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ABSTRACT 

 Energy efficiency is an important metric in resource constrained wireless sensor 

networks (WSN). Multiple approaches such as duty cycling, energy optimal scheduling, 

energy aware routing and data aggregation can be availed to reduce energy consumption 

throughout the network. This thesis addresses the data aggregation during routing since 

the energy expended in transmitting a single data bit is several orders of magnitude 

higher than it is required for a single 32 bit computation. Therefore, in the first paper, a 

novel nonlinear adaptive pulse coded modulation-based compression (NADPCMC) 

scheme is proposed for data aggregation. A rigorous analytical development of the 

proposed scheme is presented by using Lyapunov theory. Satisfactory performance of the 

proposed scheme is demonstrated when compared to the available compression schemes 

in NS-2 environment through several data sets. Data aggregation is achieved by 

iteratively applying the proposed compression scheme at the cluster heads.  

 The second paper on the other hand deals with the hardware verification of the 

proposed data aggregation scheme in the presence of a Multi-interface Multi-Channel 

Routing Protocol (MMCR). Since sensor nodes are equipped with radios that can operate 

on multiple non-interfering channels, bandwidth availability on each channel is used to 

determine the appropriate channel for data transmission, thus increasing the throughput. 

MMCR uses a metric defined by throughput, end-to-end delay and energy utilization to 

select Multi-Point Relay (MPR) nodes to forward data packets in each channel while 

minimizing packet losses due to interference. Further, the proposed compression and 

aggregation are performed to further improve the energy savings and network lifetime. 
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SECTION 

1. INTRODUCTION 

 Wireless Sensor Networks (WSN) are one of the first practical real-world 

examples of the pervasive computing paradigm - the concept of small, inexpensive, 

robust, networked processing devices eventually permeating the environment. In 2003, 

MIT‘s Technology Review magazine [1] described sensor networks as ―One of the ten 

technologies that will change the world.‖ Though sensors have been available for 

decades, the application of the technology was hampered until recently owing to the high 

cost. The advances in semiconductor technology finally brought smaller and cheaper 

sensors to life. The same semiconductor manufacturing techniques miniaturized radios 

and processors. The system-on-a-chip (SoC) technology integrated microsensors, 

onboard processing and wireless interfaces which is now referred to as a sensor node or a 

mote. A sensor node with several features is shown in Figure 1.1.  

 

 

 

 

Figure 1.1. Architecture of a sensor node 
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 Once networked, deeply embeddable sensor nodes can reveal phenomena that 

were previously unobservable. Existing and potential applications of WSNs include, 

among others, radiation detection, habitat sensing, seismic monitoring, video 

surveillance, traffic surveillance, environment monitoring, weather sensing, homeland 

security, forest fire detection and chemical attack detection. 

 

1.1 MOTIVATION 

 Energy constraints dominate algorithm and system design trade-offs for small 

embedded sensor devices. The lifetime of a WSN depends on the energy that can be 

stored or harvested by individual sensor nodes. WSNs are meant to be deployed in large 

numbers in various environments, including remote and hostile regions, with ad-hoc 

network communications as key way of connecting nodes. In most situations, 

replacement of dead batteries is expensive. Hence lifetime maximization through energy 

efficiency becomes an important issue. The following are a few ways to address the 

power consumption issue. 

1. Duty cycling – The energy consumption for idle listening, which is needed to keep the 

receiving circuitry awake for possible packet reception, is a major source of current drain. 

Duty cycling schemes [2] [3] define coordinated sleep/wakeup schedules consisting of 

short active durations and long inactive ones. 

2. Adaptive sampling – This method improves the network efficiency and the data 

accuracy by dynamically changing the sampling rate of a node in response to its data 

characteristics [4] or available resources [5]. Consider the example of a fire detection 
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sensor. If the temperature is nearly constant for a long time, the sampling rate of the 

sensor node can be decreased to reduce the data transmission without affecting the data 

quality. On the other hand, if the temperature increases rapidly above a threshold, the 

base-station has to be informed impromptu and sampling rate of the sensor node should 

be increased to improve the accuracy [6]. 

3. In-network processing –Data transmission is probably the most energy-intensive 

operation performed by a sensor node. Figure 1.2 displays the number of 

TIMSP430F1611 machine cycles equivalent in energy to the transmission of a single byte 

over the CC2420, CC1000 and MaxStream XTend radios.  This figure indicates that any 

additional processing to reduce at least a single data bit might still be advantageous in 

terms of energy efficiency.  

 

Figure 1.2. CPU compute cycles versus transmission energy of one byte over three radios 

(Reprint from [9]) 
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 In-network processing involves reducing the amount of data to be transmitted by 

means of compression [7] and/or aggregation [8] techniques. As an example, consider a 

Cluster-head receiving two packets from two different sources containing the locally 

measured temperatures.  Instead of forwarding the two packets, the sensor may compute 

a statistical aggregate such as AVERAGE or MAX or MIN of the two readings and send 

it in a single packet [6]. The tradeoff is that though this approach reduces the amount of 

data to be sent over the network but it may also reduce the accuracy with which the 

gathered information can be recovered at the sink. After aggregation, it is usually not 

possible to perfectly reconstruct all of the original data. 

4. Energy aware routing – While data aggregation is intended to reduce the number of 

transmissions, routing is intended to ensure reliable packet delivery and minimize the 

number of retransmissions. With the exponential growth in the energy-cost of radio 

transmission with respect to the distance transmitted, it is very unlikely that every node 

will reach the base station. Thus, multi-hop routing is mandatory. The basic idea for 

multi-hop routing then is to route the packet through the minimum energy paths so as to 

minimize the overall energy consumption for delivering the packet from the source to the 

destination. Routing protocols use multiple paths rather than a single path in order to both 

enable load balancing and increase fault tolerance capabilities. Moreover, some sensor 

nodes have radios with multiple interfaces and can handle many non-overlapping 

channels. This instigates the use of a multi-channel routing protocol that would balance 

the load evenly on multiple channels and ensure reliable packet delivery with minimal 

packet losses due to interference. 
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Thus, a variety of ways are available for reducing energy consumption in energy 

and resource constrained WSNs. Moreover, as mentioned before, the key lies in the 

minimization of the number of transmissions and retransmissions of sensor data. This 

thesis explores the last two options for energy efficiency improvement in WSNs– Data 

aggregation and multi-channel routing. Data aggregation reduces the number of 

transmissions while efficient routing reduces the number of retransmissions. 

Consequently, these two schemes can be applied together to achieve a significant amount 

of energy efficiency improvement. 

 

1.2 ORGANIZATION OF THE THESIS 

 This thesis is presented in two papers. Their relationship is shown in Figure 1.3. 

Both the papers address energy efficiency improvement in WSNs through data 

aggregation. In paper 1, a new compression scheme based on adaptive estimation and 

quantization is proposed. Convergence is proved and analytical bounds on the distortion 

are derived using Lyapunov theory. The proposed scheme is then tested on multiple 

datasets and topologies with MATLAB and the Network Simulator NS-2. Then data 

aggregation through iterative application of compression is analyzed. This is followed by 

scalability tests to verify protocol performance in large WSNs.  

 Paper 2 deals with the hardware implementation of a proactive routing protocol 

for WSNs - Multi-interface Multi-Channel Routing (MMCR) protocol. This protocol is 

evaluated for different data flow cases. This is followed by hardware verification of the 

aggregation scheme developed in paper 1 in conjunction with the routing protocol and 
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experimental results show that the proposed aggregation scheme indeed results in energy 

efficiency beyond the energy efficient routing protocol can offer. 

 

 

 

 

 

 

Figure 1.3. Thesis outline 

   

1.3 CONTRIBUTIONS OF THE THESIS 

 Data aggregation reduces energy consumption by combining data from different 

sensors and eliminates unnecessary packet transmission by filtering out redundant sensor 

data. Most of the existing compression/aggregation methods [12] [13] operate well on 

specific types of data while their performance on the others are unsatisfactory. This calls 

for a compression scheme that would perform fairly well on various types of data. In the 

first paper, a new compression scheme based on adaptive nonlinear estimation and 

quantization is developed. Lyapunov theory is used to derive theoretical bounds on 

performance in the presence of approximation errors. The scheme is then verified on 

multiple data sets and on networks of varying sizes. 

Data aggregation in Wireless 

Sensor Networks 

2. Hardware Verification of Data 

Aggregation and Multi-interface 

Multi-channel Routing Protocol 

1. A New Data Aggregation Scheme 

via Adaptive Compression for 

Wireless Sensor Networks 
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 The second paper deals with the hardware verification of the MMCR routing 

protocol and data aggregation using NADPCMC on the Missouri S&T mote network. 

Many existing routing methods [14] [15] do not exploit the possibility of using multiple 

radio channels for routing. However, the MMCR protocol utilizes multiple channels for 

transmission and improves quality of service by using a routing metric that involves 

throughput, delay and energy utilization. The addition of in-network aggregation using 

NADPCMC further improves the network utilization and energy efficiency. 
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PAPER 

 

1. A NEW DATA AGGREGATION SCHEME VIA ADAPTIVE 

COMPRESSION FOR WIRELESS SENSOR NETWORKS 

 

Priya Kasirajan, Carl Larsen and S. Jagannathan 

 

ABSTRACT — Data aggregation should be performed to extend network lifetime for 

wireless sensor nodes with limited processing and power capabilities since energy 

expended in transmitting a single data bit would be at least several orders of magnitude 

higher when compared to that needed for a 32 bit computation. Therefore, in this paper, 

a novel nonlinear adaptive pulse coded modulation-based compression (NADPCMC) 

scheme is proposed for data aggregation. Satisfactory performance of the proposed 

compression scheme in terms of distortion, compression ratio, energy efficiency and in 

the presence of estimation and quantization errors is demonstrated using Lyapunov 

approach. Then the performance of the proposed scheme is contrasted with the available 

compression schemes in NS-2 environment through several data sets. Simulation and 

hardware experimental results demonstrate that almost 50% energy savings with low 

distortion levels less than 5% and low overhead are observed. Iteratively applying the 

proposed compression scheme at the cluster head nodes over the network yields an 

improvement of 20% in energy savings per aggregation with overall distortion below 8%. 

 

Keywords: Compression, Data Aggregation, Energy Efficiency, Wireless Sensor 

Networks 
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I.   INTRODUCTION 

Recent advancements in embedded processing and wireless networking have led 

to the development of wireless sensor networks (WSN). A WSN is a multi-hop network 

of nodes each with a short-range radio, limited sensing and on-board processing 

capability. Sensor nodes are powered by small batteries, which determine their lifetime. 

This necessitates network protocols with energy efficiency as a critical design goal. Some 

popular tailored applications for fulfilling this goal include adaptive sampling [1], 

energy-aware routing [2], energy-efficient data processing [3], and energy-optimal 

topology construction [4]. 

In this paper, we focus on designing techniques to conserve energy by reducing 

amount of data transmitted while still delivering all the information which is referred to 

as data aggregation. This process usually involves data at select nodes, called Cluster-

heads, being combined by computing statistical aggregates such as COUNT, SUM, 

AVERAGE, MAX or MIN and then sending this data to the observer at the base-station 

node [3] [5].  In [6], a comprehensive survey of data aggregation schemes applicable for 

different topologies such as flat, hierarchical, cluster-based and grid networks is 

presented. In the literature [6], data aggregation methods focus only on reducing the 

overall amount of data by combining data from geospatially located sensors. In many 

applications such as monitoring of forest fire, humidity in a building, water level etc., 

sensors repeatedly report data values, and therefore the amount of data transmitted onto 

the network can be further reduced if we combine multiple data values from a single 

sensor over time. This task can be achieved through data compression, whereby a large 

number of bits of data, in this case multiple sensor data values, are ―compressed‖ and 
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represented by a smaller number of bits in such a way that we can recreate the original 

data at the base station from those bits. Since more data is represented using fewer bits, 

energy required to transmit this compressed data is significantly less by every node that 

forwards the data. Though these methods seem computationally intensive, the energy 

required to transmit an extra bit is at least several orders of magnitude higher than the 

energy required for a single 32 bit computation [7]. Thus, compression algorithms with a 

reasonable level of complexity are certainly worth exploring for data aggregation. 

  While there are many compression algorithms [8], not many [9] [10] are currently 

used in WSNs. Though audio and video data may tolerate some degradation in quality, 

sensor data must be relayed faithfully without loss of vital information.  Therefore, the 

performance of popular entropy encoding schemes such as Huffman coding [11], 

Adaptive Huffman coding and Delta coding are studied and compared in [12] for a 

micro-acoustic emissions sensor network. In [7], the authors propose and evaluate a 

variant of the famous LZW algorithm called S-LZW, specifically tailored for sensor 

nodes. All these algorithms are lossless and provide light compression since they use a 

heavy codebook. 

When a certain amount of data loss can be tolerated, better compression can be 

achieved using lossy compression algorithms. In [13], a combination of regression and 

model based compression is suggested. A base signal is constructed from a set of values 

that capture the most prominent features of the data. Then, the collected data is 

partitioned into intervals that can be efficiently approximated as linear projections of 

some part of the base signal. This method promises high accuracy and a satisfactory 

reduction in bandwidth consumption for linearly varying data. There are a number of 
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methods [14] [15] based on regression to compress data with a certain percentage of 

distortion. A new model based compression technique called adaptive learning vector 

quantization (ALVQ) is proposed in [16] to compress historical data. A codebook is 

created from training data at the sensor. This codebook is used to encode the samples in 

real-time. When the buffer is full, the codebook is updated and a 2-level piece-wise linear 

regression technique is applied to compress the codebook update. 

The entropy encoding schemes [11] [12] work best on correlated data. By 

contrast, the regression techniques [13] [14] [15] [16] perform well when the data is 

linearly varying. Our objective is to develop a compression scheme that could be applied 

on any form of data provided it is deterministic. Our motivation comes from the adaptive 

differential pulse code modulation (ADPCM) [17] scheme wherein a linear estimate of 

the sample is generated at every instant, compared with the original sample and only the 

difference is quantized resulting in good compression. By contrast, we propose to 

represent the data as a nonlinear relationship and use techniques from adaptive estimation 

theory to obtain an accurate estimate.   A novel nonlinear discrete-time estimator is 

proposed and its performance is demonstrated using Lyapunov theory.  It will be shown 

that the nonlinear adaptive pulse coded modulation-based compression (NADPCMC) 

indeed results in better compression ratio, reduced distortion, and higher energy 

efficiency analytically when compared to its linear counterpart and other lossless 

compression schemes. Subsequently, the performance of the NADPCMC is demonstrated 

in NS-2 environment using various data sets and on hardware using multiple levels of 

aggregation.  
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The rest of this paper is organized as follows. Section 2 outlines the necessary 

background. Section 3 deals with the proposed methodology, discusses theoretical 

bounds on the stability of the proposed scheme and presents the detailed algorithm. The 

algorithm is tested with MATLAB and NS2, and results from the simulations and 

hardware implementation are detailed in Section 4. Section 5 contains the concluding 

remarks. 

II.  BACKGROUND 

In this section, some background on quantization and linear ADPCM is briefly 

revisited since quantization is still applied in the proposed approach as well. 

A. Quantization 

Quantization is a process by which a continuous signal is approximated and 

mapped into a finite set of values. This mapping process invariably results in loss of some 

information in the presence of quantization noise. 

