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Abstract

Over the last decade, we have observed a tremendous spread of end-user
mobile devices. The user base of a mobile application can grow or shrink by
millions per day. This situation creates a pressing need for highly scalable
server infrastructure; a need nowadays satisfied through cloud computing
offered by data centers. As the popularity of cloud computing soars, the
demand for high-speed, short-range data center links grows. Vertical cav-
ity surface emitting lasers (VCSEL) and multimode fibers (MMF) prove
especially well-suited for such scenarios. VCSELs have high modulation
bandwidths, are energy efficient, reliable, and cheap to fabricate. MMFs
are highly tolerant to coupling misalignment and bending. However, be-
cause of the large spectral width of VCSELs and, consequently, chromatic
and modal dispersion effects in the fiber, the VCSEL–MMF links have a
limited bandwidth–distance product: their achievable distance is limited to
100 m at 25 Gbps for non-return-to-zero (NRZ) signaling.

This thesis introduces several methods to tackle this limitation and
increase the capacity of a VCSEL–MMF link based on intensity modula-
tion (IM)/direct detection (DD). First, we apply the MultiCAP modula-
tion format to increase the transmission net rate to 65.7 Gbps over 100 m
MMF using a single VCSEL and equalization at the receiver. Second, we
demonstrate that using a novel block-based 8-dimentional/8-level (BB8)
advanced modulation format improves the receiver sensitivity compared to
to the equally spectrally efficient PAM-4 modulation format. Single VCSEL
transmission over 100 m is demonstrated at 54.5 Gbps. Third, we explore
the potential of extending the transmission reach by using a lower chro-
matic dispersion region with a pre-emphasized 1060 nm VCSEL. Fourth,
we discuss short-range wavelength division multiplexing where the total ca-
pacity is the product of the single wavelength’s capacity and the number of
wavelengths. The presented simulations and experiments validate the ca-
pacity improvement it introduces. Finally, we apply selective modal launch
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ii Abstract

to the multimode VCSEL–multimode fiber scenario. This way, we achieve
10 Gbps over 400 m and then confirm the approach in an optimized system
at 25 Gbps over 300 m.

The techniques described in this thesis leverage additional degrees of
freedom to better utilize the available resources of short-range links. The
proposed schemes enable higher speeds and longer distances of the IM/DD
optical interconnects.
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Resumé

I de seneste 10 år der der sket en eksplosion i udbredelsen af mobile bred-
b̊andsenheder. Antallet af brugere af en mobil applikation kan variere med
flere millioner fra dag til dag. Dette stiller krav om en kraftigt skalérbar
serverinfrastruktur; et krav der i dag imødekommes ved hjælp af s̊akaldt
cloud-computing ‘afvikling i skyen’ i datacentre. I takt med at cloud-
computing bliver mere og mere populært stiger behovet for højhastigheds
datacenterforbindelser med kort rækkevidde. ‘Vertical cavity surface emit-
ting lasers’ (VCSELs) og multimodefibre (MMF) er særligt velegnede for
s̊adanne forbindelser. VCSELs har høj modulationsb̊andbredde, de er en-
ergieffektive, og de er billige at massefremstille. Multimodefibre er meget
tolerante overfor bøjninger og koblingsunøjagtigheder. Til gengæld bety-
der VCSELernes store optiske linjebredde sammen med multimodefiberens
modal- og kromatiske dispersion at disse VCSEL–MMF er begrænsede i for-
hold til deres b̊andbredde-rækkevidde produkt. I praksis begrænser dette
deres anvendelighed til 100 m ved 25 Gbps under anvendelse af s̊akaldt
non-return-to-zero (NRZ) modulation.

