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1. Introduction      

Recent advances in communications and video coding technology have brought multimedia 
communications into everyday life, where a variety of services and applications are being 
integrated within different devices such that multimedia content is provided everywhere 
and on any device. H.264/AVC provides a major advance on preceding video coding 
standards obtaining as much as twice the coding efficiency over these standards 
(Richardson I.E.G., 2003, Wiegand T. & Sullivan G.J., 2007). Furthermore, this new codec 
inserts video related information within network abstraction layer units (NALUs), which 
facilitates the transmission of H.264/AVC coded sequences over a variety of network 
environments (Stockhammer, T. & Hannuksela M.M., 2005) making it applicable for a broad 
range of applications such as TV broadcasting, mobile TV, video-on-demand, digital media 
storage, high definition TV, multimedia streaming and conversational applications. 
Real-time wireless conversational and broadcast applications are particularly challenging as, 
in general, reliable delivery cannot be guaranteed (Stockhammer, T. & Hannuksela M.M., 
2005). The H.264/AVC standard specifies several error resilient strategies to minimise the 
effect of transmission errors on the perceptual quality of the reconstructed video sequences. 
However, these methods assume a packet-loss scenario where the receiver discards and 
conceals all the video information contained within a corrupted NALU packet. This implies 
that the error resilient methods adopted by the standard operate at a lower bound since not 
all the information contained within a corrupted NALU packet is un-utilizable 
(Stockhammer, T. et al., 2003).  
Decoding partially damaged bitstreams, where only corrupted MBs are concealed, may be 
advantageous over the standard approach. However, visually distorted regions which are not 
accurately detected by the syntax analysis of the decoder generally cause severe reduction in 
quality experienced by the end-user.  This chapter investigates the application of pixel-level 
artefact detection mechanisms which can be employed to detect the visually impaired regions 
to be concealed. It further shows that heuristic thresholds are not applicable for these 
scenarios. On the other hand, applying machine learning methods such as Support Vector 
Machines (SVMs) can significantly increase the decoder’s capability of detecting visual 
distorted regions. Simulation results will show that the SVMs manage to detect 94.6% of the 
visually impaired MBs resulting in Peak Signal-to-Noise (PSNR) gains of up to 10.59 dB on a 
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frame-by-frame basis. This method can be adopted in conjunction with other standard error 
resilient tools without affecting the transmission bit-rate required. Furthermore, the additional 
complexity is manageable which makes it applicable in real-time applications. 

2. The effect of transmission errors 

The H.264/AVC can achieve high compression efficiency with minimal loss of visual quality 
(Gonzalez, R.C., & Woods R.E., 2008). However, the resulting bitstream is susceptible to 
transmission errors, a phenomenon common in wireless environments, where even a single 
corrupted bit may cause disastrous quality degradation for an extensive period of time. This 
is mainly because video and image compression standards employ variable length codes 
(VLCs) to maximise the compression efficiency. Transmission errors may cause a decoder to 
lose synchronization and fail to decode subsequent VLC symbols correctly, as shown in    
Fig. 1. Thus, a single corrupted bit may result in a burst of corrupted pixels within the 
decoded frame. Furthermore, the spatial and temporal prediction algorithms adopted in 
block-based video compression standards such as H.264/AVC employ neighbouring 
macroblocks (MBs) and regions from reference frames respectively for prediction. If these 
regions are distorted, the reconstructed frame will be distorted as well, thus causing spatio-
temporal propagation of errors (Richardson I.E.G., 2003). 
 

 

Fig. 1. Effect of transmission errors on variable length encoded sequences 

In the standardization of H.264/AVC, corrupted packets are considered as being discarded 
by the receiver. Therefore, even a single corrupted bit within a packet will cause all the MBs 
contained within that packet to be dropped and concealed, thus, in general, the decoder will 
conceal a number of uncorrupted MBs. Furthermore, the spatio-temporal propagation of the 
superfluously concealed regions will propagate in both space and time, which by and large 
results in a significant reduction in perceptual quality. Fig. 2 illustrates the effect of a single 
corrupted bit in frame 41 of the Foreman sequence on the perceptual quality of the 
reconstructed frame and the effect of spatio-temporal propagation in the following frames.  
Decoding of partially corrupted payloads may be beneficial for some applications. This is 
particularly true when considering damaged video bitstreams, since most of the MBs 
contained within a corrupted packet are either not corrupted or else provide imperceptible 
 

www.intechopen.com



Resilient Digital Video Transmission over Wireless Channels  
using Pixel-Level Artefact Detection Mechanisms  

 

73 

 

Fig. 2. Error propagation in standard H.264/AVC caused by a single bit error 

artefacts. Driven by this observation a set of protocols which allow the delivery of damaged 
packets are available. An overview of these methods is provided in (Welzl, M., 2005).  
However, as shown in Fig. 3, transition errors which are not detected by the syntax analysis 
of the H.264/AVC decoder may cause significant visual distortions which propagate in the 
spatio-temporal domain, thus reducing the end-user experience. The syntax analysis only 
manages to detect 57% of the corrupted MBs (Superiori, L. et al., 2006). Thus, to make 
decoding of partially damaged data applicable for video applications, the design of  
decoder-based algorithms which better cope with transmission errors without affecting the 
transmission bit rate are required. 

