797 research outputs found

    Defect cluster recognition system for fabricated semiconductor wafers

    Get PDF
    The International Technology Roadmap for Semiconductors (ITRS) identifies production test data as an essential element in improving design and technology in the manufacturing process feedback loop. One of the observations made from the high-volume production test data is that dies that fail due to a systematic failure have a tendency to form certain unique patterns that manifest as defect clusters at the wafer level. Identifying and categorising such clusters is a crucial step towards manufacturing yield improvement and implementation of real-time statistical process control. Addressing the semiconductor industry's needs, this research proposes an automatic defect cluster recognition system for semiconductor wafers that achieves up to 95% accuracy (depending on the product type)

    ์ œ์กฐ ์‹œ์Šคํ…œ์—์„œ์˜ ์˜ˆ์ธก ๋ชจ๋ธ๋ง์„ ์œ„ํ•œ ์ง€๋Šฅ์  ๋ฐ์ดํ„ฐ ํš๋“

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2021. 2. ์กฐ์„ฑ์ค€.Predictive modeling is a type of supervised learning to find the functional relationship between the input variables and the output variable. Predictive modeling is used in various aspects in manufacturing systems, such as automation of visual inspection, prediction of faulty products, and result estimation of expensive inspection. To build a high-performance predictive model, it is essential to secure high quality data. However, in manufacturing systems, it is practically impossible to acquire enough data of all kinds that are needed for the predictive modeling. There are three main difficulties in the data acquisition in manufacturing systems. First, labeled data always comes with a cost. In many problems, labeling must be done by experienced engineers, which is costly. Second, due to the inspection cost, not all inspections can be performed on all products. Because of time and monetary constraints in the manufacturing system, it is impossible to obtain all the desired inspection results. Third, changes in the manufacturing environment make data acquisition difficult. A change in the manufacturing environment causes a change in the distribution of generated data, making it impossible to obtain enough consistent data. Then, the model have to be trained with a small amount of data. In this dissertation, we overcome this difficulties in data acquisition through active learning, active feature-value acquisition, and domain adaptation. First, we propose an active learning framework to solve the high labeling cost of the wafer map pattern classification. This makes it possible to achieve higher performance with a lower labeling cost. Moreover, the cost efficiency is further improved by incorporating the cluster-level annotation into active learning. For the inspection cost for fault prediction problem, we propose a active inspection framework. By selecting products to undergo high-cost inspection with the novel uncertainty estimation