34 research outputs found

    High-Capacity Short-Range Optical Communication Links

    Get PDF

    WDM/TDM PON bidirectional networks single-fiber/wavelength RSOA-based ONUs layer 1/2 optimization

    Get PDF
    This Thesis proposes the design and the optimization of a hybrid WDM/TDM PON at the L1 (PHY) and L2 (MAC) layers, in terms of minimum deployment cost and enhanced performance for Greenfield NGPON. The particular case of RSOA-based ONUs and ODN using a single-fibre/single-wavelength is deeply analysed. In this WDM/TDM PON relevant parameters are optimized. Special attention has been given at the main noise impairment in this type of networks: the Rayleigh Backscattering effect, which cannot be prevented. To understand its behaviour and mitigate its effects, a novel mathematical model for the Rayleigh Backscattering in burst mode transmission is presented for the first time, and it has been used to optimize the WDM/TDM RSOA based PON. Also, a cost-effective, simple design SCM WDM/TDM PON with rSOA-based ONU, was optimized and implemented. This prototype was successfully tested showing high performance, robustness, versatility and reliability. So, the system is able to give coverage up to 1280 users at 2.5 Gb/s / 1.25 Gb/s downstream/upstream, over 20 Km, and being compatible with the GPON ITU-T recommendation. This precedent has enabled the SARDANA network to extend the design, architecture and capabilities of a WDM/TDM PON for a long reach metro-access network (100 km). A proposal for an agile Transmission Convergence sub-layer is presented as another relevant contribution of this work. It is based on the optimization of the standards GPON and XG-PON (for compatibility), but applied to a long reach metro-access TDM/WDM PON rSOA-based network with higher client count. Finally, a proposal of physical implementation for the SARDANA layer 2 and possible configurations for SARDANA internetworking, with the metro network and core transport network, are presented

    Surface Micromachined Widely Tunable VCSEL and OAM-Filter for Optical Data Transmission

    Get PDF
    The implication of wavelength division multiplexed passive optical network (WDM PON) is becoming more evident as the traffic demands of the mobile network operators keep increasing. It offers a cost-efficient solution to handle the bandwidth and latency requirements of the mobile fronthaul. The key component of such a WDM-PON system is a centralized wavelength-controlled tunable laser. The biggest challenge up to now is the lack of low-cost wideband 1550 nm tunable lasers with 10 Gbit/s transmission capacity. In the first part of this work, a widely-tunable microelectromechanical system vertical-cavity surface-emitting laser (MEMS VCSEL) is developed. The cost-efficient, directly-modulated laser can be utilized for 10Gbit/s transmission over relevant reach. It also offers simplicity for wideband autonomous tuning. The device is suitable for applications including hot backup and fixed wavelength laser replacement for inventory reduction. Within the framework of this work, a PECVD-deposited MEMS distributed Bragg reflector (DBR) mirror is surface-micromachined on top of a short-cavity active VCSEL structure. The MEMS-DBR consisting of SiNx/SiOy dielectric materials has a very high reflectivity with wide stopband. Wavelength tuning is realized by the electrothermal actuation of the MEMS electrode. The fabrication steps of the MEMS aiming for large volume production is discussed in detail. A comprehensive static and dynamic characterizations of MEMS VCSEL including far-field, linewidth, polarization behavior, modulation capacity and relative intensity noise is presented. The effect of the temperature change on its tuning behavior as well as on the static and dynamic performance is investigated. The obtained wavelength tuning range of more than 100 nm covers the complete telecom C-band (1530–1565 nm) and part of L-band (1565–1625 nm). A small-signal amplitude modulation bandwidth of up to 8.35GHz is demonstrated for the center emission wavelength around 1550 nm. This enables to implement a directly-modulated MEMS VCSEL based back-to-back link at 10Gbit/s data transmission for 76 nm tuning range. Also, quasi error-free 10Gbit/s transmission over 40 km standard single-mode fiber for a tuning range of more than 60 nm validates its potential for the above mentioned novel WDM-PON system. Apart from optical communication, the scope of this tunable source is investigated in applications such as dispersion spectroscopy and tunable terahertz (THz) signal generation. Experimental validation of multi-species dispersion spectroscopy using MEMS VCSEL is presented for the first time in this work, where concurrent detection of acetylene (C2H2), hydrogen cyanide (HCN), and carbon monoxide (CO) is demonstrated. The second part of the work constitutes demonstration and experimental validation of a novel optical component called MEMS orbital angular momentum (OAM) filter. The filter consists of a micro-sized spiral phase plate (SPP) which is integrated to the MEMS-DBR of a Fabry-Perot optical filter by means of direct laser writing. The onchip devices are suitable for distinguishing different OAM modes for a broad tuning range around 1550 nm emission and considered as a compact, robust and cost-effective solution for simultaneous OAM- and WDM optical communications. The utilization of the OAM modes as an additional orthogonal basis of information carriers in both free space and optical fiber communication systems potentially enhances the transmission capacity tremendously. Four devices with OAM orders of 0 (i.e., no SPP on MEMS), 1, 2 and 3 have been investigated. They are capable of generating/receiving the OAM beam of corresponding order over a continuous tuning range of more than 30 nm, for which the designed SPPs work with high mode purity. The system performance is evaluated by multiplexing two wavelength- and two OAM channels. Error-free free-space transmission at 10Gbit/s suggests that OAM-filters functioning over a wide wavelength range could be employed as an additional degree of freedom for increasing the capacity of free-space communication to a great extent