3. Standard error resilient tools 

The H.264/AVC video coding standard specifies several error resilient mechanisms aimed 
at minimizing the effect of transmission errors on the perceptual quality of the received 
video content. The following error resilient mechanisms are included in the standard: 

• Slice Structuring 

• Intra Refresh 

• Flexible Macroblock Ordering (FMO) 

• Redundant Slices (RS) 

• Data Partitioning (DP) 

3.1 Slice structuring 

Delivery of video content over wireless networks is generally provided through frames 
having small maximum transmission units (MTU). This is mainly because the probability of 
 

Frame 41 Frame 46 

Frame 51 Frame 56 
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Fig. 3. Error propagation of artefacts caused by transmission errors when decoding partially 
damaged slices 

bit errors affecting a small packet is lower than that for larger packets (Stockhammer, T. et 
al., 2003). Wireless video transmission is not an exception, where each frame is segmented 
into a number of independent coding units called slices. Slices are coded using limited 
spatial prediction and thus can be considered to provide spatially distinct synchronization 
points (Kumar, G. et al., 2006). 
Furthermore, small packets reduce the amount of lost information, and hence the error 
concealment method can be applied to smaller regions, providing a better quality of 
experience. In (Kumar, G. et al., 2006) it was reported that slice structuring provides Peak 
Signal-to-Noise Ratio (PSNR) gains of around 7.33 dB when compared to single picture per 
packet with no error resilience.  

3.2 Intra refresh 

The application of slice structures limits the spatial propagation of errors within slice 
boundaries. However, due to the hybrid design of the H.264/AVC coding engine which 
adopts information from previously decoded frames, temporal propagation of artefacts 
caused by transmission errors is still severe. Instantaneous decoding refresh (IDR) pictures 
can be used to eliminate the temporal propagation of distorted regions where the entire 
picture is intra encoded. However, for real-time conversational video applications, it is not 
advisable to insert I-frames due to bit rate constraints and the resulting long delays involved 
(Kumar, G. et al., 2006). 
Random intra MB coding is more acceptable for real-time applications. In addition to 
reducing the temporal propagation of distorted regions, it allows the encoder to maintain a 

Frame 41 Frame 46 

Frame 51 Frame 56 
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constant bit rate with the help of an H.264/AVC integrated rate-distortion control 
mechanism. Additionally, this technique is an encoder-based tool, which increases the data 
rate requirement but provides no additional overheads at the decoder. 

3.3 Flexible Macroblock Ordering (FMO) 

A more advanced error resilient tool specified in the H.264/AVC standard is the flexible 
macroblock ordering (FMO) which allows the specification of MB allocation within slice 
groups. The objective behind FMO is to scatter possible errors to the whole frame as equally 
as possible to avoid error clustering in a limited region. FMO is particularly powerful in 
conjunction with appropriate error concealment when the samples of a missing or corrupted 
slice are surrounded by many correctly decoded ones (Stockhammer, T. et al., 2003). 
FMO can provide a significant gain in quality even at high error rates. However, FMO 
disallows the intra-frame prediction to exploit spatial redundancy in neighbouring MBs, 
since they are not enclosed within the same slice group. This will reduce the coding 
efficiency of the codec, thus limiting the applicability of FMO to low bit rate applications. 
Experimental results have shown that when transmitting over an error free channel, FMO 
encoded video sequences incur a data rate increase of 10% compared to when FMO is 
switched off (Wenger, S. & Horowitz, M., 2002). 

3.4 Redundant Slices (RS) 

A redundant slice is a new error resilient feature included within the H.264/AVC standard 
which allows the encoder to send redundant representations of various regions of pictures. 
Redundant slices may use different coding parameters, such as quantization levels, 
reference pictures, mode decisions, and motion vectors, than those used to encode the 
primary picture. If the primary slice is received correctly the redundant slice is simply 
discarded. However, if it is corrupted, the redundant slice is used instead in order to limit 
the visual distortion caused by transmission errors (Zhu, C. et al, 2006). 
The enhanced error resilience provided by this strategy is achieved at the cost of additional 
overheads in terms of the excess bit rate requirements. There exists a trade-off between the 
degradation in the picture quality of the recovered video due to redundant slices and the 
available bandwidth. The more information introduced to describe the secondary slices the 
better is the performance of the decoder. Even though there is no restriction on the amount 
of information to be included in the redundant slices, in most applications bandwidth draws 
the limit and thus affects the performance of the redundant slices mechanisms. 

3.5 Data Partitioning (DP) 

The H.264/AVC codec generally encodes each frame to provide one single bitstream which 
forms a slice. However, since some coded information is more important than others, 
H.264/AVC enables the syntax of each slice to be separated into three different partitions for 
transmission (Wenger, S., 2003): 

• Header information, including MB type, quantization parameters and motion vectors. 
This information is the most important, because without it, symbols of the other 
partitions cannot be used. This partition is called type A. 

• The Intra partition (Type B) carries intra coded pictures and intra coefficients. This 
partition requires the availability of the type A partition of a given slice in order to be 
useful. 
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• The Inter partition contains only inter coded pictures and inter coefficients. This 
partition contains the least important information and in order to be useful requires the 
availability of the type A partition, but not the type B partition. 

All partitions have to be available to execute standard conformant reconstruction of the 
video content. However, if the inter or intra partitions are missing, the available header 
information can still be used to improve the performance of the error concealment. Data 
partitioning is not included in the H.264’s baseline profile and thus cannot be adopted for 
typical videoconferencing and mobile applications (Liu, L. et al., 2005). 

