised clustering have 
the possibility of combining and improving with each other. For neuronal network 
model, the regression analysis was originally a concept in statistics and the floating of 
variables under test often can be attributed to other variables. While the regression 
method quantifies the relationship between the independent variables and non-
independent variables, the method of variance analysis is suitable for dealing with 
problems having independent variables. In the initialization process of the RBFN 
algorithm, the clustering process is extended to the output space, and form a combined 
input-output space.  
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In the combined space by unsupervised clustering is obtained cluster centers, and the 
membership matrix are regarded as the initial value of the next phase. Through the 
initialization, the input data can be divided into   clusters, and for each cluster can be 
build the following linear regression model: 

 

        
                   ,                                         (3.30) 

 

where     is the regression parameter of the     regression model;    and    are 
separately the locations of the cluster centers in the input space and output space. All the 
sample points and cluster centers belong to the same linear regression model and this 
combination represents the formation of the linear relationship. Through the value   , 
can also be obtained the error of the linear regression model. The objective function of 
the supervised clustering is to control the degree of impacts of the supervised item to the 
clustering process and adds an impact factor  . This impact factor of the supervised 
item has a great impact on the training result. When the impact factor is too large is easy 
to make the algorithm “bump” to be difficult to constrict, while it is too small, the 
supervised effect is not obvious. An initial value    is defined manually and then 
according to a decreasing function in each iteration it is to reduce the value of  . The 
following function is responsible to adjust the value    

 

     
  

     
 

 

,                                                 (3.31) 

 

where T is the maximum number of times of iterations and t is the number of times of 
the current iteration. The next step of the RBFN algorithm is to calculate the regression 
function and then calculate a new clustering center. This process is repeated until the 
algorithm converges. Experiments in Zhu (2010) show that using this method train the 
RBF network and can obtain higher training accuracy. 

Others supervised clustering algorithms frequently used, are the support vector 
machines and support vector machines algorithm, also known as maximum margin 
classifiers, because the algorithms try to find a hyperplane to maximize the margin 
between two classes and can simultaneously minimize the empirical classification error 
and maximize the geometric margin between classes (Ma, Tavares et al. 2010).  

In medical images, the segmented regions often do not correspond well to true objects, 
because of the noise, large internal intensity variations in the structures to be identified 
and the overlapping of the distribution of intensity values corresponding to one structure 
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with those of another structure. To solve these problems, the known shape information 
on the desired objects is integrated into the segmentation method. Support vector 
machines (SVM) have been considered good candidates to solve the image 
segmentations problems because of its high generalization performance and sparse 
solution.  

Zhao (2006) uses SVM density estimator to construct a prior knowledge model of the 
structure based on previously segmented training data. SVM is mainly developed to 
solve the classification problem, regression problem and density estimation problem. 
This algorithm is a new type of learning machines based on statistical learning theory 
(Zhao, Su et al. 2006). Furthermore, SVM is a powerful machine learning technique for 
binary classification supported by a strong theoretical foundation and excellent 
empirical success. The SVM’s output function is expressed as: 

 

                                                           (3.32)  

 

where superscript T represents transpose, and   and   are weight vector and bias, 
respectively. Input vector   is classified according to             , where      is 1 
(one) for    , and 0 (zero) otherwise. Geometrically,   indicates the normal vector of 
a hyperplane. All vectors      lying on one side of the hyperplane are classified as 1 
(one) and all vectors on the other side as 0 (zero). Therefore, the objective of SVM is to 
find the parameters   and   for the optimal hyperplane to maximize the margin  

   
 

(distance between the hyperplane and the closest training instances termed support 
vector). Finally, the SVM’s output function is obtained as: 

 

                            
                                    (3.33) 

 

where    is the Lagrange multiplier for the first inequality constraint in equation and K 
is the kernel function. 

Accordingly, for ANNs and SVMs the information extracted from the training set 
provides the features of structure in the form of weights or parameters that can be used 
for the later segmentation (Ma, Tavares et al. 2010).  

The active shape models algorithms are nominated as supervised clustering algorithm 
and these algorithms use a shape model to generate new shapes (Bruijne, Ginneken et 
al. 2002). The active shape model (ASM) algorithm can also be called the landmark-
based active shape model and it is based on the point distribution model (PDM). This 
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point distribution model is the basis for many other landmarks-based variants, which are 
used in the segmentation of structures. The aim of PDM is to build a model of the shape 
of the structure of interest that describes both typical shape and variability using 
examples of the training set. In the PDM, shapes are represented by a set of points or 
landmarks that are manually placed on each image and the labeling of the points is 
important. Furthermore, each labeled point represents a particular part of the object or 
its boundary (Duchesne, Pruessner et al. 2002). The process works by modeling how 
different labeled points tend to move together as the shape varies. If the labeling is 
incorrect, the method will fail to capture shape variability reliably. Moreover, if a point 
is not in the correct position on each shape, the model will be unable to precisely 
represent the position of that point. In the model is included terms that describes the 
noise caused by error in point location, and these points are manually identified during 
the training phase. So, landmarks for a given shape do not move independently and their 
positions are partially correlated (Bruijne, Ginneken et al. 2002; Duchesne, Pruessner et 
al. 2002). Bruijne (2002) proposes a modified ASM scheme in which optimal landmark 
positions are defined by maximum grey value profile correlation with adjacent slices 
rather than by correlation with profiles from the training data (Bruijne, Ginneken et al. 
2002).  

In the original ASM method, where in the first no information of neighboring slices is 
used, in both modified schemes no model information is used, then as a consequence 
segmentation errors are propagated through the dataset in the slice correlation schemes. 
Furthermore, to improve overall performance on the neighboring slice can be used a 
hybrid scheme combining both model information. The dependency on image slicing 
and orientation restricts the use of this method to segmentation tasks were the shape 
change between slices is not too large and the object is always imaged in approximately 
the same direction. However, many medical images are made using fixed scan protocols 
which satisfy these conditions (Bruijne, Ginneken et al. 2002).   

Cootes (1998) developed the active appearance models (AAM) in part to improve the 
ASM method and make more use of the intensity information in the images, but also 
with the goal to match a full, photorealistic model directly on a new image instance by 
minimizing the difference between the image under interpretation and one synthesized 
by the model built. In this algorithm, the shape is incorporated into the AAM via a PDM 
and in the PDM the intensity under landmarks is sampled and used to generate a gray-
level model. Then with this process is created two models, the gray-level and PDM, are 
concatenated, and a supermodel is created from principal components analysis (PCA) 
(Duchesne, Pruessner et al. 2002). PCA is applied to reduce the dimensionality of the 
data and with which shapes are described by their deviation from the mean shape 
(Bruijne, Ginneken et al. 2002). The resulting principal components can be considered 
as eigenmodes of appearance variation, embedding shape and intensity variability, and 
it is possible afterward to generate a new image instance each time the shape is 
deformed along those principal modes of variations. The synthesized image matched to 
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the original image and it is observed that shapes are thus modified to reduce a cost 
function, in the least-squares sense, between the synthesized and original images, rather 
than moving the shape points on an imaginary normal to the boundary. Since it matches 
known gray-level values within contiguous neighborhoods, the process becomes more 
robust. For performed AAM, in lieu of the PDM, it is proposed that a warp distribution 
model (WDM). This model is based on a statistical analysis of dense 3D deformation 
fields and it is able to effectively characterize shape. However, at the same time the 
WDM making use of all voxels within an image and thus avoid subsampling. 

The appearance based (AB) segmentation is based on AAM algorithm and was 
introduced by Duchesne (2002). This algorithm is used to minimize the difference 
between a new image and one synthesized by the appearance model. Furthermore, the 
goal of the AB segmentation algorithm is to minimize the magnitude of the difference. 
The first step in this approach consists of building a linear relationship between 
variations in appearance parameters and gray-level synthesized images. The second step 
is to use an iterative algorithm to generate new estimates of the synthesized image that 
gradually approximated the new image. Through varying model parameters along each 
vector, the algorithm finds the closest match in the least-squares sense by minimizing 
the magnitude of the difference vector. Furthermore, by varying the parameters for each 
eigenvector new synthesized image instances can be calculated. Then, the closest 
matching point is found by finding the minimum of a second-order fit to the error 
matching function (Duchesne, Pruessner et al. 2002) 

Unsupervised classification techniques are also called clustering algorithms and, with 
these techniques, the structure features are extracted from the classified points. 
Unsupervised classification family includes fuzzy C-means algorithms (FCM), iterative 
self-organizing data analysis technique algorithms (ISODATA) and unsupervised 
neuronal networks (Ma, Tavares et al. 2010). 

Fuzzy C-means algorithms have been widely used in the image segmentation, and such 
a success is attributed to introduction of fuzziness for the belongingness of each image 
pixel, which makes the clustering methods able to retain more information from the 
original image than the crisp or hard segmentation methods. This clustering technique is 
achieved by iteratively minimizing a cost function that is dependent on the distance of 
pixels to the cluster centers in the feature domain. Furthermore, the spatial relationship 
of neighboring pixels is an important characteristic that can be of great aid in image 
segmentation (Li and Shen 2010). The fuzzy C-means clustering functions well on 
images with low levels of noise, but has problems when used in segmentation of noise 
corrupted images. In one hand, the FCM does not incorporate the information 
concerning the spatial context, which makes it sensitive to noise and other imaging 
artifacts. On the other hand, the cluster assignment is based exclusively on the 
distribution of the pixel intensity that makes it sensitive to intensity variations due to 
illumination conditions or object shape. Many algorithms have been presented in order 
to improve the robustness of conventional FCM, and these methods can be classified 
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into two main groups: imposing spatial constraints to clustering algorithms and 
introducing other features or dissimilarity index that is insensitive to intensity variations 
in the objective function of FCM (Beevi 2010). 

The standard FCM algorithm assigns pixels to each category by using fuzzy 
memberships, and it is an iterative optimization that minimizes the cost function defined 
as: 
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where         and   factor controls the fuzziness of the resulting partition (    
in Li (2010) study),     represents the membership of pixel    in the     clustering, 
            represents the distance between the pixel    and the cluster center   . 
The gray-level value is the most commonly used feature in the image clustering. Thus, 
the FCM cost function is minimized when high membership values are assigned to 
pixels whose intensities are close to the centroid. Moreover, the probability that a pixel 
belongs to a specific cluster represents membership function and this value is dependent 
solely on the distance between the pixel and each individual cluster center domain. 
Starting with an initial guess for each cluster center, the FCM converges to a solution 
for    representing the local minimum or a saddle point of the cost function and 
convergence can be detected by comparing the changes in the membership function or 
the cluster center at two successive iteration steps. Then, after the convergence, 
defuzzification is applied to assign each pixel to a specific cluster for which the 
membership is maximal (Li and Shen 2010). 

Recently, the performance of image segmentation with the FCM algorithm was 
improved by the incorporation of spatial information into the standard FCM method 
(Beevi 2010). 

The unsupervised classification also includes the k-means algorithm, also called 
iterative self-organizing data analysis technique algorithm. The k-means algorithm 
clusters data by iteratively computing a mean intensity for each class and segmenting 
the image by classifying each pixel in the class with the closest mean (Pham, Xu et al. 
2000; Ma, Tavares et al. 2010). Furthermore, the k-means algorithms are known to be 
fast solutions for solving such problem. However, they are sensitive to the choice of 
starting points and can only be applied to small datasets. To solve these disadvantages, 
Bagirov (2011) proposed the global k-means algorithms and modified k-means 
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algorithm and the results of numerical experiments in (Bagirov, Ugon et al. 2011) show 
that these algorithms allow one to find global or near global minimizer of the clusters of 
the cluster function. However, these algorithms are memory demanding as they require 
the storage of the affinity matrix. Alternatively, this matrix can be computed at catch 
iteration, but this extends the computational time significantly. The k-means algorithm 
is applied from starting points lying in the different parts of the dataset to minimize the 
auxiliary cluster function, and the best solution is selected as a starting point for the next 
cluster center. The modified global k-means algorithm is a new version of the k-means 
algorithm that reduces the amount of computational effort by removing data points 
which are close to cluster centers found in the previous iteration and using the triangle 
inequality for distances to avoid unnecessary computations. The modified global k-
means algorithm is an incremental clustering algorithm and to solve k-partition problem 
it starts with the computation of one cluster, that is with the computation of the centroid 
of the dataset, and attempts to optimally add one new cluster center at each iteration. 
Thus, this algorithm computes cluster incrementally, using the k-1 cluster centers from 
the previous iteration to solve the k-partition problem. An important step in this 
algorithm is the computation of a starting point for the k-th cluster center, and this 
starting point is computing by minimizing the so-called auxiliary cluster function. 
Unlike the modified global k-means algorithm the proposed algorithm does not rely on 
the affinity matrix to compute the starting point. Furthermore, the auxiliary cluster 
function is nonconvex and it may have many local solutions. One can expect that the 
global minimizer of this function is a good candidate as starting point for the k-th 
cluster center (Bagirov, Ugon et al. 2011). 

As already referred, the unsupervised methods explore the intrinsic data structure to 
segment the image into regions with different statistics. However, these methods often 
fail to achieve the desired result, especially if the desired segmentation includes regions 
with very different characteristics. On the other hand, supervised image segmentation 
methods first learn a classifier from a labeled training set. Although these methods are 
likely to perform better, marking the training set is very time consuming. Semi-
supervised image segmentation is the last type of clustering technique, and these 
methods circumvent these problems by inferring the segmentation from partially labeled 
images. Thus, the key difference from supervised learning is that semi-supervised 
methods utilize the data structure in both labeled and unlabeled data points. 
Furthermore, the main advantage of semi-supervised image segmentation methods is 
that they take advantage of the users’ markings to direct the segmentation, while 
minimizing the need for user labeling (Figueiredo 2007; Xiao-min, Xiao et al. 2009; 
Paiva and Tasdizen 2010). Recent developments of semi-supervised approaches have 
focused on graph-based methods, because the graph-based representation naturally 
copes with nonlinear data manifolds and with this formulation, data points are 
represented by nodes in a graph, and the edge weights are given by some measure of 
distance or affinity between data points. However, results from graph-based semi-
supervised methods are severely limited by the number of data points, because label 
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propagation in the graphs requires first the computation of connectivity matrix and the 
computational complexity grows exponentially with the number of points. Therefore, 
this severely limits the application of semi-supervised learning methods for image 
segmentation (Paiva and Tasdizen 2010).  

Most of the methods for semi-supervised clustering work by incorporating the desired 
relations into classical algorithms such as the expectation-maximization algorithm for 
mixture-based clustering or the K-means algorithm. The desired relations may be 
imposed in a hard way or used to build priors under which probabilistic clustering is 
performed. Figueiredo (2007) described a new approach to semi-supervised mixture-
based clustering for which he derives a simple, fully deterministic generalized EM 
(GEM) algorithm. The keystone of this approach is the formulation of the problem, 
where the labels are only indirectly observer and the linearity of the resulting complete 
log-likelihood, with respect to the missing group labels, will allow deriving a simple 
GEM algorithm. 

To conclude, the semi-supervised clustering is the recent type of clustering that takes 
advantage of the users’ markings to direct the segmentation, while minimizing the need 
for user labeling, and has been applied to problems of symptoms classification in 
medical images and promising results have been obtained (Figueiredo 2007; Xiao-min, 
Xiao et al. 2009; Li and Shen 2010; Paiva and Tasdizen 2010). 

 

 

3.2.3 Algorithms based on Deformable Models 
 

When compared with the previous types described, algorithms based on deformable 
models are more flexible, and can be used for complex segmentation problems (Ma, 
Tavares et al. 2010).  