    Generation and characterization of cylindrical vector beams in few-mode fiber

    Get PDF
    For the past many decades, the Gaussian laser beam has driven major scientific discoveries that revolutionized the world of optics and photonics. In recent years, there is a burgeoning transformation where significant research has been dedicated in discovering the complex properties of cylindrical vector beams (CVBs). Increasingly, a beam of light with its intensity profile taking the shape of a single doughnut ring has attracted attention of several researchers the world over. Particularly, the so-called CVBs exhibit unique properties when focused owing to their radial and azimuthal distribution of polarization. In comparison to conventional (Gaussian-like) beams inheriting homogeneous polarization, CVBs provide unique light-matter interactions. For example, a radially polarized beam can enhance the imaging resolution of the system significantly with their spatial inhomogeneous polarization by imparting a symmetric and high numerical aperture focus. Moreover, CVBs with their phase and intensity singularities have found broad applications in quantum optics, optical micro/nano-manipulation, surface plasmon polariton, super-resolution imaging, and high-capacity fiber-optic communication. The studies of most widely used CVBs have been explored both in free space optics as well as in guided fiber optics. Further developments will require reliable techniques to generate these CVBs with strong coupling efficiency, high mode purity and high-power handling. For the past few years, the design, fabrication and study of optical fibers that supports CVBs, vortex and orbital angular momentum (OAM) beams have come to the forefront of research in this area. This is true in a sense that mode division multiplexing (MDM) is considered as a preeminent solution to the data capacity limitations faced by the standard single-mode fiber. In addition, vector beams in optical fibers constitute the fundamental basis set of linearly polarized (LP) modes (within the scalar approximation) as well as modes carrying OAM which represent another potential approach for implementing MDM based communications. Therefore, fundamental information and control over the vector beams is key to unravel future fiber communication links and CVB based fiber-optic sensors. For this purpose, it is essential to develop efficient methods to generate these CVBs. Some of the current methods reported for the generation of CVBs employ spiral phase plate, spatial light modulator (SLM), and offset fiber coupling. This thesis elucidates the generation as well as the optical characterization of such propagating cylindrical vector beams in a few-mode fiber. The ultimate purpose would be to develop simple, flexible and cost-effective photonic devices that will allow the efficient generation and stable propagation of the CVB while reducing the overall losses incurred by the system. Most of the methods reported earlier were limited to the measurements of the scalar LP mode groups of a FMF, thus neglecting the underlying vector beams that require delicate spectral and spatial control in order to be detected. In this thesis, three different techniques have been utilized for the generation of CVBs and OAM beams with high output purity. Initially, a tunable mechanical mode converter has been fabricated to demonstrate the generation of cylindrical vector beams supported by FMF in the telecom spectral range. This photonic device is utilized to demonstrate the non-destructive nonlinear characterization of CVB by utilizing the phenomenon of stimulated Brillouin scattering for the first time. We showed how the Brillouin gain spectra of the vector beams in some specialty fibers can be independently identified, measured, and subsequently exploited to probe the corresponding effective refractive indices of the vector beam retrieved from the data. This new characterization method of individual vector beam will have an impact in both light-wave and FMF-based optical sensing applications, which at present, mostly rely on the scalar LP modes. Further, a simple and low-cost technique to generate CVBs via long period fiber grating (LPFG) with very small grating pitch is reported. This work demonstrates that the cost-effective electric arc writing method for the fabrication of LPFGs is open to specialty few-mode fiber that often calls for very small pitch values. Finally, the generation of perfect cylindrical vector beams (PCVB) is demonstrated whose beam profile (i.e. transverse intensity profile) can be easily and precisely controlled. The latter novel method was used in-order to increase the free space coupling efficiency demanded by some specialty FMFs. The tailoring of the beam width and radius is performed via an iris and a diffractive phase mask implemented on a programmable SLM. The technique proposed towards the generation of PCVBs is highly adaptable for its robust nature to generate any arbitrary PCBs as well as perfect vortex beams with any topological order, using the same experimental setup. This experimental analysis is supported and validated via a rigorous theoretical framework that is in concordance with the results obtained