4. Related work 

Several extensions to the standard and novel error resilient strategies have been proposed in 
literature. Fragile watermarking was adopted in (Nemethova, O. et al., 2006), (Chen, M. et 
al., 2005) and (Park, W. & Jeon, B., 2002) to embed information that aids the detection and 
concealment of distorted regions. A low resolution version of each video frame was 
embedded in itself in (Adsumilli, C.B. et al., 2005) using spread-spectrum watermarking and 
is used to aid concealment of distorted regions. However, embedding information 
contributes to a reduction in the quality of the transmitted video content even when 
transmission is performed over an error free channel. 
In order to better protect the transmitted bitstreams, error control strategies can be employed. 
Instead of including structured redundancy at the encoder, which reduces the compression 
efficiency, the authors in (Buttigieg, V. & Deguara, R., 2005) have replaced the VLC tables of 
the MPEG-4 video compression standard with variable length error correcting (VLEC) codes. 
A soft-decision sequential decoding algorithm was then implemented to decode the MPEG-4 
bitstreams. However, the adoption of VLEC codes reduces the compression efficiency of the 
codec since the codewords produced have a longer average length.  
The redundancy in compressed image and video was analyzed in (Nguyen, H. & Duhamel, 
P., 2003), where it was concluded that significant gain in performance can be achieved when 
additional video data properties are taken into consideration while decoding. The same 
authors have later adopted a modified Viterbi decoder algorithm to recover feasible H.263 
video sequences in (Nguyen, H. & Duhamel, P., 2003), (Nguyen, H. & Duhamel. P. et. al., 
2004). Sequential decoding methods were adopted for H.264/AVC encoded sequences 
where Context Adaptive Variable Length Codes (CAVLC) (Weidmann, C. et. al, 2004) and 
(Bergeron, C. & Lamy-Bergot, C., 2004) and Context Adaptive Binary Arithmetic Codes 
(Sabeva, G. et. al, 2006) coding modes were considered. However, sequential decoding 
algorithms introduce variable decoding delays which can be problematic in real-time 
applications (Lin, S. & Costello, D.J., 1983). A survey on joint-source channel coding 
techniques is provided in (Guillemot, C. & Siohan, P., 2005). 
Various pixel-level artefact detection mechanisms based on heuristic thresholds were 
proposed in (Superiori, L. et. al, 2007), (Farrugia, R.A. & Debono, C.J., 2007) and (Ye, S., et. 
al, 2003). However, these methods only manage to detect between 40~60% of the corrupted 
MBs and have limited applications in practice since the optimal thresholds vary from 
sequence to sequence. An iterative solution which was presented in (Khan, et. al, 2004) 
attained substantial gain in quality at the expense of significantly increasing the complexity 
of the decoder, making it unsuitable for real-time mobile applications. 
Scalable video coding (SVC) is another solution that can provide resilient delivery of video 
content over wireless channels (Schwarz, H. et. al., 2006). A scalable representation of video 
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consists of a base layer providing basic quality and multiple enhancement layers serving as 
a refinement of the base layer. The enhancement layers however are useless without the 
base layer. The benefit of SVC for wireless multiuser was demonstrated in (Liebl, G. et. al, 
2006). However, this is achieved at the cost of higher encoding complexity and higher bit 
rate demand (Roodaki, H. et. al, 2008), (Ghanbari, M., 2003)). 
Multiple Description Coding (MDC) (Goyal, V.K., 2001) is another alternative approach 
whose objective is to encode a source into two bitstreams such that high-quality 
reconstruction is derived when both bitstreams are received uncorrupted, while a lower but 
still acceptable quality reconstruction is achieved if only one stream is received uncorrupted. 
Several methods which adopt MDC to enhance the robustness of the video codec can be 
found in literature (Wang,Y. & Lin, S., 2002), (Tilio, T. et. al, 2008) and (Wang, Y. et. al, 2005). 
Again, the increase in error resilience is achieved by increasing the data rate required to 
deliver the same quality criterion as conventional single description coding methods in the 
absence of transmission errors. 
Unequal Error Protection (UEP) schemes were extensively investigated in order to give 
higher protection to more important information. UEP was successfully combined with Data 
Partitioning (Barmada, B. et. al, 2005) and SVC (Zhang, C. & Xu, Y., 1999), (Wang, G. et. al 
2001). Unbalanced MDC methods which allocate less bit rates to channels operating in bad 
conditions were proposed in (Ekmekci Flierl, S. et. al, 2005). The authors in (Rane, S. et. al, 
2006) have proposed the transmission of a Wyner-Ziv encoded version of the image using 
the redundant slice option of H.264/AVC. Finally, Encoder-Decoder interactive error 
control approaches were presented in (Wang, J.T. & Chang, P.C., 1999), (Girod, B. & Färber, 
N., 1999) and (Budagavi, M. & Gibson, J.D., 2001). These methods however introduce 
additional delays making them unsuitable in wireless real-time applications and are not 
applicable for typical broadcasting/multicasting applications. 

5. Pixel-level artefact detection mechanism 

The standard H.264/AVC video coding standard was built with the assumption that 
corrupted slices are discarded and therefore does not allow partial decoding of corrupted 
payloads. This forces these mechanisms to operate at a lower bound since they assume a 
worst case scenario, where all the MBs contained within a corrupted slice are discarded and 
concealed. This assumption is most of the time untrue since in the majority of cases the MBs 
contained within a corrupted slice are either not corrupted or else provide imperceptible 
visual distortions. Therefore, decoding of partially damaged payloads may be beneficial 
when considering damaged compressed video content. For this reason, a set of syntax and 
semantic violations, presented in (Superiori, L. et al., 2006) were integrated within the 
H.264/AVC decoder to enable the decoding of damaged video content. However, these set 
of rules do not manage to accurately detect and localize a number of corrupted MBs 
resulting in severe visual impairments which propagate in the spatio-temporal domain, 
significantly reducing the quality of the reconstructed video sequences. 
The pixel-level artefact detection mechanism is included as a post-process of the 
H.264/AVC sequences, as shown in Fig. 4, to detect the residual visually distorted regions 
to be concealed. The decoder is informed through the NALU header of the presence of 
transmission errors within the slice being decoded. To minimise computational complexity, 
the pixel-level artefact detection mechanism is only invoked to detect artefacts within 
corrupted slices. Therefore, no extra computation is required to decode uncorrupted slices. 
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Fig. 4. Modified H.264/AVC Decoding Strategy using Pixel-Level Artefact Detection 

The pixel-level artefact detection mechanism exploits the spatio-temporal smoothness of 
video scenes to detect visually impaired MBs. A number of dissimilarity metrics which 
exploit the redundancy present at pixel level are considered in subsection 5.1. These 
dissimilarity metrics generally provide large values to corrupted MBs and small values to 
uncorrupted MBs. Heuristic thresholds can be applied to discriminate between corrupted 
and uncorrupted MBs. However, the selection of these thresholds is sequence dependent 
and is thus not flexible enough to cater for a wide range of video sequences. This section 
introduces the application where a set of dissimilarity metrics were combined to form a 
feature vector, which is used to describe the reliability of each MB contained within a 
corrupted slice. The discrimination between corrupted and uncorrupted MBs is then 
provided through supervised machine learning algorithms which are discussed in 
subsection 5.2. These classifiers are trained and evaluated using subjective results provided 
through a case study discussed in subsection 5.3. 

