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Abstract

In many real-life routing problems there is more uncertainty with respect to the

required timing of the service than with respect to the service locations. We focus on

a pickup and delivery problem with time windows in which the pickup and drop-o↵

locations of the service requests are fully known in advance, but the time at which

these jobs will require service is only fully revealed during operations. We develop

a sample-scenario routing strategy to accommodate a variety of potential time real-

izations while designing and updating the routes. Our experiments on a breadth of

instances show that advance time related information, if used intelligently, can yield

benefits. Furthermore, we show that it is beneficial to tailor the consensus function

that is used in the sample-scenario approach to the specifics of the problem setting.

By doing so, our strategy performs well on instances with both short time windows

and limited advance confirmation.

1 Introduction

Most vehicle routing problems encountered in practice, su↵er from an initial level of uncer-

tainty regarding some of the relevant parameters. In the context of truckload, vehicle routing

problems, this uncertainty in the relevant parameters can be classified along two dimensions
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– spatial and temporal. Spatial uncertainty refers to situations in which the exact location

of a job is not known (or known inaccurately) during planning, but becomes known at some

point in operations. Temporal uncertainty, on the other hand, refers to situations in which

the exact service time or time window of a job is not known (or known inaccurately) until

operations are underway. These two dimensions are so intertwined that focusing on one of

them separately is typically di�cult.

Regarding truckload, pickup and delivery problems, the literature tends to focus on sce-

narios in which both the release time and the location of future jobs are unknown. For

such problems, multiple solution techniques exist ranging from reactive, online/dynamic,

rolling horizon strategies to stochastic strategies (Berbeglia et al. 2010). The isolated study

of temporal uncertainty is, however, less present in the literature. We seek to fill this gap

by studying strategies for coping with time window uncertainty given a set of known service

locations across a collection of pickup and delivery problems with time windows.

Despite its absence from the literature, this type of uncertainty is common in practice.

For example, harbor pilots, who must bring ships to berth, know where they will meet the

ship and where it will berth, but the exact arrival time of the ship is often unknown. In

container transport, a drayage provider often knows the location of the terminals for pickup

and drop-o↵, but does not know when the container will be released from the pickup terminal.

This problem is also common in passenger transportation when a patient needs to be driven

home following a medical procedure, but the duration of the procedure is uncertain. A

recently growing business area (Bandyk 2012), that also faces this uncertainty, is on-demand

chau↵eur services that transport customers home in their own vehicle as a safe alternative

to driving home inebriated.

In all of these contexts, it is common for the customers to alert the service provider to the

need for transport without initially committing to a specific time. In such preannouncements,

the customer will quote both the pickup and drop-o↵ location along with an approximate

pickup time, e.g. around 11am. Later, during operations, when the preannounced customer

actually requires service, they call the company for pickup. In return for this advance

notification, the customer expects to receive fast service when they call in. If announced early
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enough, the location information provided by the preannouncements may facilitate more

e�cient, operational route plans. However, it is unclear how to incorporate the probabilistic

time information into the route planning in a way that maximizes the operational benefits.

To the best of our knowledge, this is the first paper to study the impact of uncertain

advance time window information in vehicle routing. Specifically, our contributions are the

introduction and explanation of a relevant new planning problem – the pickup and delivery

problem with confirmed locations and uncertain time windows; the development of a novel

sample-scenario routing strategy to deal with uncertain advance time window information;

and a demonstration of the e�cacy of our strategy through experiments based on data

inspired by a real-world application. Our results show that having information on the service

locations can be beneficial even if there is significant uncertainty about the timing.

In the next section, we discuss the relevant literature. Section 3 describes our formulation

of the problem and the o↵-line routing model. In Section 4, we introduce the dynamic

routing strategies that we test. In Section 5, we describe the construction and structure of

the problem instances used to test the strategies. In Section 6, we present the results of the

computational experiments. We conclude the paper in Section 7 with a discussion of our

findings and future research directions.

2 Related Literature

The problem that is discussed in this paper can be categorized as a stochastic and dynamic

pickup and delivery problem. The problem is stochastic because the information about the

timing of the jobs can be described by a random variable with a known distribution. The

problem is dynamic because the available information evolves over time – with accuracy

at its worst during initial planning and at its best during operations. What is particulary

interesting in our context is that the job locations are known in advance while their timing

is uncertain.

The literature provides several approaches to cope with this evolution of information:

through the incorporation of stochastic information during planning (Dror et al. 1989),
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through update methods, where a static problem is solved repeatedly (Berbeglia et al. 2010,

Pillac et al. 2012a), through online algorithms where a specific action is taken in response

to new information arriving (Jaillet and Wagner 2006), or through stochastic, dynamic

strategies that combine the first two approaches (Goodson et al. 2013). When incorporating

stochastic information in the planning phase, the goal is to generate a robust plan – one

that remains relevant despite changes in information. Both dynamic and online algorithms

are similar in that new routes or routing actions are only undertaken when the uncertain

information becomes certain. We combine a stochastic strategy with a dynamic strategy by

merging a set of stochastic time related information with a set of certain information, for

both location and time windows, to create and update plans during operations.

The issue of exploiting knowledge on future demand information has received a lot of

attention in the last decade (see Ichoua et al. (2006) for an overview). This line of research

typically shows that explicitly taking probabilistic spatial information into account is benefi-

cial in terms of the solution quality. Even after the vehicles are in transit, stochastic, dynamic

strategies that accommodate job location information on unknown future jobs demonstrate

improvements (see for example Thomas and White (2004), Hyytiä et al. (2012), Cortes et al.

(2009)). Others use probabilistic spatial information to address the issue of choosing where

the vehicles should idle in anticipation of future requests (Larsen et al. 2004, Thomas 2007).

Still others use probabilistic or advance information to make decisions about which jobs to

serve (Jaillet and Lu 2011, Kim et al. 2004).

Considering the problem from the perspective of decision making, Approximate Dynamic

Programming (ADP) provides a tool to decompose the problem into a series of decisions

over time. The key to using ADP e↵ectively is to have a clear relationship on the transition

from one system state to the next both pre- and post-decision and to have a mechanism

by which to evaluate the di↵erent decision policies. Powell et al. (1988) utilized ADP to

study a problem of truckload pickup and delivery when the job requests are uncertain. More

recently, Goodson et al. (2013) used a roll-out algorithm along the lines of ADP in order to

serve loads when the size of the loads was uncertain. Our problem contrasts to both of these

settings in that we know both the job locations and load size with certainty – it is the time
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that the jobs will be released that is uncertain. As such, the main challenge is defining the

proper state transitions in a way that is tractable. The solution strategy that we choose to

overcome this challenge is that of scenario sampling.