The designation “deformable models” stems primarily from the use of elasticity theory 
at the physical level, generally within a Lagrangian dynamics setting. The physical 
interpretation views deformable models as elastic bodies which respond naturally to 
applied forces and constraints. Typically, deformation energy functions defined in terms 
of the geometric degrees of freedom are associated with the deformable model. The 
energy grows monotonically as the model deforms away from a specified natural or 
“rest shape” and often includes terms that constrain the smoothness or symmetry of the 
model. In the Lagrangian setting, the deformation energy gives rise to elastic forces 
internal to the model (McInerney and Terzopoulos 1996). 

The widely recognized potency of deformable models stems from their ability to 
segment, match, and track images of anatomic structures by exploiting (bottom-up) 
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constraints derived from the image data together with (top-down) a priori knowledge 
about the location, size and shape of these structures. Deformable models are capable of 
accommodating the often significant variability of biological structures over time and 
across different individuals. Furthermore, deformable models support highly intuitive 
interaction mechanisms that allow medical scientists and practitioners to bring their 
expertise to bear on the model-based image interpretation task when necessary 
(McInerney and Terzopoulos 1996; Pham, Xu et al. 2000; Ma, Tavares et al. 2010). The 
main advantages of deformable models are their ability to directly generate closed 
parametric curves or surfaces from images and their incorporation of a smoothness 
constraint that provides robustness to noise and spurious edges. A disadvantage is that 
they usually require manual interaction to place an initial model and choose appropriate 
parameters (Pham, Xu et al. 2000). 

According to the way that is used for tracking the moving contour, deformable models 
can be further classified into parametric models and geometric models (Ma, Tavares et 
al. 2010). Parametric deformable models represent curves and surfaces explicitly in 
their parametric forms during deformation. This representation allows direct interaction 
with the model and can lead to a compact representation for fast real-time 
implementation. Adaptation of the model topology, however, such as splitting or 
merging parts during the deformation, can be difficult using parametric models. 
Geometric deformable models, on the other hand, can handle topological changes 
naturally. These models, based on theory of curve evolution and the level set method, 
represent curves and surfaces implicitly as a level set of a higher-dimensional scalar 
function. Their parameterizations are computed only after complete deformation, 
thereby allowing topological adaptively to be easily accommodated. Despite this 
fundamental difference, the underlying principles of both methods are very similar 
(McInerney and Terzopoulos 1996). 

The main feature of parametric deformable models is the tracking of the evolution 
through sampled contour points. Explicit tracking has the advantage of high 
computational efficiency and allows for real-time applications. The moving equation for 
the contour can be derived through energy functions or defined directly through 
dynamic forces. There are two different types of formulations for parametric deformable 
models: an energy minimizing formulation and a dynamic force formulation. Although, 
these two formulations lead to similar results, the first formulation has the advantage 
that its solution satisfies a minimum principle, whereas the second formulation has the 
flexibility of allowing the use of more general types of external forces. The basic 
premise of the energy minimizing formulation of deformable contours is to find a 
parameterized curve that minimizes the weighted sum of internal energy and potential 
energy. The internal energy specifies the tension or the smoothness of the contour. On 
the other hand, the potential energy is defined over the image domain and typically 
possesses local minima at the image intensity edges occurring at object boundaries. 
Minimizing the total energy yields internal forces and potential forces. Moreover, 
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internal forces hold the curve together (elasticity forces) and keep it from bending too 
much (bending forces), while external forces attract the curve toward the desired object 
boundaries. In order to find the object boundary, parametric curves are initialized within 
the image domain, and are forced to move toward the potential energy minima under the 
influence of both these forces (McInerney and Terzopoulos 1996; Xu and Prince 1998). 

A deformable contour is a curve, which moves through the spatial domain of an image 
to minimize the following energy functional: 

 

                                                             (3.36) 

 

where the first term is the internal energy functional and is defined to be: 
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and the first-order derivate discourages stretching and makes the model behave like an 
elastic string, while the second-order derivate discourages bending and makes the model 
behave like a rigid rod. Parameters      e      can be used to control the strength of 
the model’s tension and rigidity, respectively. 

The second term in Eq. 3.36 is the potential energy functional and is computed by 
integrating a potential energy function along the contour     : 

 

               
 

 
                                                 (3.38) 

 

where        is the potential energy function. This function is derived from the image 
data and takes smaller values at object boundaries as well as other features of interest, 
and when is given a gray-level image       , the typical potential energy function 
designed to lead a deformable contour toward step edges is: 

 

                             
                                  (3.39) 
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where    is a weighting parameter,         is a 2D Gaussian function with standard 
deviation  ,   is the gradient operator, and    is the 2D image convolution operator. If 
the desired image features are lines, then the appropriate potential energy function can 
be defined as: 

 

                         ,                                 (3.40) 

 

and    is also a weighting parameter. When    is positive, it is used to find black lines 
on a white background, while if    is negative, it is used to find white lines on a black 
background. For both edge and line potential energies, increasing   can broaden its 
attraction range. However, larger   can also cause a shift in the boundary location, 
resulting in a less accurate result (McInerney and Terzopoulos 1996; Xu and Prince 
1998). 

To gain some insight about the physical behavior of deformable contours, we can view 
as a force balance equation: 

 

                 ,                                            (3.41) 

 

where the internal force is given by: 

 

        
 

  
  

  

  
  

  

   
  

   

   
 ,                                 (3.42) 

and the potential force is given by: 

 

              .                                                (3.43) 

 

The potential force         pulls the contour toward the desired object boundaries, 
while the internal force         discourages stretching and bending (McInerney, 1996; 
Xu, 1998). 

The deformable contour is made dynamic by treating      as a function of time  : 
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where the coefficient    is introduced to make the units on the left side consistent with 
the right side. Thus, the minimization is solved by placing an initial contour on the 
image domain and allowing it to deform according to Eq. (3.44) (McInerney and 
Terzopoulos 1996; Xu and Prince 1998). 

As shown before, the deformable model can be modeled as a static problem, and an 
artificial variable   was introduced to minimize the energy. However, it is sometimes 
more convenient to formulate the deformable model directly from a dynamic problem 
using a force formulation. Such a formulation permits the use of more general types of 
external forces that are not potential forces, for example, forces that cannot be written as 
the negative gradient of potential energy functions. The dynamics of a contour        
must satisfy: 

 

 
   

   
                         ,                           (3.45)  

 

where   is a coefficient that has a mass unit and       is the damping force (or viscous 

force) defined as    
  

, with   being the damping coefficient. The mass coefficient   in 
front of the inertial term for the image segmentation is often set to zero, since the 
inertial term may cause the contour to pass over the weak edges. Thus, the dynamics of 
the deformable contour without inertial term becomes: 

 

 
  

  
                ,                                     (3.46) 

 

and the external forces can be either potential forces or nonpotential force. However, 
nonpotential forces cannot be derived from the variational energy, but they are often 
expressed as the superposition of several different forces. This superposition 
formulation allows the external forces to be broken down into more manageable terms. 
For example, one might define the external forces to be composed of both Gaussian 
potential forces and pressure forces. For using the Gaussian potential force,   must be 
selected to have a small value in order to the deformable model to follow the boundary 
accurately. As a result, the Gaussian potential force can only attract the model toward 
the boundary when it is initialized nearby. On the other hand, the pressure force can 
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either inflate or deflate the model, and then deformable models that use pressure forces 
are also known as balloons (McInerney and Terzopoulos 1996; Xu and Prince 1998). 

The snake method was the first deformable model applied to the medical image 
segmentation, and the development of parametric deformable models has a tight 
relationship with the snake method. The original snake method used the tension and 
rigidity of the contour, the internal energy, the gradient magnitude as the external 
energy. Furthermore, the snake method is sensitive to the initial conditions. The moving 
contour may stop at places with local functional minimum or places where the gradient 
magnitude is too small so that the external forces tend to be zero. In the non-interactive 
applications, the snakes must be initialized close to the structure of interest to guarantee 
good performance. Consequently, in order to get a correct segmentation the initial 
contour must have the same topology as the desired object and must be placed near the 
object boundary (McInerney and Terzopoulos 1996; Ma, Tavares et al. 2010). 
Therefore, there are two key difficulties with parametric active contour algorithms. 
First, the initial contour must, in general, be close to the true boundary, or else it will 
likely converge to the wrong result. The basic idea to address this problem is to increase 
the capture range of the external force fields and to guide the contour toward the desired 
boundary. The second problem is that active contours have difficulties processing into 
boundary concavities. 

In order to eliminate the dependence on the initial position Xu (1998) analyzed the 
reason why snake methods have poor convergence to boundaries with large curvatures 
and replaced the gradient field with the gradient vector field (GVF), which has a larger 
capture region and slowly changes away from the boundaries. These changes decreased 
the dependence on initial positions, but the field can attract the moving contour to right 
position (Ma, Tavares et al. 2010). 

The gradient vector flow fields are dense vector fields derived from images by 
minimizing certain energy functional in a variational framework. The minimization is 
achieved by solving a pair of decoupled linear partial differential equations that diffuses 
the gradient vectors of a gray-level or binary edge map computed from the image. The 
active contour that uses the GVF field is called GVF snake. The GVF snake is 
distinguished from nearly all previous snake formulations in that its external forces 
cannot be written as the negative gradient of a potential function. Because of this, it 
cannot be formulated using the standard energy minimization framework; instead, it is 
specified directly from a force balance condition. Particular advantages of the GVF 
snake over a traditional snake are its insensitivity to initialization and its ability to move 
into boundary concavities. Furthermore, GVF snake does not need prior knowledge 
about whether to shrink or expand toward the boundary. The GVF snake also has a 
large capture range, which means that, barring interference from other objects, it can be 
initialized far away from the boundary. This increase capture range is achieved through 
a diffusion process that does not blur the edges themselves, so multi-resolution methods 
are not needed (Xu and Prince 1998). 
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Statistical techniques can be integrated in parametric deformable models and they are 
also popular. Typical examples include ASM and AAM and to extract the mean shape 
and to define proper ranges of the parameters are used training samples. ASM uses the 
edge information to move the shape points to better positions after finding an 
approximate position. On the other hand, AAM uses the mean texture of each shape 
point to find a better position. The searching procedure is like the snake method, but the 
movements of shape points are constrained by ranges of shape parameters which 
guarantee the similarity between the segmentation result and the training samples. This 
characteristic is very useful when the shape or topology of structures can hardly be 
identified from their appearances in the images (Ma, Tavares et al. 2010). 

Parametric deformable models are widely used in structure segmentation and 3D 
reconstructions; however, the computational complexity such as parameterisation of the 
contours, handling of topological changes, and re-distribution of the contour points 
considerably restricts their applications. 

In parametric deformable models an explicit parametric representation of the curve is 
used, which can lead to fast real-time implementation. However, it is difficult for 
parametric deformable models to adapt the model topology during deformation. On the 
other hand, geometric deformable models are designed to handle topological changes 
naturally. These models are based on the theory of curve evolution, and the level set 
method, where the evolving curves or surfaces are implicitly represented as a level set 
of higher-dimensional scalar function, a level set function. Furthermore, geometric 
deformable models are also called level set methods (Wang, Zhu et al. 2007). The main 
idea of the level set method is to implicitly embed the moving contour into a higher-
dimensional level set function and view the contour as its zero level set. Then, instead 
of tracking the discrete contour points, one can track the zero level set of the level set 
function. The advantage of doing so is that the topological changes can be easily 
handled and the geometric properties of the contour can be implicitly calculated. 
Therefore, the complexity of geometric deformable models, speed functions should be 
defined properly to drive the contour to the right position (Ma, Tavares et al. 2010). 
Thus, the level set method views a moving curve as the zero level set of a higher-
dimensional function       . The level set function satisfies: 
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where the artificial time   denotes the evolution process,      is the moving curve and 
     represents the region that      encloses. The evolution equation of the moving 
curve with speed    in its normal direction is given by: 
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           .                                                   (3.48) 

 

In Eq. 3.48, the surface     corresponding to the propagating hypersurface may 
change topology, as well as form sharp corners.  

The motion by mean curvature is a particular case of the level curve of   passing 

through   and this particular case happens when       
     

       
 . The equation 3.48 

becomes: 
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with              and        . 

Geometric deformable model based on mean curvature motion is given as: 
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and, in this equation,     is a constraint on the area inside the curve, increasing the 
propagation speed, where         is an edge-sensitive speed function defined as: 

 

     
 

               
,                                            (3.51) 

 

where    . With this argument is clear that, if the image gradient              
approaches the local maximum at the object boundaries, the curve gradually attains zero 
speed. The ideal condition is                and     at the boundaries, the 
evolving curve eventually stops and the final zero level set          corresponds to 
the segmentation result.  

Malladi’s algorithm also uses the gradient information to define the speed function and 
add the curvature influence to keep the contour smooth. Malladi’s speed function model 
is intuitive because when the contour moves to the structure boundary, the increase of 
the gradient magnitude decreases the speed value so; the evolution of the contour slows 
down. Furthermore, the evolution can be stopped after a time to gain the position of the 
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structure boundary, and the stopping criterion should be selected carefully to make sure 
the contour stops at the right position. However, the contour may leak or shrink to 
disappearance after a long evolution in the images with noise or blurred (Ma, Tavares et 
al. 2010). 

The geodesic snake model is another well-known deformable model (Wang, Zhu et al. 
2007). Unlike Malladi’s model, the geodesic active contour (GAC) algorithm modeled 
the segmentation as an optimization problem of finding the minimal distance curve in 
the image. This model also uses the image gradient to stop the curve and its level set 
formulation is as follows: 

 

  

  
                 

  

    
              .                    (3.52) 

 

The moving equation of GAC is derived from the above function and the procedure of 
finding the optimal solution corresponds to the searching of the structure boundary. 
Moreover, unlike in Malladi’s models, the equilibrium state of the moving contour 
guarantees that a long computation time will not lead to leakage (Wang, Zhu et al. 2007; 
Ma, Tavares et al. 2010). With the GAC algorithm can be seen a tight relationship 
between the parametric model and the geometric model. The contours of interest can be 
post-processed by using statistical techniques such as maximizing a posterior (MAP) 
and principle component analysis (PCA). Furthermore, to eliminate dependence on the 
initial conditions can be combined the gradient vector flow with the GAC algorithm and 
with this combination the results are better than the original GAC algorithm (Ma, 
Tavares et al. 2010). 

The classical snake models rely on the edge function        , i.e., depend on the image 
gradient      to stop the curve evolution and these models can detect only objects with 
edges defined by a gradient. Therefore, in practice, discrete gradients are bounded, and 
so stopping function is never zero on the edges, and the curve may pass through the 
boundary, even for the geodesic snake model mentioned above. In case of the image to 
be very noisy, the isotropic smoothing Gaussian has to be strong. To solve these 
problems, Chan and Vese proposed a different deformable model that is not based on 
the gradient of the image for the stopping process. Chan and Vese’s model is a 
simplified version of the Mumford and Shah energy model and the evolvement of the 
curve is based on the general Mumford-Shah formulation (Eq. 3.53) of the image 
segmentation, by minimizing the functional: 
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In Eq. 2.52,    denotes the smooth, closed segmenting curve,   and   are positive 
parameters,         is a given image,   is the image domain. The solution image   
is formed by smooth regions    and sharp boundaries, denoted here by   (Tsai, 2001; 
Wang, 2007). 