5.1 Dissimilarity metrics 
5.1.1 Average Inter-sample Difference across Boundaries (AIDB) 

In an image, there exists sufficient similarity among adjacent pixels, and hence across MB 

boundaries, even in the presence of edges. The AIDB dissimilarity metric is used to detect 

artefacts which affect the entire MB. Considering Fig. 5, let M denote a potentially corrupted 

MB under test with its four neighbouring MBs N, S, E and W. Further, let  

{ }1 2
= , ,...,in in in in

Kp p p p represent boundary pixels inside the MB M and { }1 2
= , ,...,out out out out

Kp p p p  

represent boundary pixels in one of the neighbouring MBs { }∈ , , ,X N S E W . Then, the 

AIDB(M:X) distance measure is given by: 

 ( ) 2

1

0

⎧ −⎪= ⎨
⎪⎩

   if  available
:

                         otherwise

in outp p X
AIDB M X K  (1) 

where K is the size of the MB and 
2

•  is the Euclidean distance. The AIDB dissimilarity 

metric is then computed by evaluating the average of AIDB(M:X) over the available 

neighbouring MBs. 
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Fig. 5. Graphical representation of the AIDB/IAIDBblock Dissimilarity Metrics 

5.1.2 Internal AIDB per block (IAIDBblock) 
The IAIDBblock dissimilarity metric is based on the principle that, in non-corrupted MBs, the 
pixel transition from one 4×4 block to the adjacent block is generally smooth and thus the 
pixels at 4×4 boundaries are very similar. Opposed to the AIDB dissimilarity metric, the 
IAIDBblock was designed to detect artefacts within an MB. For this purpose, each MB is 
divided into a grid of 16 4×4 blocks and the IAIDBblock(M:X) metric is computed using (1), 
but this time the parameter M represents the 4×4 block within an MB under test and K = 4. 
The IAIDBblock dissimilarity metric of each 4×4 block is then derived by averaging the 
IAIDBblock(M:X)  over the available neighbouring 4×4 blocks. At the end of the computation 
we have a set of 16 IAIDBblock dissimilarity metrics.  

5.1.3 Internal AIDB (IAIDB) 
The IAIDB dissimilarity metric is based on the same spatial smoothness property described 
above. However, during experimentation, it was observed that some of the artefacts provide 
internal vertical/horizontal boundary discontinuities which could not be classified by the 
spatial features described above. The IAIDB dissimilarity metric is designed to provide a 
measure of the dissimilarity across the internal horizontal/vertical boundaries, as illustrated 
in Fig. 6.  The metric is computed using: 

 
2

1
= −/ / /

in out
h v h v h vIAIDB p p

K
 (2) 

where K = 16, /h vp represent the horizontal/vertical boundary pixels and 
2

• is the 

Euclidean distance. 

 

Fig. 6. Graphical representation of the IAIDB Dissimilarity Metric 
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5.1.4 Average Internal Difference between Subsequent Blocks (AIDSB) 

Generally, the pixel transition of an MB and the corresponding MB in the previous frame 
varies smoothly. Again, since the H.264/AVC design is based on 4×4 transform blocks, each 
MB is dissected into 16 4×4 blocks.  
Let Mt represent the potentially corrupted MB under test and Mt-1 be the corresponding MB 
in the previous frame. The AIDSB dissimilarity metric for each 4×4 block bt and bt-1, shown 
in Fig. 7, is computed using: 

 
12 2

1

−= −t tAIDSB p p
K

 (3) 

where K represents the size of the block (in this case K = 4), 
2

• is the Euclidean distance, 

and  pt and pt-1 represent the pixel of the 4×4 block under test bt and the corresponding block 

in the previous MB bt-1 respectively. Once the computation is terminated, a set of 16 AIDSB 

dissimilarity metrics, one for each 4×4, is available. 
 

 

Fig. 7. Graphical representation of the AIDSB Dissimilarity Metric 

 
(a)                       (b)                      (c)                      (d) 

Fig. 8. Computation of the Local Binary Pattern 

5.1.5 Texture Consistency (TC) 

The Local Binary Pattern (LBP) operator (Ojala, T., et. al, 1996) is a powerful grey-scale 
invariant texture measure. To understand how it works let us consider Fig. 8. The original 
3x3 neighbourhood (Fig. 8(a)) is thresholded by the value of the centre pixel. The values of 
the pixels in the thresholded neighbourhood (Fig. 8(b)) are multiplied by the binomial 
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weights given to the corresponding pixels (Fig. 8(c)). The result of this example is illustrated 
in Fig. 8(d). Finally, the values of the eight pixels are summed to obtain the LBP metric. 
The LBP histograms of the current MB, ht, and the corresponding MB in the previous frame 
ht-1 are first computed. The TC dissimilarity metric is then computed by evaluating the 
histogram insertion method given by: 

 ( )
1

1

0

1 min ,
B

t t
i

TC h h
−

−
=

= −∑  (4) 

where B is the number of bins which is set to 256. 

5.1.6 Feature vector 

The dissimilarity metrics described above exploit both colour and texture consistencies of 
the MB under test. This set can be reduced to eight dissimilarity metrics without 
compromising the performance of the classifiers described in the following section. These 
are:  
1. AIDB  
2. Mean of IAIDBblock  
3. Standard Deviation of IAIDBblock  
4. Vertical IAIDB 
5. Horizontal IAIDB 
6. Mean of AIDSB  
7. Standard Deviation of AIDSB  
8. TC.  
These dissimilarity metrics are then combined together to form the feature vector, which 
solely describes the reliability of the MB under test. After extensive simulation and testing it 
was found that these eight dissimilarity metrics provide the best compromise between 
complexity and performance and therefore adopting higher dimensional feature vector 
resulted futile. 

