

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Intelligent Data Acquisition for Predictive

Modeling in Manufacturing Systems

제조 시스템에서의 예측 모델링을 위한 지능적 데이터 획득

2021 년 2 월

서울대학교 대학원

산업공학과

심 재 웅

Abstract

Intelligent Data Acquisition for Predictive
Modeling in Manufacturing Systems

Jaewoong Shim

Department of Industrial Engineering

The Graduate School

Seoul National University

Predictive modeling is a type of supervised learning to find the functional relation-

ship between the input variables and the output variable. Predictive modeling is used

in various aspects in manufacturing systems, such as automation of visual inspec-

tion, prediction of faulty products, and result estimation of expensive inspection. To

build a high-performance predictive model, it is essential to secure high quality data.

However, in manufacturing systems, it is practically impossible to acquire enough

data of all kinds that are needed for the predictive modeling. There are three main

difficulties in the data acquisition in manufacturing systems. First, labeled data al-

ways comes with a cost. In many problems, labeling must be done by experienced

engineers, which is costly. Second, due to the inspection cost, not all inspections

can be performed on all products. Because of time and monetary constraints in the

manufacturing system, it is impossible to obtain all the desired inspection results.

Third, changes in the manufacturing environment make data acquisition difficult.

A change in the manufacturing environment causes a change in the distribution of

i

generated data, making it impossible to obtain enough consistent data. Then, the

model have to be trained with a small amount of data. In this dissertation, we over-

come this difficulties in data acquisition through active learning, active feature-value

acquisition, and domain adaptation. First, we propose an active learning framework

to solve the high labeling cost of the wafer map pattern classification. This makes

it possible to achieve higher performance with a lower labeling cost. Moreover, the

cost efficiency is further improved by incorporating the cluster-level annotation into

active learning. For the inspection cost for fault prediction problem, we propose a

active inspection framework. By selecting products to undergo high-cost inspection

with the novel uncertainty estimation method, high performance can be obtained

with low inspection cost. To solve the recipe transition problem that frequently

occurs in faulty wafer prediction in semiconductor manufacturing, a domain adap-

tation methods are used. Through sequential application of unsupervised domain

adaptation and semi-supervised domain adaptation, performance degradation due

to recipe transition is minimized. Through experiments on real-world data, it was

demonstrated that the proposed methodologies can overcome the data acquisition

problems in the manufacturing systems and improve the performance of the predic-

tive models.

Keywords: Predictive modeling, Data acquisition, Manufacturing systems, Active

learning, Active feature-value acquisition, Domain adaptation, Wafer map pattern

classification, Fault prediction, Fault detection and classification model

Student Number: 2018-39406

ii

Contents

Abstract i

Contents vi

List of Tables vii

List of Figures x

Chapter 1 Introduction 1

Chapter 2 Literature Review 9

2.1 Review of Related Methodologies . 9

2.1.1 Active Learning . 9

2.1.2 Active Feature-value Acquisition 11

2.1.3 Domain Adaptation . 14

2.2 Review of Predictive Modelings in Manufacturing 15

2.2.1 Wafer Map Pattern Classification 15

2.2.2 Fault Detection and Classification 16

Chapter 3 Active Learning for Wafer Map Pattern Classification 19

3.1 Problem Description . 19

3.2 Proposed Method . 21

iii

3.2.1 System overview . 21

3.2.2 Prediction model . 25

3.2.3 Uncertainty estimation . 25

3.2.4 Query wafer selection . 29

3.2.5 Query wafer labeling . 30

3.2.6 Model update . 30

3.3 Experiments . 31

3.3.1 Data description . 31

3.3.2 Experimental design . 31

3.3.3 Results and discussion . 34

Chapter 4 Active Cluster Annotation for Wafer Map Pattern Clas-

sification 42

4.1 Problem Description . 42

4.2 Proposed Method . 44

4.2.1 Clustering of unlabeled data 46

4.2.2 CNN training with labeled data 48

4.2.3 Cluster-level uncertainty estimation 49

4.2.4 Query cluster selection . 50

4.2.5 Cluster-level annotation . 50

4.3 Experiments . 51

4.3.1 Data description . 51

4.3.2 Experimental setting . 51

4.3.3 Clustering results . 53

4.3.4 Classification performance . 54

iv

4.3.5 Analysis for label noise . 57

Chapter 5 Active Inspection for Fault Prediction 60

5.1 Problem Description . 60

5.2 Proposed Method . 65

5.2.1 Active inspection framework 65

5.2.2 Acquisition based on Expected Prediction Change 68

5.3 Experiments . 71

5.3.1 Data description . 71

5.3.2 Fault prediction models . 72

5.3.3 Experimental design . 73

5.3.4 Results and discussion . 74

Chapter 6 Adaptive Fault Detection for Recipe Transition 76

6.1 Problem Description . 76

6.2 Proposed Method . 78

6.2.1 Overview . 78

6.2.2 Unsupervised adaptation phase 81

6.2.3 Semi-supervised adaptation phase 83

6.3 Experiments . 85

6.3.1 Data description . 85

6.3.2 Experimental setting . 85

6.3.3 Performance degradation caused by recipe transition 86

6.3.4 Effect of unsupervised adaptation 87

6.3.5 Effect of semi-supervised adaptation 88

v

Chapter 7 Conclusion 91

7.1 Contributions . 91

7.2 Future work . 94

Bibliography 95

국문초록 109

vi

List of Tables

Table 1.1 Outlook of the dissertation. 8

Table 3.1 Notations used in Chapter 3. 23

Table 3.2 Description for dataset used in Chapter 3. 32

Table 4.1 Notations used in Chapter 4. 45

Table 4.2 Description for dataset used in Chapter 4. 52

Table 5.1 Description of models used in EPC. 68

Table 5.2 Description for dataset used in Chapter 5. 72

Table 5.3 Preliminary experiment results in AUROC. (mean ± standard

deviation) . 73

Table 6.1 Notations used in Chapter 6. 81

Table 6.2 Performance degradation when recipe transition occurs. . . . 87

vii

List of Figures

Figure 1.1 General process of predictive modeling. 2

Figure 1.2 Illustrative descriptions of active learning, active feature-value

acquisition, and domain adaptation. 5

Figure 1.3 The composition of the semiconductor manufacturing process

and the relative position of each predictive modeling. 7

Figure 3.1 Overview of the proposed wafer map pattern classification

system. 24

Figure 3.2 Examples of wafer maps and their labels. 32

Figure 3.3 CNN architecture used for the experiments. 33

Figure 3.4 Overall comparison of uncertainty estimation methods with

diversified top-K selection. 35

Figure 3.5 Dolan-More curves of the CNN models at the 60th phase. . 36

Figure 3.6 Comparison of uncertainty estimation methods with diver-

sified top-K selection for each defect type. Each graph has

a different y-axis range to clarify the performance difference

between methods. 38

Figure 3.7 Comparison between the diversified top-K selection and sim-

ple top-K selection. 40

viii

Figure 3.8 Class distributions of the labeled training set as the phase

progressed. 41

Figure 4.1 Illustrative explanation of cluster-level annotation. In indi-

vidual wafer map-level annotation, one wafer map is anno-

tated in one interaction; in cluster-level annotation, multiple

wafer maps are annotated in one interaction. 43

Figure 4.2 Flow chart of active cluster annotation framework. 45

Figure 4.3 Histogram of cluster size according to |C|average. 53

Figure 4.4 Purity according to |C|average. 55

Figure 4.5 The amount of labeled wafer maps as iteration progresses. . 55

Figure 4.6 Classification performance comparison between methods. (a)

incremental learning in each iteration. (b) learning from scratch

in each iteration. 56

Figure 4.7 Label error rate of labeled training dataset as iteration pro-

gresses. 58

Figure 4.8 Examples of wafer map clusters and their original labels. . . 59

Figure 5.1 Problem situation addressed in Chapter 5. 61

Figure 5.2 Graphical explanation of the purpose of Chapter 5. 62

Figure 5.3 Problem situation in terms of data. 64

Figure 5.4 Active inspection framework. 66

Figure 5.5 Illustrative description of EPC. 69

Figure 5.6 Experimental results for each dataset. 75

ix

Figure 6.1 Illustrative description of the problem situation to be ad-

dressed in the Chapter 6. 77

Figure 6.2 Overview of the adaptive fault detection framework for recipe

transition. 80

Figure 6.3 Overall neural network architecture used to train the FDC

model in unsupervised adaptation phase. 81

Figure 6.4 Overall neural network architecture used to train the FDC

model in semi-supervised adaptation phase. 83

Figure 6.5 Comparison of the FDC models for unsupervised adaptation

phase. 87

Figure 6.6 Comparison of the FDC models as inspection rate increases. 89

x

Chapter 1

Introduction

Predictive modeling is to find the functional relationship y = f(X) between the input

variable X and the output variable y. This corresponds to the supervised learning,

where the output variable to be predicted is directly utilized for training, and can be

divided into classification task and regression task. In classification task, an output

variable to be predicted has categorical values, and regression is a case where an

output variable to be predicted has continuous values.

The process of predictive modeling is divided into a training phase and an pre-

diction phase. The training phase requires a labeled training dataset that contains

a large number of pairs of input variable values and output variable values. The

functional relationship y = f(X) is inferred from the dataset using a learning al-

gorithm. The constructed prediction model f is used in the prediction phase. In

prediction phase, given a new data point x that does not have the corresponding

value of output variable, the prediction model estimates the y value of that point.

In this way, predictive modeling is used to predict the value of the output variable

with the value of the input variable. The general process of predictive modeling is

illustrated in Figure 1.1.

Predictive modeling through machine learning approaches is widely adopted in

1

X1 X2 X3 … … Xn Y

X1 X2 X3 … … Xn

Labeled training dataset

New data points

Training

𝑌

Training phase

Prediction phase

Model 𝑓

Model 𝑓

Figure 1.1: General process of predictive modeling.

manufacturing systems [35, 1, 49, 78]. First of all, a representative example is the

automation of visual inspection [16, 10]. A lot of manufacturing process steps involve

visual inspection procedures by engineers to find product defects. Considerable re-

search has been conducted to automate the visual inspection by constructing a model

using the inspection history data of the engineer as training data. Predicting faulty

product is also an example of using predictive modeling in manufacturing systems

[90, 39, 36, 40, 38]. If the faults are predicted in the early stage of the processes

and appropriate action can be taken, unnecessary costs can be reduced. A variety of

related information for a product is used to constitute input variables for the fault

prediction. This includes sensor measurements, inspection results, environmental

2

factors, process parameters, and process time. Output variables indicate whether

a product will be found faulty in the future, such as outgoing inspection fault or

customer-found fault. In addition, predictive modeling can also be used to replace

expensive inspection process [11, 37]. Various inspections are performed during the

manufacturing process, some of which are very expensive. Virtual metrology in semi-

conductor manufacturing is a typical example. By constructing a predictive model

based on the various types of sensor data as input and physical metrology result as

output, physical metrology process can be partially replaced, thereby reducing cost.

To build a high-performance predictive model, it is essential to acquire high

quality data. However, in manufacturing systems, it is practically impossible to

obtain enough data of all kinds that are needed for the predictive modeling. There

are three main difficulties in the data acquisition in manufacturing systems. First,

labeled data always comes with a cost. In many problems, labeling must be done by

experienced engineers, which is costly. Second, acquiring inspection result data incurs

inspection costs and time delays. Because there are time and monetary constraints

in the manufacturing system, it is impossible to obtain all the desired inspection

results. So, in the case of high-cost inspection, only some sampled products can be

inspected. Third, changes in the manufacturing environment make data acquisition

difficult. The manufacturing environment is not fixed and constantly changes. A

change in the manufacturing environment causes a change in the distribution of

generated data, making it impossible to obtain enough consistent data. Then, the

performance of an existing predictive model is degraded, and the model needs to

be retrained with new data. In order to retrain a model, data generated in a new

environment is sufficiently required, but there is little data at the beginning after

3

the change, making model training difficult.

We overcome this data acquisition problems in manufacturing systems through

active learning, active feature-value acquisition, and domain adaptation. Active

learning is a framework to construct the high-performance model with the reduced

label acquisition cost. In active learning, prediction model is built using active query-

ing, by which instances are labeled for training. The main idea of active learning is

to selectively label the most informative instances for the model. The informative

instances are selected from unlabeled instances and queried to be labeled. Then,

the model is constructed with the labeled instances. The procedure is repeated to

obtain high prediction performance without labeling the entire instances. Whereas

active learning focuses on the cost of acquiring the value of an output variable, the

active feature-value acquisition focuses on the cost of acquiring the value of input

variables. Obtaining feature-values is as expensive as obtaining labels in real-world

manufacturing processes. Thus, active feature-value acquisition is as essential as ac-

tive learning in practice. Domain adaptation is a methods to utilize labeled data in

a relevant source domain for a target domain to be solved. It can be used when the

data of the target domain is insufficient. The key idea is how to transform a large

amount of information in the source domain to fit the target domain. A schematic

explanations of these three methodologies are shown in Figure 1.2.

The predictive modelings we target in each chapter are the wafer map pattern

classification and fault prediction problems. Wafer map pattern classification in semi-

conductor manufacturing is to classify defect types of the wafer maps through the

pattern of them. The wafer map consist of spatial information of whether each die is

pass or fail, and it shows how the fail dies are distributed on the wafer. The defect

4

Active learning Active feature-value acquisition Domain adaptation

X1 X2 X3 … … Xn Y

Acquiring values of output variable

Machine learning
model

data
X1 X2 … Xn YX1 X2 … Xn Y

X1 X2 X3 … … Xn Y

oracle

Machine learning
model

oracle

Machine learning
model

data
Source data Target data

Using data from other domain Acquiring values of input variables

Figure 1.2: Illustrative descriptions of active learning, active feature-value acquisi-
tion, and domain adaptation.

type of the wafer map provides important information for determining the defect

cause as wafer maps with similar patterns are likely to have the same root cause for

a defect. To construct a high-performance classification model, a large amount of

labeled training data is required. However, it is expensive to secure a large amount

of labeled wafer maps, as the wafer maps must be annotated by expert engineers.

We solve this problem using an active learning strategy.

Fault prediction is to predict in advance whether each product will be defective

in the future. When trying to perform fault prediction with inspection results as

input, inspection cost becomes an obstacle for predictive modeling. Due to cost

constraints, not all products can go through all inspections, and some expensive

inspections are conducted as sampling inspections. If this sampling is performed

intelligently to effectively obtain the value of input variables, the performance of

fault prediction can be improved. Active feature-value acquisition is employed to

obtain high performance with reduced inspection cost.

Fault prediction can also be performed with time series sensor data generated

5

during the process. In particular, in the semiconductor manufacturing process, this

kind of model is referred to as a fault detection and classification (FDC) model. In

each process step, a manufacturing recipe is set. When this recipe is changed, the

distribution of the collected time series sensor data also changes. Therefore, whenever

a recipe transition occurs, it is necessary to retrain the FDC model with the new

recipe data, but it takes time to secure a lot of labeled training data for the new

recipe. For this problem, domain adaptation is utilized to reduce the performance

degradation that occurs in recipe transition situations and quickly build a new recipe

model.

As described above, in this dissertation, predictive modelings in the semicon-

ductor manufacturing process were used as the main case for demonstrating each

methodology. The semiconductor manufacturing process is largely divided into fab-

rication, probe test, assembly, and final test. The role of predictive modeling covered

in each chapter in the entire process is shown in Figure 1.3. The model that predicts

the result of the probe test with sensor data of the fabrication process is dealt with

in chapter 6, the automation of wafer map pattern classification in the probe test

is dealt with in chapter 3 and 4, and the model that predicts the final test result

with the measured values in the probe test is dealt with in chapter 5. Table 1.1

summarizes each predictive modeling, difficulty in data acquisition, and strategy.

The reminder of this dissertation is organized as follows. In chapter 2, literature

reviews on the related three methodologies and predictive modeling problems in

manufacturing systems are presented. chapter 3 proposes an cost-effective wafer

map pattern classification system based on active learning of a convolutional neural

network (CNN) to address the high labeling cost. In chapter 4, the above active

6

Fabrication Probe Test Assembly Final Test

Wafer Map Pattern
Classification (Chapter 3 & 4)

Fault Prediction with
Inspection Results (Chapter 5)

Fault Prediction with
Sensor Data (Chapter 6)

Figure 1.3: The composition of the semiconductor manufacturing process and the
relative position of each predictive modeling.

learning framework for the wafer map pattern classification is improved based on the

cluster-level annotation. In chapter 5, we propose an active inspection framework in

which products are not randomly sampled for advanced inspections and are instead

intelligently sampled with prediction uncertainty to achieve high accuracy while

maintaining low inspection costs. chapter 6 presents the adaptive fault detection

framework to minimize the performance degradation caused by the transition of

recipe. Finally, chapter 7 provides the conclusions and discussion, as well as the

directions for future work.

7

T
ab

le
1.

1:
O

u
tl

o
ok

of
th

e
d

is
se

rt
a
ti

on
.

C
h

a
p

te
r

D
iffi

c
u

lt
y

in
d

a
ta

a
c
q
u

is
it

io
n

S
tr

a
te

g
y

T
a
rg

e
t

P
ro

b
le

m

C
h

ap
te

r
3

&
4

L
ab

el
in

g
co

st
A

ct
iv

e
le

a
rn

in
g

W
af

er
m

ap
p

at
te

rn
cl

as
si

fi
ca

ti
on

C
h

ap
te

r
5

In
sp

ec
ti

on
co

st
A

ct
iv

e
fe

at
u

re
-v

al
u

e
ac

q
u

is
it

io
n

F
au

lt
p

re
d

ic
ti

on
w

it
h

in
sp

ec
ti

on
re

su
lt

s

C
h

ap
te

r
6

R
ec

ip
e

tr
an

si
ti

o
n

D
om

ai
n

ad
ap

ta
ti

on
F

au
lt

d
et

ec
ti

on
an

d
cl

as
si

fi
ca

ti
o
n

w
it

h
ti

m
e

se
ri

es
se

n
so

r
d
at

a

8

Chapter 2

Literature Review

2.1 Review of Related Methodologies

2.1.1 Active Learning

Active learning is a case of machine learning, in which a prediction model is built

using active querying, by which instances are labeled for training. This method is

used when it is difficult to label all instances because of a high labeling cost. In an

active learning framework, informative instances are selected to be labeled by the

labeler.

Uncertainty sampling is the most basic and traditional strategy, and queries

the most uncertain instances from among the unlabeled set. An easy method for

estimating uncertainty is to utilize the posterior probability of a predicted class [48].

Settles et al. [74] proposed to query instances with the least confident instance. The

margin between the highest posterior probability and the second highest probability

was considered as the uncertainty in Scheffer et al. [70]. The entropy of the class

posterior probabilities was exploited as an uncertainty measure by Hwa [30].

Some studies have also considered diversity of selected instances in uncertainty

sampling methods because redundant instances add little information for updating

the model. In Brinker [8], a diversity constraint was introduced for active learning

9

with support vector machine (SVM). Yang et al. [89] proposed a method of applying

diversity maximization constraints to a multi-class problem. Xu et al. [88] selected

the cluster centers of the instances lying within the margin of a SVM. Hoi et al. [28]

chose instances that reduce Fisher information. Azimi et al. [2] used a variant of a

Gaussian Mixture Model to maintain diversity among selected instances.

Query-by-committee [75] is another well-known technique which employs multi-

ple prediction models. The prediction is performed for all unlabeled instances and the

instance that is the most inconsistent between prediction models is queried. Other

methods include the method of expected error reduction [66], which estimates the

expected error after a set of queries to find the optimal query instances, and the total

expected variance minimization method [74, 73], which reduces the generalization

error indirectly.