The restriction     can be reduced to piecewise constant functions and then can be 
finding a partition of    such that   in    equals a constant. Based on the above 
equation, Chan and Vese proposed the following minimization problem for two-phase 
segmentation: 

   
       

               
 

           
 

          
         

         

          
             

          

  

(3.54) 
 
where   is the level set function and      is the Heaviside function: 
 

      
              
             

                                         (3.55) 

 
Usually, the deformable models implemented by means of the level set method suffer 
from a slower speed of convergence than parametric deformable models due to their 
computational complexity. However, they can automatically handle topology changes 
and allow for multiple simultaneous boundary estimations. Specifically, algorithms 
based on geometric deformable models aim to eliminate noise influence, prevent 
leakage, enhance accuracy and efficiency, and make the algorithms more automatic and 
less dependent on the initial conditions (Tsai, 2001; Wang, 2007). 

In conclusion, deformable models are promising for the segmentation of the medical 
images, because these models can easily incorporate statistical information and other 
techniques, while using curve evolution to find the optimal boundaries can provide a 
contour with regular geometric properties. 
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3.3 Summary 
                                                                                                                                                                                                                                                                                                                                                                                                                                    

Image segmentation is a basic problem in Computational Vision and the key to the 
procedure from processing to analyzing. Extracting object contour of images, obtaining 
specific edge information that can assist the image interpretation. Furthermore, 
segmentation is inserted in the analysis stage and can be divided into three classes based 
on their essential techniques: thresholding, clustering and deformable models.  

 

Figure 3.6: Different thresholding-base segmentation algorithms. 

 

There are several thresholding techniques and some of them are based on the image 
histogram, global Thresholding (e.g. Otsu method); others are based in local properties 
or local gradient, local Thresholding. Moreover, local thresholding algorithms can be 
further classified as edge-based ones, region-based ones and hybrid ones, Figure 3.19. 

The clustering algorithms have the same function as classifier methods and classifier 
methods are pattern recognition techniques that seek to partition a feature space derived 
from the image using data with known labels (Pham, 2000). In clustering algorithms, 
the partitioning is based on pairwise relations between individual patterns, rather 
centralized relations between samples and a few cluster representatives (like centroids, 
for example) (Matta and Dugelay 2009). Furthermore, the clustering techniques can be 
divided in three main parts: supervised algorithms, unsupervised algorithms and semi-
supervised algorithms, Figure 3.20 (Sutton, Bezdek et al. 2000; Ma, Tavares et al. 
2010). The supervised techniques are frequently used and include k-nearest neighbor 
(kNN), maximum likelihood (ML) algorithms, supervised artificial neuronal networks 
(ANN), support vector machines (SVM), active shape models (ASM) and active 
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appearance models (AAM). On the other hand, unsupervised classification techniques 
are also called clustering algorithms, and with these techniques, the structure features 
are extracted from the classified points. Unsupervised classification includes fuzzy C-
means algorithms (FCM), iterative self-organizing data analysis technique algorithms 
(ISODATA) and unsupervised neuronal networks (Ma, Tavares et al. 2010). Finally, 
semi-supervised image segmentation is the last type of clustering technique and these 
methods circumvent these problems by inferring the segmentation from partially labeled 
images. Thus, the key difference from supervised learning is that semi-supervised 
methods utilize the data structure in both labeled and unlabeled data points. 
Furthermore, the main advantage of semi-supervised image segmentation methods is 
that they take advantage of the users’ markings to direct the segmentation, while 
minimizing the need for user labeling (Figueiredo 2007; Xiao-min, Xiao et al. 2009; 
Paiva and Tasdizen 2010). 

 

Figure 3.7: Image segmentaion algorithms based on clustering methods. 

 

Algorithms based on deformable models are more flexible when compared with the 
above two types, and they can be used for complex segmentations and according to the 
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way that is used for tracking the moving contour, deformable models can be further 
classified into parametric models and geometric models, Figure 3.21. 

 

 

Figure 3.8: Segmentaion algorithms based on deformable models. 
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Chapter IV - Segmentation Algorithms for 
Human Ear Images 
 

 Introduction; 

 Segmentation of the Tympanic Membrane; 

 Segmentation of the Middle Ear; 

 Segmentation of the Inner Ear; 

 Summary. 
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4.1 Introduction 
 

The Human auditory system consists of the organs of hearing and balance and is usually 
divided into three parts: external ear, middle ear and inner ear. The ear as a sensory 
organ is far more complex than other sensory organs, and is used to warning and to 
communicate. The sensory cells are located in the cochlea, but the cochlea not only 
serves to convert sound into a code of neural impulses in the auditory nerve, but it also 
performs the first analysis of sounds that prepare sounds for further analysis in the 
auditory nervous system (Seeley, Stephens et al. 2004; Moller 2006).  

A number of approaches have been presented for building 3D models of the ear for 
education (Jun, Song et al. 2005; Wang, Zhu et al. 2007), biomechanical studies 
(Decraemer, Dirckx et al. 2003; Sim and Puria 2008) and pre-operative assessment 
(Hussong, Rau et al. 2009; Rau, Hussong et al. 2010). In order to perform these 
approaches can be used different types of medical images that are obtained from several 
imaging techniques, such as, Computerized Tomography (CT-standard, Micro-CT, 
Spiral-CT) (Christensen, He et al. 2003; Xianfen, Siping et al. 2005; Poznyakovskiy, 
Zahnert et al. 2008), Magnetic Resonance (MR-standard, Micro-MR) (Lane, Witte et al. 
2005; Liu, Gao et al. 2007; Shi, Wang et al. 2010) and Histological processing (Liu, 
Gao et al. 2007). To study the anatomical features of the ear have been used cat, guinea 
pig, chinchilla and human ears (Liu, Gao et al. 2007; Sim and Puria 2008). 

Since the late 1980’s, several researches have combined the technology of image 
processing, medical imaging and histological process to model the structures of the 
cochlea. So far, modeling of the middle ear has proven to be quite accurate and vivid 
when compared to the actual morphology of the middle ear (Liu, Gao et al. 2007). 

The image processing technology is essential for closer the geometric models to 
anatomical structures of the ear. Thereby, the segmentation of the ear structures is 
crucial to creating computational models and, when these models are used, it is possible 
to perform simulations of the ear structures. From this simulation becomes easier 
understanding the connections between the ear structures and their functions. For 
example, the using of geometric models of the ear structures makes easier the 
understanding and the optimization of the prosthetic implants. On the other hand, also 
are improved the methodologies for planning the surgical procedures (Tuck-Lee, Pinsky 
et al. 2008). The biomechanical modeling of the ear also presents a key role in diagnosis 
and treatment of middle and inner ear diseases, because these two processes are 
hampered by the small size of the structures and by the hidden locations of the middle 
and inner ear structures in the temporal bone (Seemann et al. 1999). In addition, through 
the modeling of the inner ear can be identified anatomic abnormalities of the bony 
labyrinth, 15% of patients with hearing loss have gross configurationally anomalies. 
Therefore, there is a possibility of to create templates that standardize the abnormal 
configurations (Melhem, Shakir et al. 1998). Cochlear implant systems present as a 
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direct application of the geometric modeling of the ear, especially today, because they 
are used in clinical interventions in patients with deafness or severe hearing loss. The 
position of the implanted electrodes have been present as one the most important 
variables in the speech recognition. Through the geometric modeling is possible to 
create automation in the electrode insertion process. This process is an important step 
towards a traumatic cochlear implant surgery. Up to now, only manual insertion tools or 
insertion aids exist and these tools provide the possibility to manually insert the 
electrode with one given, fixed insertion technique which is not adjustable to the 
patient’s need (Hussong, Rau et al. 2009; Rau, Hussong et al. 2010). In addition, the 
post processing, as the virtual endoscopy technique has been highly developed as a form 
of simulation of the middle ear surgery (Liu, Gao et al. 2007). 

Following, the use of computational algorithms to segment ear structures in images is 
presented. The algorithms to be presented have into account the image type to be 
analyzed, the characteristics of the shape of the structures, the texture characteristics and 
the intensities range of the region of interest. 

 

 

4.2 Segmentation of the Tympanic Membrane 
 

As already mentioned, it is known that the ear is divided in three parts: external ear, 
middle ear and inner ear. The structure that divides the external ear from the middle ear 
is the tympanic membrane and it is externally observed from video-otoscopy and 
otoscopy images (Xie, Mirmehdi et al. 2005; Comunello, Wangenheim et al. 2009). 
Through analysis of these types of images can be diagnosed several pathologies, such as 
perforations, otitis media and cholesteatoma (infection within the middle ear cleft) (Xie, 
Mirmehdi et al. 2005). 

One of the algorithms that can be used to perform the segmentation of this structure is 
the generalized version of the well-known gradient vector flow snake (GGVF) (Xie, 
Mirmehdi et al. 2005). Xie, Mirmehdi et al. (2005) used this algorithm with the aim to 
delineate the tympanic membrane boundaries and to detect color abnormalities in the 
tympanic membrane. This geometric generalized GVF snake is useful to delineate 
boundaries with small gaps and tympanic membrane boundaries present this feature. 
The GGVF snake presents other advantages that demonstrate its efficiency to segment 
the tympanic membrane boundaries, such as insensitivity to initialization, ability to 
move into boundary concavities and a large capture range that barring interference from 
other objects. This increased capture range is achieved through a diffusion process that 
does not blur the edges themselves, multi-resolution methods are not needed (Xu and 
Prince 1998). 
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The tympanic membrane also can be segmented by the Mumford-Shah’s semi-
automatic algorithm (Comunello, Wangenheim et al. 2009), Figure 4.1.  

 

 

Figure 4.1: An example of the Mumford-Shah segmentation results 
(from (Comunello, Wangenheim et al. 2009)) 

 

The Mumford-Shah algorithm was used by Comunello et al. (2009) to analyze 
quantitatively the tympanic membrane and its pathologies. This algorithm presents 
effective in image segmentation of the tympanic membrane, because it has high 
robustness in the presence of noise and in the choice of place to start the segmentation 
(Tsai and Willsky 2001). In addition, this algorithm guarantees that no segment leakage 
between structures occurs, and it also allows knowledge the quantitative information 
about tympanic membrane perforations, so it is indicated to the clinic diagnosis 
(Comunello, Wangenheim et al. 2009). 

 

 

4.3 Segmentation of the Middle Ear 
 

The middle ear is characterized by the bone structures and, theoretically, would be 
possible to segment these structures using a thresholding algorithm by selecting a value 
between the air intensity value (low value), and the bone intensity value (high value). 
However, the partial volume effects suppress the bone structures that are around the 
inner ear and, thus the middle and inner ear bone structures present a similar intensity 
distribution.  

Thresholding algorithm was used by Lee et al. (2010) to segment the middle ear in 
Micro-CT images that present a higher anatomical resolution. In addition, such images 
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allow a detailed observation of the middle ear structures that have a reduced size (Lee, 
Chan et al. 2010). The thresholding algorithm is also used by Rodt et al. (2002), but, to 
reduce the noise, morphologic operations (erosion and dilation) were applied on the 
input images (Rodt, Ratiu et al. 2002), Figure 4.2. The thresholding method is useful 
when the structures to be segmented show a large difference in the pixel intensity 
values. Its main limitations are that, in its simplest form, only two classes are generated, 
and it cannot be applied to multichannel images. In addition, thresholding typically does 
not take into account the spatial characteristics of an image. This causes it to be 
sensitive to noise and intensity inhomogeneities, which can occur in CT images. Both of 
these artifacts essentially corrupt the histogram of the image, make the separation more 
difficult (Pham, Xu et al. 2000). 

 

 

Figure 4.2: Axial CT image of the temporal bone and adjacent structures showing segmented 
structures in different colors (from (Rodt, Ratiu et al. 2002)). 

 

Lee et al. (2010) introduces the 3D reconstruction through volume rendering and then 
the virtual endoscopy in the analysis of the middle ear, Figure 4.3. Methods for the 3D 
visualization of structures in medical images have been frequently used, and two of 
those methods are the volume rendering and the surface rendering (Kim, Kwon et al. 
2002). 

The volume rendering algorithm was proposed in the 1970’s (Calhoun, Kuszyk et al. 
1999) and it is a computer graphics technique whereby the object or phenomenon of 
interest is sampled or subdivided into a set of cubic building blocks, called voxels (or 
volume elements). A voxel is the 3D counterpart of the 2D pixel and is a measure of 
unit volume (Jun, Song et al. 2005). On the other hand, the surface rendering algorithm 
is an indirect method of obtaining an image from a volume dataset. The volumetric data 
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must first be converted into geometric primitives, by a process such as isosurfacing, 
isocontouring, surface extraction, or border following. These primitives are then 
rendered for display using conventional geometric rendering techniques. In contrast, a 
volume-rendering algorithm provides a method of directly displaying the data without 
any intermediate surface representations. Both algorithms have advantages and 
disadvantages. 

  

 

Figure 4.3: Rendering of the middle-ear structures using volume renderer: the facial nerve (FN), 
long process of the incus (LPI), malleus (M), ponticulus (PON), pyramidal process (PP), 

promontory (PROM), round-window fossa (RWF), stapes (S), sinus tympani (ST) 
and subiculum (SUB) (from (Lee, Chan et al. 2010)) 

 

A major advantage of the volume-rendering algorithm is that the 3D volume can be 
displayed without any knowledge of the geometry of the dataset and hence without 
intermediate conversion to a surface representation. This conversion step in a surface 
rendering algorithm can be sometimes be quite complex, especially if surfaces are not 
well defined, and can require various user interventions (such as manual contour tracing 
in segmentation). On the other hand, because the 3D dataset is reduced to a set of 
geometric primitives in a surface-rendering algorithm, this algorithm can provide fast 
display and manipulation of the 3D reconstructions built. However, a surface rendering 
algorithm has the following disadvantages: it discards the interior of the objects and 
maintains the objects’ shells; does not facilitate real-world operations such as cutting, 
slicing, or dissection; and does not enable artificial viewing modes, such as semi-
transparency. By contrast, since the entire image stack data is used for a volume-
rendering algorithm, computes using considerable memory and processing power are 
required to handle volumes rendered in this manner. Because the entire dataset is 
preserved in a volume-rendering algorithm, any part, including internal structures and 
details (which may be lost when reducing to geometric structures with surface 
rendering) may be viewed. 
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For medical purposes, a volume rendering algorithm is preferred because of its ability to 
contain data on the internal architecture, to give a texture for the density changes in the 
data, to allow easy and natural exploration of volumetric data, and to exclude the need 
for classifying or segmenting the data (Calhoun, Kuszyk et al. 1999; Seemann, Seemann 
et al. 1999; Kim, Kwon et al. 2002; Jun, Song et al. 2005; Lee, Chan et al. 2010). The 
3D images of the middle ear are important for: the visualization of ossicles, the 
achievement of clinical diagnosis, the planning of surgery, as well as for the post-
surgical treatment. Major reasons cited for reduced clinical usefulness of 3D 
visualization include poor scan quality and difficulty in navigating through the 3D 
environment (Lee, Chan et al. 2010). In addition, volume rendering algorithms are also 
used for to 3D reconstruction of the inner ear (Seemann, Seemann et al. 1999).  

Apart from the volume rendering algorithm, for micro-CT images are used the 
Marching Cubes (MC) algorithm for to perform the 3D reconstruction of the middle ear 
and inner ear (Decraemer, Dirckx et al. 2003; Xianfen, Siping et al. 2005), Figures 4.4 
and 4.5. The MC algorithm is a sequential-traversal method that was described for the 
first time in 1987 by Lorense and Cline (Vignoles, Donias et al. 2010).  