A uniform quantizer approximates the signal into equally spaced quantization 

levels. In other words, the quantizer step size is typically held as a constant. For a b bit 

quantization of a signal that has a dynamic range of , the required step size 

is given by 

              (1) 

The quantization noise depends on the reconstruction levels which in turn depend 

on the step size. The maximum error in quantization is  [8]. Thus, the 

quantization noise depends on the dynamic range of the data and the resolution of the 
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encoder. In other words, for a given bit size, a signal with smaller dynamic range can be 

approximated with less errors than one with a larger dynamic range. Thus, some 

preprocessing has to be done on the data to reduce its dynamic range, so that the bit rate 

can be reduced to achieve compression.  

B. ADPCM 

The ADPCM scheme is used widely in speech coding. It uses the correlation 

between adjacent samples to reduce bit rate and achieve compression. Instead of 

quantizing the speech signal directly, only the difference between the actual sample and 

the predicted sample is quantized. If the prediction is accurate then the difference 

between the real and predicted speech samples will have a lower variance than the real 

speech samples, and will be accurately quantized with fewer bits than what would be 

needed to quantize the original speech samples. At the decoder the quantized difference 

signal is added to the predicted signal to give the reconstructed speech signal.  

The amount of compression achieved depends on the performance of the 

predictor. Real world sensor data does not always show good correlation as speech 

signals. A linear predictor will not always be able to handle fast changing data. We 

propose the use of an adaptive nonlinear estimator to get a better prediction of the sample 

and reduce the bit rate. The idea of estimation is shown subsequently. 
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III.  PROPOSED METHODOLOGY 

Figure 1 depicts the proposed compression-based data aggregation approach. Two 

stages are involved at the source node – estimation and quantization. In the first stage, 

nonlinear adaptive estimation is performed to obtain a close estimate of the current 

sample based on a few previous samples. In the second stage, the difference between the 

actual value and the estimated value is quantized. This quantized value is sent to the next 

node or to the destination. At the destination end, a similar estimator is used. A few initial 

samples are fed directly to the estimator to help it get started. Subsequently, the 

estimation errors from the first encoder are added to the estimate obtained from the 

second to reconstruct the signal.  

 

Figure 1. Proposed architecture 

 

 A. Adaptive estimation 

Adaptive estimation of the data sequence is performed by representing the data as 

a nonlinear autoregressive moving average sequence as 

                       (2) 
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where  is the basis function,  is the unknown parameter vector, and 

 is the reconstruction error such that it is bounded above by . The 

estimated signal is given by 

                       (3) 

where  is the estimated parameter estimate vector and e(k)  is the estimation error. 

The estimation error is then given by 

                       (4) 

Substituting for  and  in (3) renders 

                     (5) 

where the parameter estimation error is defined by 

                                   (6) 

Now consider the parameter update as 

                      (7) 

Here α is called the adaptation gain. 

It will be shown by using the estimation error (5) and parameter update (7) that 

the estimation error is bounded in the general case when there are reconstruction and 

quantization errors and convergence of the estimation error to zero in the ideal case when 

there are no reconstruction and quantization errors. Since the estimation error is related to 

distortion, subsequently, it will be shown that the distortion is also bounded. 
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B. Analytical results 

The following theorems examine the stability of the estimator and the 

performance of the method. In the ideal case, when the estimation error , equation 

(5) reduces to 

                       (8) 

where .  Next the following theorem can be stated in the absence of 

approximation errors.      

Theorem 1 (Estimator-Ideal Performance): Let the proposed nonlinear estimator given 

in (3) be utilized with the parameter vector be tuned by (7). In the ideal case with no 

reconstruction errors and noise present, the estimation error  approaches to zero 

asymptotically while the parameter estimation error vector is bounded. 

Proof:  Select the Lyapunov candidate as  

                      (9) 

The first difference is given by 

 

                         (10) 

Let , where 

                  (11) 
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                  (12) 

Substituting (6) and (7)  into (12) results in 

 

                             (13) 

Therefore (11) becomes 

 

                    (14) 

Thus,  

  

           

           

                            (15) 

 

                              (16) 

where  

                      (17) 

and the maximum singular value of the gain matrix  is given by 

                     (18) 
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Since  > 0 and , this shows stability in the sense of Lyapunov. Since  is 

negative semidefinite [18] and according to Lyapunov theory, summing both sides of 

(16) and taking limits, it is easy to show that the estimation error approaches to zero 

asymptotically i.e.  as  and the parameter estimation errors are 

bounded. Thus, the estimation error tends asymptotically to zero in the absence of 

reconstruction errors. 

In the general non-ideal case, when the reconstruction error is nonzero, the 

estimation error is as defined in (5) and the following theorem can be stated. 

Theorem 2 (Estimator Performance—General Case): Let the hypothesis presented in 

Theorem 1 hold and if the functional reconstruction error is bounded with , 

then estimation error   is bounded while the parameter errors are also bounded. 

Proof: Select the Lyapunov candidate as 

                   (19) 

Using (10), the first difference is given by 

 

                          (20) 

Let  where 

                  (21) 

                  (22) 
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Substituting (6) and (7)  into (22) results in 

 

                             (23) 

Now (11) can be written as, 

 

                     (24) 

Substituting for  and simplifying, 

 

           

           

           

           

                  (25) 

From (17) and (18),   and  

Then,  
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                            (26) 

Thus,  as long as 

                  (27) 

This demonstrates that  outside a compact set U. Thus, the estimation error 

is bounded. By applying the persistency of excitation condition [18], it is easy to show 

that the parameter estimates are bounded as long as the above equations (17), (18) and 

(27) are satisfied. 

The above theorems demonstrated the performance of the estimator. Let us now 

analyze the overall approach. The proposed scheme (as shown in Fig. 1) involves 2 

estimators – one at the transmitter and one at the receiver. The error in estimation from 

the first is quantized and fed to the second.  

The entire NADPCMC scheme can be expressed mathematically as follows: The 

first estimator continuously produces an estimate . From (3), the estimated signal can 

be represented as 

                   (28) 

The error in estimation is obtained from (4) as 

                  (29) 

The parameter  is continuously updated such that the error e which is given by  

is minimized. From (7), we have 

                  (30) 
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Then, e(k) is quantized. This stage adds a quantization error  

                   (31) 

The first few samples of  are sent to the receiver side estimator to initialize 

. This is sufficient for it to start estimating . As in (3), the estimated signal is 

given by, 

                   (32) 

Now, to obtain the original signal, we simply add the error offset to the estimate. 

Thus, the recovered signal can be expressed as  

                                             (33) 

The error in estimation is obtained from (4) as 

                 (34) 

The parameter  is updated to account for the error  that was incurred at the transmitter 

side estimator. As in (7), we have 

                  (35) 

Loss of data can occur at both the estimation and quantization stages. The 

quantization error  is bounded by  and thus, resolution of the quantizer has 

to be chosen based on the permissible level of distortion. Let us now proceed to analyze 

the maximum distortion introduced by our scheme. 
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In the proposed scheme, the amount of data lost is dependent on the total error in 

reconstructing the data at the receiver. The total error after reconstruction is 

. Now the following theorem can be stated. 

Theorem 3 (NADPCMC Distortion): Consider the NADPCMC scheme presented in (3) 

through (7). If the estimator reconstruction and quantization errors are considered 

bounded, then the distortion at the destination is bounded. On the other hand in the 

absence of estimator reconstruction and quantization errors, the distortion is zero. 

Proof: Let us consider the case where there are no reconstruction and quantization errors. 

The total reconstruction error after substituting from (33) is 

                  (36) 

Substituting from (29) and (31) 

          (37) 

Simplifying (37), we get 

                 (38) 

Substituting (28) and (32) in (38) to get 

                 (39) 

Substituting from (34) and (31) to get 

                                              (40) 
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In the ideal case with zero quantization and reconstruction errors, is zero. Thus, 

distortion is zero in an ideal case.  In the non-ideal case, the quantization error  is 

nonzero but is bounded by . Then (40) can be written as, 

                  (41) 

Since the maximum singular gain matrix is normally selected less than one as 

discussed in the previous theorem, the distortion (41) should be very small. 

Remark: From (41), the following conclusions can be deduced: 

 The total distortion introduced by the proposed scheme is bounded and 

made small by appropriately selecting the maximum singular value of the 

gain matrix. 

 The distortion is dependent mainly on the quantization errors . 

Theorem 4 (NADPCMC Performance): Consider the NADPCMC scheme presented in 

(28) through (35). Let us consider  be a  sample vector of  bits each and that the 

receiver side estimator requires the first  samples to initialize the regression vector. 

Then the compression ratio, defined as the ratio of the amount of uncompressed data to 

the amount of compressed data, is greater than one. Moreover, the proposed scheme will 

render energy savings.  

Proof: From (1), the resolution of the quantizer is given by 
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                     (42) 

The estimation error has a smaller dynamic range compared to the original data. In other 

words,  Thus, . The compression ratio is then 

given by 

                  (43) 

Since  and , the numerator in (43) is greater than the denominator and 

hence the compression ratio is greater than one.  

This metric can be used to calculate the amount of energy savings that can be 

achieved. Assuming that each bit requires the same amount of energy  to be 

transmitted, the amount of energy required to send the uncompressed data is  and 

that required to send the uncompressed data is . The total energy 

savings is given by 

                             (44) 

Again, since  and , a finite positive energy saving is achieved. 

 

C. Algorithm 

The proposed algorithm for the data compression using the nonlinear adaptive 

estimator can be summarized as follows:  

At the Transmitter: 

Step 1: Initialize  with first few data points 
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Step 2: Calculate estimate  from (28) 

Step 3: Calculate estimation error  from (29) 

Step 4: Calculate parameter  update from (30) 

Step 5: Quantize  and send to receiver 

Step 6: Update  and repeat from step 2 

At the Destination: 

Step 1: Initialize  with first few data points 

Step 2: Calculate estimate  from (32) 

Step 3: Add  and   to reconstruct data as in (33) 

Step 4: Calculate estimation error as difference between reconstructed and estimated 

signals as in (34) 

Step 5: Calculate parameter  update from (35) 

Step 6: Update  and repeat from step 2 

 

IV.  RESULTS AND DISCUSSION 

It is important to identify the proper metrics to use for evaluating the performance 

of the proposed data compression scheme as data aggregator in a WSN environment. The 

performance of compression algorithms in general can be measured by using the 

following metrics: 

• Quality / Percentage of distortion 
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• Compression ratio 

• Latency - Speed of compression and decompression  

• Hardware support  

• Energy savings 

Quality is an important factor for lossy compression algorithms. It is quantified by 

percentage of distortion which is measured as the absolute difference between the 

original data and the reconstructed data.  We calculate it as 

 

Compression ratio is defined as the ratio of the amount of uncompressed data to 

the amount of compressed data and the additional overhead needed for reconstruction. 

For the algorithm to be advantageous, compression ratio has to be greater than one.  The 

compression ratio is defined as 

 

Latency of the compression/decompression process also plays a vital role. The 

number of machine cycles utilized directly impacts the energy expended in computations. 

Further, applications such as landslide monitoring and fire detection, cannot tolerate 

delay in the reception of sensor data at the base station. Thus, the computation 

complexity of the algorithm directly affects the applicability of the algorithm for the 

sensor network case. 

The memory requirement of the algorithm should also be considered while 

designing or porting compression algorithms for the sensor node. The code footprint and 

memory usage should be minimal. 
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However, the most important performance metric in the wireless sensor network 

case is the energy saving provided by the algorithm. It is calculated as the ratio of 

difference between the energy required to send the uncompressed data and that required 

for the compressed data to the energy required to send the uncompressed data and is 

expressed as a percentage. 

Distortion and energy savings are not only important metrics for data compression 

but are also two most commonly used metrics for the evaluation of data aggregation 

schemes.  As a result, these metrics are utilized to evaluate the proposed scheme both as a 

data compression algorithm and as a method for data aggregation in WSN. 

The algorithm was tested in three levels. It was first implemented in MATLAB 

and was tested with different data sets. Then it was implemented in C to be tested with 

the Network Simulator (NS2). The topology is shown in Figure 2. Three clusters of 9 

nodes are considered. The empty circles represent sensor nodes. The shaded ones indicate 

the cluster-heads and the striped one is the Base Station. Each cluster-head (CH) 

aggregates the data and routes it to the base station (BS). TCP agents were used for 

reliable packet delivery. 

 

 

Figure 2. Network topology 
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The performance is compared with the popular lossless Huffman coding 

algorithm [11] and its differential variant. Delta coding was performed at the nodes 

followed by Huffman coding at the cluster-heads. Simulation results with plain 

quantization of scaled data are also put forth to analyze the advantages of quantizing the 

estimation error instead of the original data. The G.722 sub band linear ADPCM (8 bit) 

was also evaluated to highlight the improvement provided by the nonlinear estimation 

scheme. 

  The proposed NADPCMC algorithm (with 8 bit error encoding) was also 

implemented on a low-cost, fan-less single board computer called Beagle Board [19] 

running Ubuntu Linux and interfaced with Missouri S&T G4 motes. These motes provide 

a common platform for sensing, networking and data processing. The platform consists of 

an 8051 processor and an 802.15.4 (XBee) radio with micro Smart Digital (SD™) flash 

storage, USB and RS-232 connectivity and an assortment of sensors. More information 

can be found in [20]. The motes form a network and use a static routing protocol to 

deliver data over multiple hops to a base station (as shown in Figure 3).  

Initially, uncompressed data is packetized and sent over the network and the 

energy expended is calculated. Then the data is compressed online using the proposed 

algorithm, packetized and then routed to the base station. Once again the expended 

energy is calculated. The same static multihop routing protocol utilized for no 

compression case is also used.  However, it is important to note that for data aggregation, 

the type of routing protocol is not relevant since proposed aggregation scheme is 

independent of routing. The data is recovered at the base station using the static routing 

protocol and the performance metrics are calculated and averaged over 10 trials.  
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Simulations and hardware experimental results performed with different data sets 

are now presented. 

 

 

 

Figure 3. Hardware architecture 

 

 

A. Synthetic data 

This data was generated in MATLAB to resemble data from an explosive sensor. 

Figure 4 shows the performance of the estimator. The estimate follows the highly non 

linear sequence with a minimal delay.  
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Figure 4. Estimator output 

 

Figure 5 depicts the performance of the proposed NADPCMC scheme with 8 bit 

error encoding. The reconstructed data very closely resembles the original data. By 

contrast, Figure 6 illustrates the reconstruction error for different resolutions of the 

quantizer. The quality improves with the resolution. However, the overhead increases, 

which in turn causes an increase in the energy expended. These results show that reduced 

distortion implies higher compression ratio which translates into higher energy efficiency 

but at the expense of more memory and computation. 
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Figure 5. Reconstruction with 8 bit encoded error 
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Figure 6. Total reconstruction error with different error encodings 
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Table 1 shows a comparison of the proposed performance metrics for different 

compression schemes on the synthetic data. Huffman coding is lossless and provides 

good compression for correlated data. But this data set is synthetic and mostly nonlinear. 

Hence Huffman coding does not offer much of an improvement. Further, there is an 

overhead of 480 bytes per node to send the codebook to the base station. Differential 

Huffman coding also suffers from the same problem.  

