330 research outputs found

    Cost effective technology applied to domotics and smart home energy management systems

    Get PDF
    Premio extraordinario de Trabajo Fin de Máster curso 2019/2020. Máster en Energías Renovables DistribuidasIn this document is presented the state of art for domotics cost effective technologies available on market nowadays, and how to apply them in Smart Home Energy Management Systems (SHEMS) allowing peaks shaving, renewable management and home appliance controls, always in cost effective context in order to be massively applied. Additionally, beyond of SHEMS context, it will be also analysed how to apply this technology in order to increase homes energy efficiency and monitoring of home appliances. Energy management is one of the milestones for distributed renewable energy spread; since renewable energy sources are not time-schedulable, are required control systems capable of the management for exchanging energy between conventional sources (power grid), renewable sources and energy storage sources. With the proposed approach, there is a first block dedicated to show an overview of Smart Home Energy Management Systems (SMHEMS) classical architecture and functional modules of SHEMS; next step is to analyse principles which has allowed some devices to become a cost-effective technology. Once the technology has been analysed, it will be reviewed some specific resources (hardware and software) available on marked for allowing low cost SHEMS. Knowing the “tools” available; it will be shown how to adapt classical SHEMS to cost effective technology. Such way, this document will show some specific applications of SHEMS. Firstly, in a general point of view, comparing the proposed low-cost technology with one of the main existing commercial proposals; and secondly, developing the solution for a specific real case.En este documento se aborda el estado actual de la domótica de bajo coste disponible en el mercado actualmente y cómo aplicarlo en los sistemas inteligentes de gestión energética en la vivienda (SHEMS) permitiendo el recorte de las puntas de demanda, gestión de energías renovables y control de electrodomésticos, siempre en el contexto del bajo coste, con el objetivo de lograr la máxima difusión de los SHEMS. Adicionalmente, más allá del contexto de la tecnología SHEMS, se analizará cómo aplicar esta tecnología para aumentar la eficiencia energética de los hogares y para la supervisión de los electrodomésticos. La gestión energética es uno de los factores principales para lograr la difusión de las energías renovables distribuidas; debido a que las fuentes de energía renovable no pueden ser planificadas, se requieren sistemas de control capaces de gestionar el intercambio de energía entre las fuentes convencionales (red eléctrica de distribución), energías renovables y dispositivos de almacenamiento energético. Bajo esta perspectiva, este documento presenta un primer bloque en el que se exponen las bases de la arquitectura y módulos funcionales de los sistemas inteligentes de gestión energética en la vivienda (SHEMS); el siguiente paso será analizar los principios que han permitido a ciertos dispositivos convertirse en dispositivos de bajo coste. Una vez analizada la tecnología, nos centraremos en los recursos (hardware y software) existentes que permitirán la realización de un SHEMS a bajo coste. Conocidas las “herramientas” a nuestra disposición, se mostrará como adaptar un esquema SHEMS clásico a la tecnología de bajo coste. Primeramente, comparando de modo genérico la tecnología de bajo coste con una de las principales propuestas comerciales de SHEMS, para seguidamente desarrollar la solución de bajo coste a un caso específico real

    Phase change material in automated window shades

    Get PDF
    The purpose of this report is to detail the development process for a phase change material window shading system, which stores solar thermal energy and later releases it indoors to provide nighttime space heating. To do this, wax-filled louvers with thermally absorptive front faces were developed and outfitted with a control system, which utilized historical weather data to orient the louvers to specific solar azimuthal angles, thus maximizing the thermal absorption. The system was tested against other common window treatments in a pair of thermally comparable testing structures, and was found to provide energy savings as high as 50%

    LightNVM: The Linux Open-Channel SSD Subsystem

    Get PDF

    Diseño, construcción, monitorización y control de un módulo prototipo de edificación para ensayo de nuevos componentes y sistemas