Recently, with the development of deep learning, active learning algorithms for

deep neural networks have also been appearing. However, they are not prevalent com-

pared to the algorithms for traditional machine learning [22]. Most of the methods

are based on uncertainty sampling because they can compensate for the high com-

putational cost of deep neural networks. Simple uncertainty sampling methods using

posterior probability have been successfully applied to deep neural networks [84]. In

applying Bayesian methods to deep learning, Gal et al. [21] showed an equivalence

between a dropout and the approximate Bayesian inference. Thus, it was possible

to estimate uncertainty through multiple forward passes with Monte Carlo (MC)

dropout [22].

In active learning for deep neural networks, there have been studies to take

the diversity of the selected instances into account. Sener et al. [72] proposed a

10

distribution-based method for choosing instances representing the distribution of

the entire unlabeled pool in an intermediate feature space of a deep neural network.

But it has a high computational cost because it requires solving mixed integer pro-

gramming. Kirsch et al. [42] proposed batchBALD method that increase diversity of

selected instances with approximation of mutual information. BatchBALD recently

reported superior performance in batch mode active learning tasks.

Additionally, cluster-based active learning was proposed. In the conventional ac-

tive learning framework, annotation is conducted for each instance. Meanwhile, in

cluster-based active learning, annotation is conducted for each cluster [63]. There-

fore, clustering is performed on unlabeled instances. In this method, multiple in-

stances in a cluster are equally annotated as the most frequent class in one annota-

tion task. Cluster-based active learning assumes that the annotation cost for a cluster

and an instance are the same. With this assumption, cluster-based active learning

can yield a larger number of labeled training instances with the same annotation

cost compared with the conventional active learning framework.

In Chapter 2 and 3, our active learning system uses a CNN for a classification

model. We focus on uncertainty sampling owing to its simplicity and computational

efficiency. Furthermore, we consider the diversity of the selected instances in order

to solve the class imbalance problem.

2.1.2 Active Feature-value Acquisition

Active feature-value acquisition is a framework improve the trade-off between model

performance and the feature-value acquisition cost. Obtaining feature-values is as

expensive as obtaining labels in real-world manufacturing processes. Thus, active

11

feature-value acquisition is as essential as active learning in practice.

Active feature-value acquisition has been studied in two research directions, each

of which focuses on the training phase and prediction phase, respectively.

Active feature-value acquisition for the training phase is to train the high per-

formance prediction model while reducing the feature-value acquisition cost. Labels

are given for all training instances, but the feature-values of some instances are miss-

ing. In this situation, in a similar manner to active learning, the most informative

instances for the prediction model are selected and queried to acquire their feature-

values. Through iteration of the feature-value acquisition of selected instances and

model retraining, prediction performance of the model increases cost-effectively. The

active feature-value acquisition for the training phase has been actively studied. Ac-

quisition based on variance of imputed data (AVID) is a method to obtain values of

instances with high imputation uncertainty via multiple imputation. Goal-oriented

data acquisition (GODA) is a method to obtain values for instances that maximize

model performance with imputation [92]. Melville et al. [56] proposed a method to

obtain values of input variables to maximize the predefined utility function. Sankara-

narayanan et al. [68] proposed a method to obtain values of instances based on the

likelihood to be classified correctly. Dhurandhar et al. [15] selected the instances

based on a derived upper bound on the expectation of the distance between the

next classifier and final classifier.

The trade-off between model performance and the feature-value acquisition cost

occurs not only in the training phase, but also in the prediction phase. If a new

instance to be predicted has all the feature-values, the prediction for the instance

would be accurate. However, in practice, it may not be possible due to the acquisi-

12

tion cost, meaning that some feature-values for the instance can be missing. Active

feature-value acquisition for the prediction phase is to improve the prediction for

the instance with minimal acquisition of feature-values. Cost-sensitive decision trees

(DTs) [51] and cost-sensitive näıve Bayes [9] are constructed through learning al-

gorithms designed to minimize the feature-value acquisition cost in prediction time.

In [32], the Hidden Markov Model was used to train the sequence of feature-value

acquisition. Desjardins et al. [14] used a cascaded ensemble of classifiers to obtain

feature-values until the confidence threshold is met. All these works have focused

on selecting features to acquire for each instance. On the other hand, few studies

have focused on selecting instances to acquire a set of features, which can be called

instance-completion setting. A study for the instance-completion was conducted in

[34], which selected customers to acquire more information for cost-effective cus-

tomer targeting.

The active inspection framework proposed in Chapter 5 corresponds to ac-

tive feature-value acquisition in the prediction phase, especially in the instance-

completion setting. Inspired by GODA [92] which is an imputation-based method

for training phase, we also propose expected prediction change (EPC), a new active

feature-value acquisition method. EPC can improve the performance of the active

inspection framework. The missing value imputation task in EPC is conducted with

a regression model. This is referred to as virtual metrology [11] because missing

values correspond to skipped inspections [37].

13

2.1.3 Domain Adaptation

In order to obtain high performance using a deep learning model, a large amount of

labeled training data is required. However, in many real-world problems, unlabeled

data is readily available, while labeled data is often difficult to be obtained [3, 59].

Domain adaptation methods have been developed in order to utilize labeled data in

a relevant source domain to a new target domain with little labeled data. There are

differences in data distribution between different domains. To solve this problem,

most domain adaptation methods try to find a feature space that can align the

source representation and the target representation by using a parallel structure

such as siamese networks [13].

The most basic approach for domain adaptation is a discrepancy-based approach.

This approach measures the discrepancy between feature distributions of source and

target domain and trains a model to minimize it. In many studies, Maximum Mean

Discrepancy (MMD) [5] has been adopted as a discrepancy measure. MMD computes

the norm of difference between the mean values of distributions of source and target

domain. In Deep Domain Confusion (DDC) [80], MMD loss was added to a regular

classification loss for the source domain to learn a domain invariant representation.

Deep Adaptation Network (DAN) [53] used a multiple kernel variant of MMD which

is defined as the reproducing kernel Hilbert space (RKHS) distance between the

mean embeddings of different distributions.

Another typical approach is a classifier-based approach. This approach uses a do-

main classifier in order to learn a representation that is simultaneously discriminative

of source labels while not being able to distinguish between domains. [79] introduced

a domain classifier, a binary classifier that separates domains, and trained a model

14

through adversarial learning to find a representation that could not distinguish each

domain. [23] directly maximized the loss of the domain classifier by reversing its

gradients instead of using adversarial learning.

In Chapter 6, we use a discrepancy-based approach with MMD loss because it can

be used for both an unsupervised adaptation setting and a supervised adaptation

setting, so it can be easily extended to semi-supervised settings [85]. With this

approach, we propose a framework that can effectively build an FDC model in a

recipe transition situation.

2.2 Review of Predictive Modelings in Manufacturing

2.2.1 Wafer Map Pattern Classification

Numerous studies have been conducted on wafer map pattern classification. Most

studies have focused on how to extract good features from wafer maps to classify

their patterns. Wu et al. [86] performed wafer map classification through a SVM by

extracting geometry-based and radon-based features. They released the WM-811K

dataset used in the experiment for Chapter 3 and 4. Jeong et al. [31] developed a

methodology using a spatial correlogram to find spatial autocorrelation, and used

it to classify wafer map patterns. Yu et al. [91] proposed a method for extracting

useful information from various features by using joint local and nonlocal linear

discriminant analysis (JLNDA). Piao et al. [64] proposed a decision tree ensemble

learning methodology using radon-based features. Fan et al. [18] performed multi-

label classification of a wafer map using the “Ordering Point to Identify the Cluster

Structure” (OPTICS) approach and a SVM. Saqlain et al. [69] proposed a voting

ensemble classifier based on density, geometry, and radon-based features.

15

With advances in deep learning, CNNs have been actively applied to the semi-

conductor manufacturing process. Unlike traditional machine learning methods, a

CNN enables automatic extraction of meaningful features from raw inputs without

manual feature engineering. For the reason, many recent studies have demonstrated

the effectiveness of CNN on learning from various types of data produced in the

manufacturing process. Lee et al. [47] used a CNN to extract useful features for

fault detection. Kim et al. [40] proposed a self-attentive CNN to detect faults from

variable-length sensor data. As for the wafer map pattern classification problem,

Nakazawa et al. [57] built a CNN model with synthetic wafer maps and applied it to

the classification of actual wafer maps. Kyeong et al. [44] proposed constructing an

individual CNN model for each defect type to classify wafer maps with mixed-type

defect patterns. Nakazawa et al. [58] employed convolutional autoencoder to detect

unseen wafer map pattern. Wang et al. [83] adopted adversarial learning to improve

a CNN to better address imbalanced distribution of wafer map patterns. The re-

search mentioned so far aimed to improve the performance of wafer map pattern

classification through CNN. However, there has been little effort to reduce labeling

cost that necessarily comes with deep learning. In Chapter 3 and 4, we addresses

efficient labeling of wafers based on a CNN-based active learning system.

2.2.2 Fault Detection and Classification

Predictive modeling through machine learning approaches is widely adopted in man-

ufacturing systems [35, 1, 49, 78]. Among many related problems, fault predic-

tion for each product has been a representative application of predictive modeling

[90, 39, 36, 40]. In fault prediction, a variety of related information for a product is

16

used to constitute input variables for fault prediction. This includes sensor measure-

ments, inspection results, environmental factors, process parameters, and process

time. Output variables indicate whether a product will be found faulty in the fu-

ture, such as outgoing inspection fault or customer-found fault. Various learning

algorithms have been employed for fault prediction, including logistic regression,

decision tree (DT), support vector machine, artificial neural network, and ensemble-

based model.

In particular, in the semiconductor manufacturing process, fault prediction model

with time series sensor data generated during the process is referred to as a fault

detection and classification (FDC) model. An FDC model is a model to predict each

wafer’s inspection results (faulty or normal) by using sensor data at a specific process

step as input. Traditionally, studies on the FDC model used manually-extracted

features as input instead of raw sensor data. Summary statistics of a sensor or

combination of several sensors are usually adopted as input variables [61]. He and

Wang [26] used principal component analysis for extracting features to reduce the

computational complexity. In Park et al. [62], spline regression is applied and its

coefficients are considered as the input features of SVM. One-class SVM has been

also considered as a learning algorithm for fault detection model [54]. In studies

using k-nearest neighbor (kNN) model [25], Mahalanobis distance was utilized as a

distance measure [81], and dimension reduction through random projection was also

used [93]. In addition, decision tree-based methods have also been studied [19, 12, 27].

However, these manually-extracted features would lose some important information

contained in the raw sensor data, which may lead to performance degradation of the

FDC model.

17

Recently, with the advance of deep learning models, raw sensor data is directly

utilized as input of the models. Deep learning models have a feature extraction

process internally, so they can handle the raw inputs and achieve high performance

by reducing information loss. Lee et al. [46] developed an FDC model that is robust

to noise by using stacked denoising autoencoder. Lee et al. [47] proposed an FDC

model based on a CNN, which made it possible to identify the cause of failure without

specialized knowledge. In Kim et al. [40], they proposed a self-attentive CNN in

which self-attention mechanism is combined with CNN, which solved the problem

that the time length of sensor data is different for each wafer. In the experiments of

Chapter 6, we adopted the self-attentive CNN, the most recent model, as the FDC

model used in the proposed framework. As far as we have investigated, there have

been no studies for constructing the FDC model considering the transition of recipe.

18

Chapter 3

Active Learning for Wafer Map Pattern
Classification

3.1 Problem Description

In semiconductor manufacturing, a wafer undergoes hundreds of complex fabrication

steps, resulting in a large number of dies being created on the wafer [82]. Subse-

quently, each die on the wafer is subjected to various types of electrical tests. These

tests determine whether each die performs as intended. According to the test results,

each die can be represented by a binary value, i.e., 0 for a pass, and 1 for a fail. The

binary values on the wafer constitute the wafer map, i.e., the wafer map shows the

spatial distribution of the defective dies on the wafer.

Wafer maps can be classified into several defect types based on their spatial

defect patterns. The defect type of the wafer map provides important information

for determining the defect cause as wafer maps with similar patterns are likely

to have the same root cause for a defect [52]. For example, a scratch-type defect

is likely to be caused by particles and the hardening of the pad during chemical-

mechanical planarization. A local-type defect is likely caused by non-uniformity or

uneven cleaning [44]. If a certain defect type occurs within a certain period, the

candidate for the cause of the defect can be ascertained based on the defect type.

19

Hence, engineers can further analyze and improve the process. Therefore, wafer map

pattern classification (WMPC) is crucial in determining the cause of defects and

improving the process to further enhance manufacturing quality.

With this necessity and importance, there has been considerable research on

wafer map pattern classification. Especially recently, deep learning-based research

has been actively carried out [57, 44]. A CNN is a typical deep learning-based

methodology used in wafer map pattern classification. One requirement for the suc-

cess of a deep learning methodology is a sufficient amount of labeled training data.

However, it is too costly for experienced engineers to carry out manual labeling for

the enormous number of wafers produced in the manufacturing process. It is even

more difficult to obtain a sufficient number of wafer maps with spatial failure pat-

terns, as most wafers do not have many failure dies, or correspond to non-pattern

wafers. If we randomly sample wafers to be labeled, most wafers may correspond to

a non-pattern wafer or may have spatial patterns similar to already-labeled ones.

Thus, they would not be informative for improving the model. It is necessary to

selectively annotate novel pattern wafers that have not yet been incorporated into

the training set to improve the efficiency of the labeling.

In this chapter, we propose an cost-effective wafer map pattern classification sys-

tem based on active learning of a CNN to address the above-mentioned problems. In

the proposed system, there are four major steps: uncertainty estimation, query wafer

selection, query wafer labeling, and model update. The CNN model for classifying

wafer maps is trained by using an initial labeled set. With this model, the uncer-

tainty of prediction in the unlabeled wafer maps is calculated in the uncertainty

estimation step. Based on this uncertainty, the wafers to be labeled are selected in

20

the query wafer selection step. In the query wafer labeling step, the selected wafers

are inspected by the engineer, and are merged into the labeled set. The CNN model

is updated with the labeled set in the model update step. Through the repetition

of these four steps, the performance of the CNN model is gradually increased. This

method is cost-effective, because it can achieve higher performance with a lower la-

beling cost. Several methods for uncertainty estimation and query wafer selection are

compared in this framework. The effectiveness of the proposed system is investigated

through experiments using real-world data from a semiconductor manufacturer.

The main contributions of this chapter are summarized as follows. Firstly, we

implement an efficient active learning system to build a CNN model with lower la-

beling cost for wafer map pattern classification. Secondly, diversified top-K selection

method is proposed for the query wafer selection step that can alleviate class imbal-

ance problem. Thirdly, we explore various uncertainty estimation methods to find

the most suitable one for wafer map pattern classification.

3.2 Proposed Method

3.2.1 System overview

In this section, we introduce the entire structure of the proposed wafer map pattern

classification system. The goals of this system are to reduce the amount of wafer

maps inspected directly by engineers, and to build a classifier that achieves high

classification performance with a small amount of labeled wafer maps. Figure 3.1

illustrates an overview of the proposed system. The system consists of four main

steps: uncertainty estimation, query wafer selection, query wafer labeling, and model

update.

21

At the start of this system, and in view of the large number of wafer maps

that are not yet classified, the engineer randomly selects and inspects wafer maps

manually. These randomly selected and labeled wafer maps constitute the training

set of the initial model. We construct the initial CNN model with this small num-

ber of wafer maps. This CNN model performs a prediction on the unlabeled wafer

maps, and also estimates the uncertainty of the prediction (uncertainty estimation).

Based on these uncertainty values, the system selects wafer maps to be labeled by

the engineer (query wafer selection). The engineer inspects the selected wafer maps

(query wafer labeling). Newly-labeled wafer maps are integrated with existing la-

beled wafer maps, and the CNN model is updated with these labeled set (model

update). Through repetition of this process, the CNN model is continually updated

using the informative wafer maps, and eventually a high-performance classification

model can be obtained. Because the engineer only inspects and labels a small num-

ber of selected wafers in each repetition phase, this process is more cost-effective

than inspecting all of the wafers.

The notations for explaining the proposed system are presented in Table 3.1.

Algorithm 1 presents the pseudocode for the entire process. The following subsections

describe the four main steps.

22

Table 3.1: Notations used in Chapter 3.

Notation Type Description

Xi matrix i-th wafer map in D
yi scalar label for Xi

D set whole wafer map dataset D = {Xi}Ni=1

DL set labeled subset of D.
DU set unlabeled subset of D
K scalar query size for each repetition phase
T scalar number of iterations of forward passes for MC dropout
W set CNN parameters
Wt set randomly dropped CNN parameters in W

for t-th iteration for MC dropout

Algorithm 1 Pseudocode for proposed system
Input: Dataset D, query size per repetition phase K
Output: CNN parameters W

1: procedure
2: DL ← random sample from D
3: Label each wafer map in DL

4: DU ← D \ DL

5: Initialize W with DL

6: while not reach maximum phase do
7: Estimate uncertainty for each wafer map in DU

8: Q← K most uncertain wafer maps from DU

9: Label each wafer map in Q
10: Fine-tune W with DL ∪Q
11: DL ← DL ∪Q, DU ← DU \Q
12: end while
13: return W
14: end procedure

23

U
n
la

b
e
le

d

W
a
fe

r
M

a
p
s

C
N

N
 M

o
d
e
l

Q
u
e
ry

 W
a
fe

r
S
e
le

ct
io

n

U
n
ce

rt
a
in

ty
 E

st
im

a
ti
o
n

Q
u
e
ry

 W
a
fe

r
La

b
e
lin

g

M
o
d
e
l
U
p
d
a
te

La
b
e
le

d
W

a
fe

r
M

a
p
s

E
n
g
in

e
e
r

F
ig

u
re

3.
1
:

O
ve

rv
ie

w
of

th
e

p
ro

p
os

ed
w

af
er

m
ap

p
at

te
rn

cl
as

si
fi

ca
ti

on
sy

st
em

.

24

3.2.2 Prediction model

We adopt a CNN as a classification model for use in this system. The CNN is

one of the representative methodologies of deep learning and has achieved state-of-

the-art performance in various applications, especially in image classification tasks.

Many studies have attempted to classify wafer map patterns using CNNs, and have

achieved remarkable performance.

A CNN consists of convolution layers, pooling layers, and fully-connected layers.

Usually, the convolution layer is used to extract features from the input data. The

pooling layer serves to reduce the dimensions of the input data. Classification is

performed in the fully-connected layers, using the features extracted from the con-

volution and pooling layers. With this CNN architecture, there is no need to execute

extra feature engineering.

It is possible to employ an existing CNN model whose architecture has been

optimized for model performance. As will be discussed in Section 3.2.3, if a Bayesian

approximation is used, the model architecture should include a dropout.

3.2.3 Uncertainty estimation

A representative method for estimating the uncertainty of prediction by the CNN

model involves using the output value of the last softmax layer. As the softmax out-

put values can be interpreted as probabilities of belonging to individual classes, there

are several methods that use these values. Typically, the uncertainty is quantified

by least confidence, margin, and entropy measures.

All equations in this section represent the uncertainty of prediction for the i-

th wafer. We will use the following equation to simplify the equations used for

25

uncertainty estimation. t represents each forward pass for MC dropout and has an

integer value from 1 to T , i.e., t ∈ {1, . . . , T}.

pj(yi|Xi) = p(yi = j|Xi;W)

ptj(yi|Xi) = p(yi = j|Xi;Wt)

(3.1)

Least confidence

The probability of the most probable class for an instance is called the confidence.