 

Table 1. Performance metrics for synthetic data 

Method 
Compress- 

ion ratio 

Energy 

savings at 

nodes 

Energy 

savings 

at CH 

Distortion Overhead 

Huffman 1.188 NA 15.850% NA 480 bytes 

Differential 

Huffman 

1.086 5.9% 11.375% NA 480 bytes 

Scaling and 9 bit 

quantization 

1.778 43.76% 43.76% 0% 0 

Scaling and 8 bit 

quantization 

2 50% 50% 2.111% 0 

Scaling and 6 bit 

quantization 

2.667 62.5% 62.5% 13.627% 0 

Linear ADPCM 2 50% 50% 18.9% 0 

NADPCMC with 

8 bit encoding 

1.846 45.83% 45.83% 1.67% 20 bytes 

NADPCMC  with 

6 bit encoding 

2.342 57.29% 57.29% 3.64% 20 bytes 

NADPCMC with 

4 bit encoding 

2.667 62.50% 62.50% 7.28% 20 bytes 

 

 

Direct quantization of scaled data at the nodes provides good compression at the 

expense of distortion. The linear ADPCM standard loses in terms of distortion. Since the 

data is very coarse, 8 bit quantization of scaled data is slightly better than the encoding of 

estimation error with 8 bits. However, the proposed scheme offers better performance for 
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lower resolutions of the quantizer. The overhead of 20 bytes (10 samples of 2 bytes each) 

corresponds to the first few samples of the original data required by the receiver side 

estimator. The parameter and regression vectors hold information about 10 previous 

samples.  

The hardware experiments with the proposed NADPCMC scheme using the 

network illustrated in Fig. 3 with 8 bit error encoding provided an average energy savings 

of 41.04% at the source nodes when compared with no compression. Packetization added 

an overhead of 26 bytes per packet for routing purpose. This resulted in an average 

compression ratio of 1.6961 when compared with no compression. 

 

B. River discharge data 

River discharge data from the Amazon basin [21] was used to evaluate the 

algorithms. Figure 7 shows the performance of the proposed adaptive estimator which 

indicates that the proposed non linear estimator is able to track the data very well 

compared to its linear counterpart.  

Figure 8 shows the performance of the proposed scheme with 8 bit error 

encoding. The reconstructed data very closely resembles the original data. Figure 9 shows 

the reconstruction error for different resolutions of the quantizer. As expected, the quality 

improves with the resolution. 
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Figure 7. Output of estimator 
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Figure 8. Reconstruction with 8 bit encoded error 
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Figure 9. Total reconstruction error with different error encodings 

 

Table 2 shows a comparison of the different performance metrics. ADPCM 

provides good energy savings at the expense of distortion. Once again 8 bit quantization 

of scaled data is slightly better than the encoding of estimation error with 8 bits. But in 

general, the proposed scheme offers better performance for lower resolutions of the 

quantizer. There is an overhead of 10 bytes corresponding to the 5 samples (2 bytes each) 

that have to be sent to initialize the receiver side estimator. 
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Table 2. Performance metrics for river-discharge data 

Method 
Compression 

ratio 

Energy 

savings 

at nodes 

Energy 

savings 

at CH 

Distortion Overhead 

Huffman 1.453 NA 31.177% NA 480 bytes 

Differential 

Huffman 
1.642 21.56% 39.099% NA 480 bytes 

Scaling and 

approximation 
1.137 13.65% 11.65% 0.0657% 0 

Scaling and 9 

bit 

quantization 

1.778 43.76% 43.76% 0.943% 0 

Scaling and 8 

bit 

quantization 

2.000 50% 50% 2.0685% 0 

Scaling and5 

bit 

quantization 

3.200 68.75% 68.75% 16.451% 0 

Linear 

ADPCM 
2 50% 50% 13.72% 0 

NADPCMC  

with 8 bit 

encoding 

1.9459 48.61% 48.61% 2.65% 10 bytes 

NADPCMC  

with 6 bit 

encoding 

2.5487 60.76% 60.76% 6.08% 10 bytes 

 

The hardware experiments with the proposed NADPCMC scheme with 8 bit error 

encoding using the network shown in Figure 3 showed an average energy savings of 

47.671% at the source nodes over no compression. The packet headers add an additional 

26 bytes per packet for routing and hence a compression ratio of 1.911 was achieved 

when compared with no compression.  

 

C. Audio data 

The proposed NADPCMC algorithm was also tested with a wav file. Since audio 

data can tolerate a higher level of distortion, higher levels of compression can be 
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achieved at the expense of distortion. Figures 10 and 11 show the total reconstruction 

error with 8 bit and 6 bit encoding of errors, respectively.  
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Figure 10. Total reconstruction error with 8 bit encoded error 
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Figure 11. Total reconstruction error with 6 bit encoded error 
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The performance metrics are tabulated in Table 3. The proposed scheme 

outperforms the linear ADPCM implementation in terms of distortion. Additionally, the 

nonlinear ADPCM is better than the scaling and quantization approach in terms of 

distortion. The parameter and regression vectors were designed to hold 10 previous 

samples. These 10 samples cause an overhead of 20 bytes. 

 

Table 3. Performance metrics for audio data 

Method 
Compress

-ion ratio 

Energy 

savings at 

nodes 

Distortion Overhead 

Scaling and 8 bit 

quantization 

2 50% 10.59% NA 

Scaling and 6 bit 

quantization 

2.67 62.5% 46.28% NA 

5 bit linear ADPCM 3.199 68.74% 11.37% NA 

4 bit linear ADPCM 4 75% 23.14% NA 

3 bit linear ADPCM 5.332 81.25% 28.45% NA 

2 bit linear ADPCM 8 87.5% 35.86% NA 

NADPCMC with 8 bit 

encoding 

1.9992 49.98% 2.04% 20 bytes 

NADPCMC  with 6 bit 

encoding 

2.6653 62.48% 6.16% 20 bytes 

NADPCMC  with 4 bit 

encoding 

3.997 74.98% 14.44% 20 bytes 

 

 D. Geophysical data 

The proposed algorithm was applied on geophysical data obtained from the 

Calgary corpus data set [22]. This dataset is widely used in evaluating compression 
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algorithms. The authors mention that the geophysical data is particularly difficult to 

compress because it contains a wide range of data values. Figures 12 and 13 show the 

total reconstruction error obtained with 8 bit and 6 bit encoding of errors, respectively.  
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Figure 12. Total reconstruction error with 8 bit encoded error 

 

Table 4 summarizes the performance metrics. The distortion was virtually 

unnoticeable with 8 bit error encoding unlike in linear ADPCM. 10 samples of 2 bytes 

each were used to initialize the estimator at the receiver. This adds an overhead of 20 

bytes per sensor node. 
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Figure 13. Total reconstruction error with 6 bit encoded error 

 

Table 4. Performance metrics for geophysical data 

Method 
Compress 

-ion ratio 

Energy 

savings at 

nodes 

Distortion Overhead 

Scaling and 8 bit 

quantization 

2 50% 4.36% 0 

Scaling and 6 bit 

quantization 

2.667 62.5% 13.42% 0 

Linear ADPCM 2 50% 35.87% 0 

NADPCMC with 8 

bit encoding 

2 50% 1.02% 20 bytes 

NADPCMC with 6 

bit encoding 

2.667 62.5% 4.22% 20 bytes 
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E. Performance as an aggregation scheme 

  The results discussed so far dealt with compression performed at the source node 

only. This section examines the performance of the NADPCMC scheme when it is 

applied at different cluster-heads showing multiple levels of aggregation. 

Figure 14 shows the topology considered. A cluster-head aggregates synthetic 

data received from three nodes and forwards it to the base station. NADPCMC with 8 bit 

error encoding was performed at the source nodes and NADPCMC with 6 and 4 bit error 

encodings were experimented at the Cluster-heads. 

 

 

Figure 14. Hardware architecture 

 

With compression only at the source level, all nodes reported an energy savings of 

45.83% when compared with no compression. The average compression ratio at the 

source nodes was still a constant at 1.846. By repeating compression implemented on the 
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MST Motes at the Cluster-head, the amount of data and the energy expended in 

transmitting it are reduced further, however at the expense of distortion. When a second 

level of data aggregation was performed on the already compressed data at the first 

cluster-head, the compression ratio at the Cluster-head level was 2.526 amounting to an 

energy savings of 60.42%. There is an overhead of 20 bytes added by the NADPCMC 

scheme for every level of aggregation. The total distortion has increased from 1.67% to 

4.60% with an additional level of aggregation which is considered to be acceptable.  

These results clearly demonstrate that with repeated compression, the distortion increases 

while energy savings and compression ratios improve. 

In order to understand better the repeated compression along a route, more 

simulations on aggregation were performed using synthetic data and the topology 

described in Figure 2. Initially, 8 bit NADPCMC was performed at all source nodes and 6 

bit NADPCMC was performed at cluster-heads 1, 2 and 3 respectively in order to 

evaluate the effect of encoding on energy levels and distortion. The energy savings at the 

aggregating and forwarding nodes (cluster-heads) increased from 45.83% (with no 

aggregation at cluster head) to 61.34%. The overall distortion for all the nodes was only 

1.90%. Then 4 bit NADPCMC was tried on cluster-heads 1, 2 and 3 with 8 bit at the 

source nodes. The energy savings improved to 73.61% but the overall distortion summed 

up to 6.10%. 

Next a third level of aggregation was introduced at CH5. 8 bit NADPCMC was 

performed at all source nodes, 6 bit NADPCMC was performed at cluster-heads 1, 2 and 

3 and 4 bit NADPCMC was performed at cluster-head 5. Cluster-head 5 reported a total 
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energy saving of 74.54%. The overall distortion on the synthetic data was a tolerable at 

7.01%. 

In short, without aggregation and with compression at only the source nodes, all 

nodes reported the same energy savings of 45.83%. With one level of aggregation, the 

energy savings at the aggregating and the forwarding nodes improves to 61.34%.  With a 

second level of aggregation, the energy savings at the aggregating node improves to 

74.54%. Based on this study, it can be concluded that compression and data aggregation 

over multiple levels enhances the energy savings, increases distortion and overhead. 

In order to evaluate the repeated compression along a route, a study was 

conducted with data flows of varying sizes being aggregated at cluster-head 5. Two of 

these were assumed to generate data from the river discharge data set. The third was 

made to transmit data from the wav file tested earlier. The other sources remained the 

same. All source nodes performed 8 bit NADPCMC. Cluster-heads 1, 2 and 3 performed 

6 bit NADPCMC and cluster-head 5 performed 4 bit NADPCMC. Synthetic data was 

observed to have a distortion of 7.01%. River discharge data reported 4.83% distortion 

while voice degraded by 6.09%. From the aggregation point of view, the distortion levels 

are dependent on the resolution of the quantizer and the number of aggregations 

performed. Since each stage of aggregation is lossy, the quality declines with each added 

level.  

Synthetic data propagated through more hops and was compressed thrice while 

the others were compressed only twice. This led to a higher degradation in synthetic data. 

This demonstrates that the distortion increases with the number of aggregation levels. 
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F. Scalability 

Scalability tests are important with any protocol. Real world sensor networks may 

contain hundreds of nodes and the protocol should not fail during deployment in a dense 

network. Simple tests were made with NS2 to check the behavior of the aggregation 

scheme over networks of varying sizes (50 – 250 nodes). Different topologies with 

varying cluster sizes were created. All source nodes use 8 bit NADPCMC. First level 

cluster-heads use 6 bit NADPCMC and are one hop away from the sensor nodes. A 

second level of aggregation with 4 bit NADPCMC is performed at a cluster-head that is 

closest to the base station. Multiple data flows using synthetic, river discharge and audio 

data were created for each of these topologies. 

Figure 15 shows the compression ratio at the second cluster-head level with 

increasing number of flows. In spite of increasing the number of flows, the overhead 

remains constant at 20 bytes for every compression. But with higher flows, the amount of 

data (N) flowing through the network is higher and the overhead (K) appears smaller. 

This leads to a slight increase in compression ratio. From (43), the maximum 

compression ratio that can be obtained with ‗b‘ bit NADPCMC is when  and is 

given by 

                   (45) 

Hence, 4 bit NADPCMC on 16 bit data (x = 16) would provide a maximum 

compression ratio of 4. Thus, the curve tends asymptotically to 4.0 with an increase in 

number of flows. 
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Figure 15. Dependency on number of flows 

 

Figure 16 shows the compression ratio at the first cluster-head level. Each 

application of the NADPCMC scheme adds an overhead of 20 bytes. With increase in the 

network size, more clusters were created. This led to an increase in the number of times 

the compression scheme was applied. Since there is a small overhead associated with the 

scheme, the compression ratio decreases slightly with increase in network size for the 

same number of flows.  Similarly, the average compression ratio decreases with an 

increase in the number of flows for a given network size due to added overhead with the 

number of flows although it is small. 
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Figure 16. Average compression ratio at first cluster-head level 

 

Figure 17 shows the compression ratio at the second cluster-head level. There is 

just a single node performing 4 bit NADPCMC in all the topologies considered. With 

increase in the amount of data flowing, the percentage of overhead associated with 

NADPCMC decreases. This leads to a slight increase in the compression ratio. 

Another important inference can be made from the distortion values. Each data set 

suffered a constant level of distortion in these different scenarios. Synthetic data was 

distorted by 7.01%, river discharge data by 5.19% and audio data by 15.35%. This shows 

that the performance of the NADPCMC scheme is only dependent on the number of 

aggregation levels and not on the network size. 
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Figure 17. Average compression ratio at second cluster-head level 

 

V.  CONCLUSIONS 

In this paper, a novel compression scheme based on adaptive estimation and 

quantization is introduced. Given a bounded sensor data, theoretical bounds on estimation 

error are derived and shown to be bounded when reconstruction error and quantization 

errors are bounded. Subsequently, distortion when using the proposed scheme has been 

proven to be bounded and small. The scheme was tested using multiple data sets 

including synthetic data, real world sensor data, and audio data. This proposed scheme is 

shown to offer energy savings of approximately 50% at each source node at the cost of 

around 2-3% distortion. Synthetic and river discharge data sets are coarser whereas the 

audio and geophysical data sets are very fine. Though direct quantization works well on 
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coarse data, it fails with data with fine resolution. However the NADPCMC scheme 

works fairly well on all these data sets. Hardware implementation of the proposed scheme 

using Missouri S&T motes confirms highly satisfactory performance. Then data 

aggregation through iterative compression was examined. Simulation results demonstrate 

that aggregation can improve the over-all energy savings with a small level of distortion. 

Moreover, the distortion depends mainly on the number of aggregation levels and not on 

the network size. This indicates that the scheme is scalable and can be deployed for large 

networks too. 
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PAPER 

 

2.   HARDWARE VERIFICATION OF DATA AGGREGATION AND 

MULTI-INTERFACE MULTI-CHANNEL ROUTING PROTOCOL 

 

Priya Kasirajan, Maciej Zawodniok and S. Jagannathan 

 

ABSTRACT — The goal of wireless sensor networks is to gather information with high 

reliability and low energy. Considering the severe energy constraints of sensor nodes, 

data aggregation and energy-efficient routing are essential for improving the energy 

efficiency while maintaining packet delivery ratio. Typically, sensor nodes have radios 

that can handle many non-overlapping channels. This necessitates the use of a multi-

channel routing protocol that would balance the load evenly on multiple channels using a 

metric defined by throughput, end to end delay and energy utilization. We investigate a 

proactive routing protocol called the Multi-interface Multi-channel Routing (MMCR) 

protocol that uses Multi-Point Relay (MPR) nodes to forward data through the network, 

thus reducing the amount of communication overhead. To further improve the energy 

efficiency, data aggregation is performed along the routing path both at the source and 

at the cluster head through iterative application of the adaptive pulse coded modulation-

based compression (NADPCMC) scheme. With the application of data aggregation, 

hardware results show that at least a 50% energy saving with less than 5% distortion is 

observed. 