I denne afhandling introduceres adskillige nye metode til at gennem-
bryde denne begrænsning og øge kapaciteten af VCSEL-MMF forbindelser
baseret p̊a intensitetsmodulation og direkte detektion (IM/DD). Først an-
vendes modulationsformatet MultiCAP til at øge dataraten til 70.4 Gbps
over 100 m MMF hvor en enkelt VCSEL genererede signalet. Derefter
demostrerer vi at man ved at anvende et nyt blokbaseret 8-dimesionelt/8-
niveau (BB8) modutationsformat kan forbedre modtagerfølsomheden i for-
hold til systemer, der anvender PAM-4 modulation, der har tilsvarende
spektral effektivitet. Vi demonstrerer enkelt-VCSEL transmission over
100 m MMF ved 56 Gbps. Derefter udnytter vi muligheden for at forøge
transmissionsrækkevidden ved at anvende 1060 nm omr̊adet hvor den kro-
matiske dispersion er lavere. Som det næste diskuterer vi bølgelængde-
multipleksning for korte forbindelser, hvor forbindelsens samlede kapacitet

iii
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er den enkelte kanals datarate ganget med antallet af kanaler. Vi præsen-
terer numeriske simuleringer samt eksperimenter der demonstrerer dette.
Til slut anvender vi selektiv modalexcitation i VCSEL–MMF systemer, og
opn̊ar derigennem 10 Gbps over 400 m. Vi bekræfter denne fremgangsm̊ade
ved i et optimeret system at transmittere 25 Gbps over 300 m.

Teknikkerne, som er beskrevet i denne afhandling drager fordel yderligere
frihedsgrader til bedre at udnytte til forh̊andenværende ressourcer i korte
forbindelser. De foresl̊aede metoder åbner for højere hastigheder og længere
rækkevidde for IM/DD forbindelser.
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Chapter 1

Introduction

The aim of this PhD study was to investigate various methods for improving
the capacity of short-range optical links. The considered schemes are based
on intensity modulation (IM)/direct detection (DD), vertical cavity surface-
emitting laser (VCSEL), and multi mode fiber (MMF). This thesis consists
of an introduction and a collection of original published articles preceded
by their summary. The following introduction briefly describes the topics
tackled in the main research papers from the system perspective.

1.1 Problem statement

With the growing popularity of bandwidth consuming applications such as
cloud computing or online gaming, computation has moved from the dis-
tributed devices towards data centers. This puts pressure on the capacity
of short-range data center optical interconnects. An interconnect includes
a driver circuit, VCSEL, MMF, and a photodiode (PD). High bandwidth
multimode 850 nm GaAs VCSELs are typically used in the interconnects to
satisfy the high-speed requirement. The capacity of such 850 nm VCSEL–
MMF links, defined as bandwidth–distance product, is limited by modal
and chromatic dispersion effects. Increasing the speed lowers the achiev-
able transmission distance; conversely, longer links can only operate at
lower bitrates. Currently, 10 Gbps VCSELs are used in data centers and
they support the optical links up to 300 m [1]. However, with the 25 Gbps
optical interconnects becoming available [2,3] the transmission distance be-
comes limited. The IEEE standard defines 100 m as the 25 Gbps reach.
The majority of the existing data center connections are below 100 m [4].
Yet, a solution for an improved link capacity is required to support future

5
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interconnects speeds (40 Gbps), increasing data center sizes [5], and al-
ready implemented longer links (100m – 300m). Installing parallel lanes is
a popular approach. Although viable, this solution is short-term because
the optical packaging of components with multiple lanes becomes increas-
ingly complex and there is no sufficient space for the interconnect ports [6].
Moreover, the rewiring is costly and the space in the data centers limited.

This work tackles the problem of limited capacity of short-range links
by employing solutions that do not require installing additional fibers.

I focus on the VCSEL–MMF based solutions because these devices are
currently utilized in more than 85% of short-range data center links [7].
The proposed schemes is based on IM/DD to satisfy the low complexity
and energy consumption requirements.

1.2 Applications

The majority of high-speed short-range optical links is implemented in the
data centers. They have to be high-speed, densely packaged, and energy
efficient. There are several new standards that cover high-speed VCSEL–
MMF types of links. IEEE 802.3bm aims at supporting 100 Gbps (4x25)
100 m OM4 and 70 m OM3 using non return to zero (NRZ) [1]. Infiniband
EDR suggests 1, 2, or 12 parallel lanes with 25 Gbps in each [8]. Fiber
channel 32GFC requires transceivers at 28 Gbps supporting 100 m OM4 [9].

VCSEL–MMF links are also used as low-rate, low-cost antenna MMF
links. They feed the signal from a cell cabinet to the antenna. Antenna
link capacities are standardized by LTE standard, i.e. the 43rd band of
the LTE standard is defined as 1 Gbps at a 3.7 GHz carrier. In the future,
RoF systems will use higher carrier frequencies (starting with 5GHz [10])
to increase capacity. Some of the techniques for capacity improvement as in
the high-speed interconnects, e.g. based on optical design, can be applied
to lower speed, longer antenna links.

