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Abstract

Nowadays, light-emitting diodes (LEDs) can be found in a large variety of applications,
from standard LEDs in domestic lighting solutions to advanced chip designs in automo-
biles, smart watches and video walls. The advances in chip design also a�ect the test
processes, where the execution of certain contact measurements is exacerbated by ever
decreasing chip dimensions or even rendered impossible due to the chip design. As an in-
stance, wafer probing determines the electrical and optical properties of all LED chips on
a wafer by contacting each and every chip with a prober needle. Chip designs without a
contact pad on the surface, however, elude wafer probing and while electrical and optical
properties can be determined by sample measurements, defective LED chips are dis-
tributed randomly over the wafer. Here, advanced data analysis methods provide a new
approach to gather defect information from already available non-contact measurements.
Photoluminescence measurements, for example, record a brightness image of an LED
wafer, where conspicuous brightness values indicate defective chips. To extract these
defect information from photoluminescence images, a computer-vision algorithm is re-
quired that transforms photoluminescence images into defect maps. In other words, each
and every pixel of a photoluminescence image must be classi�ed into a class category via
semantic segmentation, where so-called fully-convolutional-network algorithms represent
the state-of-the-art method. However, the aforementioned task poses several challenges:
on the one hand, each pixel in a photoluminescence image represents an LED chip and
thus, pixel-�ne output resolution is required. On the other hand, photoluminescence
images show a variety of brightness values from wafer to wafer in addition to local areas
of di�ering brightness. Additionally, clusters of defective chips assume various shapes,
sizes and brightness gradients and thus, the algorithm must reliably recognise objects
at multiple scales. Finally, not all salient brightness values correspond to defective LED
chips, requiring the algorithm to distinguish salient brightness values corresponding to
measurement artefacts, non-defect structures and defects, respectively.

In this dissertation, a novel fully-convolutional-network architecture was developed that
allows the accurate segmentation of defective LED chips in highly variable photolumines-
cence wafer images. For this purpose, the basic fully-convolutional-network architecture
was modi�ed with regard to the given application and advanced architectural concepts
were incorporated so as to enable a pixel-�ne output resolution and a reliable segmenta-
tion of multiple scaled defect structures. Altogether, the developed dense ASPP Vaughan
architecture achieved a pixel accuracy of 97.5%, mean pixel accuracy of 96.2% and
defect-class accuracy of 92.0%, trained on a dataset of 136 input-label pairs and hereby
showed that fully-convolutional-network algorithms can be a valuable contribution to
data analysis in industrial manufacturing.



Zusammenfassung

Leuchtdioden (LEDs) werden heutzutage in einer Vielzahl von Anwendungen verbaut,
angefangen bei Standard-LEDs in der Hausbeleuchtung bis hin zu technisch fortgeschrit-
tenen Chip-Designs in Automobilen, Smartwatches und Videowänden. Die Weiteren-
twicklungen im Chip-Design beein�ussen auch die Testprozesse: Hierbei wird die Durch-
führung bestimmter Kontaktmessungen durch zunehmend verringerte Chip-Dimensionen
entweder erschwert oder ist aufgrund des Chip-Designs unmöglich. Die sogenannte Wafer-
Prober-Messung beispielsweise ermittelt die elektrischen und optischen Eigenschaften
aller LED-Chips auf einem Wafer, indem jeder einzelne Chip mit einer Messnadel kon-
taktiert und vermessen wird; Chip-Designs ohne Kontaktpad auf der Ober�äche kön-
nen daher nicht durch die Wafer-Prober-Messung charakterisiert werden. Während
die elektrischen und optischen Chip-Eigenschaften auch mittels Stichprobenmessungen
bestimmt werden können, verteilen sich defekte LED-Chips zufällig über die Wafer-
�äche. Fortgeschrittene Datenanalysemethoden ermöglichen hierbei einen neuen Ansatz,
Defektinformationen aus bereits vorhandenen, berührungslosen Messungen zu gewin-
nen. Photolumineszenzmessungen, beispielsweise, erfassen ein Helligkeitsbild des LED-
Wafers, in dem au�ällige Helligkeitswerte auf defekte LED-Chips hinweisen. Ein Bild-
verarbeitungsalgorithmus, der diese Defektinformationen aus Photolumineszenzbildern
extrahiert und ein Defektabbild erstellt, muss hierzu jeden einzelnen Bildpunkt mit-
tels semantischer Segmentation klassi�zieren, eine Technik bei der sogenannte Fully-
Convolutional-Netzwerke den Stand der Technik darstellen. Die beschriebene Aufgabe
wird jedoch durch mehrere Faktoren erschwert: Einerseits entspricht jeder Bildpunkt
eines Photolumineszenzbildes einem LED-Chip, so dass eine bildpunktfeine Au�ösung
der Netzwerkausgabe notwendig ist. Andererseits weisen Photolumineszenzbilder sowohl
stark variierende Helligkeitswerte von Wafer zu Wafer als auch lokal begrenzte Hel-
ligkeitsabweichungen auf. Zusätzlich nehmen Defektanhäufungen unterschiedliche For-
men, Gröÿen und Helligkeitsgradienten an, weswegen der Algorithmus Objekte ver-
schiedener Abmessungen zuverlässig erkennen können muss. Schlussendlich weisen nicht
alle au�älligen Helligkeitswerte auf defekte LED-Chips hin, so dass der Algorithmus in
der Lage sein muss zu unterscheiden, ob au�ällige Helligkeitswerte mit Messartefakten,
defekten LED-Chips oder defektfreien Strukturen korrelieren.

In dieser Dissertation wurde eine neuartige Fully-Convolutional-Netzwerkarchitektur ent-
wickelt, die die akkurate Segmentierung defekter LED-Chips in stark variierenden Pho-
tolumineszenzbildern von LED-Wafern ermöglicht. Zu diesem Zweck wurde die klas-
sische Fully-Convolutional-Netzwerkarchitektur hinsichtlich der beschriebenen Anwen-
dung angepasst und fortgeschrittene architektonische Konzepte eingearbeitet, um eine
bildpunktfeine Ausgabeau�ösung und eine zuverlässige Sementierung verschieden groÿer



Defektstrukturen umzusetzen. Insgesamt erzielt die entwickelte dense-ASPP-Vaughan-
Architektur eine Pixelgenauigkeit von 97,5%, durchschnittliche Pixelgenauigkeit von
96,2% und eine Defektklassengenauigkeit von 92,0%, trainiert mit einem Datensatz von
136 Bildern. Hiermit konnte gezeigt werden, dass Fully-Convolutional-Netzwerke eine
wertvolle Erweiterung der Datenanalysemethoden sein können, die in der industriellen
Fertigung eingesetzt werden.
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1. Introduction & Motivation

In the manufacturing of light-emitting diodes, measurements constitute an inevitable
but simultaneously unwanted process step: after all, measurements add no value to the
product but enable the monitoring of product and process [84]. Here, the manufacturing
of light-emitting diodes (LEDs) is a complex semiconductor-manufacturing process that
includes a variety of di�erent measurements, employed for process monitoring, the deter-
mination of LED chip properties and the detection of conspicuous or defective LED chips.
Based on these measurements, process deviations can be identi�ed early and defective
LED chips can be rejected instead of further processed. Among the available measure-
ment methods photoluminescence imaging has several advantages, namely being fast,
cost-e�cient, non-contact measurements. By irradiating the optical surface of an LED
wafer photo-excitation is provoked, ultimately causing the emission of photons. Because
only the upper optical layers are excited, the measured brightness values are dissimilar
from the brightness an electrically excited LED chip would emit. Additionally, photo-
luminescence measurements generate images with varying brightness values from wafer
to wafer as well as local areas of di�ering brightness. Hence, photoluminescence mea-
surements are commonly employed for the detection of separation damages rather than a
thorough defect detection. For this purpose, the electrical and optical properties of each
LED chip are determined by wafer probing, an accurate but cost-intensive contact mea-
surement. The ongoing decrease of LED chip dimensions and the consequential increase
of chips per wafer, however, distinctively increase wafer-probing cycle times: with chip-
edge lengths less than 100 µm and more than a million chips per wafer, contacting each
LED chip for a measurement becomes increasingly time-consuming as well as prone to
failure. Furthermore, chip designs without contact pad elude wafer probing completely.
Albeit, comparing a wafer-probing-based defect map with photoluminescence images re-
veals that single defective LED chips as well as clusters of defective chips can be located
in photoluminescence images as well.

Therefore, this work examines whether photoluminescence images can be used to detect
defective LED chips. Starting from the premise that each pixel in a photoluminescence
image corresponds to an LED chip, a computer vision algorithm for defect detection re-
quires the reliable recognition of di�ering brightness values corresponding to conspicuous
LED chips but must ignore varying brightness values caused by measurement artefacts.
Additionally, the algorithm must be able to output a classi�cation for each and every
pixel in the input image. In recent years, deep-learning algorithms for computer vision
are driving major advances in a variety of computer vision tasks such as image classi�-
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1. Introduction & Motivation

cation [42, 64, 68, 115, 124, 136], object detection [36, 98, 99, 109] and semantic image
segmentation [16, 57, 58, 72, 77, 101, 134, 137, 141]. The main advantage of deep-learning
algorithms for computer vision, in comparison to many other data analysis techniques, is
their ability to learn shared parameters in form of convolutional �lters. These �lters slide
across the input image and are hence capable to detect data-speci�c structures that may
occur in arbitrary image positions. Because shared parameters are computationally e�-
cient, thousands of task-speci�c �lters can be learned, enabling the distinction between
defective LED chips and measurement artefacts. Furthermore, these algorithms obviate
the need for hand-crafted features as they learn the suitable �lter parameters for the task
through backpropagation by themselves, hence covering a wide range of possible features.
Fully convolutional networks, introduced by Long et al. [77], represent a specialised deep
learning architecture for semantic segmentation. Here, semantic segmentation refers to
the task of allocating each image pixel to a �xed set of class categories [28, 113, 126],
which can be interpreted as classifying each LED chip as defective or not. Among all
methods for pixel-wise prediction, fully convolutional networks were the �rst to enable
end-to-end training as well as the transfer of pre-trained weights and have since been
used for a variety of applications [2, 57, 69, 70].

In this dissertation, a novel fully-convolutional-network architecture for the detection
of defective LED chips in photoluminescence images is developed, where wafer-probing-
derived defect maps are used as pixel-wise labels. Standard network architectures are
designed to achieve high accuracies on research datasets with hundreds of thousands of
images, which usually depict pattern-rich everyday-life scenes with varying image objects
[28, 104]. Wafer images exhibit, in contrast, only one image object with little variation
in the defect pattern, compared to street scenes for example, but then again require the
accurate classi�cation of each and every LED chip (pixel). Moreover, the ratio between
in-spec LED chips and defective LED chips is highly unbalanced and the rare occurrence
of certain defect types, such as defect clusters, results in a very small dataset. Finally,
obtaining pixel-wise labels constitutes a known hindrance for the compilation of datasets,
especially with regard to large images consisting of over hundred thousand pixels. Wafer-
probing-based defect maps can be used to generate pixel-wise labels but due to di�erences
in the measurement techniques, image-label discrepancies occur.

In order to address the described challenges, �rst the application's technical background
is described in chapter 2, starting with a sketch of LED manufacturing and a more
thorough description of photoluminescence measurements, wafer probing and the com-
position of the training dataset. Then, chapter 3 expounds the theoretical aspects of fully
convolutional networks, starting with the concepts of supervised learning and backprop-
agation, using the example of neural networks. On this basis, the building blocks of fully
convolutional networks are described, namely the downsampling and upsampling path
as well as skip connections. Afterwards, techniques to ease network training, such as
parameter update optimisers and transfer learning are studied. Based on the theoretical
background, chapter 4 studies state-of-the-art fully-convolutional-network-based archi-
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1. Introduction & Motivation

tectures developed with respect to common research datasets as well as their application
to related topics, such as medical images and industrial data. Due to the special scope
of this dissertation, no preliminary research with regard to the analysis of photolumi-
nescence wafer images is known to the author. Based on the acquired insights, a novel
fully-convolutional-network architecture and possible extensions are illustrated in chapter
5, where the architecture is designed with regard to the given dataset. Afterwards, chap-
ter 6 analyses the proposed network design and the corresponding hyperparameters by
conducting comprehensive experiments: proceeding from the basic design idea, architec-
tural design choices, such as the number of layers, skip connections and residual shortcuts
[42, 44], were examined using performance metrics as well as feature visualisation [86,
136]. Studying hyperparameter tuning revealed the interconnection of learning rate,
L2-regularisation strength and parameter update methods. Experiments with transfer
learning exposed the bene�t of a network partly initialised with transferred, pre-trained
parameter values, despite the inherently di�erent dataset the parameter-giving network
was trained on [127]. Highly unbalanced datasets, such as the dataset at hand, are
accompanied by the accuracy paradox [145], where a high prediction accuracy can be
achieved by always predicting the label of the majority class. Here, weighted loss cal-
culation was studied so as to equalise the class categories. Analysing prediction images
provided conclusions about how image-label mismatches in�uence network learning and
how to further improve prediction accuracy. The resulting network architecture achieved
accurate segmentation results for single defective LED chips as well as repeatedly oc-
curring defect structures. The segmentation of rarely occurring, large defect clusters,
however, appeared �awed. Therefore, advanced architectural concepts were examined,
namely densely connected convolutional blocks and atrous-spatial-pyramid-pooling mod-
ules. Here, the implementation of dense blocks enabled the construction of a more con-
densed network architecture with less feature maps and thus distinctively reduced over-
�tting. Atrous spatial pyramid pooling layers, on the other hand, increase the network's
segmentation accuracy by capturing objects at multiple scales at once. Finally, compar-
ing a manual training and validation dataset split with random cross-validation revealed
the bene�t of manually splitting small, highly variable datasets and allowed insights into
how dataset compilation a�ects network training. By combining all methods, prediction
accuracy could be distinctively increased, showing that fully convolutional networks can
be used for the chip-wise detection of defective LED chips in photoluminescence images.
The �nal network architecture and hyperparameters are then illustrated in chapter 7,
including network implementation and evaluation. Note that partial results presented
in this thesis regarding network design and hyperparameter tuning have been submit-
ted in a paper co-authored with Martin Schellenberger [120] and co-authored with Hans
Lindberg and Klaus Meyer-Wegener [119], respectively. Finally, chapter 8 concludes the
acquired insights and discusses possible applications in LED manufacturing as well as
further research possibilities.
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2. Data Generation & Preparation

The manufacturing of light-emitting diodes (LEDs) is a complex semiconductor process
with many, partly repeating process steps. Throughout the process chain various mea-
surements are employed to monitor the process, determine optical and electrical proper-
ties and detect failures. Due to advanced LED concepts, contact measurements, which
are commonly used for accurate electrical and optical measurements, get increasingly
time-consuming, if feasible at all. Therefore, novel analysis methods must be devel-
oped, which are based on non-contact measurements: on the one hand, each LED chip's
electrical and optical properties must be determined and on the other hand, defective
LED chips must be detected. While LED properties can be derived from sample mea-
surements, defects may stem from several causes and are randomly spread across the
wafer. A possible solution provides the analysis of brightness wafer images, generated
by a non-contact photoluminescence measurement: when comparing photoluminescence
images with wafer-probing-derived defect maps, it becomes apparent that prober de-
fects correlate with conspicuous brightness values. However, photoluminescence images
also feature uneven brightness distributions from wafer to wafer as well as local areas
of varying brightness next to salient brightness values unrelated to defect structures.
Therefore, a possible analysis algorithm must reliably distinguish non-defect structures,
functional wafer structures and measurement artefacts from actual defect structures,
in addition to accurately segment multiple scaled defect structures, which altogether
proves creating a hand-coded defect-detection algorithm di�cult. Thus, this work stud-
ies fully-convolutional-network algorithms for the detection of defective LED chips in
photoluminescence images. Because the training of supervised-learning algorithms re-
quires input-label pairs (see also chapter 3), defect maps derived from wafer probing are
used as label images, despite expectable discrepancies. In order to describe the used
data, �rst the basic structure of LEDs and the manufacturing process are elaborated,
including photoluminescence measurements and wafer probing. Then, the composition
of the training dataset is described.

2.1. Light-Emitting-Diode Manufacturing

Light-emitting diodes, commonly abbreviated as LEDs, are semiconductor light sources
that radiate light by means of electroluminescence, where electrons in the semiconduc-
tor's conduct band recombine with holes in the valence band and as a consequence emit
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2. Data Generation & Preparation

photons [108]. First discovered by accident in 1907, modern LED chips come in very
di�erent designs and dimensions, from micro-LEDs with edge lengths under 100 micro-
meters up to applications with edge lengths of several millimetres. The basic setup of
an LED chip before packaging is sketched in �gure 2.1. Here, the dark blue area is
composed of an n-doped semiconductor layer that is placed on top of an optically active
layer, followed by a p-doped semiconductor layer. The active layer itself is composed
of several highly specialised semiconductor layers, where so-called quantum-well layers
and barrier layers alternate in order to increase the recombination rate of electrons and
holes. The composition of the quantum wells in the active layer determines the emit-
ted wavelength: as an instance, quantum wells consisting of indium gallium aluminium
phosphide (InGaAlP) emit photons corresponding to the red and yellow spectral region,
where with increasing indium content in the quantum-well layers the emitted wavelength
rises. Additional functional layers conduct the electrical current to the n-type and p-type
contacts, re�ect photons back to the surface or provide isolation. Finally, a comparably
thick silicon substrate layer stabilises the LED structure.

Figure 2.1.: Schematic construction of a light-emitting-diode chip, which is composed of
more than a hundred highly specialised layers, including an active zone of
light-emitting quantum wells. The rough chip surface further increases light
decoupling, while functional layers serve as electrical conductor or re�ect
photons back to the top.

As depicted in �gure 2.2, the manufacturing of LEDs starts with metal organic vapour
phase epitaxy (MOVPE), where the di�erent semiconductor layers are deposited on a
sapphire wafer substrate [35, 96]. Hereby, the resulting optical properties depend on
the settings of the highly complex MOVPE process. Furthermore, parasitic chemical
processes reduce the material growth rate and deposit material at the reactor walls,
causing dropped down particles on the wafer surface and subsequently failed LED chips
[78]. After epitaxy, the resulting properties of the semiconductor layers are determined by
various measurements, including particle measurements, photoluminescence spectroscopy
and early electrical measurements. After growing the semiconductor layers, additional
functional layers are applied using chip technologies, including metallisation, photolithog-
raphy, chemical etching and grinding, where process steps may be repeated several times
[32]. Throughout these process steps, particles and process errors may introduce �aws,
such as poor current conductivity, in addition to widening the parameter value distribu-
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tion. Eventually, the LED chip's surface is structured so as to optimise light decoupling
and �nally n-type contact pads are added. Before fully separating all layers by dicing,
the optical and electrical properties of each LED chip are determined via wafer prob-
ing. Here, each and every chip's n-type contact pad is connected with a prober needle
and a thorough test cycle is performed. Moreover, wafer probing incorporates previous
measurements so as to refrain from testing chips already known to be defective. As an
instance, one process step involves the bonding of two substrates, where particles might
cause voids in the bond. The void area, determined by an earlier ultrasonic measurement,
is forwarded to the wafer-probing step and a�ected chips are marked correspondingly.
Then, all other chips are measured, based on an electrical and optical test cycle and with
regard to a prede�ned tolerance range. If a reading exceeds a limit value, the test cycle
will be terminated and the chip will be marked as failure along with the according defect
cause. However, at which test step limits are exceeded does not necessarily trace back
to the original defect cause. Hence, the wafer-prober test map delivers an approximate
defect cause for �awed chips and exhaustive electrical and optical properties of the other
chips.

After wafer probing, the chips are fully separated but stay in formation on a foil substrate
to be evaluated for possible separation damages. For this purpose, a fast, non-contact
photoluminescence measurement is conducted, which determines the wafer's brightness
by measuring the photoluminescence intensity. The measurement process, as depicted in
�gure 2.3, can be sketched as follows [96]: a light source, whose photon energy is larger
than the band gap of the wafer's quantum well's alloy, create electron-hole pairs in the
illuminated area. After residing in the conduction band, the electrons recombine with
the holes in the valence band to a lower energy state by emitting mostly photons. Due
to the discrete energy levels, the emitted photon's energy and thus wavelength theoret-
ically equals the band gap energy of the active zone's material. In practice, however,
the wavelength of the emitted photons may be altered by di�erent in�uences, including
properties of the optical layer and package properties. The emitted photoluminescent
photons are then captured by a high-resolution camera, where re�ected photons of the
excitation wavelength have been �ltered out before. The resolution of the photolumines-
cence measurement employed in this work is 50 µm × 50µm, with a chip size of 250µm
× 250µm. Thus, each chip's brightness value is an average over 25 photoluminescence
measurements, where each LED chip is displayed as one pixel in a photoluminescence
image. Depending on the wafer probing and photoluminescence-measurement results,
defective LED chips are rejected and chips within the speci�cations (in-spec) are binned
with respect to brightness, wavelength and forward voltage. Depending on the �nal
product, one to several LED chips are packaged and integrated into a module, where
a module may contain several hundreds of LED chips. Thus, one undetected defective
LED chip may cause the rejection of a multitude of in-spec LED chips.

As described, photoluminescence measurements take place after wafer probing and are
already used to detect defective LED chips�however, only defects caused by separation
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Figure 2.2.: Overview over the LED-manufacturing process, starting with epitaxy. Here,
the optical layers are deposited on a sapphire substrate, where epitaxy re-
actors commonly process several wafers at once. Then, functional layers
are applied in multiple process steps, where measurements monitor the pro-
cess quality. Ultrasonic measurements, for example, determine voids caused
by particles in a wafer-bonding-process step. Eventually, the optical layer's
surface is structured and separated. In the subsequent wafer-probing mea-
surement, each LED chip's electrical and optical properties are determined,
also revealing defective LED chips. After completely separating the chips, a
photoluminescence measurement is performed to detect separation damages.
Finally, the chips are removed from the wafer structure, binned into their
corresponding parameter bin, if not rejected, and forwarded to the packaging
process.

damages and only in combination with wafer probing. In this work, the employment
of photoluminescence images for the detection of all kinds of defects in a stand-alone
application is studied, using measurement data from the running LED-manufacturing
process. Preparing real-world measurement data for network training involves several
pre-processing steps, including data selection and transformation to a network-readable
format, which are elaborated in the following section.

2.2. Input and Label-Image Preprocessing

This section describes the data preparation of both, photoluminescence images as well
as wafer-probing-derived defect maps. Note that the measurement results are saved as
equipment-speci�c text �les, which are pre-processed using the Python programming
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Figure 2.3.: Schematic of a photoluminescence measurement, used to determined pho-
toluminescence intensities, that is an LED chip's brightness. LEDs of the
measurement equipment excite the electrons in the quantum wells of the
LED wafer's active zone and hereby provoke the emission of photons. Then,
a high-resolution camera captures the emitted photons, where a �lter is used
to �lter out re�ected photons of the excitation wavelength.

language. Two datasets were sampled from the manufacturing process, covering 145
and 136 InGaAlP wafers, respectively, each with 133,717 chips of size 250µm × 250µm.
Figure 2.4 displays a photoluminescence image with the corresponding wafer-probing-
based label image. As depicted, all defect types and structures are subsumed in one defect
class and all remaining chips are assigned to an in-spec class. Areas not corresponding to
the wafer as well as alignment markers and optical character recognition (OCR) chips are
assigned to a miscellaneous class. Assessing the class distribution of all pixels reveals that
the class categories are highly unbalanced, that is the number of defective chips is far less
than the number of in-spec chips as well as miscellaneous pixels. When categorising the
defect structures into single defective chips and salient defect structures, such as defect
clusters and cracks, another imbalance occurs: wafers with salient defect structures,
especially large defect clusters, occur rarely in the dataset compared to wafers with only
single defective chips and voids. Moreover, while single defects, voids and cracks have a
consistent appearance, defect clusters assume very di�erent shapes and sizes, in addition
to varying brightness values, and are thus the most di�cult to segment accurately (see
also �gures 2.5 and 8.1). Therefore, only wafers displaying at least one salient defect
structure were added to the dataset, where the minority of wafers showed a large defect
cluster.

2.2.1. Input Images

Photoluminescence-measurement results are not saved as an image, but as a list in a
text �le, where a brightness value is reported for each LED chip. Every line in the mea-
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Figure 2.4.: Photoluminescence image and corresponding wafer-probing-based label im-
age. The objective of the network algorithm is to segment the photolumi-
nescence image into three class categories, namely in-spec chips (turquoise),
defective chips (yellow) and miscellaneous pixels (blue). Note, that all de-
fect causes are subsumed in one defect class, but varying defect structures
(single defective chips, cracks, voids and defect clusters) are di�erently hard
to segment accurately.

surement �le contains the chip's x- and y-coordinates in the wafer matrix, the measured
photoluminescence intensity over an 8 bit greyscale, additional post-processed brightness
values as well as an evaluation mark. In order to create a photoluminescence image, a
zero matrix of size 442×440 is �lled with chip values, where applicable. Limit violations
are not addressed any further, instead the corresponding brightness values are used as is,
so as to provide the network with the unaltered photoluminescence-measurement results.
Restricted wafer edge areas, alignment markers and OCR chips are set to zero, in ac-
cordance with the wafer-prober-based defect map. Note that the aforementioned voids,
which are caused by particles in a bonding-process step, are also visible in photolumines-
cence images. However, the a�ected area in photoluminescence images is smaller than
the area determined by the ultrasonic measurement, as visible in �gure 2.4 and �gure
6.17. That is, even though the ultrasonic measurement detects a gap at the void edge, the
damage does not a�ect the photoluminescence property of the LED chip. Experiments
in chapter 6 reveal that the network adopts these repeated input-label mismatches: if a
salient defect structure resembles a void, then an area larger than the visible defect area
is classi�ed as defective. Other defects, such as single defective chips and defect clusters,
are segmented within their visible borders. Because the network's interpretation of the
actual void area is necessarily �awed, embedding the ultrasonic measurement into the
photoluminescence image distinctively increases network accuracy, as shown in chapter 6.
For this purpose, two datasets were compiled and used in chapter 6, one dataset with
145 unaltered photoluminescence images and one dataset with 136 photoluminescence
images with embedded ultrasonic-defect information. Note that additional input-label
mismatches occur due to the fact that the photoluminescence measurement takes place
after wafer probing and the subsequent chip-separation step. Separation damages are
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therefore not marked as defects in wafer-prober-based defect maps, which may cause
wrongful misclassi�cations. This e�ect occurs especially at the wafer edge, as shown in
chapter 6.

Figure 2.5 depicts four photoluminescence images, which visualise the varying brightness
distributions. While some measurements result in evenly distributed brightness values
for in-spec chips and darker pixels for defective chips, other wafers display local areas
of di�ering brightness, that is measurement artefacts. As a result, the remaining areas
appear less well resolved and the brightness of in-spec chips and defective chips con-
verges. On the other hand, the various functional and defect structures are shown: next
to the aforementioned voids, single defective chips, cracks and defect clusters are dis-
played. While cracks correspond to defective LED chips, �lm tears, as shown in image
b), correspond to less bright but not to defective chips and thus belong to the in-spec
class. Note that OCR chips appear as single dark pixels, just as defective LED chips do.
However, the results in chapter 6 reveal that the network learns to reliably distinguish
OCR chips from single defective chips. Incidentally, OCR chips are not always visible to
the naked eye on the images, due to the image resolution. Finally, observing the three
depicted defect clusters (images b, c and d) illustrates the range of shapes, sizes and
brightness values the defect clusters may assume.

