5 research outputs found

    ์ œ์กฐ ์‹œ์Šคํ…œ์—์„œ์˜ ์˜ˆ์ธก ๋ชจ๋ธ๋ง์„ ์œ„ํ•œ ์ง€๋Šฅ์  ๋ฐ์ดํ„ฐ ํš๋“

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2021. 2. ์กฐ์„ฑ์ค€.Predictive modeling is a type of supervised learning to find the functional relationship between the input variables and the output variable. Predictive modeling is used in various aspects in manufacturing systems, such as automation of visual inspection, prediction of faulty products, and result estimation of expensive inspection. To build a high-performance predictive model, it is essential to secure high quality data. However, in manufacturing systems, it is practically impossible to acquire enough data of all kinds that are needed for the predictive modeling. There are three main difficulties in the data acquisition in manufacturing systems. First, labeled data always comes with a cost. In many problems, labeling must be done by experienced engineers, which is costly. Second, due to the inspection cost, not all inspections can be performed on all products. Because of time and monetary constraints in the manufacturing system, it is impossible to obtain all the desired inspection results. Third, changes in the manufacturing environment make data acquisition difficult. A change in the manufacturing environment causes a change in the distribution of generated data, making it impossible to obtain enough consistent data. Then, the model have to be trained with a small amount of data. In this dissertation, we overcome this difficulties in data acquisition through active learning, active feature-value acquisition, and domain adaptation. First, we propose an active learning framework to solve the high labeling cost of the wafer map pattern classification. This makes it possible to achieve higher performance with a lower labeling cost. Moreover, the cost efficiency is further improved by incorporating the cluster-level annotation into active learning. For the inspection cost for fault prediction problem, we propose a active inspection framework. By selecting products to undergo high-cost inspection with the novel uncertainty estimation method, high performance can be obtained with low inspection cost. To solve the recipe transition problem that frequently occurs in faulty wafer prediction in semiconductor manufacturing, a domain