Short-range MMF links are also implemented for inter-building con-
nections, e.g. in big company buildings. The speed of these connections
is usually defined by customers. These types of links are supported by a
physical layer Ethernet standard, 10GBASE-SR.

Papers 1–7 aim at data center application and Paper 8 at the antenna
link scenario, where the RoF signal is transmitted over MMF.
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Figure 1.1: GaAs VCSEL structure [16].

1.3 Vertical cavity surface emitting laser

Vertical Cavity Surface Emitting Lasers have been used in the telecom
industry for over two decades. Because they emit light through the top
surface they offer a number of improvements over edge-emitting lasers:

• They do not need to be packaged before characterization. Thus, test-
ing can be performed on wafer—earlier in the production stage and
the production is more cost-effective.

• They can be integrated in densely spaced arrays with small inter-
channel crosstalk [11,12].

• The cavity of VCSEL is small and typically a single longitudinal mode
is generated.

Furthermore, they can be modulated with high frequencies [13], have a low
threshold current (for short wavelengths even below 1 µA [14]) and power
consumption, and are highly reliable through their long lifetime [15]. Addi-
tionally, VCSEL’s beam is symmetric, has a low divergence, and therefore
is easy to collimate.

1.3.1 Structure

Figure 1.1 shows an example structure of a multimode VCSEL. The struc-
ture is placed on a substrate and has two electrical contacts: p-contact and
n-contact. In between two distributed Bragg reflectors (top DBR and bot-
tom DBR) there is an active region. The mirrors provide optical feedback
and the active region provides the gain [17].
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DBRs are highly reflective mirrors used for current injection [18]. They
include interchanging high and low refractive index layers where the light is
partially reflected at each interface. The layers closest to the active region
have a lower refractive index than the active region. DBRs vertically confine
the light and enable an increased reflection coefficient.

The active region must provide gain sufficient to overcome optical losses
in the medium and power sufficient for lasing. It usually consists of a pin-
heterojunction and Quantum Well (QW). The QW were first demonstrated
in a VCSEL structure in Reference [19]. The carriers in QW are confined
to one dimension and free in two other dimensions due to the quantum
confinement effect [20]. Carriers are ‘trapped’ in the lowest conduction and
valence band states, and separated from each other by higher band states.
This provides high carrier density. Typically, a VCSEL structure features
multiple QWs to provide sufficient gain.

The oxide layer is added in the structure to confine both optical modes
and current in the transverse direction. The transverse confinement region
is called the oxide aperture. The confined current and modes are guided to
the active region [21].

The cavity length of high-speed VCSELs is usually designed to be the
shortest possible to increase the modulation bandwidth. The smaller the
cavity, the higher confinement factor Γ and the stronger the carrier —
photon interaction. The resonance in the longitudinal direction (limited
by DBRs) is created when optical field repeats itself after the round-trip
in the cavity. Therefore, the smallest cavity length equals to 1/2λ and the
second smallest cavity length equals to λ. Typically used is 3/2λ Because
of the short cavity, there is typically only one longitudinal mode which
falls into gain bandwidth. In the transverse direction, however, the oxide
aperture diameter is multiple times longer than the wavelength to improve
output power. In case of 850 nm GaAs devices is it often more that 10 times
longer. Consequently, multiple transverse modes with different wavelengths
are created, broadening the optical spectrum [22].

The original VCSEL structure was proposed in 1988 in Reference [23]
and has been under development ever since. GaInAsP/InP and AlGaAs-
/Ga/As were the first materials used for VCSEL fabrication. They sup-
ported VCSEL wavelengths in a region from 750 nm to 980 nm. VC-
SELs based on InGaAs were introduced in the 90’s supporting longer wave-
lengths, i.e. 1550 nm and 1300 nm [24]. In parallel, high bandwidth 850 nm
VCSELs were studied and commercialised [25,26]. Currently GaAs 850 nm
VCSELs are used in 95% of all optical data links below 1000 m [27]. VC-
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1.3 Vertical cavity surface emitting laser 9

SELs used during the course of this PhD include multimode 850 nm VC-
SELs based on GaAs (Papers 2 – 4, 7, 8, 10, 11, 13, and C2), and a
multimode 1060 nm VCSEL based on GaAs/AlAs and InGaAs (Paper 5).