2.2.2. Pixel-Wise Labels

In order to train supervised-learning algorithms, input-label pairs must be provided,
where the label image is used to calculate the loss between the network's prediction and
the corresponding true labels. However, it is not feasible to manually label hundreds
of images on a pixel-wise level. As elaborated in the �rst section, wafer probing pro-
vides accurate defect information and thus the measurement aimed to be supplemented
is repurposed for labelling. Wafer-probing defect information covers electrical and opti-
cal failures in addition to the results of previous measurements, such as the ultrasonic
measurement that provides void information. Like the photoluminescence measurement,
wafer probing results and limit violations are listed in a text �le, where each chip is
denoted by its coordinates. To create a defect map, all chips that exceed prede�ned
property limits are classi�ed as defective and all other chips are classi�ed as in-spec.
Following the photoluminescence images, non-wafer areas, restricted areas, alignment
markers and OCR chips are assigned to a miscellaneous class. Now, each pixel of the
label image has a value in the range of [0, 1, 2] (misc./in-spec/defect), as shown in �gure
2.4. However, as described in chapter 3, the network algorithm outputs the result of a
softmax function, where a prediction vector p is returned for every pixel, consisting of
three normalised values that sum to 1. As an instance, consider a pixel that is labelled
as defect (2), whereas the network outputs a prediction vector p = [0.1, 0.3, 0.6], that
is a probability is calculated for each class category. To adjust the label image corre-
spondingly and enable the loss calculation, one-hot encoding is applied. Here, one-hot
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Figure 2.5.: Examples of photoluminescence images, which visualise the varying measure-
ment results. On the one hand, brightness values may vary from measure-
ment to measurement. On the other hand, local areas of di�ering brightness
outshine other areas and as a result the brightness of in-spec chips and defec-
tive chips converges in those areas. Furthermore, defect clusters may assume
di�erent shapes and sizes in addition to varying brightness gradients. The
denoted defect types, namely single defective chip, void, crack and defect
cluster, are all subsumed in one defect class but are di�erently hard for the
algorithm to segment accurately. Film tears, as shown in picture b), cor-
respond to less bright but not to defective chips and are thus labelled as
in-spec chips, contrary to cracks, which are labelled as defective. Functional
structures, such as alignment markers and OCR chips, as well as non-wafer
areas are subsumed in a miscellaneous class.

encoding refers to the encoding of categorical integer features using a one-hot encoding
scheme [94], where a binary column is created for every category and a sparse matrix
is returned. Now, the aforementioned defect class pixel is labelled y = [0, 0, 1], rather
than 2. Figure 2.6 illustrates the transformation: a photoluminescence image and the
three according label maps are displayed, where the pixels of the class category equal 1
and all other pixels equal 0. The three maps are then stacked, yielding a 442× 440× 3
label image. Eventually, the network returns three probability maps and based on the
calculated loss between probability maps and label maps the network's parameters are
optimised via backpropagation.
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Figure 2.6.: Photoluminescence image and label maps, where each map corresponds to
one class category. As an instance, the miscellaneous-class map sets all non-
wafer pixels, alignment markers and OCR chips to 1, while all other pixels
are set to 0. The three class-category maps are then stacked as a 410×410×3
label image.

2.2.3. Data Selection

As described, for the training and study of the developed fully-convolutional-network ar-
chitecture two datasets were compiled, one with 145 unaltered photoluminescence images
and one with 136 photoluminescence images with embedded defect information from ul-
trasonic measurements. Compiling small, industrial datasets of measurement images with
known input-label mismatches involves the risk of hindering network training through
inconclusive training examples. Therefore, wafer images with extensive input-label mis-
matches, as an instance caused by measurement post-processing or broken wafers, were
removed from the datasets. Additionally, only wafers with salient defect structures were
selected: even though using all measurements from the running production would distinc-
tively increase the number of training examples in the dataset, experiments in chapter 6
reveal that the given dataset sizes of 145 and 136 images, respectively, are su�cient
to achieve an accurate segmentation of common wafer and defect structures. Only the
segmentation of previously unknown, large defect cluster shapes in validation images
shows �aws, which indicates that the examples in the dataset are not su�cient for the
network to generalise from. Therefore, adding inconspicuous wafers to the dataset would
not result in an increase in network performance, whereas the experiments indicate that
additional examples of large defect clusters will further increase network performance
and segmentation accuracy.
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2.2.4. Data Augmentation

It is generally agreed upon that the success of deep-learning methods can be attributed
to large-scale labelled datasets, together with high-capacity models and increased compu-
tational power [121]. The ImageNet dataset, for example, covers 1 million images [104],
and even smaller datasets for semantic segmentation, like the PASCAL VOC dataset, are
composed of over 10,000 images [28]. Using large datasets, where the di�erent objects are
depicted from various angles or under various environmental aspects, teaches the network
invariance against common variations and thus increases classi�cation accuracy. How-
ever, as presented in chapter 4, medical and industrial datasets usually consist of only
up to a few hundred images, due to the di�culty of image acquisition. In order to teach
the network robustness against variations, despite the small number of training exam-
ples, data augmentation is used. Here, the available dataset is increased by introducing
little variations to the image, where manipulations that imitate possible real variations
cause the most distinct increase in network performance. In case of everyday-life scenes
several augmentation methods may be employed, including cropping, �ltering, adding
noise or pixel dropout. Photoluminescence images, however, are always taken under the
same setup and with a steady image quality. Thus, data augmentation was reduced to
45°, 90° and 135° rotations of the images, which tripled the number of training examples
and increased network performance, as shown in chapter 6. Additional augmentation
techniques, such as brightness manipulations and random elastic deformations [101] did
not contribute to a higher network performance.

2.3. Summary

In this chapter, the technical background and preparation of the procured dataset were
presented, starting with the basic structure of LED chips and a sketch of the manufac-
turing process, with an emphasis on photoluminescence measurements as well as wafer
probing. Then, the transformation of both measurement results into network training
data was described, including which measurement information was used and how. Fur-
thermore, the occurrence of input-label mismatches as well as the dataset compilation
with regard to data selection and data augmentation were studied. Following this de-
scription of data generation and preparation, the next chapter presents the theoretical
background of fully-convolutional-network design and hyperparameters, followed by state
of the art and related work in chapter 4.
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In this chapter, the theoretical background of fully convolutional networks is presented,
starting with the basic idea of supervised-learning algorithms. Here, the algorithm learns
a mapping function by being trained on an input-label dataset, where a regularised
loss function is used to evaluate the performance [81]. The second section speci�es the
aforementioned methods with the example of a neural-network algorithm for multi-class
classi�cation and introduces the backpropagation algorithm, used to update the ran-
domly initialised network parameters. Subsequently, methods to ease network training
are presented, such as parameter-update optimisation and batch normalisation. Fol-
lowing the general concepts of neural-network algorithms, the speci�c building blocks
of fully convolutional networks are introduced, namely downsampling path, upsampling
path and skip connections: �rst, the downsampling path extracts high-level semantic
information from the input image via convolutional pooling blocks, whose elements con-
volution, activation function and pooling operation are described. Then, the original
image dimensions are restored by the upsampling path. For this purpose, di�erent up-
sampling methods have been proposed, of which transpose convolution and interpolation
are presented. In order to increase the output resolution, skip connections fuse the down-
sampling and the upsampling path. Additionally, residual shortcuts are studied, which
further widen the network architecture and thereby ease network training. Furthermore,
the concept of transfer learning is described, where the network is initialised with trans-
ferred, pre-trained parameters instead of small random values. The implementation of
fully convolutional networks in various applications is then illustrated in the following
chapter.

3.1. Supervised Learning

Wafer brightness images, generated by photoluminescence measurements, contain infor-
mation which exceed the measurement's intended scope. Therefore, this work studies
whether a computer vision algorithm can be employed to output a wafer-defect map
based on photoluminescence images. In other words, we want to create an algorithm
that performs a mapping f : X → Y , where X represents the space of measurement
images and Y is the space of label images [81, 110]. Here, the label set is restricted
to {0, 1}, where 1 corresponds to a pixel that depicts a defective LED-chip and 0 cor-
responds to all the other pixels. The algorithm is then to predict each pixel's defect
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probability ŷ = P (yi = 1 |xi). However, highly variable brightness values and local mea-
surement artefacts, which superimpose the actual measurement, exacerbate the manual
speci�cation of a mapping algorithm.

Supervised learning algorithms, on the other hand, exploit the fact that we can easily
provide examples for the algorithm to learn the underlying mapping function from. Con-
cretely, we can extract a dataset D of m independent and identically distributed (i.i.d.)
examples, D = {(x1, y1), ..., (xm, ym)}, from the data-generating distribution P ∗. Here,
the samples follow an empirical distribution of the unknown distribution of P ∗ and with
an increasing number of training examples D approaches the true distribution. Given
the dataset, we can train the algorithm by searching the hypothesis space F of candidate
mapping functions y = f(x). Hereby, the class of functions F we consider is restricted
by our choice of learning algorithm and the actual functions f ∈ F are given by di�erent
values of learned function parameters [60]. The function's performance can then be eval-
uated by measuring the accordance between the predicted label ŷ = f(x) and the true
label y with a scalar-valued loss function L(ŷ, y). For classi�cation problems, a common
choice is cross-entropy loss with

L(ŷ, y) = E(x,y)∼P ∗ [log P̃ (x)], (3.1)

where P̃ is the learned distribution. Intuitively, the closer the learned distribution P̃ is to
the true distribution P ∗, the smaller the expected cross-entropy loss. Ideally, we aim to
�nd the mapping function f∗ that precisely captures the data-generating distribution P ∗

and minimises the expected loss:

f∗ = argmin
f∈F

E(x,y)∼P ∗L(f(x), y). (3.2)

In practice, however, the empirical distribution D is rarely comprehensive enough to
accurately represent P ∗. Therefore, we average the loss over all available training data
and thereby approximate the expected loss with

f̃ ≈ argmin
f∈F

1

m

m∑
i=1

L(f(xi), yi). (3.3)

In summary, we procure an exemplary dataset and train the learning algorithm by search-
ing the hypothesis space for a mapping function f̃ that minimises the empirical loss over
the available training examples, assuming that f̃ is a well enough proxy for f∗. Un-
fortunately, one way to achieve a training loss of zero is to learn a function that maps
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the correct label yi to each xi in the training dataset and returns zero for all other
(x, y) ∼ P ∗. As a result, the chosen hypothesis over�ts to the training data and thus
generalises poorly to previously unseen data. Moreover, di�erent dataset samples D of
the true distribution P ∗ will cause highly variable results. This estimation error, de-
noted as variance, decreases with increasing training-set size m and increases with the
complexity of the hypothesis space F [60, 66, 68, 110]. We can limit F by introducing a
restriction term to the training objective in equation 3.3:

f̃ ≈ argmin
f∈F

1

m

m∑
i=1

L(f(xi), yi) +R(f) (3.4)

where R is a scalar-valued function that imposes a preference for simpler mapping func-
tions. Thereby, we take into account that a more complex hypothesis f ∈ F has to �t
a larger sample size in order to guarantee a small true loss E(x,y)∼P ∗L(f(x), y) [110].
Neural-network algorithms, which are the focus of this work, are especially prone to
over�tting: as an instance, Zhang et al. [138] have shown that neural networks with
su�cient capacity can �t randomly labelled images of random pixels with zero training
error, demonstrating the memorisation capabilities of network algorithms.

3.2. Neural-Network Algorithms

We can specify our previous considerations on supervised-learning algorithms by intro-
ducing the example of a classi�cation network. For this purpose, we extend our task
to multi-class classi�cation, and design the network to assign one of three discrete class
categories C to a wafer image. To do so, we set up a hypothesis class F of chained, non-
linear functions f(x) = softmax(W2 tanh(W ᵀ

1 x + b1) + b2), which input the vectorised
image x ∈ Rn and output a vector ŷ ∈ R3 of class probabilities. Now, the hypothesis
space is spanned over the four parameters (W1,W2, b1, b2), whereW1 is a matrix of size
n×H, b1 is a vector of size H,W2 is a matrix of size H×C and b2 is a vector of size C.
Here, H denotes the number of neurons in a network layer; because H is predetermined,
it is a so-called hyperparameter and constitutes a possible design choice to impose a hard
constraint on the algorithm's capacity. In other words, by keeping the number of neurons
in the network small, over�tting is diminished.

The mapping function f(x) �rst multiplies the image vector x with the weight matrixW1

before adding an o�set b1, denoted as bias. Here, the weights allow the network to adjust
each pixel's contribution to the result and every neuron learns a di�erent set of weights.
Then, the hyperbolic tangent function is applied elementwise, squashing the H values
to the interval [−1, 1] and thereby introducing non-linearity. Because we want the algo-
rithm to predict one of three class categories, the second set of parameters, W2 and b2,
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covers three neurons. The result of multiplyingW2 with the previous layer's output and
adding b2 is commonly interpreted as a vector of logits. Hence, by applying the softmax
function to each logit zi, with pi = ezi/

∑C
c=1 e

zc , we obtain a prediction vector p of nor-
malised values between 0 and 1, which sum to 1. Now, we can compare the inferred prob-
ability with the ground-truth, the one-hot encoded label: for example, if the �rst class
is the correct one, then y = [1, 0, 0] and the prediction result may be ŷ = [0.6, 0.3, 0.1].
Using the aforementioned cross-entropy loss with L(ŷ, y) = −

∑C
c=1 yc log ŷc, only the

true class contributes to the loss value and incorrect predictions are penalised higher
than predictions close to one. In full, we obtain

f̃ = argmin
W1,W2,b1,b2

− 1

m

c∑
j=1

m∑
i=1

yi,c log
(
W2 tanh

(
W ᵀ

1 xi,c + b1
)

+ b2

)
+ λ‖w‖22 (3.5)

for our exemplary network algorithm, where ‖w‖22 = w2
1 + w2

2... + w2
n is an L2-

regularisation term that penalises high weight values, which can be interpreted as adding
a measure of complexity to the loss function. The strength of the regularisation term is
adjusted with λ, which is a hyperparameter itself.

3.2.1. Backpropagation

After specifying the supervised-learning architecture, the next step is to determine the
candidate function f̃ ∈ F that minimises the expected loss. We can formulate this
objective as an optimisation problem of the general form θ̃ = arg minθ g(θ), where
g(θ) = 1

m

∑m
i=1 L(fθ(xi), yi)+R(θ) and θ is the parameter vector. Even though theoret-

ically any function can be approximated with a one-layer network, in practice multi-layer
networks have been observed to often generalise better, resulting in thousands to mil-
lions of network parameters [20, 48, 68]. Hence, determining f̃ by randomly searching
the parameter space with stochastic optimisation methods such as hill-climbing would
be computationally ine�cient. The backpropagation algorithm, on the other hand, is
capable of handling large search spaces e�ciently by iteratively changing the parameters
into the direction of the loss function's steepest descent, as shown in �gure 3.1. Here,
backpropagation exploits the fact that the partial derivatives of g, with respect to θ,
are a measure of the loss function's steepness. In other words, the gradient ∇θg, which
is a vector of the partial derivatives, gives us the slope of the cost function along the
parameters' dimensions. Thus, by iteratively determining ∇θg and updating θ we can
search for θ̃.

In order to train the network, we set up a cycle of forward and backward propagation:
�rst, we initialise the parameter vector θ with small random values, drawn from a Gaus-
sian distribution with a standard deviation of

√
2/N , where N denotes the number of
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Figure 3.1.: Exemplary loss function L(θ) with respect to the parameters θ0 and θ1.
The red arrow starts at a possible initial function value, given by randomly
initialised parameters. Updating the parameters with backpropagation, that
is by following the direction of steepest descent, iteratively minimises the
loss-function value until the algorithm converges to a minimum.

incoming nodes [43]. Then, we propagate a batch of data {(xi, yi)}mi=1 through the algo-
rithm (using the randomly initialised parameters) to yield a prediction and determine the
corresponding loss g. Based on the loss function we can now calculate the gradient with
respect to the parameters, using the chain rule of derivation. Consider, as an example,
the simpli�ed inner network function z = tanh(θᵀx), which can be split into an outer
and an inner part, namely: v = tanh(u) and u = θᵀx. In order to calculate the partial
derivative ∂z

∂θ we �rst determine the partial derivatives of the intermediate terms, starting
with the outer term, v′ = ∂z

∂v = 1− tanh2(u) and followed by the inner term u′ = ∂v
∂u = x.

Then, we can calculate the partial derivative of z with respect to θ by multiplying the
intermediate terms: ∂z

∂θ = ∂z
∂v

∂v
∂u . Hence, proceeding from the loss function and propagat-

ing the partial derivatives of the intermediate terms back through the network, as shown
in �gure 3.2, allows us to determine the gradient ∇θg and update the parameters, with
θ′ = θ−η∇g(θ). Here, η denotes the learning rate, a hyperparameter used to adjust the
step size of the parameter update. Because the loss function depends on the unknown
distribution of the training examples, the learning rate is an empirically determined value
that can range from 0.1 to 1 ∗ 10−14 and has a distinctive in�uence on the training result
[6]. Using a learning rate that is too high yields parameter updates that overleap the
function's minimum instead of converging to it, whereas a very small learning rate causes
unreasonably long training durations. A common way to reduce training time is to start
with a higher learning rate, which is then gradually decayed with ongoing training du-
ration, with η = η ∗ k

s
ks , where k is the decay rate, s is the current training iteration

(step) and ks is the decay step. The in�uence of di�erent learning-rate values and decay
rates is studied in chapter 6, including the mutual interference of learning rate and the
aforementioned L2 regularisation.
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Figure 3.2.: Neural network forward (black) and backward (orange) propagation. The
algorithm �rst calculates the solution function ŷ = tanh(θᵀw) and the ac-
cording loss L(ŷ, y) with respect to each datapoint. Then, the partial deriva-
tive of the loss with respect to each parameter is calculated and propagated
backwards. Adapted from Fei-Fei et al. [30]

Writing the parameter update equation in its component form, with θ′i = θi − η ∂g(θ)∂θi
,

elucidates that gradient descent alters each parameter separately. Hence, each parameter
learns its own value depending on the training data, making backpropagation an e�cient
way to optimise the network. In practice, training datasets can cover thousands to
millions of images [28, 73, 104], which is why the gradient is commonly not determined
based on the whole dataset but is estimated on a subset (minibatch), a method denoted
as stochastic gradient descent [8]. Smith and Le [116] have shown that the optimal
minibatch size m′ is proportional to the size of the training set as well as the learning
rate, with m′ ∝ ηm. That is, when increasing the minibatch size the learning rate
should be increased accordingly, where small, homogeneous training sets bene�t more
from smaller minibatch sizes [63]. Furthermore, by using various noisy estimates of the
gradient stationary points in the loss function, such as saddle points and local minima,
can be avoided and the parameters are driven to broader, better generalising minima [81,
93].

3.2.2. Optimisation

Commonly, neural-network algorithms are multi-variable optimisation problems with var-
ious network layers and millions of parameters [12]. Due to the nature of the backpropa-
gation algorithm, layers deep in the network will receive larger parameter updates than
shallow layers, a problem denoted as vanishing gradients [3]. In addition, the direc-
tion of steepest descent is orthogonal to the contour lines of the loss function g(θ);
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therefore, large parameter updates may cause oscillations across the loss function's high
curvature areas, reversing previous updates. Momentum-based learning aims to ad-
dress these shortcomings by adding exponential smoothing to the update vector, with
vt = βvt−1 +η∇θg(θ), where β ∈ (0, 1) is the so-called friction or momentum parameter,
which adjusts the contribution of previous parameter updates and is usually set to 0.9
[102, 122, 123]. The parameter update rule is then changed to θ = θ − vt. By using
momentum, oscillations are cancelled out to the bene�t of small updates in a consistent
direction, accelerating network training comparable to a ball gaining momentum as it
rolls downhill. Just like a ball, momentum-based learning tends to slightly overshoot but
nevertheless achieves better results than momentum-free update rules [3]. Another way
to optimise the learning process is to address the layer-speci�c partial-derivative magni-
tudes directly by using individual adaptive learning rates for each parameter. To do so,
the AdaGrad (Adaptive Gradient) algorithm separately accumulates the squared partial
derivatives to then adjust each parameter's learning rate accordingly [25], yielding

vt,i = vt−1,i + (∆θi)
2

θi = θi −
η

√
vt,i + ε

∆θi, (3.6)

where ε is added to avoid division by zero and is usually in the order of 10−8. Individually
adapted learning rates increase the robustness of stochastic gradient descent by updating
frequent parameters with smaller steps and infrequent parameters with larger steps [23].
However, by dividing the learning rate η by the accumulated partial derivatives vt−1,i
over the course of network training may prematurely slow down learning and prevent
convergence. This drawback can be dissolved by using an exponentially decaying average
of the squared gradients instead, as does the RMSProp algorithm:

vt,i = ρ vt−1,i + (1− ρ) (∆θi)
2

θi = θi −
η

√
vt,i + ε

∆θi, (3.7)

where ρ is a decay factor, which is usually set to 0.9 [46]. Now, the learning rate is
divided by the exponentially decaying average before calculating the parameter update.
As a result, the in�uence of older gradients decays exponentially with time, preventing a
premature stagnating of the learning process. But because the running estimate of vt−1,i
is initialised to zeros, the RMSProp algorithm is biased during the initial steps. There-
fore, the Adam (Adaptive Moment Estimation) algorithm calculates the exponentially
decaying average based on bias-corrected estimates [59]. Additionally, Adam also incor-
porates a momentum term to the update rule, yielding mt,i = β1mt−1,i + (1− β1)∆θi as
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an estimate of the �rst-order moment and vt,i = β2 vt−1,i+(1−β2) (∆θi)
2 as an estimate

of the uncentered variance, the second-order moment. Note, that both terms use di�er-
ent decay parameters, where Kingma and Ba [59] suggest β1 = 0.9 and β2 = 0.999. In
order to counteract the biases, introduced by initialising mt,i and vt,i with zero vectors,
Adam employs bias-corrected moments, yielding m̂t,i =

mt,i

(1−βt
1)

and v̂t,i =
vt,i

(1−βt
2)
. The

parameter update is then given by

θi = θi −
ηβ√
v̂t,i + ε

m̂t,i. (3.8)

In summary, the Adam update rule combines the improved gradient calculation of the
Momentum method with the individually adapted learning rate of RMSProp and is
therefore a common �rst choice as optimisation method [39]. Ultimately, the choice of
optimisation algorithm depends on the distribution of the dataset as well as the other
hyperparameters, as demonstrated in chapter 6. Here, the aforementioned optimisation
methods have been studied in combination with two di�erent learning rates, revealing
that for the employed dataset RMSProp and Adam perform comparably well, whereas
other methods underperform.

3.2.3. Batch Normalisation

Since deep neural networks are notoriously di�cult to train [37, 122] several leverage
points have been developed to ease network training. Next to regularisation methods
and optimised parameter updates it is common to employ so-called batch-normalisation
layers, introduced by Io�e and Szegedy [53]. The underlying assumption here is to reduce
the internal covariate shift of the data while passing through the network: optimising
the parameter values of a layer during network training may e�ect the output statistics
of this layer and hence result in a changed distribution of the subsequent layer's input.
Batch normalisation addresses this e�ect by adding a learned normalisation calculation
prior to the activation function of each hidden layer, with f(x) = φ(BN(W ᵀx)), where
BN is batch normalisation and φ denotes an activation function. Note, that the bias
vector is omitted since its e�ect would be cancelled by the subsequent mean subtraction
of the batch-normalisation layer. First, the mean and variance of the current minibatch
B = {xi, ..., xm} are determined with µB = 1

m

∑m
i=1 xi and σ2B = 1

m

∑m
i=1(xi − µB)2,

before normalising each datapoint, with

x̂i =
xi − µB√
σ2B + ε

. (3.9)
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However, normalising each input of a sigmoid activation function, as an instance, would
constrain them to the function's linear regime and thus restrict the network's representa-
tion power. Therefore, an additional scale and shift operation is introduced with learned
parameters: yi = γx̂i + β, where γ and β enable the network to recover the original ac-
tivations if suitable. Now, a layer's input distribution is no longer a�ected by parameter
changes of previous layers but is determined by the batch normalisation parameters γ
and β. Therefore, when using batch normalisation, the network performance depends
less on careful initialisation and hyperparameter tuning, hence easing network training.
While inference, inputs are not normalised based on the minibatch statistics; instead, the
moving average of the entire population is used. For this purpose, mean and variance in
the batch normalisation equation are replaced by their constant estimates E[x] and V[x],
respectively, turning the normalisation into a linear transformation.

To sum up, supervised learning describes a group of algorithms that are trained on
a dataset of input-label examples to learn the underlying mapping function. For this
purpose, a hypothesis space of candidate mapping functions, given by the network archi-
tecture, is searched by an optimisation algorithm for the candidate function of minimum
loss. Here, the common choice of optimisation algorithm is backpropagation, a method
that determines the partial derivatives of the network's loss with respect to each param-
eter. While training, each parameter is iteratively adjusted into the direction of steepest
descent, based on the partial derivatives propagated backwards through the network by
means of the chain rule of derivation. In order to prevent over�tting, a regularisation
term is added to the loss function, which penalises high weight values and as a result im-
poses a preference for simpler mapping functions. Enhanced optimisation methods, such
as the Adam algorithm, improve the basic stochastic-gradient-descent implementation of
backpropagation by adding momentum to the parameter update as well as individually
adapted learning rates for each parameter. Finally, batch-normalisation layers remove
the statistical dependency between layers by enabling the network to scale and shift
each layer's input as suitable. The combination of the aforementioned methods reduces
training time by enabling a faster convergence to the loss function's minimum and im-
proves the network's performance by mitigating its dependence on careful parameter
initialisation and hyperparameter tuning.

3.3. Fully Convolutional Networks

The previous section introduced the theoretical background of supervised-learning
algorithms�with an emphasis on neural networks�and several methods to optimise
network training. Convolutional and fully convolutional networks, respectively, are net-
work algorithms with an architecture specialised for computer vision [33, 34, 64, 67,
103]. Here, convolutional layers are employed for image analysis, which input not the
vectorised image but slide a small kernel across the image in its original shape. Thereby,
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Figure 3.3.: Convolution of an image (middle) with a 3 × 3 kernel (left). The kernel
slides across the image and at each position multiplies the kernel weight
with the corresponding pixel value. The sum of the products plus bias is
then the neuron's output at the position of the centre pixel, creating a new
image which is denoted as feature map. Because convolution decreases image
dimensions, the image is padded with zeros (depicted in grey) so as to keep
image dimensions stable.

the implicit structure of images is exploited: on the one hand, images are composed of
repeated patterns, changes in illumination or geometrical patterns for example, and on
the other hand, pixels in close proximity to each other are highly correlated [7]. By
means of the learned kernel parameters local image features are extracted to create a
new representation of the image, called feature map. As shown in �gure 3.3, a feature
map is computed by calculating the weighted sum of the covered pixels at each kernel
position, with

zi′,j′,f ′ = φ

bf ′ + Hf∑
i=1

Wf∑
j=1

xi′+i−1,j′+j−1,fwijff ′

 , (3.10)

where zi′,j′,f ′ is the convolution operation's output located at the kernel centre,
xi′+i−1,j′+j−1,f denotes the input image pixel, wijff ′ is the kernel weight and bf ′ is
the bias. With regard to convolutional layers, the bias is a means to adjust the feature
map's brightness. The kernel's height and width are given by H and W , respectively,
where typical kernel dimensions range between 1× 1 and 11× 11 and hence, the number
of neurons per kernel is reduced to H × W . As will be expanded upon shortly, each
convolutional layer consists of several kernels and may input feature maps of a previous
layer. Thus, we denote the input map index with f and the newly created feature map
index with f ′.
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Due to consistent and e�ciently to compute gradients, hidden convolutional layers typi-
cally employ recti�ed linear units (ReLU) as activation function, with φ(z) = max(0, z)
[56, 83]. Because the ReL unit derives to f ′(z) = 0 if z < 0 it may cause so-called
dead neurons [3, 30]. As an instance, using a high learning rate to update the parame-
ters may result in parameter values that cause zero gradients irrespective of the input,
whereupon the neuron no longer contributes in distinguishing between di�erent input
instances. However, Glorot et al. [38] have shown that sparse representations, caused by
the ReL unit's hard threshold, can be bene�cial by leading to information disentangle-
ment and increased linear separability. Alternative activation functions address the ReL
unit's hard threshold: as an instance, the leaky ReLU adds a small slope to the negative
part, with φ(z) = max(αz, z), where typically α ≈ 0.2 [79], whereas the softplus unit
smoothly approximates the ReLU function, with φ(z) = log(ez + 1). The experiments in
chapter 6 reveal that for the given dataset and network architecture ReL units yield the
highest performance.

To illustrate the advantage of convolutional layers, consider a fully-connected layer. Here,
each pixel of the vectorised image is connected to every neuron of the �rst hidden layer.
As an instance, a network that inputs a 28× 28 greyscale image into a �rst hidden layer
with 100 neurons employs 78,500 parameters for just one layer, in comparison to 10 pa-
rameters for a 3×3 kernel plus bias. Furthermore, vectorising the image discards spatial
information and thus slight translations of the image object would require the network
to learn a new set of parameters to recognise the same object. By sliding a kernel across
the image and thus sharing kernel parameters between pixels, equivariance to transla-
tions is implemented and one kernel can be used to extract the same feature from all
image positions. Because images are a combination of various patterns, convolutional
layers consist of a variety of convolutional operations. Each operation learns its own
kernel parameters and thus creates an individual feature map. Additionally, a cascade
of convolutional layers is set up, that is the created feature maps are fed to another set
of convolutional operations. Thereby, layers deep in the network input highly prepro-
cessed feature maps. However, even though convolutional layers distinctively decrease
the number of parameters, storing the feature maps consumes computational resources.
To reduce memory consumption and increase the number of feature maps, so-called pool-
ing layers are introduced, which calculate the summary statistics of subregions and hence
decrease image dimensions [9, 144]. A common pooling operation is maxpooling, where
a kernel slides across the image and outputs the highest value of each window, yielding
an output size o, with

o = b iH − kH
s

+ 1c × b iW − kW
s

+ 1c. (3.11)

Here, i denotes the image dimensions, k the kernel dimensions and s is the stride, that
is the number of pixels the kernel is moved along in one step. Max pooling implements
invariance to small translations of the input: even if the input is translated by a small
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Figure 3.4.: Bi-pyramid of convolutional pooling blocks. A convolutional pooling block
usually consist of two to three convolutional layers, followed by a pooling
layer that downsamples feature-map dimensions. On the one hand, subsam-
pling operations reduce the memory consumption and thus enable a larger
number of subsequent kernels and feature maps, respectively. On the other
hand, with every downsampling operation each neuron's receptive �eld is
increased such that neurons deep in the network can be indirectly connected
to most of the input image, despite distinctively smaller kernel sizes.

amount, such as a slightly rotated wafer, most of the inputs do not change their value.
Jarrett et al. [56] and Saxe et al. [107] have shown that randomly initialised convolutional
pooling architectures with ReLU activation functions can yield surprisingly good classi-
�cation results because pooling functions are inherently translation invariant and hence
frequency selective. Figure 3.4 visualises the described bi-pyriamid of convolutional lay-
ers, where the spatial resolution of the feature maps is progressively decreased while the
number of feature maps�and accordingly the richness of representation�is increased.
The speci�c architectural setup of a network depends on the data, but as depicted, it is
common to combine two to three convolutional layers before pooling, where the number
of kernels per layer ranges between 64 and 1024 [42, 64, 68, 115, 124, 136].

