
LightNVM: The Linux Open-Channel SSD Subsystem

Matias Bjørling†∗ Javier González† Philippe Bonnet∗

†CNEX Labs, Inc. ∗IT University of Copenhagen

Abstract

As Solid-State Drives (SSDs) become commonplace in
data-centers and storage arrays, there is a growing de-
mand for predictable latency. Traditional SSDs, serv-
ing block I/Os, fail to meet this demand. They offer a
high-level of abstraction at the cost of unpredictable per-
formance and suboptimal resource utilization. We pro-
pose that SSD management trade-offs should be handled
through Open-Channel SSDs, a new class of SSDs, that
give hosts control over their internals. We present our
experience building LightNVM, the Linux Open-Channel
SSD subsystem. We introduce a new Physical Page Ad-
dress I/O interface that exposes SSD parallelism and stor-
age media characteristics. LightNVM integrates into tra-
ditional storage stacks, while also enabling storage en-
gines to take advantage of the new I/O interface. Our ex-
perimental results demonstrate that LightNVM has mod-
est host overhead, that it can be tuned to limit read la-
tency variability and that it can be customized to achieve
predictable I/O latencies.

1 Introduction

Solid-State Drives (SSDs) are projected to become the
dominant form of secondary storage in the coming
years [18, 19, 31]. Despite their success due to superior
performance, SSDs suffer well-documented shortcom-
ings: log-on-log [37,57], large tail-latencies [15,23], un-
predictable I/O latency [12, 28, 30], and resource under-
utilization [1, 11]. These shortcomings are not due to
hardware limitations: the non-volatile memory chips at
the core of SSDs provide predictable high-performance
at the cost of constrained operations and limited en-
durance/reliability. It is how tens of non-volatile memory
chips are managed within an SSD, providing the same
block I/O interface as a magnetic disk, which causes
these shortcomings [5, 52].

A new class of SSDs, branded as Open-Channel SSDs,

is emerging on the market. They are an excellent plat-
form for addressing SSD shortcomings and managing
trade-offs related to throughput, latency, power con-
sumption, and capacity. Indeed, open-channel SSDs ex-
pose their internals and enable a host to control data
placement and physical I/O scheduling. With open-
channel SSDs, the responsibility of SSD management is
shared between host and SSD. Open-channel SSDs have
been used by Tier 1 cloud providers for some time. For
example, Baidu used open-channel SSDs to streamline
the storage stack for a key-value store [55]. Also, Fusion-
IO [27] and Violin Memory [54] each implement a host-
side storage stack to manage NAND media and provide
a block I/O interface. However, in all these cases the
integration of open-channel SSDs into the storage infras-
tructure has been limited to a single point in the design
space, with a fixed collection of trade-offs.

Managing SSD design trade-offs could allow users
to reconfigure their storage software stack so that it
is tuned for applications that expect a block I/O inter-
face (e.g., relational database systems, file systems) or
customized for applications that directly leverage open-
channel SSDs [55]. There are two concerns here: (1) a
block device abstraction implemented on top of open-
channel SSDs should provide high performance, and
(2) design choices and trade-off opportunities should be
clearly identified. These are the issues that we address
in this paper. Note that demonstrating the advantages
of application-specific SSD management is beyond the
scope of this paper.

We describe our experience building LightNVM, the
Open-Channel SSD subsystem in the Linux kernel.
LightNVM is the first open, generic subsystem for Open-
Channel SSDs and host-based SSD management. We
make four contributions. First, we describe the character-
istics of open-channel SSD management. We identify the
constraints linked to exposing SSD internals, discuss the
associated trade-offs and lessons learned from the stor-
age industry.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/154382027?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Second, we introduce the Physical Page Address
(PPA) I/O interface, an interface for Open-Channel
SSDs, that defines a hierarchical address space together
with control and vectored data commands.

Third, we present LightNVM, the Linux subsystem
that we designed and implemented for open-channel
SSD management. It provides an interface where
application-specific abstractions, denoted as targets, can
be implemented. We provide a host-based Flash Transla-
tion Layer, called pblk, that exposes open-channel SSDs
as traditional block I/O devices.

Finally, we demonstrate the effectiveness of Light-
NVM on top of a first generation open-channel SSD.
Our results are the first measurements of an open-channel
SSD that exposes the physical page address I/O interface.
We compare against state-of-the-art block I/O SSD and
evaluate performance overheads when running synthetic,
file system, and database system-based workloads. Our
results show that LightNVM achieves high performance
and can be tuned to control I/O latency variability.

2 Open-Channel SSD Management

SSDs are composed of tens of storage chips wired in
parallel to a controller via so-called channels. With
open-channel SSDs, channels and storage chips are ex-
posed to the host. The host is responsible for utilizing
SSD resources in time (I/O scheduling) and space (data
placement). In this section, we focus on NAND flash-
based open-channel SSDs because managing NAND is
both relevant and challenging today. We review the con-
straints imposed by NAND flash, introduce the result-
ing key challenges for SSD management, discuss the
lessons we learned from early adopters of our system,
and present different open-channel SSD architectures.

2.1 NAND Flash Characteristics

NAND flash relies on arrays of floating-gate transistors,
so-called cells, to store bits. Shrinking transistor size has
enabled increased flash capacity. SLC flash stores one
bit per cell. MLC and TLC flash store 2 or 3 bits per
cell, respectively, and there are four bits per cell in QLC
flash. For 3D NAND, increased capacity is no longer tied
to shrinking cell size but to flash arrays layering.

Media Architecture. NAND flash provides a read-
/write/erase interface. Within a NAND package, storage
media is organized into a hierarchy of die, plane, block,
and page. A die allows a single I/O command to be exe-
cuted at a time. There may be one or several dies within
a single physical package. A plane allows similar flash
commands to be executed in parallel within a die.

Within each plane, NAND is organized in blocks and
pages. Each plane contains the same number of blocks,
and each block contains the same number of pages.
Pages are the minimal units of read and write, while the
unit of erase is a block. Each page is further decom-
posed into fixed-size sectors with an additional out-of-
bound area, e.g., a 16KB page contains four sectors of
4KB plus an out-of-bound area frequently used for ECC
and user-specific data.

Regarding internal timings, NAND flash memories ex-
hibit an order of magnitude difference between read and
write/erase latency. Reads typically take sub-hundred
microseconds, while write and erase actions take a few
milliseconds. However, read latency spikes if a read is
scheduled directly behind a write or an erase operation,
leading to orders of magnitude increase in latency.

Write Constraints. There are three fundamental pro-
gramming constraints that apply to NAND [41]: (i) a
write command must always contain enough data to
program one (or several) full flash page(s), (ii) writes
must be sequential within a block, and (iii) an erase
must be performed before a page within a block can be
(re)written.

The number of program/erase (PE) cycles is limited.
The limit depends on the type of flash: 102 for TLC/QLC
flash, 103 for MLC, or 105 for SLC.

Additional constraints must be considered for different
types of NAND flash. For example, in multi-level cell
memories, the bits stored in the same cell belong to dif-
ferent write pages, referred to as lower/upper pages. The
upper page must be written before the lower page can be
read successfully. The lower and upper page are often
not sequential, and any pages in between must be written
to prevent write neighbor disturbance [10]. Also, NAND
vendors might introduce any type of idiosyncratic con-
straints, which are not publicly disclosed. This is a clear
challenge for the design of cross-vendor, host-based SSD
management.

Failure Modes. NAND Flash might fail in various
ways [7, 40, 42, 49]:

• Bit Errors. The downside of shrinking cell size is
an increase in errors when storing bits. While error
rates of 2 bits per KB were common for SLC, this
rate has increased four to eight times for MLC.

• Read and Write Disturb. The media is prone to leak
currents to nearby cells as bits are written or read.
This causes some of the write constraints described
above.

• Data Retention. As cells wear out, data retention
capability decreases. To persist over time, data must
be rewritten multiple times.

• Write/Erase Error. During write or erase, a failure
can occur due to an unrecoverable error at the block
level. In that case, the block should be retired and
data already written should be rewritten to another
block.

• Die Failure. A logical unit of storage, i.e., a die on
a NAND chip, may cease to function over time due
to a defect. In that case, all its data will be lost.