 

Keywords: Compression, Data Aggregation, Multi-channel Routing, Energy Efficiency, 

Wireless Sensor Networks 
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I.   INTRODUCTION 

Routing in wireless mesh networks has been explored for a long time since direct 

communication between all nodes in a network would be very expensive in terms of 

transmission cost which grows exponentially with distance. This necessitates co-

operation between nodes so as to deliver packets over multiple hops from the source to 

the destination [1].  A common practice is to represent the total cost of a path as the sum 

of the link costs on the constituting links.  Routing, then, aims at finding the path offering 

the lowest overall cost. Most current ad hoc routing protocols select paths that minimize 

hop count [2] [3] [4].   

In static ad hoc wireless networks, minimal hop count paths can have degraded 

performance because they tend to include wireless links between distant nodes. These 

long wireless links can be slow or lossy leading to an unacceptable throughput. A routing 

algorithm can select better paths by explicitly taking into account the quality of wireless 

links. This is done in [5] by using a metric referred to as ―Expected Transmission Count‖ 

(ETX) which is a measure of the loss rate of broadcast packets between pairs of 

neighboring nodes. In [6], ―Per-hop Round Trip Time‖ (RTT) is utilized to measure the 

round trip delay seen by unicast probes between neighboring nodes. On the other hand, 

the work of [7] uses ―Per-hop Packet Pair Delay‖ which is defined as the measured delay 

between a pair of back-to-back probes to a neighboring node. Expected Transmission 

Time (ETT) which is a function of the loss rate and the bandwidth of the link is used in 

[8] as the routing metric. The individual link weights are combined into a path metric 

called Weighted Cumulative ETT (WCETT) that explicitly accounts for the interference 

among links that use the same channel.  
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Wireless technologies, such as IEEE 802.11a [9], provide multiple non-

overlapping channels. Multiple channels have been utilized in infrastructure-based 

networks by assigning different channels to adjacent access points, thereby minimizing 

interference between them. However, multi-hop wireless networks have typically used a 

single channel to avoid the need for co-ordination between adjacent pair of nodes, which 

is necessary in a multi-channel network. For meeting the ever-increasing throughput 

demands of applications, it is becoming important to utilize the entire available spectrum, 

thereby motivating the development of new protocols specifically designed for multi-

channel operation. Wireless hosts have typically been equipped with one wireless 

interface. However, a recent trend of reducing hardware costs [10] has made it feasible to 

equip nodes with multiple interfaces and increase the capacity of wireless mesh networks. 

With multiple radios, more concurrent communications can be possible in spectrum, 

space and time. To maximize the benefit of multiple radios, ideally we should use routes 

that contain low interference among the constituting links [11]. 

A multi-interface multi-channel routing protocol (MMCR) is proposed in [12]. It 

selects routes that enhance bandwidth utilization while maximizing energy efficiency and 

minimizing end-to-end delay. This proactive routing protocol operates independently of a 

particular scheme for receiver-based channel assignment. The protocol utilizes the 

concept of Multi-Point Relays (MPRs) similar to [13]. The scheme forwards packets 

using only the MPR nodes that are a fraction of the all one-hop neighbors. Hence, the 

routing complexity reduces for the same network size when compared with other pro-

active routing protocols. This paper deals with the hardware verification of the MMCR 

protocol on the Missouri S&T G4 motes [14]. 
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The WSNs typically generate huge amount of heterogeneous data. The 

propagation of redundant data is costly in terms of system performance and results in 

energy depletion, network overloading, and congestion. While effective routing improves 

the packet delivery ratio, other methods for in-network data processing must be employed 

to reduce the number of messages relayed without much compromise on the fidelity. 

With the focus shifting towards multimedia sensor networks for surveillance, 

compression and aggregation techniques [15] [16] [17] are gaining importance every day. 

A lot of research has been done on developing tailored compression/aggregation 

techniques for WSNs. An ant colony approach is used for aggregation in [18]. In [19], 

wavelets are used to achieve data reduction. In this paper, a Nonlinear Adaptive 

Differential Pulse Coded Modulation-based Compression (NADPCMC) scheme [20] is 

used for compression and aggregation in conjunction with the multi-channel routing 

protocol. 

This paper consists of the following sections. Section 2 describes the basic 

activities of the MMCR scheme. Section 3 illustrates the hardware details, packet types 

and the detailed algorithm of MMCR. A network of motes is used to relay dummy data 

and real-time voice and the results are presented. Section 4 outlines the NADPCMC 

algorithm and presents the results with compression and aggregation. Section 5 contains 

the concluding remarks. 
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II.  BACKGROUND 

In general, MMCR routing scheme comprises of three periodic phases:  

 selection of MPRs for each node  

 selection of routes  

 data transfer through the selected MPRs  

Simple local broadcast of HELLO messages is performed to discover one and 

two-hop neighbors and their corresponding costs. Then the MPR nodes are selected. This 

is followed by route selection globally for the whole network topology. Finally, the data 

is forwarded through the selected paths. There are five types of control packets in 

MMCR. They are listed below: 

1) HELLO packet 

Each node periodically broadcasts HELLO packets with information about its 

energy level to its neighbors until timeout. Every node finds its one hop neighbors and 

calculates the associated cost based on the received HELLO packets.  

2) Acknowledgement (ACK) packet 

Whenever a node receives a HELLO packet, it responds with an ACK packet with 

a list of its own one hop neighbors and their link costs.  Thus, each node finds its two hop 

neighbors and calculates their associated cost based on the received ACK packets. 
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3) Topology Control (TC) packet 

When the HELLO packet timeout elapses, each node selects MPRs among the 

one hop neighbors such that all two hop neighbors are covered. The Topology Control 

packet broadcasts this information to the one hop neighbors to indicate MPR selection 

information. 

4) SWITCH packet 

This packet is broadcasted by the destination node to all other nodes in the 

network to prompt them switch from a channel in the presence of interference. 

5) BEAM packet 

A BEAM packet is sent periodically by the destination node to all other nodes in 

the network. This packet is used to synchronize the real-time clock of all other nodes to 

facilitate accurate calculation of transmission delays. 

The finer details of each phase in routing are presented next. 

A. Neighbor discovery 

Nodes broadcast HELLO message locally to learn about their one-hop neighbors 

and their associated parameters such as energy, bandwidth and transmission delay. The 

header of the HELLO packet includes the available bandwidth and the transmission time. 

Figure 1 shows a flowchart of neighbor discovery stage. 
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Start Route 
Search or 

HELLO 
Timeout

Broadcast HELLO packet

Start Timer

Return

 

Figure 1. Neighbor discovery 

The node receiving the HELLO packet can calculate the delay using the 

timestamp from the HELLO packet header. However, this requires time synchronization 

between the nodes. This is established by BEAM packets broadcasted periodically by the 

Base-station as shown in Figure 2.  

Received 
BEAM

Synchronize real-time clock

Return

 

Figure 2. Handling BEAM packets 
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When a node receives a HELLO packet, it responds with an acknowledgement 

(ACK) packet as shown in Figure 3. The ACK packets contain the list of its neighbors 

and the energy utilization for each of these neighbors.  

 

Received 
HELLO

Update one hop neighbor table with ID and cost

Send ACK with one hop neighbor IDs and costs

Return

 

Figure 3. Sending ACK packets 

 

When ACK packets are received, each node updates this information on available 

bandwidth, energy factor and the delay of the links from their neighbors in the ‗neighbor 

table‘ as shown in Figure 4. 
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Received ACK

Investigate two hop neighbors

Calculate their link costs and store

Return

 

Figure 4. Handling of ACK packets 

 

The utilization metric,U s,n2
MPR

, of the path from node s to a two-hop neighbor node 

n 2 through a relay node n1is calculated as follows: 

U s,n2
MPR

(B.F.* E.U.) /D                (1) 

B.F. BA /BS                  (2) 

E.U. EA
n1
/ETX
n1 n2

                 (3) 

where B.F. is a bandwidth factor between nodes s and n1 (MPR), BA is an available (free) 

incoming bandwidth at the n1, BS is an expected/requested outgoing bandwidth at the 

source node s, E.U. is the energy utilization between nodes n1 to n2, EA
n1 is an available 
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energy at the relay n1 in Joules, ETX
n1 n2  is an energy used to transmit message from n1 to 

n2, and D is an end to end delay from node s to node n1 in seconds. 

The metric optimization will maximize available bandwidth using bandwidth 

factor and minimize end-to-end delay using delay factor, D. Moreover, the metric will 

maximize the energy utilization term, which is expressed as energy depletion due to 

transmissions, thus increasing energy efficiency and lifetime of the nodes and network. 

The utilization factor given by bits per second is a direct measure of the total throughput 

of the link. Additionally, a route is selected if and only if the bandwidth factor for all the 

links on the path is greater than one. Consequently, the route associated with a flow 

guarantees sufficient bandwidth for the requested service.  

 

B. MPR selection  

Each node in the network uses its ‗neighbor table‘ to select multipoint relay 

(MPR) nodes from the one-hop neighbors to reach all the two-hop neighbors with 

minimum cost given by equation (1). The MPR selection metric proposed in [12] ensures 

that the paths through the MPRs optimize the energy consumption, delay, and bandwidth 

utilization. Additionally, the MPR selection algorithm ensures that there is sufficient 

available bandwidth to support the existing and new traffic flows. The optimal set of 

MPRs varies with traffic and network congestion. Hence, the nodes have to periodically 

recalculate the set of MPRs using updated data from HELLO and ACK packets. Figure 5 

illustrates the MPR selection algorithm. 
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# 1_hop_set is a set of one-hop neighbors of source 

# 2_hop_set is a set of two-hop neighbors of source 

mpr_set = {}; # empty set 

foreach dest_node IN 2_hop_set DO 

 foreach mpr_candidate IN 1_hop_set 

  if mpr_candidate connects source and dest_node 

  then cost(mpr_candidate) = INFINITY; 

  else cost(mpr_condidate) =  

    COST (source TO mpr_candidate) 

    + COST (mpr_candidate TO dest_node); 

 end foreach; 

 mpr_node = mpr_candidate with lowest cost; 

 add mpr_node TO mpr_set; 

 add to a routing table the mpr_node as a next hop 

 node toward dest_node; 

end foreach; 

# mpr_set holds the selected MPR nodes for the source 

Figure 5. Pseudo-code for MPR selection 

Reprint from [12] 

 

Figure 6 shows the MPR nodes (shaded in the figure) selected by this algorithm. 

These nodes would be sufficient relays to reach all nodes in the network. 

 

Figure 6. MPRs selected by the algorithm 
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C. Topology discovery  

The selected MPR nodes periodically transmit Topology Control (TC) messages 

(as shown in Figure 7) with corresponding link utilization factor data. The updates are 

propagated to all nodes in the network through the MPRs.  

 

ACK Timeout 
elapsed

Select MPR nodes to maximize coverage

Update routing table

Return

Send TC message

 

Figure 7. Sending TC packets 

 

Upon receiving the TC messages, each node in the network records the 

information in the ‗topology table‘ as shown in Figure 8.  
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Received TC

Store MPR and link cost information

Return

 

Figure 8. Handling of TC packets 

 

D. Route selection and data transmission using the selected routes 

Each node in the network uses its ‗neighbor table‘ and ‗topology table‘ to 

proactively compute the routes to all possible destinations. The protocol selects the path 

that has the least route cost metric while ensuring that the bandwidth factor is always 

greater than one for all the links on the path. This way, the algorithm eliminates routes 

that do not provide sufficient bandwidth to carry the traffic, thus implementing admission 

control mechanism. It ensures that the required flow data rate is supported throughout the 

whole route. The cost factor for a route with k intermediate MPRs nodes in the path is 

given by 

C s,d C s,n2
n1
,Cn1,n3

n2
,......,Cnk 2 ,nk

nk 1 ,Cnk 1,d
nk

              (4)
 

C s,n2
MPR

1/U s,n2
MPR

                 (5) 
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where C s,n2
MPR  is the cost metric between node s and its two-hop neighbor n2 N

2
( s)  through 

the relay node  n1 (MPR). 

Once a route is found to the destination, the availability of multiple, independent 

channels and interfaces are exploited to perform load balancing for a particular link. If a 

particular link is suffering from interference, the receiver broadcasts a SWITCH packet to 

indicate a channel switch as shown in Figure 9. 

 

Received 
SWITCH

Change channel as requested

Return

 

Figure 9. Handling of SWITCH packets 

 

III.  IMPLEMENTATION OF THE ROUTING PROTOCOL 

This section presents an overview of the hardware implementation of the MMCR 

protocol. 
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A. Hardware description and limitations 

Hardware verification of any algorithm is limited by hardware constraints such as 

processing capabilities, on-board battery capacity and supported interfaces. Use of 

specific hardware must be weighed against the precision, speed, and criticality of an 

algorithm's implementation. Constraints addressed for the implementation of the MMCR 

were use of low-power, small form-factor, and fast processing hardware. Hence the 

hardware should be energy conservative; performance oriented and should be of small 

form factor. Hence the processor architecture that can be deployed should be able to 

satisfy all these demands. The Silicon Laboratories 8051 variant family was selected for 

its ability to provide fast 8-bit processing, low-power consumption, and interface 

compatibility to peripheral hardware components. This provides high-speed processing, 

interconnectivity with the nodes, and a capable RF communications unit to facilitate a 

development platform for the ad hoc networks. Limitations that are incurred through the 

use of these 8051 variant family are a small memory space and limited floating point 

processing. In the next section, a description of the specifications for the hardware 

implemented nodes will be given. 

The Generation-4 Smart Sensor Nodes (G4-SSN) [14], shown in Figure 10 were 

used as sensor nodes for implementation of the MMCR routing protocol. These were 

originally developed at Missouri S&T and subsequently updated at St Louis University 

(SLU). These motes provide a common platform for sensing, networking and data 

processing. The platform consists of an 8051 processor and an 802.15.4 (XBee) radio 

with micro Smart Digital (SD™) flash storage, USB and RS-232 connectivity and an 

assortment of sensors. These nodes have 8K RAM and 128K flash memory that make it a 
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suitable choice for the hardware implementation. Table 1 gives a summary of the 

specifications of the G4-SSN. More information can be found in [14].   

 

Figure 10. G4 mote 

Table 1. Specifications of G4 mote 

Ic at 3.3V 35 mA 

Flash memory 128 kB 

RAM 8448 bytes 

Form-Factor 100-pin LQFP 

MIPS 100 

 

B. Implementation details 

This section describes the implementation details of the MMCR routing protocol. 

Six types of packets are created – five of them being control packets and one data packet. 

The payload of each packet was prefixed with 2 headers – the XBee header and the 

routing header. The general structure of a packet is shown in Figure 11. The XBee header 

(shown in light gray) consists of information required by the XBee radios to process the 
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packets and the routing header (shown in dark gray) comprises of routing related 

information: 

API Start Byte (0x7E) 1 byte 

API length 2 bytes 

API ID 1 byte 

API frame ID 1 byte 

API Destination 2 bytes 

API options 1 byte 

Start Byte (0x42) 1 byte 

Flag byte (0x75) 1 byte 

MAC Destination 2 bytes 

MAC Source 2 bytes 

Packet length 1 byte 

Destination ID 1 byte 

Source ID 1 byte 

Sequence number 1 byte 

Time Stamp 4 bytes 

Payload Many bytes 

Payload CRC 1 byte 

Packet checksum 1 byte 

Figure 11. Packet structure 
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In addition, the DATA packet contains the application-specific headers and the 

payload. The application specific headers are shown in Figure 12. The total number of 

header bytes is 27 and the packet payload is fixed at 80 bytes. This leads to a 25.23% 

control overhead per packet. 