method, high performance can be obtained with low inspection cost. To solve the recipe transition problem that frequently occurs in faulty wafer prediction in semiconductor manufacturing, a domain adaptation methods are used. Through sequential application of unsupervised domain adaptation and semi-supervised domain adaptation, performance degradation due to recipe transition is minimized. Through experiments on real-world data, it was demonstrated that the proposed methodologies can overcome the data acquisition problems in the manufacturing systems and improve the performance of the predictive models.์˜ˆ์ธก ๋ชจ๋ธ๋ง์€ ์ง€๋„ ํ•™์Šต์˜ ์ผ์ข…์œผ๋กœ, ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ์ž…๋ ฅ ๋ณ€์ˆ˜์™€ ์ถœ๋ ฅ ๋ณ€์ˆ˜ ๊ฐ„์˜ ํ•จ์ˆ˜์  ๊ด€๊ณ„๋ฅผ ์ฐพ๋Š” ๊ณผ์ •์ด๋‹ค. ์ด๋Ÿฐ ์˜ˆ์ธก ๋ชจ๋ธ๋ง์€ ์œก์•ˆ ๊ฒ€์‚ฌ ์ž๋™ํ™”, ๋ถˆ๋Ÿ‰ ์ œํ’ˆ ์‚ฌ์ „ ํƒ์ง€, ๊ณ ๋น„์šฉ ๊ฒ€์‚ฌ ๊ฒฐ๊ณผ ์ถ”์ • ๋“ฑ ์ œ์กฐ ์‹œ์Šคํ…œ ์ „๋ฐ˜์— ๊ฑธ์ณ ํ™œ์šฉ๋œ๋‹ค. ๋†’์€ ์„ฑ๋Šฅ์˜ ์˜ˆ์ธก ๋ชจ๋ธ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์–‘์งˆ์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ํ•˜์ง€๋งŒ ์ œ์กฐ ์‹œ์Šคํ…œ์—์„œ ์›ํ•˜๋Š” ์ข…๋ฅ˜์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์›ํ•˜๋Š” ๋งŒํผ ํš๋“ํ•˜๋Š” ๊ฒƒ์€ ํ˜„์‹ค์ ์œผ๋กœ ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ฐ์ดํ„ฐ ํš๋“์˜ ์–ด๋ ค์›€์€ ํฌ๊ฒŒ ์„ธ๊ฐ€์ง€ ์›์ธ์— ์˜ํ•ด ๋ฐœ์ƒํ•œ๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ, ๋ผ๋ฒจ๋ง์ด ๋œ ๋ฐ์ดํ„ฐ๋Š” ํ•ญ์ƒ ๋น„์šฉ์„ ์ˆ˜๋ฐ˜ํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๋งŽ์€ ๋ฌธ์ œ์—์„œ, ๋ผ๋ฒจ๋ง์€ ์ˆ™๋ จ๋œ ์—”์ง€๋‹ˆ์–ด์— ์˜ํ•ด ์ˆ˜ํ–‰๋˜์–ด์•ผ ํ•˜๊ณ , ์ด๋Š” ํฐ ๋น„์šฉ์„ ๋ฐœ์ƒ์‹œํ‚จ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ, ๊ฒ€์‚ฌ ๋น„์šฉ ๋•Œ๋ฌธ์— ๋ชจ๋“  ๊ฒ€์‚ฌ๊ฐ€ ๋ชจ๋“  ์ œํ’ˆ์— ๋Œ€ํ•ด ์ˆ˜ํ–‰๋  ์ˆ˜ ์—†๋‹ค. ์ œ์กฐ ์‹œ์Šคํ…œ์—๋Š” ์‹œ๊ฐ„์ , ๊ธˆ์ „์  ์ œ์•ฝ์ด ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์›ํ•˜๋Š” ๋ชจ๋“  ๊ฒ€์‚ฌ ๊ฒฐ๊ณผ๊ฐ’์„ ํš๋“ํ•˜๋Š” ๊ฒƒ์ด ์–ด๋ ต๋‹ค. ์„ธ๋ฒˆ์งธ๋กœ, ์ œ์กฐ ํ™˜๊ฒฝ์˜ ๋ณ€ํ™”๊ฐ€ ๋ฐ์ดํ„ฐ ํš๋“์„ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ ๋‹ค. ์ œ์กฐ ํ™˜๊ฒฝ์˜ ๋ณ€ํ™”๋Š” ์ƒ์„ฑ๋˜๋Š” ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ๋ฅผ ๋ณ€ํ˜•์‹œ์ผœ, ์ผ๊ด€์„ฑ ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ถฉ๋ถ„ํžˆ ํš๋“ํ•˜์ง€ ๋ชปํ•˜๊ฒŒ ํ•œ๋‹ค. ์ด๋กœ ์ธํ•ด ์ ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ ๋ชจ๋ธ์„ ์žฌํ•™์Šต์‹œ์ผœ์•ผ ํ•˜๋Š” ์ƒํ™ฉ์ด ๋นˆ๋ฒˆํ•˜๊ฒŒ ๋ฐœ์ƒํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฐ ๋ฐ์ดํ„ฐ ํš๋“์˜ ์–ด๋ ค์›€์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋Šฅ๋™ ํ•™์Šต, ๋Šฅ๋™ ํ”ผ์ณ๊ฐ’ ํš๋“, ๋„๋ฉ”์ธ ์ ์‘ ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•œ๋‹ค. ๋จผ์ €, ์›จ์ดํผ ๋งต ํŒจํ„ด ๋ถ„๋ฅ˜ ๋ฌธ์ œ์˜ ๋†’์€ ๋ผ๋ฒจ๋ง ๋น„์šฉ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋Šฅ๋™ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ ์€ ๋ผ๋ฒจ๋ง ๋น„์šฉ์œผ๋กœ ๋†’์€ ์„ฑ๋Šฅ์˜ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‚˜์•„๊ฐ€, ๊ตฐ์ง‘ ๋‹จ์œ„์˜ ๋ผ๋ฒจ๋ง ๋ฐฉ๋ฒ•์„ ๋Šฅ๋™ํ•™์Šต์— ์ ‘๋ชฉํ•˜์—ฌ ๋น„์šฉ ํšจ์œจ์„ฑ์„ ํ•œ์ฐจ๋ก€ ๋” ๊ฐœ์„ ํ•œ๋‹ค. ์ œํ’ˆ ๋ถˆ๋Ÿ‰ ์˜ˆ์ธก์— ํ™œ์šฉ๋˜๋Š” ๊ฒ€์‚ฌ ๋น„์šฉ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋Šฅ๋™ ๊ฒ€์‚ฌ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ถˆํ™•์‹ค์„ฑ ์ถ”์ • ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๊ณ ๋น„์šฉ ๊ฒ€์‚ฌ ๋Œ€์ƒ ์ œํ’ˆ์„ ์„ ํƒํ•จ์œผ๋กœ์จ ์ ์€ ๊ฒ€์‚ฌ ๋น„์šฉ์œผ๋กœ ๋†’์€ ์„ฑ๋Šฅ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋„์ฒด ์ œ์กฐ์˜ ์›จ์ดํผ ๋ถˆ๋Ÿ‰ ์˜ˆ์ธก์—์„œ ๋นˆ๋ฒˆํ•˜๊ฒŒ ๋ฐœ์ƒํ•˜๋Š” ๋ ˆ์‹œํ”ผ ๋ณ€๊ฒฝ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋„๋ฉ”์ธ ์ ์‘ ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•œ๋‹ค. ๋น„๊ต์‚ฌ ๋„๋ฉ”์ธ ์ ์‘๊ณผ ๋ฐ˜๊ต์‚ฌ ๋„๋ฉ”์ธ ์ ์‘์˜ ์ˆœ์ฐจ์ ์ธ ์ ์šฉ์„ ํ†ตํ•ด ๋ ˆ์‹œํ”ผ ๋ณ€๊ฒฝ์— ์˜ํ•œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ์ตœ์†Œํ™”ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‹ค์ œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ๋“ค์ด ์ œ์กฐ์‹œ์Šคํ…œ์˜ ๋ฐ์ดํ„ฐ ํš๋“ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ณ  ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๋†’์ผ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.1. Introduction 1 2. Literature Review 9 2.1 Review of Related Methodologies 9 2.1.1 Active Learning 9 2.1.2 Active Feature-value Acquisition 11 2.1.3 Domain Adaptation 14 2.2 Review of Predictive Modelings in Manufacturing 15 2.2.1 Wafer Map Pattern Classification 15 2.2.2 Fault Detection and Classification 16 3. Active Learning for Wafer Map Pattern Classification 19 3.1 Problem Description 19 3.2 Proposed Method 21 3.2.1 System overview 21 3.2.2 Prediction model 25 3.2.3 Uncertainty estimation 25 3.2.4 Query wafer selection 29 3.2.5 Query wafer labeling 30 3.2.6 Model update 30 3.3 Experiments 31 3.3.1 Data description 31 3.3.2 Experimental design 31 3.3.3 Results and discussion 34 4. Active Cluster Annotation for Wafer Map Pattern Classification 42 4.1 Problem Description 42 4.2 Proposed Method 44 4.2.1 Clustering of unlabeled data 46 4.2.2 CNN training with labeled data 48 4.2.3 Cluster-level uncertainty estimation 49 4.2.4 Query cluster selection 50 4.2.5 Cluster-level annotation 50 4.3 Experiments 51 4.3.1 Data description 51 4.3.2 Experimental setting 51 4.3.3 Clustering results 53 4.3.4 Classification performance 54 4.3.5 Analysis for label noise 57 5. Active Inspection for Fault Prediction 60 5.1 Problem Description 60 5.2 Proposed Method 65 5.2.1 Active inspection framework 65 5.2.2 Acquisition based on Expected Prediction Change 68 5.3 Experiments 71 5.3.1 Data description 71 5.3.2 Fault prediction models 72 5.3.3 Experimental design 73 5.3.4 Results and discussion 74 6. Adaptive Fault Detection for Recipe Transition 76 6.1 Problem Description 76 6.2 Proposed Method 78 6.2.1 Overview 78 6.2.2 Unsupervised adaptation phase 81 6.2.3 Semi-supervised adaptation phase 83 6.3 Experiments 85 6.3.1 Data description 85 6.3.2 Experimental setting 85 6.3.3 Performance degradation caused by recipe transition 86 6.3.4 Effect of unsupervised adaptation 87 6.3.5 Effect of semi-supervised adaptation 88 7. Conclusion 91 7.1 Contributions 91 7.2 Future work 94Docto