    Novel Insights into Orbital Angular Momentum Beams: From Fundamentals, Devices to Applications

    Get PDF
    It is well-known by now that the angular momentum carried by elementary particles can be categorized as spin angular momentum (SAM) and orbital angular momentum (OAM). In the early 1900s, Poynting recognized that a particle, such as a photon, can carry SAM, which has only two possible states, i.e., clockwise and anticlockwise circular polarization states. However, only fairly recently, in 1992, Allen et al. discovered that photons with helical phase fronts can carry OAM, which has infinite orthogonal states. In the past two decades, the OAM-carrying beam, due to its unique features, has gained increasing interest from many different research communities, including physics, chemistry, and engineering. Its twisted phase front and intensity distribution have enabled a variety of applications, such as micromanipulation, laser beam machining, nonlinear matter interactions, imaging, sensing, quantum cryptography and classical communications. This book aims to explore novel insights of OAM beams. It focuses on state-of-the-art advances in fundamental theories, devices and applications, as well as future perspectives of OAM beams

    All-optical processing for terabit/s wavelength division multiplexed systems using two-photon absorption in a semiconductor micro-cavity

    Get PDF
    Due to continued growth of the Internet and the introduction of new broadband services, such as video-on-demand and mobile telephony, there is a constant requirement for higher speed communications. It is expected that next generation optical communications systems will evolve towards higher capacities by increasing individual line rates rather than the number of wavelength channels. To implement these high-speed optical networks operating at individual channel rates above 100 Gb/s, all-optical processing techniques are necessary. A novel approach based on two photon absorption nonlinearity within a resonance cavity enhanced structure is explored within this thesis. High-speed transmission is severely limited by optical impairments requiring frequent and expensive signal regeneration. Chromatic dispersion, considered as one of the main limiting factors, has to be mitigated in order to achieve satisfactory system performance. Continuous monitoring and adaptive compensation of accumulated dispersion fluctuations within a transmission line is likely to be necessary in future systems. Asynchronous all-optical nonlinear techniques can be utilized for high-speed signal temporal characterization and monitoring without the necessity of timing extraction, or optical to electrical conversion. Two-photon absorption within a resonant microcavity is an ideal candidate for high-speed transmission line performance monitoring, and can be easily integrated with a dispersion compensation module. The major advantage of using a microcavity structure is that the signal is only enhanced over a narrow wavelength range, which is defined by the structure and design of the micro-cavity. In addition, by varying the angle of the incident signal, the resonance response peak of the device can be tuned, thereby isolating individual wavelength channels without the need for external optical filtering. The novelty of this work lies in the ability of using a single photodetector for sequential monitoring of different wavelength channels, operating at line rates exceeding conventional electrical processing-speeds limits. Experimental work included characterization and testing of the fabricated TPA micro-cavities for 160 Gb/s OTDM chromatic dispersion monitoring. A theoretical model explaining the cavity influence on the nonlinear detection is introduced. The main attribute of this work is the experimental investigation of the performance TPA based micro-cavities laboratory prototype, in a multi-wavelength high-speed optical system. The results have demonstrated the applicability of the TPA micro-cavity to monitor accumulated dispersion fluctuations in future high speed optical networks

    Plastic Optical Fibers as Passive Optical Front-Ends for Visible Light Communication

    Get PDF

    Plastic Optical Fibers as Passive Optical Front-Ends for Visible Light Communication

    Get PDF
    corecore