43 research outputs found

    Watermarking on Compressed Image: A New Perspective

    Get PDF

    Resilient Digital Video Transmission over Wireless Channels using Pixel-Level Artefact Detection Mechanisms

    Get PDF
    Recent advances in communications and video coding technology have brought multimedia communications into everyday life, where a variety of services and applications are being integrated within different devices such that multimedia content is provided everywhere and on any device. H.264/AVC provides a major advance on preceding video coding standards obtaining as much as twice the coding efficiency over these standards (Richardson I.E.G., 2003, Wiegand T. & Sullivan G.J., 2007). Furthermore, this new codec inserts video related information within network abstraction layer units (NALUs), which facilitates the transmission of H.264/AVC coded sequences over a variety of network environments (Stockhammer, T. & Hannuksela M.M., 2005) making it applicable for a broad range of applications such as TV broadcasting, mobile TV, video-on-demand, digital media storage, high definition TV, multimedia streaming and conversational applications. Real-time wireless conversational and broadcast applications are particularly challenging as, in general, reliable delivery cannot be guaranteed (Stockhammer, T. & Hannuksela M.M., 2005). The H.264/AVC standard specifies several error resilient strategies to minimise the effect of transmission errors on the perceptual quality of the reconstructed video sequences. However, these methods assume a packet-loss scenario where the receiver discards and conceals all the video information contained within a corrupted NALU packet. This implies that the error resilient methods adopted by the standard operate at a lower bound since not all the information contained within a corrupted NALU packet is un-utilizable (Stockhammer, T. et al., 2003).peer-reviewe

    Robust drift-free bit-rate preserving H.264 watermarking

    Get PDF
    International audienceThis paper presents a novel method for open-loop watermarking of H.264/AVC bitstreams. Existing watermarking algorithms designed for previous encoders, such as MPEG-2 cannot be directly applied to H.264/AVC, as H.264/AVC implements numerous new features that were not considered in previous coders. In contrast to previous watermarking techniques for H.264/AVC bitstreams, which embed the information after the reconstruction loop and perform drift compensation, we propose a completely new intra-drift-free watermarking algorithm. The major design goals of this novel H.264/AVC watermarking algorithm are runtime-efficiency, high perceptual quality, (almost) no bit-rate increase and robustness to re-compression. The watermark is extremely runtime-efficiently embedded in the compressed domain after the reconstruction loop, i.e., all prediction results are reused. Nevertheless, intra-drift is avoided, as the watermark is embedded in such a way that the pixels used for the prediction are kept unchanged. Thus, there is no drift as the pixels being used in the intra-prediction process of H.264/AVC are not modified. For watermark detection, we use a two-stage cross-correlation. Our simulation results confirm that the proposed technique is robust against re-encoding and shows a negligible impact on both the bit-rate and the visual quality

    On robustness against JPEG2000: a performance evaluation of wavelet-based watermarking techniques

    Get PDF
    With the emergence of new scalable coding standards, such as JPEG2000, multimedia is stored as scalable coded bit streams that may be adapted to cater network, device and usage preferences in multimedia usage chains providing universal multimedia access. These adaptations include quality, resolution, frame rate and region of interest scalability and achieved by discarding least significant parts of the bit stream according to the scalability criteria. Such content adaptations may also affect the content protection data, such as watermarks, hidden in the original content. Many wavelet-based robust watermarking techniques robust to such JPEG2000 compression attacks are proposed in the literature. In this paper, we have categorized and evaluated the robustness of such wavelet-based image watermarking techniques against JPEG2000 compression, in terms of algorithmic choices, wavelet kernel selection, subband selection, or watermark selection using a new modular framework. As most of the algorithms use a different set of parametric combination, this analysis is particularly useful to understand the effect of various parameters on the robustness under a common platform and helpful to design any such new algorithm. The analysis also considers the imperceptibility performance of the watermark embedding, as robustness and imperceptibility are two main watermarking properties, complementary to each other

    Video Watermarking Based on Neural Networks

    Full text link

    Towards a low complexity scheme for medical images in scalable video coding

    Get PDF
    Medical imaging has become of vital importance for diagnosing diseases and conducting noninvasive procedures. Advances in eHealth applications are challenged by the fact that Digital Imaging and Communications in Medicine (DICOM) requires high-resolution images, thereby increasing their size and the associated computational complexity, particularly when these images are communicated over IP and wireless networks. Therefore, medical research requires an efficient coding technique to achieve high-quality and low-complexity images with error-resilient features. In this study, we propose an improved coding scheme that exploits the content features of encoded videos with low complexity combined with flexible macroblock ordering for error resilience. We identify the homogeneous region in which the search for optimal macroblock modes is early terminated. For non-homogeneous regions, the integration of smaller blocks is employed only if the vector difference is less than the threshold. Results confirm that the proposed technique achieves a considerable performance improvement compared with existing schemes in terms of reducing the computational complexity without compromising the bit-rate and peak signal-to-noise ratio. © 2013 IEEE