5.2 Classification methods 

Pattern recognition techniques are used to classify some objects into one of the pre-defined 

set of categories or classes c. For a specific pattern classification problem, a classifier is 

developed so that objects are classified correctly with reasonably good accuracy. Inputs to 

the classifier are called features, which are composed of vectors that describe the objects to 

be classified. The features are designed according to the problem to be solved.  

The aim of the pixel-level artefact detection mechanism is to detect the visually distorted 

MBs to be concealed. The feature extraction module extracts the feature vector which solely 

defines the reliability of the MB under test. The pattern recognition method then tries to 

categorize the MB under test in one of the categories based on the statistical information 

made available by the feature vector. 

One of the simplest classification methods is to derive the probability density functions 
(PDFs) of the dissimilarity metrics representing the uncorrupted and corrupted MBs. The 
aim of the dissimilarity metrics is to have PDFs similar to the one illustrated in Fig. 9, at 
which point heuristic thresholds can be employed to detect visually distorted MBs. 
However, as it will be shown in the simulation results, these dissimilarity metrics provide 
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limited discriminative power when applied on their own. Furthermore, the distribution of 
uncorrupted MBs varies with varying video sequences and thus the optimal threshold is 
sequence dependent.  
 

 

Fig. 9. Probability Density Function of a typical Dissimilarity Metric 

Supervised learning classification methods can be employed to solve this problem. These 

algorithms adopt a set of l training samples ( ),yx , where [ ]1 1
= , ,..., nx x xx represent the 

extracted feature vectors, y their corresponding labels (corrupted MB = -1, uncorrupted    

MB = +1), and n represents the number of dimensions of the feature vector. In supervised 

learning algorithms, the classifier attempts to learn the input/output functionality from 

examples to derive an optimal hyperplane to discriminate between the two classes.  

5.2.1 Backpropagation Neural Network (BPNN) 

A feed-forward neural network is a simple structure where multiple hidden layers are 
employed. Since it has the potential of approximating a general class of nonlinear functions 
with a desirable degree of accuracy, it has been employed in many pattern recognition 
applications (Gupta, M. M. et. al, 2003), (Duda R. O. et. al, 2000). The architecture of the 
feed-forward neural network is illustrated in Fig. 10. 

Every neuron in the hidden layer receives an input vector x . The output of all the neurons 

in the hidden layer, represented by a p-dimensional vector 
1 1

⎡ ⎤= ⎣ ⎦, ,..., pz z zz  is fed forward to 

the neurons in the output layer. The output neurons generate an output vector 

[ ]1 2
= , ,..., mf f ff . Further, consider the weights corresponding to the ith neuron in the hidden 

layer to be 1 1 1

1 2
1 2⎡ ⎤= =⎣ ⎦

( ) ( ) ( ), ,..., , , ,...,i i inw w w i p(1)
iw and the weights corresponding to the jth 

neuron in the output layer to be 2 2 2

1 2
1 2⎡ ⎤= =⎣ ⎦

( ) ( ) ( ), ,..., , , ,...,
T

j j jpw w w j m(2)
jw . The input/output 

relation of the neurons in the network can be expressed as: 

 ( )

1 1

0

1

1 2

σ
=

⎧
=⎪

⎪⎪ =⎨
⎪ =⎪
⎪⎩

∑( ) ( )

( )hidden layer   

, ,...,

n

i ik k
k

i i

s w x

z s

i p
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2 2

0

2

1 2

σ

=

⎧
=⎪

⎪
⎪ =⎨
⎪

=⎪
⎪
⎩
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p

j jq q
q
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s w z
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 (5) 
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Fig. 10. Fully Connected Feed-Forward Neural Network  

where ( )σ • is a nonlinear activation function which is normally modelled by the sigmoid 

function as given by: 

 ( ) 1

1
σ −=

+ x
x

e
 (6) 

One of the most popular methods for training feed-forward neural networks is the 
backpropagation neural network (Rumelhart, D.E., et. al, 1986) (BPNN). The basic approach 
in learning starts with an untrained feed-forward neural network which is presented with 
an input training patter x  and the corresponding output targets y. The BPNN algorithm 

then derives the weights which provide the best separating hyperplane which minimises the 
error function given by: 
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where E is the cost function and is the measure of the learning performance of the network. 
The BPNN algorithm is an iterative method which adapts the weight vectors in the direction 
of decreasing error E (gradient decent) with respect to the weight vectors. The predicted 
weight difference is given by:  
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where 0 < η < 1 is the learning rate constant. The weight adapting formulae for the hidden 
and output layer are as follows: 
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where 

 ( )( ) ( )( )2 2δ σ ′= −( ) ( )( ) ( )j j j jt y t f t s t  (12) 

The design of the BPNN to solve the artefact detection problem is not trivial. Whereas the 
number of inputs and outputs is given by the feature space and number of categories 
respectively, the total number of hidden neurons in the network is not that easily defined. 
After extensive simulation and testing the best recognition rate was registered when 
applying a single hidden-layer of 50 neurons and applying a learning rate η = 0.1.  

5.2.2 Probabilistic Neural Network (PNN) 

The Probabilistic Neural Network (Specht, D.F., 1988) (PNN) is another feed-forward neural 
network commonly used for pattern recognition. The PNN classifier forms a Parzen 
estimate based on l samples, where each sample is represented by a normalized                     
n-dimensional feature vector. The PNN architecture, as illustrated in Fig. 11, consists of n 
input units, where each unit is connected to each of the l pattern units. Each pattern unit is, 
in turn, connected to one and only one of the category units. The connections from the input 
to pattern units represent modifiable weights, which will be derived during the training 
phase. On the other hand, the connections between the pattern units and the output units 
have weights which are set to unity. 
 

