388 research outputs found

    The effect of load on agent-based algorithms for distributed task allocation

    Get PDF
    Multi-agent algorithms inspired by the division of labour in social insects and by markets, are applied to a constrained problem of distributed task allocation. The efficiency (average number of tasks performed), the flexibility (ability to react to changes in the environment), and the sensitivity to load (ability to cope with differing demands) are investigated in both static and dynamic environments. A hybrid algorithm combining both approaches, is shown to exhibit improved efficiency and robustness. We employ nature inspired particle swarm optimisation to obtain optimised parameters for all algorithms in a range of representative environments. Although results are obtained for large population sizes to avoid finite size effects, the influence of population size on the performance is also analysed. From a theoretical point of view, we analyse the causes of efficiency loss, derive theoretical upper bounds for the efficiency, and compare these with the experimental results

    Are insects good fire fighters?

    Get PDF

    The emergence of specialization in heterogeneous artificial agent populations

    Get PDF
    In this dissertation, I present the Weight-Allocated Social Pressure System (WASPS). WASPS is a computational framework that when applied, can allow for the increase in agent specialization within a multi-agent population. Research has shown that specialization can lead to an overall increase in the productivity levels within a population [55]. WASPS aims to provide a mix of features from existing frameworks such as the genetic threshold and social inhibition models. It also subsumes these models, and allows hybrids of them to be created. It provides individual level behaviour as found in the genetic threshold model. As in some variations of the genetic threshold model [49], WASPS also allows for individual level learning. As found in the social inhibition models, WASPS allows for social influence, or population level learning. Unlike some models, WASPS allows agents to self-organize based on available tasks. In addition, it makes allowances for agents to allocate a resource among multiple tasks during a work period, wherein most models allow the selection of only one task. WASPS allows the assumption that agents are heterogeneous in their task performance aptitudes. It thus aims to create skill-based agent specialization within the population. This will allow more skilled agents to allocate more resources to tasks for which they have comparative advantages over their competition. Because WASPS is self-organizing, it can handle the addition and removal of agents from social networks, as well as changes in the connections between agents. WASPS does not limit the definition of many or its parameters, which allows it to deal with changing definitions for those parameters. For example, WASPS can easily adjust to deal with changing definitions of agent skill and influence. In fact, the individual level learning can be implemented in such a way that an agent can self-optimize even when it has no competitors to influence it

    Evolution of Control Programs for a Swarm of Autonomous Unmanned Aerial Vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs) are rapidly becoming a critical military asset. In the future, advances in miniaturization are going to drive the development of insect size UAVs. New approaches to controlling these swarms are required. The goal of this research is to develop a controller to direct a swarm of UAVs in accomplishing a given mission. While previous efforts have largely been limited to a two-dimensional model, a three-dimensional model has been developed for this project. Models of UAV capabilities including sensors, actuators and communications are presented. Genetic programming uses the principles of Darwinian evolution to generate computer programs to solve problems. A genetic programming approach is used to evolve control programs for UAV swarms. Evolved controllers are compared with a hand-crafted solution using quantitative and qualitative methods. Visualization and statistical methods are used to analyze solutions. Results indicate that genetic programming is capable of producing effective solutions to multi-objective control problems

    Adaptive foraging for simulated and real robotic swarms: The dynamical response threshold approach

    Get PDF
    Developing self-organised swarm systems capable of adapting to environmental changes as well as to dynamic situations is a complex challenge. An efficient labour division model, with the ability to regulate the distribution of work among swarm robots, is an important element of this kind of system. This paper extends the popular response threshold model and proposes a new adaptive response threshold model (ARTM). Experiments were carried out in simulation and in real-robot scenarios with the aim of studying the performance of this new adaptive model. Results presented in this paper verify that the extended approach improves on the adaptability of previous systems. For example, by reducing collision duration among robots in foraging missions, our approach helps small swarms of robots to adapt more efficiently to changing environments, thus increasing their self-sustainability (survival rate). Finally, we propose a minimal version of ARTM, which is derived from the conclusions drawn through real-robot and simulation results

    Activity Report 2021 : Automatic Control, Lund University

    Get PDF

    Evolutionary swarm robotics: a theoretical and methodological itinerary from individual neuro-controllers to collective behaviours

    Get PDF
    In the last decade, swarm robotics gathered much attention in the research community. By drawing inspiration from social insects and other self-organizing systems, it focuses on large robot groups featuring distributed control, adaptation, high robustness, and flexibility. Various reasons lay behind this interest in similar multi-robot systems. Above all, inspiration comes from the observation of social activities, which are based on concepts like division of labor, cooperation, and communication. If societies are organized in such a way in order to be more efficient, then robotic groups also could benefit from similar paradigms

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs
    • …
    corecore