If it is low, the uncertainty of the model for this instance is high. Thus, we can use

the negative of the confidence as an uncertainty measure [74].

lci = −max
j
pj(yi|Xi) (3.2)

Least margin

If the probability of the most probable class shows a large difference from the prob-

ability of the second-most probable class, the prediction can be regarded as certain.

The margin is the difference between the values of the highest posterior probability

and the second highest posterior probability [70]. Thus, the negative of the margin is

considered as an uncertainty estimator. j1 and j2 in the following equation represent

the first and second most probable class labels classified by the model.

lmi = − (pj1(yi|Xi)− pj2(yi|Xi)) (3.3)

26

Entropy

Entropy is considered as an uncertainty estimator which uses all class label proba-

bilities [30].

eni = −
C∑

j=1

pj(yi|Xi) log pj(yi|Xi) (3.4)

Another approach for estimating the uncertainty is to use a Bayesian model. A

Bayesian model is capable of estimating uncertainty, because it produces a distribu-

tion of predictions. However, a Bayesian model is not suitable for practical usage,

because it is computationally intensive in terms of both training and inference. Thus,

we adopt MC dropout [21] technique for Bayesian approximation of a CNN model.

Generally, dropout is used in the training process to solve the overfitting problem.

If inferences are done with dropout activated, the model produces a different output

for each forward pass. The uncertainty for an instance is estimated based on the

statistics of the outputs from multiple forward passes of the instance. So, in our

system, dropout is activated when the model is being updated or when estimating

the uncertainty through MC dropout. Several uncertainty estimation methods based

on MC dropout are introduced as below.

Predictive entropy

The entropy is calculated using the average of the results of the multiple forward

passes.

27

pei = −
C∑

j=1

(
1

T

T∑
t=1

ptj(yi|Xi)

)
log

(
1

T

T∑
t=1

ptj(yi|Xi)

)
(3.5)

Bayesian active learning by disagreement (BALD)

This measure corresponds to the mutual information between predictions and model

parametersW [29]. If a model has high uncertainty regarding an instance on average,

but some forward passes make predictions that disagree with each other with high

certainty, that instance will maximize this measure. This measure is calculated as

follows.

bdi = pei −
1

T

T∑
t=1

− C∑
j=1

ptj(yi|Xi) log ptj(yi|Xi)

 (3.6)

Variation ratio

In the multiple forward passes, the relative ratio of the number of times classified

into each class to the total can be regarded as a probability. Therefore, the largest

value of this ratio represents the degree of certainty, and similar to confidence, the

smaller the value, the higher the uncertainty [20]. This measure is calculated as

follows.

vri = 1−max
i

(
1

T

T∑
t=i

1

(
i = arg max

j
ptj(yi|Xi)

))
(3.7)

28

Mean standard deviation (mean-STD)

The standard deviation of the probability is calculated for each class, and the average

is used [33].

msi =
1

C

C∑
j=1

√√√√ 1

T

T∑
t=1

ptj(yi|Xi)
2 −

(
1

T

T∑
t=1

ptj(yi|Xi)

)2

(3.8)

3.2.4 Query wafer selection

Simple top-K selection

We can calculate the uncertainty with the methods mentioned above for each un-

labeled wafer. Assuming that K unlabeled wafers were selected and queried, it is

common that K wafers with high uncertainty are selected. This selection is com-

monly used for uncertainty-based active learning of a CNN [84, 22].

Diversified top-K selection

This situation, which requires selecting K query instances at a time, corresponds

to a batch mode active learning [72]. The K wafers selected through the simple

top-K selection are likely to have similar spatial patterns, and thus can provide

redundant information. Therefore, when sampling the K wafers, the diversity must

be considered.

To prevent redundant selection of similar wafers, we propose to use a diversified

top-K selection method. Instead of simply choosing the K wafers with the highest

uncertainty among all wafers, we select the wafers with the highest uncertainty

29

within each of the predicted classes.

3.2.5 Query wafer labeling

After the query wafers are chosen, the engineers proceed to label them manually, us-

ing visual recognition. These newly-labeled wafers are then merged into the existing

labeled-wafers set.

3.2.6 Model update

Once the labeled wafer set has been updated, a new CNN model must be built.

However, training the model from scratch takes a long time thus inefficient. To

make it efficient, we fine-tune the existing CNN model of the previous phase with the

updated labeled set. This method is more time-efficient than training the model from

scratch because the model from the previous phase already has information about

existing labeled wafers. We set the loss for the newly-labeled wafer larger than the

loss for the existing labeled wafer, so that the information in the newly-labeled wafer

can be learned quickly while maintaining the information in the existing labeled

wafer. The objective function used for fine-tuning can be described as follows. λ is a

hyperparameter that represents the ratio of the loss for the newly-labeled wafer to

the loss for the existing labeled wafer. It should be larger than 1.

min
W
− λ
K

∑
{i|Xi∈Q}

C∑
j=1

1 (yi = j) log pj(yi|Xi)

− 1

|DL|
∑

{i|Xi∈DL}

C∑
j=1

1 (yi = j) log pj(yi|Xi)

(3.9)

30

3.3 Experiments

3.3.1 Data description

We conducted experiments to demonstrate the effectiveness of the proposed wafer

map pattern classification system. The dataset used in the experiment is the WM-

811K dataset, which is a real-world fabrication dataset. The dataset1 was first re-

leased in [86] It consists of 811,457 wafer maps from a total of 46,294 lots. The defect

type is labeled for approximately 20% of the maps, or 172,950 wafer maps. In this

experiment, only the 172,950 labeled instances were utilized. There are nine classes

in total: Non-Pattern, Edge-Ring, Edge-Loc, Center, Loc, Scratch, Random, Donut,

and Near-Full. Figure 3.2 shows examples of each class.

Table 3.2 shows the distribution of classes in the dataset, which are highly im-

balanced. The Non-Pattern class occupies an overwhelming proportion, whereas the

Donut and Near-Full classes occupy 0.3% and 0.1%, respectively. As in [86], we

used 54,355 wafer maps of the dataset to build a wafer map pattern classification

system. The remaining 118,595 wafer maps were used to evaluate the performance

of the system. Because CNN requires fixed-size inputs, all wafer maps were resized

to (64,64).

3.3.2 Experimental design

In the experiments, we simulated the proposed wafer map pattern classification sys-

tem. Similar to the related literature [57, 44], we used a LeNet-5 [45]-like CNN

architecture shown in Figure 3.3. Our architecture is relatively smaller than modern

CNN architectures such as AlexNet [43] and VGGnet [77]. This is adequate for our

1http://mirlab.org/dataset/public/

31

0 10 20 30 40

0

10

20

30

40

Non-Pattern

0 20 40 60

0

10

20

30

40

50

60

Edge-Ring

0 20 40

0

10

20

30

40

50

Edge-Loc

0 20 40

0

10

20

30

40

50

Center

0 10 20 30 40

0

10

20

30

40

Loc

0 20 40

0

10

20

30

40

50

Scratch

0 10 20 30 40

0

10

20

30

40

Random

0 10 20 30 40

0

10

20

30

40

50

Donut

0 10 20 30

0

10

20

30

Near-Full

Figure 3.2: Examples of wafer maps and their labels.

Table 3.2: Description for dataset used in Chapter 3.

Defect Type No. Train No. Test No. Total

Non-Pattern 36,730 110,701 147,431
Edge-Ring 8,554 1,126 9,680
Edge-Loc 2,417 2,772 5,189
Center 3,462 832 4,294
Loc 1,620 1,973 3,593
Scratch 500 693 1,193
Random 609 257 866
Donut 409 146 555
Near-Full 54 95 149

Total 54,355 118,595 172,950

32

In
p
u
t

6
4
*6

4

C
o
n
v

5
*5

 (
3
2
)

M
a
x

p
o
o
l
2
*2

C
o
n
v

3
*3

 (
6
4
)

M
a
x

p
o
o
l
2
*2

C
o
n
v

3
*3

 (
1
2
8
)

M
a
x

p
o
o
l
2
*2

C
o
n
v

3
*3

 (
2
5
6
)

M
a
x

p
o
o
l
2
*2

D
e
n
se

 2
5
6

D
ro

p
o
u
t

(r
a
ti
o
 0

.5
)

D
e
n
se

 1
2
8

D
ro

p
o
u
t

(r
a
ti
o
 0

.5
)

D
e
n
se

 9

R
e
LU

a
ct

iv
a
ti
o
n

R
e
LU

a
ct

iv
a
ti
o
n

R
e
LU

a
ct

iv
a
ti
o
n

R
e
LU

a
ct

iv
a
ti
o
n

R
e
LU

a
ct

iv
a
ti
o
n

R
e
LU

a
ct

iv
a
ti
o
n

S
o
ft
m

a
x

a
ct

iv
a
ti
o
n

Figure 3.3: CNN architecture used for the experiments.

problem because wafer maps are much simpler than conventional image representa-

tions and the prediction model must be trained with a small amount of instances

in the active learning setting. At the beginning, 400 randomly selected wafers were

labeled. Setting aside 200 wafers as the validation set, the other 200 wafers were

used as the initial training set. All the remaining wafers were used as the initial

unlabeled set. This corresponds to real-world situations, where engineers inspect

randomly selected unlabeled wafer maps. Extreme minority classes, such as Donut

and Near-Full, may not have been included in the initial training set. For the query

wafer selection step, the query size K was set to the same as the number of classes.

The query wafer labeling step was simulated by revealing the corresponding labels

in the original dataset.

We used the Adam optimizer [41] with a learning rate of 0.001 and a batch size

of 128. Each model training was terminated if the validation loss failed to decrease

over 20 consecutive phases. For the model update step, the hyperparameter λ in

Equation (3.9) was set to 10 by conducting a preliminary experiment to investigate

its effect on the performance. For the uncertainty estimation step, the number of

forward passes was set to 50 when MC dropout was used.

33

We conducted experiments on the seven uncertainty estimation methods de-

scribed in Section 3.2.3, and applied the two wafer selection methods described in

Section 3.2.4, for a total of 14 combinations. To succinctly represent each combina-

tion, suffixes ‘ d’ or ‘ s’ are used to indicate diversified top-K selection and simple

top-K selection, respectively. As baselines, we used BatchBALD [42], random selec-

tion method, and full model. The random selection method randomly selects wafers

to be labeled without uncertainty estimation. The full model is trained with the

entire training set, assuming that the dataset is completely labeled.

The performance of the CNN model for wafer map pattern classification was

evaluated on the test set in terms of the area under the receiver operating character-

istic curve (AUROC). Dropout in the model is deactivated when making predictions

for performance evaluation. Because the original AUROC is for binary classification,

we used a multi-class modification of the AUROC [65]. The multi-class AUROC is

calculated by taking the average of multiple AUROCs, each of which having been

obtained separately by binary classification of discriminating a single class from all

of the other classes.

All experiments were performed with 10 independent repetitions with different

random seeds. We report an average over the 10 repetitions.

3.3.3 Results and discussion

Figure 3.4 shows the comparison results of the seven uncertainty estimation methods

with the diversified top-K selection. The results of the three baseline methods are

also shown. The X-axis represents the repetition phase of the proposed active learn-

ing system. The performance increased as the phase progressed. As shown in the

figure, all seven of the uncertainty estimation methods were superior to the random

34

0 20 40 60 80 100
phase

0.70

0.75

0.80

0.85

0.90

0.95
m

ul
ti-

cla
ss

 A
UR

OC

BALD_d
mean_STD_d
predictive_entropy_d
variation_ratio_d
confidence_d

entropy_d
margin_d
batch_BALD
random
full model

Figure 3.4: Overall comparison of uncertainty estimation methods with diversified
top-K selection.

selection method. While the random selection method showed a slower performance

increase per phase, proposed method had a faster performance increase. Among the

seven uncertainty estimation methods, BALD and mean-STD showed the best per-

formances, in order. The performance of these two methods at the 60th phase was

quite close to that of the full model. The BatchBALD was not superior to the other

methods, as it has been known to perform worse under class imbalance [42].

We assessed the overall performance across 9 defect type classes and 10 different

initial training sets using Dolan-More curve [17]. For the 90 problems, ρ(τ) indicates

35

1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

1.0
(

) BALD_d
mean_STD_d
predictive_entropy_d
variation_ratio_d
confidence_d
entropy_d
margin_d
batch_BALD
random
full model

Figure 3.5: Dolan-More curves of the CNN models at the 60th phase.

the fraction of the problems that the method’s error rate is not greater than τ times

the best error rate. The Dolan-More curves of CNN models at the 60th phase for the

compared methods are presented in Figure 3.5. The full model yielded the highest

ρ(τ) at τ=1, as the fraction of problems with the lowest error rate was the highest.

With increased τ , ρ(τ) of BALD and mean-STD became greater than that of the

other methods including the full model, meaning that BALD and mean-STD evenly

performed well across the problems.

The comparison results for each of the defect types are shown in Figure 3.6.

In active learning for a class imbalance problem, it is important to select instances

of the minority class. In the case of Near-Full which has the least instances, the

36

performance difference between the uncertainty estimation methods was particularly

severe. The performances differed greatly depending on whether or not the instances

corresponding to the defect types were included enough in the training set. BALD

and mean-STD outperformed other methods. For other minority classes, Random

and Donut, the proposed system showed high performance as well.

For the Non-Pattern, Edge-Loc, Loc, and Scratch, the performance of the pro-

posed method was far worse than the full model and increased slowly by active learn-

ing. These classes have relatively large variations in their spatial defect patterns. So,

they require a large amount of various training instances. Performance differences

between the uncertainty estimation methods were also significant for these classes.

This suggests that it is more important to select informative training wafer maps.

Furthermore, the proposed method even outperformed the full model for some par-

ticular classes, which demonstrates that using a small informative training set can

be better than using the whole dataset.

37

0
20

40
60

80
10

0
0.

65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

multi-class AUROC

No
n-

Pa
tte

rn

0
20

40
60

80
10

0

0.
86

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

Ed
ge

-R
in

g

0
20

40
60

80
10

0
0.

65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

Ed
ge

-L
oc

0
20

40
60

80
10

0
0.

75

0.
80

0.
85

0.
90

0.
95

multi-class AUROC

Ce
nt

er

BA
LD

_d
m

ea
n_

ST
D_

d
pr

ed
ict

iv
e_

en
tro

py
_d

va
ria

tio
n_

ra
tio

_d
co

nf
id

en
ce

_d

en
tro

py
_d

m
ar

gi
n_

d
ba

tc
h_

BA
LD

ra
nd

om
fu

ll
m

od
el

0
20

40
60

80
10

0
0.

5

0.
6

0.
7

0.
8

0.
9

Lo
c

0
20

40
60

80
10

0

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Sc
ra

tc
h

0
20

40
60

80
10

0
ph

as
e

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

multi-class AUROC

Ra
nd

om

0
20

40
60

80
10

0
ph

as
e

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Do
nu

t

0
20

40
60

80
10

0
ph

as
e

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Ne
ar

-F
ul

l

F
ig

u
re

3
.6

:
C

om
p

ar
is

on
of

u
n
ce

rt
ai

n
ty

es
ti

m
at

io
n

m
et

h
o
d

s
w

it
h

d
iv

er
si

fi
ed

to
p

-K
se

le
ct

io
n

fo
r

ea
ch

d
ef

ec
t

ty
p

e.
E

ac
h

gr
ap

h
h

a
s

a
d

iff
er

en
t

y
-a

x
is

ra
n

ge
to

cl
ar

if
y

th
e

p
er

fo
rm

a
n

ce
d

iff
er

en
ce

b
et

w
ee

n
m

et
h

o
d

s.

38

Figure 3.7 compares the performance between the diversified top-K selection

and simple top-K selection. In most uncertainty estimation methods, the diversified

top-K selection yielded performance similar to or better than the simple top-K

selection, which indicates that the diversified top-K selection helps to choose more

informative wafer maps to improve the classification performance. Above all, the

performance of the diversified top-K selection was superior when used with BALD,

which showed the best performance.

39

0
20

40
60

80
10

0
0.

70

0.
75

0.
80

0.
85

0.
90

multi-class AUROC

BA
LD

sim
pl

e
to

p-
K

se
le

ct
io

n
di

ve
rs

ifi
ed

 to
p-

K
se

le
ct

io
n

0
20

40
60

80
10

0
0.

70

0.
75

0.
80

0.
85

0.
90

m
ea

n_
ST

D

0
20

40
60

80
10

0
0.

70

0.
75

0.
80

0.
85

0.
90

va
ria

tio
n

ra
tio

0
20

40
60

80
10

0
ph

as
e

0.
70

0.
75

0.
80

0.
85

0.
90

pr
ed

ict
iv

e
en

tro
py

0
20

40
60

80
10

0
ph

as
e

0.
70

0.
75

0.
80

0.
85

0.
90

multi-class AUROC

co
nf

id
en

ce

0
20

40
60

80
10

0
ph

as
e

0.
70

0.
75

0.
80

0.
85

0.
90

m
ar

gi
n

0
20

40
60

80
10

0
ph

as
e

0.
70

0.
75

0.
80

0.
85

0.
90

en
tro

py

F
ig

u
re

3.
7:

C
o
m

p
ar

is
on

b
et

w
ee

n
th

e
d

iv
er

si
fi

ed
to

p
-K

se
le

ct
io

n
an

d
si

m
p

le
to

p
-K

se
le

ct
io

n
.

40

0 20 40 60 80 100
phase

0.0

0.2

0.4

0.6

0.8

1.0

cla
ss

 d
ist

rib
ut

io
n

of
 la

be
le

d
tra

in
in

g
da

ta
se

t random selection

Non-Pattern
Edge-Ring
Edge-Loc
Center
Loc
Scratch
Random
Donut
Near-Full

0 20 40 60 80 100
phase

0.0

0.2

0.4

0.6

0.8

1.0

cla
ss

 d
ist

rib
ut

io
n

of
 la

be
le

d
tra

in
in

g
da

ta
se

t BALD_s

0 20 40 60 80 100
phase

0.0

0.2

0.4

0.6

0.8

1.0

cla
ss

 d
ist

rib
ut

io
n

of
 la

be
le

d
tra

in
in

g
da

ta
se

t BALD_d

Figure 3.8: Class distributions of the labeled training set as the phase progressed.

To investigate how the proposed method works, we visualized in Figure 3.8 the

change in the class distribution of the labeled training set with the phase progress for

the random selection method, BALD s, and BALD d. The random selection method

showed no change in class distribution, whereas BALD selected minority class in-

stances more so that the proportion of minority classes increased with the progress.

This demonstrate that the proposed method selects informative instances without

duplication. Additionally, BALD d exhibited more balanced class distribution than

BALD s. This suggests that diversified top-K selection effectively alleviate the class

imbalance problem.

41

Chapter 4

Active Cluster Annotation for Wafer Map Pattern
Classification

4.1 Problem Description

This chapter also solves the label cost problem of WMPC as in Chapter 3. The

automation of WMPC has been studied extensively [16, 10]. Recently, CNN-based

WMPC has been actively and successfully investigated. To construct a high-performance

classification model using a CNN, a large amount of labeled training data is required.

However, it is expensive to secure a large amount of labeled wafer maps, as the wafer

maps must be annotated by expert engineers. In Chpater 3, we solved this problem

using an active learning strategy [76]. By selectively annotating informative wafer

maps based on the classification uncertainty, the performance of the WMPC was

improved cost-effectively.

In the conventional active learning framework, a single wafer map is annotated

in one interaction by an engineer. However, this wafer map-level annotation is in-

efficient because there exist wafer maps with similar patterns in practice. If we can

constitute a cluster of wafer maps having similar defect patterns, then the engineer

can conduct cluster-level annotation, in which multiple wafer maps are annotated in

one interaction. This cluster-level annotation does not differ significantly from wafer

map-level annotation in terms of engineer’s annotation cost. Therefore, in this work,

42

• active learning strategy의 효과를 증대시키기 위해 active cluster annotation framework를 제안함.