In sum, a typical convolutional layer inputs either the input image or the output of a
previous layer on which it applies several parallel convolutions to create a set of feature
maps. This setup is repeated two to three times until feature-map dimensions are reduced
with a pooling operation and fed to the next convolutional pooling block. The cascade
of convolutional layers enables the detection of high-order features: while the �rst layer
extracts elementary visual features of each neuron's local receptive �eld in the input
image, the subsequent layers combine the extracted features of previous representations.
Here, the receptive �eld denotes the image area a neuron "sees", which corresponds to
the kernel dimension in the �rst layer. Due to the layer connections and enhanced by
downsampling operations, a neuron's receptive �eld increases with increasing network
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Figure 3.5.: Snippet of the computational graph with two convolutions. The gradient
of the loss L with respect to the weights w is used to update the kernel
weights, whereas the loss gradient with respect to the input feature-map
pixels z is used to propagate the gradient back through the network through
each feature map. Adapted from Fei-Fei et al. [30]

depth [39]. Therefore, neurons very deep in a network can be indirectly connected to
most of the input image.

3.3.1. Backpropagation

Just like fully-connected layers, (fully) convolutional networks are trained with back-
propagation, where the kernel parameters are initialised randomly before updating them
based on the loss gradient. Figure 3.5 shows a snippet of the computational backprop-
agation graph depicting two succeeding convolutional operations, where X is the input
feature map and Z is the resulting feature map as well as input to the subsequent op-
eration [22, 30]. As illustrated, the backward pass cleaves in two: one path updates
the kernel weights and a second path propagates the gradients backwards through the
network. The backpropagation is implemented by calculating the loss gradient with re-
spect to the feature-map pixels ∂L

∂z , which is denoted as δ. Using the delta map, we can
calculate the weight update employing the chain rule with

∂L

∂wijff ′
=
∑
i′j′f ′

δl+1
i′j′f ′

∂zi′j′f ′

∂wijff ′

=
∑
i′j′f ′

δl+1
i′j′f ′xi′+i−1,j′+j−1,f . (3.12)
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Figure 3.6.: Calculation of the kernel weight and delta-map updates. (a) To update the
kernel weights with gradient descent, the loss gradient with respect to the
parameters is calculated by cross correlating the input map with the map
of the backpropagated loss gradients. The larger the in�uence of a weight
on the resulting loss the larger the update. (b) To backpropagate the loss
gradient through the network, the loss gradient with respect to the output Z,
denoted as δl−1, is calculated by convolving the weight kernel with the delta
map of backpropagated loss gradients. The resulting δl−1 values are then
passed backwards through each element or pixel of Z l−1.

Note, that the weight update is determined by means of cross-correlation between input
feature map and delta map, as shown in �gure 3.6 a). The delta map δl−1, which
propagates the gradient backwards to the previous layer l − 1, is calculated employing
convolution, with

δl−1ijff ′ =
∑
i′j′f ′

δli′j′f ′
∂zi′j′f ′

∂xijf
(3.13)

=
∑
i′j′f ′

δli′j′f ′wi−i′+1,j−j′+1,f , (3.14)

as shown in �gure 3.6 b). As described, after convolution of the input map a rectifying
non-linearity is applied, with f(z) = max(0, z), which derives to f ′(z) = 0 if z < 0 and
f ′(z) = 1 if z > 0. Because the derivative of the ReLU operation is not de�ned for z = 0,
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built-in functions of neural-network libraries commonly set f(z) = 0 for z = 0. Reducing
feature-map dimensions with pooling layers does not include learnable parameters. Thus,
the gradients are passed backwards through the layer unchanged. In case of maxpooling,
a gradient is passed through the unit with the maximum argument only and set zero for
the remaining ones.

Altogether, a convolutional pooling block commonly covers two to three convolutional
layers that apply the consecutive operations convolution, batch normalisation and ac-
tivation function to the incoming feature maps, followed by a subsampling operation
that reduces the image dimensions. In convolutional neural networks for image classi�-
cation [42, 68, 115, 124, 136] sequences of convolutional pooling blocks are employed to
extract semantic features from input images: through downsampling, the spatial infor-
mation are compressed and eventually fed into a sequence of fully-connected layers, which
serve as multi-class classi�er. Fully convolutional networks for semantic segmentation,
as introduced by Long et al. [77], are based on convolutional networks but omit all fully-
connected layers. Instead, the image is passed through a cascade of downsampling and
upsampling layers, thereby enabling pixel-wise classi�cations. For this purpose, it would
seem sensible to omit downsampling and thus not reduce image dimensions. However,
downsampling serves several causes, such as implementing invariance to small transla-
tions, enabling an increase of representations by setting up a bi-pyramid and increasing
the neuron's receptive �eld. Therefore, fully convolutional networks �rst downsample
the image before subsequently upsampling the feature maps to retrieve spatial informa-
tion. The following section will introduce the upsampling path of a fully convolutional
network, as counterpart to the downsampling part which was described in this section.

3.3.2. Transpose Convolution

While convolutional neural networks are employed to detect what an image shows, fully
convolutional networks must additionally retrieve where the information is located. For
this purpose, the network is set up of two parts: a downsampling part of convolutional
pooling blocks, which compute coarse, semantic information and an upsampling path,
which retrieves �ne appearance information [77]. In order to restore the spatial dimen-
sions of the input image, Long et al. [77] employ transposed convolution (also denoted
as fractionally strided convolution or deconvolution). For the sake of argument, �rst
consider the 1D transposed convolution of a vector, as shown in �gure 3.7, a) [26, 112].
Here, one input pixel of the vector x is mapped to an enlarged output area in vector y
using a 1× 4 kernel. The transposed convolution is represented as sparse matrix, where
each column equals the according value of x and non-zero elements equal the kernel
weights w. As depicted, the output size can be increased by a stride of 2 (or more) and
adjusted with cropping. Accordingly, grey pixels in the matrix represent multiplication
with zero and grey pixels in y are cropped areas. Note that transposing the sparse matrix
would result in convolution. Figure 3.7, b) shows a visualisation of a computationally
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Figure 3.7.: Visualisation of transpose convolution operations. (a) 1D cropped trans-
posed convolution with stride 2 of a signal x by a 4 × 1 �lter to obtain a
signal y. The transpose convolution is represented as sparse matrix, where
non-zero elements equal the kernel weights w, grey pixels in the matrix rep-
resent multiplication with zero and grey pixels in y represent cropping. Each
input pixel is multiplied with all kernel weights, upsampling the input vector
dimensions. Adapted from Shi et al. [112]. (b) 2D transposed convolution:
the kernel W is slid across the input matrix X to create a new, enlarged
representation Y . Adapted from Dumoulin and Visin [26].

less e�cient, direct 2D transposed convolution of a 2 × 2 matrix X, where a kernel W
is slid across the input image to create a new, enlarged representation Y . Contrary to
convolution, a single image pixel is associated to several output pixels, implementing a
one-to-many relationship and thus increasing image dimensions.

Transposed convolution allows the network to restore the spatial dimensions of low reso-
lution, high-level representations by means of learnable parameters. However, transposed
convolution is prone to cause checkerboard artefacts in the upsampled image, restricting
�lter options and thus sacri�cing model capacity. An artefacts avoiding alternative is re-
sizing the image by interpolation before applying convolution and an activation function
[24, 86]. Common interpolation methods are nearest neighbour interpolation, bilinear
interpolation and bicubic interpolation, as shown in �gure 3.8. The choice of interpo-
lation technique depends on the image properties of the dataset: bilinear and bicubic
interpolations, as an instance, blur high-frequency features whereas nearest neighbour
interpolation yields a piecewise-constant result without any blurring.
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Figure 3.8.: Interpolation methods. Nearest neighbour interpolation (left) assigns the
value of the nearest pixel to the interpolated pixel. Bilinear interpolation
(middle) assigns the average of four neighbourhood pixels, weighted with
respect to their distance. Bicubic interpolation (right) calculates a weighted
average as well, but takes 16 neighbourhood pixels into account.

Using either one of the aforementioned methods, the downsampling path can now be
complemented with an upsampling path, which restores the original image dimensions.
However, as one would assume, the spatial resolution of upsampled images after several
downsampling steps is not su�cient to accurately classify single pixels. Therefore, so-
called skip connections are introduced to the network architecture, which combine �ne-
grain local information of shallow layers with coarse semantic information of deeper
layers [77].

3.3.3. Skip Connections & Residual Modules

Next to a poor upsampling resolution, network structures where each layer inputs the
feature maps of the previous layer embody a strictly sequential pipeline. Thus, all image
features are being abstracted to the same level�although some representations may be
better learned by shallow networks. This results in the so-called degradation problem,
where with increasing network depth training accuracy decreases rather than increases.
In theory, the network could learn parameters which transform dispensable layers into
identity mappings by merely copying shallower layers. In practice, however, equipping the
network with skip connections eases identity mappings and as a result increases training
accuracy [42, 44]. Residual modules skip intermediate layers, as depicted in �gure 3.9: the
output of a layer, xi−1, is bypassed one or more subsequent layers and eventually added
to the last layer's convolutional output f(xi−1), yielding yi = ReLU(f(xi−1) + xi−1) as
output of the ith block.

Note that skip connections within residual modules are also denoted as residual shortcuts.
Using residual shortcuts, an identity mapping can easily be performed by pushing the
residual to zero. In addition, gradients can be propagated backwards more e�ciently,
improving network training by alleviating the vanishing-gradient problem. Unravelling
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Figure 3.9.: Residual modules implement skip connections to bypass intermediate layers
with an identity function. As a result, multiple new paths widen the network
structure, ease the �ow of information and thus network training. Depiction
adapted from He et al. [42].

residual networks [42], which implement residual modules throughout the architecture,
reveals that they can be interpreted as ensembles of relatively short networks [128].
The reason behind this is that residual modules introduce O(2n) implicit paths to the
network, where n is the number of modules and hence adding a module doubles the
number of paths. Consequently, removing layers of a trained network by chance results in
only minimal performance impacts, contrary to strictly sequential network architectures,
where the only viable path would be corrupted. Hence, residual shortcuts increase the
network's width by enabling multiple paths of variable length [135]. Fully convolutional
networks, as described by Long et al. [77], do not use residual modules but implement
skip connections between the downsampling and upsampling path. Thereby, �ne-grain
local information of shallow layers is fused with coarse semantic information of deeper
layers and thus the segmentation resolution is re�ned, as is veri�ed in chapter 6.

In sum, the three building blocks of fully convolutional networks are downsampling lay-
ers, which extract compressed high-level semantic information, upsampling layers, which
retrieve the spatial information and skip connections, which create shortcuts between
both parts so as to increase the spatial resolution. Chapter 6 studies the impact of skip
connections on network performance and also demonstrates how residual modules ease
network training. Note, that even though the optimal network architecture depends on
the data, it is common to imitate successful convolutional network architectures. One
reason is the increase in network performance and decrease in training time due to the
transfer of pre-trained parameters, a technique denoted as transfer learning [91, 127,
132].
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3.3.4. Transfer Learning

The idea of initialising the network with parameters pre-trained on a large research
dataset, such as ImageNet [51, 104], seems only suitable for similar image recognition
tasks. However, visualising networks trained on di�erent datasets shows the same tran-
sition from simple to speci�c �lters with increasing network depth, where the �rst layer
learns basic features, such as colours and Gabor-like �lters, which occur in most image
compositions [132, 133, 136]. Therefore, the performance of networks used for photolu-
minescence image analysis can be increased with transfer learning, despite the di�erences
of the training datasets. However, the experiments presented in chapter 6 also show that
transferring incongruous parameters of deep layers decreases the network's performance
compared to a network where only applicable parameters are transferred. It becomes ap-
parent that the number of transferred layers is a hyperparameter, which must be carefully
tuned.

Nowadays, parameters pre-trained with standard convolutional networks on research
datasets are available for all common network libraries. The decision which architecture
to imitate determines the network's downsampling path and should take into account
the network capacity required by the data. In comparison to the images of standard
datasets, which depict everyday scenes, photoluminescence images are composed of only
one image object with, in comparison, little variation in the defect patterns. Thus, to
keep the number of parameters small, the 16-layer VGG16 network was used for param-
eter transfer. The VGG16 network was introduced in 2014 by Simonyan and Zisserman
[115] at the ImageNet Large Scale Visual Recognition Challenge and is used for trans-
fer learning until today, due to its consistent architecture [58, 77, 85, 134, 146]. More
sophisticated architectures with more layers and a higher performance on the ImageNet
dataset, such as VGG19, ResNet [42] and GoogLeNet [124], have since been introduced
but provide too much complexity for photoluminescence images. Note, that the VGG16
network is a multi-class classi�cation network, consisting of 13 convolutional and three
fully-connected layers. It is, however, possible to transform the parameters of fully-
connected layers into convolutional layers. As an instance, the �rst fully-connected layer
with 4,096 neurons follows the last convolutional layer with 512 feature maps of size
7 × 7. Usually, the convolutional layer is �attened before connecting its neurons in full
to the subsequent fully-connected layer. In order to obtain convolutional layers only,
we omit the �attening and instead apply convolution with 7 × 7 kernels. Thereby, the
fully-connected layer is transformed into a convolutional layer of size 1 × 1 × 4096. In
other words, we obtain 4,096 feature maps with only one feature each. As a result, all
parameters of a convolutional network can be transferred to the downsampling part of a
fully convolutional network. The upsampling part is then initialised randomly.

In sum, transfer learning increases network performance by re-using the parameters of a
network trained on a large research dataset. After initialising the network's downsam-
pling path with the transferred parameters and the remaining layers with small random
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numbers, the network is trained end-to-end. Hereby, the transferred parameters are �ne-
tuned to the actual dataset while the randomly initialised parameters learn a new set of
�lters from scratch. With regard to the special composition of photoluminescence im-
ages, sophisticated network architectures with high complexity were discarded; instead,
the VGG16 network was used for parameter transfer, due to its consistent architecture
and small number of layers.

3.4. Summary

This chapter provided the theoretical background of fully convolutional networks, start-
ing with the concept of supervised-learning algorithms and the concrete example of a
vanilla neural network for image classi�cation. Here, the algorithm learns the under-
lying mapping function of the dataset's input-label pairs by training and is optimised
via backpropagation. Because neural-network algorithms are prone to over�t as well as
di�cult to train, several optimisation methods were described, covering L2 regularisa-
tion, parameter-update optimisation and batch normalisation. Altogether, the presented
methods are common practice to ease network training and increase network perfor-
mance of all kinds of network architectures. Afterwards, fully convolutional networks
were introduced, which represent a specialised network architecture for semantic seg-
mentation and advance the concept of supervised-learning algorithms to enable pixel-
wise classi�cations. Based on the idea of convolutional neural networks, the network
architecture consists of three parts, namely a downsampling path, an upsampling path
and skip connections. Next to the classic fully-convolutional-network architecture, addi-
tional methods were illustrated, including residual shortcuts and transfer learning. As
described in the following chapter, the classic fully-convolutional-network architecture by
Long et al. [77] was developed with regard to a large research dataset of everyday-scene
images [28]. However, detecting defective LED chips in photoluminescence images poses
a di�erent challenge to the network design. Chapter 5 therefore introduces a modi�ed
fully-convolutional-network architecture, designed with regard to a small dataset of sim-
ple composed photoluminescence images. Afterwards, advanced architectural concepts
are described, which further improve network performance. The corresponding empirical
analysis of the developed network architecture is illustrated in chapter 6.
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Neural network architectures derive their �nal mapping function from the data they are
trained on and despite being self-learning algorithms�how well the architecture is de-
signed with regard to the data distinctively in�uences network performance [3, 39, 60,
81]. For network research, there are several large and neatly labelled datasets available,
covering a wide range of applications from everyday and urban street scenes to 3D CAD
meshes [10, 11, 19, 28, 31, 73, 80, 97, 104]. Since di�erent kinds of datasets impose
di�erent requirements on the network, the following overview over state-of-the-art archi-
tectures focusses on networks developed for the pixel-wise classi�cation of greyscale and
RGB images. Here, �rst the original fully convolutional network for semantic segmenta-
tion is introduced, followed by several advancements to the network architecture. The
theoretical background of the presented ideas was elaborated in the previous chapter.
The second section presents work loosely related to the segmentation of photolumines-
cence images, where the focus lies not on the network architecture itself but on the
network in relation to the employed dataset. At the beginning, the two biggest research
areas are covered, namely computer vision for autonomous vehicles and medical imaging.
The analysis of medical images shares several similarities with photoluminescence wafer
images, concretely small datasets and a more resembling image composition. Eventually,
networks designed for surface defect detection are presented, where the authors work with
industrial data. However, because there are no publicly available datasets, the number
of publications in this area is distinctively smaller and until now no fully-convolutional-
network applications for surface defect detection have been published. Therefore, related
algorithmic applications are presented, covering convolutional neural networks and hand-
crafted segmentation algorithms.

4.1. State of the Art

In 2014, Long et al. [77] introduced the �rst end-to-end trainable network architecture
for semantic pixel-wise labelling, which obviated the need for additional pre- and post-
processing parts. The architecture of fully convolutional networks (see �gure 4.1) is
composed of three building blocks, which were introduced in chapter 3: downsampling
path, upsampling path and skip connections.
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Figure 4.1.: Fully-convolutional-network architecture by Long et al. [77], designed with
regard to everyday and street-scene images [19, 28, 73]. Vertical lines rep-
resent convolutional layers, where the number of kernels per layer in the
downsampling path follows the VGG16 network [115] so as to enable trans-
fer learning. Squares represent the current image's resolution, where input
and output image have the same resolution, while pooling layers decrease
the image resolution. The curved lines indicate skip connections, which fuse
�ne-grain local information of shallow layers with coarse semantic informa-
tion of deeper layers and thus re�ne the output resolution. Note that FCN-8
denotes a network architecture with two upsampling stages and skip connec-
tions, respectively, where the output image is upsampled 8 times after the
last upsampling stage. Reproduced with kind permission of Evan Shelhamer.

In their work, Long et al. [77] showed that by designing the downsampling path as an
imitation of a standard convolutional-neural-network architecture, pre-trained network
parameters can be transferred so as to increase network performance. A common choice
for this technique, denoted as transfer learning, is the VGG16 network by Simonyan and
Zisserman [115], which outperformed transferred parameters of other architectures in
Long et al. [77]. The VGG16 network and accordingly the fully convolutional network's
downsampling path consist of 13 convolutional layers and three fully-connected layers,
which are in case of fully convolutional networks either transformed to convolutional
layers or omitted. Here, the downsampling path retrieves coarse, semantic information
from the input and outputs highly condensed feature maps, which are then upsampled
using transposed convolution, so as to restore local appearance information. As Long
et al. [77] have shown, upsampling the downsampled features maps in one step yields a
coarse segmentation result. Therefore, two additional upsampling stages were introduced,
which in addition are fused with their downsampling counterpart via skip connections.
In total, this architecture, denoted as FCN-8, covers 15 downsampling layers and three
upsampling layers with corresponding skip connections, where the �nal softmax layer
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outputs the probability distribution over the predicted class categories. Incidentally, fully
convolutional networks were designed for the segmentation of everyday-scene images, such
as given by the PASCAL VOC dataset [28], which covers 11,530 images with 20 class
categories (persons, animals, vehicles, furniture).

Meanwhile, several working groups have advanced the network architecture: as an in-
stance, both Kendall et al. [58] and Noh et al. [85] proposed encoder-decoder architec-
tures: here, the downsampling path (encoder), which consists of the 13 convolutional
layers of the VGG16 network, is mirrored by the upsampling path (decoder). With
this distinctive increase in upsampling layers, both architectures achieve higher classi-
�cation accuracies on the PASCAL VOC dataset but provide too much complexity for
the analysis of photoluminescence images. Note that the network of Kendall et al. [58],
denoted as SegNet, additionally introduced a di�erent upsampling technique. Here, the
decoder stage upsamples the feature maps not with transposed convolution but based
on the maxpooling indices. Dense feature maps are then obtained by subsequent con-
volution with trainable kernels. Altogether, SegNet consists of 26 convolutional layers,
13 downsampling and 13 upsampling layers.

In contrast, Yu and Koltun [134] have developed a di�erent approach regarding the down-
sampling path: instead of consistently subsampling the image dimensions with maxpool-
ing operations, a subset of interior convolutional pooling blocks is replaced by dilated
convolutions. Thereby, multi-scale contextual information is aggregated without loos-
ing spatial resolution. Subsampling operations, like maxpooling, not only condense the
information but also increase the neuron's receptive �eld in deeper layers, enabling the
network to "see" most of the input image. Dilated convolutions, on the other hand,
increase the receptive �eld by modifying the convolution operator instead of downsam-
pling the feature map. Because the spatial consistency between neighbouring pixels grows
weaker as the dilation factor increases, Yu and Koltun [134] replace only the last VGG16
layers with dilated convolution and as a result achieve a higher accuracy on the PASCAL
VOC dataset. Dilated convolutions are used in various contexts [16, 41, 75, 89] and are
also examined in this work.

Images often contain objects of varying size, depending on how close by or far away
the object was photographed as an instance, causing coarse representations of small
objects and fragmented segmentations of large objects. Chen et al. [15] approached this
challenge by implementing a spatial pyramid of dilated convolutions at the end of the
downsampling path, where the feature maps are probed with multiple sampling rates at
once. Thus, multiple e�ective receptive �elds are obtained, which allow the capturing
of objects at multiple scales [45]. Furthermore, conditional random �elds are added as
post-processing step [62]: here, the network's coarse prediction scores are combined with
low-level information captured by local pixel interactions, thus re�ning the segmentation
result. In order to omit the resulting two-step training process, Zheng et al. [142] proposed
to rede�ne conditional random �elds as recurrent neural network so as to fully integrate it
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into the convolutional neural network. In their latest work, denoted as DeepLab3, Chen
et al. [16] introduced a network architecture without conditional random �elds. Instead,
they optimise the spatial pyramid module by adding batch normalisation [53] and include
feature-level information via global average pooling [75, 141]. The additional global
context clari�es local confusions, which can result in fragmented segmentations, and
smooth the segmentation. Incidentally, the work of Liu et al. [75] indicates that adding
image features has a similar e�ect as adding conditional random �elds, next to simplifying
the training process. Accordingly, the implementation of dilated convolutions and image-
level features by means of a spatial pyramid module is examined in chapter 6.

Another approach to increase segmentation accuracy is the consistent implementation of
skip connections, based on the success of very deep convolutional networks build with
residual modules, such as ResNet [42]. Huang et al. [50] advanced the concept of skip
connections even further in their densely connected convolutional network (DenseNet).
Here, each layer inputs all preceding feature maps, which strengthens feature propaga-
tion and alleviates the vanishing gradient problem. Jégou et al. [57] as well as Zhu and
Newsam [146] extended DenseNet to fully convolutional networks and implemented dense
connections throughout the downsampling and upsampling path as well as skip connec-
tions that fuse both paths. The usage of residual shortcuts and dense blocks is further
investigated in chapter 6. When analysing the architectures of Jégou et al. [57] and Zhu
and Newsam [146], di�erences occur in the number of layers and dense blocks as well as
the employed hyperparameters. These di�erences stem from the datasets the architec-
tures were developed for: Jégou et al. [57] aim to segment urban scenes and evaluated
their architecture on the CamVid [10] and the Gatech [97] datasets. Zhu and Newsam
[146], on the other hand, address unsupervised motion estimation, where the optical �ow
of objects is estimated and evaluated their work on the Flying Chairs [31], the MPI
Sintel [11] as well as the KITTI Optical Flow [80] dataset. It becomes apparent that
every application and dataset, respectively, requires a speci�cally designed architecture
in order to achieve state-of-the-art performance.

4.2. Related Work

Next to the presented methods in the previous section that focussed on the network archi-
tecture, this section presents di�erent network designs with respect to their application
and the used dataset. Here, computer vision for autonomous vehicles and medical-image
analysis are arguably the largest research areas. As an instance, most of the aforemen-
tioned network architectures (FCN-8 [77], SegNet [58], DeepLab [15]) are listed in the
leaderboard of the Cityscapes dataset benchmark [19, 54]. Compared to photolumines-
cence images of LED wafers, the images of urban street scenes di�er most obviously in
the number of depicted objects as well as the object variations, as shown in �gure 4.2.
Consider, as an instance the image of a street, showing houses, cars, pedestrians, tra�c
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Figure 4.2.: Comparison of di�erently composed images, namely street-scene images of
the Cityscapes dataset [19] used in the development of a variety of network
architectures [15, 58, 77], transmission electron microscopy images of brain
microcircuitry [13] used by the U-Net architecture [101], and photolumines-
cence images of LED wafers, used in this work.

lights and so on. On the one hand, the number of objects and class categories per image
is usually more than one and can di�er signi�cantly from recording to recording. On
the other hand, houses, cars and tra�c lights are inherently di�erently sized and assume
various scales, depending on the distance to the camera for example. Photoluminescence
wafer images, in contrast, always depict one wafer recorded in the same setting�here,
the challenge stems from the di�ering brightness values of the measurement in addition
to varying defect sizes and shapes, where single defective LED chips correspond to one
pixel (see also chapter 2).

4.2.1. Network Architectures for Everyday-Scene Understanding

As a result of the complex scenery, networks for (street) scene understanding are typically
very deep, counting up to 100 layers [16, 57], and while they aim for a high segmentation
accuracy, pixel-level accuracy is not their focus. Lin et al. [72], as an instance, have
introduced a multi-path re�nement network (Re�neNet) for the segmentation of street
scenes, which exploits image features at multiple levels of abstraction through a cascaded
architecture. In addition, chained residual pooling operations capture image background
context: contrary to wafer images with a steady background, in street-scene images every-
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thing except the given class categories counts as background, including complex scenery.
Dai et al. [21] also introduced several paths to their network structure, but use them as
multi-task outputs for instance-aware semantic segmentation: in the �rst stage, object
instances are marked with boxes (bounding boxes), where two persons correspond to two
instances of the same class category, for example. In the second stage, each instance
is masked (semantic segmentation) before categorising them (instance segmentation) in
the third stage. Distinguishing the various instances of an object obviously advances the
objective of scene understanding. However, neither photoluminescence images nor wafer-
prober-based labels allow consistent conclusions about the defect cause. In contrast, the
network architecture of Pohlen et al. [95] also couples two processing streams, but in a
simpli�ed way: here, skip connections and residual shortcuts are rearranged to one resid-
ual stream, which retains the full image resolution throughout the process. The second
stream follows the typical sequence of downsampling and upsampling, where the result
at each stage is additionally upsampled and added to the residual stream. Analysing seg-
mentation results of both networks reveals two observations: on the one hand, objects
are well recognisable but appear blurred. And on the other hand, slim objects such as
lamp posts are often portrayed holey and coarse. It is obvious, however, that pixel-level
accuracy might be desirable for scene-understanding tasks, but contrary to wafer images
where every pixel corresponds to an LED chip, it may not be a requirement.

4.2.2. Network Architectures for Medical-Imaging Datasets

A di�erent kind of data is covered by medical imaging, where the wide range of appli-
cations includes measurement methods such as (functional) magnetic resonance imaging
(fMRI / MRI) [125], transmission electron microscopy (TEM) [101] and computed to-
mography (CT) [17, 111]. Since 2016, medical image analysis is dominated by deep
learning methods [74]. Contrary to images of everyday and street scenes, medical images
depict just one object with a fairly steady background: consider, as an instance, a CT
image of the abdomen that is recorded to examine the liver with regard to lesions [5, 17].
Here, challenges are a low contrast between liver and lesion as well as a varying number of
di�erently sized and shaped lesions, among others. Hence, medical imaging is in general
more closely related to photoluminescence measurements than urban street scenes, even
though medical images may display more variations. On the task of liver segmentation
and lesion detection, Ben-Cohen et al. [5] were the �rst to employ fully convolutional
networks, with which they outperformed previous state-of-the-art methods. In addition
to the architecture described by Long et al. [77], they experimented with a fourth skip
connection (FCN-4), which they found to not improve accuracy in case of liver segmen-
tation but to be bene�cial for the segmentation of the smaller sized lesions. Another
congruence to photoluminescence images are the small and special datasets: Litjens et
al. [74] observed that the incorporation of expert knowledge into data pre-processing and
augmentation is a key determinant, next to the network architecture and hyperparam-
eter tuning. In line with this, Ben-Cohen et al. [5] increased their dataset by a factor
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of 4 using di�erently scaled images. Furthermore, they augmented the input liver slices
by adding two neighbourhood slices and equalised the class-category balance using class
weights.

In a later work, Christ et al. [17] also attended to automatic liver and lesion segmentation,
using a cascaded fully convolutional network. Their data preparation process involved
several preprocessing steps, which increased the di�erentiation of abnormal liver tissue
in CT/MRI volumes. Moreover, they performed several data augmentations, namely
rotation, translation, elastic deformation as well as adding Gaussian noise to the images.
The network itself consists of two parts: �rst, a fully convolutional network segments the
liver from the abdomen and creates a new image, which depicts the region of interest.
The segmented liver is then the input for a second fully convolutional network, which
segments the lesions. Finally, a 3D conditional random �eld re�nes the predicted lesion
areas and outputs the �nal segmented CT/MRI volume. While achieving state-of-the-art
results, Christ et al. [17] noted that in case of highly heterogeneous structures �nding well
generalising 3D conditional random �eld hyperparameters proved di�cult and referenced
to the aforementioned attempts of including conditional random �elds into the network
[16, 142]. The basic network architecture used by Christ et al. [17] derives from the
so-called U-Net, developed by Ronneberger et al. [101] for the segmentation of brain mi-
crocircuitry (see �gure 4.2). Here, the concept of encoder-decoder networks is combined
with skip connections, that is, the upsampling path mirrors the downsampling path and
all stages are connected via skip connections, as shown in �gure 4.3. In order to teach
the network invariance against image shifts and rotations as well as robustness against
deformations and grey value variations, despite a very small dataset of only 30 TEM
images, Ronneberger et al. [101] used excessive data augmentation in form of random
elastic deformations [114] and dropout layers [118]. In their work, Ronneberger et al.
[101] point out the importance of elastic deformation augmentation and attribute the
associated performance increase to the fact that deformations are a common biomedical
tissue variation, which can be simulated e�ciently. To improve the border segmentation
quality of close-by or touching cells, they also use weighted loss calculation.

Since their introduction in 2015, U-Nets were widely adopted: Çiçek et al. [18] extended
the U-Net architecture to the application of biomedical volumetric image segmentation
by replacing 2D operations with 3D. Li et al. [69] employed U-Net for pixel-level sea-land
segmentation and introduced so-called DownBlocks, which combine two convolutional
layers of 64 and 32 kernels, in order to increase the receptive �eld while decreasing the
number of parameters. Furthermore, each DownBlock implements a residual shortcut
between block input and output and forwards the result to the subsequent block as well
as the corresponding UpBlock. Here, too, data augmentation is used to increase network
robustness via random cropping, where only images are kept which display both, sea
and land objects. Other network architectures, however, are also still in use: Sharma
et al. [111] applied a 10 layer encoder-decoder network to the automatic segmentation of
kidneys, whereas Tai et al. [125] employed an FCN-8 architecture for the segmentation
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Figure 4.3.: U-Net architecture by Ronneberger et al. [101], designed with regard to
transmission electron microscopy images of brain microcircuitry [13]. Here,
each stage covers two consecutive layers and the upsampling path of the U-
Net architecture mirrors the downsampling path, incorporating a so-called
encoder-decoder setup, where all stages are connected via skip connections.
Reproduced with kind permission of Olaf Ronneberger.

of multi-channel fMRI images. Here, each of the 32 fMRI channels corresponds to the
di�erent intensities of various tissues in the vertebral area of human beings. In order
to decrease the dimensionality of the input volume, Tai et al. [125] employed principal
component analysis and calculated a set of three principal-component images, which
represent 99.9% of the original information. Altogether, the dataset consists of only six
images, of which one was spared for testing. The network was initialised with VGG16
weights and trained with a very small initial learning rate of 10−14 for 5.000 epochs. Tai
et al. [125] assume that only limited changes in the transferred weights are necessary for
the network to converge. With a mean intersection over union metric of 60.7, the net-
work implementation outperformed previous state-of-the-art methods such as k-nearest
neighbours with a 13.1 mean intersection over union.

In sum, analysing the literature about fully convolutional networks for medical imaging
reveals that due to the small datasets, more e�ort is expended on pre-processing and
data augmentation. Furthermore, the network architectures are inherently simpler, that
is spatial pyramids or multi-path networks are not employed. Rather, skip connections
are implemented consistently in combination with weighted loss calculation, so as to
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improve pixel-level accuracy. Accordingly, Litjens et al. [74] observed in their review
study that given the same dataset and network architecture, distinctive performance
di�erences could be achieved depending on how the data is presented to the network.

4.2.3. Network Architectures for Industrial Datasets

Using industrial datasets to implement a surface-defect-detection algorithm arguably
shares the most similarities with photoluminescence-image analysis. Here, an object's
surface is analysed based on the image of an optical measurement. Contrary to the
aforementioned tasks, there are no publicly available research datasets of industrial data
and as a result the number of publications is distinctively smaller. Furthermore, the
majority of the publications describes the implementation of convolution neural networks
for defect classi�cation. As an instance, Park et al. [92] studied a �ve layer convolutional
neural network for several material surfaces, including wafers, stone and wood, where
the network predicts whether a defect is depicted or not. Both, Soukup and Huber-
Mörk [117] and Faghih-Roohi et al. [29] developed convolutional neural networks for the
detection of rail surface defects. Here, Soukup and Huber-Mörk [117] implemented a
three-layer network and outperformed a model-based approach with the assistance of
data augmentation, whereas Faghih-Roohi et al. [29] designed a six layer network which
they trained with a dataset of raw images. In order to address the varying environmental
impact on images of civil infrastructure, such as bridges, dams and skyscrapers, Cha et
al. [14] developed an eight layer convolutional neural network. To keep their 5, 888 ×
3, 584 pixel images manageable they implemented a sliding window scanning plan, where
every image is cropped into pieces of 256 × 256 pixels in two slightly shifted scans.
Thereby, missed cracks at the image edge were prevented. After classifying each image,
a crack map of a�ected images was composed�thus indicating that a fully-convolutional-
network architecture might be bene�cial in further studies. They also studied the usage
of classical edge-detection methods, namely Sobel and Canny �lters, but noticed that
due to the noisy images no useful crack information was obtained. Their convolutional
neural network implementation, on the other hand, yielded a classi�cation accuracy of
97.95% while proving robust against varying lighting situations and civil structures.
Closer to semantic segmentation is the work of Li et al. [71], who implemented a so-
called bounding-box algorithm. Here, a convolutional neural network predicts not only
a set of class categories but also the coordinates of a rectangle, which bounds a detected
defect. While bounding-box networks provide only a coarse localisation of the defect,
they are also computationally e�cient and allow real-time classi�cation [49, 76], thus
enabling the intended employment in a �lling line production environment.

Implementations of semantic-segmentation algorithms are presented by Zhang et al. [139],
Wen et al. [131] and Amirul Anwar and Zaid Abdullah [4]. However, none of them utilises
fully convolutional networks: Zhang et al. [139] describe the segmentation of defects in
X-ray images of aluminium alloy wheels, using a six step segmentation process, where an
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adaptive threshold-segmentation algorithm is combined with a morphological reconstruc-
tion operation. As noted by the authors, the algorithm's performance depends crucially
on the setting of �ve di�erent parameters, and as a result the algorithm does not inher-
ently generalise well to varying brightness values. Wen et al. [131], on the other hand,
implement a three step surface-inspection system for mechanical components, namely
bearing rollers. First, a contour-detection module determines whether the bearing roller's
contour is in fact a circle. Then, a convolutional neural network detects possible defects
and marks them with bounding boxes as region of interest. The localised regions are
subsequently extracted and forwarded to a third module, which segments the defective
area. The segmentation algorithm is composed of median �ltering, Otsu thresholding
[90] and morphological processing. Afterwards, the segmented area of each defect im-
age is multiplied with a defect-type-dependant coe�cient and the resulting values are
summed, so as to determine whether the component failed the quality control. The
third study, conducted by Amirul Anwar and Zaid Abdullah [4], examined the detection
of multi-cracks in electroluminescence images of multi-crystalline solar cells. Here, the
objective is to distinguish micro-crack pixels from intrinsic cell structures, such as dis-
location clusters and grain boundaries as well as other defect structures, such as broken
�ngers. The proposed segmentation algorithm consists of �ve steps, starting with image
pre-processing, where the image is �ltered in the frequency domain before normalisa-
tion. Then, an anisotropic di�usion �lter is applied, followed by post-processing, which
includes double thresholding and intensity tracing and thresholding. Afterwards, the
defect shape is analysed and classi�ed by a support vector machine. Hereby, the authors
outperform classical methods such as Canny, Otsu and Sobel and achieve an accuracy of
over 88%, with a comparably long image processing time of 4.1 seconds. Moreover, the
smallest micro-cracks detectable by the algorithm cover 47 pixels�thus the algorithm
does not operate on pixel-level. In all three applications, the utilisation of multi-step
algorithms, which include the setting of multiple parameters, poses the question whether
fully convolutional networks could have been implemented with the same or even better
performance�however, the authors do not mention any experiments in this direction.

4.3. Summary

In sum, fully convolutional networks have outperformed other computer-vision methods
in a variety of research areas in the recent years, such as scene understanding and med-
ical imaging. The given overview over network architectures for di�erent applications
has shown that each application requires its own network design. Moreover, studying
publications with regard to very small medical-imaging datasets emphasised the impor-
tance of a carefully compiled dataset. Due to the lack of public datasets, only few
publications describe the implementation of algorithms for the detection of surface de-
fects, with a focus on convolutional neural networks and sophisticated, hand-crafted
segmentation algorithms. The success of fully convolutional networks on small medical-
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imaging datasets, however, indicates that the application of fully convolutional networks
on industrial datasets may be bene�cial as well. Therefore, in the following chapter
a modi�ed fully-convolutional-network architecture is presented, designed with regard
to the detection of defective LED chips in photoluminescence images. Moreover, ad-
vanced architectural concepts that further increase network performance are introduced,
namely densely connected convolutional layers and atrous-spatial-pyramid-pooling mod-
ules. Next to dataset preparation, the performance of neural-network algorithms depends
heavily on hyperparameter tuning. Thus, chapter 6 analyses the in�uence of di�erent
architectural concepts, various hyperparameters as well as how data preparation may
be used to increase segmentation accuracy. Afterwards, chapter 7 concludes the �nal
network architecture and states implementation details.
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Application

In the previous chapter, an overview of fully-convolutional-network architectures for a
variety of applications was presented, demonstrating that each application requires its
own network architecture design, in addition to a carefully prepared dataset. Based on
these insights, the dataset description in chapter 2 and the theoretical background in
chapter 3, network-design ideas were developed, which address the di�erences between
datasets containing images of everyday scenes and medical images, respectively, and
the given application's small dataset of photoluminescence images. Contrary to the
segmentation of the aforementioned images, photoluminescence images of LED wafers
are simply composed but feature highly variable brightness values and defect structures.
Additionally, each and every pixel corresponds to an LED chip and thus must be classi�ed
accurately. The subsequently presented network architecture approaches this challenge
by setting up a novel upsampling path, where the basic network architecture is inspired by
Long et al. [77] and the design of the downsampling path follows Simonyan and Zisserman
[115], so as to enable the transfer of pre-trained parameters. Afterwards, advanced
architectural concepts are introduced, namely densely connected convolutional blocks
[50] and atrous-spatial-pyramid-pooling modules [16], so as to further re�ne the network
architecture for the given application with respect to the recognition of multiple scaled
image objects. The in�uence of these architectural concepts on network performance, in
addition to hyperparameter tuning and data preparation, is examined in the following
chapter, while chapter 7 presents the �nal network architecture, implementation and
evaluation.

5.1. Basic Fully-Convolutional-Network Design

Fully-convolutional-network algorithms apply thousands of self-learned �lters on an in-
put image in order to determine each pixel's class category. When designing the network
architecture, the composition of the dataset's images and the number of class categories
in�uence the optimal number and interconnection of layers, where networks for everyday-
scene image segmentation may be composed of over 100 layers [10, 42, 57]. Networks for
medical images, on the other hand, are commonly shallower but still cover a large number
of kernels (see also table 6.1). In contrast, photoluminescence images are simply com-
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posed, greyscale images that cover only three class categories, which indicates a shallow
network architecture with a limited number of kernels. Because the downsampling path
follows the VGG16 network by Simonyan and Zisserman [115], so as to enable transfer
learning, the downsampling path was basically preserved. Instead, a novel upsampling
path was developed, which provides a pixel-wise output resolution and reliably distin-
guishes salient brightness values corresponding to defective LED chips from measurement
artefacts and non-defective structures.

Figure 5.1 illustrates the basic design idea of the developed network architecture. The
depicted network inputs a 442×440×1 greyscale photoluminescence image, where 442×
440 are the image dimensions and 1 represents the number of colour channels. First,
the input image is run through two convolutional layers with 64 kernels each, where the
second layer processes the feature maps generated by the �rst layer. Note that each
convolutional layer covers the consecutive operations convolution, batch normalisation
and ReLU activation function. Then, image dimensions are reduced using a maxpooling
operation. The subsequent convolutional layers consist of 128 kernels each. Hereby, a bi-
pyramid of decreased dimensions and an increased number of representations throughout
the downsampling path is initiated. Consequently, feature maps in the last layer in the
downsampling path are reduced to a size of 13× 13, where the two layers cover 512 and
64 feature maps, respectively. In total, the downsampling path consists of 15 layers in six
stages, where the �rst 13 layers imitate the VGG16 architecture and the last two layers
feature a reduced number of kernels so as to reduce network complexity. Moreover,
additional residual shortcuts enable the network to bypass redundant layers in every
three-layer block and thus allow the network to adjust the abstraction of image features
by itself.

Following the same logic of reduced network complexity, the number of layers in each
stage of the upsampling path is restricted to one, with only 64 kernels per layer. This
novel approach takes the simple composition of photoluminescence images into account,
proceeding on the assumption that su�cient feature extraction is performed in the down-
sampling path, while the upsampling path is focussed on providing a pixel-level output
resolution. For this purpose, the upsampling path mirrors the downsampling path and
thus implements gradual upsampling steps using bilinear interpolation, where the sub-
sequent convolution operation re�nes the result. Furthermore, by connecting each up-
sampling stage with its downsampling counterpart via skip connections, coarse semantic
information of deep layers is fused with �ne-grain local information of shallower lay-
ers, which further increases the output resolution. To employ skip connections between
layers with a varying number of feature maps, �rst the depth of the shallow layer is
reduced, where 1× 1 kernels are a common choice due to their small number of parame-
ters. Then, both feature maps are summed before applying a ReLU activation function.
The resulting feature maps are then again resized and enhanced with spatial information
from shallower layers, until image dimensions are eventually restored. At last, the layer
depth is reduced so as to match the number of class categories before calculating output
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probabilities using a softmax activation function. Altogether, the illustrated architecture
features a shallow network design, which enables pixel-�ne and thus chip-�ne output im-
ages due to the consistent implementation of skip connections and gradual upsampling
steps. The e�ects of architectural and hyperparameter choices are further examined in
chapter 6, including the number of layers in the downsampling path, the number of skip
connections and residual shortcuts as well as the upsampling operation. Note that partial
results of the architecture design and hyperparameter tuning have also been discussed
in Stern and Schellenberger [120].

Figure 5.1.: Example of a fully-convolutional-network design developed in this work [120].
The network �rst downsamples the input image using several convolutional
layers (green), where each convolutional pooling block consists of two to three
convolutional layers followed by a maxpooling operation. Afterwards, spatial
dimensions are retrieved by the consecutive operations bilinear interpolation,
convolution and activation function (yellow). To adjust the network design to
the special composition of photoluminescence images, the number of feature
maps in each upsampling layer is restricted to 64. Finally, skip connections
fuse �ne-grain spatial information of shallower layers with semantic infor-
mation of deeper layer and thus improve the output resolution. Additional
residual shortcuts enable the network to bypass redundant convolutional lay-
ers and thus diminish the degradation problem. Depiction adapted from Tai
et al. [125], where Conv denotes 3 × 3 convolution and BN denotes batch
normalisation.
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5.2. Advanced Architectural Methods

The previous section presented a modi�ed fully-convolutional-network architecture, de-
signed with regard to the given dataset. The corresponding analyses in chapter 6 reveal
that the proposed architecture yields reliable segmentation results for single defective
LED chips as well as repeatedly occurring defect structures. Defect clusters with a rare
shape and brightness pattern, however, may result in a �awed segmentation. Therefore,
the possible extension of the developed network architecture with advanced architectural
methods was studied, namely densely connected convolutional blocks and atrous-spatial-
pyramid-pooling modules. On the one hand, densely connected convolutional blocks,
also denoted as dense blocks, advance the idea of residual shortcuts by connecting each
and every layer in the network so as to mitigate the vanishing-gradient problem [50]. On
the other hand, atrous-spatial-pyramid-pooling modules address the challenge of multiple
scaled image objects by probing incoming feature maps with di�erent receptive �elds at
once, using dilated convolutions and global average pooling [16].

5.2.1. Densely Connected Layers

Based on the idea of residual modules (see �gure 3.9), where shortcuts between remote
layers enable the network to individually adjust the degree of feature processing, Huang
et al. [50] developed the concept of dense blocks. Here, all preceding feature maps serve
as layer input, with xl = Hl([x0, x1, ..., xl−1]), where xl is the current layer, Hl is a
composite function of the three consecutive operations convolution, batch normalisation
and ReLU activation function and [x0, x1, ..., xl−1] refers to the concatenation of the
previous feature maps. Note that residual modules combine both layers by summation,
whereas dense blocks employ concatenation to further ease the information �ow through
the network. Figure 5.2 illustrates the idea of densely connected convolutional networks
(DenseNets), with multiple additional paths: a DenseNet architecture with L layers
consists of L(L+1)

2 direct connections between its layers, whereas a vanilla network consists
of only L connections.

Jégou et al. [57] as well as Zhu and Newsam [146] extended DenseNets to fully convolu-
tional networks by implementing dense connections throughout the downsampling and
upsampling paths, in addition to skip connections. However, in each dense block in the
upsampling path, both, the number of feature maps as well as the feature-map resolu-
tion, increase. Therefore, only feature maps of the preceding dense block are upsampled,
yielding Ldb × k output feature maps, where k is the number of feature maps each layer
produces, denoted as growth rate, and Ldb denotes the number of layers in the corre-
sponding dense block. In comparison, the lth layer in the downsampling path outputs
k0 + k× (l− 1) feature maps, where k0 is the number of channels in the input layer. The
direct access of each layer in a DenseNet to both, the input as well as the loss gradients,
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Figure 5.2.: Densely connected convolutional blocks, denoted as dense blocks. Here, each
dense block consists of two to three convolutional layers, followed by a down-
sampling pooling operation. Dense connections are created by feeding each
layer with all preceding, concatenated feature maps. As a result, feature map
re-use is encouraged, yielding condensed, easy to train models. Depiction
adapted from Huang et al. [50].

eases network training and leads to implicit supervision. As a result, the re-use of fea-
ture maps is encouraged throughout the network, which is favourable due to the simple
composition of photoluminescence images and thus enables condensed architectures. As
shown in chapter 6, reducing the number of kernels per layer in the downsampling path
while incorporating dense connections throughout the aforementioned network architec-
ture reduces over�tting and thus increases network accuracy.

5.2.2. Atrous Spatial Pyramid Pooling

The segmentation of defective LED chips in photoluminescence images is challenging for
two reasons: on the one hand, each image pixel correlates to a chip and thus pixel-wise
output resolution is necessary. And on the other hand, defective LED chips occur as
single defect as well as clustered in large defect structures. In other words, defect objects
exist at multiple scales, which may result in �awed segmentation results. To address this
challenge, Chen et al. [16] have introduced a so-called atrous-spatial-pyramid-pooling
(ASPP) module, which probes an incoming feature map at di�erent scales in parallel by
means of dilated (also called atrous) convolutions.

Even though fully convolutional networks output an image of the same resolution as
the input image, consecutive pooling steps reduce the feature map's dimensions in the
downsampling path. Hereby, the ongoing compression of high-level semantic information
along with the increasing receptive �eld compensate for the loss of image resolution
and allow the network to learn progressively abstract feature representations. Dilated
convolutions, on the other hand, increase the network's receptive �eld without decreasing
feature-map dimensions [16, 41, 47, 109, 134]. Instead of applying the kernel values to
a corresponding area of neighbouring pixels, as shown in 3.3 and 5.3 (left), the kernel
values are dilated by sampling the input image with a dilation rate r, yielding
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zi′,j′,f ′ =

Hf∑
i=1

Wf∑
j=1

xi′+ir−1,j′+jr−1,fwijff ′ , (5.1)

where zi′,j′,f ′ is a pixel in an output feature map f ′ and w is a H ×W sized �lter that is
slid across the sparsely sampled input feature map x. Assuming a dilation rate of 2 and
a 3 × 3 kernel, the covered area increases to 5 × 5 pixels, where only every other pixel
is used, as shown in �gure 5.3 (right). Therefore, dilated convolution is also denoted as
atrous convolution, from the French à trous, meaning with holes. Note that a dilation
rate of 1 corresponds to standard convolution. By replacing convolutional layers by
dilated-convolution layers, the receptive �eld grows exponentially with the layer depth,
without loss of image resolution. However, the spatial consistency between neighbouring
pixels grows weaker with an increasing dilation factor, which is unfavourable for small
image objects. Furthermore, keeping feature-map dimensions consistent increases the
network's memory consumption. It is thus common to replace only a subset of interior
subsampling layers, as an instance the last two convolutional blocks of the downsampling
path.

Figure 5.3.: Dilated convolution with a 3×3 kernel. The left side (a) shows dilated convo-
lution with a dilation rate of 1, which corresponds to standard convolution.
The right side (b) depicts a dilation rate of 2, where the neuron's receptive
�eld is increased without the loss of spatial resolution.

By implementing multiple dilated-convolution layers with di�erent dilation rates in par-
allel, ASPP modules analyse the incoming feature maps with various receptive �elds at
once, without changing feature-map dimensions [15, 16, 40, 65, 141]. This parallel pro-
cessing approach enables the network to better recognise image objects at di�erent scales,
such as single defective LED chips and defect clusters. Next to dilated-convolution lay-
ers, ASPP modules incorporate image-level features by means of global average pooling,
so as to prevent fragmented segmentation results: Zhou et al. [143] and Liu et al. [75]
have shown that the e�ective receptive �eld of deep convolutional layers is smaller than
theoretically anticipated, and thus does not capture the global image context. Moreover,
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Chen et al. [16] have shown that with increasing dilation rates the e�ective �lter size is
reduced to 1× 1, because non-centre weights are applied to zero padded and thus invalid
image regions. As a result, the receptive �eld achieved by dilated convolutions is not
large enough to capture image-level context. Therefore, global average pooling is applied
to the incoming feature maps, followed by the consecutive operations 1× 1 convolution,
batch normalisation and bilinear interpolation to retrieve feature-map dimensions [75,
141]. The resulting image-level features are then added to the dilated convolution results
via concatenation and forwarded to the subsequent layer. In sum, ASPP modules apply
di�erent dilated-convolution layers with various receptive �elds to the incoming feature
maps in parallel, in addition to the incorporation of image-level features, and thus im-
prove the recognition of multiple scaled image objects, such as single defective LED chips
and large defect clusters. The analysis of ASPP modules in chapter 6 reveals that fol-
lowing Chen et al. [16] by replacing the last convolutional block in the downsampling
path with an ASPP module does not distinctively increase segmentation accuracy. How-
ever, replacing the penultimate upsampling layer with an ASPP module as well, does in
fact increase segmentation accuracy, especially with regard to uncommon defect patterns
[119].

Figure 5.4.: Atrous-spatial-pyramid-pooling (ASPP) module, which applies four layers to
the incoming feature maps in parallel. On the one hand, dilated-convolution
layers with di�erent dilation rates process the incoming feature maps with
di�erently sized receptive �elds and thus recognise multiple scaled image
objects, such as single defective LED chips and defect clusters. Image-level
features, on the other hand, are calculated via global average pooling and
incorporate global image context so as to prevent fragmentary segmentation
results. Depiction adapted from Chen et al. [16].
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5.3. Summary

In this chapter, design ideas for a fully-convolutional-network architecture for the detec-
tion of defective LED chips in photoluminescence images were proposed. First, a modi�ed
version of the original fully-convolutional-network architecture by Long et al. [77] was
described, where the number of layers in the downsampling path, the design of the up-
sampling path and the number of skip connections were chosen with regard to the given
application. Then, advanced architectural concepts were introduced in order to further
increase the network's segmentation accuracy, namely densely connected convolutional
blocks and atrous-spatial-pyramid-pooling modules. Setting up a fully-convolutional-
network architecture and examining the proposed design ideas involves a large number
of hyperparameters. First, the basic architecture must be tuned, including the number of
layers, the number of skip connections and residual shortcuts as well as the upsampling
operation. Next to design choices, the training process must be adjusted to the data by
means of hyperparameters, such as learning rate and regularisation strength. Using the
tuned, basic network architecture, the in�uence of advanced architectural methods may
be analysed. Finally, the preparation and compilation of the employed dataset distinc-
tively in�uences network performance, as well. Therefore, in the following chapter the
e�ects of architecture design and hyperparameter tuning on network performance, in ad-
dition to the in�uence of dataset compilation, are studied. The �nal network architecture,
implementation and evaluation are presented in chapter 7.
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Tuning & Data Preparation

Developing a neural-network algorithm can be divided in three parts, namely preparing
the dataset, designing the network architecture and tuning the network's hyperparam-
eters. Here, the network's architecture determines the hypothesis space of candidate
input-label mapping functions, in which the learning algorithm searches for a mapping
function that minimises the loss over the available training examples. In other words,
the network design de�nes the algorithm's underlying function, whose parameter values
are learned during network training. Tuning network hyperparameters then constrains
how the algorithm updates the parameters at each training step. Therefore, network
design, hyperparameter tuning and dataset compilation distinctively in�uence the net-
work's performance and only if attuned to each other the network can learn to generalise
well to previously unseen data. As elaborated in chapter 4, diverse architectures have
been developed by di�erent working groups to match various types of datasets and the
more complex the image composition, the deeper and more sophisticated the network
architecture. However, photoluminescence wafer images are, in comparison to standard
research datasets, rather simply composed: the images always display one image object,
an LED wafer, recorded under the same settings. Thus, the challenge stems not from
the complex image composition but from varying wafer-to-wafer brightness values, local
areas of di�ering brightness, defect clusters that assume various shapes and multiple
sizes as well as salient structures, such as �lm tears, that do not correlate to defective
chips, contrary to similar looking cracks. Furthermore, because each pixel of the photo-
luminescence images equals an LED chip, pixel-level prediction resolution is necessary.
Finally, input-label mismatches occur, caused by deriving the label images from defect
information generated by wafer probing. Therefore, this chapter studies how the archi-
tecture design ideas proposed in the previous chapter in�uence network performance, in
addition to hyperparameter tuning and data compilation. First, architectural aspects
of the proposed basic network architecture are examined, such as the number of layers
in the downsampling path, the number of skip connections and the e�ect of residual
shortcuts. Then, hyperparameter tuning is studied, including learning rate and regular-
isation strength, network initialisation and transfer learning, upsampling and optimisa-
tion methods. Because learning rate, L2 regularisation and optimiser method in�uence
each other, all methods are examined on their own as well as in combination. After-
wards, data-speci�c optimisation methods are investigated, namely the employment of a
weighted loss calculation to equalise the unbalanced class categories and the embedding
of ultrasonic measurements into photoluminescence images. Eventually, the extension
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of the developed architecture design with advanced architectural methods is studied,
namely densely connected convolutional blocks as well as atrous-spatial-pyramid-pooling
modules. Finally, the in�uence of dataset composition and the network's generalisation
ability are analysed using k-fold cross validation.