 

 

Figure 4.4: The 3D reconstructions of the three middle ear ossicles (malleus, a; incus, b; stapes, c) 
after segmentation of the serial section stack of the human temporal bone 

(from (Decraemer, Dirckx et al. 2003)) 

 

The standard MC constructs a facetized isosurface by processing the data set in a 
sequential, cube-by-cube (scanline) manner (Newman and Yi 2006). Vignoles et al. 
(2010) proposed a triangulation method, called simplified marching cubes (SMC), 
which can be viewed as a simplified alternative to the MC algorithm. The major 
advantage of the SMC is that all computations can be made with integer arithmetic 
(Vignoles, Donias et al. 2010). On the other hand, one advantage of the cube-by-cube 
processing of standard MC is that each edge intersection location only needs to be 
computed once. The MC standard also presents disadvantages. The first difficulty is 
observed when the MC algorithm is extended to higher dimensions, because becomes 
difficult to determine the intersection topology look-up table. There is a second 
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difficulty for high-dimensional data that is intersection topology table size increases 
with the dimension. In case of high-degree isosurfaces, one disadvantage of standard 
MC isosurfaces is that they can exhibit visible faceting artifacts. Datasets with cells of 
large size (relative to the desired viewing resolution) and datasets with cells of variant 
sizes, such as finite element data sets, tend to exhibit more severe artifacts. Use of a 
higher-degree isosurface representation is one means to reduce these artifacts. A key 
advantage of higher-degree patches is that a smoother isosurface can be produced. 
However, parametric polynomial fitting presents a heavier computational burden than 
triangular mesh fitting. Lastly, one complication that limits the MC is non-crisp 
structure boundaries. An example is in some medical data where non-uniform signal 
response of certain structures makes their boundaries not uniformly distinct (Newman 
and Yi 2006). 

For bone which has a high-contrast ration with respect to surrounding soft tissue and air 
in micro-CT images, contouring can be performed by semi-automated algorithms. The 
shrink-wrapping algorithm is used in (Sim and Puria 2008) to tridimensional semi-
automatic segmentation of the middle ear bone structures contained in micro-CT 
images, Figure 4.6.  

 

  

Figure 4.5: Micro-CT image (left) and segmented slice image of malleus (right) with a high-contrast 
ration and  shrink-wrapping algorithm on slice 490 

(from (Sim and Puria 2008)). 

 

The shrink-wrapping algorithm was proposed in 1999 by Kobbelt et al., and can be 
characterized by a plastic membrane that is wrapped around an object that at the end of 
the process provides an exact imprint of the given geometry. The proposed approach is 
very similar to the concept of snakes or deformable surfaces known in image processing 
and computer vision. These techniques are used to extract contours from two and three 
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dimensional image data by optimizing the shape of a polygon or a triangle mesh 
(Kobbelt, Vorsatz et al. 1999). The shrink-wrapping algorithm is a shape reconstruction 
algorithm. 

The shape reconstruction algorithms are characterized by two main stages: data 
acquisition and surface reconstruction. The data acquisition stage acquires an accurate, 
possibly unorganized, 3D point cloud from a real object, while the surface 
reconstruction stage converts the point cloud into a smooth surface (Koo, Choi et al. 
2007). Furthermore, the shrink-wrapping algorithm is characterized by its high 
accuracy; however, there is a need of to perform the manual segmentation of the bone 
boundaries in the first image (Sim and Puria 2008). In addition, the algorithm is 
sensitive to artifacts appearance. The artifacts may result from noise presence as also 
from the lack of operator precision (Kobbelt, Vorsatz et al. 1999; Koo, Choi et al. 
2007). The major advantage of the tridimensional structure bounded by surfaces is the 
ease in calculating its dimensions and its volume and so with this algorithm can be 
supported clinic conclusions.  

 

 

4.4 Segmentation of the Inner Ear 
 

The cochlea is one of the inner ear structures and, according to Xianfen et al. (2005), the 
segmentation of the cochlea is generally performed by using manual adjustments after 
incomplete automatic segmentation algorithms, such as region growing, threshold and 
morphologic filtering. Additionally, the deformable active contour algorithm is used for 
the segmentation of the cochlea by Yoo et al. (2001). Snake model has been applied 
successfully to a variety of image segmentation tasks, but it usually requires user 
interaction to locate the initial contour and adjust internal parameters of the model.  

The basic knowledge to be used in cochlear segmentation is that the outer surface of the 
human cochlea is fairly smooth. The snake segmentation algorithm is considered 
appropriate for this application, because it can control the smoothness and adjust the 
convergence property. However, the snake modeling requires human interactions, 
namely, adjustment of processing parameters and specification of an initial contour. It 
cannot be operated well in mixed regions, in which edges to distinguish the cochlea are 
weak, and the intensity distribution of mixed structures is similar to that of the cochlea. 
Furthermore, semiautomatic segmentation systems using direct visual feedback have 
been applied to various medical images to reduce the time-consuming manual user 
interaction (Yoo, Wang et al. 2001). Moreover, this method is based on the assumption 
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that there are no significant changes in the shape of the cochlea between adjacent CT 
image slides.  

Xianfen et al. (2005) applied the 3D narrow band level set segmentation algorithm, 
which not only kicks over the traces but also saves much time of post-processing to 
segment the cochlea, Figure 4.6. However, the 3D level set algorithm is used rarely, 
especially for the segmentation of the inner ear cochlea, but the 3D level set algorithm is 
adopted by Xianfen et al. (2005) for the following reasons: First, arbitrarily complex 
shapes can be modeled and topological changes, such as merging and splitting, are 
handled implicitly during the evolution of the level set function. Second, relatively 
small features can be segmented with the level set model. Third, the level set algorithm 
can control the smoothness of the contour. Additionally, the inner ear and cochlea are 
small and complex anatomical structures with fairly smooth outer surface. Hence, the 
level set algorithm is considered appropriate for this application. In the final step of the 
3D narrow band level set, the segmented results are rendered with the Marching Cubes 
algorithm. A negative aspect of this algorithm is the need of to perform manual 
segmentation to remove several closely interconnected regions in boundaries in each 
image slice. The level set methods are very computationally expensive since all mesh 
points need updating every time, but the narrow band level set is an efficient 
modification of the level set methods, working only in a neighborhood of the zero level 
set (Xianfen, Siping et al. 2005; Mille 2009). 

 

 

Figure 4.6: Correlation of points on the surface to the three orthogonal 2D sections using the 
marching cubes algorithm (3rd image) and cochlear segmentation in images 1st, 2nd, 4th performing 



Computational Processing and Analysis of Ear Images 

 

Elisa Maria Lamego Barroso                                                                                                   110 

with a narrow band level set 
(from (Xianfen, Siping et al. 2005)). 

 

 

 

Figure 4.7: The result of applying a Connected Threshold region growing. From left to right: the 
original CT image containing the temporal bone (A), a stencil produced from the image containing 

the cochlea (B) and the result of the segmentation, which contains the pixels included 
in the region of interest (C) (from (Todd, Tarabichi et al. 2009)). 

 

Todd et al. (2009) applied the connected threshold region growing algorithm for semi-
automatic extraction of the cochlea from the spiral-CT images, Figure 4.7. Connected 
threshold region growing requires minimal user input, and its main criterion for 
inclusion of pixels in the region of interest (ROI) is a pixel intensity threshold range. 
The user specifies as input the index of a seed pixel and the lower and upper threshold 
limits. Pixels are included into the ROI if their intensity values are within the range 
specified. In order to iterate through pixels within the image and establish the ROI, the 
connected threshold applies a flood iterator for visiting neighboring pixels. Since the 
algorithm requires only three input values, it is ideal for applications that require a more 
automated approach, minimizing user input. One limitation of the region growing 
method is that segmentation results may depend on selection of the seed pixel; its 
location and intensity. Upper and lower threshold values used in Todd et al.(2009) were 
-800 and 900, respectively. Furthermore, connected threshold region growing has also 
been applied for segmentation of anatomical landmarks surrounding the cochlea; most 
importantly for implant cochlear pre-operative planning, the external ear canal. This 
structure provides the surgeon with crucial information for determining the most 
appropriate path to take on approach to the cochlea, for implant cochlear insertion 
(Todd, Tarabichi et al. 2009). 

Poznyakovskiy et al. (2008) also used active contours (snakes) for segmenting the 
cochlea in micro computed tomography images, Figure 4.8. In this type of images is 
usually observed the presence of noise and partial volume effects. In order to suppress 
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artifacts on tomography images, a nonlinear smoothing method, anisotropic diffusion 
was applied. 

 

 

Figure 4.8: Segmentation with active contours: Image in cylindrical projection at 120º denoised 
with anisotropic diffusion (a); Image after segmentation with active contours (b) 

(from (Poznyakovskiy, Zahnert et al. 2008)). 

 

The vestibular system is another structure of the inner ear, and it plays an important role 
in maintaining the equilibrium by sensing body movements and sending signals to the 
brain. Located in the inner ear compartment of the temporal bone, the vestibular system 
contains both osseous and membranous components. There are several challenges in 
developing such an automatic segmentation system for the vestibular system. Firstly, 
the diameter of the semicircular canals is as small as the magnitude of the voxel size. 
The cross-sectional diameter of the semicircular canal is around 0.8 mm in Humans 
(Gray 1985). Secondly, image intensities of the semicircular canals are not 
homogenous. Figure 4.9 shows the volume rendering via maximum intensity projection 
of a right-side vestibular system from MR images. Furthermore, the vestibular system is 
of similar image intensity as the inner ear, and is connected anatomically with the 
cochlear and auditory nerves. To analyze the vestibular system alone, the connected 
non-vestibular structures need to be removed and to enhance edges for better 
segmentation, MR images were processed by Shi (2010) using the anisotropic diffusion 
filter, which smoothed the image but preserved salient edges.  
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Figure 4.9: In top row is shown the volume rendering results within a ROI and in bottom row 
the corresponding segmentation results (from (Shi, Wang et al. 2010)). 

 

Thereafter, Shi et al. (2010) applied the k-means clustering as a pre-segmentation step 
to categorize the voxels into background and foreground based on their signal 
intensities. The resultant cluster with smaller size was considered to be the foreground. 
The foreground cluster contained several connected components, among which the 
largest was chosen as a coarsely defined vestibular region. The surface of the coarsely 
segmented vestibular system was extracted using the marching cube algorithm and 
represented as a triangle mesh. Non-vestibular auditory structures, the cochlea and 
auditory nerves, are irrelevant to the function of balance control and should be excluded 
in the analysis of the vestibular system. In order to automatically remove them, Shi et 
al. (2010) defined a cutting plane on the reference vestibular surface of a healthy 
subject. By rigidly aligning the reference and the study surfaces using the iterative 
closest point (ICP) algorithm. To further refine the preliminary segmentation result, Shi 
et al. (2010) applied the deformable model method (McInerney and Terzopoulos 1996). 
In addition, in order to validate the segmentation results, Shi et al. (2010) performed the 
quality control over all the segmentation results by visually comparing the segmented 
surface with the volume data in the region of interest visualized using the volume 
rendering.  
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Figure 4.10: Segmentation results in CT volumes of the chorda tympani and facial nerve using the 
atlas based segmentation 

(from (Noble, Warren et al. 2008)). 

 

Segmentation of the structures of the ear would improve trajectory planning safety and 
enable the possibility of automated planning. Two important structures of the ear, the 
facial nerve and the chorda tym pani, are difficult to segment with traditional methods 
because of their size (diameters as small as 1.0 and 3.0 mm, respectively), the lack of 
contrast with adjacent structures, and large interpatient variations. Atlas-based 
segmentation is a common technique, which relies on image registration, to perform 
automatic segmentation of general structures in medical images, and this technique was 
used by Noble et al. (2008) to segment the facial nerve and the chorda tympani, Figure 
4.10. Noble et al. (2008) used a novel method that combines an atlas-based approach 
with a minimum cost path finding algorithm. The atlas is used to create a spatially 
varying cost function, which includes geometric information. Once the cost function is 
evaluated, a 3D minimum cost path finding is computed. This process is used to extract 
the centerline of the facial nerve and of the chorda. The centerlines are then expanded 
into the full structures using a level-set algorithm with a spatially varying speed 
function. Moreover, Noble (2008) presented the first method for the automatic 
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segmentation of two critical structures for cochlear implant surgery: the facial nerve and 
the chorda tympani. Because of the shape and size of these structures, and because of 
the lack of contrast between these and surrounding structures, accurate segmentation is 
challenging. 

 

Figure 4.11: Transverse segmentation differences between the deformed patient left inner ear 
(black) and the atlas (white) (from (Christensen, He et al. 2003)). 

 

The inner ear also can be called the labyrinth. Which contains the semicircular canals, 
otolith organs (sensory receptors for balance), and the cochlea (sensory receptors of 
hearing), as it was already referred. Christensen et al. (2003) described an automatic 
method for making precise measurements of the inner ear anatomy also using a 
deformable atlas of the human inner ear in the CT images, Figure 4.11. In this approach, 
the CT image of the inner ear anatomy from an individual is placed in a common 
orientation, and then the point-by-point correspondence between it and the deformable 
atlas is determined. In this method, the image data were converted to unsigned 8-bit 
format to reduce the storage using linear interpolation. Then, the images were 
thresholded using a threshold value of 134, which corresponds to the range from 1120 
to 1135 Hounsfield units in the signed 16-bit intensity, to segment the image into 
regions of bone and nonbone. The threshold value of 134 was selected to only include 
the fluid component of the inner ear. The result of thresholding contains more than the 
objects of interest, which are connected with the objects through the fallopian canal, the 
opening of the internal auditory canal, the oval window, the round window, and 
openings on the semi-circular canals (Christensen, He et al. 2003). Furthermore, a 
deformable atlas was used to make automatic measurements by transforming its shape 
into the shape of a target or patient data set. All of the measurements were transformed 
through the mapping that deformed the atlas into the target shape, making them specific 
for the patient’s data set. In other words, the segmentation corresponding to the cochlea 
was transforming from its location in the atlas to its location in the target data set. The 
volume of the patient’s cochlea was then computed by summing up the voxels that were 
labeled by the deformed atlas, producing an automatic volume measurement of the 
patient’s cochlea. Similarly, the landmarks in the atlas were mapped to their 
corresponding locations in the target data set. The distances between these new 
landmark locations were used to produce automatic measurements of the patient’s inner 
ear anatomy (Christensen, He et al. 2003). As can be seen from the description above, 
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the automatic measurements produced by the deformed atlas are only as good as the 
image registration algorithm used to estimate the point-by-point correspondence. 

 

 

Figure 4.12: Modeling of SCCs: A cross-sectional slice of the bony canal is modeled using a B-spline 
active contour, with the centroid determined by a center of mass calculation (A). This modeling is 

performed along the entire length of the canal, with the contour centers tracing out the 3D 
geometrical centroid path (B). Modeling of the all three bony canals produces the 
complete canal centroid path shown overlaid on the labyrinth reconstruction (C) 

(from (Bradshaw, Curthoys et al. 2010)). 

 

Also to perform the segmentation of the semicircular canals, but in this case in micro-
CT images, Bradshaw et al. (2010) used the watershed algorithm, designed for 
boundary determination in situations where objects appear to overlap or are blurred 
together. The strategy used to reconstructing a complete SCC is by combining the cross-
sectional modeling with an automated tracking system that propagates the active 
contour along the canal and automatically detects canal endpoints, Figure 4.12. The 
steps of this are: Firstly, an operator selects a starting position anywhere on the canal. 
Secondly, a 2D multiplanar reformatted CT slice of the canal cross-section is extracted 
from the 3D image at the designated position. Then, an active contour modeling is 
performed on the slice, reconstructing the canal cross-sectional morphology. In the next 
step, the centroid is calculated as the contour’s center of mass and the position and 
orientation of the next slice is predicted from the previous centroids. Then, if a canal 
endpoint is not detected, is necessary to return to the second step. 
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Figure 4.13: Axial T2-weighted MR image at the level of the vestibule (A). On-line segmentation (B) 
resulted in highlighting in red all pixels with signal intenstities above the set threshold. Pixels 

highlighted in green were those contiguous with the seed placed in the vestibule by the 
observers. Structures contiguous with but not part of the inner ear (internal auditory 

canal) were manually excluded (line 1-3) from the selected volume of interest 
(from (Melhem, Shakir et al. 1998)). 

