17 research outputs found

    Optimal routing for automated emergency vehicle response for incident intervention in a traffic network

    Get PDF
    Congestion constitutes a major problem in modern urban traffic networks if not well managed. Its monstrous effects, on occasions, can paralyze a traffic network eating deep into the productive hours of commuters as well as vehicles and persons on essential services. Particularly affected are incidence-intervention vehicles such as emergency vehicles and fire-fighting vehicles. Whatever the cause of the congestion, its effect is counter-productive and an indication of an inefficient traffic network. This work, as presented in this paper, is concerned about the issue of traffic route management for emergency service (emergency vehicle) for which a delay of few minutes may cause tremendous loss of lives and properties. The route management scheme built for this purpose integrates information obtained from the use of Radio Frequency Signals for Traffic Light Preemption at Intersections in a Proteus Simulator environment and the use Arc GIS as a mode of routing the emergency vehicle from base to the incidence location, then to Health Facilities and from thence back to the emergency vehicle base in an optimal routing time. Traffic information are loaded into the Arc GIS environment which predicts the required tri-legged optimal routing and its duration using Dijkstra’s algorithm. Different scenarios of emergency vehicle, incidence and health facility locations were exploited using the scheme and compared with situations without their implementation. The proposed scheme outperforms the trial and error routing of emergency vehicles and can be embedded into traffic advisory system or as stand-alone emergency vehicle management system.Keywords: GIS, Dijkstra’s algorithm, Facility Location, Emergency-Vehicle, Optimal Routin

    Route Planning with Dynamic Information from the EPLOS System

    Get PDF
    The paper presents the problem of distribution route planning with dynamic information about sudden customers\u27 needs. Particular attention was paid to dynamic vehicle route planning and its influence on the distance covered by a distribution vehicle. In the article, authors assume that the quick information about customers’ sudden needs is transferred from the EPLOS tool data base. Authors analyze the available literature on transport route optimization and propose a solution to the problem of distribution among customers with sudden needs. In order to present the impact of quick information influence on the distribution route minimization, a simulation model of the vehicle routing problem was generated in the FlexSim environment

    Interaction between intelligent agent strategies for real-time transportation planning

    Get PDF
    In this paper we study the real-time scheduling of time-sensitive full truckload pickup-and-delivery jobs. The problem involves the allocation of jobs to a fixed set of vehicles which might belong to dfferent collaborating transportation agencies. A recently proposed solution methodology for this problem is the use of a multi-agent system where shipper agents other jobs through sequential auctions and vehicle agents bid on these jobs. In this paper we consider such a multi-agent system where both the vehicle agents and the shipper agents are using profit maximizing look-ahead strategies. Our main contribution is that we study the interrelation of these strategies and their impact on the system-wide logistical costs. From our simulation results, we conclude that the system-wide logistical costs (i) are always reduced by using the look-ahead policies instead of a myopic policy (10-20%) and (ii) the joint effect of two look-ahead policies is larger than the effect of an individual policy. To provide an indication of the savings that might be realized with a central solution methodology, we benchmark our results against an integer programming approach

    Determining departure times in dynamic and stochastic maritime routing and scheduling problem

    Get PDF
    In maritime transportation, decisions are made in a dynamic setting where many aspects of the future are uncertain. However, most academic literature on maritime transportation considers static and deterministic routing and scheduling problems. This work addresses a gap in the literature on dynamic and stochastic maritime routing and scheduling problems, by focusing on the scheduling of departure times. Five simple strategies for setting departure times are considered, as well as a more advanced strategy which involves solving a mixed integer mathematical programming problem. The latter strategy is significantly better than the other methods, while adding only a small computational effort

    Look-ahead strategies for dynamic pickup and delivery problems

    Get PDF
    In this paper we consider a dynamic full truckload pickup and delivery problem with time-windows. Jobs arrive over time and are offered in a second-price auction. Individual vehicles bid on these jobs and maintain a schedule of the jobs they have won. We propose a pricing and scheduling strategy based on dynamic programming where not only the direct costs of a job insertion are taken into account, but also the impact on future opportunities. Simulation is used to evaluate the benefits of pricing opportunities compared to simple pricing strategies in various market settings. Numerical results show that the proposed approach provides high quality solutions, in terms of profits, capacity utilization, and delivery reliability