    Get PDF
    In view of the difficulties with implementing the innovative components and systems conceived in the I3CON project on a dwelled building (because of their early stage of development), one of the main demonstration activities was building a Mock-up module to test the feasibility (in terms of physical integration and logical interoperability) of these components and systems, and evaluate their overall performance. The design of all the systems involved in the Mock-up has the aim to develop new and more efficient solutions for the common issues in housing and, at the same time, to allow the evaluation of these systems. The values to be measured and monitored are: water (hot and cold), electricity and energy consumptions; temperature (ambient and surface) and relative humidity degree, both indoor and outdoor; presence; water temperature and flow; CO2 concentration; and light level. This is done by means of a network of sensors, meters and actuators deployed throughout the Mock-up. The following components and systems have been developed by I3CON partners and are implemented in the Mock-up, namely: - Façade panels, by Dragados (DRA). - Electro-chromic windows, by Saint-Gobain Recherche (SGR). - Under-floor radiant heating, Water saving system and Domestic fire extinguishing system, by Uponor (UPO). - Multi-service trunking system, by the University of Loughborough (LOU). - Wireless sensor network, by Thales Research & Technologies (TRT). All these systems are controlled by the Building Operating System (BOS) developed by Lonix (LON). Besides, all that information handled by the BOS can be accessed through Mobile Productivity Tools developed by Intracom (ICOM) for carrying out operation and maintenance tasks. Regarding the architectural design of the Mock-up, the innovative effort has been aimed to the development of new prefabricated façade solutions adapting current manufacturing processes, such as the “Sandwich Framex” typology, and the improvement in the thermal and acoustical behaviour of the Mock-up envelope with passive strategies, e.g. by using Phase Change Materials (PCMs) or vegetation. The façade panels of the Mock-up were made up according to one of the following structural configurations, all of them making use of Glass-fibre Reinforced Concrete (GRC): - GRC Stud-frame: GRC shell attached to a metallic frame. Two panels feature this solution, with a special plasterboard interior sheathing enhanced with PCM micro-capsules whose behaviour will be compared to that of a conventional one. - GRC Sandwich: panel anchored to the main structure by means of cast-in channels and sliding bolt connections to accommodate the assembly tolerances. The innermost surface features a special pattern to improve the acoustical behaviour by diminishing the reverberation time. The outmost surface is covered with different kinds of light composite panels for aesthetics reasons. - Sandwich Framex: it is an evolution which comprises “indoor sandwich + metallic frame + external elements”. One of the main advantages of the Sandwich Framex is the flexibility of the external cladding, which may consist of a great variety of elements configured in a modular way over a common sub-structure (the steel frame) and can be installed so that they can be easily disassembled for maintenance or upgrade. Different external elements have been selected in response both to bio-climatic concepts and architectural trends, among others: photo-voltaic cells, vegetated modules and a variety of composite/laminated panels. Two of the Mock-up façades which are configured with this solution include, besides, PCM packed in plastic boxes within the sandwich core, in order to improve thermal behaviour. For the sake of a better thermal efficiency, visual comfort (in terms of glare) and privacy, an Electro-Chromic Glazing Unit (ECGU) has been provided in one of the Mock-up rooms. The ECGU is fitted into a standard window frame allowing electrical power and control cabling. The ECGU makes possible certain degrees of shading that are controlled by the BOS according to solar irradiance, presence and indoor temperature, and operated in conjunction with the HVAC system thanks to the integration of all the systems within the BOS. The Water Saving System consists in re-circulating the hot water only when it is needed. The system is connected to the sensor network in the building, and is activated whenever a person is within a predetermined area (kitchen or bathroom) or the water temperature inside the pipes is lower than a set value. Thanks to this solution, less water is wasted and there is less waiting time for hot water to be delivered. The Domestic Fire Extinguisher System stands out for its simplicity: the water supply for the toilet cistern passes through the sprinklers. Thus, every time the toilet is flushed, confirmation is provided that there is no impediment for the water to flow (e.g. incrustations due to hard water) and therefore the system would work if a fire started. The Under-Floor Heating (UFH) system has been installed over the floor concrete slab. Its main virtue is its reduced installation height which makes it especially suitable for renovation works. The use of Cross-linked Polyethylene (PEX) pipes for these