 

Finally, when the entire canal is traversed in both directions, the centroids are combined 
to form the 3D centroid path. The automatic detection of the canal endpoints uses the 
cross-sectional area to determine whether the contour has either passed into the 
vestibule or has reached the bifurcation of the common crus. The two boundary slices 
are adjusted via manually guided rotations to ensure a consistent alignment with the 
ends of the canal. Additionally, after the centroid path sections of the three canals and 
the common crus have been determined, the common cross section is attached to both 
the anterior and posterior canal sections. The joint is calculated using spline 
interpolation to maintain a smooth and continuous transition with the geometry at both 
ends. Each canal path is three-dimensionally resampled using spline interpolation to the 
predetermined number of samples and with a uniform sampling interval not exceeding 
0.1 mm. The using of the active contours have several advantages, because they not 
critically depend upon subjective parameter selection as object boundaries are identified 
using image gradient information and they are less sensitive to artifacts such as noise 
and variations in background intensity (Bradshaw, Curthoys et al. 2010). 

Finally, Melhem et al. (1998) performed the segmentation of the bone labyrinth in MR 
images using two algorithms; first, a thresholding algorithm was used and then the 
region growing algorithm, Figure 4.13. 
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4.5 Summary 
 

In medical images of the ear have been applied several algorithms to segment and 
modeling the anatomic structures involved. Some of these algorithms are indicated in 
Table 3.1. 

 

Table 4.1: Segmenting and Modeling methods that have been used in medical images of the ear. 

Anatomic structure Imaging Technique Segmentation / 3D 
reconstruction Method References 

External Ear: 
Tympanic Membrane 

Video Otoscopy Generalized Gradient Vector 
Flow (GGVF snake) (Xie, Mirmehdi et al. 2005) 

Otoscopy 
Active Contours 

Segmentation Method of the 
Mumford-Shah 

(Comunello, Wangenheim et 
al. 2009) 

Middle Ear: 

Ossicles 

Micro-CT Threshold (Lee, Chan et al. 2010) 

Magnetic Resonance Threshold (Rodt, Ratiu et al. 2002) 

Micro-CT Volume Rendering (Lee, Chan et al. 2010) 

Spiral-CT Surface Rendering (Seemann, Seemann et al. 
1999) 

High Resolution Spiral-CT  Marching Cubes (Jun, Song et al. 2005) 

Micro-CT Shrink-Wrapping (Sim and Puria 2008) 

Inner Ear: 

Cochlea 

Spiral-CT Region Growing (Xianfen, Siping et al. 2005) 

Spiral-CT Morphologic Operations (Xianfen, Siping et al. 2005) 

Spiral-CT Threshold (Xianfen, Siping et al. 2005) 

CT 
Volume Rendering and 

Region Adaptive Snakes 
Modeling 

(Yoo, Wang et al. 2001) 

Spiral-CT 3D Narrow Band Level Set 
and Marching Cubes (Xianfen, Siping et al. 2005) 

Spiral-CT Connected Threshold Region 
Growing (Todd, Tarabichi et al. 2009) 

Micro-CT Snakes (Poznyakovskiy, Zahnert et 
al. 2008) 

Inner Ear: 
Vestibular System Magnetic Resonance Clustering and Deformable 

models (Shi, Wang et al. 2010) 

Inner Ear: 
Facial nerve e timpani chorda CT Anatomic atlas and Minimum 

Cost Path Finding (Noble, Warren et al. 2008) 

Inner Ear: 
Semi-circular canals Micro-CT Active Contours (Bradshaw, Curthoys et al. 

2010) 

Inner Ear: 

Bone labyrinth 

Micro-CT Watershed (Chen and Chen 2009) 

Magnetic Resonance Threshold (Melhem, Shakir et al. 1998) 

CT Threshold and deformable 
anatomic atlas (Christensen, He et al. 2003) 
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Chapter V - Experimental Results 
 

 Introduction; 

 Study about Segmentation of Medical Images of the 
Ear; 

 Preprocessing of the Medical Images; 

 Application of Segmentation algorithms in the 
Medical Images of the Ear; 

 Algorithm Selection; 

 Summary 
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5.1 Introduction 

 
In this chapter, it will present some results of the global topic of dissertation, in other 
words, some results of the segmentation structures of the inner ear. 

The inner ear is present in the interior of the temporal bone. The structures of the inner 
ear that were segmented are the bony and membranous labyrinths. The first, the bony 
labyrinth, consists in the cochlea, semicircular canals and vestibule. 

The medical images used in this work are in the DICOM format and they have a 
512x512 size. The imaging technique used for obtaining these images is the Computer 
Tomography modality; consequently, the images have a grayscale color type. 
Furthermore, the techniques and algorithms are implemented in MATLAB. 

The objective of this chapter is to present the results of the segmentation and it is to 
select a technique, which presents more advantages and the best results in the 
segmentation of the inner ear structures. 

This chapter is organized into four sections. The first section is a study about 
segmentation techniques already used in medical images of the inner ear. In the second 
section a pre-processing technique for noise reduction and artifacts in the medical 
images is explored. The third section observes the application of segmentation 
algorithms in the medical images of the ear. Finally, in the last section is selected the 
best algorithm to segment these human structures is selected. 

 
 

5.2 Study about Segmentation of Medical Images of the Ear 

 
Through the Table 5.1 is possible to conclude that the type most commonly used in the 
medical imaging is the Computer Tomography. 

This type of imaging technique provides 3D positional information and it offers 
excellent contrast for different tissues types. Furthermore, the computed tomography 
scans can be utilized even with the implant device in place. As a result, CT imaging has 
recently become a very capable tool in the research and development for improvement 
of cochlear implants. Clinically, CT patients scans are used in several treatment steps 
and before surgery, scans are commonly performed to identify abnormal anatomical 
structures and assist in surgery planning. After surgery, the patient is imaged to 
determine the position of the implanted array relative to ear anatomy, as a guide to 
selection of electrodes for stimulation programming and as an aid in interpreting the 
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reports of the percepts that patients experience. In these applications, the ability of the 
CT images to resolve submillimeter anatomical features and array electrodes is crucial. 
A limiting factor is the presence of image reconstruction distortions and artifacts in the 
vicinity of the electrode array, which in turn limits visualization of the fine anatomical 
detail near the electrode (Whiting, 2008). 

 

Table 5.1: Segmentation methods and imaging techniques used for the ear anatomic structures 
analysis 

Anatomic structure Imaging Technique Segmentation Method References 

External Ear: 
Tympanic Membrane 

Video Otoscopy Generalized Gradient Vector 
Flow (GGVF snake) (Xie, Mirmehdi et al. 2005) 

Otoscopy 
Active Contours 

Segmentation Method of the 
Mumford-Shah 

(Comunello, Wangenheim et 
al. 2009) 

Middle Ear: 

Ossicles 

Micro-CT Threshold (Lee, Chan et al. 2010) 

Magnetic Resonance Threshold (Rodt, Ratiu et al. 2002) 

Inner Ear: 

Cochlea 

Spiral-CT Region Growing (Xianfen, Siping et al. 2005) 

Spiral-CT Morphologic Operations (Xianfen, Siping et al. 2005) 

Spiral-CT Threshold (Xianfen, Siping et al. 2005) 

Spiral-CT Connected Threshold Region 
Growing (Todd, Tarabichi et al. 2009) 

Micro-CT Snakes (Poznyakovskiy, Zahnert et 
al. 2008) 

Inner Ear: 
Vestibular System Magnetic Resonance Clustering and Deformable 

models (Shi, Wang et al. 2010) 

Inner Ear: 
Facial nerve e timpani chorda CT Anatomic atlas and Minimum 

Cost Path Finding (Noble, Warren et al. 2008) 

Inner Ear: 
Semi-circular canals Micro-CT Active Contours (Bradshaw, Curthoys et al. 

2010) 

Inner Ear: 

Bone labyrinth 

Micro-CT Watershed (Chen and Chen 2009) 

Magnetic Resonance Threshold (Melhem, Shakir et al. 1998) 

CT Threshold and deformable 
anatomic atlas (Christensen, He et al. 2003) 

 

 

In summary, the CT scanning presents a large variety of advantages for the observation 
of normal and abnormal structures of the ear, as well as implants that are inserted in the 
structures of the inner ear. 

The middle ear and the inner ear are the two parts of the ear that can be observed by a 
Computed Tomography scan, but the middle ear modeling has proven to be quite 
accurate and vivid when compared to the actual morphology of the middle ear (Gentil, 
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2011; Liu, 2007). This way, the study and segmentation are only realized on the 
structures of the inner ear. Moreover, the most responsible organs for the hearing and 
balance are located in the inner ear. 

    

Table 5.2: Segmentation Methods used in the inner ear anatomic structures when are only 
considered Computer Tomography images 

Anatomic structure Imaging Technique Segmentation Method References 

Inner Ear: 

Cochlea 

Spiral-CT Region Growing (Xianfen, Siping et al. 2005) 

Spiral-CT Morphologic Operations (Xianfen, Siping et al. 2005) 

Spiral-CT Threshold (Xianfen, Siping et al. 2005) 

Spiral-CT Connected Threshold Region 
Growing (Todd, Tarabichi et al. 2009) 

Micro-CT Snakes (Poznyakovskiy, Zahnert et 
al. 2008) 

Inner Ear: 
Facial nerve e timpani chorda CT Anatomic atlas and Minimum 

Cost Path Finding (Noble, Warren et al. 2008) 

Inner Ear: 
Semi-circular canals Micro-CT Active Contours (Bradshaw, Curthoys et al. 

2010) 
Inner Ear: 

Bone labyrinth 

Micro-CT Watershed (Chen and Chen 2009) 

CT Threshold and deformable 
anatomic atlas (Christensen, He et al. 2003) 

 

By analyzing the Table 5.2 is possible to see that the segmentation algorithms based on 
thresholding and on deformable models are often used in the inner ear Computed 
Tomography images. Therefore, for this work segmentation algorithms based in 
deformable models and thresholding were considered. These techniques were performed 
in Computed Tomography images, which can be seen in the Figure 5.1. 

 
 

5.3 Preprocessing of Medical Images 
 

The techniques of image enhancement have a high technological potential and these are 
always used together with methods of analysis and quantification.  

Enhancement techniques are procedures designed to manipulate an image in order to 
take advantage of the psychophysical aspects to the human visual system. Image 
enhancement is obtained with a variety of operations and the enhancement system has 
all the following functions: 
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- Attenuate the effects of sub-sampling; 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.1: Sequence of three Computer Tomography imaging slices (slices: 10(a), 11(b), 12(c) of 
a total number of 34 slices of the left ear of a 68 years old female patient) of 

a temporal bone, in which is perfectly visible the inner ear structures 

 

- Attenuate quantization effects; 

- Remove noise and simultaneously preserve edges and image details; 
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- Avoid aliasing effects; 

- Attenuate the blackness effect; 

- Improve image contrast; 

- Enhancement special features to be more easily detected by a machine or a 
human observer. 

For medical images, noise is always involved in the signal due to the limitations of 
imaging hardware and protocols. Noise reduction is one of the most important 
objectives for medical image processing. Almost all model free segmentation methods 
are sensitive to noise. 

For filter CT images, spatial filtering and nonlinear spatial filtering is used. The first 
type uses the spatial convolution and is characterized by a kernel (Gonzalez, 2004; 
Gonzalez, 2008), the Gaussian smoothing and the anisotropic diffusion algorithm are 
some examples of this filtering type (Feissel, 1984; Perona, 1990). In this type of 
images, Figure 5.1, the following methods are used: 

- Average filters; 

- Gaussian filters; 

- Anisotropic diffusion filters; 

- Gradient operator; 

- Histogram Equalization; 

- Histogram Stretch. 

The anisotropic diffusion filter is the most effective filter in the gray scale images (Xu, 
1998; Poznyakovskiy, 2008; Tood, 2009), because this filter blurs areas of low contrast 
and enhances the high contrast (edges). Thus, the filter works as a high pass filter. 
However the noise and artifacts are characterized by a high frequency and because of 
this they can be considered like edges. Therefore, the using of a band-pass filter is the 
best choice. 

To perform the enhancement in the images of the Figure 5.1, I used three different 
functions of enhancement. First, I performed the histogram stretch on the image.  

This operation is characterized by a gray-level scaling, when the higher and lower 
intensity, of the input image, is necessary to know. 

minmin
minmax

minmax )( gff
ff

gg
g 




                                      (5.1) 
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(a) 

 

(b) 

 

(c) 

Figure 5.2: Results of the histogram stretch operation in the three slices 

 

In the Equation 5.1 f  represents the input image, maxg  is the maximum value of the 

histogram result, ming  corresponds to minimum value of the histogram and minf  and 

maxf  are respectively the intensity values minimum and maximum. 
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The histogram stretch was made to increase the contrast of the images and because of 
this contrast enhancement of the different tissues are more easily identified, Figure 5.2. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.3: Results follow from the passing of the Gaussian filter in the images (a)-(b) of the Figure 
5.2 

The second step of the of the enhancement process was the Gaussian filtering with a 
12x12 kernel and a standard deviation of 0.5. The Gaussian smoothing method tends to 
blur the sharp boundaries in the image while removing the noise, Figure 5.3. 
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Finally, the third step of the enhancement process was completed with an anisotropic 
diffusion filter, Figure 5.4. Therefore, there was the use of a contrast increase operator 
and a band-pass filter.  

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.4: Results of the anisotropic diffusion filter in the images (a)-(c) of the Figure 5.3 

To reduce time consumption and the computational cost, the region of the inner ear was 
selected, Figure 5.5. The inner ear region is represented by the high intensity of the 
pixels. In this high intensity the membranous labyrinth is localized and from the 
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membranous labyrinth  it is possible to create a surface that represents the boundaries of 
the temporal bone, this way the image size is reduced and the structures of interest are 
fully inserted into the image of work, in other words, in the region of interest. 

 

Figure 5.5: Region of interest selected in the figure 5.4 – (c) 

 

 

Figure 5.6: Method of preprocessing scheme 

 
The preprocessing technique is sketched in the Figure 5.6 and the resulting images are 
exposed in the Figure 5.7. Furthermore, the resulting images are considered according 
to the location / position of the region of interest selected in the Figure 5.5, where, in 
this case, the four vertices of the rectangle region have the following coordinates 

),( yixi pp , ),( yfxi pp , ),( yixf pp  and ),( yfxf pp , on which 185xip , 241xfp , 

223yip  and 283yfp . 
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(a) 

 
(b) 

 
(c) 

 
Figure 5.7: Resulting images of the preprocessing performed on the Figure 5.1 (a)-(c) and it is 

considered the rectangle region observed in the Figure 5.5  

 

The effectiveness of the preprocessing method is verified through the analysis of a line, 
which has an edge inserted, of the original and enhanced image. However, the region of 
interest isn’t considered because this stage is only responsible for the computational 
cost and processing time reduction. 

 

 

(a) 
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(b) 

 

(c) 

Figure 5.8: The black line (a) was analyzed in the original image, Figure 5.1.a, and in the enhanced 
image, Figure 5.4.a. It is observed the intensity profile of the line black in the original image (b) and 

in the enhanced image (c) 

 

Through the analysis of the Figure 5.8.b it is possible to observe that between the [0-20] 
and [90-100]  the noise that was removed, Figure 5.8.c, by the function enhancement of 
the created preprocessing method. In addition, when the enhanced image was analysed 
and by comparing the two profiles, I immediately observed change of the pixel 
intensities, in the locations of edges, unlike of the intensity profile of the original image. 