 

Module Type 1 byte 

Module length 1 byte 

Report type 1 byte 

Payload Many bytes 

Figure 12. Application specific header 

 

C. Node functions  

Figure 13 shows the activity of a node that wishes to transmit data. A route search 

is started if no route is available to the required destination node. Otherwise the packet is 

forwarded to the appropriate MPR. 

Figure 14 shows the activities of intermediate nodes. If the destination is a one-

hop neighbor, the data packet is sent to it directly. Otherwise, it is relayed to the MPR 

that is closest to the destination node. 
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Send Data packet
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Start Route Search

Yes

No

 

Figure 13. Activities of sender 
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Send Data packet

Destination is 
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Send to MPR closest to Destination

Yes

No

 

Figure 14. Activities of an intermediate node 
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Figure 15 shows the activities of a destination node. It broadcasts BEAM packets 

periodically to synchronize the real-time clock of all nodes in the network. Moreover, if 

the throughput falls below a certain threshold indicating interference, the receiver 

broadcasts a BEAM packet instructing the active nodes to switch to a different channel. 

This is 
Destination

Return

Send packet to Application layer

Throughput > 
Threshold

Send SWITCH

Yes

No

Send BEAM

 

Figure 15. Activities of a destination node 

D. Protocol verification 

Figure 16 shows the placement of nodes for demonstrating MMCR. Packets from 

source 1 were routed through intermediate nodes 1 and 2 to the destination. When 

intermediate node 2 was turned off, intermediate node 3 was used to relay packets. 
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Figure 16. Demonstration of MMCR 

 

The following were the performance metrics used to characterize the performance 

of the protocol: 

1. Throughput – Number of bits received per second 

2. Drop rate – Number of bits missing per second 

3. End-to-end delay – Total transmission delay in milliseconds 

4. Jitter – Variation in delay in milliseconds 

Figure 17 shows the metrics measured when raw uncompressed data was sent 

over three hops through the network. Data was generated at 2.56 kbps. The total 



 

 

74 

transmission rate (including the packet headers) amounted to 3.424 kbps. All packets 

were received in sequence. Thus, the drop rate is zero. The average end to end packet 

delay over 3 hops was almost 20 ms. Table 2 lists the average values of the performance 

metrics. All reported values are the average over 10 trials. 

 

 

Figure 17. Performance metrics 

Table 2. Average performance metrics for raw data 

Data generation rate 2.56 kbps 

Throughput (data transmission rate) 3.424 kbps 

Drop rate 0 

Average delay 20.2785 ms 

Average jitter 0.7845 ms 
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Figure 18 shows the experimental setup used to verify the channel switching 

functionality. Two-hop communication was established using Channel 14 through 

MMCR as this channel is the default choice.  

 

 

Figure 18. Demonstration of channel switching 

 

When a different node which was broadcasting in the same channel was brought 

within communication range, a drop in throughput was observed by the Destination node. 

This triggered the sending of a SWITCH packet by the Destination node and the source 

and intermediate nodes switched communication to Channel 15 which is one among the 

list of available channels.  Detailed selection of the channels is outside the scope of this 
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work. Figure 19 shows the switching of channels. The red throughput line indicates the 

use of Channel 14 and the blue one indicates Channel 15. 

 

 

Figure 19. Channel switching 

  

E. Real-time voice with MMCR 

 The transmission of real-time voice through a bandwidth limited wireless channel 

is a very challenging test case. A low-cost, fan-less single board computer called 

Beagleboard [21] running Ubuntu Linux was interfaced with Missouri S&T motes. The 

microphone connected to the Beagleboard generated data at 128kbps. A G.721 4 bit 

ADPCM [22] was implemented to reduce the data rate to 32kbps. This data was 

packetized and sent over the MMCR network to a destination node connected to a 



 

 

77 

speaker through another Beagleboard. All communication between the Beagleboard and 

the motes were achieved through the UART interface. The Advanced Linux Sound 

Architecture (ALSA) library [23] was used to create the audio interfaces. The experiment 

setup is shown in Figure 20. 

 

 

Figure 20. Real-time voice over MMCR 

 

Figure 21 shows the results obtained. The voice data generation rate was 32kbps. 

Including the packet headers, the generation rate is almost 40kbps. From the figure, it can 

be observed that MMCR provides the required throughput with a few dropped packets. 
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The average end to end delay over 2 hops was about 8 ms with very low jitter which is 

considered to be acceptable for voice transfer. The performance metrics are listed in 

Table 3. 

 

Figure 21. Performance metrics for real-time voice 

 

Table 3. Average performance metrics for real-time voice 

Data generation rate 32 kbps 

Throughput (data transmission rate) 38.0688 kbps 

Maximum drop rate 1.28 kbps 

Average delay 8.357 ms 

Jitter 0.0449 ms 
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When the data generation rate is increased further, the number of dropped packets 

starts increasing rapidly due to congestion in the network. These packet losses can be 

minimized by compression/aggregation techniques as will be discussed next. The next 

section describes the implementation of the NADPCMC scheme for this purpose. 

 

IV.  IMPLEMENTATION OF DATA AGGREGATION 

This section provides a brief background of the NADPCMC scheme. This is 

followed by the hardware implementation details and results. 

A. NADPCMC 

A nonlinear estimator [20] is used to generate the estimate of the data sample at 

every instant. Adaptive estimation of the data sequence is performed by representing the 

data as a nonlinear autoregressive moving average sequence as 

                       (1) 

where  is the basis function,  is the unknown parameter vector, and 

 is the reconstruction error which is bounded by . The estimated 

signal is represented as 

                       (2) 

where  is the estimated parameter estimate vector and e(k)  is the estimation error. 

The estimation error is then given by 

                       (3) 
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Substituting for  and  in (3) renders 

                     (4) 

where the parameter estimation error is defined by 

                                   (5) 

Now consider the parameter update as 

                      (6) 

Here α is called the adaptation gain.  

The difference e(k) between the actual and the estimated sample is quantized and 

sent to the destination. If the estimation error is small enough, the error can be 

represented with smaller number of bits than the original sample. This leads to 

compression.  

At the receiver side, a similar estimator generates sample estimates. This 

estimator requires synchronization of the basis function φ(k) with a few correct initial 

samples from the transmitter. The error received from the transmitter is added to the 

estimate to reconstruct the data. Figure 22 shows the flowchart with the source 

functionality in blue and receiver functionality in red. 
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Figure 22. NADPCMC flowchart 

 

B. Zeolite sensors for explosive detection 

Many multi-layer sensor mote architectures consist of a microcontroller (MCU) 

layer and several slave layers for interfacing with other systems and the application 

environment. Architectures such as the G4 SSN use direct pin assignment of the MCU to 

the bus pins and this leads to a limitation of the number of supportable slave devices. The 

G4 mote supports a single radio interface easily. It had the required UART interfaces for 

Yes 

No 

Initialize estimator 

Calculate estimate 

Calculate error 

Update parameter 

More data 

available 

Tx Quantized error 
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a secondary radio but the architecture required some manual configuration tweaking and 

the second radio added to the processor load. These issues call for a new architecture that 

could support multiple slaves easily. The Missouri S&T M2 mote (shown in Figure 23) 

addresses these issues through the use of a serial bus to connect the layers. 

  

 

Figure 23. M2 mote 

 

A network of wireless motes connected to chemical sensors is capable of 

detecting, locating, and sending warning messages to appropriate decision makers about 

the presence of explosive threats. In this implementation, we use Missouri S&T motes 

connected to zeolite chemical sensor technology [24] as an input to the detection system. 

The zeolite sensors utilize a coated fiber optic tip that measure the reflectivity of the fiber 

as the chemical is introduced into the environment. An amplifier circuit translates this 

reflectivity into a 0-3V level and is read by an ADC on the sensor mote which measures 

the signal against several threshold levels. The sensor response to low concentration of 
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isopropanol molecule from a prototyped sensor circuit is shown in Figure 24. The first 

threshold level at 1/3 of the dynamic range is considered to be the Early Warning Level 

(EWL) and the second threshold at 2/3 the dynamic range is considered to be the Critical 

Warning Level (CWL). 
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Figure 24. Prototyped sensor circuit response 

 

C. Transmission of sensor data 

The M2 mote generates sensor data at 2.56 kbps. The 8-bit NADPCMC was 

applied to reduce the transmission rate by almost half. This led to an energy saving of 

46.67% with distortion limited to 0.78%. The transmitter and receiver side estimators 

used the first 5 data samples for initialization. However, this approach has a major 
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drawback. When a data packet is dropped, the receiver does not have certain e(k) and 

cannot reconstruct those samples. Since these samples are required to set the basis 

function φ(k), it would be incorrectly set to zero. This leads to error in estimating the 

forthcoming  samples since  depends φ(k) (from equation (2)). Thus, the 

estimators on both sides would no longer be synchronized. This situation is shown in 

Figure 25 where the second packet in the sequence is dropped. The receiver side 

estimator does not have the appropriate regression vector to generate the next estimates, 

thus forcing the reconstructed samples deviating from the original data. 
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Figure 25. 8 bit NADPCMC in the presence of packet losses 
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To mitigate this problem, each packet has to be made independent of the previous 

packet. In other words, the basis function φ(k) of the receiver side estimator has to be re-

initialized for each data packet. This way, even if a packet is dropped, φ(k) would be 

reset with 5 data samples through every other received packet. Thus, the estimated  

for the other packets would be same at both transmitter and receiver side estimators. This 

would add an additional overhead to each packet, reducing the compression ratio from 

1.957 to 1.875. In addition, the energy savings reduces from 48.91% to 46.67%. 

However, it improves the fault tolerance capability of the scheme in a significant manner. 

Figure 26 shows the performance of the modified NADPCMC scheme when the second 

packet in the sequence is dropped in the network. 
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Figure 26. Modified 8 bit NADPCMC in the presence of packet losses 
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Next, aggregation was performed to further reduce transmission rates since there 

could be other data flowing through the network causing congestion. Figure 27 shows the 

experimental setup. Source 1 generates explosive sensor data at 2.56 kbps and Source 2 

generated river discharge data from the Amazon basin [25] at 800 bps.  

 

 

Figure 27. Demonstration of data aggregation 

 

The compression ratio provided by NADPCMC depends, primarily, on the 

quantizer resolution. However, when the resolution of the quantizer is decreased, the 

distortion increases. Mathematical proofs of the same are available in [20]. The 8-bit 
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modified NADPCMC was used for compression at the source level while a 6 bit 

NADPCMC at the Cluster-head level reduced the transmission rate to 1.284 kbps for the 

aggregated flow. An energy savings of 56.99% was obtained and the distortion in both 

data sets was limited to less than 4%. When 4 bit NADPCMC was used at the Cluster-

head level, the aggregated transmission rate was reduced to 856 bps. Including the packet 

headers, the throughput was approximately 1 kbps as shown in Figure 28. Though the 

energy savings improved to 71.43%, the distortion also increased to 8.21% for explosive 

sensor data and 10.9% for river discharge data. Table 4 summarizes these results.  

 

 

Figure 28. Performance metrics with 4 bit data aggregation 
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Table 4. Effect of data aggregation 

 Data 

generation 

rate 

Transmissi

on rate 

Compr

ession 

ratio 

Energy 

savings 

Distortion 

Uncompressed 

data 

2.56 kbps 3.424 kbps  NA NA  NA  

Compressed data 2.56 kbps 1.712 kbps  1.8751 46.67%  0.78% for sensor 

data 

0.81% for river 

discharge data 

Compressed and 

aggregated data – 

6 bit NADPCMC 

2.56 kbps 1.284 kbps  2.3250 56.99%  3.58%  for 

sensor data  

2.78% for river 

discharge data 

Compressed and 

aggregated data – 

4 bit NADPCMC 

2.56 kbps 856 bps  3.5002 71.43%  8.21%  for 

sensor data 

10.90% for river 

discharge data 

 

 Figure 29 shows the reconstructed explosive sensor data samples with different 

level of aggregation.  
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Figure 29. Reconstructed explosive sensor data 
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Figure 30 shows the reconstructed river discharge data samples with different 

stages of aggregation. 
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Figure 30. Reconstructed river discharge data 

 

D. Energy consumption 

To achieve true energy efficiency, the energy expended in the compression 

algorithm must be less than that required to send the extra bits to the destination. 

Generally a processor consumes less power for such computations than a radio that is 

required to transmit a packet. In this case, Beagleboard uses the OMAP3530 processor 

[26] which has a power rating of 250mW. The CPU clock frequency is 720 MHz and the 

processor is capable of performing two 32-bit operations per cycle. In terms of Floating-

point Operations per Second (FLOPS), this amounts to 1.44 gigaFLOPS. Each FLOP 

expends 0.17361nJ of energy. The NADPCMC encoding scheme consists of 7050 FLOPs 



 

 

90 

and the decoding scheme consists of 7425 FLOPs. Thus, the OMAP processor expends 

1.224 micro Joules for every encoding and 1.289 micro Joules for every decoding.  

The XBee radio uses a transmit power of 1mW for a 30m range [27]. This 

translates to 5 nJ per bit. Sending 160 data samples without compression would require 

20.32 µJ of energy. With compression, the number of bytes is reduced by half, thus 

requiring 10.16 µJ is required for transmission. However, 2.45 µJ would be consumed in 

computations. Thus, the total energy expenditure with compression is 12.61 µJ. When 

aggregation is added, the number of bytes is cut down by another half and 5.08 µJ is 

required for transmission. And 1.224 µJ would be expended in computations. Thus, the 

total energy consumed is 6.304 µJ with data aggregation including computational 

overhead when compared to transmission alone. Table 5 lists the total energy 

consumption and the percentage savings. It indicates that even though some energy is 

consumed on computations, data aggregation provides significant overall energy savings 

to improve the network lifetime. 

 

Table 5. Energy expenditure 

 Energy 

consumption  

Energy savings 

Transmission of uncompressed data 20.32 µJ  NA  

Transmission of compressed data using 

8 bit NADPCMC  

12.61 µJ  37.94%  

Transmission of compressed and 

aggregated data – 4 bit NADPCMC 

6.304 µJ  68.98%  
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V.  CONCLUSIONS 

 

This paper dealt with the hardware verification of routing using MMCR protocol 

and data aggregation using NADPCMC scheme. Usage of multiple channels is shown to 

help balance the load and reduce packet losses. However, when the data generation rate 

increases which is normally observed in a WSN, there may be packets dropped due to 

congestion, thus necessitating compression and aggregation techniques with routing. A 8 

bit NADPCMC reduces amount of data at source level by almost half. To make the 

scheme resilient to a lossy channel, a small overhead is added to each packet to re-

initialize the receiver-side estimator. This is shown to improve the performance in a 

satisfactory manner. In-network aggregation further reduces the amount of data and 

improves network lifetime. However a small amount of distortion is involved. The 

aggregation scheme is proven to be truly energy efficient with the computations 

consuming a very small amount of power compared to the power required for 

transmission by the radio. 
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SECTION 

2. CONCLUSIONS AND FUTURE WORK 

This thesis explores the possibility of energy efficiency improvement in wireless 

sensor networks through data aggregation and efficient multi-channel routing. Since 

existing compression schemes are tailored for specific types of data, a novel generic 

compression scheme called NADPCMC based on adaptive nonlinear estimation and 

quantization is developed in the first paper. Theoretical bounds on estimation error are 

derived using Lyapunov theory and the total distortion is shown to be dependent on the 

quantization error and the maximum singular value of the gain matrix. The scheme is 

tested using multiple data sets with different resolutions and offers energy savings of 

approximately 50% at each source node at the cost of around 2-3% distortion. Then data 

aggregation through iterative compression is examined. Simulation results demonstrate 

that aggregation can further improve the over-all energy savings with a small level of 

distortion. Moreover, the distortion depends mainly on the number of aggregation levels 

and not on the network size. This indicates that the scheme is scalable and is deployable 

in larger networks. 