systems, installed using the “pipe-in-pipe” method, facilitates the renovation of the pipes given the case. The Multi-Services Trunking System (MSTS) is a very innovative concept that comprises a set of runs for different kinds of media incorporated within a single vertical major artery and horizontal distribution nodes. The MSTS has been manufactured using rapid prototyping techniques, and a small portion has been installed in the Mock-up for proving the concept, delivering hot and cold water, air and electricity. Concerning the monitoring and control of the Mock-up, the following inputs are studied: - Consumptions measured with metering devices: Cold and hot water; Electricity. - Parameters measured by the WSN: CO2 concentration; Presence by means of Passive Infra-Red (PIR) technology; Relative Humidity (RH) degree; Light level; and Indoor ambient temperature. There is a gateway that converts the radio messages transmitted by the sensors into TCP/IP messages accessible from the BOS. - Sensors deployed at different layers of the façade panels: Ambient and surface temperatures; Relative humidity degree. They are intended to assess the overall performance of the envelope system, with a focus on the effect of PCMs and vegetation. - Parameters measured with wired sensors: Presence; Light level; Water temperature and flow in the pipes; and Ambient and surface temperature (indoor and outdoor). Based on the information gathered by the sensor network, the BOS controls the Mock-up handling the following signals: Readings from the metering devices; Inputs from the sensors located in the kitchen, the bathroom and the test rooms; Data from the HVAC and UFH systems (controlled individually for each room to allow comparisons between them), the heat pump and the water pumps (for consumption simulation); Signals from the façade panels’ temperature and relative humidity degree sensors. Remote access to the Mock-up monitoring and control systems is very important for the measurement plans. Internet connection plays an important role for accessing the data and carrying out dwelling usage simulations. Furthermore, the application of Mobile Productivity Tools (MPTs), for example a Personal Digital Assistant (PDA) carried out by the maintenance staff, makes possible that any relevant information about the equipment installed in the building (i.e. the Mock-up), such as the assembly drawings, location in the building lay-out, and any data accessible from the BOS, will be available in real time for the operator working on site. ____________________________________________________________________________________________________________En vista de las dificultades para implementar los innovadores componentes y sistemas concebidos en el proyecto I3CON en una vivienda habitada (debido a su temprano estado de desarrollo), una de las actividades principales de demostración fue construir un Módulo prototipo para ensayar la viabilidad (en términos de integración física e inter-operatividad lógica) de estos componentes y sistemas y evaluar su comportamiento global. El diseño de todos los sistemas del Módulo tiene como objetivo desarrollar nuevas y más eficientes soluciones a problemas comunes en vivienda y, al mismo tiempo, permitir la evaluación de dichos sistemas. Los valores a medir y monitorizar son: consumos de agua (caliente y fría), electricidad y energía; temperatura (ambiente y superficial) y grado de humedad relativo, tanto interior como exterior; presencia; temperatura y flujo de agua; concentración de CO2; y nivel de luz. Esto se hace mediante una red de sensores, contadores y actuadores desplegados a lo largo del Módulo. Los siguientes componentes y sistemas han sido desarrollados por socios de I3CON e implementados en el Módulo, a saber: - Paneles de fachada, por Dragados (DRA). - Ventanas electro-crómicas, por Saint-Gobain Recherche (SGR). - Calefacción por suelo radiante, Sistema de ahorro de agua y Sistema doméstico de extinción de incendios, por Uponor (UPO). - Sistema de conductos multi-servicio, por la Universidad de Loughborough (LOU). - Red de sensores inalámbricos, por Thales Research & Technologies (TRT). Todos estos sistemas se controlan mediante el Sistema Operativo del Edificio (BOS) desarrollado por Lonix (LON). Además, a toda esa información manejada por el BOS puede accederse a través de las Herramientas de Productividad Móviles de Intracom (ICOM) para operación y mantenimiento. Respecto al diseño arquitectónico del Módulo, el esfuerzo innovador se ha centrado en el desarrollo de nuevas soluciones de fachada prefabricada adaptando procesos de fabricación existentes, tales como la tipología “Sándwich Framex”, y en la mejora del comportamiento térmico y acústico de los cerramientos del Módulo mediante estrategias pasivas, e.g. usando Materiales de Cambio de Fase (PCMs) o vegetación. Los paneles de fachada del Módulo se configuraron según alguna de las siguientes soluciones estructurales, todas ellas usando Hormigón Reforzado con fibra de Vidrio (GRC): GRC Stud-frame: cáscara de GRC unida a un bastidor metálico. Dos paneles se configuran con esta solución, con la particularidad de un trasdosado interior de yeso-cartón con micro-cápsulas de PCM cuyo comportamiento se comparará con el de uno