 

Fig. 11. Architecture of a Probabilistic Neural Network 

The training of a PNN is quite straightforward, where at first each pattern x of the l training 
feature vectors is normalized to have unit length. The first normalized training pattern is 
then placed on the input units. The modifiable weights linking the input units and the first 
pattern unit are set such that w1 = x1. A single connection from the first pattern unit to the 
output unit corresponding to the known class of that training pattern is created. The process 
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is repeated for all the remaining training patterns, setting the weights to the successive 

pattern units such that 1 2= =for , ,..., .k kw x k l  After this training, we have a network that is 

fully connected between the input and pattern units, and sparsely connected from pattern to 
category units. 
The trained PNN can now be used for classification by computing the inner product 

between the inputted feature vector x and the weight vector w of the kth pattern unit as 

follows: 

 = ,k kz w x  (13) 

where • denotes the inner product operator. Each pattern unit emits a nonlinear activation 

function given by: 
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where σ is the smoothing parameter, which after extensive simulation and testing was set to 

0.12. Each output unit then accumulates the values of these activation functions of a given 

class. The feature vector is simply categorised with the largest output neuron value.  

5.2.3 Support Vector Machine (SVM) 

A Support Vector Machine (Cortes, C. & Vapnik, V., 1995) (SVM) is a very powerful method 
that in the few years since its inception has outperformed most other machine learning 
algorithms in a wide variety of applications. The aim of SVM classification is to derive a 
separating hyperplane which optimises the generalisation bounds. The generalisation 
theory gives clear guidance on how to control capacity and hence prevent overfitting by 
controlling the hyperplane margin measures, while optimisation theory provides the 
mathematical techniques necessary to find the hyperplane which optimises these measures. 
The SVM classifier is a linear learning machine and therefore it may not manage to classify 

nonlinearly separable data at an acceptable accuracy. Thus, to enhance linear separability, 

the SVM employs an implicit nonlinear mapping of the data onto a higher dimensional 

feature space via a positive semi-definite kernel K(x, y), where the SVM tries to derive an 

optimised separating hyperplane. Several algorithms (Platt, J.C., 1998), (Keerthi, S.S., et. al, 

2001) can be found in literature which can be used to train the SVM. These methods try to 

solve the following quadratic optimisation problem: 

 

( ) ( )
1 1 1

1

1

2

0

0

α
α α α α

α

α

= = =

=

= −

≤ ≤ ∀

=

∑ ∑∑

∑

f f
max , ,

, ,

l l l

i i j i j i j
i i j

i

l

i i
i

W y y K x x

C i

y

 (15) 

whereα are the Lagrange multipliers and C is the finite penalization constant. The Lagrange 

multipliers have nonzero values to support vectors (SV) which solely determine the optimal 

hyperplane. The decision function is given by:  
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where b is the bias term. Following this, the unknown data are classified using the decision 
function as follows: 
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For the application at hand, a modified version of the Sequential Minimal Optimization 
(SMO) algorithm was adopted (Keerthi, S.S., et. al, 2001) to train the SVM classifier. This 
algorithm was reported to be faster and provides better convergence when compared to the 
other methods (Platt, J.C., 1999). This classifier utilises the Radial Basis Function (RBF) 
Kernel which is given by: 

 ( )
2

2
2σ

⎛ ⎞− −
⎜ ⎟=
⎜ ⎟
⎝ ⎠

, exp
x y

K x y  (18) 

where σ  is the smoothing parameter. Following extensive testing, the penalisation constant 

C was set to 60 while the smoothing parameter was set to 1.5. 

5.3 Training the classification methods 

The syntax analysis check rules used to detect syntax and semantic violation in the 
H.264/AVC bitstreams only manage to detect 57% of the transmission errors. The errors 
which do not cause syntax or semantic violations produce different levels of visually 
impaired regions. As shown in Fig. 12, some of the distorted MBs are very annoying while 
others are imperceptible. Most of the artefacts caused by transmission errors generally 
provide imperceptible visual distortions and thus concealing all the MBs contained within a 
corrupted slice results in concealing a number of MBs which provide minimal or no visual 
distortion. 
 

    

Fig. 12. Typical residual artefacts undetected by the syntax analysis rules 

In natural video sequences there exists sufficient correlation between spatio-temporal 
neighbouring MBs. As shown in Fig. 12, the statistics of annoying artefacts significantly 
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differ from those of uncorrupted MBs. This observation suggests that the design of an 
artefact detection mechanism which exploits the spatio-temporal redundancies available at 
pixel level after decoding can be used to detect distorted regions. The aim of the designed 
method is to maximise the detection of highly distorted MBs which significantly degrade the 
quality of the decoded frame while being more lenient with imperceptible ones. 
To design a robust artefact detection mechanism a set of five video sequences (Foreman, 
Carphone, Mobile, Coastguard and News) were used to derive the training and testing data to 
be used for experimentation. A third set, called the cross-validation set, was made up from 
another four video sequences (Miss-America, Salesman, Akiyo and Silent). These sequences 
were encoded at QCIF resolution at 30 frames per second and were transmitted over a 
Binary Symmetric Channel (BSC) at different error rates. From the resulting distorted 
frames, a population of 3000 MBs is extracted at random. This population is divided into 
three distinct groups with each group consisting of 500 corrupted MBs and 500 uncorrupted 
MBs. The first group is used for training while the remaining two groups are used for 
recognition and cross-validation respectively. 
To better analyze the performance of the artefact detection method, the distorted MBs were 
scaled according to the five-level distortion scale given in Table 1. The experiment consisted 
of 21 reliable viewers who did not have any experience in image quality evaluation. A 
subset of 74 corrupted MBs were chosen at random from the training set and were supplied 
to the viewers for assessment. The viewers have classified these MBs using a methodology 
similar to the single stimulus test (ITU-T Rec. P.910, 1999). Two experts in the area of 
multimedia communications have scaled the same images and were used as a reference. 
 