    A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers

    Full text link
    We propose a ridesharing strategy with integrated transit in which a private on-demand mobility service operator may drop off a passenger directly door-to-door, commit to dropping them at a transit station or picking up from a transit station, or to both pickup and drop off at two different stations with different vehicles. We study the effectiveness of online solution algorithms for this proposed strategy. Queueing-theoretic vehicle dispatch and idle vehicle relocation algorithms are customized for the problem. Several experiments are conducted first with a synthetic instance to design and test the effectiveness of this integrated solution method, the influence of different model parameters, and measure the benefit of such cooperation. Results suggest that rideshare vehicle travel time can drop by 40-60% consistently while passenger journey times can be reduced by 50-60% when demand is high. A case study of Long Island commuters to New York City (NYC) suggests having the proposed operating strategy can substantially cut user journey times and operating costs by up to 54% and 60% each for a range of 10-30 taxis initiated per zone. This result shows that there are settings where such service is highly warranted

    A probabilistic approach to pickup and delivery problems with time window uncertainty

    Get PDF
    In this paper we study a dynamic and stochastic pickup and delivery problem proposed recently by Srour, Agatz and Oppen. We demonstrate that the cost structure of the problem permits an effective solution method without generating multiple scenarios. Instead, our method is based on a careful analysis of the transfer probability from one customer to the other. Our computational results confirm the effectiveness of our approach on the data set of Srour et al

    Strategies for Handling Temporal Uncertainty in Pickup and Delivery Problems with Time Windows

    Get PDF
    In many real-life routing problems there is more uncertainty with respect to the required timing of the service than with respect to the service locations. We focus on a pickup and delivery problem with time windows in which the pickup and drop-off locations of the service requests are fully known in advance, but the time at which these jobs will require service is only fully revealed during operations. We develop a sample-scenario routing strategy to accommodate a variety of potential time real- izations while designing and updating the routes. Our experiments on a breadth of instances show that advance time related information, if used intelligently, can yield benefits. Furthermore, we show that it is beneficial to tailor the consensus function that is used in the sample-scenario approach to the specifics of the problem setting. By doing so, our strategy performs well on instances with both short time windows and limited advance confirmation

    Robust Solution Approach for the Dynamic and Stochastic Vehicle Routing Problem

    Get PDF
    The dynamic and stochastic vehicle routing problem (DSVRP) can be modelled as a stochastic program (SP). In a two-stage SP with recourse model, the first stage minimizes the a priori routing plan cost and the second stage minimizes the cost of corrective actions, performed to deal with changes in the inputs. To deal with the problem, approaches based either on stochastic modelling or on sampling can be applied. Sampling-based methods incorporate stochastic knowledge by generating scenarios set on realizations drawn from distributions. In this paper we proposed a robust solution approach for the capacitated DSVRP based on sampling strategies. We formulated the problem as a two-stage stochastic program model with recourse. In the first stage the a priori routing plan cost is minimized, whereas in the second stage the average of higher moments for the recourse cost calculated via a set of scenarios is minimized. The idea is to include higher moments in the second stage aiming to compute a robust a priori routing plan that minimizes transportation costs while permitting small changes in the demands without changing solution structure. Additionally, the approach allows managers to choose between optimality and robustness, that is, transportation costs and reconfiguration. The computational results on a generic dynamic benchmark dataset show that the robust routing plan can cover unmet demand while incurring little extra costs as compared to the preplanning. We observed that the plan of routes is more robust; that is, not only the expected real cost, but also the increment within the planned cost is lower

    Dynamic vehicle routing problems: Three decades and counting

    Get PDF
    Since the late 70s, much research activity has taken place on the class of dynamic vehicle routing problems (DVRP), with the time period after year 2000 witnessing a real explosion in related papers. Our paper sheds more light into work in this area over more than 3 decades by developing a taxonomy of DVRP papers according to 11 criteria. These are (1) type of problem, (2) logistical context, (3) transportation mode, (4) objective function, (5) fleet size, (6) time constraints, (7) vehicle capacity constraints, (8) the ability to reject customers, (9) the nature of the dynamic element, (10) the nature of the stochasticity (if any), and (11) the solution method. We comment on technological vis-à-vis methodological advances for this class of problems and suggest directions for further research. The latter include alternative objective functions, vehicle speed as decision variable, more explicit linkages of methodology to technological advances and analysis of worst case or average case performance of heuristics.© 2015 Wiley Periodicals, Inc
    corecore