• Unlabeled wafer에 대한 클러스터링을 수행한 후, 각 wafer에 대해 하나씩 레이블링하는 것이 아니라 각 클러스터를 레이블링 하는 방식을 도입

• 작은 엔지니어의 레이블링 작업 횟수(interaction)로도 많은 양의 labeled training data를 확보할 수 있어 빠르게 높은 성능을 얻을 수 있음

• 실제 데이터를 이용한 실험을 통해 제안하는 방법이 기존 active learning system에 비해 좋은 성능을 가져옴을 확인한다.

• 게다가, 전체 label을 그대로 전부 이용하였을 때보다 더 높은 성능을 확인하였는데, 이를 통해 cluster annotation이 label noise를 줄일 수 있는 robust한 labeling

방법임을 확인할 수 있었다.

Introduction

3

Engineer

(b) Cluster-level annotation(a) Individual wafer map-level annotation

one interaction

Engineer

<illustrative description of cluster annotation>

n labeled wafer per interaction

one interaction

Figure 4.1: Illustrative explanation of cluster-level annotation. In individual wafer
map-level annotation, one wafer map is annotated in one interaction; in cluster-level
annotation, multiple wafer maps are annotated in one interaction.

we assume that the costs of the wafer map-level and cluster-level annotations are

identical. The cluster-level annotation is depicted in Figure 4.1.

Based on this idea, we propose an active cluster annotation for WMPC to achieve

a better performance with reduced annotation cost. For a dataset annotated only

for a small subset of wafer maps, clustering is first conducted on unlabeled wafer

maps. When an active learning iteration begins, a CNN is constructed with la-

beled wafer maps. Subsequently, cluster-level classification uncertainties for unla-

beled wafer maps are evaluated using the CNN. The clusters to be annotated are

selected based on the uncertainties and then assigned to the engineer. The selected

clusters are annotated at the cluster level and merged into the set of labeled wafer

maps. The next iteration begins with an increase in the number of labeled wafer

maps. By repeating the iterations, a high-performance CNN can be achieved with

reduced annotation cost. The effectiveness of the proposed method is demonstrated

through experiments using real-world data collected from a semiconductor manu-

facturer.

43

4.2 Proposed Method

In this section, we introduce the structure of the proposed active cluster annotation.

The purpose of the framework is to build a CNN that classifies wafer maps into defect

types with high accuracy while reducing manual annotation costs by engineers. The

key difference from the existing active learning framework is that the annotation is

conducted at the cluster level.

Figure 4.2 shows the flow chart of the active cluster annotation framework, which

comprises five steps: (1) clustering of unlabeled data, (2) CNN training with labeled

data, (3) cluster-level uncertainty estimation, (4) query cluster selection, and (5)

cluster-level annotation. After step (1) is conducted, steps (2) to (5) are repeated.

Table 4.1 shows the notations used to describe the proposed framework, and

Algorithm 2 presents the pseudocode of the entire process. First, clustering is con-

ducted on unlabeled wafer maps DU to obtain K clusters, C1, C2, . . . , CK . When

active learning iteration begins, the CNN is first constructed with a small amount of

initial labeled wafer maps DL. Subsequently, classification uncertainties of the CNN

for unlabeled wafer maps are estimated, and cluster-level uncertainties are calcu-

lated for each Ci. With these cluster-level uncertainties, q clusters to be annotated

are selected and delivered to the engineer. After the engineer annotates the clusters,

all the wafers in the clusters are merged into labeled wafer maps DL. The next iter-

ation begins as the CNN is trained with an increased amount of labeled wafer maps.

As the iterations are repeated, the performance of the CNN improves gradually. The

following subsections describe each step in detail.

The proposed method can be explained in comparison with self-training, a method

for semi-supervised learning. The self-training method also contains the process of

44

Unlabeled
wafer maps

CNN

Labeled
wafer maps

Engineer

(1) Clustering of
unlabeled data

(2) CNN training
with labeled data

(3) Cluster-level
uncertainty estimation

(5) Cluster-level
annotation

(4) Query cluster
selection

Figure 4.2: Flow chart of active cluster annotation framework.

Table 4.1: Notations used in Chapter 4.

Notation Type Description
D set whole wafer map dataset.
DL set labeled subset of D.
DU set unlabeled subset of D
Xi matrix i-th wafer map in D
yi scalar label for Xi

d scalar number of defect types
q scalar number of clusters to be queried for each iteration
Ck set k-th cluster of wafer maps in DU

K scalar total number of clusters in DU at the beginning.
|C|average scalar average number of wafer maps per cluster

W set CNN parameters

45

Algorithm 2 Pseudocode of proposed framework

Input: Labeled dataset DL, Unlabeled dataset DU

Output: CNN parameters W
1: procedure
2: C1, C2, . . . , CK ← Clustering wafers in DU

3: W ← Construct CNN with DL

4: while not reach maximum iteration do
5: Estimate uncertainty for each wafer map in DU

6: Calculate representative uncertainty for each cluster Ck
7: Q← q most informative clusters from DU

8: Annotate each cluster in Q
9: DL ← DL ∪Q, DU ← DU \Q

10: W ← Train CNN with DL

11: end while
12: return W
13: end procedure

performing prediction on unlabeled data. The predicted class for the instance with

low classification uncertainty is utilized as a pseudo label, and the pseudo labeled

instances are merged into labeled data. Then, the model is reconstructed with the

increased amount of labeled data. Unlike self-training, in the active cluster annota-

tion, clusters with high classification uncertainty is rather selected and labeled by a

labeler rather than with the predicted class. It can be seen that all instances in the

cluster are pseudo-labeled with the same class by the labeler.

4.2.1 Clustering of unlabeled data

In the proposed framework, uncertainty estimation, query selection, and annotation

are conducted at cluster level rather than wafer map level. In this regard, clustering

is conducted in this step such that all the wafer maps in DU belong to each cluster,

C1, C2, . . . , CK . This clustering is extremely important in the proposed framework

because cluster-level annotation can generate label noise if the wafer maps in a

46

cluster are inconsistent.

To obtain the desired clustering result, the raw wafer map is not suitable as the

input for clustering. If the raw wafer maps are used in their original form, wafers

belonging to the same defect type but having slightly different locations of defective

dies can be assigned to completely different clusters. Therefore, to obtain the desired

clustering result, manually extracted features that can represent the characteristics

of the wafer maps can be used as the input for clustering.

In this study, the following density-based, radon-based, and geometry-based fea-

tures are extracted and constitute a vector to represent a wafer map. The constructed

vectors are used as feature vectors for clustering. They are conventional features fre-

quently used in WMPC research. With a total of 59 extracted features, the k-means

clustering algorithm is used in this study.

• Density-based feature [18, 69] : The wafer map is divided into 13 zones and the

density of defective dies in each zone is calculated. The defect density values

for these 13 zones are used as features.

• Radon-based feature [86, 64, 69] : Radon transform is perfomred to generate

multiple vector representations by projecting a wafer map at various angles.

The average and standard deviation of the multiple vectors are calculated.

Subsequently, cubic interpolation is applied such that these vectors have 20

lengths each. A total of 40 elements of these two vectors are used as features.

• Geometry-based feature [86, 18, 69] : To obtain the most salient region for the

defect type, noise filtering is performed. Six geometric features corresponding

to the perimeter, area, length of minor axes, length of major axes, defect ratio,

47

and eccentricity are extracted for the salient region.

4.2.2 CNN training with labeled data

A CNN is a representative deep learning methodology. It can use raw images as

input and extract suitable features from them implicitly. Therefore, there is no need

for a domain expert to extract features manually. CNNs are generally composed of

convolution layers, pooling layers, and fully-connected layers. The convolution layers

extract features from the input, whereas the pooling layers reduce the dimension

of the features. Finally, classification is performed using fully-connected layers. A

CNN exhibits shift/rotation invariance because the filters in the convolution layers

are shared across the entire image and down-sampling is conducted in the pooling

layer [24]. These properties of the CNNs facilitate WMPC.

In this step, the CNN is trained with labeled wafer maps using two different

methods. One is to train from scratch with randomly initialized parameters in every

iteration and the other is to train incrementally using the existing CNN of the

previous iteration as in Chapter 3. Incremental learning can reduce the training time.

When training the model incrementally, the objective function can be described as

follows: To render the loss of the newly-labeled wafer map greater than that of the

existing labeled wafer map, the hyperparameter λ that represents the ratio between

two types of loss should be greater than one.

min
W
− λ

|Q|
∑

{i|Xi∈Q}

d∑
j=1

1 (yi = j) log p(yi = j|Xi)

− 1

|DL|
∑

{i|Xi∈DL}

d∑
j=1

1 (yi = j) log p(yi = j|Xi)

(4.1)

48

4.2.3 Cluster-level uncertainty estimation

To select and annotate at cluster level rather than at the wafer map level, uncer-

tainties per cluster rather than per wafer map are required. First, the classification

uncertainties of unlabeled wafer maps are calculated using the current CNN. Subse-

quently, for the cluster-level uncertainty, the representative uncertainty for a cluster

can be calculated by using a summary statistic, such as the maximum, minimum,

and average.

To calculate the classification uncertainties of the CNN for unlabeled wafer maps,

the least margin method is used because in the previous chapter, it showed the

best performance among the simple uncertainty sampling approaches which uses

the output of the last softmax layer. This method defines the difference between the

probabilities of the most probable and second most probable classes as the margin.

The negative of the margin is considered as an uncertainty value u, as in the following

equation. j1 and j2 represent the most and second most probable classes, respectively.

ui = − (p(yi = j1|Xi;W)− p(yi = j2|Xi;W)) (4.2)

As a summary statistic for cluster-level uncertainty, the minimum value is used in

this study. Then, the representative uncertainty for a cluster Ck can be expressed as

min{i|Xi∈Ck} ui. The final performance did not differ significantly when the minimum,

maximum, and average values were used.

49

4.2.4 Query cluster selection

In this step, q clusters to be queried are selected based on the uncertainty for each

cluster. In general, q clusters with the highest uncertainty are selected as informative.

However, these q clusters are likely to be similar and provide duplicate information.

Hence, the diversified top-q selection method proposed in the previous chapter is

utilized in this study (referred to as diversified top-K selection in the previous chap-

ter).

In the original diversified top-q selection, the selected instances are diversified

with the predicted classes. To apply the diversified top-q selection at the cluster

level, cluster-level predicted classes are required. In this study, a mode of predicted

classes of wafer maps are used as the cluster-level predicted classes. In other words,

clusters with the highest uncertainty within each cluster-level predicted class are

selected and queried.

4.2.5 Cluster-level annotation

The selected q clusters are provided to the engineer. The engineer visually inspects

and annotates each cluster. At this time, inconsistent wafers may be included in

each cluster, but the cluster is annotated as the majority of defect types of wafers

belonging to the cluster. When a cluster is annotated, all the wafers belonging to

the cluster are equally annotated. Subsequently, the annotated wafers are merged

into the labeled training set. This cluster-level annotation can secure more labeled

wafer maps with the same number of annotation tasks compared with individual

wafer map-level annotation.

50

4.3 Experiments

4.3.1 Data description

We conducted experiments to demonstrate the effectiveness of the proposed method.

The dataset used in the experiment is the WM-811K dataset, which is a real-world

fabrication dataset. This dataset was first released in [86]. It comprises 811,457

wafer maps, of which 172,950 wafer maps are labeled. In this experiment, 172,946

labeled wafer maps were used, excluding four wafers whose features to be used

for clustering could not be defined because the number of dies was less than 200.

As shown in Figure 3.2, nine defect types were observed: Non-Pattern, Edge-Ring,

Edge-Loc, Center, Loc, Scratch, Random, Donut, and Near-Full.

Table 3.2 shows the distribution of defect classes. It is a highly imbalanced

dataset, in which Non-Pattern constitutes a large portion and Near-Full a small

portion. The training and test sets were divided in the same way as in [86]. The

training set was used to simulate the proposed framework and the test set was used

to evaluate the performance of the CNN in the framework. All wafer maps were

resized to (64,64).

4.3.2 Experimental setting

The proposed framework was simulated experimentally. Among the 54,354 wafer

maps in the training set, 400 randomly selected wafers were treated as the initial

labeled set. Among them, 200 wafers were used for training the initial CNN, and the

other 200 wafers were used as the validation set. The remaining 53,954 wafer maps

were used as the initial unlabeled set. The annotation process by the engineer was

simulated by using the original labels of the wafer maps. In cluster-level annotation,

51

Table 4.2: Description for dataset used in Chapter 4.

Defect Type No. Train No. Test No. Total

Non-Pattern 36,729 110,698 147,427
Edge-Ring 8,554 1,126 9,680
Edge-Loc 2,417 2,772 5,189
Center 3,462 832 4,294
Loc 1,620 1,973 3,593
Scratch 500 693 1,193
Random 609 257 866
Donut 409 146 555
Near-Full 54 95 149

Total 54,354 118,592 172,946

all the wafers in the cluster were annotated as the most frequent class in their orig-

inal labels. If the cluster-level annotation is simulated through other representative

values, the result may be slightly different, but annotating with the most frequent

class could be the most similar to the actual situation.

The architecture of the CNN used is same as the architecture used in the previ-

ous chapter. An Adam optimizer with a learning rate of 0.001 was used for model

training, and the batch size was set to 128. Early stopping was applied if the val-

idation loss did not decrease over 20 consecutive epochs. When using incremental

learning to update the CNN in each iteration, the hyperparameter λ in the objective

function in (4.1) was set to 10. For the cluster selection step, the query size q for

each iteration was set to the the number of classes. All the experimental settings

mentioned above are the same as those used in the previous chapter.

To investigate the effect of the cluster size, the average number of wafers in each

cluster, |C|average, was varied to 10, 30, 50, 70, and 90. It was controlled through the

hyperparameter K of the k-means clustering algorithm, i.e., the K values were set

to 5395, 1798, 1079, 770, and 599 by K =
⌊ |DU |begin
|C|average

⌋
. As a baseline, we used the

52

0 20 40 60 80 100 120
cluster size

0

500

1000

1500

2000

co
un

t

(a) | |average = 10(k = 5395)

0 50 100 150 200 250 300 350
cluster size

0

20

40

60

80

100

120

co
un

t

(b) | |average = 50(k = 1079)

0 100 200 300 400 500 600
cluster size

0

5

10

15

20

25

30

35

co
un

t

(c) | |average = 90(k = 599)

Figure 4.3: Histogram of cluster size according to |C|average.

individual wafer map-level annotation method, which was introduced in the previous

chapter; this approach is the same as setting the number of cluster K to |DU |begin.

In addition, a random selection method, which randomly selects the clusters to be

annotated, and a full model, which is trained with the entire labeled training set,

were compared.

The performance of the CNN was evaluated on the test set in terms of the

multi-class area under the receiver operating characteristic curve (AUROC). All

experiments were performed with 10 independent repetitions and their average was

used for the result.

4.3.3 Clustering results

In this subsection, we discuss the clustering results for the unlabeled wafer maps. In

Figure 4.3, histograms of cluster size are presented. These distributions have a long

tail distribution in which most of the clusters are small, and a few large clusters

exist. This is consistent with the fact that an imbalance exists in the defect type.

For the cluster-level annotation to be effective, high-quality clustering is neces-

sary because all the wafers in each cluster are equally annotated. Purity [71] was

introduced to evaluate the clustering results. Purity is a measure that indicates

53

whether each cluster comprises a single class. Assuming that every element in a

cluster is assigned as the most frequent class in the cluster, the accuracy of the

assignment is purity. Therefore, purity can be regarded as the annotation accuracy

when cluster-level annotation is used. Using N as the total number of instances,

Ci the ith cluster, and Dj the set of instances of the jth class, the purity can be

expressed by the following equation:

purity =
1

N

m∑
i=1

max
j
|Ci ∩Dj | (4.3)

Figure 4.4 shows a graph of purity vs. |C|average. As |C|average was increased,

purity decreased. Because the purity values exceeded 0.95 for all |C|average, the wafers

in each cluster can be regarded as sufficiently consistent. These results indicate that

cluster-level annotation is not risky. In addition, since the consistency of wafer maps

in each cluster affects the ease with which an engineer annotates a cluster at once,

the result supports our assumption that the costs of cluster- and wafer map-level

annotations are the same.

4.3.4 Classification performance

With the active cluster annotation, the amount of labeled wafers acquired in one

active learning iteration increases. Therefore, we can secure more labeled wafer maps

with the same number of annotation tasks compared with individual wafer map-level

annotation. Figure 4.5 shows the change in the amount of the labeled wafer map as

iteration progresses. As |C|average value was increased, the amount of labeled wafer

maps tended to increase more rapidly as expected.

54

10 30 50 70 90
| |average

0.93

0.94

0.95

0.96

0.97

0.98

0.99

pu
rit

y

Figure 4.4: Purity according to |C|average.

0 20 40 60 80 100
iteration

0

10000

20000

30000

40000

50000

am
ou

nt
 o

f l
ab

el
ed

 w
af

er
s

individual
cluster_10
cluster_30
cluster_50
cluster_70
cluster_90

Figure 4.5: The amount of labeled wafer maps as iteration progresses.

Figure 4.6 shows the experimental results of active cluster annotation for different

|C|average and baselines. The X-axis represents the iteration of the active learning

framework, whereas the Y-axis represents the AUROC for the CNN on the test

set. Each line graph represents each method to be compared. As the iteration pro-

gresses, the performance increases; the faster the performance increases, the more

cost-effective the method is. When |C|average is 70 or higher, all unlabeled wafers are

annotated before reaching 100 iterations.

55

0 20 40 60 80 100
iteration

0.70

0.75

0.80

0.85

0.90

0.95

m
ul

ti-
cla

ss
 A

UR
OC

(a)

random
individual
cluster_10
cluster_30
cluster_50
cluster_70
cluster_90
full model

0 20 40 60 80 100
iteration

0.70

0.75

0.80

0.85

0.90

0.95

m
ul

ti-
cla

ss
 A

UR
OC

(b)

random
individual
cluster_10
cluster_30
cluster_50
cluster_70
cluster_90
full model

Figure 4.6: Classification performance comparison between methods. (a) incremental
learning in each iteration. (b) learning from scratch in each iteration.

Figure 4.6(a) shows the results when the CNN was updated incrementally. Sim-

ilar to the previous chapter, the individual wafer map-level annotation method

based on uncertainty demonstrated better performances than the random selec-

tion method. In the early iterations, the performance of the cluster-level annotation

method improved at a faster rate compared with the individual annotation method.

However, the performance deteriorated as the iteration progressed. Owing to cluster-

level annotation, the number of newly-labeled wafer maps per iteration increased

and changed dynamically. Therefore, it is conjectured that the overfitting on the

newly-labeled wafers occurred.

Figure 4.6(b) shows the results obtained when the CNN was trained from scratch

in each iteration. The effect of the incremental learning method is excluded, and

only the effect of cluster-level annotation can be verified. As shown in the figure, the

proposed cluster-level annotation was superior to the existing individual wafer map-

56

level annotation. The cluster-level annotation with larger |C|average showed a faster

performance increase. If |C|average is large, the amount of labeled training data will

increase faster, but the label noise due to cluster-level annotation may increase. As

shown by the experimental results, the performance increase by the former exerted

more impact than the performance degradation by the latter. In particular, when

|C|average was 30, 50, 70, and 90, the active cluster annotation exceeded the full

model at the 85th, 60th, 45th, and 40th iterations, respectively.