Several papers in the area of stochastic, dynamic vehicle routing use sampling to construct

a set of potential routes from which the best route is chosen at each decision epoch. Bent and

Van Hentenryck (2004) use a set of potential plans that contain both the existing customers

and a set of potential requests. From among these plans, they select and enact the plan

with the most similarity to all of the other plans in terms of vehicle to job assignments.

Hvattum et al. (2006) present a similar sampling-based strategy for a dynamic vehicle routing

problem. They formulate the potential job realizations in the context of a stochastic model

with recourse and solve the model repeatedly at given intervals. Ghiani et al. (2012) compare

a sample-scenario based approach to a simpler anticipatory insertion heuristic in the context

of a dynamic and stochastic traveling salesman problem. Pillac et al. (2012b) present a

framework to generalize the strategy of Bent and Van Hentenryck (2004) across a variety of

vehicle routing problems. They demonstrate the capability of this framework on the Dynamic

Vehicle Routing Problem with Stochastic Demands. In our work, we use an object-oriented

architecture similar to that of Pillac et al. (2012b) to implement and test our real-time

strategy that uses sampling to generate a set of potential plans. However, the set of plans

we generate is not based on sampling potential job locations, but sampling potential time

window realizations given a set of known job locations.

Focusing on the pickup and delivery literature, as noted in Parragh et al. (2008), a multi-

tude of articles measure the impact of real-time routing in the single vehicle, dynamic pickup

and delivery problem through the use of competitive analysis. However, these results are

less relevant to our work as we examine a setting with multiple vehicles. More similar to

our setting, Mitrović-Minić et al. (2004) study a multi-vehicle dynamic pickup and delivery

problem with time windows. They evaluate di↵erent heuristic strategies for a less-than-

truckload courier service which may be “non-optimal” in the near term, but work well over

a longer horizon due to the incorporation of slack. However, unlike the current work, they

do not explicitly take into account any information about the locations of future requests or
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their timing. Furthermore, our work di↵ers because we focus on a setting in which each job

requires the full capacity of the vehicle.

Since unit-capacity pickup and delivery problems most frequently arise in freight trans-

portation, the problem class is termed the dynamic truckload pickup and delivery problem

(Savelsbergh and Sol 1995). In the dynamic truckload pickup and delivery problem liter-

ature, the work of Yang et al. (1999, 2004) is most relevant to our work. In Yang et al.

(1999), the authors introduce an e�cient mixed-integer program for use in a dynamic rolling

horizon strategy. They demonstrate that using a re-optimization strategy to react to the

arrival of new jobs is better, in terms of routing costs, than a variety of heuristic, insertion

strategies. Extending this work in Yang et al. (2004), the authors demonstrate that a rolling

horizon strategy which also includes, via opportunity costs, probabilistic information on fu-

ture job pickup and drop-o↵ locations outperforms the simple reactive strategy. In contrast

to the work of Yang et al. (2004), who consider all vehicles as part of one planning problem,

Mes et al. (2010) introduce a dynamic pickup and delivery problem strategy for one vehicle.

The pricing and scheduling strategy that they introduce is based on dynamic programming

and explicitly takes into account the impact on future opportunities of each new job. The

importance of including future opportunities in their strategy stems from the context they

examine in which each individual vehicle is assumed to be bidding for jobs in a series of job

auctions. As the realistic contexts for our problem (ship berthing, container transport, taxi

services, and chau↵eur services), assume a dedicated set of customers served by a fixed fleet

of vehicles, the work of Yang et al. (2004) is more relevant.

3 The Problem Setting and Definition

We consider a stylized setting that we believe captures the essence of most truckload trucking

and taxi environments. In this context, the delivery vehicles have unit capacity and can serve

only one job at a time. A transportation service provider receives a sequence J of pick-up

and delivery requests arriving over time.

A service request i 2 J that calls in at time ci specifies the pickup location, drop-o↵
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location, and desired pickup time. To take into account that customers typically have some

flexibility in their timing, we model the desired pickup time for request i as a service time

window of length TWi with an earliest pickup time, ei, and a latest pickup time, ei+TWi = li.

The service cannot start before the earliest pickup time and delays beyond the latest pickup

time are unacceptable for the customer. We refer to the di↵erence ei�ci as the announcement

lead time, Li.

A customer can also preannounce a request for service. When a job i 2 J preannounces

their service request at time ai, before the actual call-in time, they state their pickup location,

drop-o↵ location, and expected pickup time window, defined by an earliest pickup time, êi

and a latest pickup time, l̂i. As preannouncements and the uncertain time information they

carry are the basis of this paper, we consider a setting in which all jobs are preannounced

before the start of operations. The time line of a job and its associated information events

are shown in Figure 1.

The locations are guaranteed to be accurate and all preannounced jobs will materialize,

but there is uncertainty about the actual required pickup time. Nevertheless, the expected

pickup time as preannounced by the customers should be the best predictor of the actual

individual pickup time because it incorporates all factors that are relevant to their individual

situation. However, like many predictions, these expected times cannot be taken literally and

the customer may require service earlier or later than expected due to various uncontrollable

external events. This is similar to the concept of forecasting error in settings where we must

predict some future event. As such, the di↵erences between the actual pickup times and

the forecast pickup times are random variables known only in distribution when planning.

When a certain service provider has been in operation for a while it is likely that there will

be historical data available on the distribution of the error of the preannounced information.

The simplest approach is to use the observed empirical distribution to predict the error

distribution of a new customer (Williams and Goodman 1971). More advanced methods

could involve data mining and machine learning techniques to determine the characteristics of

the preannouncements that would allow for greater reliability in handling the pre-announced

information.
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Figure 1: Time line of a preannounced job.

We assume that preannouncements arrive early enough to support decisions on how many

vehicles |V | to deploy on a given day. The number of vehicles are chosen in a way that we

can serve all jobs e�ciently if they actually confirm for their preannounced time windows.

Thus, when a job actually calls in to confirm, the available fleet of vehicles is fixed. Our ob-

jective is to find the vehicle routes that maximize the expected number of preannouncements

served within their confirmed time windows while minimizing the routing costs. A job can

be rejected in execution since its real time window information is only revealed at its con-

firmation time. Similarly, jobs that may appear infeasible initially may be serviceable once

the real time window information is revealed. When a job is rejected, it means, in practice,

that we have to hire an alternative (more expensive) resource to serve this job. Therefore,

we penalize the rejections based on a fixed fee plus the job’s distance. In the real-world

passenger transport and ship berthing applications that motivated our research, customers

pre-announce their need for service upfront to ensure immediate service at the time they

call-in. Therefore, we prefer to model the cost of rejections as opposed to permitting a

penalized delay.