6.1. Network Architecture

In this section, the in�uences of network depth and residual shortcuts are studied. For
this purpose, only the examined network part is changed so as to observe the consequen-
tial e�ects, using the basic network architecture presented in the previous chapter and the
subsequently described hyperparameters. As an instance, when conducting experiments
regarding network depth, the number of layers is changed, whereas all other network as-
pects remain unchanged. Figure 5.1 illustrates the architecture used for the experiments:
the downsampling path follows the VGG16 network [115], as described by Long et al.
[77], and sets up a bi-pyramid of convolutional pooling blocks, where with decreasing
feature map size the number of �lters rises. Imitating the architecture of a standard
research network enables the transfer of pre-trained parameters, which increases network
performance, and thus the �rst four layers are initialised with VGG16 weights while the
remaining ones are initialised randomly, following He et al. [43]. The upsampling path is
speci�cally designed to meet the challenges of the data: since photoluminescence images
are composed comparably simple, each upsampling stage covers only one convolutional
layer with 64 kernels, so as to keep the number of parameters small and prevent over�t-
ting. Moreover, in order to achieve pixel-level resolution, the upsampling path mirrors
the downsampling path and both parts are consistently connected via skip connections.
Upsampling is performed by means of bilinear interpolation followed by a convolutional
operation. Then, the upsampled, coarse information is fused by skip connections with
�ne-grain local information from the corresponding shallow layer in the downsampling
path. For this purpose, the number of feature maps in the last layer of a downsampling
block is reduced to 64 with 1× 1 kernels. Subsequently, the feature maps of both paths
are added and a ReLU activation function is applied. Residual shortcuts, which are
implemented in every three-layer convolutional pooling block, minimise the degradation
problem by widening the network. Furthermore, batch-normalisation layers ease net-
work training by dissolving a layer's dependence on the data distribution of the previous
layer's output. When the original image dimensions are restored, the number of feature
maps is reduced to three, according to the number of class categories. Finally, a softmax
function is applied so as to obtain a network output of three probability maps, which may
be subsumed into one image by keeping only the maximum argument of each pixel.

Using the described architecture, �rst the number of layers in the downsampling path
was examined. Table 6.1 lists four di�erent versions of the aforementioned architecture,
where the �rst version (Standard) incorporates the full VGG16 architecture into the
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downsampling path. Note that the two penultimate layers, each with 4,096 �lters, are
originally fully-connected layers that have been transformed into 4096×1×1 convolutional
layers. The last layer in the downsampling path serves as link between the downsampling
and the upsampling part. All architectures have been trained for 200 epochs with a
learning rate of 8 · 10−4 and an L2-regularisation strength of 5 · 10−4. The Standard
architecture achieved a validation accuracy of 98.7 % and a training accuracy of 99.0 %.
Thus, the network started to over�t to the training data, which indicates that the network
complexity is su�cient for the dataset. Proceeding from the VGG16 architecture, three
additional versions with a reduced number of layers were tested, where the number of
layers deep in the downsampling path was reduced gradually. Architecture 2 (Fleming),
employs only two layers in the sixth stage, with 512 and 64 �lters, respectively. The
last two architectures 3 (Vaughan) and 4 (Broomstick) completely omit the sixth stage
and accordingly the �rst upsampling stage. For the sake of completeness, the analysis
also covers a U-Net architecture, which was developed by Ronneberger et al. [101] for the
segmentation of medical images but is meanwhile used for a wide range of applications [18,
55, 69, 140]. As illustrated in �gure 4.3 and table 6.1, U-net features a di�erent network
architecture, with a shallower downsampling path that is mirrored by the upsampling
path in full and thus covers a larger number of kernels in total.

Table 6.1.: Overview over the four tested architecture variants. The Standard architec-
ture (network 1, see �gure 5.1) follows the VGG16 setup in its downsampling
path, while network 2 (Fleming) is equipped with an abbreviated last stage
of only 512 and 64 feature maps, respectively. Network 3 (Vaughan) and
network 4 (Broomstick) completely omit the last downsampling stage and ac-
cordingly the �rst upsampling stage, where network Broomstick employs only
512 and 64 feature maps in the last two downsampling layers, respectively.
The last layer outputs three probability maps, one for each class category.

layers architecture

1: Standard 2: Fleming 3: Vaughan 4: Broomstick 5: U-Net [101]

conv1 64, 64 64, 64 64, 64 64, 64 64, 64
conv2 128, 128 128, 128 128, 128 128, 128 128, 128
conv3 256, 256, 256 256, 256, 256 256, 256, 256 256, 256, 256 256, 256
conv4 512, 512, 512 512, 512, 512 512, 512, 512 512, 512, 512 512, 512
conv5 512, 512, 512 512, 512, 512 512, 512, 64 512, 64 1024, 1024
conv6 4096, 4096, 64 512, 64 - - -
up1 64 64 - - -
up2 64 64 64 64 512, 512
up3 64 64 64 64 256, 256
up4 64 64 64 64 128, 128
up5 64, 3 64, 3 3 3 64, 64, 3
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The training results of the �ve architectures have been summarized in table 6.2. Here,
the network performance is evaluated with regard to the validation dataset, using pixel
accuracy, the averaged class-wise pixel accuracy and the accuracy of the defect class,
with:

• pixel accuracy:
∑

i pii /
∑

i ti

• mean pixel accuracy: (1/nc)
∑

i pii / ti

• defect-class accuracy: pdd / td

where pji is the amount of pixels of class j predicted to belong to class i, ti =
∑

j pij is
the total number of pixels in class i, nc is the number of classes, pdd are the true positives
of the defect class and td =

∑
j pdj is the total number of pixels in the defect class d.

Table 6.2.: Pixel accuracy (PA), mean pixel accuracy (MPA) and defect-class accuracy
(DCA) of the �ve network architectures Standard, Fleming, Vaughan, Broom-
stick and U-net [101] as described in table 6.1.

PA MPA DCA

1 Standard 98.7 84.1 53.7
2 Fleming 98.7 84.1 53.8
3 Vaughan 98.7 84.3 54.2

4 Broomstick 98.7 83.8 52.9
5 U-net 97.8 72.2 17.6

Analysing the network performances in table 6.2 reveals that regardless of the num-
ber of layers in the downsampling path, all variants of the proposed architecture design
achieve the same validation pixel accuracy. However, with regard to mean pixel ac-
curacy and defect-class accuracy the Vaughan network slightly outperforms the other
architectures, indicating that the most suitable number of layers lies in the middle of the
tested variations. The U-Net architecture, in contrast, yields the lowest performance,
indicating that the deeper upsampling path is less bene�cial with regard to photolu-
minescence images. Incidentally, the consistent implementation of residual shortcuts in
every three-layer block of the other architectures enables them to adjust the number
of employed kernels themselves�hence, the other networks may approximate U-Net's
shallower downsampling path by skipping the middle layer of each three-layer block.

Figure 6.1 visualises the accumulated validation metrics over the training progress of the
best performing architecture (Vaughan) in addition to the deepest network (Standard)
and the most shallow network (Broomstick). Note, that the additional subplots depict
each metric with a logarithmically scaled x-axis, in order to highlight the early training
phase. Moreover, the plots illustrate validation accuracy as solid line and the di�erence
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between training and validation accuracy as area over the line, where a value was recorded
every 50 steps. In the left panel, the accumulated pixel accuracy with respect to the
training steps is displayed. At �rst appearance, it seems as if all networks perform equally
well and no more progress is made after the �rst, drastic increase. However, plotting the
pixel accuracy over a logarithmic scale reveals di�erences in the initial training phase:
even though all three architectures were initialised equally, the initial pixel accuracy varies
from about 30% (Broomstick) to nearly 80% (Vaughan), whereas the training accuracies
start much closer together, in the range between 83% and 85%. With ongoing network
training, all architectures converge to 98.7% validation accuracy.

Figure 6.1.: Visualisation of validation (solid line) and training (area over the line)
metrics of the di�erently deep network architectures Broomstick (shallow),
Vaughan (medium) and Standard (deep). Left: pixel accuracy, middle: mean
pixel accuracy, right: defect-class accuracy. The subplots show the same met-
rics with respect to a logarithmically scaled x-axis, in order to highlight the
initial training phase. The visualisation illustrates how di�erent the learning
progresses even though all architectures achieve similar accuracies, eventu-
ally. The Broomstick architecture, which yields the worst performance, also
shows the highest di�erence between training and validation accuracies.

Analysing the two remaining metrics, mean pixel accuracy and defect-class accuracy,
shows that all networks do in fact proceed to learn, even though pixel accuracy stag-
nates. Note that the distinctive di�erence between pixel accuracy and the other two
metrics is caused by the accuracy paradox: due to the unbalanced class categories, a
high prediction accuracy can be achieved by always predicting the labels of the two ma-
jority classes, in-spec and miscellaneous. The logarithmically scaled subplots illustrate
the variances in the learning process, depending on the architecture. While the mean-
pixel-accuracy plot resembles the aforementioned pixel-accuracy plot, the architectures
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behave di�erently with regard to defect-class accuracy. Here, the eventually best per-
forming architecture, Vaughan, starts with the lowest accuracy. Contrarily, the other two
architectures start with a higher defect-class accuracy that distinctively drops after the
initial steps. This behaviour can be explained by the random initialisation of the deepest
layers. As a result, some of the randomly initialised output pixels correlate to the true
class category. However, the network �rst learns to distinguish non-wafer and wafer ar-
eas before recognising more �ne-grained structures and thus the initially high defect-class
accuracies drop before increasing again. In sum, the Vaughan network shows the most
robust learning progress and �nally yields the highest performance of all evaluated net-
work architectures. Still, with just slightly deviating validation metrics it appears as if
the number of layers barley in�uences the resulting network performance. Therefore, the
impact of skip connections and residual shortcuts is examined, which create additional
pathways and thus enable the network to bypass redundant layers.

6.1.1. Residual Shortcuts and Skip Connections

Fully convolutional networks employ cascades of �lters, which analyse the image features
and eventually segment the image into the given class categories. However, not every
image feature requires the same amount of processing and thus residual shortcuts are im-
plemented, which enable the network to individually choose the degree of processing for
each feature. Skip connections, on the other hand, fuse shallow layers of the downsam-
pling path with deeper layers in the upsampling path and by doing so re�ne the output
resolution. The in�uence of residual shortcuts and skip connections can be observed by
removing both before training the network for 200 epochs, using the same hyperparame-
ters as before. Now, the shallow Vaughan architecture's defect-class accuracy drops from
54.2% to 30.7%, whereas the deeper Standard network yields only 0.01% defect-class
accuracy, compared to 53.7% before. This indicates that the last layers of the Stan-
dard network do not contribute to the classi�cation and are mostly bypassed by the
skip connections and the residual shortcuts. Figure 6.2 visualises pixel accuracy, mean
pixel accuracy and defect-class accuracy of the Standard architecture without residual
shortcuts and skip connections (blank), with residual shortcuts but without skip connec-
tions (no skips) and with residual shortcuts and gradually added skip connections (1 - 5
skips), starting by fusing the deepest layers. It becomes apparent that adding two skip
connections enables the network to skip the deepest layers and distinctively increases
network accuracy. The highest accuracy in all three metrics is achieved with four skip
connections, where all but the input and output layer are fused, while adding a �fth skip
connection results in a slight drop in accuracy.

Removing skip connections and residual shortcuts not only prevents the network from
skipping redundant layers but also exacerbates parameter updates. During backpropaga-
tion, the gradients of a sequential network pass all layers from the network output back
to the �rst layer, which may result in vanishing gradients caused by the chained calcula-
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Figure 6.2.: In�uence of residual shortcuts and a varying number of skip connections on
pixel accuracy (red), mean pixel accuracy (grey) and defect-class accuracy
(blue). While residual shortcuts alone (denoted as no skips) and one skip
connection barely in�uence network performance, the implementation of two
skip connections distinctively increases all three metrics, with a peak at
four skip connections. Note that �gure 6.3 further examines the impact of
residual shortcuts. Because skip connections re�ne the spatial resolution of
the network output they have the greatest in�uence on defect-class accuracy.
The details and results of the plot have also been summarized in table B.1

tion. Skip connections, on the other hand, allow the gradients to bypass several layers,
resulting in a more direct parameter update which eases network training. Figure 6.3
illustrates this e�ect, by plotting pixel accuracy, mean pixel accuracy and defect-class
accuracy of a Standard architecture without residual shortcuts and skip connections (red
line), with residual shortcuts but without skip connections (grey line) and with residual
shortcuts and two skip connections (blue line). Note that the �rst two architectures have
been trained for 400 instead of 200 epochs and with a higher learning rate. On the one
hand, the distinctive increase in network performance due to the two skip connections
becomes apparent, especially with respect to defect-class accuracy. Incidentally, the fact
that all networks achieve over 90% pixel accuracy despite the low defect-class accuracy
is a consequence of the aforementioned accuracy paradox. On the other hand, the plots
illustrate that networks without residual shortcuts and skip connections require more
training steps and a higher learning rate. Moreover, even though the previous plot (6.2)
showed no di�erence between a network with and without residual shortcuts, the longer
training duration reveals that residual shortcuts indeed ease training and yield a faster
increase in accuracy. In sum, residual shortcuts and skip connections widen the network
with additional paths that allow the algorithm to bypass redundant layers and thus ease
network training. As a result, the number of layers employed in the downsampling path
only slightly in�uences the resulting accuracy, even though more suitable network archi-
tectures, such as the Vaughan network, demonstrate a more stable training behaviour.
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Figure 6.3.: In�uence of residual shortcuts on pixel accuracy (left), mean pixel accu-
racy (middle) and defect-class accuracy (right). The plot compares networks
trained without residual shortcuts (red), with residual shortcuts (grey) and
with residual shortcuts and two skip connections (blue). Note that the lat-
ter was trained for 200 epochs while the �rst two networks were trained for
400 epochs and with a higher learning rate. The plots reveal how residual
shortcuts and skip connections increase network performance, where two skip
connections distinctively ease network training.

6.1.2. Filter and Feature-Map Visualisation

Neural-network algorithms are composed of millions of self-learned, interacting parame-
ters and non-linearities and have thus long been considered as black boxes, where it is
not clear what the intermediate layers compute. Meanwhile, various methods for the vi-
sualisation of convolutional layers have been developed [27, 82, 87, 133]. These methods
allow an interpretation of what kind of �lters the network has learned and thus a more
founded assessment of the architecture. In order to visualise network �lters, the trained
network is turned upside down, so to speak, with a random noise image as input. Then,
the derivatives of the chosen �lter are used to enhance the image in such a way that the
activations of the �lter's neurons are maximised. In other words, an image is created
that shows which kinds of patterns the �lter has learned to recognise. Based on the
aforementioned results, all following analyses were conducted on the Vaughan network.
Figure 6.4 depicts a selection of �lters of the �rst two convolutional layers (layers 1_1
and 1_2), each of which covers 64 �lters in total.

As is typical for convolutional neural networks [133], �lters in the �rst layer recognise
simple geometrically patterns as well as colours and shades of grey, respectively. However,
some �lters displays noisy patterns, such as the third �lter of layer 1_1, which result in
all-zero feature maps. The regular occurrence of these dead �lters can be an indicator
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Figure 6.4.: Visualisation of patterns recognised by the network's learned �lters, where
the �rst row corresponds to the �rst network layer (layer 1_1) and the second
row to the second layer (layer 1_2) of the �rst convolutional block. Filters
of the �rst layer commonly recognise simple geometrical patterns, colours
and shades of grey, respectively. The third �lter shows a noisy pattern,
indicating a so-called dead �lter, which generates all-zero feature maps. The
second layer inputs the pre-processed feature maps of the �rst layer and
recognises more complex patterns, which combine various features such as
blobs and lines.

of badly tuned hyperparameters [30] or unused �lters in a residual module. Accordingly,
about half the �lters of the bypassed layers 3_2 and 4_2 show noisy patterns, contrary
to a minority of �lters in the other layers. The second row in �gure 6.4 depicts a sample
of �lters of the second layer 1_2, which inputs the feature maps of the �rst layer. As
elaborated in chapter 3, with increasing network depth each layer's receptive �eld in-
creases and the �lters recognise more complex patterns. These e�ects can be clearly seen
in networks that analyse everyday scenes, as shown by Olah et al. [87], where deep �lters
display dog snouts, eyes and buildings. Defect structures and wafer patterns, however,
are less noticeable and thus the �lters are less interpretable. Still, �gure 6.4 shows that
the second layer's �lters are less clean than those of the �rst layer and seem to combine
various patterns, such as lines and blobs. Analysing the corresponding feature maps in
�gure 6.6 illustrates the e�ects of both layers: the depicted output map of layer 1_1
emphasises changes in brightness, whereas the output of layer 1_2 elevates in-spec areas
by highlighting ascending and descending edges, causing a 3D like appearance.

Figure 6.5 displays a �lter example for each of the nine remaining layers. Here, the �lters
show varying structured patterns, partly interspersed with blobs that might correspond
to void structures as well as granular structures, which might relate to single defective
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chips or OCR chips. While an increasing complexity with increasing network depth is
not noticeable, the patterns show a higher frequency. As mentioned before, layer 3 and
4 are residual modules, where the middle layers 3_2 and 4_2 are bypassed by a residual
shortcut. As a result, half of the �lters in layer 3_2 and over 3/4 of the �lters of layer 4_2
show noisy patterns. Interestingly, only a minority of the subsequent layer's �lters are
dead, even though these �lters could be bypassed by the skip connections. This indicates,
in addition with the drop in network accuracy of the shallow Broomstick network, that
the network bene�ts from a self chosen number of deep layers and that residual shortcuts
and skip connections complement each other. Analysing the sixth layer of the Standard
network architecture supports this observation. Here, layers 6_2 and 6_3 display mostly
dead �lters, even though layer 6 is not a residual module, which indicates that the layers
are nonetheless bypassed by the skip connections.

Figure 6.5.: Visualisation of patterns recognised by the network's deep layers. Contrary
to �lters in the �rst two layers, deep �lters depict overall less variability and
the di�erent textures cannot easily be attributed to wafer structures.

Figure 6.6 illustrates how the input image is processed by the network; the corresponding
input and label images are shown in �gure 2.4. Note that the feature-map dimensions
are reduced after each convolutional block via maxpooling, which manifests in the loss of
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resolution. The input and output images are of size 442 × 440 and the smallest feature
maps in the �fth convolutional block are of size 28× 28. Analysing the selected feature
maps reveals how the network extracts features from the input image: in the �rst few
layers, the in-spec wafer area is emphasised in contrast to background, functional and
defective areas. With increasing network depth, the feature maps show more diversity
and maps that highlight the miscellaneous class (3_3), in-spec chips (3_1) or the neg-
ative of the in-spec class (3_2) appear. Moreover, defect and functional structures are
emphasised (3_1). While similar feature maps can be observed in the fourth layer, al-
beit with less resolution, feature maps of the �fth layer are less interpretable because the
information is too highly condensed. As elaborated in chapter 3, the neuron's e�ective
receptive �eld, that is the area in the input image the neuron is connected to through
the previous layers, increases with every layer and pooling operation. As a result, each
pixel in the last layer's feature maps represents an evaluation over a 196 × 196 area in
the input image. After downsampling, the original image resolution is restored via up-
sampling, illustrated by the four feature map images up_1 to up_4. Finally, the output
layer is reduced from 64 to 3 maps, where each map outputs the probabilities of one
class category. The presented output map depicts the defect class and combines the
evaluations of several previous feature maps. Interestingly, while many feature maps can
be associated with one class category alone, others are a combination of class categories.
As an instance, the feature map sample up_4 covers the background as well as salient
defect structures. Nonetheless, the defect-class output map displays a clear segmentation
of the defective areas alone.

In sum, this section examined how design choices in�uence network performance, starting
with network depth. Here, four di�erently deep network architectures were compared,
where the second shallowest Vaughan architecture slightly outperformed the remaining
networks. The only slight di�erences in network performance were then traced back to
the thorough implementation of residual shortcuts and skip connections. Studying the ef-
fects of skip connections on the Standard architecture revealed that two skip connections
already ease network training distinctively and thus increase network performance, where
an architecture with four skip connections outperformed the remaining variants. Even
though residual shortcuts did not have an obvious in�uence on network performance, the
analysis of training progress with and without residual shortcuts showed that residual
shortcuts in fact ease network training. Moreover, investigating the network's learned
�lters exposed a high number of so-called dead �lters in bypassed layers in contrast to
a minority of dead �lters in the remaining layers, indicating that the network does use
residual shortcuts to adjust the number of utilised �lters. Finally, studying visualised
network �lters and feature maps of intermediate layers allowed an interpretation of what
kind of �lters the network has learned and how the network processes the input images.
The following section studies the in�uence of hyperparameter tuning on network perfor-
mance, using the aforementioned Vaughan network with residual shortcuts implemented
in every three-layer convolutional block as well as three skip connections, which connect
the corresponding inner layers of downsampling and upsampling path.
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Figure 6.6.: Visualisation of the network's feature maps. The depicted images represent
the transformation of the input image while being processed by the network.
Note that the image resolution decreases with every downsampling layer
block (2-5) and increases again with every upsampling layer (up 1-4). It
becomes apparent that with increasing network depth the information gets
increasingly compressed up to the point where the feature maps are no longer
interpretable. Furthermore, the feature maps illustrate how the network
collects evidence for each class category.

6.2. Hyperparameter Tuning

The previous section explored the e�ects of architectural design choices, more precisely
how the number of layers in�uences network performance and how residual shortcuts and
skip connections ease network training. Subsequently, �lter and feature map visualisa-
tion were used to investigate which patterns the network has learned to recognise and
how feature maps develop throughout the network. Next to the network architecture,
the network's performance depends strongly on hyperparameters, where due to the high
amount of hyperparameters and their mutual in�uence onto each other it is common to
rely on best practices, such as employing the ReLU activation function or updating the
parameters using the Adam optimiser [30, 39]. Other hyperparameters, including the
learning rate or model complexity, depend strongly on the dataset and therefore must be
determined individually. This section studies various signi�cant hyperparameters, start-
ing with the resizing operation in the upsampling layer. Then, parameter initialisation
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using transfer learning, the in�uence of the learning rate as well as the regularisation of
the model complexity are investigated. Finally, the impact of di�erent parameter update
methods is examined, followed by weighted loss calculation and the usage of ultrasonic-
embedded photoluminescence images to mitigate input-label mismatches.

6.2.1. Resizing Operation

Fully convolutional networks �lter the images so as to extract their core features and
determine each pixel's class category. While the downsampling path is used to extract
semantic meaning, the upsampling path serves as a means to restore the spatial informa-
tion. Chapter 3 introduced two upsampling methods: on the one hand, the feature maps
can be upsampled using a prede�ned interpolation function, such as nearest neighbour,
bilinear or bicubic interpolation, before applying convolution and a ReLU activation func-
tion. By doing so, upsampling is initialised by the interpolation method and the network
is trained to further adjust the reconstructed signal with learnable �lters. On the other
hand, the convolutional operation can be reversed via transposed convolutions, where the
network learns the upsampling from scratch. Table 6.3 compares pixel accuracy, mean
pixel accuracy and defect-class accuracy of the aforementioned Vaughan network, with
varying upsampling operations. As before, all network variations achieve similar pixel
accuracies, while mean pixel accuracy and defect-class accuracy show more diversity.
Interestingly, the combination of a �xed interpolation method with a subsequent adjust-
ment outperforms the purely self-learned transposed convolution. Of all tested methods,
bilinear interpolation achieves the highest mean pixel accuracy and defect-class accuracy,
followed by nearest neighbour interpolation. As shown in �gure 3.8, bilinear interpolation
represents a trade-o� between nearest neighbour interpolation, which yields a piecewise
signal reconstruction, and bicubic interpolation, with a rather blurry result. Thus, bilin-
ear interpolation is used as upsampling method in the following network studies.

Table 6.3.: Performance metrics of network architectures with di�erent upsampling oper-
ations. The table compares performance by pixel accuracy (PA), mean pixel
accuracy (MPA) and defect-class accuracy (DCA) on the validation dataset.
While all upsampling operations achieve similar pixel accuracies, bilinear in-
terpolation slightly exceeds the other interpolation methods with regard to
mean pixel accuracy and defect-class accuracy. The networks were initialised
randomly and trained for 200 epochs.

upsampling operation PA MPA DCA

transposed convolution 98.5 82.7 49.8
bilinear 98.6 83.4 51.4

nearest neighbour 98.6 83.3 51.3
bicubic 98.6 82.9 50.0
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6.2.2. Activation Function

From a mathematically standpoint, neural-network algorithms are chained non-linear
functions, where the activation function introduces the non-linearity to the calculation.
Currently, the ReLU activation function counts as best practise, due to its e�ciently
to compute and consistent gradients, which diminish the vanishing gradient problem.
Furthermore, the ReL unit's hard threshold causes sparse representations, whose advan-
tageousness depend on the network setup and dataset. Figure 6.7 illustrates the in�uence
of di�erent activation functions on the validation defect-class accuracy, namely ReLU,
leaky ReLU, softplus and tanh. While the classical tanh activation function initially
achieves the highest performance, it starts to level o� after about 10,000 training steps,
presumably due to vanishing gradients, yielding a �nal defect-class accuracy of 41.4%.
Furthermore, enabling dense representations by using softplus or leaky ReL units does
not bene�t network performance, where softplus achieves the lowest accuracy with 40.3%
followed by leaky ReLU with 41.3% defect-class accuracy. Even though ReL units ini-
tially lag behind tanh activation functions, they eventually yield the highest performance
with 43.9%.

Figure 6.7.: Comparison of di�erent activation functions, namely ReLU (red), leaky
ReLU (grey), softplus (blue) and tanh (yellow), where ReL units eventu-
ally yield the highest defect-class accuracy. The details and results of the
plot have also been summarized in table B.2.
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6.2.3. Network Initialisation

The strength of neural-network algorithms lies in the trainable weights and biases, which
are adjusted to the training dataset via backpropagation. Various studies have exam-
ined the in�uence of parameter initialisation on the training progress, due to the ne-
cessity of varying initial parameter values [37, 39, 43]: initialising all parameters with
the same value would result in equal parameter updates and thus inhibit any learning.
The common practice for convolutional and fully convolutional networks is the so-called
He initialisation. Here, the parameters are initialised with random values, drawn from
a Gaussian distribution with a standard deviation of

√
2/N , where N is the number

of incoming nodes [43]. Assume, as an instance, a previous layer of 64 feature maps
and 3 × 3 convolutional kernels, then the number of incoming nodes is calculated as
N = 9 · 64 = 576.

Another method of parameter initialisation is transfer learning, as described in chapter 3.
Here, the network is initialised with parameter values obtained by previous training on
a very large research dataset. During network training, the parameter values are merely
�netuned to the actual dataset, using a comparably small learning rate. The idea behind
transfer learning is to exploit the fact that all images are inherently composed of simi-
lar patterns, such as light-dark transitions and basic shapes. However, with increasing
network depth the complexity and di�erentiation of the learned �lters increases and trans-
ferability decreases. Therefore, the number of layers initialised with transferred weights
must be adjusted to the dataset. Table 6.4 summarises the conducted experiments: �rst,
all network layers were initialised randomly, following He et al. [43]. Then, parameter
values trained on the ImageNet dataset with a VGG16 network were transferred into the
�rst two, four, seven and ten layers, respectively [104, 115]. The table lists similar results
for all initialisation methods, except defect-class accuracy, where He initialisation yields
the lowest accuracy with 51.4%, whereas all VGG initialisations achieve over 53%. This
result indicates that network performance bene�ts from pre-trained weights. Moreover,
the performance peaks when transferring pre-trained parameters to the �rst four layers
only, suggesting that the transfer of unsuitable parameters slightly hinders the learning
process in comparison to He initialised parameters. Thus, in the following experiments
the �rst four network layers are initialised with pre-trained weights and the remaining
layers are initialised randomly.

6.2.4. Learning Rate

Network training updates the parameter values via backpropagation into the direction
of the loss function's minimum. The exact update value is determined by each parame-
ter's gradient in combination with the learning rate, with θ′ = θ − η∇θ, where θ is the
parameter and η is the learning rate. Tuning the learning rate to a suitable value distinc-
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Table 6.4.: Performance metrics of di�erently initialised network architectures. Here, He
denotes the random initialisation of all parameter values, following He et al.
[43], whereas VGG_x stands for the transfer of pre-trained values into the x
�rst network layers and He initialisation of the remaining layers. The table
compares performance by pixel accuracy (PA), mean pixel accuracy (MPA)
and defect-class accuracy (DCA) on the validation dataset. While similar
values are reached in pixel accuracy, defect-class accuracy can be increased
by about 3% with VGG4 initialisation compared to He initialisation.

initialisation method PA MPA DCA

He 98.6 83.4 51.4
VGG2 98.7 84.0 53.1
VGG4 98.7 84.3 54.2

VGG7 98.7 84.1 53.8
VGG10 98.7 84.2 53.8

tively in�uences network performance: if the learning rate value is too high, then the loss
function's minima may be overstepped and the algorithm may fail to converge or even
eventually diverge, whereas a very small learning rate requires unreasonably long training
durations [30, 46]. It is therefore common to choose a higher initial learning rate, which
is reduced during network training. One way to do so is with an exponentially decaying
learning rate, as described in chapter 3. Figure 6.8 visualises pixel accuracy, mean pixel
accuracy and defect-class accuracy for various initial learning-rate values, which were
exponentially decayed with a decay rate of 0.96 over 200 epochs. To equally cover the
full range from 1 ·10−1 to 1 ·10−5, random values were determined on a logarithmic scale,
with two additional values on the range limits. Note that initial learning-rate values up
to 1 · 10−15 are not unusual, especially with regard to transfer learning and �netuning
[125]. However, the results in �gure 6.8 reveal that for the given network and dataset
learning-rate values around 1 · 10−3 achieve the best performance, while values at the
range limit show a distinctive drop in accuracy from over 50% defect-class accuracy to
about 30%.

Figure 6.9 visualises how mean pixel accuracy and defect-class accuracy develop during
network training for three learning-rate values, namely the lower limit 1 · 10−5, the best
performing value 1 · 10−2.62 and the upper limit 1 · 10−1. Both plots reveal that the
upper limit learning rate (red line) performs comparably weak in the early training but
improves eventually, due to the decaying learning rate. The lower limit learning rate
(blue line) shows the opposite development, where the initial increase in defect-class
accuracy declines rapidly in conjunction with the decaying learning rate, whereas the
intermediate learning rate (grey) converges more slowly and distinctively outperforms
the other two learning-rate values. In sum, combining a tendentially too high initial
learning with learning-rate decay allows the network to make rapid progress at the early

80



6. Analysis of Network Design, Hyperparameter Tuning & Data Preparation

Figure 6.8.: The in�uence of di�erent initial learning-rate values on network performance,
namely pixel accuracy (PA), mean pixel accuracy (MPA) and defect-class
accuracy (DCA). The studied values range from 1 · 10−1 to 1 · 10−5 and were
drawn randomly from a logarithmic scale. It becomes apparent that learning
rates around 1 ·10−3 achieve distinctively higher defect-class accuracies than
values at the range limit. The highest accuracy yields an initial learning rate
of 1 ·10−2.62, with 54.5% defect-class accuracy, in comparison to 25.6% with
a learning rate of 1 · 10−1. The details and results of the plot have also been
summarised in table B.3.

training and eventually converge to the loss function's minimum employing only small
parameter updates.

6.2.5. L2 regularisation

Neural-network algorithms cover thousands to millions of parameters and are thus prone
to over�t, where the algorithm learns a decision boundary that �ts perfectly to the train-
ing data but does not generalise well to previously unseen data. As a result, validation
accuracy levels o�, and may eventually diverge, while training accuracy still rises, as
shown in �gures 6.1 and 6.12. Adding a regularisation term to the loss function that
penalises high weight values imposes a preference for simpler network functions on the
optimisation process. In other words, the network model's complexity is constrained,
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Figure 6.9.: Training progress of a network trained with three di�erent initial learning
rates, namely 10−1 (red), 10−2.62 (grey) and 10−5 (blue), which were expo-
nentially decayed during training. The highest learning rate (red) initially
shows a slow learning progress but gains performance due to learning-rate
decay, whereas the lowest learning rate (blue) starts o� better but eventually
levels o�. The intermediate learning rate (grey) yields fast initial progress
with a comparably high learning rate but then converges to the loss func-
tion's minimum due to smaller parameter updates caused by the decaying
learning rate.

which diminishes over�tting. The left panel in �gure 6.10 shows the same pixel accu-
racy, mean pixel accuracy and defect-class accuracy of a network trained with di�erent
learning-rate values as �gure 6.8, but in addition visualises the di�erence between valida-
tion and training accuracies. It becomes apparent that the peak in training defect-class
accuracy does not correlate with the peak in validation accuracy, indicating that over�t-
ting hinders generalisation. The right panel in �gure 6.8 shows the in�uence of di�erent
L2-regularisation strengths in the range from 1·10−1 to 1·10−5 on training and validation
metrics on a network trained with a learning rate of 1 · 10−2.62. The dotted line repre-
sents training and validation defect-class accuracy without regularisation and illustrates
the decrease of validation and training metrics with increasing regularisation strength.
While validation accuracy drops rather slowly in the beginning, L2 regularisation distinc-
tively decreases training accuracy to the point where the training accuracy falls below
validation accuracy.

Figure 6.11 illustrates another aspect of L2 regularisation, namely the mutual in�uence of
learning rate and L2 strength on each other. Here, the red and grey plots equal the defect-
class accuracies of the previous �gure (6.10), where red represents a network trained with
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Figure 6.10.: Visualisation of over�t (left) and the in�uence of L2 regularisation (right).
The left panel illustrates the di�erence between validation accuracy (solid
line) and training accuracy (area over the line) for pixel accuracy (PA),
mean pixel accuracy (MPA) and defect-class accuracy (DCA) of a network
trained with various learning-rate values in the range from 1·10−1 to 1·10−5.
It becomes apparent that the peak in training accuracy does not correlate
to the peak in validation accuracy, which indicates that over�tting hinders
network generalisation. The right panel illustrates the in�uence of di�erent
L2-regularisation strengths in the range from 1 · 10−1 to 1 · 10−5 on a net-
work trained with a learning rate of 1 · 10−2.62. The dotted line marks the
unregularised training and validation defect-class accuracy, respectively. It
becomes apparent that L2 regularisation mitigates over�tting but restrict-
ing the network's complexity exceedingly declines overall network perfor-
mance. The details and results of the plot have also been summarised in
table B.4.

di�erent learning-rate values without regularisation and grey represents the in�uence of
various L2-regularisation strengths on a network trained with a learning rate of 1·10−2.62.
The additional blue plot represents the in�uence of di�erent L2-regularisation strengths
on a network trained with a smaller learning rate of 1 · 10−3.1. In other words, �gure
6.11 compares the e�ect of L2 regularisation on a network trained with two di�erent
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learning rates (grey and blue line) in combination with an unregularised network trained
with di�erent learning rates (red line). Note that the x-axis corresponds to learning-
rate values with respect to the red plot and L2 regularisation values with respect to the
blue and grey plots. Thus, the dots in the red plot illustrate validation and training
accuracy for both learning-rate values, 1 · 10−2.62 on the right and 1 · 10−3.1 on the left,
where the latter over�ts more strongly. Both networks achieve a comparable validation
accuracy of 54.5% and 54.4%, respectively. The grey and blue dots correspond to an L2-
regularisation strength of 5 ·10−4 and hence visualise the change in network performance
for both networks, when regularised. Here, the higher learning rate (grey) shows a more
distinctive reaction, where training and validation accuracy decrease from 74% to 59.8%
and from 54.5% to 51.0%, respectively. The training accuracy of the smaller learning
rate (blue) decreases as well, albeit not as strongly, from 77.0% to 70.1%. Moreover,
validation accuracy peaks at the chosen regularisation strength and achieves a defect-class
accuracy of 54.4%, which is comparable to the non-regularised accuracy of 54.0%. These
results visualise the mutual in�uence of learning rate and L2 values and the necessity to
tune both values with respect to each other.

Figure 6.12 compares the training process of a network trained with low (red, L2 =
1 · 10−5), medium (grey, L2 = 5 · 10−4) and strong regularisation (blue, L2 = 0.1). As
is to be expected, imposing a strong regularisation (blue line) on the network model's
complexity decelerates learning, whereas defect-class accuracy grows steadily. Finally,
validation and training defect-class accuracy converge and with ongoing training the
network goes into over�tting, yielding a validation accuracy of 44.6% and a training
accuracy of 45.1%. The red plot illustrates a weakly regularised network, where the
highest initial performance is followed by strong over�tting. As a result, validation accu-
racy levels o� with 51.0% while training accuracy rises further to 74.9%. Regularising
the network with a medium strength (grey line) mitigates over�tting and even though
the network learns more slowly at the beginning it catches up after about 10,000 steps
and excels the weakly regularised network, yielding a validation accuracy of 53.3% and
a training accuracy of 72.4%. In sum, adding an L2-regularisation term to the network's
loss function diminishes over�tting by restricting the model complexity and thus im-
proves the network's generalisation ability. However, the impact of L2 regularisation on
network performance depends on the learning rate as well, which exacerbates the tuning
process.

6.2.6. Optimiser

The previous two sections studied the in�uence of initial learning rate, learning-rate
decay and regularisation strength on the network performance. However, setting one
learning rate value for all network parameters may result in the so-called vanishing gra-
dient problem, where parameters in the shallow layers receive small parameter updates
compared to deep layer parameters. Moreover, large updates may oscillate across the loss
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Figure 6.11.: In�uence of L2 regularisation on di�erent learning-rate values. The red plot
shows validation (solid line) and training (area over the line) defect-class
accuracy of a network trained with various learning-rate values and the
red dots illustrate the performance of two selected networks trained with a
learning rate of 1 ·10−2.62 (right) and 1 ·10−3.1 (left), respectively. The blue
and grey plots show the in�uence of di�erent L2-regularisation strengths
on the aforementioned networks, where grey corresponds to a learning rate
of 1 · 10−2.62 and blue correlates to a learning rate of 1 · 10−3.1. It becomes
apparent that applying an L2-regularisation strength of 5 · 10−4 on both
networks achieves di�ering results, where validation and training accuracy
of the higher learning rate (grey) are distinctively reduced while the lower
learning rate (blue) yields a comparable validation accuracy in conjunction
with a decreased over�tting. The details and results of the plot have also
been summarized in table B.4 and table B.5.

function's high curvature areas, reversing previous updates and thus hindering the learn-
ing process. Chapter 3 introduced various optimisation methods, which aim to address
these shortcomings, and �gure 6.13 visualises pixel accuracy, mean pixel accuracy and
defect-class accuracy of the described methods gradient descent, momentum, AdaGrad,
Adam and RMSProp. The solid line illustrates the results of a network trained with an
initial learning rate of 10−2.62, whereas the dotted line represents an initial learning rate
of 8 · 10−4. As could be observed for all previous experiments, pixel accuracy shows only
slight variations, while mean pixel accuracy and defect-class accuracy vary distinctively,
depending on optimiser method and learning rate. Here, the standard gradient-descent
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Figure 6.12.: In�uence of varying L2 values on the training progress of defect-class accu-
racy, illustrated by a network trained with low (red, L2 = 1 ·10−5), medium
(grey, L2 = 5 · 10−4) and strong regularisation (blue, L2 = 0.1). The area
over the curve displays the di�erence between validation and training ac-
curacy. It becomes apparent that implementing a strong regularisation on
the network (blue) decelerates the learning progress, whereas a weakly reg-
ularised network learns rapidly at the beginning but levels o� eventually,
due to over�tting. Imposing a tuned regularisation on the network initially
mitigates learning but due to reduced over�tting the network catches up
and excels the weakly regularised network. The details and results of the
plot have also been summarized in table B.6.

update method achieves comparable accuracies for both learning-rate values and un-
derperforms compared to almost all other methods with 35.0% and 31.0% defect-class
accuracy, respectively. Adding a momentum term to the gradient-descent calculation in-
corporates previous parameter updates and thus accelerates network training. However,
momentum-based learning tends to overshoot the loss function's minimum, which pre-
sumably causes the low defect-class accuracy of 33.3% of the higher learning rate (solid
line). The smaller learning rate (dotted line) surpasses all aforementioned metrics with a
defect-class accuracy of 40.0% and thus clearly bene�ts from the additional momentum
term.

Another way to optimise the learning process is by calculating individual learning rates
for each parameter, using the AdaGrad algorithm, which achieves a defect-class accu-
racy of 38.7% with respect to the higher learning rate. However, a disadvantage of the
AdaGrad optimiser is a prematurely slowed down learning progress caused by dividing
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Figure 6.13.: Comparison of optimiser methods with respect to two di�erent learning
rates. The �gure visualises pixel accuracy (PA, red), mean pixel accuracy
(MPA, blue) and defect-class accuracy (DCA, yellow) of various parame-
ter update methods, namely gradient descent, momentum, AdaGrad, RM-
SProp and Adam, where the solid line represents a higher learning rate of
1 · 10−2.62 and the dotted line a lower learning rate of 8 · 10−4. The results
show that RMSProp and Adam outperform other parameter update meth-
ods. Moreover, the performance of all optimisers depends on the learning
rate, where RMSProp and Adam bene�t from a lower learning rate. The
details and results of the plot have also been summarised in table B.7.

the learning rate by the accumulated squared gradients. This e�ect especially applies
to already low learning rates, as is veri�ed by a defect-class accuracy of only 32.9%.
The RMSProp algorithm dissolves this shortcoming by implementing an exponentially
decaying average of the squared gradients, where the in�uence of stale gradients decays
over time and thus a premature stagnation of the learning process is prevented. Figure
6.13 illustrates the distinctive increase in defect-class accuracy for both learning rates,
where the lower learning rate yields an accuracy of 54.0% and hence outperforms the
higher learning rate with 51.3% defect-class accuracy. The Adam algorithm advances the
concept of RMSProp and additionally adds a momentum term to the parameter update
and is thus the current best-practice method. However, for the given dataset the Adam
optimiser achieves slightly lower defect-class accuracies, yielding 51.0% with respect to
the higher learning rate and 53.7% with respect to the smaller learning rate. In sum,
using advanced optimiser methods distinctively increases network performance, where
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both, Adam and RMSProp, achieve comparable results and bene�t from a lower learning
rate.

6.2.7. Weighted Loss Calculation

When examining network validation metrics, the di�erence in sensitivity with regard to
network tuning becomes apparent: while pixel accuracy varies around 98.5% in most
experiments, mean pixel accuracy and defect-class accuracy show a broader range of
reaction to network changes. This behaviour points to the fundamental imbalance of
the data's class categories, where pixels of the miscellaneous and in-spec classes, respec-
tively, distinctively outnumber pixels of the defect class. As visualised in �gure 6.2, a
network without skip connections does not recognise defect structures but still achieves
a pixel accuracy of about 91%, and even well-tuned network architectures do not exceed
a defect-class accuracy of 55%, due to the accuracy paradox. As indicated by previous
experiments, prolonging network training would lead to increased over�t instead of a
further rise in validation defect-class accuracy. Thus, the class category's imbalance is
equalised by weighting the loss calculation that is used to update the network parame-
ters. For this purpose, a weight map is calculated based on the label image, where pixels
corresponding to the defect class are attached a higher weight value than pixels of the
remaining two class categories. Figure 6.14, left, visualises pixel accuracy, mean pixel
accuracy and defect-class accuracy of a network trained with di�erently valued defect-
class loss weights. In a �rst experiment, all losses were equally multiplied with 100, thus
upscaling the backpropagated loss values. While pixel accuracy rises slightly from 98.5%
to 98.7%, defect-class accuracy increases distinctively from 41.7% to 54.2%. This indi-
cates that upscaling losses improves parameter updates with regard to underrepresented
class categories, while the increase in pixel accuracy shows that dominant class categories
bene�t as well.

Next, higher weights from 200 to 30,000 were added to defect-class losses, while mis-
cellaneous and in-spec-class losses, respectively, were multiplied with 100 again. The
distinctive increases in defect-class accuracy and mean pixel accuracy reveal that adding
a higher weight to an underrepresented class category changes parameter updates to its
bene�t. Here, mean pixel accuracy peaks at a defect class weight of 7,500 with an accu-
racy of 91.4%, while defect-class accuracy rises continuously to 84.6%. Pixel accuracy, on
the other hand, drops to 92.5%, thus revealing the increasing amount of misclassi�cations
in the remaining two classes, as will be expounded later. Figure 6.14, right panel, depicts
validation (solid line) and training (area over the line) defect-class accuracy for a selection
of di�erently weighted loss calculations. Comparing an unweighted loss calculation (red
plot) with an equally weighted loss calculation (grey plot) visualises the improved learn-
ing process, even though validation accuracy levels o� after about 40,000 steps. Adding
additional weight to the defect class alone further increases defect-class accuracy but
also causes distinctive over�t, where validation accuracy drops as the network memorises

88



6. Analysis of Network Design, Hyperparameter Tuning & Data Preparation

Figure 6.14.: Comparison of di�erently weighted loss values, implemented to equalise the
imbalance between miscellaneous and in-spec-class pixels, respectively, and
defect-class pixels. The left panel shows pixel accuracy (PA), mean pixel
accuracy (MPA) and defect-class accuracy (DCA) of three loss weight sce-
narios: no loss weights, all class categories multiplied with 100, and �nally
additional, increasing defect-class-loss weight values, starting from 200 up
to 30,000. It becomes apparent that equalising the class categories dis-
tinctively increases defect-class accuracy. The right panel shows validation
defect-class accuracy (solid line) and training defect-class accuracy (area
over the line) for various defect-class-loss weights. The plots reveal that
with increasing loss weights defect-class accuracy increases as well but also
leads to early over�tting and a decline in validation accuracy.

the training examples. When studying the plots it would seem reasonable to multiply
defect-class losses with 30,000 and stop training after a few thousand steps. Empirically,
however, the representation of salient defect structures in validation images improves
with longer training durations, even though validation accuracy decreases. Additionally,
functional structures such as alignment markers and OCR chips are initially ascribed to
the defect class and only with ongoing training the network learns to correctly distinguish
functional structures from defect structures. When examining the confusion matrices of
di�erently weighted loss calculations (�gures 6.15 and 6.16) it becomes apparent how
miscellaneous and in-spec-class accuracies drop with increasing weight values, due to an
increase in false negatives in favour of the defect class: up until a loss weight of 500,
both miscellaneous and in-spec class yield an accuracy of about 99%, while the number
of misclassi�cations slightly increases in favour of the defect class and slightly decreases
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with regard to the respective other class category. This trend intensi�es with increasing
defect-loss weights, where a loss weight of 2,000 causes a drop in miscellaneous and in-
spec-class accuracy to about 98%, while defect-class accuracy increases to 75.8%. Here,
the majority of misclassi�cations can be ascribed to the in-spec class, with about 20%.
Incidentally, with regard to wafer images, misclassi�cations of the miscellaneous class
may be discarded, given that non-wafer areas as well as alignment markers and OCR
chips are known beforehand. The selection of a loss weight value �nally depends on the
application�based on the metrics and the decrease in miscellaneous and in-spec-class
accuracies, a defect loss weight of 2,000 seems reasonable and is used in all following
experiments.

In sum, weighting the loss of underrepresented class categories is a measure to equalise
unbalanced class categories and thus increases mean pixel accuracy as well as defect-class
accuracy. If possible, the weight value may be calculated depending on the class cate-
gories' ratio. In case of defective LED chips, however, the number of defects distinctively
�uctuates from wafer to wafer, and thus a suitable weight value must be determined
empirically.

(a) (b) (c)

Figure 6.15.: Confusion matrices of di�erently weighted loss calculations, where 0 equals
the defect class, 1 equals the in-spec class and 2 equals the miscellaneous
class. Each row corresponds to the true class category and each column
corresponds to the predicted class category. Figure a) shows the labelling
results of a network trained without weighted loss calculation, revealing
that both, miscellaneous (0) and in-spec (1) class, achieve overall low mis-
classi�cations, whereas the defect class (2) yields only 41% true positives
and 46% false negatives with respect to the in-spec class. Multiplying all
losses with 100 (�gure b) improves this ratio, where defect-class accuracy
rises to 54%. Figure c) visualises a network where an additional weight of
500 is applied to defect-class losses, resulting in an increase in defect-class
accuracy, however with an adverse e�ect on the remaining two class cate-
gories, where the amount of false negatives with respect to the defect class
slightly rises.

90



6. Analysis of Network Design, Hyperparameter Tuning & Data Preparation

(a) (b) (c)

Figure 6.16.: Confusion matrices of di�erently weighted loss calculations, where 0 equals
the defect class, 1 equals the in-spec class and 2 corresponds to the mis-
cellaneous class. Each row corresponds to the true class category and each
column corresponds to the predicted class category. Figure a) shows the
labelling results of a network trained with additional defect-class losses of
2,000. Here, true positives with respect to the defect class have further
increased in comparison to �gure 6.15, albeit less strong from 70% to 75%.
Like before, false negatives of the miscellaneous and in-spec class with re-
spect to the defect class increase. This trend can also be observed for �gure
b) and c), where the defect loss weights have been further increased.

6.2.8. Ultrasonic-Measurement Embedding

Fully convolutional networks infer a prediction for each input pixel and thus output a
prediction image of the same size as the input image. While performance metrics cal-
culate how many pixels have been classi�ed correctly, studying prediction images allows
an evaluation of how well the network has learned to segment defect structures and
whether the output resolution is �ne-grain enough to depict single defective LED chips.
Moreover, as expounded in chapter 2, mismatches between the input image and label
image occur, caused by the di�erent underlying measurement techniques: photolumi-
nescence measurements determine the brightness of the wafer's optical surface, while
ultrasonic measurements detect the actual voids and cracks within the wafer structure.
To spare void and crack areas from electrical and optical measurements, the ultrasonic
measurement results are forwarded to wafer probing as defect information. Therefore,
prober-based defect maps incorporate ultrasonic defects in addition to electrical and op-
tical defects, and as a result, voids and cracks occupy a larger area in label images than
in photoluminescence images. Figure 6.17 shows validation input images (left), label im-
ages (middle) and prediction images (right) of a well-tuned fully convolutional network
with a pixel accuracy of 96.5%, mean pixel accuracy of 90.3% and defect-class accuracy
of 73.1%. Note that for the purpose of this paragraph and following experiments, a new
dataset of 136 input-label pairs was compiled, resulting in slightly decreased performance
metrics compared to the previous studies.
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Figure 6.17.: Analysis of the in�uence of input-label mismatches on segmentation accu-
racy. Row 1 visualises multiple input-label mismatches: crack and void
(red square) structures in photoluminescence images appear small com-
pared to label images. Examining the prediction image reveals that the
network adopts repeated misclassi�cations and enlarges the segmentation
area accordingly. While defect clusters are correctly distinguished and de-
picted (row 2), structures similar to voids are misclassi�ed (row 1, black cir-
cle). Embedding photoluminescence images with ultrasonic measurements
(row 3) prevents misclassi�cations and increases segmentation accuracy as
well as defect-class accuracy from 75.8% to 86.6%.

When analysing �gure 6.17, it becomes apparent that the developed network's output
resolution is �ne-grain enough to depict single defective LED chips. Furthermore, the
network has learned to distinguish miscellaneous structures, such as OCR chips and

92



6. Analysis of Network Design, Hyperparameter Tuning & Data Preparation

alignment markers (see also �gure 2.4), from defect structures. Eventually, comparing
photoluminescence image and label image in �gure 6.17 (row 1), visualises the mentioned
input-label mismatches, where cracks and voids (red square) occupy a larger area in the
label image than in the input image. Analysing the corresponding prediction image
reveals that the network has adopted the repeated misclassi�cations and thus cracks
as well as voids are segmented more extensively than single defective chips. Note that
the network has also learned to distinguish defect clusters from voids and cracks and
thus the segmented area in �gure 6.17, row 2, corresponds to the area visible in the
photoluminescence image. However, not all defect areas are recognised correctly, as the
black circled defect structure in �gure 6.17, row 1 is evidence of, which is mistakenly
treated as a void. Additionally, even though the network has learned to enlarge void
and crack segmentations, the prediction is expectably not accurate to a pixel. Therefore,
the aforementioned new dataset was compiled, where photoluminescence images were
embedded with ultrasonic-defect information. As visualised in �gure 6.17, both, void
(red square) and crack structures are evidently enlarged in the photoluminescence image,
whereas the misclassi�ed defect structure (black circle) remains in its shape. Examining
the corresponding prediction image shows that, as a result, all defect structures are
segmented accurately and hence defect-class accuracy increases over ten percentage points
to 86.6%, as presented in table 6.5.

Table 6.5.: Performance metrics of a network trained with the regular photoluminescence
image dataset (without US) as well as with a dataset of photoluminescence
images embedded with ultrasonic-defect information (with US), where the
additional defect information distinctively increases network accuracy. The
table lists validation pixel accuracy (PA), mean pixel accuracy (MPA) and
defect-class accuracy (DCA).

PA MPA DCA

without US 96.5 90.3 73.1
with US 98.0 94.3 86.6

6.2.9. Summary

After studying architectural design choices of fully convolutional networks in the last
section, this section examined how to tune the network's hyperparameters so as to max-
imise network performance. For this purpose, the in�uence of various hyperparameters
was studied as well as how di�erent hyperparameters interact with each other. First,
the impact of various resizing operations was examined, where the best results were
achieved by initialising the upsampling operation with bilinear interpolation followed by
convolution and a ReLU activation function. Then, experiments with di�erent activa-
tion functions revealed that for the given dataset and network architecture ReL units
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outperform other methods. The in�uence of various initialisation methods, namely ran-
dom initialisation in comparison to the transfer of pre-trained parameter values, was
studied afterwards, where the highest network performance was achieved for a randomly
initialised network in combination with a pre-trained parameter transfer into the �rst
four layers. Then, the impact of learning rate, L2 regularisation and parameter update
method were examined independently as well as in combination with each other. Finally,
data-speci�c tuning methods were studied: introducing individually weighted loss cal-
culations equalised the class categories' imbalance and resolving input-label mismatches
by embedding photoluminescence images with ultrasonic-measurement defect informa-
tion increased segmentation accuracy. Altogether, the presented hyperparameter tuning
methods increased mean pixel accuracy from about 84% to 94.3% and defect-class ac-
curacy from about 50% to 86.6%.

6.3. Advanced Architectures

The previous two sections studied the in�uence of various architectural design choices
as well as the impact of hyperparameter tuning on network performance. Basis of these
examinations was a fully-convolutional-network architecture [77], modi�ed with respect
to the special composition of photoluminescence images and the necessity of a pixel-
wise prediction resolution. The resulting, tuned Vaughan network architecture yielded
a pixel accuracy of 98.0%, mean pixel accuracy of 94.3% and defect-class accuracy of
86.6%. For a depiction of the architectural concept refer to �gure 5.1, which visualises the
similar design of a slightly deeper architecture. In order to further increase defect-class
accuracy, this section studies the implementation of advanced architectural concepts into
the Vaughan architecture, namely densely connected convolutional layers [50] as well as
atrous-spatial-pyramid-pooling modules [16]. Note that partial results of the described
advanced architecture design as well as aspects of the according hyperparameter tuning
have also been discussed in Stern et al. [119].

6.3.1. Densely Connected Convolutional Blocks

As described in chapter 3, densely connected convolutional networks advance the concept
of residual networks [42] by feeding all preceding, concatenated feature maps as input to
the current layer (see also �gure 5.2). Hereby, all layers obtain direct access to the input
image as well as the loss gradients. However, expanding this concept to fully convolu-
tional networks requires a special setup of the upsampling path, due to the increase in
feature-map dimensions next to the continuously growing number of feature maps [57,
146]. Therefore, in this work's version of a densely connected fully convolutional network,
downsampling and upsampling path are designed di�erently: in the downsampling path,
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each layer inputs all preceding, concatenated feature maps before applying the consec-
utive operations 3 × 3 convolution, batch normalisation and ReLU activation function,
as described by Huang et al. [50]. After two to three densely connected convolutional
layers, a maxpooling operation reduces the feature-map dimensions of all preceding, con-
catenated feature maps and forwards them to the subsequent dense block. Because dense
connections encourage the re-use of feature maps, the number of kernels in each layer
in the downsampling path is reduced, as listed in table 6.6. Note that the number of
intermediate output feature maps in the upsampling path increases from 64 to 128, due
to the new structure: the �rst upsampling layer inputs all 1,152 preceding, concatenated
feature maps of the downsampling path and applies the consecutive operations bilinear
upsampling, 3× 3 convolution, batch normalisation and ReLU activation function. The
resulting 64 feature maps are concatenated with the 64 feature maps supplied by the
skip connection. Here, the densely connected shallow couterpart is bypassed in full and
reduced to 64 feature maps by applying the consecutive operations 3 × 3 convolution,
batch normalisation and ReLU activation function. Even though it is common practise to
employ 1×1 convolution to reduce the number of feature maps, empirically 3×3 convolu-
tion achieved a slightly better performance. The 128 concatenated feature maps are then
forwarded to the subsequent upsampling layer, which repeats the described procedure
until input image dimensions are restored and a probability map for each class category
is generated. The main modi�cations of the upsampling path are, on the one hand, that
the skip connections bypass densely connected layers and on the other hand, upsampled
feature maps and bypassed feature maps are concatenated instead of added. Thus, even
though the upsampling layers are not thoroughly densely connected, the information �ow
through the network is improved.

Figure 6.18 (left) visualises defect-class accuracies of the Vaughan network in addition to
the three studied advanced architecture concepts, which were all trained on ultrasonic-
embedded photoluminescence images. The red line corresponds to the Vaughan network
architecture, whereas the grey line corresponds to the densely connected architecture.
It becomes apparent that both networks initially achieve comparable results but after
about 12,000 training steps the Vaughan architecture starts to over�t to the training data,
resulting in a decrease in validation defect-class accuracy. Figure 6.18 (right) illustrates
the di�erent degrees of over�tting of both networks: with increasing training duration,
the Vaughan architecture's validation and training defect-class accuracy diverge more
strongly than those of the dense network. Thus, employing less but densely connected
feature maps encourages the re-use of feature maps and thus yields a higher performance,
with an increase in mean pixel accuracy from 94.3% to 95.6% and an increase in defect-
class accuracy from 86.6% to 90.6%. Pixel accuracy, however, drops slightly from 98.0%
to 97.4%, indicating an increase in misclassi�cations of the other two class categories.