2.2 Managing NAND
Managing the constraints imposed by NAND is a core re-
quirement for any flash-based SSD. With open-channel
SSDs, this responsibility is shared between software
components running on the host (in our case a Linux de-
vice driver and layers built on top of it) and on the device
controller. In this section we present two key challenges
associated with NAND management: write buffering and
error handling.

Write Buffering. Write buffering is necessary when
the size of the sector, defined on the host side (in the
Linux device driver), is smaller than the NAND flash
page size, e.g., a 4KB sector size defined on top of a
16KB flash page. To deal with such a mismatch, the clas-
sical solution is to use a cache: sector writes are buffered
until enough data is gathered to fill a flash page. If data
must be persisted before the cache is filled, e.g., due to an
application flush, then padding is added to fill the flash
page. Reads are directed to the cache until data is per-
sisted to the media. If the cache resides on the host, then
the two advantages are that (1) writes are all generated
by the host, thus avoiding interference between the host
and devices, and that (2) writes are acknowledged as they
hit the cache. The disadvantage is that the contents of the
cache might be lost in case of a power failure.

The write cache may also be placed on the device side.
Either the host writes sectors to the device and lets the
device manage writes to the media (when enough data
has been accumulated to fill a flash page), or the host ex-
plicitly controls writes to the media and lets the device
maintain durability. With the former approach, the de-
vice controller might introduce unpredictability into the
workload, as it might issue writes that interfere with host-
issued reads. With the latter approach, the host has full
access to the device-side cache. In NVMe, this can be
done through a Controller Memory Buffer (CMB) [43].
The host can thus decouple (i) the staging of data on
the device-side cache from (ii) the writing to the me-
dia through an explicit flush command. This approach
avoids controller-generated writes and leaves the host in
full control of media operations. Both approaches re-
quire that the device firmware has power-fail techniques
to store the write buffer onto media in case of a power

loss. The size of the cache is then limited by the power-
capacitors available on the SSD.

Error Handling. Error handling concerns reads,
writes, and erases. A read fails when all methods to
recover data at sector level have been exhausted: ECC,
threshold tuning, and possibly parity-based protection
mechanisms (RAID/RAIN) [13, 20].

To compensate for bit errors, it is necessary to intro-
duce Error Correcting Codes (ECC), e.g., BCH [53] or
LDPC [16]. Typically, the unit of ECC encoding is a
sector, which is usually smaller than a page. ECC pari-
ties are generally handled as metadata associated with a
page and stored within the page’s out-of-band area.

The bit error rate (BER) can be estimated for each
block. To maintain BER below a given threshold, some
vendors make it possible to tune NAND threshold volt-
age [7, 8]. Blocks which are write-cold and read-hot, for
which BER is higher than a given threshold, should be
rewritten [47]. It might also be necessary to perform read
scrubbing, i.e., schedule read operations for the sole pur-
pose of estimating BER for blocks which are write-cold
and read-cold [9].

Given that manual threshold tuning causes several
reads to be executed on a page, it may be beneficial to
add RAID techniques to recover data faster, while also
enable SSD to recover from die failures.

Note that different workloads might require different
RAID configurations. Typically, high read workloads re-
quire less redundancy, because they issue fewer PE cy-
cles. This is an argument for host-based RAID imple-
mentation. Conversely, for high write workloads, RAID
is a source of overhead that might be compensated by
hardware acceleration (i.e., a hardware-based XOR en-
gine [14, 48]).

In the case of write failures, due to overcharging or
inherent failures [51], recovery is necessary at the block
level. When a write fails, part of a block might already
have been written and should be read to perform recov-
ery. Early NAND flash chips allow reads on partially
written blocks, but multi-level NAND [10] requires that
a set of pages (lower/upper) be written before data can
be read, thus preventing reads of partially written blocks
in the general case. Here, enough buffer space should
be available to restore the contents of partially written
blocks.

If a failure occurs on erase, there is no retry or recov-
ery. The block is simply marked bad.

2.3 Lessons Learned
Open-channel SSDs open up a large design space for
SSD management. Here are some restrictions on that de-
sign space based on industry trends and feedback from
early LightNVM adopters.

1. Provide device warranty with physical access.
Warranty to end-users is important in high-volume mar-
kets. A traditional SSD is often warrantied for either
three or five years of operation. In its lifetime, enough
good flash media must be available to perform writes.
Contrary to spinning hard-drives, the lifetime for NAND
media heavily depends on the number of writes to the
media. Therefore, there is typically two types of guar-
antees for flash-based SSDs: Year warranty and Drive
Writes Per Day (DWPD) warranty. DWPD guarantees
that the drive can sustain X drive writes per day. Provid-
ing low thousands of PE cycles to NAND flash media,
the number of writes per day is often limited to less than
ten and is lower in consumer drives.

If PE cycles are managed on the host, then no war-
ranty can be given for open-channel SSDs. Indeed, SSD
vendors have no way to assess whether a device is legit-
imately eligible for replacement, or if flash simply wore
out because of excessive usage. To provide warranty, PE
cycles must be managed on the device. See Figure 1 for
an illustration.

2. Exposing media characterization to the host is inef-
ficient and limits media abstraction. Traditional SSD
vendors perform media characterization with NAND
vendors to adapt their embedded Flash Translation Layer
to the characteristics of a given NAND chip. Such in-
house NAND characterization is protected under IP. It is
neither desirable nor feasible to let application and sys-
tem developers struggle with the internal details of a spe-
cific NAND chip, in particular threshold tuning or ECC.
These must be managed on the device. This greatly sim-
plifies the logic in the host and lets the open-channel SSD
vendor differentiate their controller implementation.

3. Write buffering should be handled on the host or
the device depending on the use case. If the host han-
dles write buffering, then there is no need for DRAM
on the device, as the small data structures needed to
maintain warranty and physical media information can
be stored in device SRAM or persistent media if nec-
essary. Power consumption can thus be drastically re-
duced. Managing the write buffer on the device, through
a CMB, efficiently supports small writes but requires ex-
tra device-side logic, together with power-capacitors or
similar functionality to guarantee durability. Both op-
tions should be available to open-channel SSD vendors.

4. Application-agnostic wear leveling is mandatory.
As NAND ages, its access time becomes longer. In-
deed, the voltage thresholds become wider, and more
time must be spent to finely tune the appropriate volt-
age to read or write data. NAND specifications usually
report both a typical access latency and a max latency.
To make sure that latency does not fluctuate depending
on the age of the block accessed, it is mandatory to per-

Host System

Non-Volatile Media

Open-Channel
Solid-State Drive

Error Handling

Block Metadata

Write Buffering

Host System

Non-Volatile Media

Open-Channel
Solid-State Drive

Error Handling

Write Buffering

Block Metadata

Wear-leveling

Physical Addressing
(Read/Write/Erase)

Wear-leveling

Host System

Non-Volatile Media

Media Controller

Solid-State Drive

Error Handling

Write Buffering

Block Metadata

Logical Addressing
(Read/Write)

Wear-leveling

Media Controller Media Controller

Physical Addressing
(Read/Write/Erase)

(a) (b) (c)

Figure 1: Core SSD Management modules on (a) a traditional
Block I/O SSD, (b) the class of open-channel SSD considered
in this paper, and (c) future open-channel SSDs.

form wear-leveling independently from the application
workload, even if it introduces an overhead.

It must be possible, either for the host or the controller,
to pick free blocks from a die in a way that (i) hides bad
blocks, (ii) implements dynamic wear leveling by tak-
ing the P/E cycle count into account when allocating a
block, and possibly (iii) implements static wear level-
ing by copying cold data to a hot block. Such decisions
should be based on metadata collected and maintained
on the device: P/E cycle per block, read counts per page,
and bad blocks. Managing block metadata and a level of
indirection between logical and physical block addresses
incurs a significant overhead regarding latency and might
generate internal I/Os (to store the mapping table or due
to static wear leveling) that might interfere with an appli-
cation I/Os. This is the cost of wear-leveling [6].