3.1 Formulation O↵-line Model

We establish a new route plan prior to the start of operations and at each decision epoch.

A decision epoch is triggered whenever a job confirms service. The route plan established

at each decision epoch is, in part, found by modeling and solving a snap-shot version of the

o↵-line routing problem. We model the o↵-line problem as a standard truck-load pickup and
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delivery problem using a model that is very similar to the one presented in Yang et al. (1999)

and Yang et al. (2004).

The model seeks a set of least cost cycles that describe the order in which each vehicle

should serve the jobs, the vehicles that should remain idle, and the jobs that should be

rejected. The model operates over three sets of nodes: one set of nodes, V , representing the

vehicles, one set of nodes, J , representing the jobs, and one set of nodes, N , representing a

combined set that includes one node for each vehicle and each job. It is important to note

that each job node actually represents a revenue generating trip from a pickup location to a

drop-o↵ location. Thus, the distances between any two nodes are asymmetric.

As depicted in Figure 2, the solution resulting from this model may be a tour from Vehicle

1 to Job 1, then Job 2, then Vehicle 2, then Job 3, then back to Vehicle 1. This would

indicate that Vehicle 1 serves Jobs 1 and 2, while Vehicle 2 serves Job 3. The cycle including

only Vehicle 3 indicates that Vehicle 3 remains idle. Similarly, the cycle including only Job

4 indicates that Job 4 is rejected.

Figure 2: Cycles in the MIP solution structure.

There are two classes of decision variables: those associated with routing and those associ-

ated with the timing of the jobs. The routing variables are binary variables xij representing

the presence (1) or the absence (0) of an arc between all of the nodes in both V and J . The
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timing variables are the continuous variables �i representing the time of arrival at the pickup

location of job i 2 J .

The model aims to minimize both the empty (or non-revenue generating) routing costs and

the opportunity costs associated with rejecting jobs. We do not include a cost per time unit

(e.g. labor costs) because we assume these to be fixed regardless of the routes. Specifically,

the cost coe�cients of the routing variables in the objective function are: the cost of including

an arc from a node k 2 V to any other node l 2 V , which is the cost (0, in our case) of

allowing vehicle k to remain idle; dOki is the cost of an arc from a node k 2 V to a node i 2 J ,

which is the cost of the route from vehicle k’s current location or origin to the pickup location

of job i; dij is the cost of including an arc from a node i 2 J to another node j 2 J , which

is the cost of traveling from the drop-o↵ location of job i to the pickup location of job j; dii

is the cost of an arc from a node i 2 J to the same node i 2 J , which is the cost of rejecting

job i; and d

H
ik is the cost of an arc from a node i 2 J to a node k 2 V , which is the cost of

traveling from the drop-o↵ location of job i to the depot or home base of vehicle k. Thus,

the objective function is: min
P

k2V
P

i2J d
O
kixki +

P
i2J
P

j2J dijxij +
P

i2J
P

k2V d

H
ikxik.

The problem is constrained by the need to include every job on a route or as part of the

rejections while also obeying the time windows imposed on the pickup locations for the jobs.

Mathematically, these constraints are:

X

j2N

xij = 1 8i 2 N (1)

X

i2N

xij = 1 8j 2 N (2)

�i �
X

k2V

(dOki + v

k)xki � 0 8i 2 J (3)

�j � �i �Mxij + (dii + dij)xii � dii + dij �M

8i, j 2 J (4)

ēi  �i  l̄i 8i 2 J (5)

�i 2 R+ 8i 2 J (6)

xij 2 {0, 1} 8i, j 2 N (7)
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The routing related constraints, equations (1) and (2), specify that every node must have

one arc that enters it and one arc that leaves it. It is possible that one arc both enters and

exits the same node (i.e. a self loop) if the node is from the set V , this represents an idle

vehicle; if the node is from set J , this represents a rejected job. An arc from a vehicle node

to a job node is only feasible if it is time feasible as specified in equations (3) and (5), i.e.

if it is possible to start service within the job’s presumed time window given the time that

the vehicle becomes available, vk, and the time required to travel from the vehicle’s available

location to the pickup location. We disallow any delay in arrival to the pickup location.

Similarly, as specified in equation (4) an arc from one job i to another job j is only feasible

if it is time feasible to serve job j after job i. Constraints (6) and (7) specify the domain of

the decision variables.

Even though we know the job locations at the start of operations, the problem is still

dynamic as the job confirmations arrive over time. The following section focuses on the use

of the o↵-line problem in a rolling horizon framework.

4 Real-time Strategies

We incorporate the o↵-line model that was presented in Subsection 3.1 in a rolling horizon

framework that runs the optimization each time a job is confirmed to the system, that is at

every ci. Due to the relatively short announcement lead times there is no time to postpone

the assignment decisions and bu↵er several requests. We assume that the optimization run

is instantaneous. This is not unrealistic as the o↵-line optimization problem consistently

solves in less than one minute on an average laptop. Figure 3 illustrates the interplay of the

planning and execution events in simulation.

For ease of exposition and without loss of generality, we assume that all ci are ordered

in increasing order (ci < ci+1). An optimization run at time ci includes all unserved jobs

that are known (confirmed or preannounced) at time ci excluding the jobs that were rejected

earlier in execution. The optimization run yields an operational route plan that specifies the

assignment of vehicles to jobs and the time at which the assigned vehicles are scheduled to
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pick up the jobs within their time windows. The operational route plan also specifies which

jobs are impossible to serve within their time windows.

There are four di↵erent actions that can be undertaken following the generation of a new

operational route plan: (1) move the vehicle to an assigned, preannounced job that has

not confirmed yet, (2) commit the assignment of the vehicle to a confirmed job, (3) reject a

confirmed job, or (4) let the vehicle wait idle at its current location, which in some cases may

be at a point en route. In reality, if waiting en route is not permissible, then an additional

constraint may be added to the MIP to forbid vehicles from waiting anywhere other than

the depot, the pickup location or the dropo↵ location of a job. In our case, inspired by

pickup and dropo↵ operations in an urban environment, waiting en route is not an issue.