Distortion Level (DL) Definition 

4 Very annoying artefacts 

3 Annoying artefacts 

2 Slightly annoying artefacts 

1 Perceptible but non annoying artefacts  

0 Imperceptible or non-corrupted MB 

Table 1. Definition of the Distortion Levels 

Applying the single stimulus test methodology to all the 1500 distorted MBs was prohibitive 
due to excessive time required. It is much less time consuming to derive this subjective 
evaluation through the judgement of a group of experts. However, before doing so, it had to 
be ensured that the results provided by the group of experts represented the opinion of 
normal users. For this reason, the One-Sample t-test was used to compare the opinions 
provided by the viewers to the reference results based on the subset of 74 corrupted images. 
This test confirmed that the difference between the means for 83.74% of the images 
considered during the test is not significant at a 95% confidence level. Furthermore, all the 
remaining samples have a negative mean difference indicating the judgement provided by 
the group of experts caters for the most demanding users. 

6. Simulation results 

The performance of the classification methods employed by the pixel-level artefact detection 
module is dependent on the dissimilarity metrics. The aim of the dissimilarity metrics 
employed is to provide small metrics for uncorrupted MBs and large metrics for corrupted 
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MBs in order to increase the separability in the input space, thus facilitating classification. 
Since these dissimilarity metrics (except the Texture Consistency) measure colour 
differences, it becomes clear that the performance of the dissimilarity metrics and thus of the 
classification method is dependent on the colour space model where these dissimilarity 
metrics are computed. 
To identify the colour space model where to compute the dissimilarity metrics, the AIDSB 
and AIDB dissimilarity metrics are considered. These distance measures are computed in 
the YUV, HSI, CIELAB, and CIELUV colour systems, where the heuristic thresholds T are 
derived using the training set. The heuristic thresholds are selected in such a way that we 
achieve an acceptable error detection rate PD at a false detection rate PF of around 5%. The 
dissimilarity based classification method is then evaluated based on the data contained in 
the training set and the results obtained are summarised in Table 2 and Table 3. 
 

Colour System Threshold T PD (%) PF (%) 

YUV 7.50 65.20 5.20 

HSI 0.25 71.80 5.60 

CIELAB -0.10 68.00 6.60 

CIELUV 0.25 72.80 4.60 

Table 2. Performance of the AIDSB dissimilarity metric using different colour systems 
 

Colour System Threshold T PD (%) PF (%) 

YUV 8.00 31.40 4.60 

HSI 0.30 40.20 4.60 

CIELAB -0.20 34.00 5.40 

CIELUV 0.20 41.80 4.20 

Table 3. Performance of the AIDB dissimilarity metric using different colour systems 

These results evidence that the dissimilarity-based classification methods perform better 

when computed in colour systems which better describe the human perception. In 

particular, computing these dissimilarity measures in the perceptually uniform CIELUV 

colour space model, generally adopted in television and video display applications, seems to 

be more beneficial. For this reason, in the remaining part of this section the dissimilarity 

metrics (except Texture Consistency) are computed in the CIELUV colour space model.  

The three supervised learning algorithms described in the previous section can now be 

trained on the training set using the eight dissimilarity metrics described above to represent 

each component of the feature vector. The performance of these algorithms is compared to 

the AIDB and AIDSB based classifiers and the results obtained are summarized in Table 4. 

From these results, it can be concluded that the three supervised learning algorithms 

manage to detect all severely distorted MBs whereas dissimilarity-based classifiers do not. 

Furthermore, an overall recognition gain of around 20% and 50% is achieved relative to the 

AIDSB and the AIDB based classifiers, respectively. Finally, it can be observed that the SVM 

achieves the best result, where it manages to detect 94.6% of the visual artefacts at PF smaller 

than 5%. The gain achieved by the SVM classification method over the other neural 

approaches occurs mainly because this technique manages to detect more DL2 and DL1 

artefacts. 
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Classifier PD (%) PDL4 (%) PDL3 (%) PDL2 (%) PDL1 (%) PF (%) 

AIDB 41.80 86.57 45.32 18.18 2.74 4.20 

AIDSB 72.80 97.76 87.77 62.34 21.55 4.60 

BPNN 92.60 100.00 100.00 93.51 63.01 7.40 

PNN 92.20 100.00 100.00 92.21 63.01 4.80 

SVM 94.60 100.00 100.00 94.81 73.97 4.60 

Table 4. Performance of the different classification methods 

Both SVM and PNN solutions achieve good artefact detection capabilities with the SVM 

classifier performing best. However, in order to avoid overfitting, these classifiers are tested 

on a cross-validation set which contains feature vectors extracted from different video 

sequences than the ones considered in the training phase. The results are summarised in 

Table 5, where it can be noticed that the SVM still performs well on these video sequences 

while the performance of the PNN degrades significantly. Another point in favour of the 

SVM classifier is that, as shown in Fig. 13, the classification is less computational intensive. 

This is attributed to the fact that only 156 support vectors are used to derive the separating 

hyperplane. Given these results, the SVM was integrated within the pixel-level artefact 

detection method.  
 

Classifier PD (%) PDL4 (%) PDL3 (%) PDL2 (%) PDL1 (%) PF (%) 

PNN 78.89 100.00 96.23 67.69 65.45 4.80 

SVM 90.95 100.00 100.00 90.77 78.18 5.20 

Table 5. Performance of the different classification methods on cross-validation set 

The pixel-level artefact detection module is then integrated within the JM software model, 
where the syntax and semantic violation test procedures are enabled to allow the decoding 
of partially damaged H.264/AVC bitstreams. The raw video sequences are encoded at QCIF 
resolution at 15 frames per second at a data rate of 64 kbps with the format IPPP.... The 
encoder employs slice structuring, where each slice is forced to a size strictly smaller than 
100 bytes. The resulting slices are encapsulated within RTP/UDP/IP packets and 
transmitted over an AWGN channel at different noise levels.  
 