    A deep learning-based approach for defect classification with context information in semiconductor manufacturing

    Get PDF
    This thesis presents some methodological and experimental contributions to a deep learning-based approach for the automatic classifi cation of microscopic defects in silicon wafers with context information. Canonical image classifi cation approaches have the limitation of utilizing only the information contained in the images. This work overcomes this limitation by using some context information about the defects to improve the current automatic classifi cation system

    A review of data mining applications in semiconductor manufacturing

    Get PDF
    The authors acknowledge Fundacao para a Ciencia e a Tecnologia (FCT-MCTES) for its financial support via the project UIDB/00667/2020 (UNIDEMI).For decades, industrial companies have been collecting and storing high amounts of data with the aim of better controlling and managing their processes. However, this vast amount of information and hidden knowledge implicit in all of this data could be utilized more efficiently. With the help of data mining techniques unknown relationships can be systematically discovered. The production of semiconductors is a highly complex process, which entails several subprocesses that employ a diverse array of equipment. The size of the semiconductors signifies a high number of units can be produced, which require huge amounts of data in order to be able to control and improve the semiconductor manufacturing process. Therefore, in this paper a structured review is made through a sample of 137 papers of the published articles in the scientific community regarding data mining applications in semiconductor manufacturing. A detailed bibliometric analysis is also made. All data mining applications are classified in function of the application area. The results are then analyzed and conclusions are drawn.publishersversionpublishe

    BagStack Classification for Data Imbalance Problems with Application to Defect Detection and Labeling in Semiconductor Units

    Get PDF
    abstract: Despite the fact that machine learning supports the development of computer vision applications by shortening the development cycle, finding a general learning algorithm that solves a wide range of applications is still bounded by the โ€no free lunch theoremโ€. The search for the right algorithm to solve a specific problem is driven by the problem itself, the data availability and many other requirements. Automated visual inspection (AVI) systems represent a major part of these challenging computer vision applications. They are gaining growing interest in the manufacturing industry to detect defective products and keep these from reaching customers. The process of defect detection and classification in semiconductor units is challenging due to different acceptable variations that the manufacturing process introduces. Other variations are also typically introduced when using optical inspection systems due to changes in lighting conditions and misalignment of the imaged units, which makes the defect detection process more challenging. In this thesis, a BagStack classification framework is proposed, which makes use of stacking and bagging concepts to handle both variance and bias errors. The classifier is designed to handle the data imbalance and overfitting problems by adaptively transforming the multi-class classification problem into multiple binary classification problems, applying a bagging approach to train a set of base learners for each specific problem, adaptively specifying the number of base learners assigned to each problem, adaptively specifying the number of samples to use from each class, applying a novel data-imbalance aware cross-validation technique to generate the meta-data while taking into account the data imbalance problem at the meta-data level and, finally, using a multi-response random forest regression classifier as a meta-classifier. The BagStack classifier makes use of multiple features to solve the defect classification problem. In order to detect defects, a locally adaptive statistical background modeling is proposed. The proposed BagStack classifier outperforms state-of-the-art image classification techniques on our dataset in terms of overall classification accuracy and average per-class classification accuracy. The proposed detection method achieves high performance on the considered dataset in terms of recall and precision.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201