convencional. - GRC Sándwich: panel anclado a la estructura principal por medio de carriles embebidos y tornillería deslizante para acomodar las tolerancias de ensamblaje. La cara interior lleva un patrón especial para mejorar el comportamiento acústico disminuyendo el tiempo de reverberación. La cara exterior se termina con diferentes paneles ligeros de material compuesto por motivos estéticos. - Sándwich Framex: es una evolución que consiste en “sándwich interno + bastidor metálico + elementos externos”. Una de las principales ventajas del Sándwich Framex es la flexibilidad para los acabados exteriores, que pueden consistir en un gran variedad de elementos modulares sobre una sub-estructura común (el bastidor metálico) y ser instalados de manera que sean fácilmente desmontables para mantenimiento o renovación. Se han seleccionado distintos elementos exteriores en respuesta a conceptos bio-climáticos y tendencias arquitectónicas, entre otros: células foto-voltaicas, módulos vegetados y varios paneles de material compuesto/laminados. Dos fachadas del Módulo con esta solución incluyen además PCM empaquetado en contenedores de plástico dentro del núcleo del sándwich para mejorar el comportamiento térmico. En aras de una mejor eficiencia térmica, confort visual (deslumbramiento) y privacidad, se ha provisto una Unidad de Acristalamiento Electro-Crómico (ECGU) en uno de los recintos del Módulo. La ECGU se instala en una carpintería estándar que permita el cableado eléctrico y de control. La ECGU permite ciertos grados de oscurecimiento que se controlan por el BOS en función de la irradiación solar, presencia y temperatura interior, y se opera junto con el sistema de climatización gracias a la integración de todos los sistemas en el BOS. El Sistema de Ahorro de Agua consiste en recircular el agua caliente sólo cuando es necesario. El sistema está conectado a la red de sensores del edificio y se activa cuando una persona está dentro de un área determinada (cocina o baño) o si el agua de las tuberías baja de una cierta temperatura. Gracias a esta solución se desperdicia menos agua y hay que esperar menos tiempo a que salga agua caliente. El Sistema Doméstico de Extinción de Incendios destaca por su simplicidad: el agua que va a la cisterna pasa a través de los rociadores. Así, cada vez que se tira de la cadena, se confirma que no hay ningún impedimento al flujo de agua (e.g. incrustaciones de cal) y por lo tanto el sistema funcionaría si se iniciase un incendio. La Calefacción por Suelo Radiante (UFH) se ha instalado sobre el forjado de hormigón. Su principal virtud es su reducida altura, que lo hace especialmente indicado para rehabilitaciones. El uso de tuberías de Polietileno Reticulado (PEX) para estos sistemas, empleando el método de “tubo-en-tubo”, facilita su renovación llegado el caso. El Sistema de Conductos Multi-Servicio (MSTS) es un concepto muy innovador que consta de un conjunto de canalizaciones para distintos medios agrupados en una única arteria vertical y nodos de distribución horizontal. El MSTS se ha fabricado con técnicas de prototipado rápido y se ha instalado un pequeño segmento en el Módulo para demostrar el concepto, distribuyendo agua fría y caliente, aire y electricidad. En cuanto a la monitorización y control del Módulo, se estudian las siguientes entradas: - Consumos medidos con contadores: Agua fría y caliente; Energía eléctrica. - Parámetros medidos por la WSN: CO2; Presencia con tecnología Pasiva Infra-Roja (PIR); Grado de Humedad Relativa (RH); Nivel de luz; y Temperatura ambiente interior. Hay una pasarela que convierte los mensajes de radio transmitidos por los sensores en mensajes TCP/IP accesibles desde el BOS. - Sensores desplegados en las diferentes capas de las fachadas: Temperaturas ambiente y superficial; Grado de humedad relativa. Se pretende evaluar el comportamiento global del cerramiento, en especial el efecto de los PCMs y la vegetación. - Parámetros medidos con sensores cableados: Presencia; Nivel de luz; Temperatura y flujo de agua en las tuberías; y Temperaturas ambiente y superficial (interior y exterior). Basándose en la información recogida por la red de sensores, el BOS controla el Módulo manejando las siguientes señales: Lecturas de los aparatos contadores; Entradas de los sensores ubicados en cocina, baño y las habitaciones de ensayo; Datos de los sistemas de climatización y suelo radiante (controlados individualmente en cada habitación para poder hacer comparaciones), de la bomba de calor y las de agua (para simular consumos); Señales de temperatura y humedad relativa de los paneles de fachada. El acceso remoto a los sistemas de monitorización y control del Módulo es muy importante para el plan de medidas. La conexión a internet juega un papel fundamental para acceder a los datos y simular el uso de la vivienda. Además, la aplicación de Herramientas de Productividad Móviles (MPTs), por ejemplo una PDA que lleve el personal de mantenimiento, posibilita que información relevante acerca de los equipos instalados en el edificio (esto es, del Módulo), tales como dibujos de montaje, localización en el plano del edificio, y cualquier dato accesible desde el BOS, esté disponible en tiempo real para el operario trabajando en el sitio.Ingeniería Industria