 

Fig. 13. Complexity analysis of the SVM and PNN methods (left) ΔCAdd and (right) ΔCMul for 
the Salesman sequence 
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The pixel-level artefact detection method is tested on the Salesman video sequence, which is 
not used during the training phase. The performance of the standard decoder and the 
modified decoder which employs an SVM classifier at its core is shown in Fig. 14.  These 
results confirm that concealing only those MBs which provide visually distorted regions is 
beneficial over the standard decoding method, where the PSNR gains over the whole 
sequence are higher than 0.5 dB at moderate to high error rates. Additionally, PSNR gains of 
up to 3.90 dB are observed. This superior performance is attributed to the fact that the pixel-
level artefact detection method localises the MBs which need to be concealed and thus the 
over-concealment problem is minimised. Furthermore, reducing the area to be concealed 
results in improved performance of the error concealment method employed. 
The gain achieved by the pixel-level artefact detection method is consistent even when using 
video sequences which contain fast moving objects. However, in such sequences, it was 
observed that in the presence of abrupt shots a number of false detections occur which force 
undistorted MBs to be concealed. Since this method is only employed on distorted slices, the 
pixel-level artefact detection method will perform at worst like the standard decoder (i.e. 
detecting all the MBs contained within a slice to be corrupted) hence such cases do not 
deteriorate the performance compared to the standard.  
The performance of the pixel-level artefact detection method is further tested on a frame-by-
frame basis and the results are provided in Fig.15 – Fig. 16. These results confirm the 
superiority of the pixel-level artefact detection method which employs the SVM classifier at 
its core. The PSNR on a frame-by-frame basis of this method is consistently superior to the 
standard decoder, where PSNR gains of up to 10.59 dB are achieved. The gain in subjective 
quality is even more impressive, where it can be seen that concealing undistorted regions 
provides artefacts which reduce the quality of the video sequence. On the other hand, the 
pixel-level artefact detection method manages to reconstruct the video sequence at an 
acceptable level of quality which is quite similar to the original undistorted video sequence. 
The artefact detection method can also be employed in conjunction with other standard 
error-resilient tools such as intra-refresh and FMO. As shown in Fig. 17 and Fig. 18 the pixel-
level artefact detection method boosts the performance of the standard error resilient tools 
by more than 0.3 dB in PSNR at moderate to high error rates, where  PSNR gains of up to 
2.08 dB are observed. The flexibility of the proposed solution is attributed to the designed 
features which are used by the classifier to detect distorted regions and the generalisation 
achieved by the SVM classifier. 
 

 
 Fig. 14. Performance of the Pixel-Level Artefact-Detection method for the Salesman sequence 
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Fig. 15. Performance of this method at a BER of 1.00E-005 for the Beautiful Mind sequence  

 

 
 

(a)                        (b)                          (c) 
 

Fig. 16. Frame 215 from the sequence Beautiful Mind at 64 kbps (a) reference sequence 
without errors, (b) standard decoder, and (c) Pixel-Level Artefact Detection method 

 

 
 

Fig. 17. Performance of the Pixel-Level Artefact-Detection method using Intra Refresh 5% for 
the Salesman sequence 

33.0299 dB 22.0335 dB 32.6283 dB 
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Fig. 18. Performance of the Pixel-Level Artefact-Detection method using Dispersed FMO for 
the Salesman sequence 

7. Comments and conclusion 

Decoding of partially damaged H.264/AVC generally results in distorted regions which 
severely affect the quality of the reconstructed video sequence. In this chapter, it was shown 
that robust pixel-level artefact detection methods can be used to detect those distorted MBs 
which provide major visual distortion, which are later concealed. In this way, only visually 
impaired regions are concealed by the decoder resulting in an improved quality of 
experience. Several classification methods have been considered to solve this problem. After 
several testing and cross-validation, it is concluded that the SVM classifier achieves the best 
performance, where it manages to detect 94.6% of the visually distorted regions at a false 
detection rate of around 5%. More importantly, it provides an unequal important artefact 
detection strategy, where all annoying artefacts (DL4, DL3) are detected but at the same time 
the solution is more lenient with slightly annoying artefacts (DL2, DL1). 
The method discussed in this chapter makes the H.264/AVC decoder more resilient to 
transmission errors with overall PSNR gains higher than 0.5 dB being observed at high error 
rates. This increased robustness does not incur additional bit-rate. In fact the algorithm is 
computed entirely at the decoder, where it exploits the inherent redundancies available at 
pixel-level between spatio-temporal neighbouring MBs to detect distorted MBs. 
Furthermore, the complexity introduced by this method is manageable even at high error-
rates making it more applicable to real-time mobile applications. This method can be further 
applied in conjunction with other error-resilient methods adopted by the standard to boost 
their performance. Moreover, it is possible to extend this concept to decode other block-
based video coding systems such as H.263. 
The performance of the classifier adopted by the pixel-level artefact detection method is 
dependent on the generalisation achieved by the classifier. During testing it was confirmed 
that the SVM classifier did generalise better than the other classification methods especially 
when considering video sequences which were not used during the training phase. In fact, 
the performance of the SVM classifier has managed to outperform the PNN classifier in the 
cross-validation tests for the H.264/AVC encoded sequences.  
During the experiments it was noticed that the method suffered in presence of abrupt screen 
changes. In fact, due to the temporal dissimilarity metrics, the SVM classifies most of the 
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MBs affected by the scene change to be artefacts and thus are concealed. However, since the 
SVM classifier is adopted only on damaged slices, at worst the pixel-level artefact detection 
method will perform like the standard H.264/AVC implementation where all MBs 
contained within a corrupted slice are concealed. 
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