While data aggregation helps in reducing energy consumption, efficient routing is 

required to guarantee appropriate quality of service. The second paper deals with the 

hardware verification of a proactive multi-channel routing protocol. MMCR is 

implemented on Missouri S&T G4 motes by appropriately weighing the hardware 

capabilities and limitations in memory size, processing power, energy consumption, form 

factor and interface compatibility with other hardware components. The protocol uses 
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multiple channels, thereby providing high data rates and short end-to-end delays with 

fewer dropped packets. Compression and aggregation through NADPCMC further 

improve the throughput and energy savings. Moreover, NADPCMC is modified to be 

made resilient to channel conditions through a minor overhead. It is also observed that 

the energy consumed in the NADPCMC encoding and decoding algorithms are much 

lesser than the energy required for transmitting the extra bytes making the 

compression/aggregation worthwhile. 

 Future work could be directed towards achieving different quality of service 

levels for different types of data. NADPCMC based compression/aggregation scheme 

provides a constant a constant quality of service (i.e., constant distortion) for each flow. 

In our experiments, the estimation parameters were designed to achieve less than 10% 

distortion for each flow. In reality, voice and video signals can handle much higher 

distortion than data. Thus, the estimator parameters can be data dependent. Though such 

tunable compression/aggregation adds a small overhead in terms of communicating the 

estimation parameters to the destination, it would be able to satisfy the quality of service 

requirements of each flow better. 
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APPENDIX 

SOURCE CODE ON CD-ROM 

 

1.  INTRODUCTION 

Included with this Thesis is a CD-ROM, which contains the source code for the 

NS2 simulations and hardware implementation.  The file ―Info.txt‖ contains a short 

description of the source code. All documents have been prepared as Microsoft Word 

document files.  An outline of the contents of the CD-ROM is as follows. 

 

2.  CONTENTS 

Info.TXT 

NS2 simulation: 

datacompress.DOC 

Hardware implementation: 

routing_mmcr.DOC 
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Source code of NS2 implementation: 
 

datacompress.cc – new traffic type to send compressed data. 

 
/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- 

*/ 

/* 

 * Copyright (c) Priya Kasirajan 2009. All rights reserved. 

 *   

 */ 

 

#ifndef lint 

static const char rcsid[] = 

    “@(#) $Header: /nfs/jade/vint/CVSROOT/ns-2/tools/datacompress.cc,v 1.0 

2008/20/12 18:45:32 Priya Exp $ (MST)”; 

#endif 

 

#include <stdio.h> 

#include <math.h> 

#include <stdlib.h>  

#include <string.h> 

#include “datacompress.h” 

 

//#define HUFFMAN  /* switch between Huffman coding and NADPCMC */ 

#define DC_DEBUG /* enable debug mode */ 

 

#ifdef HUFFMAN 

//#include “ uffman.h” 

#endif /* HUFFMAN */ 

 

float data[] = 

{2231.6,2554.6,2416.7,3128.3,4031.5,3790.0,3842.4,2904.2,1379.9,597.0,573.7,1

334.8,1970.7,3125.9,3847.3,3813.4,3727.7,3946.9,4681.5,2899.7,1732.5,1784.2,1

048.7,1487.3,2420.9,3539.2,3984.5,3440.1,3460.4,3677.8,3433.6,1576.3,404.9,19

2.5,281.4,755.2,1967.2,2819.5,2827.5,3557.7,4116.4,3647.2,3931.9,2855.3,1626.

7,838.1,1244.8,1271.3,1464.0,3195.6,2624.9,1309.5,2766.3,3300.8,2755.9,1993.0

,1643.5,941.3,1002.3,2267.1,2593.3,2979.6,1704.4,2865.2,3290.2,4144.4,3971.2,

2848.7,1585.9,814.8,1219.7,2369.9,2613.5,2890.5,4027.0,4739.8,4570.3,4125.4,3

731.2,1569.6}; 

 

/* multiply two floating point vectors of length 5 */ 

float mult(float a[], float b[]) 

{ 

  int i; 

  float ret = 0; 

  for (i = 0; i < 5; i++) 

    ret = ret + a[i]*b[i]; 

  return ret; 

} 

 

/* compute tansig of a float value */ 

float tansig(float x) 

{ 

  return (2/(1+exp(-2*x))-1); 

} 

 



/* Perform 8 bit NADPCMC */ 

int encode() 

{ 

  int i,j; 

  float phi[] = {0, 0, 0, 0, 0}; 

  float e[80][5], o[80][5], x[80], err[80]; 

  float a = 0.0018; 

  float temp = 0; 

  float k[] = {0.4,0.3,0.2,0.1,0.05}; 

  unsigned char quant[80]; 

 

  for (i = 0; i < 80; i++) 

  { 

    data[i] = data[i]/1000; 

    x[i] = 0; 

    for (j = 0; j < 5; j++) 

    { 

      e[i][j] = 0; 

      o[i][j] = 0; 

    } 

  } 

 

  //iteration 1 

  e[0][0] = data[0]-x[0]; 

  phi[0] = data[0]; 

 

  //iteration 2 

  temp = mult(phi,e[0]); 

  for (i = 0; i < 5; i++) 

  { 

    o[1][i] = o[0][i] + a * temp; 

  } 

  x[1] = mult(o[1],phi); 

  e[1][0] = data[1] – x[1]; 

  e[1][1] = data[0] – x[0]; 

  phi[0] = data[1]; 

  phi[1] = data[0]; 

 

  //iteration 3 

  temp = mult(phi,e[1]); 

  for (i = 0; i < 5; i++) 

  { 

    o[2][i] = o[1][i] + a * temp; 

  } 

  x[2] = mult(o[2],phi); 

  e[2][0] = data[2] – x[2]; 

  e[2][1] = data[1] – x[1]; 

  e[2][2] = data[0] – x[0]; 

  phi[0] = data[2]; 

  phi[1] = data[1]; 

  phi[2] = data[0]; 

 

  //iteration 4 

  temp = mult(phi,e[2]); 

  for (i = 0; i < 5; i++) 

  { 

    o[3][i] = o[2][i] + a * temp; 



  } 

  x[3] = mult(o[3],phi); 

  e[3][0] = data[3] – x[3]; 

  e[3][1] = data[2] – x[2]; 

  e[3][2] = data[1] – x[1]; 

  e[3][3] = data[0] – x[0]; 

  phi[0] = data[3]; 

  phi[1] = data[2]; 

  phi[2] = data[1]; 

  phi[3] = data[0]; 

 

  //iteration 5 

  temp = mult(phi,e[3]); 

  for (i = 0; i < 5; i++) 

  { 

    o[4][i] = o[3][i] + a * temp; 

  } 

  x[4] = mult(o[4],phi); 

  e[4][0] = data[4] – x[4]; 

  e[4][1] = data[3] – x[3]; 

  e[4][2] = data[2] – x[2]; 

  e[4][3] = data[1] – x[1]; 

  e[4][4] = data[0] – x[0]; 

  phi[0] = data[4]; 

  phi[1] = data[3]; 

  phi[2] = data[2]; 

  phi[3] = data[1]; 

  phi[4] = data[0]; 

 

  for (i = 0; i < 5; i++) 

    x[i] = 0; 

 

  //other iterations 

  for (i = 5; i < 80; i++) 

  { 

    x[i] = mult(o[i-1],phi) + mult(k,e[i-1]); 

    for (j = 0; j < 5; j++) 

      e[i][j] = data[i-j] – x[i-j]; 

    temp = mult(phi,e[i-1]); 

    for (j = 0; j < 5; j++) 

      o[i][j] = o[i-1][j] + a*temp; 

    phi[0] = tansig(data[i]); 

    phi[1] = e[i][0]; 

    phi[2] = e[i-1][0]; 

    phi[3] = e[i-2][0]; 

    phi[4] = e[i-3][0]; 

  } 

 

  // estimation over – calc error 

  //8 bit quantization 

  for (i = 0; i < 80; i++) 

  { 

    err[i] = data[i] – x[i]; 

    if (err[i] > 1.9718) 

      quant[i] = 255; 

    else if (err[i] < -1) 

      quant[i] = 0; 



    else 

      quant[i] = ((err[i]+1)/0.0117); 

#ifdef DC_DEBUG 

    printf(“%d “, quant[i]); 

#endif /* DC_DEBUG */ 

  } 

#ifdef DC_DEBUG 

  printf(“\n”); 

#endif /* DC_DEBUG */ 

return (5*sizeof(data[i]) + (i-5)*sizeof(quant[i])); 

 

} 

 

/* implement a source which takes packets, compresses them and generates 

packets of 

 * the compressed size. It is parameterized by packet size and interval. 

 */ 

 

static class DCTrafficClass : public TclClass { 

 public: 

 DCTrafficClass() : TclClass(“Application/Traffic/Datacompress”) {} 

  TclObject* create(int, const char*const*) { 

  return (new DC_Traffic()); 

 } 

} class_dc_traffic; 

 

DC_Traffic::DC_Traffic() : seqno_(0), fp1(NULL), compress_(0), tsize(0), 

isClusterHead_ (0) 

{ 

 bind_bw(“rate_”, &rate_); 

 bind(“maxpkts_”, &maxpkts_); 

 bind(“isClusterHead_”, &isClusterHead_); 

 bind(“compress_”, &compress_); 

} 

 

int DC_Traffic::command(int argc, const char*const* argv) { 

    if(argc==3){ 

        if (strcmp(argv[1], “payload”) == 0) { 

  if ((fp1 = fopen(argv[2],”r”)) == NULL) { 

   fprintf(stderr,”File open error”); 

   return 1; 

  } 

  return 0; 

 }                         

    } 

    return Application::command(argc,argv); 

} 

 

 

void DC_Traffic::init() 

{ 

 interval_ = (double)(40 << 3)/(double)rate_; 

#ifdef DC_DEBUG 

 printf(“Interval is %ld \n”,interval_); 

#endif /* DC_DEBUG */ 

 if (agent_) 

  agent_->set_pkttype(PT_TCP); 



} 

 

void DC_Traffic::stop() 

{ 

#ifdef DC_DEBUG 

 printf(“total size %d %d\n”,tsize, seqno_); 

#endif /* DC_DEBUG */ 

    fclose(fp1); 

    running_ = 0; 

} 

 

void DC_Traffic::start() 

{ 

 init(); 

 running_ = 1; 

 // Clusterhead has to wait for aggregation 

 if (isClusterHead_ == 0) { 

  nextPkttime_ = next_interval(size_); 

  timer_.resched(nextPkttime_); 

 } 

 else 

 { 

#ifdef DC_DEBUG 

  printf(“Clusterhead here…\n”); 

#endif /* DC_DEBUG */ 

 } 

 // Enable line below if you want to send immediately upon start 

 //timeout();  

} 

 

double DC_Traffic::next_interval(int& size) { 

 double t = interval_; 

 int len = 2000, temp = 0; 

#ifdef HUFFMAN 

 FILE *fp2, *fp3; 

 if (compress_ == 1) { 

  fp2 = fopen(“./outputfile”,”r”); 

  fp3 = fopen(“./dummyfile”,”w”); 

   uffman_decode_file(fp2,fp3); 

  fclose(fp2); 

  fclose(fp3); 

 } 

 if (((fp2 = fopen(“./temp”,”w”)) != NULL) && 

 ((fp3 = fopen(“./outputfile”,”w”)) !=NULL)) { 

  char line[2000],newline[2000]; 

  if (!feof(fp1)) { 

   fgets(line,len,fp1); 

   strncpy(newline,line,strlen(line)-2); 

   newline[strlen(line)-1] = „\0‟; 

   fputs(newline,fp2); 

  } 

  fclose(fp2); 

  if (compress_ == 1) { 

   fp2 = fopen(“./temp”,”r”); 

    uffman_encode_file(fp2,fp3); 

   fclose(fp3); 

   fp3 = fopen(“./outputfile”,”r”); 



   while (fgetc(fp3) != EOF) 

    temp++; 

   size_ = temp; 

#ifdef DC_DEBUG 

   printf(“Compressing %d\n”,size_); 

#endif /* DC_DEBUG */ 

   fclose(fp2); 

  } 

  else 

  { 

   size_ = strlen(line); 

#ifdef DC_DEBUG 

   printf(“Not compressing %d\n”,size_); 

#endif /* DC_DEBUG */ 

  } 

  tsize  = tsize + size_; 

 

  fclose(fp3); 

 }*/ 

#else 

 if (!isClusterHead_)  

 { 

  if (compress_ == 1) 

   size_ = encode(); 

  else 

   size_ = sizeof(data); 

 } 

 tsize  = tsize + size_; 

#endif /* HUFFMAN */ 

 

 if (++seqno_ < maxpkts_) 

 { 

#ifdef DC_DEBUG 

  printf(“Schedule packet…”); 

#endif /* DC_DEBUG */ 

  return(t); 

 } 

 else 

 { 

#ifdef DC_DEBUG 

  printf(“Cant schedule packet..”); 

#endif /* DC_DEBUG */ 

  return(-1); 

 } 

} 

 

void DC_Traffic::generate_pkt(int size) 

{ 

 size_ = size; 

 nextPkttime_ = next_interval(size_); 

#ifdef DC_DEBUG 

 printf(“Packet of size %d generated…%ld\n”,size_,nextPkttime_); 

#endif /* DC_DEBUG */ 

 timer_.resched(nextPkttime_); 

} 

 

void DC_Traffic::timeout() 



{ 

    if (! Running_) 

  return; 

 

 /* send a packet */ 

 send(size_); 

 if (isClusterHead_ == 0) { 

  /* figure out when to send the next one */ 

  nextPkttime_ = next_interval(size_); 

  /* schedule it */ 

  if (nextPkttime_ > 0) 

   timer_.resched(nextPkttime_); 

  else 

   running_ = 0; 

  } 

 else 

 { 

  if (nextPkttime_ < 0) 

   running_ = 0; 

 } 

} 

 

datacompress.h – corresponding header file 

 
/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- 

*/ 

/* 

 * Copyright (c) Priya Kasirajan 2008. All rights reserved. 

 *   

 */ 

#ifndef NS_DATACOMPRESS_H 

#define NS_DATACOMPRESS_H 

 

#include "trafgen.h" 

/* implement a source which takes packets, compresses them and generates 

packets of 

 * the compressed size. It is parameterized by packet size and interval. 

 */ 

 

class DC_Traffic : public TrafficGenerator { 

public: 

 DC_Traffic(); 

 virtual double next_interval(int&); 

 int command(int argc, const char*const* argv); 

 void generate_pkt(int); 

 int isClusterHead_; /* is this node a clusterhead */ 

protected: 

 void init(); 

 void start(); 

 void stop(); 

 void timeout(); 

 double rate_;    /* send rate during burst (bps) */ 

 double interval_; /* inter-packet time at burst rate */ 

    FILE *fp1; /* pointer to packet payload */ 

 int seqno_;  /* packet number */ 

 int maxpkts_; /* max number of packets */  



 int compress_; /* is compression required */ 

 int tsize; /* cumulative packet size */ 

 

}; 

 

#endif /* NS_DATACOMPRESS_H */ 

 

 



Source code of hardware implementation: 
 

routing_mmcr.c – implementation of MMCR 

 
/**************************************************************************** 

** 

** Copyright (C) 2008-2009 Maciej Zawodniok, Priya Kasirajan. All rights 

reserved. 