2.4 Architectures
Different classes of open-channel SSDs can be defined
based on how the responsibilities of SSD management
are shared between host and SSD. Figure 1 compares
(a) traditional block I/O SSD with (b) the class of open-
channel SSDs considered in this paper, where PE cycles
and write buffering are managed on the host, and (c) fu-
ture open-channel SSDs that will provide warranties and
thus support PE cycle management and wear-leveling on
the device. The definition of the PPA I/O interface and
the architecture of LightNVM encompass all types of
open-channel SSDs.

3 Physical Page Address I/O Interface

We propose an interface for open-channel SSDs, the
Physical Page Address (PPA) I/O interface, based on
a hierarchical address space. It defines administration
commands to expose the device geometry and let the host

take control of SSD management, and data commands to
efficiently store and retrieve data. The interface is inde-
pendent of the type of non-volatile media chip embedded
on the open-channel SSD.

Our interface is implemented as a vendor-specific ex-
tension to the NVM Express 1.2.1 specification [43], a
standard that defines an optimized interface for PCIe-
attached SSDs.

3.1 Address Space
We rely on two invariants to define the PPA address
space:

1. SSD Architecture. Open-channel SSDs expose to
the host a collection of channels, each containing a
set of Parallel Units (PUs), also known as LUNs.
We define a PU as the unit of parallelism on the
device. A PU may cover one or more physical die,
and a die may only be a member of one PU. Each
PU processes a single I/O request at a time.

2. Media Architecture. Regardless of the media, stor-
age space is quantized on each PU. NAND flash
chips are decomposed into blocks, pages (the min-
imum unit of transfer), and sectors (the minimum
unit of ECC). Byte-addressable memories may be
organized as a flat space of sectors.

The controller can choose the physical representation
for the PUs. This way the controller can expose a per-
formance model, at the PU level, that reflects the per-
formance of the underlying storage media. If the con-
troller chooses a logical definition for PUs (e.g., sev-
eral NAND dies accessed through RAID) then the per-
formance model for a PU must be constructed based on
storage media characteristics and controller functionality
(e.g., XOR engine acceleration). A logical representa-
tion might be beneficial for byte-addressable memories,
where multiple dies are grouped together to form a sin-
gle sector. In the rest of this paper, we assume that a PU
corresponds to a single physical NAND die. With such
a physical PU definition, the controller exposes a simple,
well-understood, performance model of the media.

PPAs are organized as a decomposition hierarchy that
reflects the SSD and media architecture. For example,
NAND flash may be organized as a hierarchy of plane,
block, page, and sector, while byte-addressable memo-
ries, such as PCM, is a collection of sectors. While the
components of the SSD architecture, channel and PU, are
present in all PPA addresses, media architecture compo-
nents can be abstracted. This point is illustrated in Fig-
ure 2.

Each device defines its bit array nomenclature for PPA
addresses, within the context of a 64-bit address. Put dif-
ferently, the PPA format does not put constraints on the

Physical Page Address (NAND with Sector-sized Pages)

MSB LSB

Channel PU Sector

Physical Page Address (NAND)

Channel PU PlaneBlock Page Sector

Block

Logical Block Address (LBA)

Sector

64bit

Figure 2: Logical Block Addresses compared to Physical Page
Addresses for NAND flash.

maximum number of channels per device or the max-
imum number of blocks per PU. It is up to each de-
vice to define these limitations, and possibly ignore some
media-specific components. This flexibility is a major
difference between the PPA format and the hierarchical
CHS (Cylinder-Head-Sector) format introduced for early
hard drives.

Encoding the SSD and media architecture into physi-
cal addresses makes it possible to define hardware units,
embedded on an open-channel SSD, that map incoming
I/Os to their appropriate physical placement. The PPA
format is also well-suited for a representation where the
identifiers are independent variables as a power of two.
This way, operations on the name-space (e.g., get next
page on the next channel, or get next page on a different
PU) are efficiently implemented by shifting bits.

The PPA address space can be organized logically to
act as a traditional logical block address (LBA), e.g., by
arranging NAND flash using "block, page, plane, and
sector" [34]. This enables the PPA address space to be
exposed through traditional read/write/trim commands.
In contrast to traditional block I/O, the I/Os must follow
certain rules. Writes must be issued sequentially within
a block. Trim may be issued for a whole block, so that
the device interprets the command as an erase. It is im-
plementation specific whether a single read may cross
multiple blocks in a single I/O.

In comparison with a traditional, linear LBA space, the
PPA address space may contain invalid addresses, where
I/Os are not accepted. Consider for example that there
are 1067 available blocks per PU, then it would be repre-
sented by 11 bits. Blocks 0–1066 would be valid, while
blocks 1067–2047 would be invalid. It is up to the con-
troller to return an error in this case. In case the me-
dia configuration for each level in the hierarchy is not a
power of two, then there will be such holes in the address
space.

3.2 Geometry and Management

To let a host take control of SSD management, an open-
channel SSD must expose four characteristics:

1. Its geometry, i.e., the dimensions of the PPA address
space. How many channels? How many PUs within
a channel? How many planes per PU? How many
blocks per plane? How many pages per block? How
many sectors per page? How large is the out-of-
bound region per page? We assume that PPA di-
mensions are uniform for a given address space. If
an SSD contains different types of storage chips,
then the SSD must expose the storage as separate
address spaces, each based on similar chips.

2. Its performance, i.e., statistics that capture the per-
formance of data commands, channel capacity and
controller overhead. The current version of the
specification captures typical and max latency for
page read, page write, and erase commands and the
maximum number of in-flight commands addressed
to separate PUs within a channel.

3. Media-specific metadata. For instance, NAND
flash-specific metadata includes the type of NAND
flash on the device, whether multi-plane operations
are supported, the size of the user-accessible out-of-
bound area, or page pairing information for MLC
and TLC chips. As media evolves, and becomes
more complex, it may be advantageous to let SSDs
handle this complexity.

4. Controller functionalities. As we have seen in Sec-
tion 2, a controller might support write buffering,
failure handling, or provisioning. Each of these ca-
pabilities might be configured (e.g., RAID across
PUs). If the controller supports write buffering, then
a flush command enables the host to force the con-
troller to write the contents of its buffer to the stor-
age media.

3.3 Read/Write/Erase
The data commands directly reflect the read, write, and
erase interface of NAND flash cells. The erase command
is ignored for media that does not support it.

Vectored I/Os. Data commands expand upon tradi-
tional LBA access. A read or write command is no longer
defined by a start LBA, some sectors to access, and a data
buffer. Instead, a read or write is applied to a vector of
addresses to leverage the intrinsic parallelism of the SSD.
For example, let us consider 64KB of application data.
Assuming a page size of 4KB, this data might be striped
with a write command applied to 16 sectors simultane-
ously, thus efficiently supporting scattered access.

Concretely, each I/O is represented as an NVMe I/O
read/write command. We replace the start LBA (SLBA)
field with a single PPA address or a pointer to an address
list, denoted PPA list. The PPA list contains an LBA

for each sector to be accessed. Similarly, we utilize the
NVMe I/O metadata field to carry out-of-band metadata.
The metadata field is typically used for end-to-end data
consistency (T10-PI/DIF/DIX [25, 43]). How to grace-
fully combine end-to-end and PPA metadata is a topic
for future work.

When a data command completes, the PPA interface
returns a separate completion status for each address.
This way, the host can distinguish and recover from fail-
ures at different addresses. For the first iteration of the
specification, the first 64 bits of the NVMe I/O command
completion entry are used to signal the completion status.
This limits the number of addresses in the PPA list to 64.

We considered alternatives to the PPA list. In fact, we
evaluated three approaches: (i) NVMe I/O command, (ii)
grouped I/Os, and (iii) Vectored I/Os. An NVMe I/O
command issues commands serially. When a full page
buffer is constituted, it is flushed to the media. Each
command rings the doorbell of the controller to notify a
new submission. With grouped I/Os, several pages con-
stitute a submission, the doorbell is only rung once, but
it is up to the controller to maintain the state of each sub-
mission. With vectored I/Os, an extra DMA is required
to communicate the PPA list. We opt for the third option,
as the cost of an extra DMA mapping is compensated by
simplified controller design.