4.3.5 Analysis for label noise

Figure 4.7 shows the label error rate of the labeled training set as the iteration

progresses. The original label of the dataset used in the experiment and the label

annotated with cluster-level annotation were compared and considered as an error if

they did not match. As shown in the graph, the label error rate increased slightly and

then decreased. This is because the clusters with high uncertainty are first selected.

A high classification uncertainty means that the pattern is ambiguous. Such clusters

are likely to have low purity and hence high label noise. Therefore, the label error

rate increased in the beginning and then decreased as clusters with low uncertainties

became annotated. When all unlabeled wafers were annotated, the label error rate

was equal to 1− purity.

Additionally, we visually verified the label noise that occurred in cluster-level

annotation. Figure 4.8 shows examples of wafer maps belonging to each cluster and

their original labels assigned in the dataset. Figure 4.8(a) shows a cluster annotated

as “Center” via the proposed method. In this cluster, wafers whose original labels

were “Loc” or “Donut,” i.e., not “Center,” were discovered. These were label noises.

However, it was observed that the wafer maps in fact showed a similar pattern to

57

0 20 40 60 80 100
iteration

0.04

0.06

0.08

0.10

0.12

0.14
la

be
l e

rro
r r

at
e

in
 tr

ai
ni

ng
 d

at
as

et | |average = 10
| |average = 30

| |average = 50
| |average = 70

| |average = 90

Figure 4.7: Label error rate of labeled training dataset as iteration progresses.

other wafer maps in the cluster. Similarly, Figure 4.8(b) shows a cluster annotated

as “Edge-Loc” via the proposed method. Wafer maps whose original labels are “Loc”

but their actual pattern was almost similar to those of other wafer maps in the cluster

were discovered. As such, the original labels assigned in the dataset were ambiguous.

Rather, it appears that consistent annotation can be achieved through cluster-level

annotation. As presented in subsection 4.3.4, the cluster-level annotation method

showed better performances than the full model. It can be conjectured that the

robustness of the cluster-level annotation method contributed to this result.

58

0 10 20

0

5

10

15

20

25

Edge-Loc

0 10 20

0

5

10

15

20

Edge-Loc

0 10 20 30

0

5

10

15

20

25

Edge-Loc

0 10 20 30

0

5

10

15

20

25

Edge-Loc

0 10 20

0

5

10

15

20

Edge-Loc

0 10 20

0

5

10

15

20

Edge-Loc

0 10 20

0

5

10

15

20

25

Loc

0 10 20

0

5

10

15

20

25

Loc

0 20 40

0

10

20

30

40

50

Center

0 20 40 60

0

10

20

30

40

Center

0 10 20 30

0

10

20

30

Center

0 20 40

0

10

20

30

40

Center

0 10 20 30

0

10

20

30

Center

0 20 40 60

0

20

40

60

Center

0 10 20 30

0

10

20

30

Loc

0 10 20 30

0

5

10

15

20

25

30

Donut

(a) A cluster annotated as "Center" by proposed method

(b) A cluster annotated as "Edge-Loc" by proposed method

Figure 4.8: Examples of wafer map clusters and their original labels.

59

Chapter 5

Active Inspection for Fault Prediction

5.1 Problem Description

A manufacturing process typically consists of hundreds of processing steps. To ensure

high-quality of manufactured products, intermediate inspections are performed after

each step. Products that do not pass predefined specifications are detected to be

discarded or fixed. However, not every product can go through all the inspections

because of high inspection time and costs. To maintain high productivity of the

manufacturing process, manufacturers generally categorize the inspections into basic

and advanced inspections. Basic inspections are essential for quality control so all

products are subject to. On the other hand, advanced inspections are more strict

but expensive so only some sampled products are subject to.

Despite many inspection processes, some products are eventually identified as

faulty at the end of the process. To address the issue, several studies attempted to

construct a prediction model that detects the faulty products early using inspec-

tion results based on machine learning [90, 39, 36, 40]. The products predicted as

faulty can be fixed or discarded in advance, which contributes to improving the fi-

nal yield. The problem situation of predicting the faults through basic inspections

and advanced inspections is illustrated in Figure 5.1. Since advanced inspections

60

17

Advanced
inspections

Basic
inspections

Final
fault

Prediction
model

- Essential
- 100% inspection

- Precise and strict, but expensive
- Sampling inspection

Product

Fig. Schematic description of the problem background

Figure 5.1: Problem situation addressed in Chapter 5.

are conducted only for some sampled products, two different prediction models are

constructed: basic and advanced models. The basic model uses only basic inspection

results as input variables, while the advanced model uses both basic and advanced

inspection results as input variables. Each model is selectively applied depending

on whether the product has undergone advanced inspections. The prediction per-

formance of advanced model is relatively high because it uses more information to

predict the fault.

In this situation, an increase in the proportion of products that are subject to

advanced inspections would lead to an improvement in the fault prediction per-

formance. However, this also increases inspection cost. In other words, a trade-off

between inspection cost and prediction performance exists when predicting faults

using inspection results. Random sampling has been conventionally adopted to se-

lect products that are subject to advanced inspections. However, the necessity of

advanced inspections is different for each product. For some products, basic in-

spections are sufficient to predict their faults. For some other products, advanced

inspections are required to make more accurate predictions. The aim of the study is

61

16

Advanced inspection rate
(Inspection cost)

P
re

d
ic

ti
o
n
 p

e
rf

o
rm

a
n
ce Proposed

low

lo
w

h
ig

h

high

Figure 5.2: Graphical explanation of the purpose of Chapter 5.

to devise an intelligent way of product sampling to obtain a better trade-off between

the cost for advanced inspections and the prediction performance, as illustrated in

Figure 5.2.

In this chapter, we propose an active inspection framework to predict faults in

a cost-effective manner. Assuming that all the inspection results can be secured in

the training phase, this framework is about how to operate the prediction models

for new products in the prediction phase. In the first step, basic inspections are

conducted for all products and the basic model outputs a fault score and its predic-

tion uncertainty score. If the uncertainty score is low, the product’s fault score is

finalized. If the uncertainty score is high, the product is sent for advanced inspec-

tions. The fault score is updated using the advanced model with more inspection

results. Through this framework, we can obtain improved fault prediction perfor-

mance with lower inspection costs. Hence, a better trade-off between inspection cost

and fault prediction performance can be realized. Furthermore, we also propose an

imputation-based active feature-value acquisition method, termed as expected pre-

62

diction change (EPC), to obtain a better uncertainty score that can improve the

performance of the framework. The effectiveness of the proposed method is demon-

strated through a case study using real-world data collected from a semiconductor

manufacturer.

In the problem setting of this study, there are two categories of inspections,

namely basic inspections and advanced inspections. Basic inspections correspond to

necessary inspections that every product should undergo. After basic inspections

are completed, advanced inspections are performed. In contrast to the basic inspec-

tions, advanced inspections correspond to additional inspections that only selected

products undergo. We consider constructing a prediction model to predict whether

a product is finally determined as faulty.

We assume that there are n basic inspection items corresponding to input vari-

ables Xbasic
1 , Xbasic

2 , . . . , Xbasic
n , and m advanced inspection items corresponding to

input variables Xadv
1 , Xadv

2 , . . . , Xadv
m . The output variable Y in training data is 1

for faulty products and 0 for normal products. After the prediction models are con-

structed, in the prediction phase to make prediction on a new product, the fault

score Ŷ is yielded with the inspection results. The value of Ŷ ranges from 0 to 1.

We focus on the prediction phase, and thus it is assumed that the prediction

models can be constructed with the complete training set filled with all inspec-

tion results. When operating the models in the prediction phase, inspection results

are selectively acquired. All products undergo basic inspections, and thus values

for Xbasic
1 , Xbasic

2 , . . . , Xbasic
n can be secured without missing values. Conversely, ad-

vanced inspections are only conducted for some sampled products, and thus the

values of Xadv
1 , Xadv

2 , . . . , Xadv
m can only be obtained for a few selected products.

63

Introduction

• Problem definition

1

Active feature-value acquisition in test phase
X1
𝑏𝑎𝑠𝑖𝑐 X2

𝑏𝑎𝑠𝑖𝑐 X3
𝑏𝑎𝑠𝑖𝑐 … Xn

𝑏𝑎𝑠𝑖𝑐 X1
𝑎𝑑𝑣 X2

adv X3
adv … X𝑚

adv

Basic inspection items Advanced inspection items

𝑌

?

?

?

?

?

?

?

?

?

?

?

?

: Acquired for some selected products with additional cost

: Unknown

Fault score

- 공통 검사 항목(X1~Xn)은 모든 제품(instance)에 대해 수

행하여 검사 결과를 획득함

- 고비용 검사 항목(Xs1~Xsm)은 샘플링 된 일부 제품

(instance)에 대해서만 수행되고 검사 결과를 획득 할 수

있음

- 이런 환경에서 최종 불량(Y)에 대한 예측 정확도를 높게

가져갈 수 있는 샘플링 & 예측 체계 제안

S
a
m

p
le

d
 p

ro
d
u
ct

s

: Acquired for all products

Figure 5.3: Problem situation in terms of data.

The situation is summarized in Figure 5.3. Each instance denotes each product, and

each has inspection results as features. Black and gray boxes represent values ob-

tained for all products and values obtained for some selected products, respectively.

White boxes represent unknown values.

The goal of this chapter is to maximize the fault prediction performance by

effectively selecting a set of products to obtain additional m features of advanced

inspection results among the total set of products to be predicted. Thus, we apply

active feature-value acquisition to fault prediction.

64

5.2 Proposed Method

5.2.1 Active inspection framework

We propose an active inspection framework to improve the fault prediction perfor-

mance in a cost-effective manner. For some products, basic inspections are sufficient

to predict their faults and thus do not necessitate advanced inspections. However, for

some products, their faults can be predicted more accurately with advanced inspec-

tions. Considering the different characteristics of individual products, the products

to acquire advanced inspection results are selected by the framework. The procedure

of the framework is shown in Figure 5.4.

In the training phase, two fault prediction models are trained, namely basic and

advanced models. The basic model F basic predicts the fault with only basic inspection

items. The fault score Ŷ basic is calculated as a function of Xbasic
1 , Xbasic

2 , . . . , Xbasic
n .

The advanced model F adv predicts the fault with both basic and advanced inspec-

tion items. The Ŷ adv is calculated as a function of Xbasic
1 , Xbasic

2 , . . . , Xbasic
n and

Xadv
1 , Xadv

2 , . . . , Xadv
m . The advanced model may perform better than the basic model

because the advanced model utilizes more information to make predictions.

In the prediction phase, all products undergo basic inspections to obtain values

for the variables Xbasic
1 , Xbasic

2 , . . . , Xbasic
n . Then, the fault prediction is conducted

by using the basic model F basic. The uncertainty score S representing the prediction

uncertainty is also calculated from F basic. Only for products with the score S above

a certain threshold τ , advanced inspections are conducted to obtain values of addi-

tional variables Xadv
1 , Xadv

2 , . . . , Xadv
m . Then, fault prediction is conducted using the

advanced model F adv for the selected products. Consequently, the fault score Ŷ is

expressed as follows:

65

2

B
as

ic
In

sp
e

ct
io

n 𝑋
1𝑏
𝑎
𝑠𝑖
𝑐
,…

,𝑋
𝑛𝑏
𝑎
𝑠𝑖
𝑐

A
d

va
n

ce
d

In

sp
ec

ti
o

n 𝑋
1𝑎
𝑑
𝑣
,…

,𝑋
𝑚𝑎
𝑑
𝑣

B
as

ic
 M

o
d

el

𝐹
𝑏
𝑎
𝑠𝑖
𝑐

A
d

va
n

ce
d

 M
o

d
el

𝐹
𝑎
𝑑
𝑣

Fa
u

lt
 S

co
re

 𝑌
𝑏
𝑎
𝑠𝑖
𝑐

Fa
u

lt
 S

co
re

 𝑌
𝑎
𝑑
𝑣

A
ll

P
ro

d
u

ct
s

Sa
m

p
le

d
 P

ro
d

u
ct

s

A
s-

is

To
-b

e

B
as

ic
 M

o
d

el

𝐹
𝑏
𝑎
𝑠𝑖
𝑐

A
d

va
n

ce
d

 M
o

d
el

𝐹
𝑎
𝑑
𝑣

Fa
u

lt
 S

co
re

 𝑌
𝑏
𝑎
𝑠𝑖
𝑐

Fa
u

lt
 S

co
re

 𝑌
𝑎
𝑑
𝑣

A
ll

P
ro

d
u

ct
s

U
n

ce
rt

ai
n

ty
 S

co
re

𝑺

B
as

ic
In

sp
e

ct
io

n 𝑋
1𝑏
𝑎
𝑠𝑖
𝑐
,…

,𝑋
𝑛𝑏
𝑎
𝑠𝑖
𝑐

A
d

va
n

ce
d

In

sp
ec

ti
o

n 𝑋
1𝑎
𝑑
𝑣
,…

,𝑋
𝑚𝑎
𝑑
𝑣

R
an

d
o

m
Sa

m
p

lin
g

U
n

ce
rt

ai
n

ty
Sa

m
p

lin
g

Sa
m

p
le

d
 P

ro
d

u
ct

s

F
ig

u
re

5.
4:

A
ct

iv
e

in
sp

ec
ti

on
fr

a
m

ew
or

k
.

66

Ŷ =

F basic(Xbasic

1 , . . . , Xbasic
n), if S ≤ τ ;

F adv(Xbasic
1 , . . . , Xbasic

n , Xadv
1 , . . . , Xadv

m), otherwise.

(5.1)

Choosing an appropriate uncertainty scoring method is critical to the perfor-

mance of the active inspection framework. To calculate the uncertainty score S,

several conventional methods can be used, including ‘variance’, ‘margin’, and ‘bias’.

• ‘variance’: The variance of the fault scores Ŷ basic calculated by multiple basic

models is used [55]. Given k different basic models, k fault scores {Ŷ basic(i)}ki=1

are calculated, and then the uncertainty score S is calculated as:

S =

∑k
i=1 (Ŷ basic(i)− Ŷ basic)2

k − 1
(5.2)

• ‘margin’: The inverse of the absolute difference between the fault score Ŷ basic

and normal score 1 − Ŷ basic is used [70]. This method is similar to selecting

instances whose fault scores are close to 0.5. The uncertainty score S is:

S =
1

|Ŷ basic − 0.5|
(5.3)

• ‘bias’: Considering class imbalance of the training dataset, it calculates the

proximity between the fault score Ŷ basic and fault rate FR in the training

dataset. Specifically, an uncertainty score S is calculated as follows:

S =

Ŷ basic

FR
, if Ŷ basic ≤ FR;

1− Ŷ adv

1− FR
, otherwise,

(5.4)

67

Table 5.1: Description of models used in EPC.

model input output

imputation
models

F imp
1 Xbasic

1 , Xbasic
2 , . . . , Xbasic

n X̂adv
1

F imp
2 Xbasic

1 , Xbasic
2 , . . . , Xbasic

n X̂adv
2

...
...

...

F imp
m Xbasic

1 , Xbasic
2 , . . . , Xbasic

n X̂adv
m

fault pre-
diction
models

F basic Xbasic
1 , Xbasic

2 , . . . , Xbasic
n Ŷ basic

F adv Xbasic
1 , . . . , Xbasic

n , X̂adv
1 , . . . , X̂adv

m Ỹ adv

The value of S is maximum when Ŷ basic = FR and is minimum when Ŷ basic =

0 or 1.

The above-mentioned methods only focuses on the uncertainty of the basic model.

However, high uncertainty of the basic model does not necessarily indicate that the

advanced model can complement the basic model. To overcome the limitation, we

present a novel uncertainty scoring method that is appropriate for the framework in

the next subsection.

5.2.2 Acquisition based on Expected Prediction Change

To obtain the uncertainty score S in the active inspection framework, we propose

an imputation-based feature-value acquisition method, named EPC. EPC directly

uses the advanced model to approximate the change in prediction. The scheme of

the method is shown in Figure 5.5. The models used in the method are summarized

in Table 5.1.

In the training phase, in addition to the basic model and advanced model, we also

train imputation models. These models are used to estimate the advanced inspection

results,Xadv
1 , Xadv

2 , . . . , Xadv
m , through basic inspection results,Xbasic

1 , Xbasic
2 , . . . , Xbasic

n .

That is, they consist of m regression models, F imp
1 , F imp

2 , . . . , F imp
m , and each model

68

7

X
1b
a
si
c
X
2b
a
si
c
X
3b
a
si
c

…
X
n𝑏
𝑎
𝑠𝑖
𝑐

 𝑋
1𝑎
𝑑
𝑣

 𝑋
2𝑎
𝑑
𝑣

 𝑋
3𝑎
𝑑
𝑣

…
 𝑋
𝑚𝑎
𝑑
𝑣

 𝑌
𝑏
𝑎
𝑠𝑖
𝑐

෨ 𝑌
𝑎
𝑑
𝑣

𝑆

Im
p
u
ta

ti
o
n

M
o
d
e
l

A
b
so

lu
te

d
if
fe

re
n
ce

B
a
si
c

M
o
d
e
l

A
d
va

n
ce

d

M
o
d
e
l

𝐹
𝑏
𝑎
𝑠𝑖
𝑐
𝑋
1𝑏
𝑎
𝑠𝑖
𝑐
,…

,𝑋
𝑛𝑏
𝑎
𝑠𝑖
𝑐

=
 𝑌
𝑏
𝑎
𝑠𝑖
𝑐

𝐹
𝑎
𝑑
𝑣
(𝑋

1𝑏
𝑎
𝑠𝑖
𝑐
,…

,𝑋
𝑛𝑏
𝑎
𝑠𝑖
𝑐
,
 𝑋
1𝑎
𝑑
𝑣
,…

,
 𝑋
𝑚𝑎
𝑑
𝑣
)
=

෨ 𝑌
𝑎
𝑑
𝑣

𝐹 𝑖
𝑖𝑚

𝑝
𝑋
1𝑏
𝑎
𝑠𝑖
𝑐
,…

,𝑋
𝑛𝑏
𝑎
𝑠𝑖
𝑐

=
 𝑋
𝑖𝑎
𝑑
𝑣
,(
𝑖
=
1
,…

,𝑚
)

F
ig

u
re

5.
5:

Il
lu

st
ra

ti
v
e

d
es

cr
ip

ti
on

o
f

E
P

C
.

69

estimates m advanced inspection results. Imputation models are expressed as fol-

lows:

X̂adv
i = F imp

i (Xbasic
1 , . . . , Xbasic

n), i = 1, . . . ,m (5.5)

In the prediction phase, after basic inspections are conducted, two different fault

scores are calculated as follows. For the first fault score, Ŷ basic is calculated by

simply applying the basic model on the basic inspection results. For the other fault

score, Ỹ adv is calculated, which is the expected fault score when advanced inspection

results are obtained. Estimated advanced inspection results, X̂adv
1 , X̂adv

2 , . . . , X̂adv
m ,

are calculated using imputation models. Subsequently, the advanced model yields the

fault score, Ỹ adv, with the basic inspection results and estimated advanced inspection

results. The two fault scores are expressed as follows:

Ŷ basic = F basic(Xbasic
1 , . . . , Xbasic

n)

Ỹ adv = F adv(Xbasic
1 , . . . , Xbasic

n , X̂adv
1 , . . . , X̂adv

m)

(5.6)

To select products to undergo advanced inspections, the uncertainty score S is

defined as the absolute difference between Ŷ basic and Ỹ adv as below:

S = |Ŷ basic − Ỹ adv|. (5.7)

Products with the high uncertainty score S are selected for advanced inspections.

A higher value of S implies that outputs between basic and advanced models are

expected to be more different. Hence, the advanced model is expected to complement

70

the basic model.