Therefore, the preprocessing method is effective in removing noise and it enables the 
decrease of the time consuption and computational cost. 
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5.4 Application of Segmentation algorithms in the Medical 
Images of the Ear 
 

In this section, the segmentation methods used to acquire the inner ear structures of the 
images represented in Figure 5.4, as well as, the results of the tested segmentation 
algorithms is described. 

Once verified that the algorithms based on thresholding technique and on deformable 
models technique are the most widely used in CT images of the ear, I denote that these 
two types will be analyzed. The analysis of the segmentation algorithms will be done 
from the observation of the segmentation results and by inspection of the advantages 
and disadvantages of each one. 

This section is subdivided into three secondary sections. In the first, the segmentation 
algorithms are applied and the segmentation results are observed.. In the second section, 
the problems and the advantages of the segmentation algorithms performed are 
exhibited. Finally, in the third and last section the best method to realize the 
segmentation of the inner ear structures is selected.     

 
 

5.4.1 Results 

 
This subsection is dedicated to presenting the results of the following segmentation 
techniques: 

- Otsu Method; 

- Region Growing; 

- Canny Detector; 

- Watershed; 

- Snake; 

- Chan-Vese Model; 

- Level set algorithm of the Li and Xu. 

 

Otsu Method 
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Otsu method was proposed in 1979. This method is deduced by least square (LS) 
method based on gray histogram. Supposed that           is the range of grayscale 
of image        and    is the probability of every grayscale, and the threshold value   
has splitted the image in two classes which are          and             . The 
two classes probability are       

 
    and         respectively. The average 

gray value of the two classes are     
   

  

 
    

  

  
 and     

   

  

   
      

    

    
  

respectively, there in       
   
   ,        

 
   . The criterion function has been 

defined as variance between the two classes, expressed as: 

 

                                     
                   (5.2) 

 

Calculating the Eq.(5.2) above, I can obtain the maximum   which is the threshold value 
namely, and mark it   (Fang, 2009). 

Considering the image results from the preprocessing stage, Figure 5.7, the code was 
performed on them which can be observed in the Table 5.3 and using it leads to 
obtaining the observed results in Figure 5.9. 

In segmentation algorithms the objects of interest have one’s value of the intensity. 
Once the membranous structures of the inner ear have low intensity it is necessary to 
reverse the pixel intensity, this is seen in the third line of the Table 5.3. At a previous 
stage the normalization of the pixels was realized. This process is shown in the first and 
second line of the Table 5.3. The last line of the same table represents an estimating of 
the threshold value by Otsu method and, then, it computed the binarization.  

 

Table 5.3: Sequence of code for segment the inner ear structures with a Otsu Method 

 
 
% Normalize 
max_val = 1; 
min_val = 0; 
img_norm = normalize_img(roi, max_val, min_val); 
 
 
 
%Normalize Function 
function img_norm = normalize_img(img, max_val, min_val) 
img_min = min(img(:)); 
img_max = max(img(:)); 
img_norm1 = (max_val - min_val)/(img_max - img_min); 
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img_norm = img_norm1 .* (img - img_min); 
end 
 

 
 
%Reverse intensity Values 
img_norm_1 = imadjust(img_norm,[0;1],[1;0]); 
 

 
 
% Otsu Method 
level = graythresh(img_norm); 
BW = im2bw(img_norm_1,level); 
 

 

 

 

(a) 

 

(b) 

 
(c) 

Figure 5.9: Results of the Otsu Method in the Figure 5.7 
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Region Growing 

The region growing algorithm is a method that is included in the region-based 
algorithms, and, the region-based algorithms are inserted in the thresholding-based 
algorithms. Its idea comes from the observation that quantifiable features inside a 
structure tend to be homogeneous. Therefore, algorithms aim to search for the pixels 
with similar features values. 

The region growing, in this case, starts with two or three seeds. This specific number of 
seeds is relative to the number of objects in the region of interest. After choosing the 
number and location of the seed points, the next step is to examine the neighboring 
pixels, so they are analyzed once at time and added to the region growing, if they are 
sufficiently similar based on a uniformity test, the procedure continues until no more 
pixels can be added. The result is then represented by all pixels that have been accepted 
during the region growing procedure. The uniformity test can be compared with the 
difference between the pixel intensity value and the mean intensity value, and when the 
difference is less than a predefined value the pixel is included in the region, otherwise, it 
is defined as an edge pixel. This process is explained in the Figure 5.10 and in the table 
5.4. 

In the Figure 5.11 the results of the region growing algorithms is illustrated. For each 
one, Figure 5.11.a-c, specific local seeds were used and the threshold limit value 
considered is between 0.2 and 0.8.  

The Table 5.4 represents the MATLAB code, which was used to obtain the result 
observed in the Figure 5.11.c. 

 

(a) 
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(b) 

 

(c) 

Figure 5.10: Obtained results from the region growing algorithms 

 

 

Figure 5.11: Representative scheme of the region growing algorithm 

 

Table 5.4: Matlab code performed to obtain the Figure 5.11.c  (Kroon, 2008; Kroon, 2009) 
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% Seed Local  
x1 = 35; 
y1 = 48; 
x2 = 50; 
y2 = 31; 
x3 = 35; 
y3 = 18; 
x4 = 18; 
y4 = 46; 
 

 
%Normalization 
max_val = 1; 
min_val = 0; 
img_norm = normalize_img(roi_2, max_val, min_val); 
 
 
 
% Region Growing 
J = regiongrowing(img_norm,x1,y1,0.18); 
 
J1 = regiongrowing(img_norm,x2,y2,0.18); 
 
J2 = regiongrowing(img_norm,x3,y3,0.08); 

 
J3 = regiongrowing(img_norm,x4,y4,0.08); 
 
RG = J + J1 + J2 + J3; 
 
function J=regiongrowing(I,x,y,reg_maxdist) 
% This function performs "region growing" in an image from a specified 
% seedpoint (x,y) 
% 
% J = regiongrowing(I,x,y,t) 
% 
% I : input image 
% J : logical output image of region 
% x,y : the position of the seedpoint (if not given uses function getpts) 
% t : maximum intensity distance (defaults to 0.2) 
% 
% The region is iteratively grown by comparing all unallocated neighbouring pixels to 
the region. 
% The difference between a pixel's intensity value and the region's mean, 
% is used as a measure of similarity. The pixel with the smallest difference 
% measured this way is allocated to the respective region. 
% This process stops when the intensity difference between region mean and 
% new pixel become larger than a certain treshold (t) 
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if(exist('reg_maxdist','var')==0), reg_maxdist=0.2; end 
if(exist('y','var')==0), figure, imshow(I,[]); [y,x]=getpts; y=round(y(1)); x=round(x(1)); 
end 
 
J = zeros(size(I)); % Output 
Isizes = size(I); % Dimensions of input image 
 
reg_mean = I(x,y); % The mean of the segmented region 
reg_size = 1; % Number of pixels in region 
 
% Free memory to store neighbours of the (segmented) region 
neg_free = 10000; neg_pos=0; 
neg_list = zeros(neg_free,3); 
 
pixdist=0; % Distance of the region newest pixel to the regio mean 
 
% Neighbor locations (footprint) 
neigb=[-1 0; 1 0; 0 -1;0 1]; 
 
% Start regiogrowing until distance between regio and posible new pixels become 
% higher than a certain treshold 
while(pixdist<reg_maxdist&&reg_size<numel(I)) 
 
% Add new neighbors pixels 
for j=1:4, 
% Calculate the neighbour coordinate 
xn = x +neigb(j,1); 
yn = y +neigb(j,2); 
 
% Check if neighbour is inside or outside the image 
ins=(xn>=1)&&(yn>=1)&&(xn<=Isizes(1))&&(yn<=Isizes(2)); 
 
% Add neighbor if inside and not already part of the segmented area 
if(ins&&(J(xn,yn)==0)) 
neg_pos = neg_pos+1; 
neg_list(neg_pos,:) = [xn yn I(xn,yn)]; J(xn,yn)=1; 
end 
end 
 
% Add a new block of free memory 
if(neg_pos+10>neg_free), neg_free=neg_free+10000; 
neg_list((neg_pos+1):neg_free,:)=0; end 
 
% Add pixel with intensity nearest to the mean of the region, to the region 
dist = abs(neg_list(1:neg_pos,3)-reg_mean); 
[pixdist, index] = min(dist); 
J(x,y)=2; reg_size=reg_size+1; 
 
% Calculate the new mean of the region 
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reg_mean= (reg_mean*reg_size + neg_list(index,3))/(reg_size+1); 
 
% Save the x and y coordinates of the pixel (for the neighbour add proccess) 
x = neg_list(index,1); y = neg_list(index,2); 
 
% Remove the pixel from the neighbour (check) list 
neg_list(index,:)=neg_list(neg_pos,:); neg_pos=neg_pos-1; 
end 
 
% Return the segmented area as logical matrix 
 
 

Canny Operator 

The Canny operator closely approximates the operator that optimizes the product of 
signal to noise ratio and localization. Let  ],[ jiS  be the result of convolving the input 
image ],[ jiI , with a Gaussian smoothing filter given by: 

],[],[],[ jiIjiGjiS                                                    (5.3) 

 

The gradient of ],[ jiS  is computed to produce two arrays ],[ jiP  and ],[ jiQ  for the x  
and y partial derivates: 

 

2/]),1[]1,1[],[]1,[(],[ jiSjiSjiSjiSjiP                       (5.4)            

 

2/])1,1[]1,[],1[],[(],[  jiSjiSjiSjiSjiQ                      (5.5) 

  The magnitude and orientation of the gradient can be computed from: 

22 ],[],[],[ jiQjiPjiM   and ]),[],,[arctan(],[ jiPjiQji   , respectively. 

Through the table 5.5 is possible to see the method used for obtain the presented results 
in the Figure 5.12 and the method is based in the partial derivates described above. 

 

Table 5.5: Procedure used for obtainning the results of the Figure 5.12 

 
% Normalization 
max_val = 1; 
min_val = 0; 
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img_norm = normalize_img(roi, max_val, min_val); 
 

 
% Canny operator 
I_can = edge(img_norm, 'canny'); 
 

 

 

 

 

 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5.12: Resulted Image of the Canny operator 
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Watershed 

The watershed method is classified into rain falling and water immersion. The 
watershed method used the prior information-based of the more frequently-used 
gradient function to improve the segmented results and employ the marker images as 
probes to explore a gradient space to unknown image and thus to determine the best 
matched object. 

Watershed requires selection of at least one marker (seed point) interior to each object 
of the image, including the background as a separate object. The markers are chosen by 
an operator and the markers are provided by an automatic procedure that takes into 
account be application-specific knowledge of the objects.  

Watershed method can be thought as a surface where the bright pixels represent 
mountaintops and the dark pixels valleys. The surface is punctured in some of valleys, 
and then slowly submerged into a water bath. The water will pour in each puncture and 
start to fill the valleys. However, the water from different punctures is not allowed to 
mix, and therefore the dams need to be built at the points of first contact.  

This algorithm is associated to the regional minimal set, 

 

ii mUM                                                            (5.6) 

of an image f  and can be defined as a complement of the union of all the retention 
basins )( if mC : 

c

ifi mCUfWL )]([)(                                               (5.7) 

 

For this algorithm is also shown the obtained result, Figure 5.13, by using the code 
shown in the Table 5.6. 

 

 

(a) 
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(b) 

 

(c) 

Figure 5.13: Obtained results by using the watershed algorithm 

 

In the Figure 5.13 a-c was used threshold values of 0.4, 0.1 and 0.075 respectively. 

 

Table 5.6: Watershed algorithm represented with MATLAB code for obtain the result saw in the 
figure 5.13.c 

 
%Normalization 
max_val = 255; 
min_val = 0; 
img_norm = normalize_img(roi_2, max_val, min_val); 
 

 
%Gaussian Filter 
ImageScaled = mat2gray(img_norm); 
sigma = 10;  
hsize=(4*ceil(0.5)+1); 
hg= fspecial('gaussian',hsize,sigma); 
 
 
%Gradient 
Image_out = imfilter(ImageScaled,hg); 
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h1 = fspecial('sobel'); 
h2 = h1'; 
Imageout = abs((imfilter(Image_out,h1).^2)+(imfilter(Image_out,h2).^2)); 
 
 
%Watershed 
D = Imageout;  
L1 = watershed(img_norm); 
rgb1 = label2rgb(L1); 
L2 = watershed(D>0.075); 
rgb2 = label2rgb(L2); 
 

 

 

Snake 

The snake is a parametric deformable model and the main feature of it is to track the 
evolution through sampled contour points. The moving equation for the contour derived 
through energy functions and the basic premise of the energy minimizing-formulation 
of deformable contours is to find a parameterized curve that minimizes the weighted  
sum of internal and potential energies. The internal energy specifies the tension or 
smoothness of the contour and the potential is defined over the image domain and 
typically possesses local minima at the image intensity edges occurring at object 
boundaries. Minimizing the total energy yields internal forces and potential forces. The 
internal forces hold the curve together (elasticity forces) and keep it from bending too 
much (bending forces) while, external forces attract the curve toward the desired object 
boundaries. 

A snake is a curve: 

))(),(()( sysxsv                                                 (5.8) 

which mores through the spatial domain of an image to minimize the following energy 
functional: 
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Parameters )(s  and )(s  are used to control the strength of the model’s tension and 
rigidity respectively. The coefficient )(s  is introduced to make the units on the left 
side consistent with the right side. Thus, the minimization is solved by placing an initial 
contour on the image domain and allowing it to deform according to Equation 5.11. The 
initial contour is also named by mask and for the snake algorithm I used the result of the 
thresholding algorithm as a mask for perform this algorithm. 

In the Figure 5.14 I observed the different masks used in the snake algorithm. The 
results of this algorithm can be seen in the Figure 5.15 and in the Table 5.7 the code 
used to process the snake algorithm on the images of the inner ear structures is shown.  