1.3.2 Rate equations

The behavior of carriers and photons in the laser cavity can be described
using a reservoir model introduced by Coldren in [28]. This model describes
the intrinsic dynamics of a semiconductor laser. According to the model,
there are two reservoirs in the active region: 1) a carriers (N) reservoir of
a volume V , 2) a photons (Np) reservoir of a volume Vp. They are related
to each other through the confinement factor Γ: V = Γ · Vp.

The number of carriers in the reservoir increases by ηiI/q (when the
current is injected to the laser) and by the carriers generated from the
absorbed photons at the rate R12V . ηi is the injection efficiency and I/q is
number of carriers injected to the laser. The number of carriers decreases
due to non-radiative recombination at the rate RnrV , spontaneous emission
recombination at the rate RspV , and stimulated emission recombination
at the rate R21V . The carrier number rate equation summarises these
processes in the carrier reservoir:

V
dN

dt
=
ηiI

q
− (Rsp +Rnr)V − (R21 −R12)V (1.1)

The number of photons in the photons reservoir increases due to stimulated
emission recombination at the rate R21V , and spontaneous emission at the
rate R′spV . It decreases due to the photon absorption at the rate R12V and
due to light emission. Photons leave the laser cavity at the rate NpVp/τp.
τp is the photon lifetime. The photon rate equation summarises processes
in the photon reservoir:

Vp
dNp

dt
= (R21 −R12)V −

NpVp
τp

+R′spV (1.2)

Dividing Equation 1.1 and Equation 1.2 by the carrier reservoir volume
size V and replacing the term R21 − R12 by vggNp results in density rate
equations:

dN

dt
=
ηiI

qV
− (Rsp +Rnr)− vgΓrgNp (1.3)

dNp

dt
=

(
ΓvgΓrg −

1

τp

)
Np + ΓR′sp (1.4)
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Γ = V
Vp

— confinement factor
vg — group velocity
g — gain
τp — photon lifetime
N — carrier density
Np — photon density
ηi — internal quantum efficiency
V — active region volume
q — electric charge
Rsp = N/τ — spontaneous emission rate
Rnr — non-radiative recombination rate
R′sp — rate of photons emitted into mode of interest
There are different solutions of the rate equations for the following VC-

SEL states: DC, small signal modulation, and large signal modulation.
Large signal modulation is used during the transmission experiments. The
following subsections will address DC and small signal modulation solu-
tions. A strict analysis would require a rate equation for each photon
density of each mode and a rate equation for the carrier density, resulting
for a laser with N modes in (2N+1) equations. Yet, a single-mode rate
equation was experimentally verified to be a good approximation of the
multimode behaviour [29].

The carrier and photon densities depend on one another and therefore
the photons and carriers reservoirs are coupled. The coupled increase and
decrease of N and Np results in ‘ringing of the output power’ [28] at a
certain frequency. The ‘ringing’ frequency depends on the bias current,
photon lifetime, and carrier lifetime [30]:

fr =
1

2π

√
vaaN
qVp

ΓΓrηi(IL − Ith) (1.5)

aN = ∂g
∂N

IL — laser bias
Ith — laser threshold current
Factor D describes the relation between fr and the bias current:

fr = D
√
IL − Ith (1.6)

A damping effect occurs in lasers analogously to the RLC circuit. Damp-
ing factor γ is proportional to the resonance frequency and related to the
carrier lifetime [31]:

γ = Kf2r +
1

τ
(1.7)
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1.3 Vertical cavity surface emitting laser 11

K — gain compression factor

D and K factors are figures of merit used for comparing lasers and for
fitting laser models parameters to the measured behaviour. High resonance
frequencies can be reached at low bias currents for a high D factor, indi-
cating high bandwidth and energy efficiency of the device. The relaxation
oscillation peak is less damped for a lower K factor. Very low K factor
is one of the indicators that there will be overshoots in the optical eye
diagram.