The specific actions taken based on the operational route plan are based on the timings of

the jobs. The route plan indicates both the earliest time that a vehicle v is available to serve

job j, tv�j , and the latest time that the vehicle must depart from its current location to reach

job j at the time specified in the plan, tv+j .

In an earlier study of the traveling salesman problem with confirmed locations and un-

certain release times, Srour and Zuidwijk (2008) show that it is beneficial to move to a

known unserved job location as soon as possible. While we are working in a di↵erent metric

space with time windows rather than release times, we also adopt the policy that a vehicle,

assigned to a job in the operational plan, will start moving towards it as early as possible,

i.e. at time t

v�
j . However, the service at job i cannot start before the confirmed or actual

earliest service time ei. If a vehicle arrives at the pickup location before this time it will wait

until the appropriate time. If the vehicle is moving to or waiting at the pickup location of an

unconfirmed preannouncement, it may be re-routed to serve another job. We only commit

to an assignment for jobs that are confirmed (t > ci) and only at the latest possible move

time (tv+j = t) for that job. All jobs with t

v+
j > t are always included in the pool of unserved

jobs that are part of the optimization run at t. We reject a job if it cannot be scheduled

for service within its confirmed pickup time window. As such, a preannounced job is never

rejected before its confirmation time.

At the next optimization run, at time ci+1, all vehicle locations are updated along with
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the distance between the vehicles and all unserved jobs. If no subsequent optimization run

occurs before time t

v�
j , then vehicle v is set to move to job j at time t

v�
j . Similarly, if no

subsequent optimization run occurs before time tv+j , then we commit to the assignment: job

j is served by vehicle v, with travel beginning at time t

v+
j . The commitment of vehicle v to

job j is maintained in all future plans.

We term the time window information used in solving the o↵-line problem “the presumed

time window information” and denote it as
�
ēi, l̄i

�
. The manner by which we include the pre-

announced jobs with their “presumed” time window information defines our various routing

strategies, the topic of the following subsections.

4.1 Simple Benchmark Strategies

The Näıve strategy represents the most straightforward way to incorporate the preannounced

information. This strategy reflects what a service provider would do without sophisticated

decision support tools. In this strategy, we schedule preannouncements as if the prean-

nounced time window, (êi, l̂i), is correct until the job confirms at ci. Thus, when t < ci, job i

is included with (ēi, l̄i) = (êi, l̂i) and when t � ci, then job i is included with (ēi, l̄i) = (ei, li).

If a job has not confirmed at the earliest preannounced pickup time minus the announcement

lead time (ēi � Li > t), then the presumed earliest pickup time window is pushed further

with (ēi, l̄i) = (t+ Li, t+ Li + TWi).

As an even simpler benchmark, the Ignore strategy does not incorporate preannounce-

ments at all until they confirm at time ci and we know their time window. Thus, job i is not

included in the optimization model until time t � ci at which point (ēi, l̄i) = (ei, li). This

represents a fully dynamic, reactive strategy.

Moreover, we include an o↵-line benchmark, Perfect Information, in which all jobs are

known with 100% accurate time window information.
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4.2 The Multiple Time Scenario Strategy

We term our stochastic, dynamic strategy the Multiple Time Scenario (MTS ) strategy as it

relies on a pool of plans, ⇧, based on multiple time window scenarios for the preannounce-

ments. At the start of operations, a set of scenarios, S, is generated. A single scenario is

created by adjusting each customer’s preannounced time window. This adjustment yields a

presumed time window, (ēi, l̄i), where ēi is obtained by adding a value ⇠i to êi, i.e. ēi = êi+⇠i.

The value ⇠i is drawn from a distribution. For example, if the distribution of di↵erences be-

tween the preannounced and real time windows was found to be a uniform distribution

spanning a range of plus/minus 30 minutes, then ⇠i would be drawn from a uniform distri-

bution with a range of 60 minutes. The closing time, l̄i is calculated by adding the length

of the time window, TWi, to this opening time. For each scenario, a route plan is generated

by solving the o↵-line problem as described in section 3.1.

Each time ci that a job confirms to the system, we update the set of scenarios S. The

presumed time windows of the confirmed jobs are set to the confirmed time window in all

scenarios. For the unconfirmed jobs whose presumed earliest pickup time, ēi, has already

passed, i.e. ēi < t+Li, we draw a new time window from the distribution while making sure

that ēi > t + Li. Based on the updated time windows, we update the vehicles’ departure

times for each plan and check whether the plan’s route sequence is still time feasible. If a

plan is no longer feasible due to the updated time window scenario, we delete it and replace

it by solving the o↵-line problem. Note that we can always obtain a feasible plan since the

o↵-line problem can always reject a job if necessary.

Of the set of generated plans, ⇧, a distinguished plan ⇡

⇤ is selected by a consensus func-

tion. This plan is the plan that is parsed and enacted as the operational route plan. The

distinguished plan represents the plan that is most similar to all others. The main idea is

that the most similar plan encapsulates a least-commitment strategy (Stefik 1981) and as

such is most likely to accommodate any given future realization. The consensus function

scores the similarity of di↵erent route plans based on the immediate, next job after the job

in execution at di↵erent points in time.
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We first count the number of times that a job j is the immediate, next job in a route and

the number of times that this immediate, next job j is assigned to a specific vehicle k as the

immediate, next job, across all plans. We maintain these counts in a two dimensional matrix

Y that is calculated for all plans each time we undertake a planning phase. Specifically, we

compute a variable for all j 2 J , k 2 V , and ⇡ 2 ⇧:

yj,k,⇡ =

8
><

>:

1 if j is the immediate, next job on vehicle k in plan ⇡

0 otherwise.

We then use this variable to fill in the matrix Y with the sum of yj,k,⇡ over all ⇡ for each

j and k. That is: Yj,k =
P

⇡2⇧ yj,k,⇡. Thus the matrix Y denotes the number of plans in

which job j is served as the immediate, next job in the route of vehicle k. For each plan ⇡,

we can now define the vehicle consensus function as:

fseq(⇡) =
X

j2J

X

k2V

yj,k,⇡

 
Yj,k +

X

v2V

Yj,v

!
. (8)

The first term, yj,k,⇡Yj,k, within the consensus function summation is similar to Bent and

Van Hentenryck (2004) and counts the number of plans that have the same job to vehicle

pairs as in plan ⇡. Our consensus function extends this count by including a sum over v of

Yj,v which counts the number of plans that have job j as the immediate, next job for any of

the vehicle routes. This allows us to both consider the similarities in terms of the specific

vehicle assignments and the route sequence, independent of the vehicle assignment.