** 

** This file is part of the documentation of the UMR Mote Toolkit. 

** 

** This file may be used under the terms of the GNU General Public 

** License version 2.0 as published by the Free Software Foundation 

** and appearing in the file LICENSE.GPL included in the packaging of 

** this file. 

** 

** This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE 

** WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 

** 

****************************************************************************/ 

 

#include "esnl_pub.h" 

 

#ifdef FEAT_ENABLE_MMCR 

 

#include "routing.h" 

#include "routing_MMCR.h" 

#include "network_hardware_ADFS.h" 

#include "common.h" 

#include "FEAT_Xbee_API/AT_scripts.h" 

#include "FEAT_Queueing/Queuing.h" 

#include "FEAT_Networking/tsp_common_pub.h" 

#include "Application.h" 

#include "FEAT_Networking/Phy_layer.h" 

#include "packet.h" 

#include "FEAT_Scheduler/sch_basic_pub.h" 

 

 

#ifdef __KEIL__ 

 #ifdef _ENABLE_F1_MOTE_TEST_01_ 

  sbit YLED = P2 ^ 5; 

 #else // _ENABLE_F1_MOTE_TEST_01_ 

  sbit YLED = P2 ^ 2; 

 #endif // else/not _ENABLE_F1_MOTE_TEST_01_ 

#endif 

 

#ifdef __SDCC__ 

 #ifdef _ENABLE_F1_MOTE_TEST_01_ 

  #define YLED P2_5 

 #else // _ENABLE_F1_MOTE_TEST_01_ 

  #define YLED P2_2 

 #endif // else/not _ENABLE_F1_MOTE_TEST_01_ 

#endif // __SDCC__ 

 

/////////////////////////////////////////////// 

/////////////////////////////////////////////// 



uint8_t mmcr_pkt_id = 0xFF; 

 

unsigned char xdata mmcr_request_send_TC_ = 0 ; // request for sending 

Topology control 

 

// Variables to manage )periodic) timeout 

uint8_t mmcr_hello_timeout_enabled_ = 0; 

rtc_tick_t mmcr_hello_timeout_ = RTC_OVERFLOW_TIMER_VALUE; 

 

 

#define RTR_MMCR_HELLO_PKT_SIZE 18 

#define RTR_MMCR_TC_PKT_SIZE 14 

#define MMCR_BANDWIDTH_FACTOR 1 

#define MMCR_SWITCH_CHANNEL(c) (c>=MAX_RF_CHANNEL)?MIN_RF_CHANNEL:c+1 

 

uint8_t mmcr_state_; // state of the routing agent (e.g. IDLE, routing in-

progress) 

unsigned char xdata mmcr_Hello_countdown_; // ON - periodically send 

HELLO 

int xdata mmcr_route_search_BS_; // address of the target node (BS) 

 

 

//Counters for the Routing Energy Analysis 

unsigned char xdata mmcr_Hello_counter; 

unsigned char xdata mmcr_ACK_MMCR_counter; 

unsigned char xdata mmcr_DAT_MMCR_counter; 

 

uint16_t mmcr_len_sample; 

 

 

/////////////////////////////////////////////// 

struct ONEHOP 

{ 

 char  ID; 

 bool  MPR; 

 char Link[10]; // point to index (ID) of the second hop node 

 char Links; 

 uint32_t LinkCost;  

}; 

struct TWOHOP 

{ 

 char  ID; 

 char Covered; 

}; 

struct 

{ 

 struct  ONEHOP OneHop[10]; 

 struct  TWOHOP TwoHop[10]; 

 int  OneHopNodes; 

 int  TwoHopNodes; 

} Neighborhood; 

 

struct RENTRY 

{ 

 char ID; 

 unsigned int NextHopID; 

 uint32_t NextHopCost; 



 unsigned int AltNextHopID; 

 uint32_t AltNextHopCost; 

}; 

struct 

{ 

 char length; 

 struct RENTRY rentry[10]; 

} rtable; 

 

 

/////////////////////////////////////////////// 

/** 

  * routing_init - performs initial setup of routing 

  */ 

void routing_init_MMCR() 

{ 

 mmcr_route_search_BS_ = MY_DEST; // address of the target node (BS) 

 AODVcounter_update = 1; 

 mmcr_Hello_counter = 0; 

 mmcr_ACK_MMCR_counter = 0; 

 mmcr_DAT_MMCR_counter = 0; 

 mmcr_Hello_countdown_=0; 

 

 mmcr_state_=MMCR_STATE_IDLE; 

  

 mmcr_pkt_id = 0xFF; 

 

 enableDataTx_ = 0; 

 mmcr_request_send_HELLO_ = 1; // request for sending HELLO 

 // Variables to manage (periodic) timeout 

 mmcr_hello_timeout_ = RTC_OVERFLOW_TIMER_VALUE; 

 

 init_topology(); 

 mpr_select();  

 

 mmcr_startRouteSearch(MY_DEST); 

 

#ifdef MZ_TEMP_TEST_SCH_HIO 

 sch_add_loop(( sch_loop_func_t )mmcr_loop ); 

#endif // MZ_TEMP_TEST_SCH_HIO 

} 

 

/////////////////////////////////////////////// 

/** 

  * init_topology - performs initial setup of topology 

  */ 

void init_topology() 

{ 

 int x,y; 

 for (x=0;x<10;x++) 

 { 

  Neighborhood.OneHop[x].ID=0; 

  Neighborhood.OneHop[x].MPR=false; 

  Neighborhood.OneHop[x].Links=0; 

  Neighborhood.OneHop[x].LinkCost=0xFFFFFFFF; 

  for (y=0;y<10;y++) 

   Neighborhood.OneHop[x].Link[y]=0; 



  Neighborhood.TwoHop[x].ID=0; 

  Neighborhood.TwoHop[x].Covered=0; 

 } 

 

#ifdef NODE_1 

 Neighborhood.OneHopNodes = 2; 

 Neighborhood.TwoHopNodes = 1; 

 Neighborhood.OneHop[0].ID = 0x0C; 

 Neighborhood.OneHop[0].Links = 1; 

 Neighborhood.OneHop[0].Link[0] = 0x0B; 

 Neighborhood.OneHop[1].ID = 0x0D; 

 Neighborhood.OneHop[1].Links = 1; 

 Neighborhood.OneHop[1].Link[0] = 0x0B; 

 Neighborhood.TwoHop[0].ID = 0x0B; 

#endif 

#ifdef NODE_2 

 Neighborhood.OneHopNodes = 2; 

 Neighborhood.TwoHopNodes = 1; 

 Neighborhood.OneHop[0].ID = 0x0C; 

 Neighborhood.OneHop[0].Links = 1; 

 Neighborhood.OneHop[0].Link[0] = 0x0A; 

 Neighborhood.OneHop[1].ID = 0x0D; 

 Neighborhood.OneHop[1].Links = 1; 

 Neighborhood.OneHop[1].Link[0] = 0x0A; 

 Neighborhood.TwoHop[0].ID = 0x0A; 

#endif 

#ifdef NODE_3 

 Neighborhood.OneHopNodes = 2; 

 Neighborhood.TwoHopNodes = 0; 

 Neighborhood.OneHop[0].ID = 0x0A; 

 Neighborhood.OneHop[0].Links = 0; 

 Neighborhood.OneHop[1].ID = 0x0B; 

 Neighborhood.OneHop[1].Links = 0; 

#endif 

#ifdef NODE_4 

 Neighborhood.OneHopNodes = 2; 

 Neighborhood.TwoHopNodes = 0; 

 Neighborhood.OneHop[0].ID = 0x0A; 

 Neighborhood.OneHop[0].Links = 0; 

 Neighborhood.OneHop[1].ID = 0x0B; 

 Neighborhood.OneHop[1].Links = 0; 

#endif 

 

 /* init routing table */ 

 rtable.length = Neighborhood.TwoHopNodes; 

 for (x = 0; x < rtable.length; x++) 

 { 

  rtable.rentry[x].ID = Neighborhood.TwoHop[x].ID; 

  rtable.rentry[x].NextHopID = 0xFFFF; 

  rtable.rentry[x].NextHopCost = 0xFFFFFFFF; 

  rtable.rentry[x].AltNextHopID = 0xFFFF; 

  rtable.rentry[x].AltNextHopCost = 0xFFFFFFFF; 

 } 

} 

 

/////////////////////////////////////////////// 

/** 



  * mpr_select - performs MPR selection 

  */ 

void mpr_select() 

{ 

 unsigned char mpr[10]; 

     

 int x = 0; 

 int y = 0; 

 int z = 0; 

 unsigned char count[10]; 

     

 bool uncovered; 

 int overcoverage; 

 

 for(x=0;x<10;x++) 

 { 

  count[x]=0; 

  mpr[x]=0; 

 } 

 

 /** MPR selection **/ 

 // count coverage 

 for(x=0;x<Neighborhood.OneHopNodes;x++) 

 { 

  for(y=0;y<Neighborhood.OneHop[x].Links;y++) 

  { 

   for(z=0;z<Neighborhood.TwoHopNodes;z++) 

   { 

    if(Neighborhood.OneHop[x].Link[y] == 

Neighborhood.TwoHop[z].ID) 

     count[z]++; 

   } 

  }   

 } 

        

 // 1. select singular neighbors 

 for(x=0;x<Neighborhood.OneHopNodes;x++) 

 { 

  if(count[x] == 0) 

  { 

   Neighborhood.OneHop[x].MPR = true; 

   //TODO: search for single link 

  

 Neighborhood.TwoHop[find_two_hop_node(Neighborhood.OneHop[x].Link[0])].

Covered ++; 

  } 

 } 

         

 // 2. selects as MPR neighbors with the largest count of uncovered 

twohop nodes 

 x=0; 

 uncovered = true; 

 while(x<Neighborhood.OneHopNodes /*&& uncovered*/) 

 { 

  //TODO: sort high-low 

  if(count[x]>0) 

  { 



  

 if(~Neighborhood.TwoHop[find_two_hop_node(Neighborhood.OneHop[x].Link[0

])].Covered) 

   { 

    Neighborhood.OneHop[x].MPR = true; 

   

 Neighborhood.TwoHop[find_two_hop_node(Neighborhood.OneHop[x].Link[0])].

Covered ++; 

   } 

  } 

  x++; 

 } 

         

 // 3. remove redundant nodes 

 for(x=0;x<Neighborhood.OneHopNodes;x++) 

 { 

  overcoverage = 0; 

  for(y=0;y<Neighborhood.OneHop[x].Links;y++) 

  { 

   //for(z=0;z<10;z++) 

   { 

   

 if(Neighborhood.TwoHop[find_two_hop_node(Neighborhood.OneHop[x].Link[y]

)].Covered > 1) 

    { 

     overcoverage ++; 

    } 

   } 

  } 

  if(overcoverage == Neighborhood.OneHop[x].Links) 

  { 

   Neighborhood.OneHop[x].MPR = false; 

   //TODO: reduce Covered 

  } 

 } 

    y = 0;    

 for(x=0;x<Neighborhood.OneHopNodes;x++) 

 { 

  if(Neighborhood.OneHop[x].MPR) 

  { 

   mpr[y++] = Neighborhood.OneHop[x].ID; 

  } 

 } 

} 

 

char find_one_hop_node(char ID) 

{ 

 int x; 

 for (x=0;x<10;x++) 

 { 

  if(Neighborhood.OneHop[x].ID == ID) 

   return x; 

 } 

 return -1; 

} 

 

char find_two_hop_node(char ID) 



{ 

 int x; 

 for (x=0;x<10;x++) 

 { 

  if(Neighborhood.TwoHop[x].ID == ID) 

   return x; 

 } 

 return -1; 

} 

 

/////////////////////////////////////////////// 

/////////////////////////////////////////////// 

/** 

  * senddummy_data - sends dummy data - test purpose 

  * 

  * 

  */ 

unsigned int sendDATA_MMCR() 

{ 

 if(enableDataTx_) 

 { 

  mmcr_len_sample=80; 

  tsp_reserve_packet ( mmcr_len_sample, &mmcr_pkt_id, MY_DEST ); 

  tsp_send_from_modules(mmcr_pkt_id); 

  mmcr_pkt_id = 0xFF; 

 } 

 return 1; 

} 

 

 

/////////////////////////////////////////////// 

/////////////////////////////////////////////// 

/** 

  * startRouteSearch - starts the route discovery procedure 

  * 

  * 

  */ 

void mmcr_startRouteSearch ( unsigned int dst ) 

{ 

 if ( ( 0 < mmcr_Hello_countdown_ ) || ( MMCR_STATE_IDLE != mmcr_state_ 

) ) 

 { 

   return; 

 } 

 

 // ############################### 

 // start route Discovery toward BS 

 mmcr_route_search_BS_ = dst; 

  

 rtr_MMCR_Hello_Phase(); 

 

 mmcr_Hello_countdown_ = MMCR_DEFAULT_ROUTE_SEARCH_ON_REPETITIONS; 

 mmcr_state_ = MMCR_STATE_ROUTE_DISCOVERY; 

  

 mmcr_set_tx_timeout ( 10 ); 

  

 



} 

/////////////////////////////////////////////// 

/////////////////////////////////////////////// 

/** 

  * rtr_MMCR_Hello_Phase() - handles the routing phase of transmitting HELLO 

pkts 

  */ 

void rtr_MMCR_Hello_Phase() 

{ 

 int a; 

 if ( ROUTING_PROTOCOL_MMCR == my_protocol_ ) 

 { 

  // Send HELLO routing packet 

  if ( 1 == mmcr_request_send_HELLO_ )  

  { 

   uint8_t packet[RTR_MMCR_HELLO_PKT_SIZE]; 

   uint16_t len = mmcr_sendHELLO ( (hpkt_mmcr_t xdata*)packet 

); 

 

#ifdef _ENABLE_XBEE_API_ 

 

   a = api_send_packet16( packet, len, 0xFFFF); 

  

#endif // _ENABLE_XBEE_API_ 

   if ( AODVcounter_update ) 

   { 

    mmcr_Hello_counter++; 

   } 

   my_energy_ = my_energy_ - HELLO_LENGTH; 

 

   mmcr_request_send_HELLO_ = 0; 

  } 

 } 

} 

 

/////////////////////////////////////////////// 

/////////////////////////////////////////////// 

/** 

  * mmcr_set_tx_timeout(??) - set one-time timeout for MMCR hello/tc packets 

  */ 

void mmcr_set_tx_timeout ( uint16_t ms ) 

{ 

 mmcr_hello_timeout_ = rtc_get_ticks() + ms; 

 mmcr_hello_timeout_enabled_ = 1; 

} 

/////////////////////////////////////////////// 

/////////////////////////////////////////////// 

/** 

  * mmcr_sendHELLO - broadcasts a HELLO packet 

  */ 

unsigned int mmcr_sendHELLO ( hpkt_mmcr_t xdata*hello_pkt ) 

{ 

 int len = PKT_HEADER_LENGTH; // size of the packet header (start + flag 

+ dst(2) + src(2) + len) 

 

 hpkt_mmcr_t xdata *hpkt = ( ( hpkt_mmcr_t xdata * ) hello_pkt); 

 



 hpkt->start = 0x55; 

 hpkt->flags = FLAG_HELLO_MMCR;  // HELLO_MMCR packet 

 hpkt->mac_dst = MAC_BROADCAST; // Broadcast 

 hpkt->mac_src = MY_ADDR; 

 

 // FILL END-TO-END ADDRESSING 

 hpkt->dst_id = 0xFF; 

 hpkt->src_id = MY_ADDR; 

 hpkt->length=HELLO_LENGTH_MMCR - PKT_HEADER_LENGTH;; 

 

 // FILL THE MMCR field 

 hpkt->energy=my_energy_; 

 

 // FILL the CHECKSUM 

 // TODO: calculate checksum 

 hpkt->crc = 65; 

 

 return HELLO_LENGTH_MMCR; 

} 

/////////////////////////////////////////////// 

/////////////////////////////////////////////// 

/** 

  * mmcr_recvHELLO - handles a received HELLO packet 

  * should identify if this node is potential relay node 

  * if yes, then send response (ACK?) 