5.3 Experiments

5.3.1 Data description

We conducted a case study on real-world data obtained from a semiconductor man-

ufacturer based in the Republic of Korea to investigate the effectiveness of the pro-

posed methods. In semiconductor manufacturing, a wafer test is conducted after

wafer fabrication to test electrical properties for each die in a wafer. The wafer test

consists of a number of inspections, which can be divided into basic and advanced

inspections. Advanced inspections are time-consuming and costly because they con-

sist of rigorous examination under severe conditions. Hence, they are performed for

a few sampled dies in a wafer. The wafer test is followed by the assembly step to

fabricate final products. Finally, the final test is conducted to determine whether

each product passes or fails through the functionality evaluation. The purpose of

the case study was to predict failures in the final test using wafer test results.

We used two datasets for which the descriptions are listed in Table 5.2. The two

datasets correspond to different inspection recipes (recipe1, recipe2). The basic

inspection items are identical for both recipes. Recipe1 includes more advanced in-

spection items albeit fewer instances, while recipe2 includes fewer advanced inspec-

tion items albeit more instances. The inspection items correspond to input variables

of the dataset. We also obtain output variable indicating as to whether each product

is faulty in the final test. The datasets are highly imbalanced with a fault rate of

less than 1%.

71

Table 5.2: Description for dataset used in Chapter 5.

inspection
recipe

n. instances
n. input variables
basic
inspection

advanced
inspection

recipe1 18,471 8 91
recipe2 245,006 8 80

5.3.2 Fault prediction models

We conducted preliminary experiments to select the learning algorithm for con-

structing fault prediction models. The effectiveness of the three learning algorithms

was evaluated : random forest (RF), artificial neural network (ANN), and k-nearest

neighbor (kNN). For RF, the number of trees was set to 500, and the minimum

number of instances to split for each tree was set to 10. With respect to ANN, two

hidden layers with 50 tanh units in each were used. With respect to kNN, the num-

ber of neighbors k was set to 50. All classifiers were implemented using scikit-learn

package and all other settings were set as the defaults for the package.

The performance of each classifier was evaluated in terms of the area under the

receiver operating characteristic curve (AUROC) [6] via the two-fold cross validation

procedure. In the procedure, we randomly split the dataset into two-fold, namely one

for training and the other for test, and vice versa. The experiments were repeated

30 times independently.

Table 5.3 lists the average and standard deviation of the performance of the com-

pared classifiers. As shown in Table 5.3, RF exhibited high and stable performance

on both datasets. This is in line with the original paper [7] that RF is robust to noise

and outliers of input variables. Based on the results of the preliminary experiments,

we selected RF to construct fault prediction models for the proposed framework.

72

Table 5.3: Preliminary experiment results in AUROC. (mean ± standard deviation)

RF ANN kNN

recipe1
basic model 0.7132 ± 0.0278 0.6970 ± 0.0790 0.6510 ± 0.0323
advanced model 0.7477 ± 0.0308 0.7180 ± 0.0375 0.6139 ± 0.0302

recipe2
basic model 0.6957 ± 0.0096 0.6890 ± 0.0244 0.6226 ± 0.0080
advanced model 0.7347 ± 0.0093 0.7137 ± 0.0193 0.6274 ± 0.0081

5.3.3 Experimental design

In experiments, we simulated the proposed active inspection framework. As im-

putation models which estimate advanced inspection results with basic inspection

results, three algorithms were investigated: DTs, RFs, and extremely randomized

trees (ETs). That is, three versions of EPC are implemented: EPC DT, EPC RF,

and EPC ET, respectively.

Three conventional uncertainty scoring methods were used as the baseline to

obtain the uncertainty score: ‘variance’, ‘margin’, ‘bias’. In case of ‘variance’, since

RF itself is an ensemble based method, the variance of fault scores calculated by each

tree in an RF was utilized for the uncertainty score. Additionally, random sampling

was also compared as a baseline.

For all the tree-based models, the minimum number of instances to split was set

to 10. The RFs used as the basic and advanced models consisted of 500 trees. The

RFs and ETs used as the imputation models consisted of 50 trees. All models were

implemented using scikit-learn package and all other hyperparameters were set as

the defaults of the package.

After all the models were trained using the training set, the proposed active

inspection framework was simulated. We examined the performance with varying

inspection costs. The proportion of products undergoing advanced inspections among

73

all products in the test set, advanced inspection rate, was varied from zero to one at

0.1 intervals, which was controlled through the threshold τ for uncertainty score. The

advanced inspection rate of zero indicates that all products undergo only the basic

inspections whereas the advanced inspection rate of one implies that all products

are subject to advanced inspections.

The performance of each method was evaluated in terms of AUROC via two-fold

cross validation. All experiments were repeated 50 times independently. We report

their average in the next section.

5.3.4 Results and discussion

Figure 5.6 shows the comparison results. The x-axis denotes the advanced inspection

rate to sample the products that are examined with advanced inspections. The

inspection cost is proportional to the advanced inspection rate. The y-axis denotes

the AUROC for fault prediction performance through the framework. The upward

trend indicates the trade-off in which the fault prediction performance tends to

improve when total inspection costs increase. The graph that are closer to the top

left indicates a better trade-off, i.e., higher performance with lower inspection cost.

The random sampling method increased the prediction performance in an almost

linear manner with inspection costs. In comparison, ‘variance’, ‘margin’, and ‘bias’

method showed a better trade-off than the random sampling. In both datasets,

‘margin’ exhibited almost the same performance as ‘variance’, and ‘bias’ method

revealed some additional improvement by considering the class imbalance problem.

The results indicated that the active inspection framework performs well.

In both datasets, the proposed EPC method outperformed baseline methods.

Specifically, a large performance difference was observed between data acquisition

74

0.0 0.2 0.4 0.6 0.8 1.0
advanced inspection rate (cost)

0.715

0.720

0.725

0.730

0.735

0.740

0.745

0.750

AU
RO

C

(a) recipe1

random
variance
margin
bias
EPC_DT
EPC_RF
EPC_ET

0.0 0.2 0.4 0.6 0.8 1.0
advanced inspection rate (cost)

0.695

0.700

0.705

0.710

0.715

0.720

0.725

0.730

0.735

AU
RO

C

(b) recipe2

random
variance
margin
bias
EPC_DT
EPC_RF
EPC_ET

Figure 5.6: Experimental results for each dataset.

methods in recipe1 because it includes more advanced inspection items and rela-

tively fewer instances. Even when the advanced inspection rate exceeded 0.5, EPC

exhibited higher AUROC than that of 100% advanced inspection irrespective of

the types of imputation models. This means that we can achieve a prediction per-

formance comparable to that of 100% advanced inspection even if only 50% of all

products undergo advanced inspections. In the case of recipe2, EPC DT exhibited

the best performance, especially when the advanced inspection rate was low. The

result is considerably meaningful given that the advanced inspection rate in reality

is not high.

The experimental results demonstrated that the proposed method obtains higher

fault prediction performance at lower cost. It is conjectured that instances for ad-

vanced inspections are selected in an optimal manner by the proposed method.

75

Chapter 6

Adaptive Fault Detection for Recipe Transition

6.1 Problem Description

In semiconductor manufacturing, yield is one of the most important index which

affects the manufacturer’s profitability. To achieve high yield, manufacturers make

efforts to detect wafer faults at an early manufacturing step and prevent the faulty

wafers from proceeding to the downstream steps. With the growth of Industry 4.0, a

lot of sensors on equipment collect tremendous data to describe the status including

temperature, pressure, and gas flow. Recently, this multi-dimensional time series

sensor data has been utilized as input of a machine learning model for fault detection

and classification (FDC) to predict whether each wafer is faulty or not in the future.

As shown in Figure 6.1, an FDC model is constructed by training a prediction

model using sensor data at a specific process step as input and inspection results

(faulty or normal) for the wafers that have completed the entire fabrication as out-

put. This kind of data-driven modeling assumes that training data and test data

are drawn from the same distribution. Therefore, when training the model, a lot of

training data consistent with test data is required. Moreover, especially when train-

ing a deep learning models, the amount of data required becomes larger. However,

acquiring consistent data for training FDC model is almost impossible in real-world

76

Fault detection problem in this study

3

inspection.

wafer

Fab
step57

Fab
step58

Fab
step245. . .

FDC model
𝑌 = 𝑓(𝑋)

X : sensor data

Y : inspection result

Fault / Normal

Fab
step56

Fig. Characteristic of the sensor data is changed by recipe transition

Recipe
transition

Figure 6.1: Illustrative description of the problem situation to be addressed in the
Chapter 6.

semiconductor manufacturing process because the transition of recipe occurs fre-

quently. Recipe in manufacturing refers to a collection of setting values for a fabri-

cation process such as the amount of each ingredient, duration of the process, and

the temperature setting. To improve the manufacturing quality, the recipe changes

frequently, especially in the production of newly developed products [4]. The transi-

tion of recipe causes a change in characteristics of the input sensor data. Therefore,

the FDC model trained with data from old recipe may have bad generalization per-

formance for the data from new recipe. Whenever a recipe transition occurs, it is

necessary to retrain the FDC model with the new recipe data, but it takes time to

secure a lot of labeled training data for the new recipe.

In this chapter, we propose adaptive fault detection framework for transition of

recipe. The objective of this framework is to minimize the performance degradation

caused by the recipe transition. Initially, the sensor data of the wafers made with

77

old recipe and the final inspection data of these wafers are given, and the FDC

model is constructed with these data. Immediately after the recipe transition oc-

curs, input sensor data from the new recipe can be obtained, while wafer inspection

data cannot be obtained until the whole fabrication of the wafer is completed. For

this situation, unsupervised domain adaptation method is employed to reduce the

performance degradation for new recipe. After the fabrication process is completed

and output data is acquired for some wafers, semi-supervised domain adaptation is

employed to compensate for still small amounts of labeled data from new recipe.

Through experiments using real-world data from a semiconductor manufacturer, we

demonstrated that the proposed framework can reduce the performance degradation

caused by recipe transition.

6.2 Proposed Method

6.2.1 Overview

Wafer fabrication process consists of hundreds of process steps. Wafers completed

through the entire process steps are inspected to determine whether they are faulty.

The FDC model is a prediction model that predicts whether a wafer will become

faulty after it is completed, by using sensor data at a specific process step as input.

Therefore, model training requires two kinds of dataset corresponding to input and

output respectively: sensor data at a specific process step for each wafer and final

inspection result data for the wafers. In this chapter, FDC models are constructed

using the self-attentive CNN structure of Kim et al. [40].

An overview of the proposed framework is shown in Figure 6.2. It is assumed

that the sensor data from an input process step with a specific recipe and the cor-

78

responding inspection result data are given, and an FDC model trained with them

is also given. We will refer to this recipe and the model as the old recipe and the

old model. When a recipe transition occurs, wafers begin to go through the input

process step with a new recipe, and the distribution of the sensor data become dif-

ferent from before. Therefore, using the old model as it is leads to significant perfor-

mance degradation. At this point, the proposed framework can be used. The wafer

fabrication process consists of a huge number of process steps, and a turnaround

time (TAT) for it is quite long, so there is a time interval between acquiring input

data and output data. Therefore, the proposed framework can be divided into two

phases, unsupervised adaptation phase and semi-supervised adaptation phase. The

unsupervised adaptation phase corresponds to the period from the time when the

recipe transition occurs to the time before the inspection results of the new recipe

wafers appear. In this phase, the sensor data for the new recipe exists, but the cor-

responding inspection result data does not exist. The semi-supervised adaptation

phase corresponds to the period after a new recipe wafer is completed and the in-

spection results begin to appear. In this phase, the sensor data for the new recipe

exists, and the corresponding inspection result data partially exist. The notations

used to describe each phase are summarized in Table 6.1.

79

•
O

ve
rv

ie
w

A
d
a
p
ti
v
e
 F

a
u
lt
 D

e
te

ct
io

n
 f

o
r

R
e
ci

p
e
 T

ra
n
si

ti
o
n

5

X
(s

e
n
so

r
d
a
ta

)
X
(s

e
n
so

r
d
a
ta

)

Y
(n

o
rm

a
l/
fa

u
lt
)

N
e
w

 r
e
ci

p
e

X
(s

e
n
so

r
d
a
ta

)

Y
(n

o
rm

a
l/
fa

u
lt
)

O
ld

 r
e
ci

p
e

O
ld

m
o
d
e
l

U
n
su

p
e
rv

is
e
d

a
d
a
p
ta

ti
o
n

m
o
d
e
l

S
ta

rt
 f
a
b
ri
ca

ti
o
n
 w

it
h
 a

 n
e
w

 r
e
ci

p
e

(T
ra

n
si
ti
o
n
 o

f
re

ci
p
e
 o

cc
u
rs

)
S
ta

rt
 I
n
sp

e
ct

io
n
s

o
f
w

a
fe

rs

fa
b
ri
ca

te
d
 w

it
h
 a

 n
e
w

 r
e
ci

p
e

ti
m

e

d
a
ta

m
o
d
e
l

O
ld

 r
e
ci

p
e

F
ig

.
o
v
e
rv

ie
w

 o
f

th
e
 a

d
a
p
ti
v
e
 f

a
u
lt
 d

e
te

ct
io

n
 f

o
r

re
ci

p
e
 t

ra
n
si

ti
o
n

X
(s

e
n
so

r
d
a
ta

)

Y
(n

o
rm

a
l/
fa

u
lt
)

N
e
w

 r
e
ci

p
e

X
(s

e
n
so

r
d
a
ta

)

Y
(n

o
rm

a
l/
fa

u
lt
)

O
ld

 r
e
ci

p
e

S
e
m

i-
su

p
e
rv

is
e
d

a
d
a
p
ta

ti
o
n

m
o
d
e
l

U
n
su

p
e
rv

is
e
d
 a

d
a
p
ta

ti
o
n
 p

h
a
se

S
e
m

i-
su

p
e
rv

is
e
d
 a

d
a
p
ta

ti
o
n
 p

h
a
se

F
ig

u
re

6.
2:

O
ve

rv
ie

w
of

th
e

ad
ap

ti
ve

fa
u

lt
d

et
ec

ti
on

fr
a
m

ew
or

k
fo

r
re

ci
p

e
tr

an
si

ti
on

.

80

Table 6.1: Notations used in Chapter 6.

Notation Type Description
XS set sensor dataset from old recipe.
Y S set inspection results corresponding to wafers of XS .
XT set sensor dataset from new recipe.
XT

L set sensor dataset from new recipe with inspection results (labeled).
Y T
L set inspection results corresponding to wafers of XT

L .
XT

U set sensor dataset from new recipe without inspection results (unlabeled).
g function feature extraction network. g : X → Z
h function classification network. h : Z → Y
f function FDC model. f = h ◦ g

• Unsupervised adaptation

Adaptive Fault Detection for Recipe Transition

9

Feature extraction
network : g

Classification
network : h

Classification loss
for old recipe: 𝐿𝑠𝑐

Feature extraction
network : g

sh
a
re

d

Unsupervised
alignment loss: 𝐿𝑢𝑎

Old recipe
data

New recipe
data

Total Loss 𝐿 = 𝐿𝑠𝑐 + 𝜆 ∙ 𝐿𝑢𝑎
Figure 6.3: Overall neural network architecture used to train the FDC model in
unsupervised adaptation phase.

6.2.2 Unsupervised adaptation phase

Unless the input process step in which the input sensor data is generated is the last

step of the entire fabrication process, there is a time interval between the process

step and the final inspection of a wafer. In other words, it takes a long time to

acquire output data after input data is acquired. Before output data is acquired, an

FDC model for the new recipe must be built with only input data. To this end, we

apply unsupervised domain adaptation method using the old recipe as a source and

the new recipe as a target.

In general, deep learning-based FDC model f could be modeled by the composi-

81

tion of feature extraction function g and classification function h, i.e., f = h◦g. If the

feature representations extracted by g for each recipe have a similar distributions,

classification function h trained for the old recipe can perform similarly for the new

recipe as well. Then, the FDC model f can be used for the new recipe. To align the

old recipe data and the new recipe data in the feature space constructed with the

g, we adopt a siamese network for training the FDC model. The siamese network

consists of two identical networks for each source and target with shared weights.

In the unsupervised adaptation setting, classification function h for target data is

not required. Overall neural network architecture used to train the FDC model in

unsupervised adaptation phase is depicted in Figure 6.3. In the proposed frame-

work, MMD loss is adopted because it can be extended to semi-supervised settings

[85]. With the source and target representation calculated by a feature extraction

networkg, MMD is computed as followed:

MMD(XS , XT) =

∥∥∥∥∥∥∥
1

XS

∑
xs∈XS

g(xs)−
1

XT

∑
xt∈XT

g(xt)

∥∥∥∥∥∥∥ (6.1)

Then, unsupervised alignment loss Lua(XS , XT) can be expressed as

Lua(XS , XT) = MMD2(XS , XT). (6.2)

By minimizing this loss, the representations of the source and the target are aligned.

With a regular classification loss for source data Lsc(XS , Y S), total loss Ltotal can

be expressed as

Ltotal = Lsc(XS , Y S) + λLua(XS , XT). (6.3)

The hyperparameter λ determines how strongly align between the recipes. Since Lua

82

• Semi-supervised adaptation

Adaptive Fault Detection for Recipe Transition

12

Feature extraction
network : g

Classification
network : h

Classification loss
for old recipe: 𝐿𝑠𝑐

Classification loss
for new recipe: 𝐿𝑡𝑐

Feature extraction
network : g

Classification
network : h

sh
a
re

d

sh
a
re

d

Unsupervised
alignment loss: 𝐿𝑢𝑎

Old recipe
data

New recipe
data

Supervised
alignment loss: 𝐿𝑠𝑎

Total Loss 𝐿 = 𝐿𝑠𝑐 + 𝐿𝑡𝑐 + 𝜆 ∙ (𝐿𝑢𝑎 + 𝐿𝑠𝑎)Figure 6.4: Overall neural network architecture used to train the FDC model in
semi-supervised adaptation phase.

makes the recipes indistinguishable, after the training ends, we directly apply the

FDC model f to the target data, the new recipe data.

6.2.3 Semi-supervised adaptation phase

After a wafer goes through the input process step and enough time passes, the entire

fabrication process for the wafer is finished, and then it is subjected to the finial

inspection. When the inspection results indicating whether each wafer is normal or

faulty begin to appear, they can be used as labels. Because the whole fabrication

process is large and complex, even wafers that have gone through the input process

step at the similar time have different timings to complete the whole fabrication

process. So, the inspection results to be used as labels cannot be obtained at once,

but are obtained little by little at time intervals. For this situation, we apply semi-

supervised domain adaptation method.

Overall neural network architecture used to train the FDC model in semi-supervised

adaptation phase is depicted in Figure 6.4. As in the unsupervised adaptation phase,

a siamese network is used to train a FDC model f . Unlike unsupervised adaptation

phase, classification loss can be calculated for some labeled target data and super-

83

vised alignment can also be used in addition to unsupervised alignment.

For still unlabeled target data, unsupervised alignment loss is used in the same

way as in the unsupervised adaptation phase.