adaptation methods are used. Through sequential application of unsupervised domain adaptation and semi-supervised domain adaptation, performance degradation due to recipe transition is minimized. Through experiments on real-world data, it was demonstrated that the proposed methodologies can overcome the data acquisition problems in the manufacturing systems and improve the performance of the predictive models.์˜ˆ์ธก ๋ชจ๋ธ๋ง์€ ์ง€๋„ ํ•™์Šต์˜ ์ผ์ข…์œผ๋กœ, ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ์ž…๋ ฅ ๋ณ€์ˆ˜์™€ ์ถœ๋ ฅ ๋ณ€์ˆ˜ ๊ฐ„์˜ ํ•จ์ˆ˜์  ๊ด€๊ณ„๋ฅผ ์ฐพ๋Š” ๊ณผ์ •์ด๋‹ค. ์ด๋Ÿฐ ์˜ˆ์ธก ๋ชจ๋ธ๋ง์€ ์œก์•ˆ ๊ฒ€์‚ฌ ์ž๋™ํ™”, ๋ถˆ๋Ÿ‰ ์ œํ’ˆ ์‚ฌ์ „ ํƒ์ง€, ๊ณ ๋น„์šฉ ๊ฒ€์‚ฌ ๊ฒฐ๊ณผ ์ถ”์ • ๋“ฑ ์ œ์กฐ ์‹œ์Šคํ…œ ์ „๋ฐ˜์— ๊ฑธ์ณ ํ™œ์šฉ๋œ๋‹ค. ๋†’์€ ์„ฑ๋Šฅ์˜ ์˜ˆ์ธก ๋ชจ๋ธ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์–‘์งˆ์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ํ•˜์ง€๋งŒ ์ œ์กฐ ์‹œ์Šคํ…œ์—์„œ ์›ํ•˜๋Š” ์ข…๋ฅ˜์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์›ํ•˜๋Š” ๋งŒํผ ํš๋“ํ•˜๋Š” ๊ฒƒ์€ ํ˜„์‹ค์ ์œผ๋กœ ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ฐ์ดํ„ฐ ํš๋“์˜ ์–ด๋ ค์›€์€ ํฌ๊ฒŒ ์„ธ๊ฐ€์ง€ ์›์ธ์— ์˜ํ•ด ๋ฐœ์ƒํ•œ๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ, ๋ผ๋ฒจ๋ง์ด ๋œ ๋ฐ์ดํ„ฐ๋Š” ํ•ญ์ƒ ๋น„์šฉ์„ ์ˆ˜๋ฐ˜ํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๋งŽ์€ ๋ฌธ์ œ์—์„œ, ๋ผ๋ฒจ๋ง์€ ์ˆ™๋ จ๋œ ์—”์ง€๋‹ˆ์–ด์— ์˜ํ•ด ์ˆ˜ํ–‰๋˜์–ด์•ผ ํ•˜๊ณ , ์ด๋Š” ํฐ ๋น„์šฉ์„ ๋ฐœ์ƒ์‹œํ‚จ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ, ๊ฒ€์‚ฌ ๋น„์šฉ ๋•Œ๋ฌธ์— ๋ชจ๋“  ๊ฒ€์‚ฌ๊ฐ€ ๋ชจ๋“  ์ œํ’ˆ์— ๋Œ€ํ•ด ์ˆ˜ํ–‰๋  ์ˆ˜ ์—†๋‹ค. ์ œ์กฐ ์‹œ์Šคํ…œ์—๋Š” ์‹œ๊ฐ„์ , ๊ธˆ์ „์  ์ œ์•ฝ์ด ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์›ํ•˜๋Š” ๋ชจ๋“  ๊ฒ€์‚ฌ ๊ฒฐ๊ณผ๊ฐ’์„ ํš๋“ํ•˜๋Š” ๊ฒƒ์ด ์–ด๋ ต๋‹ค. ์„ธ๋ฒˆ์งธ๋กœ, ์ œ์กฐ ํ™˜๊ฒฝ์˜ ๋ณ€ํ™”๊ฐ€ ๋ฐ์ดํ„ฐ ํš๋“์„ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ ๋‹ค. ์ œ์กฐ ํ™˜๊ฒฝ์˜ ๋ณ€ํ™”๋Š” ์ƒ์„ฑ๋˜๋Š” ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ๋ฅผ ๋ณ€ํ˜•์‹œ์ผœ, ์ผ๊ด€์„ฑ ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ถฉ๋ถ„ํžˆ ํš๋“ํ•˜์ง€ ๋ชปํ•˜๊ฒŒ ํ•œ๋‹ค. ์ด๋กœ ์ธํ•ด ์ ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ ๋ชจ๋ธ์„ ์žฌํ•™์Šต์‹œ์ผœ์•ผ ํ•˜๋Š” ์ƒํ™ฉ์ด ๋นˆ๋ฒˆํ•˜๊ฒŒ ๋ฐœ์ƒํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฐ ๋ฐ์ดํ„ฐ ํš๋“์˜ ์–ด๋ ค์›€์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋Šฅ๋™ ํ•™์Šต, ๋Šฅ๋™ ํ”ผ์ณ๊ฐ’ ํš๋“, ๋„๋ฉ”์ธ ์ ์‘ ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•œ๋‹ค. ๋จผ์ €, ์›จ์ดํผ ๋งต ํŒจํ„ด ๋ถ„๋ฅ˜ ๋ฌธ์ œ์˜ ๋†’์€ ๋ผ๋ฒจ๋ง ๋น„์šฉ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋Šฅ๋™ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ ์€ ๋ผ๋ฒจ๋ง ๋น„์šฉ์œผ๋กœ ๋†’์€ ์„ฑ๋Šฅ์˜ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‚˜์•„๊ฐ€, ๊ตฐ์ง‘ ๋‹จ์œ„์˜ ๋ผ๋ฒจ๋ง ๋ฐฉ๋ฒ•์„ ๋Šฅ๋™ํ•™์Šต์— ์ ‘๋ชฉํ•˜์—ฌ ๋น„์šฉ ํšจ์œจ์„ฑ์„ ํ•œ์ฐจ๋ก€ ๋” ๊ฐœ์„ ํ•œ๋‹ค. ์ œํ’ˆ ๋ถˆ๋Ÿ‰ ์˜ˆ์ธก์— ํ™œ์šฉ๋˜๋Š” ๊ฒ€์‚ฌ ๋น„์šฉ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋Šฅ๋™ ๊ฒ€์‚ฌ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ถˆํ™•์‹ค์„ฑ ์ถ”์ • ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๊ณ ๋น„์šฉ ๊ฒ€์‚ฌ ๋Œ€์ƒ ์ œํ’ˆ์„ ์„ ํƒํ•จ์œผ๋กœ์จ ์ ์€ ๊ฒ€์‚ฌ ๋น„์šฉ์œผ๋กœ ๋†’์€ ์„ฑ๋Šฅ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋„์ฒด ์ œ์กฐ์˜ ์›จ์ดํผ ๋ถˆ๋Ÿ‰ ์˜ˆ์ธก์—์„œ ๋นˆ๋ฒˆํ•˜๊ฒŒ ๋ฐœ์ƒํ•˜๋Š” ๋ ˆ์‹œํ”ผ ๋ณ€๊ฒฝ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋„๋ฉ”์ธ ์ ์‘ ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•œ๋‹ค. ๋น„๊ต์‚ฌ ๋„๋ฉ”์ธ ์ ์‘๊ณผ ๋ฐ˜๊ต์‚ฌ ๋„๋ฉ”์ธ ์ ์‘์˜ ์ˆœ์ฐจ์ ์ธ ์ ์šฉ์„ ํ†ตํ•ด ๋ ˆ์‹œํ”ผ ๋ณ€๊ฒฝ์— ์˜ํ•œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ์ตœ์†Œํ™”ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‹ค์ œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ๋“ค์ด ์ œ์กฐ์‹œ์Šคํ…œ์˜ ๋ฐ์ดํ„ฐ ํš๋“ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ณ  ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๋†’์ผ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.1. Introduction 1 2. Literature Review 9 2.1 Review of Related Methodologies 9 2.1.1 Active Learning 9 2.1.2 Active Feature-value Acquisition 11 2.1.3 Domain Adaptation 14 2.2 Review of Predictive Modelings in Manufacturing 15 2.2.1 Wafer Map Pattern Classification 15 2.2.2 Fault Detection and Classification 16 3. Active Learning for Wafer Map Pattern Classification 19 3.1 Problem Description 19 3.2 Proposed Method 21 3.2.1 System overview 21 3.2.2 Prediction model 25 3.2.3 Uncertainty estimation 25 3.2.4 Query wafer selection 29 3.2.5 Query wafer labeling 30 3.2.6 Model update 30 3.3 Experiments 31 3.3.1 Data description 31 3.3.2 Experimental design 31 3.3.3 Results and discussion 34 4. Active Cluster Annotation for Wafer Map Pattern Classification 42 4.1 Problem Description 42 4.2 Proposed Method 44 4.2.1 Clustering