  */ 

 

unsigned int mmcr_recvHELLO ( hpkt_mmcr_t xdata *hp ) 

{ 

 

 unsigned long int link_factor, i=0; 

 

 uint32_t energy = hp->energy; 

 long int delay = TYPICAL_DELAY_FOR_LINK; 

 

 

 if (ENERGY_MAX_VALUE < energy) 

  energy = ENERGY_MAX_VALUE; 

 link_factor = ( energy * MMCR_BANDWIDTH_FACTOR * DELAY_SCALING ) / 

(delay); 

 

 for (i = 0; i < Neighborhood.OneHopNodes; i++) 

 { 

  if (hp->mac_src == Neighborhood.OneHop[i].ID) 

   Neighborhood.OneHop[i].LinkCost= link_factor; 

 } 

  

 mmcr_sendACK( (hpkt_mmcr_t xdata *) hp); 

 return 1; 

 

} 

/////////////////////////////////////////////// 

/////////////////////////////////////////////// 

/** 

  * mmcr_sendACK - handles a sending of ACK packet 

  * collects all info for packet 

  * prepares timestamp 



  */ 

unsigned int mmcr_sendACK ( hpkt_mmcr_t xdata*hp) 

{ 

 uint8_t i; 

 uint8_t xdata pkt[ACK_LENGTH_MMCR]; 

 

 long int delay = TYPICAL_DELAY_FOR_LINK; 

 

 apkt_t_mmcr *ap = ( (apkt_t_mmcr *) pkt ); 

 uint16_t *pkt_neighbor_addr = (uint16_t *)&(ap->neighbor_addr_first); 

 uint32_t *pkt_neighbor_cost = NULL; 

 uint8_t *pkt_crc; 

 

 ap->start = START_BYTE; 

 ap->flags = FLAG_ACK_MMCR; 

 ap->mac_dst = hp->mac_src;  //MAC DST 

 ap->mac_src = MY_ADDR;   // MAC SRC 

 

 ap->length = 15 + (Neighborhood.OneHopNodes*6);   

 

 ap->dst_id = hp->src_id; 

 ap->src_id = MY_ADDR; 

 

 ap->energy = my_energy_; 

 

 ap->neighbor_count=Neighborhood.OneHopNodes; 

 

 for(i=0;i<Neighborhood.OneHopNodes;i++) 

 { 

  *pkt_neighbor_addr = Neighborhood.OneHop[i].ID; 

  pkt_neighbor_addr++; 

  pkt_neighbor_cost = (uint32_t *)pkt_neighbor_addr; 

  *pkt_neighbor_cost = Neighborhood.OneHop[i].LinkCost; 

  pkt_neighbor_addr +=2; 

 } 

 

 pkt_crc = (uint8_t *)pkt_neighbor_addr; 

 *pkt_crc = STOP_BYTE; 

 

 if ( AODVcounter_update ) 

 { 

  mmcr_ACK_MMCR_counter++; 

 } 

 my_energy_ = my_energy_ - ap->length; 

 

#ifdef _ENABLE_XBEE_API_ 

 api_send_packet16 ( (uint8_t xdata*) ap, ap->length, ap->mac_dst ); 

 return ap; 

#else // _ENABLE_XBEE_API_ 

 return 0; 

#endif // else _ENABLE_XBEE_API_ 

 

} 

/////////////////////////////////////////////// 

/////////////////////////////////////////////// 

/** 

  * mmcr_revcACK - handles a received ACK packet 



  * should identify if this node is potential relay node 

  * if yes, then send response (ACK?) 

  */ 

unsigned int mmcr_recvACK (apkt_t_mmcr *apkt ) 

{ 

 apkt_t_mmcr xdata *ap = (( apkt_t_mmcr xdata * ) apkt); 

 long int delay = TYPICAL_DELAY_FOR_LINK; 

 unsigned long int link_factor; 

 uint32_t energy = ap->energy; 

 uint16_t *pkt_neighbor_addr = (uint16_t *)&(ap->neighbor_addr_first); 

 uint32_t *pkt_neighbor_cost = NULL; 

 int i,j,k; 

  

 if (ENERGY_MAX_VALUE < energy) 

  energy = ENERGY_MAX_VALUE; 

 link_factor = ( energy * MMCR_BANDWIDTH_FACTOR * DELAY_SCALING ) / 

(delay); 

 

 for (i = 0; i < Neighborhood.OneHopNodes; i++) 

 { 

  if (ap->mac_src == Neighborhood.OneHop[i].ID) 

  { 

   Neighborhood.OneHop[i].LinkCost= link_factor; 

   for (k = 0; k < ap->neighbor_count; k++) 

   { 

    for (j = 0; j < Neighborhood.OneHop[i].Links; j++) 

    { 

     if (*pkt_neighbor_addr == 

Neighborhood.OneHop[i].Link[j]) 

     { 

      pkt_neighbor_cost = (uint32_t 

*)(pkt_neighbor_addr+1); 

      mmcr_set_route(*pkt_neighbor_addr, ap-

>mac_src, link_factor + *pkt_neighbor_cost); 

     } 

    } 

    pkt_neighbor_addr +=3; 

   } 

  } 

 } 

 return 1; 

}  

///////////////////////////////// 

/** 

  * mmcr_sendTC - send channel switch message 

  *     

  */ 

unsigned int mmcr_sendTC ( tpkt_t_mmcr xdata*tpkt ) 

{ 

 

 int len = PKT_HEADER_LENGTH; // size of the packet header (start + flag 

+ dst(2) + src(2) + len) 

 

 //tpkt_t_mmcr xdata *tpkt = ( ( tpkt_t_mmcr xdata * ) tc_pkt); 

 

 tpkt->start = 0xAA; 

 tpkt->flags = FLAG_TC_MMCR;  // TC packet 



 tpkt->mac_dst = MAC_BROADCAST; // Broadcast 

 tpkt->mac_src = MY_ADDR; 

 

 

 tpkt->length = RTR_MMCR_TC_PKT_SIZE - PKT_HEADER_LENGTH; // of the 

packet'd data 

 

 // FILL END-TO-END ADDRESSING 

 tpkt->dst_id = 0xFF; 

 tpkt->src_id = MY_ADDR; 

 

 tpkt->energy=my_energy_; 

 tpkt->channel=MMCR_SWITCH_CHANNEL(DEFAULT_RF_CHANNEL); 

 // FILL the CHECKSUM 

 // TODO: calculate checksum 

 tpkt->crc = 65; 

 

 return RTR_MMCR_TC_PKT_SIZE; 

} 

 

///////////////////////////////// 

/** 

  * mmcr_recvTC - switch channel 

  *     

  */ 

unsigned int mmcr_recvTC ( tpkt_t_mmcr *tp ) 

{ 

 phy_set_RF_channel(tp->channel); 

 return 1; 

} 

/////////////////////////////////////////////// 

/////////////////////////////////////////////// 

/** 

  * mmcr_loop() - executes main loop block (BUT DOES NOT LOOP ITSELF!!!) 

  */ 

void mmcr_loop( void ) 

{ 

 if (1 == mmcr_hello_timeout_enabled_) 

 { 

  if ( mmcr_hello_timeout_ < rtc_get_ticks()) 

  { 

   mmcr_hello_timeout_enabled_ = 0; 

   mmcr_hello_timeout_ = RTC_OVERFLOW_TIMER_VALUE; 

   mmcr_hello_timeout(); 

  } 

 } 

} 

///////////////////////////////// 

/** 

  * mmcr_hello_timeout(??) - runs the procedure of periodic sending of Hello 

packets 

  */ 

void mmcr_hello_timeout()  

{ 

 // Timeout reached -> is there a route found? or should I retransmit 

HELLO? 

 unsigned int mac_addr = mmcr_neighbor_analyse(MY_DEST); 



 if ( 0 < mmcr_Hello_countdown_ ) 

 {   mmcr_Hello_countdown_ --; // count down HELLO 

retransmissions 

  // number of retransmission not reached -> resent HELLO 

  YLED = ~YLED; 

     

  mmcr_request_send_HELLO_ = 1; 

  mmcr_request_send_TC_= 1; 

  mmcr_set_tx_timeout(ROUTE_SEARCH_HELLO_INTERVAL); 

  rtr_MMCR_Hello_Phase(); 

  YLED = ~YLED; 

 } 

 else 

 { 

  // all Hello messages has been without response -> STOP 

  mmcr_Hello_countdown_=0; 

  mmcr_request_send_HELLO_ = 0; //1; 

  mmcr_request_send_TC_ = 0; 

  mmcr_state_=MMCR_STATE_IDLE; 

#ifdef NODE_1 //to handle any unprocessed acks 

  mmcr_set_route(0x0B,0x0C,0xCCCC); 

  mmcr_set_route(0x0B,0x0D,0xCCCD); 

#endif 

  enableDataTx_ = 1; 

 } 

}  

/////////////////////////////////////////////// 

/////////////////////////////////////////////// 

/** 

  * mmcr_set_route - adds or updates a route to "dst_id" 

  */ 

int mmcr_set_route ( unsigned int dst_id, unsigned int next_hop, uint32_t 

metric ) 

{ 

 int i; 

 

 mpr_select(); 

 for (i = 0; i < rtable.length; i++) 

 { 

  if (rtable.rentry[i].ID == dst_id) 

  { 

   // rtable record spotted -> set next hop 

   if (rtable.rentry[i].NextHopID == 0xFFFF) 

   { 

    rtable.rentry[i].NextHopID = next_hop; 

    rtable.rentry[i].NextHopCost = metric; 

    return 1;  //successfully added route 

   } 

   else if (rtable.rentry[i].NextHopID == next_hop) 

   { 

    rtable.rentry[i].NextHopCost = metric; 

    return 1;  //successfully updated route 

   } 

   else if (rtable.rentry[i].AltNextHopID == 0xFFFF) 

   { 

    rtable.rentry[i].AltNextHopID = next_hop; 

    rtable.rentry[i].AltNextHopCost = metric; 



    return 1;  //successfully added route 

   } 

   else if (rtable.rentry[i].AltNextHopID == next_hop) 

   { 

    rtable.rentry[i].AltNextHopCost = metric; 

    return 1;  //successfully updated route 

   } 

  } 

 } 

 return 0; // two hop id not found!!!  

} 

/////////////////////////////////////////////// 

/////////////////////////////////////////////// 

/** 

  * neighbor_analyse - performs analysis of the neighbor table 

  and selects the best node 

  */ 

unsigned int mmcr_neighbor_analyse(unsigned int dst_id) 

{ 

 unsigned int i, result = 0xFFFF; // by default FFFF indicating lack 

of route 

  

 /* check if dst_id is a one hop neighbor */ 

 for (i = 0; i < Neighborhood.OneHopNodes; i++) 

 { 

  if (Neighborhood.OneHop[i].ID == dst_id) 

   result = Neighborhood.OneHop[i].ID; 

 } 

 /* check if dst_id is a two hop neighbor */ 

 for (i = 0; i < rtable.length; i++) 

 { 

  if (rtable.rentry[i].ID == dst_id) 

  { 

   if ((rtable.rentry[i].NextHopID == 0xFFFF) && 

(rtable.rentry[i].AltNextHopID == 0xFFFF)) 

    result = 0xFFFF; 

   else if ((rtable.rentry[i].NextHopCost <= 

rtable.rentry[i].AltNextHopCost) && (rtable.rentry[i].NextHopID != 0xFFFF)) 

    result = rtable.rentry[i].NextHopID; 

   else if (rtable.rentry[i].AltNextHopID != 0xFFFF) 

    result = rtable.rentry[i].AltNextHopID; 

  } 

 } 

 return result; 

} 

 

/////////////////////////////////////////////// 

/** 

  * sendDATA - handles a sending of DATA packet 

  * 1) check if buffer ready then passes packet 

  * 2) else temporarly stores 

  */ 

char MMCR_send_DATA_base ( unsigned int base ) 

{ 

 unsigned int mac_d; 

 pkt_t * xdata pkt = ( pkt_t* ) ( & ( buffer0[ base] ) ); 

//&(QBUFF_ACCESS(base,0)); 



 

 

 if (enableDataTx_) 

 //if (1) 

 { 

  mac_d = mmcr_neighbor_analyse ( pkt->dst_id ); 

 

  if (0xFFFF==mac_d) 

  { 

   enableDataTx_ = 0; 

   return 0; 

  } 

   

  pkt->mac_dst = mac_d; 

  pkt->mac_src = MY_ADDR; 

 

  // send the packet 

  if ( AODVcounter_update ) 

  { 

   mmcr_DAT_MMCR_counter++; 

  } 

 } 

 else 

 { 

  APPEND_LOG ( NODE_ID_STR, NODE_ID_STR_LEN ); 

  APPEND_LOG ( "DROP DATA\r", 10 ); 

  // drop the packet 

  return 0; 

 } 

 return 1; 

} 

 

/////////////////////////////////////////////// 

/////////////////////////////////////////////// 

/** 

  * recvAcceptData - handles a received ACCEPT DATA packet from BS 

  * 1) enables data transmission 

  * 2) 

  */ 

unsigned int mmcr_recvAcceptData ( char *pkt ) 

{ 

 pkt_t xdata *p = ( ( pkt_t_mmcr xdata * ) pkt); 

 

 // analyse ACK packet 

 if ( 0xFFFF == p->mac_dst ) 

 { 

  // enable DATA transmission 

  enableDataTx_ = 1; 

  APPEND_LOG ( NODE_ID_STR, NODE_ID_STR_LEN ); 

  APPEND_LOG ( "DATA - OK\r\r\r", 12 ); 

  return 1; 

 } 

 // wrong trasmitter 

 return 0; 

} 

 

///////////////////////////////// 



/** 

  * mmcr_dropped_link(??) - the link failed (after few retransmissions??) - 

update routing 

  *    and optionally restart route discovery 

  */ 

void mmcr_dropped_link() 

{ 

 int i; 

 for (i = 0; i < rtable.length; i++) 

 { 

  if (rtable.rentry[i].ID == MY_DEST) 

  { 

   // rtable record spotted -> clear next hop 

   rtable.rentry[i].NextHopID = 0xFFFF; 

  } 

 } 

 if ((rtable.rentry[i].NextHopID == 0xFFFF) && 

(rtable.rentry[i].AltNextHopID == 0xFFFF)) 

  mmcr_startRouteSearch(MY_DEST); 

} 

#endif /* FEAT_ENABLE_MMCR */ 

 


	Data aggregation in wireless sensor networks
	Recommended Citation

	Kasirajan_text
	Kasirajan_SourceCode
	Kasirajan_SourceCode2