 

(a) 

 

(b) 
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(c) 

Figure 5.14: The different masks used to process the snake algorithms on the different images 

 

 

 

(a) 

 

(b) 

 

(c) 
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Figure 5.15: Results of the snake algorithm 

 

Table 5.7: Algorithm used to obtain the Figures 5.15 

 
%Normalization 
max_val = 1; 
min_val = 0; 
img_norm = normalize_img(roi_2, max_val, min_val); 
 

 
%Create Mask and reverse the intensity of the image pixels 
img_norm_1 = imadjust(img_norm,[0;1],[1;0]); 
BW1 = im2bw(img_norm_1,0.5); 
 
 
% Localized Region Based Active Contour Segmentation: 
% 
% seg = localized_seg(I,init_mask,max_its,rad,alpha,method) 
% 
% Inputs: I           2D image 
%         init_mask   Initialization (1 = foreground, 0 = bg) 
%         max_its     Number of iterations to run segmentation for 
%         rad         (optional) Localization Radius (in pixels) 
%                       smaller = more local, bigger = more global 
%         alpha       (optional)  Weight of smoothing term 
%                       higer = smoother 
%         method      (optional) selects localized energy 
%                       1 = Snake 
%                        
% 
% Outputs: seg        Final segmentation mask (1=fg, 0=bg) 
% 
% 
% Description: This code implements the paper: "Localizing Region Based 
% Active Contours" By Lankton and Tannenbaum.  In this work, typical 
% region-based active contour energies are localized in order to handle 
% images with non-homogeneous foregrounds and backgrounds. 
% 
%------------------------------------------------------------------------ 
  
function seg = 
localized_seg(I,init_mask,max_its,rad,alpha,method,FigRefreshRate,display) 
   
  %-- default value for parameter alpha is .1 
  if(~exist('alpha','var'))  
    alpha = 0.05;  
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  end 
  %-- default value for parameter method is 2 
  if(~exist('method','var'))  
    method = 2;  
  end 
  %-- default behavior is to display intermediate outputs 
  if(~exist('display','var')) 
    display = true; 
  end 
   if(~exist('FigRefreshRate','var')) 
    FigRefreshRate =20; 
  end 
  %-- Ensures image is 2D double matrix 
  %I = im2graydouble(I);     
  %-- Default localization radius is 1/10 of average length 
  [dimy dimx] = size(I); 
  if(~exist('rad','var'))  
    rad = round((dimy+dimx)/(2*8));  
    if(display>0)  
      disp(['localiztion radius is: ' num2str(rad) ' pixels']);  
    end 
  end 
   
  %-- Create a signed distance map (SDF) from mask 
  phi = mask2phi(init_mask); 
  
  %--main loop 
  for its = 1:max_its   % Note: no automatic convergence test 
  
    %-- get the curve's narrow band 
    idx = find(phi <= 1.2 & phi >= -1.2)';   
    [y x] = ind2sub(size(phi),idx); 
     
    %-- get windows for localized statistics 
    xneg = x-rad; xpos = x+rad;      %get subscripts for local regions 
    yneg = y-rad; ypos = y+rad; 
    xneg(xneg<1)=1; yneg(yneg<1)=1;  %check bounds 
    xpos(xpos>dimx)=dimx; ypos(ypos>dimy)=dimy; 
  
    %-- re-initialize u,v,Ain,Aout 
    u=zeros(size(idx)); v=zeros(size(idx));  
    Ain=zeros(size(idx)); Aout=zeros(size(idx));  
     
    %-- compute local stats 
    for i = 1:numel(idx)  % for every point in the narrow band 
      img = I(yneg(i):ypos(i),xneg(i):xpos(i)); %sub image 
      P = phi(yneg(i):ypos(i),xneg(i):xpos(i)); %sub phi 
  
      upts = find(P<=0);            %local interior 
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      Ain(i) = length(upts)+eps; 
      u(i) = sum(img(upts))/Ain(i); 
       
      vpts = find(P>0);             %local exterior 
      Aout(i) = length(vpts)+eps; 
      v(i) = sum(img(vpts))/Aout(i); 
    end    
  
    %-- get image-based forces 
    switch method  %-choose which energy is localized 
     case 1,                 %-- Snake 
      F = -(u-v).*(2.*I(idx)-u-v); 
    end 
     
    %-- get forces from curvature penalty 
    curvature = get_curvature(phi,idx,x,y);   
     
    %-- gradient descent to minimize energy 
    dphidt = F./max(abs(F)) + alpha*curvature;   
     
    %-- maintain the CFL condition 
    dt = .45./(max(dphidt)+eps); 
         
    %-- evolve the curve 
    phi(idx) = phi(idx) + dt.*dphidt; 
  
    %-- Keep SDF smooth 
    phi = sussman(phi, .5); 
  
    %-- intermediate output 
    if((display>0)&&(mod(its,FigRefreshRate) == 0))  
      showCurveAndPhi(I,phi,its);   
    end 
  end 
   
  %-- final output 
  if(display) 
    showCurveAndPhi(I,phi,its); 
  end 
   
  %-- make mask from SDF 
  seg = phi<=0; %-- Get mask from levelset 
end 
 
 
 
seg_z = localized_seg(img_norm_1, BW1, 300, 3, 0.05, 1); 
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Chan-Vese Model 

The Chan-Vese is a geometric deformable model. The Chan-Vese model does not use 
the information of image gradient, but instead uses the intensity variations of 
foreground and background as the segmentation due. The energy functional of Chan-
Vese model is defined as follows: 

 

  
)( )(

2
22

2
11 ),(),())((.)(.

Cinside Coutside

dxdycyxIdxdycyxICinsideAreavClengthE 

(5.15) 

 

where C  represents the moving contour; I  is the intensity function; 0,;0, 21   v  

are the weights of each corresponding item; 1c  and 2c  are the mean of intensity values 
inside and outside the moving contour. The last two items are called the external 
energy, which is used to attract the contour to the correct position. Through the Euler-
Lagrange equation of the functional, the moving equations derived as: 
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where   is the Dirac function; 
n



  denotes the normal derivate of   at the boundary; 

  is the image region. The average intensities 1c  and 2c  can be calculated as: 
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where H  is the Heaviside function. 

The Chan-Vese algorithm is exposed in the Table 5.8 and the results are illustrated in 
the Figure 5.16. 

 

(a) 

 

(b) 

 

(c) 

Figure 5.16: Results of the Chan-Vese Model in the region of interest  
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Table 5.8: The MATLAB code used to obtain segmented structures when is performed the chan-
vese model 

 
%Normalization 
max_val = 1; 
min_val = 0; 
img_norm = normalize_img(roi_2, max_val, min_val); 
 

 
%Create Mask and reverse the intensity of the image pixels 
img_norm_1 = imadjust(img_norm,[0;1],[1;0]); 
BW1 = im2bw(img_norm_1,0.5); 
 
 
% seg = localized_seg(I,init_mask,max_its,rad,alpha,method) 
% 
% Inputs: I           2D image 
%         init_mask   Initialization (1 = foreground, 0 = bg) 
%         max_its     Number of iterations to run segmentation for 
%         rad         (optional) Localization Radius (in pixels) 
%                       smaller = more local, bigger = more global 
%         alpha       (optional)  Weight of smoothing term 
%                       higer = smoother 
%         method        1 = Chan-Vese Energy 
%                        
% 
% Outputs: seg        Final segmentation mask (1=fg, 0=bg) 
% 
%  
% 
% Description: This code implements the paper: "Localizing Region Based 
% Active Contours" By Lankton and Tannenbaum.  In this work, typical 
% region-based active contour energies are localized in order to handle images with 
non-homogeneous foregrounds and backgrounds. 
% 
%------------------------------------------------------------------------ 
  
function seg = 
localized_seg(I,init_mask,max_its,rad,alpha,method,FigRefreshRate,display) 
   
  %-- default value for parameter alpha is .1 
  if(~exist('alpha','var'))  
    alpha = 0.05;  
  end 
  %-- default value for parameter method is 2 
  if(~exist('method','var'))  
    method = 2;  
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  end 
  %-- default behavior is to display intermediate outputs 
  if(~exist('display','var')) 
    display = true; 
  end 
   if(~exist('FigRefreshRate','var')) 
    FigRefreshRate =20; 
  end 
  %-- Ensures image is 2D double matrix 
  I = im2graydouble(I);     
  %-- Default localization radius is 1/10 of average length 
  [dimy dimx] = size(I); 
  if(~exist('rad','var'))  
    rad = round((dimy+dimx)/(2*8));  
    if(display>0)  
      disp(['localiztion radius is: ' num2str(rad) ' pixels']);  
    end 
  end 
   
  %-- Create a signed distance map (SDF) from mask 
  phi = mask2phi(init_mask); 
  
  %--main loop 
  for its = 1:max_its   % Note: no automatic convergence test 
  
    %-- get the curve's narrow band 
    idx = find(phi <= 1.2 & phi >= -1.2)';   
    [y x] = ind2sub(size(phi),idx); 
     
    %-- get windows for localized statistics 
    xneg = x-rad; xpos = x+rad;      %get subscripts for local regions 
    yneg = y-rad; ypos = y+rad; 
    xneg(xneg<1)=1; yneg(yneg<1)=1;  %check bounds 
    xpos(xpos>dimx)=dimx; ypos(ypos>dimy)=dimy; 
  
    %-- re-initialize u,v,Ain,Aout 
    u=zeros(size(idx)); v=zeros(size(idx));  
    Ain=zeros(size(idx)); Aout=zeros(size(idx));  
     
    %-- compute local stats 
    for i = 1:numel(idx)  % for every point in the narrow band 
      img = I(yneg(i):ypos(i),xneg(i):xpos(i)); %sub image 
      P = phi(yneg(i):ypos(i),xneg(i):xpos(i)); %sub phi 
  
      upts = find(P<=0);            %local interior 
      Ain(i) = length(upts)+eps; 
      u(i) = sum(img(upts))/Ain(i); 
       
      vpts = find(P>0);             %local exterior 
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      Aout(i) = length(vpts)+eps; 
      v(i) = sum(img(vpts))/Aout(i); 
    end    
  
    %-- get image-based forces 
    switch method  %-choose which energy is localized 
     case 1,                 %-- CHAN VESE 
      F = -(u-v).*(2.*I(idx)-u-v); 
     end 
     
    %-- get forces from curvature penalty 
    curvature = get_curvature(phi,idx,x,y);   
     
    %-- gradient descent to minimize energy 
    dphidt = F./max(abs(F)) + alpha*curvature;   
     
    %-- maintain the CFL condition 
    dt = .45./(max(dphidt)+eps); 
         
    %-- evolve the curve 
    phi(idx) = phi(idx) + dt.*dphidt; 
  
    %-- Keep SDF smooth 
    phi = sussman(phi, .5); 
  
    %-- intermediate output 
    if((display>0)&&(mod(its,FigRefreshRate) == 0))  
      showCurveAndPhi(I,phi,its);   
    end 
  end 
   
  %-- final output 
  if(display) 
    showCurveAndPhi(I,phi,its); 
  end 
   
  %-- make mask from SDF 
  seg = phi<=0; %-- Get mask from levelset 
end 
 
   
seg_y = localized_seg(img_norm_1, BW1, 300, 3, 0.05, 1); 
 
 

 

Level set of the Li and Xu 
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Li & Xu (2005) define the following total energy functional 

 

)()()( ,,   vg                                           (5.21) 

 

The external energy 
vg ,,  drives the zero level set toward the object boundaries, while 

the internal energy )(  penalizes the deviation of )(  from a signed distance 
function during its evolution.  

 

)()(,,   ggvg vAL                                           (5.22) 

 

In the equation (5.22) 0  and v  are constants, and the terms )(gL  and )(gA  are 

defined by: 
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Respectively, where   is the univariate Dirac function, and H  is the Heaviside 
function.  

The g function is the edge indicator function defined by: 
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To understand the geometric meaning of the energy )(gL , Li & Xu (2005) suppose 

that the zero level set of   can be represented by a differentiable parameterized curve 

)( pC ,  1,0p . It is well known that the energy functional )(gL  in equation (5.23) 
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computes the length of the zero level set curve of   in the conformal metric 

dppCpCgds )('))(( . The energy functional )(gA  in equation (5.24) is introduced 

to speed up curve evolution. Note that, when the function g  is constant 1, the energy 

functional in equation (5.24) is the area of the region  0),(|),(  yxyx  . The 

energy functional )(gA  can be viewed as the weighted area of  . The coefficient v  

of )(gA  can be positive or negative, depending on the relative position of the initial 

contour to the object of interest. For example, if the initial contours are placed outside 
the object, the coefficient v   in the weighted area term should take positive value, so 
that the contours can shrink faster. If the initial contours are placed inside the object the 
coefficient v  should take negative value to speed up the expansion of the contours. 

By calculus of variations, the first derivate of the functional energy in equation (5.22) 
can be written as 
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where   is the Laplacian operator. Therefore, the function   that minimizes this 

functional satisfies the Euler-Lagrange equation 0







. The steepest descent process 

for minimization of the functional   is the following gradient flow: 
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This gradient flow is the evolution equation of the level set function in the proposed 
method. 

The second and the third term in the right hand side of equation (5.27) correspond to the 
gradient flows of the energy functional )( gL  and )(gvA , respectively, and are 

responsible of driving the zero level set curve towards the object boundaries. To explain 
the effect of the first term, which is associated to the internal energy )(P , Li & Xu 
(2005)  notice that the gradient flow 
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has the factor 



















11  as diffusion rate. If 1 , the diffusion rate is positive and 

the effect of this term is the usual diffusion, making   more even and therefore reduce 

the gradient  . If 1 , the term has effect of reverse diffusion and therefore 

increase the gradient. 

In the Figure 5.17 the results of the Li & Xu (2005) algorithm are expressed and the 
code is illustrated in the Table 5.9. 

 

(a) 

 

(b) 

 

(c) 

Figure 5.17: Results of the algorithm Li & Xu (2005) 
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Table 5.9: MATLAB code used to obtain the segmentation results 

 
%Normalization 
max_val = 1; 
min_val = 0; 
img_norm = normalize_img(roi_2, max_val, min_val); 
img_norm_1 = imadjust(img_norm,[0;1],[1;0]); 
mask = normalize_img(seg_y, max_val, min_val); 
 

 
function 
LevelSetEvolutionWithoutReinitialization(Img,mask,epsilon,mu,lambda,alf,c0,N,PlotR
ate,delt) 
if(~exist('PlotRate','var'))  
    PlotRate = 20;  
end 
[Ix,Iy]=gradient(Img); 
f=sqrt(Ix.^2+Iy.^2); 
g=1./(1+f);  % edge indicator function. 
timestep=0.2/mu; 
[nrow, ncol]=size(Img); 
initialLSF= c0*2*(0.5-mask); % initial level set function: -c0 inside R, c0 outside R; 
u=initialLSF; 
imagesc(Img, [0, 1]);colormap(gray);hold on; axis off;axis equal; 
contour(u,[0 0],'r','LineWidth',2); 
title('Initial contour'); 
  
[vx,vy]=gradient(g); 
lambda1 = 0.0005; 
lambda2 = 0.0005; 
  
% start level set evolution 
for n=1:N 
    u=NeumannBoundCond(u); 
    [ux,uy]=gradient(u);  
    normDu=sqrt(ux.^2 + uy.^2 + 1e-10); 
    Nx=ux./normDu; 
    Ny=uy./normDu; 
    diracU=Dirac(u,epsilon); 
    K=curvature_central(Nx,Ny); 
    weightedLengthTerm=lambda*diracU.*(vx.*Nx + vy.*Ny + g.*K); 
    penalizingTerm=mu*(4*del2(u)-K); 
    weightedAreaTerm=alf.*diracU.*g; 
    u=u+delt*(weightedLengthTerm + weightedAreaTerm + penalizingTerm);  % update 
the level set function 
end       
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if mod(n,PlotRate)==0 
        pause(0.001); 
        imagesc(Img, [0, 1]);colormap(gray);hold on;axis off;axis equal; 
        contour(u,[0 0],'r','LineWidth',2); 
        iterNum=['Level Set Evolution Without Re-initialization: A New Variational 
Formulation ',num2str(n),' iterations'];         
        title(iterNum); 
        hold off; 
end 
imagesc(Img, [0, 1]);colormap(gray);hold on; 
contour(u,[0 0],'r','LineWidth',2); 
axis off;axis equal; 
iterNum=['Level Set Evolution Without Re-initialization: A New Variational 
Formulation ',num2str(n),' iterations'];         
title(iterNum); 
 
 
% the following functions are called by the main function EVOLUTION 
function f = Dirac(x, sigma) 
f=(1/2/sigma)*(1+cos(pi*x/sigma)); 
b = (x<=sigma) & (x>=-sigma); 
f = f.*b; 
end 
 
 
function K = curvature_central(nx,ny) 
[nxx,junk]=gradient(nx);   
[junk,nyy]=gradient(ny); 
K=nxx+nyy; 
end 
 
 
function g = NeumannBoundCond(f) 
% Make a function satisfy Neumann boundary condition 
[nrow,ncol] = size(f); 
g = f; 
g([1 nrow],[1 ncol]) = g([3 nrow-2],[3 ncol-2]);   
g([1 nrow],2:end-1) = g([3 nrow-2],2:end-1);           
g(2:end-1,[1 ncol]) = g(2:end-1,[3 ncol-2]);      
end 
 
 
%Li and Xu - Level set  
delt= 0.001; 
Img = img_norm_1; 
epsilon = 1.5; 
mu = 0.04; 
alf = 1.5; 
c0 = 4; 
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N = 1000; 
PlotRate = 20; 
lambda = 2; 
gama = 0.6; 
  
LevelSetEvolutionWithoutReinitialization(Img,mask,epsilon,mu,lambda,alf,c0,N,PlotR
ate,delt); 
 
 

 

5.5 Algorithm Selection 
 

To select the best algorithm for realizing the segmentation of the inner ear structures 
will be analyzed the advantages, disadvantages and the obtained results of each one will 
be analyzed. 