Our scoring mechanism intrinsically handles job rejections since plans that consistently

reject a job will be similar and thus have a higher score than those plans that include the

job. Similarly, when the majority of plans include a job that the minority of plans reject,

the distinguished plan will reflect the majority rather than the minority. This phenomenon

is the basis of the example presented in the following paragraph. We select our distinguished

plan ⇡

⇤ 2 ⇧ such that fseq(⇡⇤) � fseq(⇡) for every ⇡ 2 ⇧. We break ties arbitrarily by

selecting the first of the highest scoring plans.
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To illustrate the strengths of fseq(⇡) relative to the vehicle based consensus function of Bent

and Van Hentenryck (2004), fveh(⇡) =
P

j2J
P

k2V yj,k,⇡Yj,k, we consider an example instance

for which we generate five potential time realizations for all known, but not confirmed jobs

at a decision epoch triggered by Job 2. The time realizations give rise to five plans over

which each function operates. Table 1 provides the immediate, next assignment for each

vehicle in each of the five plans. Additionally, Figure 4 shows the locations of the jobs and

the current vehicle locations and highlights the interplay of the time scenarios with Job 1’s

location relative to the vehicles. In the first time scenario, the presumed time window for

Job 1 is set to a time before its preannounced time window and quite close to the current

time. As a result, none of the vehicles can serve the job in time and the first plan is forced to

reject Job 1. The remaining four plans all include Job 1 and place this job first on the route

for one of the three available vehicles. However, dependent on the presumed time window

scenarios for the other jobs, these four plans place Job 1 on di↵erent vehicles. We also note

that in Time Scenario 5, as Vehicle 2 is the closest vehicle to Job 4, it is assigned to that

more lucrative job at the expense of rejecting the confirmed Job 2. Furthermore, given the

proximity of all three vehicles to Jobs 1, 2, and 5, Plans 2, 3, and 4, are essentially identical.

The last two columns of Table 1 identify the score associated with the vehicle based

consensus function fveh(⇡) and sequence based consensus function fseq(⇡), respectively. As

fveh(⇡) takes only the specific job to vehicle assignment into account when making the scores,

the first plan – rejecting Job 1 – is selected. In contrast, fseq(⇡) has more visibility into the

plans’ collective ability to accommodate Job 1. As a result, fseq(⇡) selects Plan 4. Note that

enacting Plan 1 in this decision epoch does not imply that we actually reject Job 1 since we

do not reject a job before its confirmation time. However, if, in the next decision epoch, Job

1 is confirmed then fveh(⇡)’s selected plan may force us to reject Job 1 as no vehicle was

pre-positioned to serve it. The vehicles following the selected plan of fseq(⇡) will, however,

be positioned to act on Job 1’s confirmation. As job rejections are the most costly outcome,

fseq(⇡) gains the advantage over fveh(⇡).

Note, that if fseq(⇡) did not include the first portion of Equation (8), that is the portion

which is redundant relative to the job to vehicle assignments, then the scoring of Plans 1
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Table 1: Immediate, next job for each vehicle and the rejected jobs across five plans; con-
sensus function scores noted in last two columns – * indicates selected plan.

Vehicle 1 Vehicle 2 Vehicle 3 Reject fveh(⇡) fseq(⇡)
Plan 1 5 2 3 1 2 + 2 + 2 = 6* 6 + 6 + 4 = 16
Plan 2 2 5 1 – 1 + 1 + 1 = 3 5 + 5 + 5 = 15
Plan 3 5 1 2 – 2 + 1 + 1 = 4 6 + 5 + 5 = 16
Plan 4 1 2 5 – 2 + 2 + 1 = 5 6 + 6 + 5 = 17*
Plan 5 1 4 3 2 2 + 1 + 2 = 5 6 + 2 + 4 = 12

through 5 would be: 10, 12, 12, 12, and 7, respectively. As a result there would be a tie

between Plans 2 - 4. However, given the similarity of the Plan 3 with the first plan, it should

receive a higher similarity score. Thus, both portions of the fseq(⇡) equation are important.

Each of the information strategies (Ignore, Näıve, and MTS ) described here was tested

on a set of test cases designed to mirror the structure and timings of the practical contexts

where location information arrives before the time related information. The construction of

these test cases is the topic of the next section.

5 Test Cases

To compare the di↵erent strategies, we generated a set of test cases based on transport

data from a dial-a-chau↵eur service in The Netherlands. These test cases may be accessed

at https://sites.google.com/site/pdptwinstances/. The cost to the transport service

provider is .30 euros/km for each kilometer driven; the revenue for each job includes a fixed

fee of 6 euros plus 3 euros/km traveled in serving the job. Each instance consists of nine

vehicles and a set of 20 jobs spread throughout a 100 square kilometer area with the depot

located at the lower left corner, i.e. at [0,0]. We assume that vehicles travel in a straight line

at unit speed. Each job has a given origin, destination, announcement time, confirmation

time, and two time windows: preannounced and real.

The preannounced times, êi, are drawn from a uniform distribution spanning a six hour

period of operations. The jobs’ preannounced time windows, (êi, l̂i), then follow from the

preannounced times based on the use of fixed lead times and time window lengths; we assume
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that both Li and TWi are the same for all i. To determine the confirmation times, ci, we use

a uniform distribution to draw deviations ⇠i from the interval [-30,30]. The jobs’ real time

windows then follow from adding a pre-announcement error ⇠i to the preannounced time

window, i.e. (ei, li) = (êi + ⇠i, l̂i + ⇠i). This forms the base case with a range of 60 minutes

with the preannounced time at the center of a uniform range of 60 minutes. This means

that the average preannouncement error is zero (i.e. the preannounced time is an unbiased

estimator of the real time) and that the pre-announced time estimate is at most 30 minutes

earlier or later than the actual time.

As it is the time related information that brings both the uncertainty and interest to our

problem, we develop a set of five test cases with varying levels of deviation in terms of the

preannouncement errors. The errors are drawn from uniform ranges of 90, 120, 180, and 240

minutes. To allow for comparisons between the di↵erent cases, we fix the actual, confirmed

times of the case with the smallest range, the Range60 case and vary the preannouncement

errors around the actual time. As such, the Perfect Information benchmark is the same for

all test cases. To increase the e�ciency of our simulation, we reduce the variance between

the results of the di↵erent experiments by making sure that all jobs that have a positive

(negative) error in the Range60 case also have a positive (negative) error in the di↵erent

test cases. However, the magnitude of the deviation is scaled for the longer ranges. Instead

of drawing new preannouncement errors, we adjust the errors relative to the Range60 case.