    Internet Predictions

    Get PDF
    More than a dozen leading experts give their opinions on where the Internet is headed and where it will be in the next decade in terms of technology, policy, and applications. They cover topics ranging from the Internet of Things to climate change to the digital storage of the future. A summary of the articles is available in the Web extras section

    COMPARE and Complexity - When is COMPARE Not Enough?

    Get PDF
    The purpose of this case study research is to determine the utility of COMPARE, the DoD approved software for conducting A-76 competitions, in the more complex world of public-private competition. COMPARE serves as the baseline for establishing cost factors, while two Air Force Depots are used as a basis of comparison. Research questions answered are: 1. What are the baseline cost comparison factors established in COMPARE? 2. What are the common cost factors found in the Air Force Depot public-private competitions? 3. What are the similarities and differences between the cost factors established in COMPARE and those used in the Air Force Depot public-private competitions? 4. What explains the differences between the cost factors established in COMPARE and those used in the Air Force Depot competitions? 5. What changes can be made to make COMPARE more robust in the comparison of more complex public and private entities? Results show that the significant difference between competitions is that public-private comparisons explicitly integrate Best Value into the cost comparison. This is accomplished through the quantification of strengths, weaknesses, and Risk into dollar values. COMPARE, on the other hand, relies heavily on the assumptions of a competitive marketplace to minimize risk while achieving low cost

    Light Aircraft Management System

    Get PDF
    This report details methods to construct a flight data logging system that can be used to manage student flight and aircraft maintenance records. These methods utilise GPS, embedded processors and associated software to depict the occurrence of landings, Touch and Goes and record aircraft total flight time. By manipulating these methods it was possible to produce a usable data-logging unit which facilitated the automation of flight maneuver recording. This datatogging unit was constructed from embedded components and interfaced with a user defined database. Perusal of the details within should provide the reader with a clear understanding of the tasks involved with employing external equipment to log flight information and to implement this in a form that is beneficial to many users. The technical aspects of this report are twofold: 1. Active employment of electrical and communication based products to extrapolate raw flight information. 2. Implementation of logging program, database and operating system in order to manage raw flight information. These technical aspects are embodied within detailed background information, multiple versions of implementation and an insight into future adaptations of what has already been achieved. The outcome of this report will enable aviation staff and others to automate the updating of student history and achievements towards their license, indicate to the airport an unbiased cost of flight and when the maintenance of their aircraft are due. This project has commercial interest and following the compellations of my findings will almost certainly find its way on to the light aircraft market

    Data aggregation in wireless sensor networks

    Get PDF
    Energy efficiency is an important metric in resource constrained wireless sensor networks (WSN). Multiple approaches such as duty cycling, energy optimal scheduling, energy aware routing and data aggregation can be availed to reduce energy consumption throughout the network. This thesis addresses the data aggregation during routing since the energy expended in transmitting a single data bit is several orders of magnitude higher than it is required for a single 32 bit computation. Therefore, in the first paper, a novel nonlinear adaptive pulse coded modulation-based compression (NADPCMC) scheme is proposed for data aggregation. A rigorous analytical development of the proposed scheme is presented by using Lyapunov theory. Satisfactory performance of the proposed scheme is demonstrated when compared to the available compression schemes in NS-2 environment through several data sets. Data aggregation is achieved by iteratively applying the proposed compression scheme at the cluster heads. The second paper on the other hand deals with the hardware verification of the proposed data aggregation scheme in the presence of a Multi-interface Multi-Channel Routing Protocol (MMCR). Since sensor nodes are equipped with radios that can operate on multiple non-interfering channels, bandwidth availability on each channel is used to determine the appropriate channel for data transmission, thus increasing the throughput. MMCR uses a metric defined by throughput, end-to-end delay and energy utilization to select Multi-Point Relay (MPR) nodes to forward data packets in each channel while minimizing packet losses due to interference. Further, the proposed compression and aggregation are performed to further improve the energy savings and network lifetime --Abstract, page iv
    corecore