The rise in misclassi�cations with regard to pixels classi�ed as in-spec and miscella-
neous, respectively, can also be observed when analysing prediction images, as shown
in �gure 6.19. Comparing the Vaughan network's prediction image to the label image
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Table 6.6.: Number of feature maps of each layer of the Vaughan network compared
to a densely connected version, which enables a reduced number of feature
maps, due to the network's ability to re-use them. Note that the number of
feature maps in the upsampling path increases because the feature maps of
the skip connection are concatenated to the upsampled feature maps rather
than added.

layer architecture

1: Vaughan network 2: dense Vaughan

conv1_x 64, 64 32, 32
conv2_x 128, 128 64, 64
conv3_x 256, 256, 256 64, 64, 64
conv4_x 512, 512, 512 128, 128, 128
conv5_x 512, 512, 64 128, 128, 128
up1 64 128
up2 64 128
up3 64 128
up4 3 3

reveals that the defect structure is shown frayed, whereas the dense network's prediction
covers the whole defect structure but over-segments the area. Note that the wafer edge
shows a high number of misclassi�ed pixels as well. However, when comparing photo-
luminescence image and label image, the wafer edge in the �rst image appears frayed,
whereas the label image shows a clear border line. The di�erence in both images is
caused by the chip-separation step that takes place after wafer probing (on which the
label images are based) and before the photoluminescence measurement, as expounded
in chapter 2. Therefore, the classi�cation of the wafer edge may be discarded with regard
to an evaluation of segmentation performance. The poor depiction of the defect structure
can be ascribed to a lack of representation of similar structures in the training dataset:
on the one hand, the depicted defect structure is unique within the dataset and on the
other hand, di�erently sized and shaped defect structures in the training dataset are seg-
mented accurately. Because it is not always feasible to procure a dataset from a running
production that covers all possible defect structures, another approach is necessary to
improve the depiction of uncommon structures.

6.3.2. Atrous Spatial Pyramid Pooling

Analysing �awed segmentation results reveals that mostly large defect structures are af-
fected, due to their rare occurrence in the dataset. Here, the network's de�ciency to
generalise from smaller defect structures may be caused by the di�erent scales defect
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Figure 6.18.: Left: Defect class accuracy of the previously developed Vaughan architec-
ture (red) compared to the additional implementation of advanced architec-
tural concepts, namely densely connected layers (grey) as well as one (blue)
and two atrous-spatial-pyramid-pooling modules (yellow). It becomes ap-
parent that advanced architectural concepts further increase the accurate
depiction of defect structures. One reason is the decrease of over�tting,
caused by densely connected layers: the right panel visualises the varying
divergence of validation (solid line) and training defect-class accuracy (area
over the line) of the Vaughan network and the dense Vaughan network. The
details and results of the plots have also been summarised in table B.9.

structures assume. To address this challenge, atrous-spatial-pyramid-pooling (ASPP)
modules were studied. As expounded in chapter 3 and visualised in �gure 5.4, ASPP
modules implement a multiple-scales analysis by forwarding the incoming feature maps
to several dilated-convolution layers in parallel. Additionally, global context is incorpo-
rated by extracting features on image-level via global average pooling. Following Chen
et al. [16] and Zhao et al. [141], the last convolutional block of the aforementioned dense
Vaughan network's downsampling path was replaced by an ASPP module. The new
structure is as follows: the 768 feature maps of the densely connected fourth convolu-
tional block are simultaneously forwarded to the ASPP module's �ve layers, without
reducing the feature-map dimensions via subsampling. Then, the �rst four layers apply
dilated convolutions at various dilation rates r, namely r = 1, 2, 6 and 12, followed by
the consecutive operations 3× 3 convolution, batch normalisation and ReLU activation
function. Hereby, the incoming feature maps are sampled at di�erent rates and thus with
multiple receptive �elds at once, without loosing spatial resolution by downsampling. In
order to prevent fragmented segmentation results, the last module layer incorporates
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Figure 6.19.: Prediction images of the Vaughan network versus a densely connected ver-
sion. The latter achieves a less frayed segmentation but over-segments the
defect area, causing an increase in defect-class accuracy along with a drop
in pixel accuracy.

global context: �rst, image-level features are captured via global average pooling, which
reduces feature-map dimensions to 1×1×768. In order to decrease the number of feature
maps to 128 and retrieve the previous feature-map dimensions of 56 × 55, the consecu-
tive operations 1 × 1 convolution, batch normalisation, bilinear upsampling and ReLU
activation function are applied. Eventually, the output of all �ve module layers as well
as the preceding fourth layer are concatenated, yielding 1,408 feature maps, which are
then forwarded to the �rst upsampling layer. Even though the resulting network archi-
tecture empirically achieved a more accurate segmentation result, defect-class accuracy
remained nearly unchanged with 90.7% (dense Vaughan: 90.6%), as shown in �gure 6.18
(left panel, yellow line). Moreover, mean pixel accuracy dropped slightly to 95.5% (dense
Vaughan: 95.6%), indicating that the special image composition of the dataset does not
bene�t much from a larger receptive �eld at this position in the processing chain.

To study whether an increased receptive �eld at a higher feature map resolution bene�ts
network performance, a second ASPP module was implemented, which complements the
third and thus penultimate layer of the upsampling path, yielding the following structure:
�rst, the feature maps of the preceding layer are upsampled and concatenated with the
bypassed feature maps of the skip connection, as described before. Then, the resulting
128 feature maps are forwarded to the ASPP module, which covers three-layers, two
dilated-convolution layers with r = 2 and 4, respectively, as well as a global-average-
pooling layer. Note that the number of module layers and kernels as well as the dilation
rates are hyperparameters, where the used values were chosen based on experiments [119].
Eventually, module input and output are concatenated, resulting in a total of 224 feature
maps, which are forwarded to the last layer. Contrary to the previous architecture, the
last upsampling stage now consists of two layers, one upsampling layer and an additional
output layer, which reduces the upsampling layer's 128 feature maps to three probability
maps by applying the consecutive operations 1 × 1 convolution and softmax activation
function. As shown in �gure 6.18 (left panel, green line), a densely connected Vaughan
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network with two ASPP modules outperforms other architectural designs with a pixel
accuracy of 97.5%, mean pixel accuracy of 96.1% and defect-class accuracy of 91.8%.
Incidentally, omitting the �rst ASPP module diminishes network performance, as listed
in table B.9.

Comparing prediction images of the Vaughan network with images of a densely connected
Vaughan architecture with two ASPP modules (dense ASPP Vaughan) shows that both
architectures achieve comparable segmentation results for common defect structures, as
displayed in �gure 6.20, row 1. It becomes apparent that both networks have learned to
distinguish miscellaneous structures, �lm tears and measurement artefacts from defect
structures and accurately depict single defective LED chips, voids and cracks. The re-
maining rows in �gure 6.20 reveal, however, apparent di�erences in the segmentation of
defect structures that occur rarely or are unique within the dataset, such as large defect
clusters and densely clustered single defective LED chips. While the Vaughan network's
segmentation appears patchy and frayed, respectively, the dense ASPP Vaughan archi-
tecture generally displays a more accurate segmentation result. As shown in row 3, a
common misclassi�cation of the latter network are overly dense depicted defect areas.
Note, however, the corresponding label image with a similar depiction, where the wafer
edge in the photoluminescence image displays a large number of single salient chips which
overlie a darkened area, indicating low brightness values outside the speci�cation range.
As a result, the label image displays a continuous defect area that transitions into single
defects. While the network accurately segments continuous defect areas as well as sin-
gle defective LED chips, the transition area's depiction is insu�cient. Apparently, the
dataset does not provide enough examples of the variety of transition areas to accurately
generalise from. The in�uence of dataset compilation on the segmentation accuracy is
also studied in the following section.

In sum, this section examined the in�uence of advanced architectural concepts on network
performance. First, densely connected convolutional layers were implemented, which en-
courage the re-use of feature maps and thus allow a more condensed network architecture.
As a result, defect-class accuracy increased from 86.6% to 90.6% due to a decrease in
over�tting. Then, atrous-spatial-pyramid-pooling (ASPP) modules were studied, reveal-
ing that the highest performance is achieved with two modules, placed at the end of the
downsampling and upsampling path, respectively. While defect-class accuracy increased
only slightly to 92.0%, the empirical segmentation accuracy of large defect clusters as
well as dense defect areas increased. The analysis of prediction images also revealed
that the dataset's coverage of large defect structures is not su�cient enough to yield
accurate segmentation results of all defect structures. Thus, the next section studies the
generalisation ability of the previously introduced network models by determining their
performance on a test dataset. Afterwards, the in�uence of dataset augmentation and
partition are examined.
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Figure 6.20.: Segmentation accuracy comparison of the Vaughan network versus a dense
ASPP Vaughan network, where both networks achieve comparable results
for common defect structures, such as single defects, voids and cracks, but
the latter network achieves a more accurate segmentation of large defect
structures. However, the transition area between dense defect areas and
single defects is still displayed insu�ciently (row 3), due to a lack of exam-
ples in the dataset.

100



6. Analysis of Network Design, Hyperparameter Tuning & Data Preparation

6.3.3. Network Evaluation based on Test Data

To provide an unbiased estimation of the generalisation error, the previously intro-
duced network models are evaluated with a test dataset [100], covering the architectures
Vaughan, dense Vaughan and dense ASPP Vaughan with one ASPP module in the down-
sampling path, one ASPP module in the upsampling path as well as the combination of
both ASPP modules. Here, the generalisation error measures a network's ability to accu-
rately segment previously unknown images, that is images the network was not trained
on. While this de�nition also applies to the validation dataset, the validation metrics are
used to evaluate the di�erent hypotheses in the process of model tuning and thus do not
provide a truly unbiased estimation [105]. Hence, an additional dataset was compiled
with 366 photoluminescence measurement images taken from the running production,
where only samples with distinctive di�erences between input image and label image
as well as fractured wafers were discarded. Note that in the following section a second
test set is employed, which does cover photoluminescence images with severe input-label
mismatches as well as fractured wafers. The results and details on the �rst test set have
been summarised in table 6.7.

Table 6.7.: Validation and test pixel accuracy (PA), mean pixel accuracy (MPA) and
defect-class accuracy (DCA) of the previously introduced network architec-
tures. The results reveal a drop in test defect-class accuracy for all �ve mod-
els, where the �nal dense ASPP Vaughan architecture shows the slightest
di�erence and the overall highest (test) defect-class accuracy. As observed
before, a higher defect-class accuracy correlates with a lower pixel accuracy
and mean pixel accuracy, indicating over-segmentation of defect structures
and thus causing misclassi�cations regarding non-defect pixels.

PA PA test1 MPA MPA test1 DCA DCA test1

Vaughan 98.0 98.7 94.3 94.1 86.6 83.5
dense Vaughan 97.4 98.4 95.6 95.7 90.6 88.7
1 module (downsampling) 97.3 98.3 95.5 96.1 91.0 90.4
2 ASPP modules 97.5 98.5 96.2 96.7 92.0 91.5
1 module (upsampling) 97.5 98.3 95.4 95.8 91.2 88.5

Analysing the test results reveals that all �ve models yield a lower test defect-class
accuracy, where the dense ASPP Vaughan architecture with two ASPP modules achieves
the slightest di�erence between validation and test defect-class accuracy. Moreover, the
results show that the combination of two ASPP modules best equips the network to
detect and segment unknown defect structures, whereas the drop in test defect-class
accuracy of a single ASPP module in the upsampling path indicates over�tting to the
training and validation data, while still outperforming the basic Vaughan architecture.
In addition, examining the test results of the dense Vaughan model as well as the model

101



6. Analysis of Network Design, Hyperparameter Tuning & Data Preparation

with one ASPP module in the downsampling path also veri�es that the investigated
advanced architectural concepts increase the network's segmentation ability. Altogether,
the previous sections demonstrated the distinct in�uence of network-architecture design
and hyperparameter tuning on network performance. The following section illustrates
the e�ect of data preparation, covering the increase of the training set size via data
augmentation and with new examples, respectively, as well as dataset partition.

6.4. Data Preparation

While network architecture and hyperparameter tuning are highly in�uential design
choices with regard to network performance, compiling a dataset determines the net-
work's training experience. This is especially the case for the given data, which is pro-
cured from a running production that provides only occasionally wafer images with the
kind of salient defect structures that are di�cult to segment for the network algorithm.
As mentioned before, two datasets were used in this work, one with 145 unaltered pho-
toluminescence images (dataset 1) and one with 136 photoluminescence images with
embedded ultrasonic-defect information (dataset 2). Even though all of the selected
wafer images display salient defect structures, the majority of these structures are voids,
which only vary in size, followed by cracks. Defect clusters, on the other hand, assume
various shapes and sizes as well as brightness gradients, and occur only rarely in the
datasets. To provide the network with a thorough coverage of available defect clusters
as well as a representative validation set, network training was performed with a manual
training-validation split of about 20% validation images, resulting in 111 training im-
ages and 25 validation images (dataset 2). Furthermore, the number of training examples
was increased using data augmentation, where each image was rotated by 45°, 90° and
135°, respectively. The e�ect of data augmentation, which teaches the network invari-
ance against common variations, can be shown by training the dense ASPP Vaughan
network without data augmentation, where the same pixel accuracy as before (97.5%)
was achieved, but mean pixel accuracy decreased from 96.2% to 93.8% and defect-class
accuracy decreased from 92.0% to 87.6%. Note that for this and all following experi-
ments the ultrasonic-embedded dataset (dataset 2) was used. Incidentally, it is apparent
that rotated wafer images provide a useful extension of the dataset while other data
augmentation methods, such as added noise, cropping or elastic deformations, represent
image manipulations that do not occur naturally in the dataset. Consequently, experi-
ments with brightness variations and elastic deformations did not increase the network's
generalisation ability. Moreover, analysing prediction images reveals segmentation di�-
culties only with regard to uncommon defect clusters as well as the transition between
dense and single defect areas, as shown in �gure 6.22 for example. These observations
indicate that increasing dataset size with valuable examples will increase segmentation
accuracy, where the impact will be more distinctive for training examples that show rare
defect structures. Consequently, doubling the dataset with 134 additional training ex-
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amples resulted in an increased pixel accuracy of 97.6%, mean pixel accuracy of 96.8%
as well as defect-class accuracy of 93.5%, where the training examples are a subset of
the aforementioned test dataset 1 and cover mainly salient and a small number of rare
defect structures.

Next to dataset size, the in�uence of the network's training experience is studied, using
di�erent dataset splits. For this purpose, k-fold cross-validation is employed, where the
details are listed in table B.10 and visualised in �gure 6.21. Here, k-fold cross validation
denotes a model validation technique, where the data is split into k = 4 subsets of equal
size, called folds. Then, the network is trained with k−1 folds, while the remaining fold is
used for validation. By iterating over all k folds and averaging the results, the network's
generalisation ability can be determined [94]. Note that in addition to validation metrics,
test defect-class accuracy was determined using a second test dataset of unaltered pho-
toluminescence images, images previously rejected due to severe input-label mismatches
and fractured wafers. Hereby, the networks' generalisation ability regarding di�culty
to segment data samples can be evaluated. Consequently, test defect-class accuracy is
lower than validation defect-class accuracy and the previously determined test metrics,
due to inevitable misclassi�cations. When analysing �gure 6.21, the distinctive in�uence
of how the dataset is split into training and validation set becomes apparent. Here, the
worst performing data partition, fold 1, achieves a defect-class accuracy of 76.8% while
the highest performing partition, fold 3, yields a defect-class accuracy of 93.4% and thus
distinctively exceeds the cross validation average of 87.8%. The legitimate presumption
that the validation set of fold 1 contains only defect structures that are di�cult to seg-
ment can be disproved by analysing the test defect-class accuracies (�gure 6.21, blue line),
where fold 1 performs worst as well, while fold 3 outperforms all other partitions again.
These results verify the assumption that the contribution of common defect structures
to network learning, such as voids and cracks, is small compared to the contribution of
rare defect structures, such as large defect clusters.

Accordingly, manually splitting the dataset to ensure an even distribution of rare defect
structures outperforms the averaged cross-validation metrics, especially with regard to
defect-class accuracy (92.0% to 87.8%). Prede�ning a network's training experience by
dividing small, highly unbalanced datasets by hand may therefore be a bene�cial ap-
proach, given that cross-validation splits are performed randomly and might not always
result in a well-performing split. Moreover, manually splitting the dataset allows a better
control over what the network learns, as is veri�ed by the segmentation results in �g-
ure 6.22. Here, prediction images of all �ve partitions are compared using examples from
the test dataset, where it becomes apparent that all training experiences yield compara-
ble segmentation results for common defect structures as well as functional structures.
Rare or unknown defect structures, such as large defect clusters (column 1) and miss-
ing wafer parts (column 2) are segmented di�erently well, where empirically no training
experience consistently outperforms or underperforms the others. As an instance, fold 1
achieves a comparably well segmentation of the defect cluster in column 1 but fails to
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Figure 6.21.: Pixel accuracy (PA), mean pixel accuracy (MPA), defect-class accuracy
(DCA) and test defect-class accuracy (DCA test2) of a dense ASPP
Vaughan network trained with a manual train-validation split in comparison
to 4-fold cross validation, where the straight line marks the cross validation
average. The high variety of the dataset in combination with the small
number of training examples causes distinctively di�ering cross-validation
results, where the manual training-validation split slightly outperforms the
cross-validation average, except for defect-class accuracy, where a distinc-
tively better result is achieved. Details and results have also been sum-
marised in table B.10

correctly recognise missing wafer parts in column 2, whereas the best performing fold 3
yields a patchy segmentation of the defect cluster but correctly classi�es the missing
wafer parts. Note, however, that for the most defect structures the empirically most
convincing segmentation result does not necessarily correspond to the highest pixel accu-
racy. The distinction between cracks and �lm tears (column 3) has only been learned by
a network trained with fold 4 or the manually split dataset, where the latter achieves suf-
�cient segmentation results for all displayed test images. These experiments show that
even though small datasets of highly variable data achieve convincing results, dataset
compilation and splitting must be handled with care.
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Figure 6.22.: Segmentation-accuracy comparison of test images output by a dense ASPP
Vaughan network trained with a manually split dataset and 4-fold cross
validation, respectively.
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6.5. Summary

Detecting defective LED chips in photoluminescence wafer images requires a novel net-
work architecture that implements the reliable classi�cation of multiple scaled objects,
while enabling a pixel-level output resolution. In this chapter, the main aspects of net-
work design, hyperparameter tuning and dataset compilation were studied, revealing
how the di�erent building blocks in�uence network performance. First, experiments re-
garding the network architecture were conducted in order to analyse the interaction of
network depth and skip connections. Visualising network �lters and intermediate fea-
ture maps allowed an interpretation of what the network has learned to recognise and
how the network processes the input images. Based on these results, di�erent hyper-
parameters were studied, covering di�erent upsampling operations, activation functions
and network initialisation using transfer learning. Eventually, the e�ects of learning
rate, L2 regularisation and parameter update method were studied independently as well
as in combination with each other, revealing their interdependency. Next to classical
hyperparameters, data-speci�c tuning methods were examined, including weighted loss
calculations and the embedding of defect information from ultrasonic measurements into
photoluminescence images.

Altogether, the presented hyperparameter tuning methods increased mean pixel accuracy
from about 84% to 94.3% and defect-class accuracy from about 50% to 86.6%, using a
modi�ed fully-convolutional-network design. Further studying prediction images exposed
that the developed network yields accurate segmentation results for single defects and
defect structures that occur repeatedly in the dataset but infers �awed segmentations of
large, unknown defect clusters. To improve segmentation accuracy, advanced architec-
tural concepts were examined, namely densely connected convolutional blocks as well as
atrous-spatial-pyramid-pooling (ASPP) modules. The resulting dense ASPP Vaughan
network achieved a pixel accuracy of 97.5%, mean pixel accuracy of 96.2% and a defect-
class accuracy of 92.0% on a dataset of 136 image-label pairs as well as a test defect-class
accuracy of 91.5% on a test dataset of 366 images from the running production.

Finally, the in�uences of dataset compilation were studied by comparing a manual
training-validation split with 4-fold cross validation. Analysing validation and test results
(of� a second test set) of all dataset partitions revealed the bene�t of manually dividing
small datasets with highly variable image objects. Moreover, the conducted experiments,
in combination with the test prediction-image analysis of all dataset partitions, indicated
that adding valuable training examples of rare defect structures to the dataset will fur-
ther increase network performance and segmentation accuracy. Consequently, doubling
the dataset size increased network performance in general, where defect-class accuracy
in particular increased from 92.0% to 93.5%. Altogether, the resulting performance
metrics and segmentation results of the developed network architecture verify that a
well designed and tuned fully convolutional network can be employed for the chip-wise
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analysis of photoluminescence images. In the following chapter, the resulting network
architecture is described in detail.
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Network Architecture

In this work, the employment of fully-convolutional-network algorithms for the detection
of defective LED chips in photoluminescence images is studied. Here, the challenge lies in
the multiple-scaled defect objects, which range from single defective chips to large defect
clusters, in addition to a small dataset of simply composed photoluminescence wafer im-
ages with highly variable brightness values and defect structures. The previous chapters
�rst presented the employed dataset, followed by the theoretical background, state-of-
the-art architectures as well as related work and �nally illustrated network-design ideas
for the given application. Afterwards, the e�ects of architecture design, hyperparameter
tuning and dataset compilation were analysed. In this chapter, the �nal version of the
developed network architecture is presented, which is based on the previous observations
and addresses the aforementioned challenges, followed by details about implementation
and evaluation.

7.1. Fully-Convolutional-Network Architecture

Based on the theoretical background presented in chapters 3 and 5 as well as the con-
ducted experiments in chapter 6, a densely connected fully convolutional network with a
novel upsampling path and two atrous-spatial-pyramid-pooling modules was developed,
named dense ASPP Vaughan. As shown in �gure 7.1, the network inputs photolumines-
cence images of size 442× 440× 1, where the last tensor dimension denotes the number
of colour channels. Because photoluminescence measurements provide 8bit greyscale val-
ues that correlate to a chip's brightness, the number of colour channels equals 1. Note
that the photoluminescence images were not normalised or pre-processed in any other
way than described in chapter 2. Instead, batch normalisation was employed as input
layer (�gure 7.1, light grey block), where a batch corresponds to the N pixels of a single
input image, which allows the network to apply a learned normalisation, if bene�cial.
As a result, when running the network algorithm in production, image pre-processing
can be reduced to the necessary steps of transforming the measurement results into a
three-dimensional tensor of the aforementioned dimensions. After batch normalisation,
the input image is forwarded to the �rst convolutional pooling block, which consists of
two convolutional layers with 32 kernels each (�gure 7.1, green blocks) and a subsequent
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maxpooling operation (red block). All convolutional layers in this network, if not men-
tioned otherwise, employ 3×3 kernels with a stride of 1, where the input feature maps are
zero-padded so as to keep their dimensions stable. Moreover, convolutional layers in the
downsampling path apply the consecutive operations convolution, batch normalisation
and ReLU activation function. Due to the usage of dense connections, the maxpooling
operation inputs the concatenated feature maps of both preceding convolutional layers
and reduces the incoming tensor dimensions from 442× 440× 64 to 221× 220× 64 with
a 2× 2 kernel and a stride of 2, before forwarding them to the subsequent block.

Figure 7.1.: Visualisation of the developed dense ASPP Vaughan architecture, where the
legend states the layer operations and BN equals batch normalisation [119].
The numbers on top of each dense block and layer, respectively, denote the
number of kernels per layer and the number of concatenated output feature
maps per block (indicated by a sum sign), if applicable. The horizontal grey
lines in the �rst two blocks illustrate the dense connections, exemplarily for
all downsampling blocks. Atrous-spatial-pyramid-pooling (ASPP) modules
are indicated by brackets, where each module layer processes the same input
simultaneously. Layers below the main branch indicate skip connections,
which concatenate feature maps of shallow and deep layers.

Figure 7.1 visualises the dense connections of the �rst two blocks (horizontal grey lines),
where the number of output feature maps of each block is written on top of the corre-
sponding block (marked with a sum sign), next to the number of kernels per convolutional
layer. As an instance, the second block employs two convolutional layers with 64 kernels
each and inputs the concatenated, dimension-reduced 64 feature maps of the previous

109



7. Implementation & Evaluation of the Resulting Network Architecture

block. The second layer of the second block then inputs the concatenated feature maps
of the previous block as well as the feature maps of the preceding layer, which sum to
128. Finally, a maxpooling layer downsamples the feature-map dimensions and forwards
all 192 feature maps to the subsequent third block. Incidentally, the number of kernels
in each convolutional layer was reduced in comparison to a non-dense network model,
because densely connected layers encourage the re-use of feature maps and thus enable
more condensed architectures with less feature maps.

The �rst four blocks of the downsampling path follow the typical network-model bi-
pyramid, where every convolutional pooling block reduces the feature-map dimensions
while increasing the number of kernels. Hereby, the network's receptive �eld widens and
highly compressed, semantic information can be extracted by a variety of kernels. At
the same time, the spatial resolution of feature maps deep in the network is distinctively
diminished, as shown in �gure 6.6. Moreover, di�erently sized image objects, such as
single defective LED chips, voids and large defect clusters, are all analysed with the same
receptive �eld. Therefore, the �fth convolutional block features an atrous spatial pyramid
pooling (ASPP) module, which inputs the concatenated 768 feature maps of the fourth
layer in their original dimensions, that is the fourth layer does not employ a pooling
operation. The forwarded feature maps are then processed by all �ve module layers
in parallel, where the module consists of four dilated-convolution layers and one global-
average-pooling layer, which extracts image-level features. Here, each of the four dilated-
convolution layers samples the input image with a di�erent dilation rate r, with r = 1, 2,
6, and 12, so as to implement various receptive �elds at once. Note that a dilation rate of
1 equals a standard convolutional operation and that all dilated-convolution layers apply
the consecutive operations dilated convolution, batch normalisation and ReLU activation
function. In order to prevent fragmented segmentation results, the �fth module layer
incorporates image-level features by applying global average pooling, where the incoming
56×55×768 feature maps are downsampled to 1×1×768, that is one feature per feature
map is extracted. To retrieve the previous feature-map dimensions of 56×55 and decrease
the number of feature maps to 128, the consecutive operations 1× 1 convolution, batch
normalisation, bilinear upsampling and ReLU activation function are applied. Finally,
the feature maps of the �ve module layers and the module input are concatenated,
resulting in 1408 feature maps altogether, and forwarded to the �rst upsampling layer.

As visualised in �gure 7.1, the upsampling path employs skip connections to combine the
upsampled coarse semantic information with �ne-grain local information from shallow
layers, so as to increase the output resolution. For this purpose, the �rst upsampling
layer inputs the aforementioned 1408 feature maps of the fourth and �fth downsampling
layer and outputs 64 upsampled feature maps. Here, all upsampling layers apply the
consecutive operations bilinear interpolation, 3× 3 convolution and batch normalisation,
where the upsampling stages mirror the downsampling stages. After upsampling, the
resulting feature maps are concatenated with the bypassed feature maps of the skip
connection, where in case of the �rst upsampling stage the 384 feature maps of the
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densely connected third block are reduced to 64 feature maps via 3× 3 convolution and
batch normalisation. Finally, a ReLU activation function is applied to the concatenated
128 feature maps, which are then forwarded to the second upsampling layer. Note that
the upsampling layers are not densely connected, due to consistently increasing feature-
map dimensions which would require unreasonable computational resources.

The second upsampling layer features another ASPP module, which contrary to the �rst
module does not input the feature maps of the preceding layer. Instead, the incoming
feature maps are �rst upsampled, following the same procedure as before and the result-
ing, 128 concatenated feature maps are then forwarded to the ASPP module. Altogether,
the module consists of three parallel layers, two dilated-convolution layers with r = 2
and 4 and a global-average-pooling layer, where each module layer generates 32 feature
maps, which are eventually concatenated with the module input and forwarded to the
subsequent layer. The �nal network layer then calculates the three output maps in two
steps: �rst, the incoming feature maps are upsampled with the standard consecutive
operations bilinear interpolation, 3 × 3 convolution, batch normalisation and ReLU ac-
tivation function. Hereby, the network pre-processes the concatenated information from
the preceding layer and restores the original dimensions of the input image. Then, the
number of feature maps is reduced to three, using 1 × 1 convolution, before applying
a softmax activation function, which calculates a vector of three normalised probability
values for each output pixel. If the network output is used for classi�cation rather than
network training, a subsequent argmax function may be employed to determine the most
probable class category for each image pixel and to generate a one-dimensional prediction
image, as shown in �gure 6.20 for example.

7.2. Implementation and Network Training

Setting up a network architecture determines the algorithm's underlying function, that
is a hypothesis space of possible input-label mapping functions is created, in which the
algorithm searches for a parameter combination that minimises the loss function. This
parameter search is denoted as network training and, in this work, starts with network-
parameter values that are initialised with a combination of transferred, pre-trained pa-
rameter values in the �rst four layers and randomly initialised parameter values in the
remaining layers, as described in chapter 6. Note that the network at hand does not
follow a standard research architecture and thus the transferred parameters are adjusted
to the reduced number of kernels in the �rst four layers.