    Advanced Process Monitoring for Industry 4.0

    Get PDF
    This book reports recent advances on Process Monitoring (PM) to cope with the many challenges raised by the new production systems, sensors and โ€œextreme dataโ€ conditions that emerged with Industry 4.0. Concepts such as digital-twins and deep learning are brought to the PM arena, pushing forward the capabilities of existing methodologies to handle more complex scenarios. The evolution of classical paradigms such as Latent Variable modeling, Six Sigma and FMEA are also covered. Applications span a wide range of domains such as microelectronics, semiconductors, chemicals, materials, agriculture, as well as the monitoring of rotating equipment, combustion systems and membrane separation processes

    Review of data mining applications for quality assessment in manufacturing industry: Support Vector Machines

    Get PDF
    In many modern manufacturing industries, data that characterize the manufacturing process are electronically collected and stored in the databases. Due to advances in data collection systems and analysis tools, data mining (DM) has widely been applied for quality assessment (QA) in manufacturing industries. In DM, the choice of technique to use in analyzing a dataset and assessing the quality depend on the understanding of the analyst. On the other hand, with the advent of improved and efficient prediction techniques, there is a need for an analyst to know which tool performs best for a particular type of data set. Although a few review papers have recently been published to discuss DM applications in manufacturing for QA, this paper provides an extensive review to investigate the application of a special DM technique, namely support vector machine (SVM) to solve QA problems. The review provides a comprehensive analysis of the literature from various points of view as DM preliminaries, data preprocessing, DM applications for each quality task, SVM preliminaries, and application results. Summary tables and figures are also provided besides to the analyses. Finally, conclusions and future research directions are provided

    Entwicklung einer Fully-Convolutional-Netzwerkarchitektur fรผr die Detektion von defekten LED-Chips in Photolumineszenzbildern