    Visual Privacy Protection Methods: A Survey

    Get PDF
    Recent advances in computer vision technologies have made possible the development of intelligent monitoring systems for video surveillance and ambient-assisted living. By using this technology, these systems are able to automatically interpret visual data from the environment and perform tasks that would have been unthinkable years ago. These achievements represent a radical improvement but they also suppose a new threat to individual’s privacy. The new capabilities of such systems give them the ability to collect and index a huge amount of private information about each individual. Next-generation systems have to solve this issue in order to obtain the users’ acceptance. Therefore, there is a need for mechanisms or tools to protect and preserve people’s privacy. This paper seeks to clarify how privacy can be protected in imagery data, so as a main contribution a comprehensive classification of the protection methods for visual privacy as well as an up-to-date review of them are provided. A survey of the existing privacy-aware intelligent monitoring systems and a valuable discussion of important aspects of visual privacy are also provided.This work has been partially supported by the Spanish Ministry of Science and Innovation under project “Sistema de visión para la monitorización de la actividad de la vida diaria en el hogar” (TIN2010-20510-C04-02) and by the European Commission under project “caring4U - A study on people activity in private spaces: towards a multisensor network that meets privacy requirements” (PIEF-GA-2010-274649). José Ramón Padilla López and Alexandros Andre Chaaraoui acknowledge financial support by the Conselleria d'Educació, Formació i Ocupació of the Generalitat Valenciana (fellowship ACIF/2012/064 and ACIF/2011/160 respectively)

    Tatouage du flux compressé MPEG-4 AVC

    Get PDF
    La présente thèse aborde le sujet de tatouage du flux MPEG-4 AVC sur ses deux volets théoriques et applicatifs en considérant deux domaines applicatifs à savoir la protection du droit d auteur et la vérification de l'intégrité du contenu. Du point de vue théorique, le principal enjeu est de développer un cadre de tatouage unitaire en mesure de servir les deux applications mentionnées ci-dessus. Du point de vue méthodologique, le défi consiste à instancier ce cadre théorique pour servir les applications visées. La première contribution principale consiste à définir un cadre théorique pour le tatouage multi symboles à base de modulation d index de quantification (m-QIM). La règle d insertion QIM a été généralisée du cas binaire au cas multi-symboles et la règle de détection optimale (minimisant la probabilité d erreur à la détection en condition du bruit blanc, additif et gaussien) a été établie. Il est ainsi démontré que la quantité d information insérée peut être augmentée par un facteur de log2m tout en gardant les mêmes contraintes de robustesse et de transparence. Une quantité d information de 150 bits par minutes, soit environ 20 fois plus grande que la limite imposée par la norme DCI est obtenue. La deuxième contribution consiste à spécifier une opération de prétraitement qui permet d éliminer les impactes du phénomène du drift (propagation de la distorsion) dans le flux compressé MPEG-4 AVC. D abord, le problème a été formalisé algébriquement en se basant sur les expressions analytiques des opérations d encodage. Ensuite, le problème a été résolu sous la contrainte de prévention du drift. Une amélioration de la transparence avec des gains de 2 dB en PSNR est obtenueThe present thesis addresses the MPEG-4 AVC stream watermarking and considers two theoretical and applicative challenges, namely ownership protection and content integrity verification.From the theoretical point of view, the thesis main challenge is to develop a unitary watermarking framework (insertion/detection) able to serve the two above mentioned applications in the compressed domain. From the methodological point of view, the challenge is to instantiate this theoretical framework for serving the targeted applications. The thesis first main contribution consists in building the theoretical framework for the multi symbol watermarking based on quantization index modulation (m-QIM). The insertion rule is analytically designed by extending the binary QIM rule. The detection rule is optimized so as to ensure minimal probability of error under additive white Gaussian noise distributed attacks. It is thus demonstrated that the data payload can be increased by a factor of log2m, for prescribed transparency and additive Gaussian noise power. A data payload of 150 bits per minute, i.e. about 20 times larger than the limit imposed by the DCI standard, is obtained. The thesis second main theoretical contribution consists in specifying a preprocessing MPEG-4 AVC shaping operation which can eliminate the intra-frame drift effect. The drift represents the distortion spread in the compressed stream related to the MPEG encoding paradigm. In this respect, the drift distortion propagation problem in MPEG-4 AVC is algebraically expressed and the corresponding equations system is solved under drift-free constraints. The drift-free shaping results in gain in transparency of 2 dB in PSNREVRY-INT (912282302) / SudocSudocFranceF
    corecore