That is, the preannouncement error for a certain job i in the Range120 case is twice the

error of that same job in the Range60 case just as the error for a job in the range 240 case

would be four times that of the Range60 case, i.e. ⇠120i = 2⇠60i .

We also establish a set of test cases around di↵erent lead time and time window lengths.

Specifically, we set the lead times to 0, 5, 15, and 30 minutes and the time window lengths

to 5, 15, and 30 minutes. The resulting time window cases were studied on a geography

consistent with the dial-a-chau↵eur service provider. In these cases, the preannounced time

window is expected to deviate from the real time window within a uniform range of 120

minutes. The case with a lead time of five and a time window of five for a range of 120 in

terms of the deviation was also used to test the e�cacy of the scenario sampling strategies
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when their underlying distributions are poorly calibrated. Table 2 provides a summary of

the cases used in our experiments. Within each scenario we generated 100 instances: five

di↵erent job location structures for each geography each with 20 di↵erent actual time window

realizations.

The geography of our primary cases is one inspired by the dial-a-chau↵eur service. How-

ever, to test the capabilities of our strategies we also studied two additional geographies. All

three geographies are based on a 100 square kilometer region of operations. In this square,

we have two cases that focus on the concept of a center region, much like a city center. The

first case, is that which is consistent with a dial-a-chau↵eur service provider serving a city –

six jobs go from the center to outlying areas, four jobs go from outlying areas to the center,

and ten jobs have random pickup and drop-o↵ locations (BUS). The other case with a city

center has all 20 jobs going from the center (in) to the outlying regions (out) (IO20). The

third case has a fully random geography, with the jobs’ origins selected randomly and their

corresponding destinations selected randomly (RR20). Figure 5 provides example instances

for the BUS, IO20, and RR20 cases; customer origins are marked by a circle and the corre-

sponding destination by a linked triangle. The higher the job id number, the later the job

was confirmed.

6 Results

We implemented the simulation in C++ using Gurobi 5.6.3 as the MIP solver (Gurobi Opti-

mization 2012) and ran all instances on an Intel i5 2.4 GHz computer. In our implementation

of the MTS strategy, we maintain 60 plans (associated with 60 scenarios). The choice of 60

plans was driven by a trade-o↵ between solution time and quality.

6.1 Comparison of Strategies

In the first set of experiments, we study the performance of the di↵erent strategies applied to

all ranges of ⇠i with the announcement lead time Li and time window length TWi fixed at five
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Table 2: Summary of instance parameters and default values.

Parameter Definition Possible values

Li Di↵erence between the earliest service
time ei and the confirmation time ci of job
i

0, 5, 15, 30, or 60 min

TWi Di↵erence between the earliest service
time ei and the latest service time li of
job i

5, 10, 15, 30, 60 min

⇠i Di↵erence between the earliest service
time ei and the preannounced earliest ser-
vice time êi of job i

U(�30, 30),
U(�45, 45),
U(�60, 60),
U(�90, 90),
U(�120, 120)

Geography The structure of the pickup and drop-o↵
locations

BUS, IO20, RR20,

minutes each for all jobs. Table 3 presents the results for the di↵erent dynamic strategies and

the Perfect Information benchmark. For the MTS strategy, we implement both the sequence-

based consensus function (MTS-seq) and the vehicle-based consensus function (MTS-veh)

as discussed in Section 4.2. We assess the performance of each strategy by computing the

following statistics: the average, minimum, and maximum total costs relative to the Perfect

Information case, the number of instances where this strategy performed the best in terms

of the total costs (including ties), the average rejection costs, the average number of rejected

jobs, the number of instances without rejections, and the average empty distance per served

job. All of the averages are over 100 instances.

From Table 3, we observe that there is, on average, a 118% di↵erence in costs between the

Perfect Information benchmark and the Ignore strategy, which represents the value of perfect

advance information. The results also indicate that the job information is beneficial, even if

the time window information is only known probabilistically. We see that both the Näıve and

MTS-seq strategies perform much better than the reactive Ignore strategy that disregards

the preannounced information. The MTS-seq strategy consistently outperforms the other

strategies both in terms of total costs and in terms of the number of instances for which it
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gives the best solution. In particular, we see that it is the comparatively lower number of

rejections and rejection costs that give the MTS-seq strategy an advantage over the other

strategies including MTS-veh. The Näıve strategy and Ignore strategy have over twice as

many rejections as the MTS-seq strategy. For the Ignore strategy, the higher rejections stems

from the fact that the announcement lead time combined with the length of the time window

(a total of 10 minutes in this setting) may not be enough for the vehicles to travel to the

customer in time.

Focussing on the MTS strategies, if we compare the results for the di↵erent consensus

functions, we see that the sequence-based consensus function, which puts additional weight

on the service of a job on any vehicle performs best in terms of the average di↵erence to the

perfect information case as well as in the number and cost of rejections. This demonstrates

the importance of using both the vehicle assignment and route position information for each

job across all of the scenario based plans when the dimension of uncertainty is time.

Looking down the rows of Table 3, we note that the solution of the Perfect Information

benchmark and the Ignore strategy do not depend on probabilistic information and are thus

not susceptible to the increase in uncertainty. On the other hand, the results show that the

performance of the Näıve and MTS strategies deteriorates with an increase in uncertainty.

As the uncertainty increases, the di↵erence between the reactive Ignore strategy and the

proactive stochastic strategies decreases. When the uncertainty spans a uniform range of

240 minutes, the Ignore strategy outperforms the Näıve strategy and performs best in more

instances than the MTS-veh strategy. This means that beyond a range of 240 minutes, it is

better to ignore the information than to incorporate it in a näıve way. The reason for this

is that the Näıve strategy moves towards a particular pickup location before the customer

actually confirms his/her actual service time. While this may prevent job rejections if the

customer confirms early, it may also make it impossible to serve another job. This is because

with more temporal uncertainty, it is more likely that the sequence in which jobs call-in over

time is di↵erent from the sequence of the preannounced times. Along with more rejections,

this may result in more en route diversions as reflected in the empty distance. The MTS-seq

strategy is more robust and deteriorates at at a much slower rate than the Näıve strategy.
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Even at high levels of uncertainty the MTS-seq strategy continues to perform significantly

better than the other dynamic strategies including the myopic MTS-veh strategy. Further-

more, we note that in the most uncertain case the number of instances in which the Ignore

strategy performed best is greater than those in which the MTS-veh strategy performed best.