of unlabeled data 46 4.2.2 CNN training with labeled data 48 4.2.3 Cluster-level uncertainty estimation 49 4.2.4 Query cluster selection 50 4.2.5 Cluster-level annotation 50 4.3 Experiments 51 4.3.1 Data description 51 4.3.2 Experimental setting 51 4.3.3 Clustering results 53 4.3.4 Classification performance 54 4.3.5 Analysis for label noise 57 5. Active Inspection for Fault Prediction 60 5.1 Problem Description 60 5.2 Proposed Method 65 5.2.1 Active inspection framework 65 5.2.2 Acquisition based on Expected Prediction Change 68 5.3 Experiments 71 5.3.1 Data description 71 5.3.2 Fault prediction models 72 5.3.3 Experimental design 73 5.3.4 Results and discussion 74 6. Adaptive Fault Detection for Recipe Transition 76 6.1 Problem Description 76 6.2 Proposed Method 78 6.2.1 Overview 78 6.2.2 Unsupervised adaptation phase 81 6.2.3 Semi-supervised adaptation phase 83 6.3 Experiments 85 6.3.1 Data description 85 6.3.2 Experimental setting 85 6.3.3 Performance degradation caused by recipe transition 86 6.3.4 Effect of unsupervised adaptation 87 6.3.5 Effect of semi-supervised adaptation 88 7. Conclusion 91 7.1 Contributions 91 7.2 Future work 94Docto

    ๋ณต์ง€๊ตญ๊ฐ€ ์ด๋…์˜ ๋ฐœ์ƒ์— ๊ด€ํ•œ ์—ฐ๊ตฌ : ํ”„๋ž‘์Šค์˜ ๊ฒฝ์šฐ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ฒฝ์ œํ•™๋ถ€ ๊ฒฝ์ œํ•™์ „๊ณต,1996.Maste

    ์†Œ์ˆ˜ ๋ฒ”์ฃผ ๋ฐ์ดํ„ฐ ์˜์—ญ์˜ ํ™•์žฅ : ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜• ํ•ด๊ฒฐ์„ ์œ„ํ•œ oversampling ๊ธฐ๋ฒ•๊ณผ ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์ ์šฉ

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์‚ฐ์—…๊ณตํ•™๊ณผ, 2016. 2. ์กฐ์„ฑ์ค€.Classification ๋ฌธ์ œ์—์„œ ํ•œ class๊ฐ€ ๋‹ค๋ฅธ class์— ๋น„ํ•ด ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜๊ฐ€ ํ˜„์ €ํžˆ ์ ์€ ๊ฒฝ์šฐ๋ฅผ ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜• ๋ฌธ์ œ๋ผ๊ณ  ํ•œ๋‹ค. ๋ฐ์ดํ„ฐ ๋ถˆ๊ท ํ˜• ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ์—ฌ๋Ÿฌ ๋ฐฉ๋ฒ•๋“ค ์ค‘ ์ด ๋…ผ๋ฌธ์—์„œ๋Š” oversampling์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. Oversampling์€ ๊ฐœ์ˆ˜๊ฐ€ ์ ์€ class์˜ ๋ฐ์ดํ„ฐ ์–‘์„ ์ž„์˜๋กœ ๋Š˜๋ ค์„œ class๊ฐ„ ๋น„์œจ์„ ๋งž์ถ”๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” EMA(Expanding Minority Area)๋ผ๋Š” ์ƒˆ๋กœ์šด oversampling ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด์˜ ์—ฌ๋Ÿฌ oversampling ๋ฐฉ๋ฒ•๋“ค์€ minority๊ฐ€ ์กด์žฌํ•˜๋Š” ์˜์—ญ์˜ ๋‚ด๋ถ€์˜ ๋ฐ€๋„๋ฅผ ์˜ฌ๋ฆฌ๋Š” ๋ฐฉ๋ฒ•์ธ ๋ฐ˜๋ฉด, ์ œ์•ˆํ•˜๋Š” EMA(Expanding Minority Area)๋Š” minority ์˜์—ญ์„ ํ™•์žฅ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์ด๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ถ„๋ฅ˜๊ธฐ๊ฐ€ majority ์˜์—ญ๊ณผ ์•„์ฃผ ๊ฐ€๊น๊ฒŒ boundary๋ฅผ ์žก์„ ์ˆ˜ ์žˆ๊ฒŒ ๋„์™€์ค€๋‹ค. ๋งŒ์•ฝ majority ์˜์—ญ์— ๋น„ํ•ด ํ—๊ฑฐ์šด boundary๋ฅผ ์žก๋Š”๋‹ค๋ฉด minority ๋ฐ์ดํ„ฐ๋ฅผ majority ๋ฐ์ดํ„ฐ๋กœ ์ž˜๋ชป ๋ถ„๋ฅ˜ํ•  ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์•„์ง„๋‹ค. ๋งŽ์€ ์‹ค์ œ ๋ฌธ์ œ์—์„œ๋Š” majority๋ณด๋‹ค minority data๋ฅผ ๋†“์น˜์ง€ ์•Š๊ณ  ์žก์•„๋‚ด๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•œ ๋ฌธ์ œ์ด๊ธฐ ๋•Œ๋ฌธ์—, ์ด ๊ฒฝ์šฐ EMA๋Š” ํšจ๊ณผ์ ์œผ๋กœ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. 20๊ฐœ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•ด ์‹คํ—˜์„ ํ•œ ๊ฒฐ๊ณผ EMA๊ฐ€ ๋‹ค๋ฅธ oversampling ๋ฐฉ๋ฒ•๋“ค์— ๋น„ํ•ด ์šฐ์ˆ˜ํ•จ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. EMA๋Š” minority data๊ฐ€ ๋นˆ ๊ณต๊ฐ„์„ ์ฑ„์šฐ๋ฉด์„œ ํ™•์žฅํ•˜๋Š” ๋ฐฉ๋ฒ•์ด๊ธฐ ๋•Œ๋ฌธ์— ์ฐจ์›์˜ ์ €์ฃผ์— ๊ฑธ๋ฆฌ๊ธฐ ์‰ฝ๋‹ค. ๋†’์€ ์ฐจ์›์—์„œ๋Š” ๋ฐ์ดํ„ฐ๊ฐ€ ๋นˆ ๊ณต๊ฐ„์„ ์ฑ„์šฐ๋Š” ํšจ๊ณผ๊ฐ€ ๋ฏธ๋ฏธํ•ด์ง€๋ฉด์„œ EMA๊ฐ€ ํšจ๊ณผ๋ฅผ ๋ณด์ง€ ๋ชปํ•œ๋‹ค. ์ฐจ์›์˜ ์ €์ฃผ ๋•Œ๋ฌธ์— ๊ณ ์ฐจ์›์—์„œ ํšจ๊ณผ์ ์ด์ง€ ์•Š๋‹ค๋Š” EMA์˜ ๋‹จ์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด EMAForest๋„ ์ œ์•ˆํ•œ๋‹ค. EMA๋ฅผ Random subspace method์™€ ๊ฒฐํ•ฉํ•˜์—ฌ decision tree๋ฅผ ์ ์šฉํ•œ ๋ฐฉ๋ฒ•์ด๋‹ค. Random subspace method๋ฅผ ํ†ตํ•ด์„œ ๋†’์€ ์ฐจ์›์˜ ๋ฌธ์ œ๋ฅผ ๋‚ฎ์€ ์ฐจ์›์˜ subspace๋กœ ๋ถ„ํ• ํ•œ ๋’ค์— EMA๋ฅผ ์ ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ฐจ์›์˜ ์ €์ฃผ๋ฅผ ํ”ผํ•  ์ˆ˜ ์žˆ๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์‹คํ—˜์„ ํ†ตํ•ด EMAForest ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์šฐ์ˆ˜์„ฑ์„ ์ž…์ฆํ•˜์˜€๊ณ  ์ฐจ์›์— ๋Œ€ํ•ด robustํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค.์ œ 1 ์žฅ ์„œ ๋ก  1 ์ œ 2 ์žฅ ๊ด€๋ จ ์—ฐ๊ตฌ 4 ์ œ 3 ์žฅ ์ œ์•ˆ ๊ธฐ๋ฒ• - EMA 9 ์ œ 4 ์žฅ ์‹คํ—˜ - EMA 15 ์ œ 1 ์ ˆ ์‹คํ—˜ ์„ค์ • 15 ์ œ 2 ์ ˆ ์‹คํ—˜ ๊ฒฐ๊ณผ 18 ์ œ 5 ์žฅ ์ œ์•ˆ ๊ธฐ๋ฒ• - EMAForest 21 ์ œ 1 ์ ˆ ์ฐจ์›์˜ ์ €์ฃผ 21 ์ œ 2 ์ ˆ Random Subspace Method 22 ์ œ 3 ์ ˆ EMAForest 23 ์ œ 6 ์žฅ ์‹คํ—˜ - EMAForest 26 ์ œ 1 ์ ˆ ์‹คํ—˜ ์„ค์ • 26 ์ œ 2 ์ ˆ ์‹คํ—˜ ๊ฒฐ๊ณผ 27 ์ œ 3 ์ ˆ ์ฐจ์›์— ๋Œ€ํ•œ ๊ฐ•๊ฑด์„ฑ 29 ์ œ 7 ์žฅ ๊ฒฐ ๋ก  33 ์ฐธ๊ณ ๋ฌธํ—Œ 35 ๋ถ€ ๋ก 40 Abstract 65Maste
    corecore