1.3.3 Characterization

In this section, I introduce several ways of characterizing VCSELs. I used
these methods throughout the course of my PhD and in Papers 2 – 5, 7–
8, 10–11, 13, and C1.

Static characterization

The working range of the laser can be defined based on the laser’s DC char-
acterization. All of the injected carriers are used for the spontaneous emis-
sion and the non-radiative recombination under the small, below threshold,
current condition. There is only spontaneous emission output. The stimu-
lated emission recombinations occur when the number of injected carriers
exceeds the spontaneous and non-radiative losses. The current level at
which the stimulated emission starts occurring is referred to as the thresh-
old current Ith. For currents higher than Ith the carriers are used mostly
in the stimulated emission and the output power increases linearly with
applied current (above threshold behavior). The steady state solution of
the rate equations describes the output power Po in the linear range as a
function of the bias current [30]:

Po = ηd
hν

q
(I − Ith) (1.8)

ηd — quantum efficiency

hν — energy of a photon

q — elementary charge

The output power saturates for high bias current values due to thermal
effects. The DC characterization allows to choose an operating bias current
for the system. If a linear characteristic is essential the bias current is chosen
in the middle of the linear range.
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Frequency response

A laser’s frequency response, or scattering parameter S21, can be measured
using small signal analysis. A small amplitude modulation is used to drive
the laser. The photons are created due to the stimulated emission. The
spontaneous emission into the lasing modes is not taken into account in
the small signal analysis. A laser transfer function has been derived in [28]
from the rate equation for photons and carriers density (Equation 1.3 and
Equation 1.4) and has the following form of a second order damped system:

HL(ω) =
ωr

2

ωr2 − ω2 + jωγ
(1.9)

HL — transient function of the laser

ωr = 2π · fr
γ — damping factor

Equation 1.9 describes VCSEL frequency response considering only in-
trinsic effects of the laser. At high frequencies VCSEL has parasitic re-
sistances and capacitances that will reduce the modulation response. Ad-
ditional poles need to be added to the equation to describe the extrinsic
effects that include parasitics response. These vary for different lasers and
have to be defined separately based on the device design and electrical con-
tacts circuit. A simple approximation uses a single additional pole with a
parasitics cut-off frequency fp [32].

Relative intensity noise

The spontaneous emission processes are considered in the relative intensity
noise description. They were neglected in the small signal analysis for sim-
plicity but the random carrier and photon recombinations occur under all
applied current conditions. Variations in carrier density result in a broad-
ening of the laser pulse, referred to as frequency noise, while variations in
photon density lead to intensity variations, referred to as relative intensity
noise (RIN). RIN is a quantification of the constant variations of the photon
densities and can be expressed as a relation between the squared photon
density fluctuations and squared average photon density [28]. RIN can be
observed in the steady state as laser output power fluctuations:

RIN =
δP (t)2

P0
2 (1.10)
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The frequency domain expression of RIN is based on the rate equations.
It includes an additional spontaneous emission constant B, as compared to
small signal analysis:

RIN(f) =
Af2 +B

(f2r − f2)2 + ( γ
2π )2f2

(1.11)

fr — resonance frequency
γ - damping factor
A — constant
B — constant
Intensity noise severely limits the digital and analog modulation per-

formance. It is one of the main limitations especially for the multilevel
schemes described in the following sections because it broadens the signal
levels and impacts the vertical eye opening.

Optical spectrum

The optical spectrum is the power versus wavelength response of a laser.
The emission wavelength of the source can be measured using an optical
spectrum measurement. The emission wavelength of the VCSEL rises with
the increasing bias current as a result of internal heating. The spectral
width (SW) of the laser source can be measured using the optical spec-
trum. A root-mean-square (RMS) deviation is a standardized measure to
characterize a spectral width. σα is the RMS source spectral width ex-
pressed in nm. For multimode VCSELs, the RMS spectral width ranges up
to 0.9 nm [33] due to multiple transverse modes. The increased SW con-
sequently increases chromatic dispersion (CD) in the fiber and decreases
its bandwidth. As a result, the fiber capacity decreases. This fiber related
effect will be further addressed in Section 1.5.2.