Media specific. Each I/O command provides media-
specific hints, including plane operation mode (single,
dual, or quad plane), erase/program suspend [56], and
limited retry. The plane operation mode defines how
many planes should be programmed at once. The con-
troller may use the plane operation mode hint to effi-
ciently program planes in parallel, as it accesses PUs
sequentially by default. Similarly, the erase-suspend al-
lows reads to suspend an active write or program, and
thus improve its access latency, at the cost of longer write
and erase time. Limited retry allows the host to let the
controller know that it should not exhaust all options to
read or write data, but instead fail fast to provide a better
quality of service, if data is already available elsewhere.

4 LightNVM

LightNVM is the open-channel SSD subsystem in Linux.
In this section, we give an overview of its architecture,
and we present the pblk target in detail.

4.1 Architecture

LightNVM is organized in three layers (see Figure 3),
each providing a level of abstraction for open-channel
SSDs:

Open-Channel SSD

NVMe Device Driver

LightNVM Subsystem

pblk

Hardware

Kernel
Space

User
Space

Application(s)

File System

PPA Addressing

S
c
a

la
r

R
e
a

d
/W

ri
te

(o
p
ti
o
n
a
l)

G
e

o
m

e
tr

y

V
e

c
to

re
d

R
/W

/E

(2)

(1)

(3)

Figure 3: LightNVM Subsystem Architecture

1. NVMe Device Driver. A LightNVM-enabled
NVMe device driver gives kernel modules access to
open-channel SSDs through the PPA I/O interface.
The device driver exposes the device as a traditional
Linux device to user-space, which allows applica-
tions to interact with the device through ioctls. If the
PPA interface is exposed through an LBA, it may
also issue I/Os accordingly.

2. LightNVM Subsystem. An instance of the subsys-
tem is initialized on top of the PPA I/O-supported
block device. The instance enables the kernel to ex-
pose the geometry of the device through both an in-
ternal nvm_dev data structure and sysfs. This way
FTLs and user-space applications can understand
the device geometry before use. It also exposes the
vector interface using the blk-mq [4] device driver
private I/O interface, enabling vector I/Os to be ef-
ficiently issued through the device driver.

3. High-level I/O Interface. A target gives kernel-
space modules or user-space applications access to
open-channel SSDs through a high-level I/O inter-
face, either a standard interface like the block I/O
interface provided by pblk (see Section 4.2), or an
application-specific interface provided by a custom
target.

4.2 pblk: Physical Block Device
The Physical Block Device (pblk) is a LightNVM tar-
get implementing a fully associative, host-based FTL
that exposes a traditional block I/O interface. In
essence, pblk’s main responsibilities are to (i) deal with
controller- and media-specific constraints (e.g., caching
the necessary amount of data to program a flash page),
(ii) map logical addresses onto physical addresses (4KB
granularity) and guarantee the integrity—and eventual
recovery in the face of crashes—of the associated map-
ping table (L2P), (iii) handle errors, and (iv) implement
garbage collection (GC). Since typical flash page sizes

are bigger than 4KB, pblk must also (v) handle flushes.
A flush forces pblk’s in-flight data to be stored on the de-
vice before it completes. It might be required by a file
system or an application (i.e., fsync).

4.2.1 Write Buffering

The pblk target is based on the architecture described in
Section 2.4, where write buffering is managed on the
host. The write buffer is managed as a circular ring
buffer. It is internally decoupled into two buffers: a data
buffer storing 4KB user data entries (4KB corresponds
to the size of a sector), and a context buffer storing per-
entry metadata. The size of the buffer is the product of
flash page size (FPSZ), the number of flash pages to write
(lower/upper pages), and the number of PUs (N). For
example, if FPSZ = 64KB,PP = 8,N = 128, the write
buffer is 64MB.

The write buffer is accessed by several producers and
a single consumer:

Producers. Both pblk users and pblk’s own garbage
collector insert I/Os as entries into the write buffer. When
a new entry is written, the L2P table is updated with the
entry line and the write is acknowledged. If the buffer
is full, the write is re-scheduled. In case that a mapping
already exists for the incoming logical address, the old
entry is invalidated.

Consumer. A single thread consumes buffered entries
either when there is enough data to fill a flash page or
when a flush command has been issued. If multi-plane
programming is used then the number of planes must
also be considered (e.g., 16KB pages with quad plane
programming requires 64KB chunks for a single write).
At this point, logical addresses are mapped to physi-
cal ones. By default, pblk’s mapping strategy targets
throughput and stripes data across channels and PUs at
a page granularity. Other data placement strategies can
be used. After mapping takes place, a vector write com-
mand is formed and sent to the device. Note that in case
of a flush, if there is not enough data to fill a flash page,
pblk adds padding (i.e., unmapped data) in the write
command before it is sent to the device.

In order to respect the lower/upper page pairs (Sec-
tion 2.1), the L2P table is not modified as pages are
mapped. This way, reads are directed to the write buffer
until all page pairs have been persisted. When this hap-
pens, the L2P table is updated with the physical address.
L2P recovery is discussed in Section 4.2.2.

The number of channels and PUs used for mapping
incoming I/Os can be tuned at run-time. We refer to them
as active PUs. For example, let us consider 4 active PUs
on an open-channel SSD with 4 channels and 8 PUs per
channel. To start with, PU0, PU8, PU16, and PU24 are

active. Pages are written on those PUs in a round-robin
fashion. When a block fills up on PU0, then that PU
becomes inactive and PU1 takes over as the active PU.
At any point in time, only 4 PUs are active, but data is
still striped across all available PUs at a page granularity.

When an application or file system issues a flush, pblk
ensures that all outstanding data is written to the media.
The consumer thread empties the write buffer and uses
padding to fill up the last flash page if necessary. As
data is persisted, the last write command holds an extra
annotation that indicates that it must complete before the
flush is successful.

4.2.2 Mapping Table Recovery

The L2P mapping table is essential for data consistency
in a block device. Thus, we persist a redundant version
of the mapping table in three forms: First, as a snapshot,
which is stored (i) on power-down, in form of a full copy
of the L2P, and (ii) periodically as checkpoints in form
of an FTL log that persists operations on blocks (allocate
and erase). Second, as block-level metadata, on the first
and last page of each block. When a block is opened,
the first page is used to store a block sequence number
together with a reference to the previous block. When
a block is fully written, the last pages are used to store
(1) an FTL-log consisting of the portion of the L2P map
table corresponding to data in the block, (2) the same se-
quence number as in the first page in order to avoid an
extra read during recovery, and (3) a pointer to the next
block. The number of pages needed depends on the size
of the block. This strategy allows us to recover the FTL
in an ordered manner and prevent old mappings from
overwriting new ones. Finally, a portion of the mapping
table is kept (iii) within the OOB area of each flash page
that is written to the device. Here, for each persisted flash
page, we store the logical addresses that correspond to
physical addresses on the page together with a bit that
signals that the page is valid. Since blocks can be reused
as they are garbage collected, all metadata is persisted
together with its CRC and relevant counters to guarantee
consistency.

Any initialization of the device will trigger a full re-
covery. If an L2P mapping table snapshot is available
(e.g., due to a graceful shutdown), then the mapping ta-
ble is directly retrieved from disk and loaded into mem-
ory. In the case of a non-graceful shutdown, the mapping
table must be recovered. We designed a two-phase re-
covery process.

To start with, we scan the last page of all available
blocks and we classify them into free, partially written,
and fully written. We can reduce the scanning by look-
ing at the sequence numbers and only recovering written
blocks. In the first phase, fully written blocks are or-

dered using the sequence number. The L2P table is then
updated with the map portions stored on each last page.
Similarly, in the second phase, partially written blocks
are ordered. After this, blocks are scanned linearly until
a page with an invalid bit on the OOB area is reached.
Each valid mapping triggers an update in the L2P ta-
ble. To ensure data correctness, it is paramount that half-
written lower/upper pages are padded before reads can
be issued. If the controller counts on a super capacitor,
padding can be done in the device on ungraceful power-
down. Otherwise, padding must be implemented on the
second phase of recovery, as partially written blocks are
recovered.