This is likely due to the generation of time scenarios that are far from accurate leading to

the selection of plans that include job rejections as MTS-veh lacks the ability to assess the

assignment of jobs to a variety of vehicles across the full set of plans.

6.2 Impact of Lead Time and Time Window Length

The results demonstrate that the preannounced time window information allows the service

provider to serve customers within very short time windows with very short lead times.

We now consider the impact of varying both the lead times and the time windows on the

relative performance of the di↵erent strategies. In Figure 6(a), we present the total costs

for all strategies across five di↵erent lengths of lead time (0, 5, 15, 30, 60), with the time

windows set to five minutes. In Figure 6(b), we present the total costs of all strategies

applied to four di↵erent lengths of time windows (5, 15, 30, 60) at the mid-range

As expected, we see that both the longer lead times and the longer time windows have a

positive e↵ect on the performance of the di↵erent strategies. Although the impact is similar,

there is a subtle di↵erence in the way they help the strategies cope in the face of uncertainty.

A longer lead time implies an earlier resolution of uncertainty, while longer time windows

provide more flexibility to serve the job once the uncertainty has been resolved. The results

show that an increase in the time window length provides greater performance gains than

the same increase in lead time length. This is intuitive since longer time windows allow for

more flexibility in the assignment of jobs to vehicles. These results are consistent with the

literature where we see that having a release time as opposed to a time window allows for

more freedom in the sequence that jobs are visited and thus alleviates costs associated with

the time dimension (Desrosiers et al. 1995). It is interesting to note that the performance gap

between the di↵erent dynamic strategies decreases with both the longer lead times and the
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Table 3: Results for routing strategies applied to Range120, with 5 minutes of lead time and
5 minute time windows, averaged across 100 instances.

% � Perfect Info.

Avg.
Cost

Min.
Cost

Max.
Cost

# Best

Avg.
Rejec-
tion
Costs

# of
Rejec-
tions

# Inst.
with

No Re-
jections

Empty
Dist.

per Job
Served

Range60; ⇠i 2 U(�30,30)
Perfect 0.0 0.0 0.0 – 13.0 0.2 82 68.8
Ignore 118.0 23.4 257.3 2 552.4 4.5 0 78.3
Näıve 39.1 0.0 166.0 33 170.4 1.6 17 75.2

MTS-veh 26.4 0.0 108.5 30 89.1 .9 40 77.2
MTS-seq 24.0 1.2 102.3 46 77.2 .7 42 77.0

Range90; ⇠i 2 U(�45,45)
Perfect 0.0 0.0 0.0 – 13.0 0.2 82 68.8
Ignore 118.0 23.4 257.3 1 552.4 4.5 0 78.3
Näıve 51.8 0.0 166.0 20 226.0 2.0 9 76.6

MTS-veh 39.5 0.0 140.5 33 145.9 1.3 20 78.9
MTS-seq 32.9 0.0 99.5 50 109.2 1.0 36 79.0

Range120; ⇠i 2 U(�60,60)
Perfect 0.0 0.0 0.0 – 13.0 0.2 82 68.8
Ignore 118.0 23.4 257.3 4 552.4 4.5 0 78.3
Näıve 65.2 0 164.0 14 282.3 2.5 6 78.8

MTS-veh 50.6 2.0 128.3 42 190.4 1.6 17 80.7
MTS-seq 44.0 2.3 136.9 50 158.5 1.4 25 80.4

Range180; ⇠i 2 U(�90,90)
Perfect 0.0 0.0 0.0 – 13.0 0.2 82 68.8
Ignore 118.0 23.4 257.3 9 552.4 4.5 0 78.3
Näıve 95.5 6.1 235.1 17 421.6 3.7 3 82.4

MTS-veh 67.5 3.5 173.8 33 267.6 2.2 7 82.1
MTS-seq 60.5 7.8 183.8 44 226.8 1.9 9 82.7

Range240; ⇠i 2 U(�120,120)
Perfect 0.0 0.0 0.0 – 13.0 0.2 82 68.8
Ignore 118.0 23.4 257.3 28 552.4 4.5 0 78.3
Näıve 127.4 5.3 283.9 10 571.1 4.9 1 85.7

MTS-veh 96.7 10.7 282.7 22 400.5 3.3 1 85.1
MTS-seq 88.0 10.1 221.0 41 349.5 2.8 1 85.9
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longer time windows. This is to be expected as a very long time window obfuscates the need

for a strategy that explicitly incorporates the uncertainty of the time window information

since there is more time to accommodate jobs once confirmed.

When we consider the impact of uncertainty across the various time window lengths, the

performance of the dynamic strategies deteriorates with an increase in uncertainty. This can

be seen for both the Näıve and MTS-seq strategy in Figure 7. The competitive advantage

of MTS-seq over the Näıve strategy is stable over the various uncertainty levels. We also

see that the length of the time windows has a damping e↵ect on the impact of uncertainty.

Specifically, the cost increase for the MTS-seq strategy between the lowest level of uncertainty

(Range60) and the highest level of uncertainty (Range240) is 52% for the five minute time

windows, while it is only 29% for the 30 minute time windows.

6.3 Impact of Geography

Finally, in order to demonstrate the MTS-seq strategy’s capabilities across a wide range of

operating conditions, we study the results of the dynamic strategies and the Perfect Informa-

tion Benchmark as applied on three di↵erent geographies. In each of these geographies, the

level of uncertainty spans a range of 120 minutes and both the lead time and time windows

are five minutes. Note that while the job pickup and drop-o↵ locations vary widely across the

di↵erent geographies, the real time windows set for the jobs are the same from case to case.

That is, all of the jobs in the first instance of the BUS case have the same time windows as

the first instance of the RR20 case, and so on. This allows us to isolate the impact of time

relative to geographic structure. The results of these simulations are depicted in Figure 8

which shows the minimum, first quartile, median, third quartile, and maximum value of the

routing costs (a) and the rejection costs (b) across the 100 instances for each geography.

From Figure 8(a), we see that all strategies perform similarly in terms of the routing costs

across the three geographies. The stochastic MTS strategies exhibit slightly higher routing

costs that the Näıve strategy in all geographies and a much higher range of routing costs

in the I020 case. In contrast, the MTS strategies show consistently lower rejection costs
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than the Näıve strategy across all geographies. Furthermore, the MTS-seq strategy shows

a smaller range of rejection costs compared to the MTS-veh strategy in both the BUS and

I020 cases. In the RR20 case, the MTS-seq and MTS-veh strategies perform similarly.