Lua(XS , XT
U) = MMD2(XS , XT

U) (6.4)

Only with the unsupervised alignment loss, there is no guarantee that instances

from different recipes but the same class would map nearby in the feature space

constructed with g. This can be addressed with supervised alignment loss that aligns

separately for each class as followed:

Lsa(XS , XT
L) =

∑
c∈{0,1}

MMD2(XS(c), XT
L (c)) (6.5)

where XS(c) = XS |{Y S = c} and XT
L (c) = XT

L |{Y T
L = c}. c indicates class, 0 for

normal and 1 for fault. In this phase, in addition to the classification loss for old

recipe Lsc(XS , Y S), classification loss for new recipe Ltc(XT
L , Y

T
L) can be calculated

by using some labeled target data. Finally, total loss Ltotal can be presented as

follow:

Ltotal = Lsc(XS , Y S) + Ltc(XT
L , Y

T
L) + λ(Lua(XS , XT

U) + Lsa(XS , XT
L)). (6.6)

As in the unsupervised adaptation phase, the hyperparameter λ determines how

strongly align between the recipes. After the training ends, the FDC model f can

be applied to the target data.

84

6.3 Experiments

6.3.1 Data description

We conducted experiments on real-world data provided by a semiconductor manu-

facturing company in South Korea to investigate the effectiveness of the proposed

framework. Two sensor datasets with two different recipes, recipe 1 and recipe 2,

were collected from a specific etch process step. Each recipe dataset contains 778

and 1,546 wafers, respectively. All sensor values were recorded every 0.1 second. The

step in which the sensor data is collected consists of 25 inner steps, among which

domain engineers selected a set of consecutive steps for fault detection. Then, the

lengths of the selected sequences are 315.6 and 315.3 on average for recipes 1 and

2, respectively. Among hundreds of sensors installed in the equipment, 65 sensors

were used for analysis after excluding the sensors that have the same values for the

selected time length. In addition, inspection results for the wafers were collected af-

ter the whole fabrication process is completed. They indicate whether each wafer is

normal or faulty. There exist 22 and 31 faulty wafers in recipes 1 and 2, respectively,

showing severe class imbalance of 2.8% and 2.0% fault rate.

6.3.2 Experimental setting

In the experiments, self-attentive CNN from Kim et al. [40] was adopted as an FDC

model structure in the proposed framework. In this model, to directly deal with

sensor data with different time lengths for each wafer, the self-attention mechanism

[50] is applied after the CNN structure having convolutional filters that move along

the time axis. This self-attention mechanism converts variable-length sensor data

into a fixed-size vector. As shown in the original paper, this self-attention-based

85

model makes it possible to diagnose the cause of the fault through the distribution of

attention weights. This self-attentive CNN obtained high fault detection performance

even with a short training time. This model consists of one convolutional layer, one

self-attention layer, and two fully connected layer. In this experiment, the last one

fully connected layer was considered as a classification network h, and all previous

layers were considered as a feature extraction network g.

When training a model, we used the Adam optimizer with a learning rate of 0.001

and a batch size of 256. All models were trained for 200 epochs. The hyperparameter

λ in Equation (6.3) and Equation (6.6) was set to 0.01. When performing the recipe

adaptation, all weights of the network were initialized with that of the old model.

We conducted experiments by simulating a situation where a recipe transition

occurred. With the two datasets, experiments were performed for the transitions in

two directions: from recipe 1 to recipe 2 and recipe 2 to recipe 1. The performance of

the fault detection was evaluated in terms of AUROC via three-fold cross validation.

All experiments were repeated 30 times independently and their average is reported.

6.3.3 Performance degradation caused by recipe transition

We demonstrated the performance degradation that occurs when the old model

constructed with the old recipe data is applied to the new recipe data as it is. After

an FDC model was constructed with the data of one recipe, we applied the model to

the test data of the same recipe and the other recipe, respectively. The comparison

results are shown in Table 6.2. As shown in the table, fault detection performance

decreased significantly when the model was applied to the different recipe from the

recipe used for training. This suggests that recipe transition reduces the performance

of the existing FDC model, and therefore the model need to be retrained for the

86

Table 6.2: Performance degradation when recipe transition occurs.

test on the same recipe test on the other recipe

model trained with recipe 1 0.7886 0.5305

model trained with recipe 2 0.9401 0.6097

recipe 1 to 2 recipe 2 to 1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
fa

ul
t d

et
ec

tio
n

pe
rfo

rm
an

ce
 (A

UR
OC

)

0.5305

0.60970.6308 0.6145

old model
unsupervised adaptation

Figure 6.5: Comparison of the FDC models for unsupervised adaptation phase.

new recipe.

6.3.4 Effect of unsupervised adaptation

First, we identified the effect of the unsupervised adaptation phase. The unsuper-

vised adaptation model and the old model were applied to a separate test dataset

for the new recipe, respectively, and the comparison results are shown in Figure 6.5.

In the both recipe transition situations, the unsupervised adaptation model showed

improved performance compared to the old model. This suggests that before the

inspection results of the new recipe wafers appear, the alignment of feature rep-

87

resentations by unlabeled data can reduce the performance degradation caused by

recipe transition. The effect of unsupervised adaptation was relatively greater at the

transition to recipe 2, where the amount of data is higher than that of recipe 1. It

can be conjectured that this is because the amount of unlabeled data in the new

recipe is important to the effect of the alignment.

6.3.5 Effect of semi-supervised adaptation

To identify the effect of the semi-supervised adaptation phase, we conducted exper-

iments by gradually increasing the proportion of labeled wafers in the new recipe

data to 10%, 20%, 40%, 70%, 100%. In addition to the proposed semi-supervised

adaptation model, a joint training model and a target model were also constructed

as baseline models. The joint training model was trained only with the classification

loss for old recipe and new recipe without any alignment losses, and the target model

was trained only with the classification loss for new recipe through an original sin-

gle structure rather than a siamese structure. These three models constructed were

applied to a separate test dataset for the new recipe.

The comparison results are shown in Figure 6.6. As expected, it can be seen

that the fault detection performance of all models increases as the proportion of

labeled wafers increases, that is, as the inspection for the new recipe wafers progress.

The target model showed the lowest performance among the three models, and was

particularly poor when the proportion of labeled wafers was low. The joint training

model showed a great improvement in performance by using old recipe data as

well as new recipe data. The semi-supervised adaptation model achieved additional

performance improvement by performing alignment using unlabeled data of new

recipe. In particular, the improvement was significant when the proportion of labeled

88

0 10 20 30 40 50 60 70 80 90
Inspection progress rate for the new recipe wafers (%)

0.70

0.75

0.80

0.85

0.90

0.95

AU
RO

C

(a) recipe 1 recipe 2

target model
joint training
semisupervised adaptation

0 10 20 30 40 50 60 70 80 90
Inspection progress rate for the new recipe wafers (%)

0.60

0.65

0.70

0.75

0.80

0.85

AU
RO

C

(b) recipe 2 recipe 1

target model
joint training
semisupervised adaptation

Figure 6.6: Comparison of the FDC models as inspection rate increases.

wafers was low. This suggests that the performance can be recovered more quickly

by using semi-supervised adaptation.

As more labeled wafers for new recipe are secured, it become possible to achieve

high fault detection performance by using them alone without other source data,

reducing the difference in performance between methodologies. This trend was clear

in the transition from recipe 1 to 2. Since the total amount of recipe 1 data is

relatively small, this trend was not clearly seen in the transition from recipe 2 to 1.

If the amount of recipe 1 data is increased, it can be inferred that the same trend

will be observed.

In the transition from recipe 1 to 2, it is particularly noteworthy that the per-

formance of the semi-supervised adaptation model when only 10% of the new recipe

wafers were labeled was comparable to that when 100% was labeled. This demon-

strates that the semi-supervised adaptation can improve the performance of the

FDC model when only a small amount of inspection results for new recipe wafers

are obtained after the recipe transition occurs.

89

As for the comprehensive explanation based on all the previous experimental re-

sults, the performance degradation of the FDC model caused by recipe transition can

be reduced by unsupervised adaptation, and the resilience to recipe transition can be

improved by semi-supervised adaptation. That is, through the proposed framework,

it is possible to adapt quickly to changes in distribution caused by recipe transition.

90

Chapter 7

Conclusion

7.1 Contributions

Predictive modeling is used in various aspects in manufacturing systems, such as

automation of visual inspection, prediction of faulty products, and result estimation

of expensive inspection. When constructing such a predictive model, sufficient data

is essential to achieve high prediction performance. However, in manufacturing sys-

tems, it is practically impossible to acquire enough data of all kinds that are needed

for the predictive modeling. The difficulty in data acquisition is largely due to three

reasons: labeling cost, inspection cost, and environmental change. Labeling task that

must be done by experienced engineers is costly, and all inspection processes incur

cost. Acquiring the values of both the input variable and the output variable incurs

time and monetary costs. Because there are time and monetary constraints in the

manufacturing system, it is impossible to obtain all the desired data. In addition, a

change in the manufacturing environment make the data acquisition difficult. The

manufacturing environment constantly changes. This change transforms the distri-

bution of generated data, making it impossible to obtain enough consistent data.

Then, the performance of an existing predictive model is degraded, and the model

needs to be retrained with new data. Therefore, a new model has to be created with

91

a small amount of data.

We solved the labeling cost in wafer map pattern classification, inspection cost

in fault detection, and recipe transition in FDC model, respectively. For wafer map

pattern classification, we proposed a cost-effective wafer map pattern classification

system through the active learning of a CNN. In the system, a CNN model is con-

structed based on four main steps: uncertainty estimation, query wafer selection,

query wafer labeling, and model update. By repetitively performing these steps, a

CNN model can be constructed with a higher classification performance and a lower

labeling cost. We carried out experimental comparisons between various uncertainty

estimation methods for the CNN. The proposed method improved the classification

performance compared to the baselines. We found that BALD and mean-STD with

diversified top-K selection perform better for the proposed system.

In addition, an active cluster annotation was also proposed to improve the above

active learning framework. After clustering was conducted on the unlabeled wafer

maps, all the steps, such as uncertainty estimation, query selection, and annotation,

were conducted at the cluster-level. Using this method, a better CNN can be ob-

tained with reduced annotation cost. Additionally, we discovered that cluster-level

annotation is a robust annotation method that can yield consistent labels.

For the inspection cost for fault prediction problem, we proposed a active in-

spection framework. Due to the high cost of inspection, advanced inspections are

conducted as a sampling inspection. In the situation, a trade-off between inspec-

tion cost and prediction performance exists. with a cost-effective active inspection

framework, we can obtain a better trade-off. In the framework, the basic model

and advanced model are used. Products selected by uncertainty score are subject

92

to advanced inspections to maximize prediction performance. We also proposed an

imputation-based active feature-value acquisition method termed as EPC to improve

the framework.

For FDC model with recipe transition, adaptive fault detection framework was

proposed. After a transition of recipe occurs, it takes enough time to secure a lot

of labeled training data for the new recipe. Adaptive fault detection framework can

minimized performance degradation due to transition of recipe. In this framework,

immediately after the recipe transition occurs, unsupervised adaptation is employed

to reduce the performance degradation, and after inspection results for some new

recipe wafers are acquired, semi-supervised adaptation is employed to quickly recover

from the performance degradation. Through experiments using real-world data, we

demonstrated that the proposed framework can minimize the performance degrada-

tion of the FDC model caused by recipe transition.

The contribution of this dissertation can be summarized as follows. First, we

specified the data acquisition problem that occurs when conducting predictive mod-

elings in the manufacturing system. Second, we proposed methodologies to solve

each problem using active learning, active feature-value acquisition, and domain

adaptation. Third, we conducted experiments on real-world data and demonstrated

the effectiveness of each methodology.

In this dissertation, we applied and improved active learning, active feature-value

acquisition, and domain adaptation to overcome data acquisition problems in wafer

map pattern classification, fault prediction, and FDC model, respectively. Although

some specific predictive modeling problems have been addressed and improved here,

these methodologies can be similarly applied throughout predictive modelings in

93

manufacturing systems. The proposed active learning framework could certainly be

used for other visual inspection automation, and active inspection could be applied

to almost any manufacturing inspection process. In addition, the adaptive fault

detection methodology can be applied to environmental changes other than recipe

transitions, and of course, it can be used in all manufacturing fields other than

semiconductor manufacturing.

7.2 Future work

As future work, we will investigate and improve other methodologies to solve the

data acquisition problems. More specifically, combining the active learning with a

semi-supervised learning scheme would improve the effectiveness through exploiting

abundant unlabeled data. Combination of active learning and active feature-value

acquisition can also be considered in the situation where collecting values of both

input and output variables is costly. In addition, self-correction methods will be

investigated to reduce noisy labels, through which training data can be annotated

more accurately. In the case of the adaptive fault detection model, we plan to further

improve it by applying other state-of-the-art domain adaptation algorithms [67,

87, 60], and study predictive models that can adapt to other factors that cause

changes in input data distribution, such as a preventive maintenance of equipment.

An adaptive model that can utilize multiple source domains will also be developed

for a situation where the period of change in data distribution is much shorter.

Finally, research on directly injecting domain knowledge into data-driven models

will have great significance in compensating for data insufficiency.

94

Bibliography

[1] F. Adly, O. Alhussein, P. D. Yoo, Y. Al-Hammadi, K. Taha, S. Muhai-

dat, Y.-S. Jeong, U. Lee, and M. Ismail, Simplified subspaced regression

network for identification of defect patterns in semiconductor wafer maps, IEEE

Transactions on Industrial Informatics, 11 (2015), pp. 1267–1276.

[2] J. Azimi, A. Fern, X. Z. Fern, G. Borradaile, and B. Heeringa, Batch

active learning via coordinated matching, in Proceedings of International Con-

ference on Machine Learning, 2012, pp. 307–314.

[3] S. H. Bang, R. Ak, A. Narayanan, Y. T. Lee, and H. Cho, A survey on

knowledge transfer for manufacturing data analytics, Computers in Industry,

104 (2019), pp. 116–130.

[4] J. Blue, D. Gleispach, A. Roussy, and P. Scheibelhofer, Tool condi-

tion diagnosis with a recipe-independent hierarchical monitoring scheme, IEEE

Transactions on Semiconductor Manufacturing, 26 (2012), pp. 82–91.

[5] K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel,

B. Schölkopf, and A. J. Smola, Integrating structured biological data by

kernel maximum mean discrepancy, Bioinformatics, 22 (2006), pp. e49–e57.

[6] A. P. Bradley, The use of the area under the ROC curve in the evaluation of

machine learning algorithms, Pattern Recognition, 30 (1997), pp. 1145–1159.

95

[7] L. Breiman, Random forests, Machine learning, 45 (2001), pp. 5–32.

[8] K. Brinker, Incorporating diversity in active learning with support vector ma-

chines, in Proceedings of International Conference on Machine Learning, 2003,

pp. 59–66.

[9] X. Chai, L. Deng, Q. Yang, and C. X. Ling, Test-cost sensitive Naive

Bayes classification, in Proceedings of the 4th IEEE International Conference

on Data Mining, 2004, pp. 51–58.

[10] L.-C. Chao and L.-I. Tong, Wafer defect pattern recognition by multi-class

support vector machines by using a novel defect cluster index, Expert Systems

with Applications, 36 (2009), pp. 10158–10167.

[11] P. Chen, S. Wu, J. Lin, F. Ko, H. Lo, J. Wang, C. Yu, and M. Liang,

Virtual metrology: A solution for wafer to wafer advanced process control, in

Proceedings of the 2005 IEEE International Symposium on Semiconductor

Manufacturing, 2005, pp. 155–157.

[12] C.-F. Chien, K.-H. Chang, and W.-C. Wang, An empirical study of design-

of-experiment data mining for yield-loss diagnosis for semiconductor manufac-

turing, Journal of Intelligent Manufacturing, 25 (2014), pp. 961–972.

[13] S. Chopra, R. Hadsell, and Y. LeCun, Learning a similarity metric dis-

criminatively, with application to face verification, in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, vol. 1, IEEE, 2005,

pp. 539–546.

96

[14] M. Desjardins, J. MacGlashan, and K. L. Wagstaff, Confidence-based

feature acquisition to minimize training and test costs, in Proceedings of the

2010 SIAM International Conference on Data Mining, 2010, pp. 514–524.

[15] A. Dhurandhar and K. Sankaranarayanan, Improving classification per-

formance through selective instance completion, Machine Learning, 100 (2015),

pp. 425–447.

[16] A. Dogan and D. Birant, Machine learning and data mining in manufac-

turing, Expert Systems with Applications, 166 (2021), p. 114060.

[17] E. D. Dolan and J. J. Moré, Benchmarking optimization software with

performance profiles, Mathematical Programming, 91 (2002), pp. 201–213.

[18] M. Fan, Q. Wang, and B. van der Waal, Wafer defect patterns recogni-

tion based on OPTICS and multi-label classification, in Proceedings of IEEE

Advanced Information Management, Communicates, Electronic and Automa-

tion Control Conference, 2016, pp. 912–915.

[19] S.-K. S. Fan, S.-C. Lin, and P.-F. Tsai, Wafer fault detection and key

step identification for semiconductor manufacturing using principal component

analysis, adaboost and decision tree, Journal of Industrial and Production En-

gineering, 33 (2016), pp. 151–168.

[20] L. C. Freeman, Elementary Applied Statistics: For Students in Behavioral

Science, John Wiley & Sons, 1965.

97

[21] Y. Gal and Z. Ghahramani, Dropout as a Bayesian approximation: Rep-

resenting model uncertainty in deep learning, in Proceedings of International

Conference on Machine Learning, 2016, pp. 1050–1059.

[22] Y. Gal, R. Islam, and Z. Ghahramani, Deep bayesian active learning with

image data, in Proceedings of International Conference on Machine Learning,

2017, pp. 1183–1192.

[23] Y. Ganin and V. Lempitsky, Unsupervised domain adaptation by backprop-

agation, in Proceedings of the International Conference on Machine Learning,

PMLR, 2015, pp. 1180–1189.

[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, MIT press,

2016.

[25] Q. P. He and J. Wang, Fault detection using the k-nearest neighbor rule for

semiconductor manufacturing processes, IEEE Transactions on Semiconductor

Manufacturing, 20 (2007), pp. 345–354.

[26] , Principal component based k-nearest-neighbor rule for semiconductor pro-

cess fault detection, in Proceedings of the American Control Conference, IEEE,

2008, pp. 1606–1611.

[27] S. He, G. A. Wang, M. Zhang, and D. F. Cook, Multivariate process

monitoring and fault identification using multiple decision tree classifiers, In-

ternational Journal of Production Research, 51 (2013), pp. 3355–3371.

98

[28] S. C. Hoi, R. Jin, J. Zhu, and M. R. Lyu, Batch mode active learning and

its application to medical image classification, in Proceedings of International

Conference on Machine Learning, ACM, 2006, pp. 417–424.

[29] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel, Bayesian

active learning for classification and preference learning, arXiv preprint

arXiv:1112.5745, (2011).

[30] R. Hwa, Sample selection for statistical parsing, Computational Linguistics, 30

(2004), pp. 253–276.

[31] Y.-S. Jeong, S.-J. Kim, and M. K. Jeong, Automatic identification of defect

patterns in semiconductor wafer maps using spatial correlogram and dynamic

time warping, IEEE Transactions on Semiconductor Manufacturing, 21 (2008),

pp. 625–637.

[32] S. Ji and L. Carin, Cost-sensitive feature acquisition and classification, Pat-

tern Recognition, 40 (2007), pp. 1474–1485.

[33] M. Kampffmeyer, A.-B. Salberg, and R. Jenssen, Semantic segmen-

tation of small objects and modeling of uncertainty in urban remote sensing

images using deep convolutional neural networks, in Proceedings of IEEE Con-

ference on Computer Vision and Pattern Recognition Workshops, 2016, pp. 1–9.

[34] P. Kanani and P. Melville, Prediction-time active feature-value acquisition

for cost-effective customer targeting, in Proceedings of the Workshop on Cost

Sensitive Learning, NIPS, 2008.

99

[35] P. Kang, D. Kim, and S. Cho, Semi-supervised support vector regression

based on self-training with label uncertainty: An application to virtual metrology

in semiconductor manufacturing, Expert Systems with Applications, 51 (2016),

pp. 85–106.