4.2.3 Error Handling

Unlike a traditional FTL that deals with read, write, and
erase failures, pblk deals only with write and erase er-
rors. As discussed in Section 2.2, ECC and threshold
tuning are enforced by the device. If a read fails, then
data is irrecoverable from the device’s perspective; re-
covery must be managed by the upper layers of the sys-
tem, above pblk.

When a write fails, pblk initiates two recovery mech-
anisms. First, the blocks corresponding to sectors on
which a write failed are identified using the per-sector
completion bits encoded in the command completion en-
try. These failed sectors are remapped and re-submitted
to the device directly. They are not inserted in the write
buffer because of the flush guarantee provided by pblk.
In case a flush is attached to the failed command, sub-
sequent writes will stop until the pointed I/O completes.
Writes preceding that flush must be persisted before for-
ward progress can be made. The second mechanism
starts when the block corresponding to the failed sectors
is marked as bad. Here, the remaining pages are padded
and the block is sent for GC.

In the case of erase failures, the block is directly
marked as bad. Since no writes have been issued at this
point, there is no data to recover.

4.2.4 Garbage Collection

As any log-structured FTL, pblk must implement
garbage collection. Blocks are re-purposed by garbage
collecting any valid pages and returning blocks for new
writes. Wear-leveling is assumed to happen either on
the device or within the LightNVM core (Section 2.3).
Therefore, pblk simply maintains a valid page count for
each block, and selects the block with the lowest number
of valid sectors for recycling.

The reverse logical to physical mapping table is not
stored in host memory. To find a reverse mapping, we
leverage the fact that a block is first recycled when it

is fully written. Thus, we can use the partial L2P table
stored for recovery on the last pages of the block. In case
a page in that block is still valid, it is queued for rewrite.
When all pages have been safely rewritten, the original
block is recycled.

To prevent user I/Os from interfering with garbage
collection, pblk implements a PID controlled [44] rate-
limiter, whose feedback loop is based on the total num-
ber of free blocks available. When the number of free
blocks goes under a configurable threshold, GC starts.
Note that GC can also be managed from sysfs. In the be-
ginning, both GC and user I/Os compete equally for the
write buffer. But as the number of available blocks de-
creases, GC is prioritized in order to guarantee the con-
sistency of already persisted data. The feedback loop en-
sures that incoming I/Os and GC I/Os move towards a
steady state, where enough garbage collection is applied
given the user I/O workload. The rate-limiter uses write
buffer entries as a natural way to control incoming I/Os;
entries are reserved as a function of the feedback loop.
If the device reaches its capacity, user I/Os will be com-
pletely disabled until enough free blocks are available.

5 Experimental Evaluation

The purpose of our experimental evaluation is threefold.
First, we verify the correctness of the LightNVM stack,
and we evaluate the overhead it introduces. Second,
we characterize pblk on top of a first generation open-
channel SSD (OCSSD) and compare it to a state-of-the-
art NVMe SSD in terms of throughput, latency, and CPU
utilization. We rely on fio [2] and application workloads
for this study. Finally, we show how explicit PU write
provisioning can be used to optimize I/O scheduling and
achieve predictable latencies.

Our experimental setup consists of a server equipped
with an Intel Xeon E5-2620v3, 32 GB of DDR4 RAM,
an Open-Channel SSD (CNEX Labs Westlake SDK)
with 2TB NAND MLC Flash, denoted OCSSD in the rest
of this section, and an NVMe SSD (Intel P3700) with
400GB storage, denoted NVMe SSD. Both SSDs are
datacenter/enterprise SSDs using MLC NAND, which
makes them comparable in terms of hardware raw per-
formance. A new instance of pblk is used for each run
on the OCSSD; the NVMe SSD is formatted to 4K sec-
tor size and is low-level formatted before each run. The
host runs Ubuntu 15.04 with Linux Kernel 4.8-rc4 and
pblk patches applied.

The entire LightNVM stack amounts to approximately
10K LOC; pblk is responsible for almost 70% of that
code.

Open-Channel Solid-State Drive
Controller CNEX Labs Westlake ASIC
Interface NVMe, PCI-e Gen3x8
Channels 16
PUs per Channel 8 (128 total)
Channel Data Bandwidth 280MB/s

Parallel Unit Characteristics
Page Size 16K + 64B user OOB
Planes 4
Blocks 1,067
Block Size 256 Pages
Type MLC

Bandwidths
Single Seq. PU Write 47MB/s
Single Seq. PU Read 105MB/s (4K), 280MB/s (64KB)
Single Rnd. PU Read 56MB/s (4K), 273MB/s (64KB)
Max Write 4GB/s
Max Read 4.5GB/s
pblk Factory Write (no GC) 4GB/s
pblk Steady Write (GC) 3.2GB/s

Table 1: Solid-State Drive Characterization.

5.1 Sanity Check
Table 1 contains a general characterization for the eval-
uated Open-Channel SSD. Per-PU sequential read and
write bandwidth were gathered experimentally through a
modified version [3] of fio that uses the PPA I/O interface
and issues vector I/Os directly to the device. The pblk
factory state and steady state (where garbage collection
is active) are measured experimentally through standard
fio on top of pblk. Note that we leave the detailed char-
acterization of pblk for future work and only prove that
the implementation works as expected. Unless specified
otherwise, each experiment is conducted in factory state
with pblk’s rate-limiter disabled.

In terms of CPU utilization, pblk introduces an over-
head of less than 1% CPU overhead for reads with 0.4µs
additional latency (2.32µs with, and 1.97µs without, a
difference of 18%). While for writes, it adds 4% CPU
overhead with an additional 0.9µs latency (2.9µs with,
and 2µs without, a difference of 45%). Overhead on the
read path is due to an extra lookup into the L2P table and
the overhead on the write path is due to buffer and de-
vice write I/O requests management. CPU overhead is
measured by comparing the time it takes with and with-
out pblk on top of a null block device [4] and does not
include device I/O timings.

5.2 Uniform Workloads
Figure 4 captures throughput and latency for sequential
and random reads issued with fio on 100GB of data. The
preparation for the test has been performed with pblk us-
ing the full bandwidth of the device (128 PUs). This
means that sequential reads are more easily parallelized
internally by the controller since sequential logical ad-
dresses are physically striped across channels and PUs
on a per-page basis.

QD1 QD2 QD4 QD8 QD16

Th
ro

ug
hp

ut
 (G

B
/s

)

0
1
2
3
4

SR
4 8 16 32 64 128 256

0
1
2
3
4

RR
4 8 16 32 64 128 256

La
te

nc
y

(m
s)

0
0.5

1
1.5

2
2.5

SR
4 8 16 32 64 128 256

0
0.5

1
1.5

2
2.5

RR
4 8 16 32 64 128 256

Figure 4: Throughput and corresponding latencies for sequen-
tial and random read workloads as a function of queue depths
(QD) and block sizes (x axis in KB).

We see that the OCSSD is capable of reaching 4GB/s
using sequential reads at an average latency of 970µs
using 256KB request size and a queue depth of 16. The
99th percentile latency is reported at 1,200µs. Similarly,
we measure throughput and latency for 4KB reads using
a queue depth of 1. Maximum throughput is 105MB/s,
with 40µs average access latency and 99th percentile at
400µs. The average access latency is lower than a sin-
gle flash page access because the controller caches the
flash page internally. Thus, all sectors located on the
same flash page will be served from the controller buffer
instead of issuing a new flash page read. Also, read
throughput is limited by the flash page access time, as
we only perform one read at a time.

Pure read and write workloads can be used to calibrate
queue depths to reach full bandwidth. They show the
optimal case, where reads and writes do not block each
other. Let us now discuss mixed workloads, which are
much more challenging for SSDs.

5.3 Mixed Workloads

For a mixed workload, we use the same write preparation
as in the previous experiment (stripe across all PUs with
a 100GB dataset).

Then, we proceed to write with an offset of 100GB,
while we read from the first 100GB. We repeat this ex-
periment, varying stripe size (number of active write
PUs) for new writes. The hypothesis is that as the stripe
size decreases, read performance predictability should
increase as the probability of a read being stuck behind a
write lowers.