 

5.5.1 Otsu Method 
 

This method, not only finds the best threshold value in the statistical sense, but also it is 
the most stable method in the image thresholding segmentation at present. In addition, 
this method is good for thresholding a histogram with bimodal or multimodal 
distribution, in other words, it’s optimal for thresholding large objects from the 
background. But it has difficulties processing images with unimodal or close to 
unimodal distributions. By histogram analysis of the regions of interest it is possible to 
see that the histograms have a distribution inappropriate for use the Otsu method, Figure 
5.18. In the histograms a wrinkled modal characteristic are not observed. 

Only the Figure 5.18.b observes modal properties between 0 - 0.4 and 0.8 - 1 intensity 
values. 

The main difficulties associated with thresholding are noise process, in the case of this 
be no-stationary, correlated and non-gaussian. Other factors complicating thresholding 
operation are ambient illumination, variance of gray levels within the object and the 
background, inadequate contrast, object shape and size non-commensurate with scene. 
Improper thresholding causes blotches, streaks and erasures on the image confounding 
segmentation and recognition tasks. In some cases, the merges, fractures and other 
deformations in the character shapes as a consequence of incorrect thresholding are 
known to be the main reasons of optical character recognition performance deteoration. 
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(a) 

 

(b) 

 

(c) 

Figure 5.18: Histograms of the different region of interest figures 
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In the specific case, in the Figure 5.9.c a part of semicircular canal is not present, so this 
method, for this specific image, makes to eliminate some important structures of the 
image. In the other two results, Figure 5.9.a-b, it’s possible to observe the main 
structures of the inner ear and from these results is more easy to understand why this 
method is one of the most used in these type of images, however thresholding algorithm 
depends on a multitude of a factors, such as, the gray level distribution, local shading 
effects and the presence of denser. 

 

5.5.2 Region Growing 
 

The results of region growing depend strongly on the selection of the homogeneity 
criterion. If the homogeneity criterion is not properly chosen, the region leak out into 
adjoining areas, or merge with regions that do not belong to the object of interest. 
Therefore, region growing is seldom used alone. The primary disadvantage of the region 
growing is that it requires manual interaction to obtain the seed point. Thus, for each 
region that needs to be extracted, a seed must be planted. In Figure 5.11.c one structure 
of the semicircular canal is not present, because in the image a seed was not planted in 
the local of the structure.  

Another problem of the region growing is that different starting points may not grow 
into identical regions. Otherwise, the advantage of region growing is that it is capable of 
correctly segmenting regions that have the same properties and are spatially separated. 
Another advantage is that it generates connected regions; however, region growing can 
also be sensitive to noise, make extracted regions to have holes or even become 
disconnected. Conversely, partial volume effects can cause separate regions to become 
connected. Considering that the CT images are really affected by partial volume effects 
and given that this method is very dependent of the manual interaction and of the 
localization of seeds this method cannot be considered very effective. In addition, the 
gray level distribution of the CT images is very large, ergo, it is more difficult to obtain 
a really effective result. 

 

5.5.3 Canny Operator 
 

The canny operator is characterized by a good localization and a single response to an 
edge, but the boundaries obtained by the Canny operator in the Figure 5.12.a-c are 
discontinuous. The Canny operator is known to present edges discontinuity due to the 
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noises, to the partial volume effects and to the very different orientation of the boundary 
pixels. The spatial relationships of the edge points are not reflected; as such, most of the 
detected boundaries are incomplete or wrongly connected. 

The noise effects and the discontinuity of the boundary edges are two aspects that 
indicate a dependent algorithm of the pre and post processing. 

 

5.5.4 Watershed 
 

The watershed algorithm presents advantages and disadvantages. An advantage of the 
watershed method is that it can segment multiple objects in a simple thresholding 
setting. Otherwise, the disadvantage of the watershed method is that the different types 
of images need different thresholds and if the thresholds are not set correctly, then the 
objects are under and over segmented. The under and over segmentation is presented in 
the Figure 5.13.a-c. Furthermore, slight changes in the threshold can significantly alter 
the segmentation results. 

 

5.5.5 Snake 
 

The snake method is the first deformable model applied to the medical image 
segmentation and the development of parametric deformable models has a tight 
relationship with the snake method. The original snake method used the tension and 
rigidity of the contour, the internal energy, the gradient magnitude as the external 
energy. Furthermore, the snake method is sensitive to the initial conditions. The moving 
contour may stop at places with local functional minimum or places where the gradient 
magnitude is too small so that the external forces tend to be zero. In the non-interactive 
applications, the snakes must be initialized close to the structure of interest to guarantee 
good performance. Consequently, in order to get a correct segmentation the initial 
contour must have the same topology as the desired object and must be placed near the 
object boundary and Figure 5.14.a-c represents the initial contour and it has the same 
topology as the desired object. Thus, there are two key difficulties with parametric 
active contour algorithms. First, the initial contour must, in general, be close to the true 
boundary or else it will likely converge to the wrong result. The basic idea to address 
this problem is to increase the capture range of the external force fields and to guide the 
contour toward the desired boundary. The second problem is that active contours have 
difficulties processing into boundary concavities. 
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In the Figure 5.15.a-c the segmentation results of the snake algorithm is observed. In 
this case, the snake algorithm has poor convergence to boundaries with larger 
curvatures. Additionally, the algorithm performance has a high dependence on the 
initial contour. 

 

5.5.6 Chan-Vese Model 
 

The main idea of the level set method is to implicitly embed the moving contour into a 
higher dimensional level set function and view the contour as its zero level set. Then 
instead of tracking the discrete contour points, one can track the zero level set of the 
level set function.  The advantage of doing so is that the topological changes can be 
easily handled and the geometric properties of the contour can be implicitly calculated. 
Therefore, the complexity of geometric deformable models, speed functions should be 
defined properly to drive the contour to the right position. Usually, the deformable 
models implemented by means of the level set method suffer from a slower speed of 
convergence than parametric deformable models due to their computational complexity. 
However, they can automatically handle topology changes and allow for multiple 
simultaneous boundary estimations. Specifically, algorithms based on geometric 
deformable models aim to eliminate noise influence, prevent leakage, enhance accuracy 
and efficiency, and make the algorithms more automatic and less dependent on the 
initial conditions. 

The Figure 5.16.a-c is showing the results of the Chan-Vese model and when compared 
with snake algorithm is observed more efficiency in the convergence of the contour and 
the contour topology is really similar to the real boundary of interest object. 

 

5.5.7 Level set of Li & Xu (2005) 
 

The geometric deformable models are promising for the segmentation of the medical 
images because these models can easily incorporate statistical information and other 
techniques, while using curve evolution to find the optimal boundaries can provide a 
contour with regular geometric properties, and the Li & Xu (2005) algorithm has this 
properties / qualities.  

In the Figure 5.17.a-c the results of the Li & Xu (2005) algorithm is illustrated and 
when it is compared the Chan-Vese model with the Li & Xu (2005) algorithm it is 
possible conclude that the last is less influenced by noise and the regulating effects of 
the internal forces make the boundary shape more reasonable. 
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5.5.8 Selection 
 

When compared the thresholding algorithms with deformable models in the generalized 
characteristics it is possible to know that the thresholding algorithms present the 
following advantages and disadvantages: 

Advantages: 

- Simple; 

- Effective; 

- Low computational cost; 

- Low processing time. 

Disadvantages: 

- Sensitive to partial volume effects; 

- Don’t present good results when used in multi-channel images; 

- The elimination noise presents a difficult control; 

- In the case of region-growing is necessary to select a seed point; 

- Appearance of holes and discontinuities; 

- Slight changes in the value of threshold may lead to different results. 

The deformable models method also presents a list of advantages and disadvantages: 

Advantages: 

- Simple; 

- Exact; 

- Accessible; 

- Don’t depend of subjective parameters; 

- Low sensitive to artifacts; 

- Easy handling of shape variation; 

- Mainly used for segmentation of structures of high complexity; 

- Directly produces closed parametric curves and surfaces. 
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Disadvantages: 

- In the initial stage is necessary the interaction of operator for placing the initial 
model and to choice the input parameters. 

Through analyzing the lists of advantages and disadvantages that each type of method 
presents, it is easy to conclude that deformable models method presents more 
advantages than thresholding algorithms. Additionally, deformable models are more 
indicated for CT images than thresholding algorithms because of the high distribution in 
the gray level values of the pixels.  

When the results of the thresholding-based algorithms are observed, it is possible see 
that the  boundaries of the Canny edge detector results are discontinuous and the spatial 
relationship of the edge points are not reflected; such as, most of the detected 
boundaries are incomplete or wrongly connected. The watershed algorithm gives a 
complete segmentation of the image, but, over segmentation can be seen because there 
are a lot of pixels with local maximum of gradient magnitude. Finally, the area of the 
segmented objects by the Otsu method is excessively large. 

Analyzing results allow concluding that in the figures, which represent results of 
deformable models, it is possible to see more structures of the inner ear than in the 
results of the thresholding algorithms. Furthermore, if you compare the three types of 
deformable models, the last two appear more effective in the representation of the real 
topology and shape of the inner ear structures. The last two are the Chan-Vese model 
and Li & Xu algorithm. The both of them are more convergent and less influenced by 
the noise / artifacts and initial contours. 

Thus, I selected the geometric deformable models as the best algorithm for this type of 
images and to segment small structures of the inner ear. 

 
 

5.6 Summary 

 
Through this last study, I concluded that the type of images most commonly used are 
the CT images, and it is an added value because I was going to work with this material 
type. Another conclusion, which came from the same study, was the observation of the 
main used algorithms. The thresholding-based algorithms and deformable models are 
the main algorithms and they also are the most used. 

The Function enhancement consists into three stages: first it was used the histogram 
stretch, second the Gaussian filtering was performed and finally, it was filtered by the 
Anisotropic Diffusion filter. To reduce the required computational time and also the 
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computational cost, the region of the inner ear, i.e. region of interest (ROI), was first 
selected from the filtered image by searching for the pixels with highest intensity 
values. The membranous labyrinth of the inner ear is fully enclosed by the resultant 
ROI. Then, from membranous labyrinth, it is possible to create a region that represents 
the boundary of the temporal bone. By this way the image size is reduced and the 
structures of interest are fully inside the ROI. 

Once known the type of segmentation algorithm most used and with the enhanced ROI, 
I performed experimental tests and I used the Otsu method, region growing algorithm, 
canny operator and watershed to analyze the results for a variety of thresholding-based 
algorithms. I also made the same for deformable models, but for this specific case, I 
realized the snake, the Chan-Vese model and the Li & Xu (2005) level set algorithm.  

In the finally stage, I was selected the best type of segmentation algorithm and through 
the analysis of the results and by study of advantages and disadvantages of each one 
was concluded that the deformable models seem to be promising for the segmentation 
of the inner ear because they can easily incorporate statistical information in order to 
improve their performance / efficiency / effectiveness. 
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Chapter VI - Final Conclusions and Future Work 
 Final Conclusions; 

 Future Perspectives. 
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6.1 Final Conclusions 
 

In this Dissertation I present a study for to choose a suitable algorithm to segment the 
inner ear structures by analyzing medical images, in the specific case, Computerized 
Tomography images. The used images are more appropriate to visualize the structures 
of the middle ear and, because of this reason; I have only analyzed 3 slices that clearly 
demonstrate the presence of the inner ear structures.  

In more detail, during this study, the following tasks were concluded: 

- A review on the segmentation algorithms commonly used in medical images. 
- A review in the current works concerning the segmentation of ear structures. 
- The development of a very effective method of image preprocessing that driven 

the segmentation to the region in which are contained the structures of interest, 
and simultaneously decreases the computational cost and time processing. As 
such, the segmentation results are obtained almost immediately. 

- The identification of the method that presents the best segmentations of the inner 
ear. 

From the review studies, it was realized that: 

- The common image segmentation algorithms are often divided into: thresholding-
based, clustering-based and deformable models.  

- The types of images most commonly used to study the inner ear are the CT images. 

- The thresholding-based algorithms and deformable models are the approaches most 
used to segment the inner ear. 

The preprocessing algorithm developed is constituted by three phases: 

- Read the input image; 
- Enhancement of the input image; 
- Definition of the region of interest. 

The image enhancement consists into three stages: firstly, it used histogram stretch, 
secondly the Gaussian filtering was performed and finally, it was filtered by the 
Anisotropic Diffusion filter. To reduce the required computational time and also the 
computational cost, the region of the inner ear, i.e. region of interest (ROI), is defined in 
the filtered image by searching for the pixels with highest intensity values. The 
membranous labyrinth of the inner ear is fully enclosed by the resultant ROI. Then, 
from the membranous labyrinth, it is possible to create a region that represents the 
boundary of the temporal bone. By this way, the image size is reduced and the 
structures of interest are fully contained into the ROI. 
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In the experimental tests done, the Otsu method, region growing algorithm, Canny 
operator and watershed were used to analyze the results obtained by a variety of 
thresholding-based algorithms, and also by deformable models, like the snake model, 
the Chan-Vese’s model and the Li & Xu’s level set method.  

Then, the experimental results were evaluated making possible to realize that 
deformable models seem to be promising for the segmentation of the inner ear, because 
they can easily incorporate statistical information in order to improve their 
effectiveness. 

Also, from the experimental results, it was possible to conclude that the deformable 
models were able to segment more structures of the inner ear than the thresholding-
based algorithms. Furthermore, when compared the three types of deformable models 
used, the level set method was more effective in the segmentation of the real topology 
and shape of the inner ear structures. The Chan-Vese’s model and the Li & Xu (2005) 
level set method were more convergent and less influenced by noise, artifacts and initial 
contours. The level set method used is a geometric deformable model that can 
automatically handle topology changes and allow simultaneously multiple boundary 
segmentations. Specifically, algorithms based on geometric deformable models aim to 
eliminate noise influence, prevent leakage, enhance accuracy and efficiency, and make 
the algorithms more automatic and less dependent on the initial contour. This was been 
confirmed by the experimental tests done. 

 

 

6.2 Future Perspectives 
 

Despite the comprehensive approach adopted and implemented throughout this 
Dissertation that produced experimental results quite satisfactory and promising, the 
work done can be enriched and improved, in particular, by addressing the following 
points: 

- Enrichment and improvement of the study done by performing a statistical 
analysis of the results obtained using images manually segmented by experts as 
ground-truth. 

- Use of images specially acquired for the inner ear, since the used images are 
specific to the middle ear and consequently the inner ear is not represented 
effectively. 

- 3D visualization of the segmented contours and 3D reconstruction of the 
structures segmented by interpolating those contours. 

- Building of biomechanical models for the main auditory organs from the 3D 
models built, that can be used to assist cochlear implant surgery. 
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