    Get PDF
    Nowadays, light-emitting diodes (LEDs) can be found in a large variety of applications, from standard LEDs in domestic lighting solutions to advanced chip designs in automobiles, smart watches and video walls. The advances in chip design also affect the test processes, where the execution of certain contact measurements is exacerbated by ever decreasing chip dimensions or even rendered impossible due to the chip design. As an instance, wafer probing determines the electrical and optical properties of all LED chips on a wafer by contacting each and every chip with a prober needle. Chip designs without a contact pad on the surface, however, elude wafer probing and while electrical and optical properties can be determined by sample measurements, defective LED chips are distributed randomly over the wafer. Here, advanced data analysis methods provide a new approach to gather defect information from already available non-contact measurements. Photoluminescence measurements, for example, record a brightness image of an LED wafer, where conspicuous brightness values indicate defective chips. To extract these defect information from photoluminescence images, a computer-vision algorithm is required that transforms photoluminescence images into defect maps. In other words, each and every pixel of a photoluminescence image must be classifed into a class category via semantic segmentation, where so-called fully-convolutional-network algorithms represent the state-of-the-art method. However, the aforementioned task poses several challenges: on the one hand, each pixel in a photoluminescence image represents an LED chip and thus, pixel-fine output resolution is required. On the other hand, photoluminescence images show a variety of brightness values from wafer to wafer in addition to local areas of differing brightness. Additionally, clusters of defective chips assume various shapes, sizes and brightness gradients and thus, the algorithm must reliably recognise objects at multiple scales. Finally, not all salient brightness values correspond to defective LED chips, requiring the algorithm to distinguish salient brightness values corresponding to measurement artefacts, non-defect structures and defects, respectively. In this dissertation, a novel fully-convolutional-network architecture was developed that allows the accurate segmentation of defective LED chips in highly variable photoluminescence wafer images. For this purpose, the basic fully-convolutional-network architecture was modifed with regard to the given application and advanced architectural concepts were incorporated so as to enable a pixel-fine output resolution and a reliable segmentation of multiple scaled defect structures. Altogether, the developed dense ASPP Vaughan architecture achieved a pixel accuracy of 97.5 %, mean pixel accuracy of 96.2% and defect-class accuracy of 92.0 %, trained on a dataset of 136 input-label pairs and hereby showed that fully-convolutional-network algorithms can be a valuable contribution to data analysis in industrial manufacturing.Leuchtdioden (LEDs) werden heutzutage in einer Vielzahl von Anwendungen verbaut, angefangen bei Standard-LEDs in der Hausbeleuchtung bis hin zu technisch fortgeschrittenen Chip-Designs in Automobilen, Smartwatches und Videowรคnden. Die Weiterentwicklungen im Chip-Design beeinflussen auch die Testprozesse: Hierbei wird die Durchfรผhrung bestimmter Kontaktmessungen durch zunehmend verringerte Chip-Dimensionen entweder erschwert oder ist aufgrund des Chip-Designs unmรถglich. Die sogenannteWafer-Prober-Messung beispielsweise ermittelt die elektrischen und optischen Eigenschaften aller LED-Chips auf einem Wafer, indem jeder einzelne Chip mit einer Messnadel kontaktiert und vermessen wird; Chip-Designs ohne Kontaktpad auf der Oberflรคche kรถnnen daher nicht durch die Wafer-Prober-Messung charakterisiert werden. Wรคhrend die elektrischen und optischen Chip-Eigenschaften auch mittels Stichprobenmessungen bestimmt werden kรถnnen, verteilen sich defekte LED-Chips zufรคllig รผber die Waferflรคche. Fortgeschrittene Datenanalysemethoden ermรถglichen hierbei einen neuen Ansatz, Defektinformationen aus bereits vorhandenen, berรผhrungslosen Messungen zu gewinnen. Photolumineszenzmessungen, beispielsweise, erfassen ein Helligkeitsbild des LEDWafers, in dem auffรคllige Helligkeitswerte auf defekte LED-Chips hinweisen. Ein Bildverarbeitungsalgorithmus, der diese Defektinformationen aus Photolumineszenzbildern extrahiert und ein Defektabbild erstellt, muss hierzu jeden einzelnen Bildpunkt mittels semantischer Segmentation klassifizieren, eine Technik bei der sogenannte Fully-Convolutional-Netzwerke den Stand der Technik darstellen. Die beschriebene Aufgabe wird jedoch durch mehrere Faktoren erschwert: Einerseits entspricht jeder Bildpunkt eines Photolumineszenzbildes einem LED-Chip, so dass eine bildpunktfeine Auflรถsung der Netzwerkausgabe notwendig ist. Andererseits weisen Photolumineszenzbilder sowohl stark variierende Helligkeitswerte von Wafer zu Wafer als auch lokal begrenzte Helligkeitsabweichungen auf. Zusรคtzlich nehmen Defektanhรคufungen unterschiedliche Formen, GrรถรŸen und Helligkeitsgradienten an, weswegen der Algorithmus Objekte verschiedener Abmessungen zuverlรคssig erkennen kรถnnen muss. Schlussendlich weisen nicht alle auffรคlligen Helligkeitswerte auf defekte LED-Chips hin, so dass der Algorithmus in der Lage sein muss zu unterscheiden, ob auffรคllige Helligkeitswerte mit Messartefakten, defekten LED-Chips oder defektfreien Strukturen korrelieren. In dieser Dissertation wurde eine neuartige Fully-Convolutional-Netzwerkarchitektur entwickelt, die die akkurate Segmentierung defekter LED-Chips in stark variierenden Photolumineszenzbildern von LED-Wafern ermรถglicht. Zu diesem Zweck wurde die klassische Fully-Convolutional-Netzwerkarchitektur hinsichtlich der beschriebenen Anwendung angepasst und fortgeschrittene architektonische Konzepte eingearbeitet, um eine bildpunktfeine Ausgabeauflรถsung und eine zuverlรคssige Sementierung verschieden groรŸer Defektstrukturen umzusetzen. Insgesamt erzielt die entwickelte dense-ASPP-Vaughan-Architektur eine Pixelgenauigkeit von 97,5 %, durchschnittliche Pixelgenauigkeit von 96,2% und eine Defektklassengenauigkeit von 92,0 %, trainiert mit einem Datensatz von 136 Bildern. Hiermit konnte gezeigt werden, dass Fully-Convolutional-Netzwerke eine wertvolle Erweiterung der Datenanalysemethoden sein kรถnnen, die in der industriellen Fertigung eingesetzt werden
    • โ€ฆ
    corecore