Figure 5 depicts the behavior of pblk when reads and
writes are mixed. In Figure 5(a), we show through-
put for both writes and random reads together with their
reference value, represented by 100% writes (4GB/s–
200MB/s) and 100% random reads (3GB/s), respec-
tively; Figure 5(b) depicts its latencies. The experiment
consists of large sequential 256KB writes at queue depth

La
te

nc
y

(m
s)

0
0.5

1
1.5

2
2.5

a)
128 64 32 16 8 4

b)
128 64 32 16 8 4

c)
128 64 32 16 8 4

W ref. RR ref. W RR

Th
ro

ug
hp

ut
 (G

B
/s

)

0
1
2
3
4

128 64 32 16 8 4

Figure 5: R/W throughput and latencies as a function of active
write PUs configurations. Top graph, and a: throughput and
corresponding latency (Writes: 256KB, QD1; Reads: 256KB,
QD16); b: read latency (Writes: 256KB, QD1; Reads: 4KB,
QD1); c: read latency (Write: 256KB, QD1, rate-limited at
200MB/s; Reads: 256KB, QD1).

1, and 256KB random reads at queue depth 16. The
write queue depth is 1, as it is enough to satisfy the
full write bandwidth (defined by the capacity of the pblk
write buffer). Note that reads are issued at queue depth
16 so that enough parallelism can be leveraged by the
controller. This allows us to better visualize the worst-
case latencies and the effect of fewer writing PUs.

We observe that when new writes are striped across all
128 PUs, throughput is halved for both reads and writes
compared to the reference value, while average latency
doubles for reads (maximum latency is increased by 4×).
Write latencies are close to not being affected because
they are buffered. This represents the typical case on
a traditional SSD: reads are stacked behind writes, thus
affecting read performance; host and controller queues
are filled with read requests, thus affecting write perfor-
mance. However, as soon as we start limiting the num-
ber of active write PUs, we observe how reads rapidly
recover. For this experiment, we configured one block
to be fully written on an active PU before switching to a
different PU. Writes are still striped across all 128 PUs,
but instead of being striped at page granularity, they are
striped at block granularity. This lowers the probabil-
ity of reads being issued to the same PU as new writes
(because, reads and writes are striped at different granu-
larities). If we lower the number of write-active PUs to
4, we see that reads are very close to the reference read
workload, while still writing at 200MB/s.

Figure 5(c) shows latency for 4K reads at queue depth
1. Here, we emphasize the impact of a read being
blocked by a write. As in Figure 5(b), latency variance
reduces as we decrease the number of active write PUs.
With 4 active write PUs, the maximum latency for ran-
dom reads in the 99th percentile is only 2µs higher than
in the average case.

Figure 5(d) shows the same experiment as in a) and
b), with the difference that writes are rate-limited to

P
er

ce
nt

ile

0.5
0.6
0.7
0.8
0.9

1

SW (ms)
0 20 40 60 80

RR (ms)
0 20 40 60 80

OCSSD 4
OCSSD 128
NVMe SSD

Mixed (ms)
0 20 40 60 80

Figure 6: Latencies for RocksDB sequential writes, random
reads and mixed workloads on OCSSD and NVMe SSD

NVMe SSD OCSSD 128 OCSSD 4
SW 276 396 80
RR 5064 5819 5319

Mixed 2208 3897 4825

Table 2: Throughput (MB/s) for RocksDB sequential writes,
random reads, and mixed workloads on OCSSD and NVMe
SSD

200MB/s. The motivation for this experiment is the ex-
pectation of consistent writes in next-generation SSDs.
Note that current SSDs already define the maximal sus-
tained write bandwidths over a three-year period. Ex-
amples are write-heavy (e.g., Intel DC P3608, 1.6GB, 5
DWPD) and read-heavy (e.g., Samsung 960 Pro, 2TB,
2.2 DWPD) SSDs, where the limits are 95MB/s and
26MB/s, respectively. The interesting output of this ex-
periment is that even when writes are rated, the variance
of reads is still very much affected by the number of ac-
tive write PUs.

More generally, the experiments with mixed work-
loads show that informed decisions based on the actual
workload of an application can be leveraged to optimize
a traditional block device interface, without requiring an
application-specific FTL.

5.4 Application Workloads
We evaluate pblk with a NoSQL database, and MySQL
with both OLTP and OLAP workloads. The NoSQL
database relies on an LSM-tree for storage and leans to-
wards fewer flushes (sync is enabled to guarantee data
integrity), while MySQL has tight bounds on persisting
transactional data to disk. We evaluate both using the
NVMe SSD and the OCSSD using 128 and 4 active write
PUs.

NoSQL. For this experiment, we ran RocksDB [17] on
top of an Ext4 file system and made use of RocksDB’s
db_bench to execute three workloads: sequential writes,
random reads, and mixed (RocksDB read-while-writing
test). Figure 6 shows user throughput and latencies for
the three workloads. We show latency for the 95th, 99th

and 99.9th percentile of the latency distribution. Note
that internally RocksDB performs its own garbage col-
lection (i.e., sstable compaction). This consumes device
bandwidth, which is not reported by db_bench.

Figure 7: Transactions per second and latencies for OLTP and
OLAP on NVMe SSD and OCSSD.

The user write throughput is 276MB/s for the NVMe
SSD, 396MB/s for the OCSSD with 128 active PUs, and
88MB/s with 4 active PUs. The fewer active PUs clearly
show that the write performance is limited. The perfor-
mance of the random reads workload is comparable for
both SSDs. There is a significant difference when writes
are involved. First, both SSDs expose the same behavior
for sequential workloads until we reach the 99.9th per-
centile, where the OCSSD provides a lower latency, by
a factor of two. Second, for mixed workload, the OC-
SSD provides a much lower latency (approximately a
factor of three) already for the 99th percentile. This is
because reads get much more often stuck after writes on
the NVMe SSD and that the OCSSD has more internal
parallelism that can be leveraged by writes.

OLTP and OLAP. Figure 7 shows Sysbench’s [32]
OLTP and OLAP workloads on top of the MySQL
database system and an Ext4 file system. The latency er-
ror bounds show the min/max for the workloads as well.

Both workloads are currently CPU bound and thus
similar for all SSDs. When writing, however, the OLTP
workload exhibits significant flush overheads. For 10GB
write, 44,000 flushes were sent, with roughly 2GB data
padding applied. For OLAP (as for RocksDB), only 400
flushes were sent, with only 16MB additional padding.
Thus, for a transactional workload, a device-side buffer
would significantly reduce the amount of padding re-
quired.

The latency results show the same trend as RocksDB.
In the 95th percentile, latency increases a lot for write-
heavy OLTP on the traditional SSD compared to the
average case, while the increase is insignificant for the
open-channel SSD. For OLAP, the results are similar
both in terms of throughput and latency due to the work-
load being CPU-intensive, and mostly read-only. Thus,
there is no interference between reads and writes/erases.
Tuning SQL databases for performance on open-channel
SSDs is an interesting topic for future work (possibly via
a KV-based storage engine [39]).

P
er

ce
nt

ile

0.95

0.96

0.97

0.98

0.99

1

Latency (ms)
0 0.5 1 1.5 2 2.5 3

100/0 R/W
80/20 R/W
66/33 R/W
50/50 R/W

100/0 R/W
80/20 R/W
66/33 R/W
50/50 R/W

NVMeOCSSD

Figure 8: Latency comparison of OCSSD and NVMe SSD
showing how writes impact read latencies. Note that the y-axis
does not start at 0, but at 0.95.

5.5 Predictable Latency
This experiment illustrates the potential benefits of
application-specific FTLs. We use again the modified
version of fio to run two concurrent streams of vector
I/Os directly to the device. One thread issues 4KB ran-
dom reads at queue depth 1, while another thread is-
sues 64K writes at the same queue depth. The streams
for the OCSSD are isolated to separate PUs, while the
NVMe SSD mixes both reads and writes. We measure
the workload over five seconds and report the latency
percentiles in Figure 8. We report the latency granu-
larities as 100/0,80/20,66/33, and 50/50. As writes
increase, performance remains stable on the OCSSD.
While the NVMe SSDs has no method to separate the
reads from the writes, and as such higher read latency
are introduced even for light workloads (20% writes).