These results are instructive as they highlight the spatial structure that gives MTS-seq

its competitive advantage in the face of temporal uncertainty. Specifically, Figure 8(b)

shows that in both the BUS and IO20 cases, MTS-seq has lower rejection costs than MTS-

veh. One potential reason for this is that explicitly taking into account the route sequence

across all plans is beneficial in situations in which more than one immediate, next job to

vehicle assignment is possible across the range of time scenarios. These situations arise when

multiple vehicles are in a region with multiple jobs such as the city center in the BUS and

IO20 geographies. This was illustrated in the example provided in Section 4.2. In RR20,

however, the random location of jobs yields few if any regions with multiple jobs and thus

MTS-seq loses its competitive advantage.

6.4 Impact of Wrong Input Parameters

In the experiments presented thus far, the MTS strategies used the same probability distri-

bution for the preannouncement errors as those used when creating the problem instances.

However, in a real-world setting the true distributions are unknown and need to be approx-

imated based on historical data. Figure 9 shows how the MTS strategies perform for the

Range120, BUS instances, using the wrong range parameter for the uniform distribution of

the errors, with values ranging between 60 (representing an underestimate) and 240 (repre-

senting an over estimate). As a benchmark, we also plot the Näıve strategy. As before, we

see that both MTS strategies outperform the Näıve strategy in all cases and the MTS-seq

consistently outperforms the MTS-veh strategy. Figure 9 highlights the MTS-seq strategy’s

ability to perform consistently across a wider range of incorrect calibration (60 to 180) than

MTS-veh. This is an important result as it suggests that in realistic settings, in which we

have to approximate the probability distributions, the MTS strategy outperforms strategies

that do not explicitly incorporate the uncertainty.
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7 Conclusion

In this paper, we studied a dynamic pickup and delivery problem with time windows in

which the job locations are known in advance, but precise information on the desired service

time windows is lacking. Only during operations, close to the desired pickup-time, does the

actual time window information become available. We proposed several strategies to cope

with uncertain advance time window information in this setting and compared their relative

merits in terms of routing costs.

Based on our experiments, we show that advance information, even if uncertain, can

provide benefits from a planning perspective. In settings with only moderate levels of uncer-

tainty, the Näıve strategy, which treats the uncertain information as certain, outperforms the

Ignore strategy, which ignores information until all uncertainty is resolved. Only when the

uncertainty is large (greater than ± 120 minutes) does it become better to employ the purely

reactive Ignore strategy. The stochastic mechanism that we introduced, the MTS strategy

with the sequence based consensus function, is consistently robust. It outperforms both the

Näıve and the Ignore strategies, in all cases, even if we do not know the true probability

distribution that characterizes the uncertainty.

Of most interest managerially, is the recognition that having customers preannounce their

need for service, even when the time related information is not completely accurate, allows

the service provider to o↵er shorter time windows and shorter lead times. This is especially

true when using a real-time strategy that explicitly incorporates the uncertainty of this

information, such as the MTS-seq strategy, to support the route planning. The MTS-seq

strategy exhibits fewer numbers and costs of rejections across a variety of cases with very

short time windows and lead times.

The strength of MTS-seq lies in its extension of the original consensus function of Bent

and Van Hentenryck (2004) by not only scoring the similarity in terms of the job to ve-

hicle assignments but also in terms of the route sequence. We show that this additional

component is beneficial in handling the uncertainty that characterizes our specific problem

setting. Nevertheless, additional experiments are required to investigate to what extent this
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extension is beneficial to vehicle routing problems in general and to those that Bent and Van

Hentenryck (2004) were solving, in specific. Future work could also consider the value of

(adaptively) varying the weights on these two census function components across di↵erent

problem settings.

As this is one of the first papers that isolates the impact of temporal uncertainty in the

context of pickup and delivery problems, we see many opportunities for further research.One

opportunity for future study lies in the use of ADP to solve this problem. While the current

modeling from the perspective of vehicles serving jobs makes the study of the state space

complex, an alternative view of jobs vying for vehicles may yield a valuable strategy.

We also recommend considering more sophisticated waiting strategies to determine when

and where to wait given the probabilistic information on the required timing of subsequent

jobs. That is, instead of moving to a particular job location or waiting at the current

location, it may be beneficial to move the vehicles to “promising” locations from which

several potential jobs could be served in time.

While we have exclusively focussed on a unit-capacity, one-to-one pickup and delivery

setting, pre-announcing the need for service without committing to a specific time window

is also common in less-than-truckload package pickup and delivery problems. These settings

can typically be characterized as one-to-many or many-to-one pickup and delivery problems.

While the general idea of our strategies would theoretically also apply here, it would be more

di�cult to find optimal solutions to the o↵-line subproblem within reasonable times.

When it becomes more time-consuming to solve the subproblems, it may be relevant to

investigate whether we can reduce the number of plans in our sample-based strategy and then

alter the corresponding scoring mechanism to provide routes e�ciently without deteriorating

the solution quality. Instead of selecting a particular, most similar plan from the set of

plans, it could, for example, be beneficial to create a distinguished plan by combining the

best scoring parts of di↵erent plans. Creating such a plan, while maintaining feasibility and

assuring a certain level of consistency across the di↵erent planning epochs, is a challenging

area for future research.
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Mitrović-Minić, Snežana, Ramesh Krishnamurti, Gilbert Laporte. 2004. Double-horizon based

heuristics for the dynamic pickup and delivery problem with time windows. Transportation

Research Part B: Methodological 38(8) 669–685.

Parragh, Sophie N., Karl F. Doerner, Richard F. Hartl. 2008. A survey on pickup and delivery

problems. Journal für Betriebswirtschaft 58(2) 81–117.
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Figure 3: The method by which the o↵-line problem (the MIP) is solved as part of a rolling
horizon framework.
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Figure 4: Depiction of time scenarios and the interplay with geography to yield route plans.
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Figure 5: Example instances with customer origins (circle) and destinations (triangle) and
the depot (rectangle).
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Figure 6: Impact of di↵erent lead times and time window lengths on the total costs of routing
strategies applied to the Range120 case; n = 100.
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Figure 7: Total costs for the Näıve and MTS-seq strategies across di↵erent ranges of uncer-
tainty with time windows lengths of 5 minutes (solid) and 30 minutes (dashed); n=100
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Figure 8: Minimum, 1st quartile, median, 2nd quartile, and maximum routing costs (a) and
rejection costs (b) for three routing strategies and the perfect information benchmark across
three geographies; n = 100.
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