To train the network, a dataset of 136 photoluminescence images with embedded defect
information from an ultrasonic measurement and corresponding wafer-probing-based la-
bel images was compiled and pre-processed, resulting in input tensors of size 442×440×1
and label tensors of size 442 × 440 × 3, where the last tensor dimension corresponds to
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the number of class categories. To observe the network's training progress with regard
to its generalisation-ability, about 20% of the dataset's input-label pairs were manually
selected and partitioned into a validation dataset, resulting in 111 training images and
25 validation images. Furthermore, the number of training examples was increased to 444
by rotating the images 45°, 90° and 135°. During network training, training and valida-
tion pixel accuracy, mean pixel accuracy and defect-class accuracy were determined after
every 50 training steps. As shown in �gure 7.2, the learning process is divided in two
parts: �rst, the network propagates the input image forward, so as to infer a prediction
and calculate the di�erence between prediction image and label image via cross-entropy
loss. Then, the loss gradients are propagated backwards through the network so as to up-
date the parameter values and thereby iteratively minimise the loss. The basic procedure
of network training is sketched by the following pseudo code:

Algorithmus 1 : Network Training
Data : training and validation datasets
set hyperparameters: learning rate, L2-regularisation strength, loss weights;
set mini-batch size and number of epochs;
load data and partition it into mini-batches;
initialise weights and biases;
while number of epochs > 0 AND early stopping criterion not satis�ed do

randomly shu�e mini-batches;
foreach mini-batch in the training dataset do

Propagate the input forward through the network:
process the mini-batch and infer a prediction;
calculate the cross-entropy loss;
if number of steps mod 50 == 0 then

determine training and validation metrics;
end

Propagate the loss backward through the network:
calculate parameter updates via RMSprop;
update each network weight and bias;

end

end

save the network's �nal parameter values;

Here, the following, empirically determined hyperparameter values are used for network
training: the learning rate, which determines the magnitude of the parameter updates in
combination with the optimiser method, is initially set to 5 ·10−4 and then exponentially
decayed every 250 steps with a decay rate of 0.96. In order to constrain the network's
complexity and prevent over�tting, the L2 norm of the network's weights is added to the
cross-entropy loss, where the L2-regularisation strength is set to 5 · 10−4. Moreover, to
equalise the unbalanced class categories, defect-class losses are multiplied with 2,000 and
losses of the remaining two class categories are multiplied with 100. Parameter updates
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Figure 7.2.: Training a neural-network algorithm is divided in two parts: �rst, an input
image is propagated forward through the network to infer a prediction image.
Based on the prediction image and the corresponding label image, the cross-
entropy loss of every output pixel is calculated. Then, the loss gradients are
propagated backwards through the network so as to update the parameter
values via gradient-descent optimisation. This cycle of forward and back-
ward propagation is iterated until the optimisation process converges and
a parameter combination is found that minimises the loss for the training
data.

are calculated by an RMSprop optimiser, which individually adjusts the learning rate for
every parameter. As is common for fully convolutional networks [77], the data is parti-
tioned into mini-batch sizes of 1, that is one input-label pair is processed by the network
at a time, denoted as (training) step. Overall, the network is trained for 80 epochs, where
an epoch refers to a full iteration over all shu�ed examples in the training dataset and
thus one epoch covers as many steps as there are mini-batch partitions in the training
dataset. Next to the number of epochs, the duration of network training can also be
adjusted by an early stopping criterion: as an instance, training is prematurely stopped
if validation accuracy did not increase for the last n epochs.

Following hyperparameter setup, data loading and partitioning as well as network ini-
tialisation, network training is performed for the given number of epochs or until the
early stopping criterion is satis�ed. To speed up the training process, network training
was performed on an NVIDIA Tesla P100 (16 GB) GPU in addition to an Intel Xeon
2.60 GHz CPU and took about three hours. Furthermore, all developed code was written
in Python 3.6, where the Python libraries NumPy [88] and numpy-groupies were used
for tensor operations, matplotlib was used for visualisations [52] and the network itself
was written in the TensorFlow framework, version 1.8 [1]. During network training, the
network architecture's graph together with the learned parameter values are saved in var-
ious, TensorFlow-speci�c checkpoint �les. Based on these checkpoint �les, the network
can be easily restored and �netuned to new data. Here, the learned parameter values are
used to initialise the network graph, before re-training the network for a small number of
epochs and with a small learning rate on an extended dataset, which comprises old and
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new training examples. Alternatively, a dataset of only new examples may be employed.
To implement the network in production, however, it is convenient to save only the infor-
mation needed for forward inference. Here, all network nodes for backward propagation
are discarded and the parameter values are stored as constant, numerical values. The
resulting, so-called frozen model can then be employed as part of an inference pipeline,
which inputs photoluminescence measurements and outputs the inferred defect map.

7.3. Evaluation

As described in the previous chapter, training the developed dense ASPP Vaughan archi-
tecture on the aforementioned dataset of photoluminescence images with embedded defect
information from an ultrasonic measurement yields a validation pixel accuracy of 97.5%,
mean pixel accuracy of 96.2%, and defect-class accuracy of 92.0%. Here, the dataset cov-
ers 111 training and 25 validation images, where the size of the training set was increased
to 444 images via data augmentation. The achieved segmentation accuracy is a result
of the speci�cally designed network architecture in combination with a comprehensive
tuning process, which covered architectural design aspects and hyperparameter tuning.
Moreover, data-speci�c adjustments, such as weighted loss calculation, photolumines-
cence images with ultrasonic-measurement embeddings and careful dataset compilation,
distinctively increased network performance. The analysis of prediction images reveals
that the developed network architecture reliably distinguishes salient brightness values
corresponding to defect structures from functional structures, non-defect structures and
measurement artefacts and thus yields accurate segmentation results for single defective
LED chips as well as defect structures that occur repeatedly in the dataset or feature
a comparatively common shape. Additionally, a test defect-class accuracy of 91.5%
on a test dataset of 366 measurements from the running production indicates that the
dense ASPP Vaughan architecture generalises well to unknown wafer images. However,
prediction-image analysis also shows that uncommonly shaped, large defect clusters still
may result in �awed segmentations because this defect type occurs rarely in the dataset
and features highly variable brightness patterns. By increasing dataset size over time
with photoluminescence images of wafers that show salient defect structures the em-
pirical distribution of the training dataset further approaches the true, data-generating
distribution. Consequently, doubling the dataset size with 134 additional training ex-
amples of wafers with salient defect structures results in an increased pixel accuracy of
97.6%, mean pixel accuracy of 96.8% and defect-class accuracy of 93.5%.
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7.4. Summary

In this chapter, the insights acquired in the previous chapters about network theory, ar-
chitecture design, hyperparameter tuning and dataset compilation were brought together
and the �nal design, implementation and evaluation of the developed network architec-
ture were presented. First, the resulting network architecture was described, which was
speci�cally designed for the detection of defective LED chips in photoluminescence im-
ages. Here, the combination of a novel upsampling path, densely connected convolutional
blocks and atrous-spatial-pyramid-pooling modules increases the output resolution and
allows the network to accurately segment multiple scaled objects, such as single defective
LED chips and defect structures. Then, the hyperparameter setup was speci�ed, which
results from the comprehensive tuning analysis in chapter 6. Details about network im-
plementation, the used programming framework as well as network evaluation complete
the chapter. The following chapter concludes this work by summarising the �ndings
and limitations, evaluating the practical application and recommending further research
possibilities.
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The manufacturing of light-emitting diodes (LEDs) is a complex semiconductor pro-
cess, which is interspersed with measurements. However, the employment of contact-
measurement techniques, such as wafer probing, is getting increasingly di�cult�if fea-
sible at all�due to ever decreasing chip sizes and advanced chip designs that cannot be
contacted by prober needles. While electrical and optical LED-chip properties can be
determined by sample measurements, defective LED chips are distributed randomly over
the wafer. One solution approach are advanced data-analysis methods, which gather
additional information from already employed non-contact measurements, such as pho-
toluminescence measurements: comparing brightness images generated by a photolu-
minescence measurement with wafer-probing-derived defect maps reveals that defective
LED chips can be recognised in photoluminescence images as well, due to conspicuous
brightness values. As shown in chapter 2 and �gure 8.1, however, photoluminescence
images feature varying brightness values from wafer to wafer in addition to local areas
of di�ering brightness. Furthermore, not all salient structures visible on wafer images
correlate to defective LED chips, which makes it infeasible to create a reliable computer
vision algorithm by hand.

Figure 8.1.: Overview over the range of brightness variations in photoluminescence wafer
images and the di�erent shapes and sizes of defect structures.

Therefore, this work studied the employment of fully-convolutional-network algorithms
for the detection of defective LED chips in photoluminescence images. Being self-learning
algorithms, fully convolutional networks enable the pixel-wise classi�cation of the input
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image by learning thousands of task-speci�c convolutional �lters, based on the training
data [77]. Hence, fully-convolutional-network algorithms are the state-of-the-art method
for semantic-segmentation tasks, covering a wide range of applications, as presented
in chapter 4. With regard to the analysis of photoluminescence images, the network
algorithm is trained to segment a wafer image into three class categories, namely defect
class, in-spec class and a miscellaneous class, where the last category subsumes functional
structures and non-wafer areas. In other words, the network algorithm is trained to
infer a class category for every pixel of the photoluminescence image, where each pixel
corresponds either to an LED chip or to non-wafer background pixels and functional
structures, respectively. Hereby, the special composition of photoluminescence images
poses a challenge for the network design: on the one hand, photoluminescence images
depict less image objects than research-dataset images, which provokes over�tting and
diminishes the network's generalisation ability. And on the other hand, the possible
defect structures assume very di�erent sizes and shapes, where defect scales range from
single defective LED chips to large defect clusters. Moreover, the scarcest occurring
defect structure, defect clusters, show the highest variation in size and shape as shown in
�gure 8.1, which exacerbates the compilation of a comprehensive dataset. Additionally,
because only a minority of LED chips on a wafer are defective, the three class categories
are highly unbalanced. Thus, only wafer images that exhibit salient defect structures were
added to the dataset. The resulting dataset, which was studied in chapter 2, consists
of 136 photoluminescence input images and corresponding wafer-probing-derived label
images, of which only a fraction showed large defect clusters.

In order to develop a fully-convolutional-network architecture that addresses the afore-
mentioned challenges, which were presented in chapter 2, the theoretical background
was studied in chapter 3, followed by state-of-the-art network architectures and related
work with regard to street scene datasets, medical imaging and industrial applications
in chapter 4. Then, a modi�ed fully-convolutional-network architecture was presented
in chapter 5, speci�cally designed with regard to photoluminescence images. Addition-
ally, the possible extension of the developed architecture with advanced architectural
methods was introduced. Based on the acquired insights, comprehensive experiments
were conducted and presented in chapter 6: �rst, the e�ects of di�erent architectural
design choices in combination with the given dataset were studied, resulting in a shallow
architecture, where all intermediate downsampling and upsampling layers are connected
via skip connections, which distinctively increase network performance. Then, the in-
�uence of hyperparameter tuning on network performance was examined, revealing the
interaction of learning rate, L2-regularisation strength and optimiser method. Exper-
iments with transfer learning exposed the bene�t of a network partly initialised with
transferred, pre-trained parameter values, despite the inherently di�erent dataset the
parameter-giving network was trained on. In order to equalise the aforementioned highly
unbalanced class categories, individually weighted loss calculation was studied. Here,
a combination of an overall loss weight of 100 with a defect-class-speci�c loss weight
of 2,000 distinctively increased defect-class accuracy and mean pixel accuracy. Further
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increasing defect-class-loss weights resulted in even higher defect-class accuracies but
with an adverse e�ect on the overall pixel accuracy. Finally, analysing prediction images
revealed that the network had adopted repeated input-label mismatches, which were
resolved by embedding ultrasonic-defect information into the photoluminescence input
images. The resulting network architecture, named Vaughan, achieved a pixel accuracy
of 98.0%, mean pixel accuracy of 94.3% and defect-class accuracy of 86.6% and the ex-
amined prediction images showed an accurate segmentation of single defective LED chips
and common defect structures, such as voids and cracks. Furthermore, the network had
learned to distinguish salient non-defect structures, such as �lm tears, functional struc-
tures and measurement artefacts from actual defect structures. Due to the insu�cient
segmentation of scarcely occurring, large defect clusters, however, the implementation
of advanced architectural concepts into the developed architecture was studied. On the
one hand, densely connected convolutional layers encourage the re-use of feature maps
and thus enabled a more condensed, less over�tting network architecture. And on the
other hand, two ASPP modules increased segmentation accuracy by analysing incoming
feature maps at multiple scales at once. The resulting dense ASPP Vaughan network
yields a pixel accuracy of 97.5%, mean pixel accuracy of 96.2% and defect-class accuracy
of 92.0% on the aforementioned dataset.

Next to the analysis of network design and hyperparameter tuning, chapter 6 also stud-
ied the in�uence of dataset compilation, using 4-fold cross validation. Here, the large
di�erence in validation performance between the di�erent folds revealed the great in-
�uence of single training examples on network performance, due to the high variability
in defect structures. Incidentally, independent of the dataset partition, each network
learned to accurately segment repeatedly occurring defect structures, single defective
LED chips and functional structures. These results illustrate the importance of dataset
compilation for small datasets with highly variable image objects and thus, providing the
network with a manual training-validation split, which guarantees the thorough coverage
of available defect clusters as well as a representative validation set, outperformed the
cross-validation average. Overall, the analysis of prediction images (see also �gure 8.2)
and network performance veri�es that fully convolutional networks can be used for the
detection of defective LED chips in photoluminescence images. Moreover, it can be ex-
pected that adding valuable training examples to the dataset, whenever they occur in
the running production, will further increase segmentation accuracy, especially with re-
gard to large defect clusters and other rare defect structures. Consequently, doubling
the dataset size with 134 additional training examples resulted in an increase in pixel
accuracy of 97.6%, mean pixel accuracy of 96.8% as well as defect-class accuracy of
93.5%, where the training examples covered mainly salient and a small number of rare
defect structures.

In order to evaluate a possible employment of the developed network algorithm in an in-
dustrial environment, occurring misclassi�cations must be studied further: as described
in chapter 2, at present, photoluminescence measurements are performed after wafer
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Figure 8.2.: Prediction images, generated by a dense ASPP Vaughan network, where the
network has learned to distinguish salient non-defect and functional struc-
tures as well as measurement artefacts from actual defect structures. Due to
the special network design, the network is able to accurately segment defect
structures of multiple scales, such as single defective LED chips, voids, cracks
and defect clusters.

probing and a subsequent chip-separation step. Therefore, possible separation damages,
especially at the wafer edge, are not yet present while wafer probing and thus cause
wrongful misclassi�cations. Additionally, not all defects detected by thorough electri-
cal and optical tests manifest in conspicuous brightness values, resulting in defective
LED chips that cannot be detected via photoluminescence images. Assuming that an
additional photoluminescence measurement prior to wafer probing will be performed in
the future, possible changes in the photoluminescence-measurement results along with
the accordance of input images and label images must be investigated. Finally, moni-
toring and network re-training procedures must be developed that address the possible
appearance of defect structures not yet portrayed in the dataset, due to changes in LED
manufacturing. As an instance, it must be guaranteed that the network algorithm does
not misclassify new defect structures due to their possible resemblance to �lm tears. It
is therefore advisable to implement the algorithm in the manufacturing environment for
test purposes for a continuous period, so as to acquire a thorough understanding of the
network's performance in a running production. Note that industrial applications usu-
ally aim for a defect detection rate in the range of parts per million (ppm), where only
n defects per a million chips may be undetected, with n ≤ 50 for example. Given the
aforementioned restrictions, it seems unlikely that the developed network architecture
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or any other algorithm can achieve according defect detection rates. Therefore, fully
convolutional networks may be considered as one tool in an ensemble of data-analysis
methods used to process available LED-wafer measurements in order to render wafer
probing unnecessary. Moreover, given the network's ability to reliably segment input
images despite highly variable brightness values, fully convolutional networks may also
be employed for the detection of other defect structures occurring in photoluminescence
measurements performed at the beginning of LED manufacturing.

Beyond that, network performance may be further improved by increasing the dataset
size with additional training examples from the running production over time. In this
regard, developing a network architecture that is able to input and output di�erently
sized images would facilitate the addition of photoluminescence images of other LED-
chip types to the dataset. Hereby, dataset size could be distinctively increased, next
to enabling a more generic application of the network algorithm. Theoretically, fully
convolutional networks are independent of the input and output image sizes, due to the
thorough implementation of convolutional layers. Practically, however, input image, fea-
ture map and output-image dimensions are predetermined by the network's graph in the
TensorFlow framework. Here, the soon to be released TensorFlow version 2.x, which
omits the graph concept, might o�er new possibilities. Moreover, due to the vast number
of possible network architecture designs, hyperparameter values and novel concepts that
are frequently published [61, 106, 129], future experiments based on the developed dense
ASPP Vaughan network may further increase network performance as well. In order
to increase the current segmentation accuracy, an ensemble of network algorithms may
be implemented in addition to analysing all rotated versions of the photoluminescence
wafer image, where the inferred defect maps are eventually combined. Furthermore,
the developed network architecture may be employed to analyse other imaging mea-
surements performed while LED manufacturing, where a combination of multiple defect
maps derived from di�erent measurements would presumably further increase prediction
accuracy.

Next to improvements of the network algorithm, additional applications may be stud-
ied in the future: on the one hand, the inferred defect maps may be forwarded to an
unsupervised clustering algorithm, which classi�es the defect structures depending on
their geometrical appearance and enables further evaluations and early identi�cations
of process deviations. Alternatively, the dense ASPP Vaughan network may be used as
starting point for the development of an unsupervised network architecture, which could
be applied in cases where label images cannot be provided. On the other hand, exper-
iments in chapter 6 revealed that the network adopts repeated input-label mismatches.
This property may be used to perform measurement post-processing steps, such as the
enlargement of predetermined defect structures, given an appropriately labelled dataset.
Additionally, the network's ability to distinguish salient non-defect structures from defect
structures, such as �lm tears from cracks, may be helpful for other data-analysis appli-
cations. Another advantage of neural-network algorithms is the transferability to similar
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tasks: as an instance, the developed network can easily be applied to photoluminescence
images of other LED-chip types, where the trained network parameters can be trans-
ferred to the new task and used as network initialisation. LED wafers that are composed
of chips with similar dimensions and thus related photoluminescence-image sizes may
even be analysed by the network algorithm without any changes, where the input images
must be resized to the original input-image dimensions before processing. Moreover,
the specially designed network architecture may also be bene�cial for other industrial
datasets, where the measurement images are similarly composed as photoluminescence
images, such as the detection of voids in X-ray images of solder pads [130].

Altogether, the developed fully convolutional network, denoted as dense ASPP Vaughan,
represents a novel network architecture for the segmentation of multiple-scaled objects
in photoluminescence-measurement images and provides a pixel-�ne and thus chip-�ne
output resolution. The thorough study of network design, hyperparameter tuning and
dataset compilation in addition to an analysis of prediction images in this work leads to
a specialised network design, which accurately segments single defective LED chips as
well as large defect structures, while distinguishing measurement artefacts, non-defect
structures and functional structures from actual defect structures.
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A. Notation

A. Notation

ai Element i of vector a, with indexing starting at 1
Ai,j Element i, j of matrix A
X Space of input images
Y Space of label images
m Number of i.i.d. examples in the dataset D
{(xi, yi)}mi=1 Minibatch B of m input-label pairs
y True label
ŷ Inferred label
D Empirically distributed dataset with examples from P ∗

P ∗ Distribution that generated the data
P̃ Learned or estimated distribution
E Expected value
F Hypothesis space of all candidate mapping functions f ∈ F
f(x) True underlying solution function of training images x and labels y
f∗(x) Correct solution function as determined by the algorithm
f̃(x) Learned approximation to the correct function as determined by

the algorithm
a ∼ P Random variable a has distribution P
L(ŷ, y) Loss function
R(f) Restriction term
W,B Weights and biases
n Input size / number of input pixels
c Output size / number of class categories
H Number of units / neurons in a fully-connected layer
H ×W Kernel size (height × width)
p Prediction vector of normalised values between 0 and 1
λ‖w‖22 L2-regularisation term, where λ determines the regularisation

strength based on the L2 norm ‖w‖22
θ Parameter vector, commonly subsumes W and B
η Learning rate
vt Update vector
ε Value in the order of 10−8 to avoid division by zero
BN Batch normalisation
φ(z) Activation function
zi′,j′,f ′ Output of a convolution operation, located at the kernel centre in

output feature map f ′

s Stride
r Dilation rate
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The following tables provide an overview of the results and details of the corresponding
plots in chapter 6.

Table B.1.: In�uence of residual shortcuts and skip connections on the training progress.
The table lists validation pixel accuracy (PA), mean pixel accuracy (MPA)
and defect-class accuracy (DCA). Blank : neither residual shortcuts nor skip
connections implemented, no skips: residual shortcuts in every three-layer
convolutional block but no skip connections. 1 skip - 5 skips: gradually added
skip connections, where the �rst skip connection fuses the most inner layers.
See also �gure 6.2.

PA MPA DCA

blank 91.3 61.8 0.01
no skips 91.2 61.7 0.03
1 skip 91.2 61.7 0.02
2 skips 98.4 80.8 43.7
3 skips 98.6 82.6 48.8
4 skips 98.7 84.3 53.8
5 skips 98.7 84.1 53.7

Table B.2.: E�ect of di�erent activation functions on the network performance. The
table lists validation pixel accuracy (PA), mean pixel accuracy (MPA) and
defect-class accuracy (DCA) of a network trained with ReLU, leaky ReLU,
softplus and tanh activation functions in all intermediate layers, respectively.
See also �gure 6.7.

PA MPA DCA

ReLU 98.4 80.4 43.9
leaky ReLU 98.3 79.6 41.3
softplus 98.3 79.3 40.3
tanh 98.4 79.9 41.4
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Table B.3.: In�uence of di�erent learning-rate values on the training progress, where the
employed learning rates were determined randomly on a logarithmic scale.
The table lists validation and training pixel accuracy (PA), mean pixel accu-
racy (MPA) and defect-class accuracy (DCA). See also �gure 6.8.

L2 value validation test

learning rate PA MPA DCA PA MPA DCA

1 · 10−1 0.1 98.0 74.6 25.6 97.9 77.6 32.0
1 · 10−1.15 0.071 98.3 79.5 39.1 98.4 84.3 50.1
1 · 10−2.21 0.00617 98.6 83.5 51.7 99.0 90.3 69.2
1 · 10−2.62 0.00239 98.7 84.4 54.5 99.2 91.7 74.0
1 · 10−3.1 0.000794 98.7 84.4 54.4 99.3 92.8 77.0
1 · 10−3.22 0.0006 98.7 84.1 53.5 99.3 92.9 77.6
1 · 10−3.84 0.000145 98.6 83.1 50.5 99.2 92.4 75.4
1 · 10−4.44 0.0000363 98.4 80.1 41.7 98.9 88.2 61.3
1 · 10−5 0.00001 98.2 76.4 30.0 98.1 79.7 35.7

Table B.4.: L2 regularisation results in combination with a decreasing learning rate (1 ∗
10−2.62/0.00239). The table lists validation and training pixel accuracy (PA),
mean pixel accuracy (MPA) and defect-class accuracy (DCA). See also �gure
6.10 and �gure 6.11

L2 value validation test

PA MPA DCA PA MPA DCA

1 · 10−1 0.1 98.1 73.3 21.7 97.6 73.7 20.9
1 · 10−1.15 0.071 98.2 74.7 25.8 97.7 75.2 25.1
1 · 10−2.21 0.00617 98.5 79.9 41.1 98.2 80.8 40.3
1 · 10−2.62 0.00239 98.6 81.6 46.1 98.4 83.6 48.3
1 · 10−3.1 0.000794 98.6 82.6 49.1 98.6 85.8 54.8
5 · 10−4.0 0.0005 98.6 83.2 51.0 98.8 87.4 59.8
1 · 10−3.84 0.000145 98.7 83.7 52.3 98.9 89.5 66.2
1 · 10−4.44 0.0000363 98.7 84.1 53.5 99.0 90.4 69.3
1 · 10−5 0.00001 98.7 84.4 54.5 99.2 91.7 73.5
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Table B.5.: L2 regularisation results in combination with a decreasing learning rate (5 ∗
10−4/0.0008). The table lists validation pixel accuracy (PA), mean pixel
accuracy (MPA) and defect-class accuracy (DCA). See also �gure 6.11.

L2 value validation test

PA MPA DCA PA MPA DCA

1 · 10−1 0.1 98.4 78.3 36.6 98.1 79.2 36.3
1 · 10−1.15 0.071 98.4 79.1 38.8 98.1 79.8 37.9
1 · 10−2.21 0.00617 98.6 82.4 48.5 98.6 85.2 53.3
1 · 10−2.62 0.00239 98.7 83.5 51.8 98.8 88.0 61.7
1 · 10−3.1 0.000794 98.7 84.1 53.5 99.0 90.2 68.6
5 · 10−4.0 0.0005 98.7 84.2 54.0 99.0 90.6 70.1
1 · 10−3.84 0.000145 98.7 84.3 54.0 99.2 92.0 74.4
1 · 10−4.44 0.0000363 98.7 84.0 53.0 99.2 91.9 74.3
1 · 10−5 0.00001 98.7 84.1 53.5 99.3 92.8 77.1

Table B.6.: In�uence of varying L2 values on the training progress, illustrated by a net-
work trained with low (L2 = 1 · 10−5), medium (L2 = 5 · 10−4) and strong
regularisation (L2 = 0.1). See also �gure 6.12.

PA MPA DCA

low regularisation 98.3 82.8 51.0
medium regularisation 98.4 83.5 53.3
strong regularisation 98.0 80.4 44.6
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Table B.7.: Comparison of di�erent optimiser methods, namely gradient descent, gradi-
ent descent with momentum, AdaGrad, RMSprop and Adam. The table lists
validation pixel accuracy (PA), mean pixel accuracy (MPA) and defect-class
accuracy (DCA). See also �gure 6.13.

PA MPA DCA

learning rate 1 · 10−2.62 / 0.00239

Gradient Descent 98.2 78.0 35.0
Momentum 97.9 77.2 33.3
AdaGrad 98.3 79.2 38.7
RMSprop 98.6 83.3 51.3
Adam 98.6 83.2 51.0

learning rate 8 · 10−4 / 0.0008

Gradient Descent 98.3 76.8 31.0
Momentum 98.3 79.5 40.0
AdaGrad 98.3 77.4 32.9
RMSprop 98.7 84.3 54.0
Adam 98.7 84.2 53.7

Table B.8.: E�ects of di�erently weighted loss calculations on network performance,
where none refers to no loss weights, all 100 refers to the multiplication of all
loss gradients with 100, despite the class category, and the remaining values
refer to additional loss weights added to the defect-class category alone. The
table lists validation pixel accuracy (PA), mean pixel accuracy (MPA) and
defect-class accuracy (DCA). See also �gure 6.14.

loss value PA MPA DCA

none 98.5 80.1 41.7
all 100 98.7 84.3 54.2
200 98.5 87.3 64.2
500 98.3 89.1 70.0
1000 98.0 89.9 73.0
2000 97.6 90.4 75.8
5000 96.8 91.0 78.8
7500 96.0 91.4 81.5
10000 95.7 91.1 81.3
15000 94.5 91.1 83.5
30000 92.5 90.3 84.6
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Table B.9.: Validation pixel accuracy, mean pixel accuracy and defect-class accuracy of
the Vaughan network architecture developed in the �rst part of chapter 6 as
well as modi�ed architectures, all trained on ultrasonic-embedded photolumi-
nescence images. The �rst modi�cation are densely connected layers, followed
by dense networks with atrous-spatial-pyramid-pooling (ASPP) modules. See
also �gure 6.18.

PA MPA DCA

Vaughan 98.0 94.3 86.6
dense Vaughan 97.4 95.6 90.6
1 ASPP module (downsampling) 97.3 95.5 91.0
2 ASPP modules 97.5 96.2 92.0
1 ASPP module (upsampling) 97.5 95.4 91.2

Table B.10.: Validation pixel accuracy, mean pixel accuracy and defect-class accuracy as
well as test defect-class accuracy (on test dataset 2) of a network trained
with 4-fold cross validation, in comparison to a network trained with a
manually split dataset. Analysing the metrics reveals the distinct in�uence
of the training experience on network performance. See also �gure 6.21.

split PA MPA DCA DCA test2

k 1 96.9 92.3 76.8 63.5
k 2 97.1 97.9 93.3 75.1
k 3 97.8 97.9 93.4 86.5
k 4 97.5 95.9 87.8 75.7

average 97.3 96.0 87.8 75.2

manual 97.5 96.2 92.0 75.5
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