Our point is that the PPA I/O interface enables ap-
plication developers to explicitely manage the queue for
each separate PU in an SSD and thus achieve predictable
I/O latency. Characterizing the potential of application-
specific FTLs with open-channel SSDs is a topic for fu-
ture work.

6 Related Work

As SSD shortcomings become apparent [12, 15, 30, 37],
research has focused on organizing the cooperation be-
tween host and SSDs. One form of cooperation consists
of passing hints from hosts to embedded FTLs. The work
on multi-streaming falls in this category [28]. Other
forms of cooperation consist in bypassing the FTL [24,
35, 50], or designing the upper layers of the system
around the properties of a given FTL [29, 33, 36, 38, 46].
Finally, host-based FTLs let the host control data place-
ment and I/O scheduling. This is the approach we have
taken with LightNVM.

Host-side FTLs have been implemented by both Fu-
sionIO DFS [27] and Violin Memory [54], each moving
the FTL into the host in order to expose a block I/O SSD.
Similarly, Ouyang et al. [45] proposed Software-Defined
Flash that allows a key-value store to integrate with the
underlying storage media. Also, Lu et al. [37] defined a

host-based object-based FTL (OFTL) on top of raw flash
devices that correspond to Baidu’s open-channel SSDs.
In contrast, we specify a cross-vendor interface for open-
channel SSDs, and we show how a tunable block I/O tar-
get can reduce read latency variability.

Lee et. al. [34] proposed a new SSD interface, compat-
ible with the legacy block device interface, that exposes
error-free append-only segments through read/write/trim
operations. This work is based on a top-down approach,
which shows how a state-of-art file system (F2FS) can
be implemented on top of the proposed append-only in-
terface. Our paper, in contrast, describes a bottom-up
approach where the PPA interface reflects SSD charac-
teristics independently of the upper layers of the system.
First, our PPA interface allows write and erase errors to
propagate up to the host for increased I/O predictability.
We also define a vector I/O interface, allowing the host
to leverage the device parallelism. Finally, we explicitly
expose the read and write granularity of the media to the
host so that write buffering can be placed on the host or
the device. Demonstrating the benefits of application-
specific SSD management with LightNVM is a topic for
future research. Initial results with RocksDB [22] or
multi-tenant I/O isolation [21, 26] are promising.

7 Conclusion

LightNVM is the open-channel SSD subsystem in the
Linux kernel. It exposes any open-channel SSD to the
host through the PPA I/O interface. LightNVM also
provides a partition manager and a tunable Block I/O
interface. Our experimental results show that Light-
NVM provides (i) low overhead with significant flex-
ibility, (ii) reduced read variability compared to tradi-
tional NVMe SSDs, and (iii) the possibility of obtaining
predictable latency. Future work includes characteriz-
ing the performance of various open-channel SSD mod-
els (products from three vendors have been announced
at the time of writing), devising tuning strategies for
relational database systems and designing application-
specific FTLs for key-value stores.

8 Acknowledgments

We thank the anonymous reviewers and our shepherd,
Erez Zadok, whose suggestions helped improve this pa-
per. We also thank Alberto Lerner, Mark Callaghan,
Laura Caulfield, Stephen Bates, Carla Villegas Pasco,
Björn Þór Jónsson, and Ken McConlogue for their valu-
able comments during the writing of this paper. We thank
the Linux kernel community, including Jens Axboe and
Christoph Hellwig, for providing feedback on upstream
patches, and improving the architecture.

References

[1] AGRAWAL, N., PRABHAKARAN, V., WOBBER,
T., DAVIS, J. D., MANASSE, M., AND PANI-
GRAHY, R. Design tradeoffs for ssd performance.
In USENIX Annual Technical Conference (ATC)
(2008), pp. 57–70.

[2] AXBOE, J. Fio - Flexible I/O tester. URL
http://freecode. com/projects/fio (2014).

[3] BJØRLING, M. fio LightNVM I/O Engine.
URL https://github.com/MatiasBjorling/lightnvm-
fio (2016).

[4] BJØRLING, M., AXBOE, J., NELLANS, D., AND
BONNET, P. Linux Block IO: Introducing Multi-
Queue SSD Access on Multi-Core Systems. In Pro-
ceedings of the 6th International Systems and Stor-
age Conference (SYSTOR) (2013).

[5] BJØRLING, M., BONNET, P., BOUGANIM, L.,
AND DAYAN, N. The necessary death of the block
device interface. In 6th Biennial Conference on
Innovative Data Systems Research (CIDR) (2013),
pp. 1–4.

[6] BONNET, P., AND BOUGANIM, L. Flash device
support for database management. In CIDR 2011,
Fifth Biennial Conference on Innovative Data Sys-
tems Research, Asilomar, CA, USA, January 9-12,
2011, Online Proceedings (2011), pp. 1–8.

[7] CAI, Y., HARATSCH, E. F., MUTLU, O., AND
MAI, K. Error patterns in MLC NAND flash mem-
ory: Measurement, characterization, and analysis.
In Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE) (2012), IEEE, pp. 521–
526.

[8] CAI, Y., HARATSCH, E. F., MUTLU, O., AND
MAI, K. Threshold voltage distribution in mlc
nand flash memory: Characterization, analysis, and
modeling. In Proceedings of the Conference on De-
sign, Automation and Test in Europe (San Jose, CA,
USA, 2013).

[9] CAI, Y., LUO, Y., GHOSE, S., AND MUTLU, O.
Read disturb errors in MLC NAND flash mem-
ory: Characterization, mitigation, and recovery.
In 45th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (2015),
IEEE, pp. 438–449.

[10] CAI, Y., MUTLU, O., HARATSCH, E. F., AND
MAI, K. Program interference in MLC NAND
flash memory: Characterization, modeling, and
mitigation. In IEEE 31st International Conference
on Computer Design (ICCD) (2013).

[11] CHEN, F., LEE, R., AND ZHANG, X. Essen-
tial roles of exploiting internal parallelism of flash

memory based solid state drives in high-speed data
processing. In IEEE 17th International Sympo-
sium on High Performance Computer Architecture
(2011), IEEE, pp. 266–277.

[12] CHEN, F., LUO, T., AND ZHANG, X. CAFTL :
A Content-Aware Flash Translation Layer Enhanc-
ing the Lifespan of Flash Memory based Solid State
Drives. 9th USENIX Conference on File and Stor-
age Technologies (FAST) (2011).

[13] CRUCIAL. The Crucial M550 SSD.
http://www.crucial.com/usa/en/
storage-ssd-m550, 2013.

[14] CURRY, M. L., SKJELLUM, A., WARD, H. L.,
AND BRIGHTWELL, R. Accelerating reed-
solomon coding in raid systems with gpus. In
IEEE International Symposium on Parallel and
Distributed Processing (April 2008), pp. 1–6.

[15] DEAN, J., AND BARROSO, L. A. The Tail at Scale.
Commun. ACM 56, 2 (Feb. 2013), 74–80.

[16] DONG, G., XIE, N., AND ZHANG, T. On the use
of soft-decision error-correction codes in NAND
flash memory. IEEE Transactions on Circuits and
Systems I: Regular Papers 58, 2 (2011), 429–439.

[17] DONG, S., CALLAGHAN, M., GALANIS, L.,
BORTHAKUR, D., SAVOR, T., AND STUMM, M.
Optimizing Space Amplification in RocksDB. 8th
Biennial Conference on Innovative Data Systems
Research (CIDR) (2017).

[18] FILKS, V., UNSWORTH, J., AND CHAN-
DRASEKARAN, A. Magic Quadrant for Solid-State
Arrays. Tech. rep., Gartner, 2016.

[19] FLOYER, D. Flash Enterprise Adoption Projec-
tions. Tech. rep., Wikibon, 2016.

[20] FUSION-IO. Introduces "Flashback" Protection
Bring Protective RAID Technology to Solid State
Storage and Ensuring Unrivaled Reliability with
Redundancy. Businesswire, 2008.

[21] GONZÁLEZ, J., AND BJØRLING, M. Multi-Tenant
I/O Isolation with Open-Channel SSDs. Non-
volatile Memory Workshop (NVMW) (2017).