[36] S. Kang, Joint modeling of classification and regression for improving faulty

wafer detection in semiconductor manufacturing, Journal of Intelligent Manu-

facturing, 31 (2020), pp. 319–326.

[37] S. Kang, D. An, and J. Rim, Incorporating virtual metrology into failure

prediction, IEEE Transactions on Semiconductor Manufacturing, 32 (2019),

pp. 553–558.

[38] S. Kang, E. Kim, J. Shim, W. Chang, and S. Cho, Product failure predic-

tion with missing data, International Journal of Production Research, 56 (2018),

pp. 4849–4859.

[39] S. Kang, E. Kim, J. Shim, S. Cho, W. Chang, and J. Kim, Mining the

relationship between production and customer service data for failure analysis of

industrial products, Computers & Industrial Engineering, 106 (2017), pp. 137–

146.

[40] E. Kim, S. Cho, B. Lee, and M. Cho, Fault detection and diagnosis using

self-attentive convolutional neural networks for variable-length sensor data in

semiconductor manufacturing, IEEE Transactions on Semiconductor Manufac-

turing, 32 (2019), pp. 302–309.

100

[41] D. P. Kingma and J. Ba, Adam: a method for stochastic optimization, in

Proceedings of International Conference on Learning Representations, 2015.

[42] A. Kirsch, J. van Amersfoort, and Y. Gal, BatchBALD: Efficient and

diverse batch acquisition for deep Bayesian active learning, arXiv preprint

arXiv:1906.08158, (2019).

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification

with deep convolutional neural networks, in Advances in Neural Information

Processing Systems, 2012, pp. 1097–1105.

[44] K. Kyeong and H. Kim, Classification of mixed-type defect patterns in wafer

bin maps using convolutional neural networks, IEEE Transactions on Semicon-

ductor Manufacturing, 31 (2018), pp. 395–402.

[45] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based

learning applied to document recognition, Proceedings of the IEEE, 86 (1998),

pp. 2278–2324.

[46] H. Lee, Y. Kim, and C. O. Kim, A deep learning model for robust wafer

fault monitoring with sensor measurement noise, IEEE Transactions on Semi-

conductor Manufacturing, 30 (2016), pp. 23–31.

[47] K. B. Lee, S. Cheon, and C. O. Kim, A convolutional neural network for

fault classification and diagnosis in semiconductor manufacturing processes,

IEEE Transactions on Semiconductor Manufacturing, 30 (2017), pp. 135–142.

101

[48] D. D. Lewis and J. Catlett, Heterogeneous uncertainty sampling for super-

vised learning, in Proceedings of International Conference on Machine Learning,

1994, pp. 148–156.

[49] L. Li, K. Ota, and M. Dong, Deep learning for smart industry: Efficient

manufacture inspection system with fog computing, IEEE Transactions on In-

dustrial Informatics, 14 (2018), pp. 4665–4673.

[50] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and

Y. Bengio, A structured self-attentive sentence embedding, in Proceedings of

the International Conference on Learning Representations, 2017.

[51] C. X. Ling, Q. Yang, J. Wang, and S. Zhang, Decision trees with minimal

costs, in Proceedings of the 21st International Conference on Machine Learning,

2004.

[52] C.-W. Liu and C.-F. Chien, An intelligent system for wafer bin map defect

diagnosis: An empirical study for semiconductor manufacturing, Engineering

Applications of Artificial Intelligence, 26 (2013), pp. 1479–1486.

[53] M. Long, Y. Cao, J. Wang, and M. Jordan, Learning transferable features

with deep adaptation networks, in Proceedings of the International Conference

on Machine Learning, PMLR, 2015, pp. 97–105.

[54] S. Mahadevan and S. L. Shah, Fault detection and diagnosis in process data

using one-class support vector machines, Journal of process control, 19 (2009),

pp. 1627–1639.

102

[55] J. Maiora, B. Ayerdi, and M. Graña, Random forest active learning for

aaa thrombus segmentation in computed tomography angiography images, Neu-

rocomputing, 126 (2014), pp. 71–77.

[56] P. Melville, M. Saar-Tsechansky, F. Provost, and R. Mooney, An

expected utility approach to active feature-value acquisition, in Proceedings of

the 5th IEEE International Conference on Data Mining, IEEE, 2005, pp. 1–4.

[57] T. Nakazawa and D. V. Kulkarni, Wafer map defect pattern classification

and image retrieval using convolutional neural network, IEEE Transactions on

Semiconductor Manufacturing, 31 (2018), pp. 309–314.

[58] , Anomaly detection and segmentation for wafer defect patterns using

deep convolutional encoder decoder neural network architectures in semicon-

ductor manufacturing, IEEE Transactions on Semiconductor Manufacturing,

32 (2019), pp. 250–256.

[59] S. J. Pan and Q. Yang, A survey on transfer learning, IEEE Transactions

on knowledge and data engineering, 22 (2009), pp. 1345–1359.

[60] Y. Pan, T. Yao, Y. Li, Y. Wang, C.-W. Ngo, and T. Mei, Transferrable

prototypical networks for unsupervised domain adaptation, in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 2239–

2247.

[61] E. L. Park, J. Park, J. Yang, S. Cho, Y.-H. Lee, and H.-S. Park,

Data based segmentation and summarization for sensor data in semiconductor

manufacturing, Expert Systems with Applications, 41 (2014), pp. 2619–2629.

103

[62] J. Park, I.-H. Kwon, S.-S. Kim, and J.-G. Baek, Spline regression based

feature extraction for semiconductor process fault detection using support vector

machine, Expert Systems with Applications, 38 (2011), pp. 5711–5718.

[63] F. Perez, R. Lebret, and K. Aberer, Weakly supervised active learning

with cluster annotation, in Proceedings of the Bayesian Deep Learning Work-

shop, NeurIPS, 2018.

[64] M. Piao, C. H. Jin, J. Y. Lee, and J.-Y. Byun, Decision tree ensemble-

based wafer map failure pattern recognition based on radon transform-based fea-

tures, IEEE Transactions on Semiconductor Manufacturing, 31 (2018), pp. 250–

257.

[65] F. Provost and P. Domingos, Tree induction for probability-based ranking,

Machine Learning, 52 (2003), pp. 199–215.

[66] N. Roy and A. McCallum, Toward optimal active learning through monte

carlo estimation of error reduction, in Proceedings of International Conference

on Machine Learning, 2001, pp. 441–448.

[67] K. Saito, D. Kim, S. Sclaroff, T. Darrell, and K. Saenko, Semi-

supervised domain adaptation via minimax entropy, in Proceedings of the IEEE

International Conference on Computer Vision, 2019, pp. 8050–8058.

[68] K. Sankaranarayanan and A. Dhurandhar, Intelligently querying incom-

plete instances for improving classification performance, in Proceedings of the

22nd ACM International Conference on Information & Knowledge Manage-

ment, ACM, 2013, pp. 2169–2178.

104

[69] M. Saqlain, B. Jargalsaikhan, and J. Y. Lee, A voting ensemble classifier

for wafer map defect patterns identification in semiconductor manufacturing,

IEEE Transactions on Semiconductor Manufacturing, 32 (2019), pp. 171–182.

[70] T. Scheffer, C. Decomain, and S. Wrobel, Active hidden Markov mod-

els for information extraction, in Proceedings of International Symposium on

Intelligent Data Analysis, 2001, pp. 309–318.

[71] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to informa-

tion retrieval, vol. 39, Cambridge University Press Cambridge, 2008.

[72] O. Sener and S. Savarese, Active learning for convolutional neural networks:

A core-set approach, in Proceedings of International Conference on Learning

Representations, 2018.

[73] B. Settles, Active learning literature survey, tech. rep., University of

Wisconsin-Madison Department of Computer Sciences, 2009.

[74] B. Settles and M. Craven, An analysis of active learning strategies for

sequence labeling tasks, in Proceedings of Conference on Empirical Methods in

Natural Language Processing, 2008, pp. 1070–1079.

[75] H. S. Seung, M. Opper, and H. Sompolinsky, Query by committee, in

Proceedings of Annual Workshop on Computational Learning Theory, 1992,

pp. 287–294.

[76] J. Shim, S. Kang, and S. Cho, Active learning of convolutional neural net-

work for cost-effective wafer map pattern classification, IEEE Transactions on

Semiconductor Manufacturing, 33 (2020), pp. 258–266.

105

[77] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-

scale image recognition, in Proceedings of International Conference on Learning

Representations, 2015.

[78] G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi,

Machine learning for predictive maintenance: A multiple classifier approach,

IEEE Transactions on Industrial Informatics, 11 (2014), pp. 812–820.

[79] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, Simultaneous deep

transfer across domains and tasks, in Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 4068–4076.

[80] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell,

Deep domain confusion: Maximizing for domain invariance, arXiv preprint

arXiv:1412.3474, (2014).

[81] G. Verdier and A. Ferreira, Adaptive mahalanobis distance and k-nearest

neighbor rule for fault detection in semiconductor manufacturing, IEEE Trans-

actions on Semiconductor Manufacturing, 24 (2010), pp. 59–68.

[82] C.-H. Wang, Separation of composite defect patterns on wafer bin map us-

ing support vector clustering, Expert Systems with Applications, 36 (2009),

pp. 2554–2561.

[83] J. Wang, Z. Yang, J. Zhang, Q. Zhang, and W.-T. K. Chien, Ada-

BalGAN: An improved generative adversarial network with imbalanced learning

for wafer defective pattern recognition, IEEE Transactions on Semiconductor

Manufacturing, 32 (2019), pp. 310–319.

106

[84] K. Wang, D. Zhang, Y. Li, R. Zhang, and L. Lin, Cost-effective active

learning for deep image classification, IEEE Transactions on Circuits and Sys-

tems for Video Technology, 27 (2016), pp. 2591–2600.

[85] M. Wang and W. Deng, Deep visual domain adaptation: A survey, Neuro-

computing, 312 (2018), pp. 135–153.

[86] M.-J. Wu, J.-S. R. Jang, and J.-L. Chen, Wafer map failure pattern recog-

nition and similarity ranking for large-scale data sets, IEEE Transactions on

Semiconductor Manufacturing, 28 (2014), pp. 1–12.

[87] M. Xu, J. Zhang, B. Ni, T. Li, C. Wang, Q. Tian, and W. Zhang,

Adversarial domain adaptation with domain mixup, in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 34, 2020, pp. 6502–6509.

[88] Z. Xu, K. Yu, V. Tresp, X. Xu, and J. Wang, Representative sampling for

text classification using support vector machines, in Proceedings of European

Conference on Information Retrieval, Springer, 2003, pp. 393–407.

[89] Y. Yang, Z. Ma, F. Nie, X. Chang, and A. G. Hauptmann, Multi-class

active learning by uncertainty sampling with diversity maximization, Interna-

tional Journal of Computer Vision, 113 (2015), pp. 113–127.

[90] D. You, X. Gao, and S. Katayama, Multisensor fusion system for monitor-

ing high-power disk laser welding using support vector machine, IEEE Transac-

tions on Industrial Informatics, 10 (2014), pp. 1285–1295.

107

[91] J. Yu and X. Lu, Wafer map defect detection and recognition using joint local

and nonlocal linear discriminant analysis, IEEE Transactions on Semiconductor

Manufacturing, 29 (2015), pp. 33–43.

[92] Z. Zheng and B. Padmanabhan, On active learning for data acquisition, in

Proceedings of the 2nd IEEE International Conference on Data Mining, IEEE,

2002, pp. 562–569.

[93] Z. Zhou, C. Wen, and C. Yang, Fault detection using random projections

and k-nearest neighbor rule for semiconductor manufacturing processes, IEEE

Transactions on Semiconductor Manufacturing, 28 (2014), pp. 70–79.

108

국문초록

예측 모델링은 지도 학습의 일종으로, 학습 데이터를 통해 입력 변수와 출력 변수 간

의 함수적 관계를 찾는 과정이다. 이런 예측 모델링은 육안 검사 자동화, 불량 제품

사전 탐지, 고비용 검사 결과 추정 등 제조 시스템 전반에 걸쳐 활용된다. 높은 성능의

예측 모델을 달성하기 위해서는 양질의 데이터가 필수적이다. 하지만 제조 시스템에

서 원하는 종류의 데이터를 원하는 만큼 획득하는 것은 현실적으로 거의 불가능하다.

데이터 획득의 어려움은 크게 세가지 원인에 의해 발생한다. 첫번째로, 라벨링이 된

데이터는 항상 비용을 수반한다는 점이다. 많은 문제에서, 라벨링은 숙련된 엔지니어에

의해 수행되어야 하고, 이는 큰 비용을 발생시킨다. 두번째로, 검사 비용 때문에 모든

검사가 모든 제품에 대해 수행될 수 없다. 제조 시스템에는 시간적, 금전적 제약이 존재

하기 때문에, 원하는 모든 검사 결과값을 획득하는 것이 어렵다. 세번째로, 제조 환경의

변화가 데이터 획득을 어렵게 만든다. 제조 환경의 변화는 생성되는 데이터의 분포를

변형시켜, 일관성 있는 데이터를 충분히 획득하지 못하게 한다. 이로 인해 적은 양의

데이터만으로 모델을 재학습시켜야 하는 상황이 빈번하게 발생한다. 본 논문에서는 이

런 데이터 획득의 어려움을 극복하기 위해 능동 학습, 능동 피쳐값 획득, 도메인 적응

방법을 활용한다. 먼저, 웨이퍼 맵 패턴 분류 문제의 높은 라벨링 비용을 해결하기 위해

능동학습 프레임워크를 제안한다. 이를 통해 적은 라벨링 비용으로 높은 성능의 분류

모델을 구축할 수 있다. 나아가, 군집 단위의 라벨링 방법을 능동학습에 접목하여 비용

효율성을 한차례 더 개선한다. 제품 불량 예측에 활용되는 검사 비용 문제를 해결하기

위해서는 능동 검사 방법을 제안한다. 제안하는 새로운 불확실성 추정 방법을 통해 고

비용 검사 대상 제품을 선택함으로써 적은 검사 비용으로 높은 성능을 얻을 수 있다.

반도체 제조의 웨이퍼 불량 예측에서 빈번하게 발생하는 레시피 변경 문제를 해결하기

109

위해서는 도메인 적응 방법을 활용한다. 비교사 도메인 적응과 반교사 도메인 적응의

순차적인 적용을 통해 레시피 변경에 의한 성능 저하를 최소화한다. 본 논문에서는 실

제 데이터에 대한 실험을 통해 제안된 방법론들이 제조시스템의 데이터 획득 문제를

극복하고 예측 모델의 성능을 높일 수 있음을 확인하였다.

주요어: 예측 모델링, 데이터 획득, 제조 시스템, 능동학습, 능동적 피쳐값 획득, 도메인

적응, 웨이퍼맵 패턴 분류, 불량 예측, 불량 탐지 및 분류 모델

학번: 2018-39406

110

	1. Introduction
	2. Literature Review
	2.1 Review of Related Methodologies
	2.1.1 Active Learning
	2.1.2 Active Feature-value Acquisition
	2.1.3 Domain Adaptation

	2.2 Review of Predictive Modelings in Manufacturing
	2.2.1 Wafer Map Pattern Classification
	2.2.2 Fault Detection and Classification

	3. Active Learning for Wafer Map Pattern Classification
	3.1 Problem Description
	3.2 Proposed Method
	3.2.1 System overview
	3.2.2 Prediction model
	3.2.3 Uncertainty estimation
	3.2.4 Query wafer selection
	3.2.5 Query wafer labeling
	3.2.6 Model update

	3.3 Experiments
	3.3.1 Data description
	3.3.2 Experimental design
	3.3.3 Results and discussion

	4. Active Cluster Annotation for Wafer Map Pattern Classification
	4.1 Problem Description
	4.2 Proposed Method
	4.2.1 Clustering of unlabeled data
	4.2.2 CNN training with labeled data
	4.2.3 Cluster-level uncertainty estimation
	4.2.4 Query cluster selection
	4.2.5 Cluster-level annotation

	4.3 Experiments
	4.3.1 Data description
	4.3.2 Experimental setting
	4.3.3 Clustering results
	4.3.4 Classification performance
	4.3.5 Analysis for label noise

	5. Active Inspection for Fault Prediction
	5.1 Problem Description
	5.2 Proposed Method
	5.2.1 Active inspection framework
	5.2.2 Acquisition based on Expected Prediction Change

	5.3 Experiments
	5.3.1 Data description
	5.3.2 Fault prediction models
	5.3.3 Experimental design
	5.3.4 Results and discussion

	6. Adaptive Fault Detection for Recipe Transition
	6.1 Problem Description
	6.2 Proposed Method
	6.2.1 Overview
	6.2.2 Unsupervised adaptation phase
	6.2.3 Semi-supervised adaptation phase

	6.3 Experiments
	6.3.1 Data description
	6.3.2 Experimental setting
	6.3.3 Performance degradation caused by recipe transition
	6.3.4 Effect of unsupervised adaptation
	6.3.5 Effect of semi-supervised adaptation

	7. Conclusion
	7.1 Contributions
	7.2 Future work

<startpage>14
1. Introduction 1
2. Literature Review 9
 2.1 Review of Related Methodologies 9
 2.1.1 Active Learning 9
 2.1.2 Active Feature-value Acquisition 11
 2.1.3 Domain Adaptation 14
 2.2 Review of Predictive Modelings in Manufacturing 15
 2.2.1 Wafer Map Pattern Classification 15
 2.2.2 Fault Detection and Classification 16
3. Active Learning for Wafer Map Pattern Classification 19
 3.1 Problem Description 19
 3.2 Proposed Method 21
 3.2.1 System overview 21
 3.2.2 Prediction model 25
 3.2.3 Uncertainty estimation 25
 3.2.4 Query wafer selection 29
 3.2.5 Query wafer labeling 30
 3.2.6 Model update 30
 3.3 Experiments 31
 3.3.1 Data description 31
 3.3.2 Experimental design 31
 3.3.3 Results and discussion 34
4. Active Cluster Annotation for Wafer Map Pattern Classification 42
 4.1 Problem Description 42
 4.2 Proposed Method 44
 4.2.1 Clustering of unlabeled data 46
 4.2.2 CNN training with labeled data 48
 4.2.3 Cluster-level uncertainty estimation 49
 4.2.4 Query cluster selection 50
 4.2.5 Cluster-level annotation 50
 4.3 Experiments 51
 4.3.1 Data description 51
 4.3.2 Experimental setting 51
 4.3.3 Clustering results 53
 4.3.4 Classification performance 54
 4.3.5 Analysis for label noise 57
5. Active Inspection for Fault Prediction 60
 5.1 Problem Description 60
 5.2 Proposed Method 65
 5.2.1 Active inspection framework 65
 5.2.2 Acquisition based on Expected Prediction Change 68
 5.3 Experiments 71
 5.3.1 Data description 71
 5.3.2 Fault prediction models 72
 5.3.3 Experimental design 73
 5.3.4 Results and discussion 74
6. Adaptive Fault Detection for Recipe Transition 76
 6.1 Problem Description 76
 6.2 Proposed Method 78
 6.2.1 Overview 78
 6.2.2 Unsupervised adaptation phase 81
 6.2.3 Semi-supervised adaptation phase 83
 6.3 Experiments 85
 6.3.1 Data description 85
 6.3.2 Experimental setting 85
 6.3.3 Performance degradation caused by recipe transition 86
 6.3.4 Effect of unsupervised adaptation 87
 6.3.5 Effect of semi-supervised adaptation 88
7. Conclusion 91
 7.1 Contributions 91
 7.2 Future work 94
</body>