[22] GONZÁLEZ, J., BJØRLING, M., LEE, S., DONG,
C., AND HUANG, Y. R. Application-Driven Flash
Translation Layers on Open-Channel SSDs. Non-
volatile Memory Workshop (NVMW) (2014).

[23] HAO, M., SOUNDARARAJAN, G.,
KENCHAMMANA-HOSEKOTE, D., CHIEN,
A. A., AND GUNAWI, H. S. The tail at store:
a revelation from millions of hours of disk and
SSD deployments. In 14th USENIX Conference
on File and Storage Technologies (FAST) (2016),
pp. 263–276.

[24] HARDOCK, S., PETROV, I., GOTTSTEIN, R., AND
BUCHMANN, A. Noftl: Database systems on ftl-
less flash storage. Proceedings of the VLDB En-
dowment 6, 12 (2013), 1278–1281.

[25] HOLT, K. Information technology—scsi block
commands—3 (sbc-3). Tech. rep., T10/03-224,
Working Draft, 2003.

[26] HUANG, J., BADAM, A., CAULFIELD, L., NATH,
S., SENGUPTA, S., SHARMA, B., AND QURESHI,
M. K. Flashblox: Achieving both performance
isolation and uniform lifetime for virtualized ssds.
In 15th USENIX Conference on File and Storage
Technologies (FAST) (2017), USENIX.

[27] JOSEPHSON, W. K., BONGO, L. A., LI, K., AND
FLYNN, D. DFS: A File System for Virtualized
Flash Storage. ACM Transactions on Storage 6, 3
(Sept. 2010), 1–25.

[28] KANG, J.-U., HYUN, J., MAENG, H., AND CHO,
S. The Multi-streamed Solid-State Drive. In 6th
USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage) (2014).

[29] KANG, W.-H., LEE, S.-W., MOON, B., OH, G.-
H., AND MIN, C. X-FTL: transactional FTL for
SQLite databases. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data (2013), pp. 97–108.

[30] KIM, J., LEE, D., AND NOH, S. H. Towards SLO
Complying SSDs Through OPS Isolation. In 13th
USENIX Conference on File and Storage Technolo-
gies (FAST) (2015), pp. 183–189.

[31] KING, M., DELLETT, L., AND SULLIVAN, K. An-
nual High Performance Computing Trends Survey.
Tech. rep., DDN, 2016.

[32] KOPYTOV, A. Sysbench: a system performance
benchmark. URL: http://sysbench. sourceforge. net
(2004).

[33] LEE, C., SIM, D., HWANG, J., AND CHO, S.
F2FS: A new file system for flash storage. In 13th
USENIX Conference on File and Storage Technolo-
gies (FAST) (2015), pp. 273–286.

[34] LEE, S., LIU, M., JUN, S., XU, S., KIM, J., AND
ARVIND. Application-Managed Flash. In 14th
USENIX Conference on File and Storage Technolo-
gies (FAST) (2016), pp. 339–353.

[35] LIU, M., JUN, S.-W., LEE, S., HICKS, J., ET AL.
minFlash: A minimalistic clustered flash array.
In Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE) (2016), IEEE, pp. 1255–
1260.

[36] LU, L., PILLAI, T. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. WiscKey: sepa-
rating keys from values in SSD-conscious storage.
In 14th USENIX Conference on File and Storage
Technologies (FAST) (2016), pp. 133–148.

[37] LU, Y., SHU, J., AND ZHENG, W. Extending the
Lifetime of Flash-based Storage Through Reducing
Write Amplification from File Systems. In Pro-
ceedings of the 11th USENIX Conference on File
and Storage Technologies (2013), USENIX Asso-
ciation, pp. 257–270.

[38] MÁRMOL, L., SUNDARARAMAN, S., TALA-
GALA, N., RANGASWAMI, R., DEVENDRAPPA,
S., RAMSUNDAR, B., AND GANESAN, S.
NVMKV: A Scalable and Lightweight Flash Aware
Key-Value Store. 6th USENIX Workshop on Hot
Topics in Storage and File Systems (2014).

[39] MATSUNOBU, Y. Rocksdb storage engine for
mysql. In FOSDEM 2016 (2016).

[40] MEZA, J., WU, Q., KUMAR, S., AND MUTLU,
O. A large-scale study of flash memory failures
in the field. In ACM SIGMETRICS Performance
Evaluation Review (2015), vol. 43, ACM, pp. 177–
190.

[41] MICHELONI, R., MARELLI, A., AND ESHGHI, K.
Inside solid state drives (SSDs), vol. 37. Springer
Science & Business Media, 2012.

[42] NARAYANAN, I., WANG, D., JEON, M.,
SHARMA, B., CAULFIELD, L., SIVASUBRAMA-
NIAM, A., CUTLER, B., LIU, J., KHESSIB, B.,
AND VAID, K. SSD Failures in Datacenters: What,
When and Why? In Proceedings of the ACM SIG-
METRICS International Conference on Measure-
ment and Modeling of Computer Science (2016),
ACM, pp. 407–408.

[43] NVMHCI WORK GROUP. NVM Express 1.2.1,
2016.

[44] O’DWYER, A. Handbook of PI and PID controller
tuning rules, vol. 57. World Scientific, 2009.

[45] OUYANG, J., LIN, S., JIANG, S., AND HOU, Z.
SDF: Software-defined flash for web-scale inter-
net storage systems. In Proceedings of the 19th
international conference on Architectural support
for programming languages and operating systems
(2014).

[46] OUYANG, X., NELLANS, D., WIPFEL, R.,
FLYNN, D., AND PANDA, D. Beyond block
I/O: Rethinking traditional storage primitives. In
High Performance Computer Architecture (HPCA)
(2011), IEEE, pp. 301–311.

[47] PAN, Y., DONG, G., AND ZHANG, T. Exploit-
ing Memory Device Wear-Out Dynamics to Im-
prove NAND Flash Memory System Performance.
In FAST (2011), vol. 11, pp. 18–18.

[48] PLANK, J. S., GREENAN, K. M., AND MILLER,
E. L. Screaming Fast Galois Field Arithmetic Us-
ing Intel SIMD Instructions. In 11th USENIX Con-
ference on File and Storage Technologies (FAST)
(2013), USENIX Association, pp. 298–306.

[49] SCHROEDER, B., LAGISETTY, R., AND MER-
CHANT, A. Flash reliability in production: The ex-
pected and the unexpected. In 14th USENIX Con-
ference on File and Storage Technologies (FAST)
(2016), pp. 67–80.

[50] SONG, Y. H., JUNG, S., LEE, S.-W., AND
KIM, J.-S. Cosmos OpenSSD: A PCIe-based
Open Source SSD Platform OpenSSD Introduc-
tion. Flash Memory Summit (2014), 1–30.

[51] SUN, H., GRAYSON, P., AND WOOD, B. Quanti-
fying reliability of solid-state storage from multiple
aspects. 7th IEEE International Workshop on Stor-
age Network Architecture and Parallel I/Os (2011).

[52] SWANSON, S., AND CAULFIELD, A. M. Refactor,
Reduce, Recycle: Restructuring the I/O Stack for
the Future of Storage. IEEE Computer 46, 8 (2013).

[53] SWEENEY, P. Error control coding. Prentice Hall
UK, 1991.

[54] VIOLIN MEMORY. All Flash Array Architecture,
2012.

[55] WANG, P., SUN, G., JIANG, S., OUYANG, J.,
LIN, S., ZHANG, C., AND CONG, J. An efficient
design and implementation of LSM-tree based key-
value store on open-channel SSD. Proceedings of
the Ninth European Conference on Computer Sys-
tems (EuroSys) (2014), 1–14.

[56] WU, G., AND HE, X. Reducing ssd read la-
tency via nand flash program and erase suspension.
In 11th USENIX Conference on File and Storage
Technologies (FAST) (2012), vol. 12, pp. 10–10.

[57] YANG, J., PLASSON, N., GILLIS, G., TALA-
GALA, N., AND SUNDARARAMAN, S. Don’t stack
your log on my log. In 2nd Workshop on Inter-
actions of NVM/Flash with Operating Systems and
Workloads (INFLOW) (2014).