1.3.4 Bandwidth limitations

The available modulation bandwidth supported by a VCSEL can be iden-
tified through the small signal analysis. VCSEL bandwidth is often given
as a 3 dB bandwidth or f3dB. f3dB is the frequency where the response
has decreased to half of its low-frequency value (-3 dB when plotted in the
dB scale). VCSEL bandwidth can be limited by intrinsic factors such as
thermal effects and damping or by the extrinsic factors [34]. The thermally
limited 3 dB bandwidth can be described as [34]:

f3dB,Thermal =

√
1 +
√

2fr,max (1.12)
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for γ << ωr where fr,max is a frequency for which the relaxation frequency
saturates with increasing current. The damping limited 3 dB bandwidth is
related to a the gain compression factor, K:

f3dB,damping =
2π
√

2

K
(1.13)

assuming γ =
√

2ω0 and γ = Kf20
[34] defines parasitics limited frequency as:

f3dB,parasitics = (2 +
√

3)fp (1.14)

where fp is a cut-off of the filter that describes parasitics.
A strong resonance peak in the modulation response due to low damping

can partially compensate for the parasitic roll-off and, in turn, improve the
total modulation bandwidth of the VCSEL [35].

1.4 Photodiode

Photodiodes convert the signal from the optical to the electrical domain us-
ing the photoelectric effect. In this section, I introduce the basic parameters
of the PDs [36].

1.4.1 Responsivity

A photodetector is a semiconductor, in which an electron-hole pair is gener-
ated from each absorbed photon. The energy of a photon has to be higher
than the bandgap energy Eg = hν. The presence of the electric field causes
carriers to move and thus a photocurrent Ip to flow:

Ip = RPin (1.15)

Pin is the optical power at the input to the PD and R is its responsivity.
R is related to wavelength λ as [36]:

R ≈ ηλ

1.24
(1.16)

where η is a quantum efficiency of the PD (the ratio between the absorbed
and incident power). It can also be expressed using an absorption coefficient
α and the PD’s width W:

η = 1− exp(−αW ) (1.17)
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Figure 1.2: Absorption coeficient vs. wavelength. Figure adapted from [36].

The responsivity of the PD increases with λ until Eg > hν. The relation of
absorption coefficient to the wavelength differs depending on the material.
Figure 1.2 presents the absorption vs. wavelength dependence for several
materials. The GaAs or Ge based PDs can be used for 850 nm short-range
applications, as presented in Figure 1.2. Broadband photodiodes based on
Indium are required for higher wavelengths.

1.4.2 Bandwidth

A PD’s speed depends on the time necessary to transform the incident
power into current. It is the rise time Tr in which electrons and holes travel
to the electrical contacts and it is defined as the time in which the response
increases from 10% to 90% of the final value. The smaller semiconductor
width W, the shorter the travel time, and hence the bigger bandwidth.
However, efficiency decreases with the decreasing W, as indicated in Equa-
tion 1.17. Consequently, responsivity decreases as well (Equation 1.16).
Hence, there is a trade-off between the bandwidth of the PD and its re-
sponsivity.
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16 Introduction

The PDs used with MMF need to have a relatively large active area
to support efficient coupling from the fiber core. As a result, they have
smaller bandwidth than the single mode fiber (SMF) coupled PDs. PDs
are one of the bandwidth limiting components in the optical interconnects.

1.5 Multimode fiber

Multimode fiber is a transmission medium used typically in short-range
communication applications. Standard MMFs have a core diameter of
50 µm and a cladding diameter of 125 µm. The large core size of the MMF
as compared to a SMF alows higher alignment tolerances, i.e. it is easier
to launch light into the fiber. Lower connector cost, easier alignment, and
a high tolerance to micro bending losses makes MMF based applications
more cost efficient than those based on SMF. The numerical aperture (NA)
ranges from 0.2 to 0.3 thus making the MMF a robust guiding medium.
The core size is much larger than the wavelength of the light, and therefore
multiple modes can propagate in the fiber core at different group velocities
and with different group delays (GDs). The number of guided modes is
determined by the wavelength, and the refractive index profile of the fiber.
The achievable transmission distance and information capacity of the fiber
are limited by the inter-symbol interference (ISI) caused by the modal and
chromatic dispersion. Next sections describe these effects in detail.

1.5.1 Modal dispersion

Modal dispersion is an effect of different fiber modes travelling at different
group velocities. The following description of modal dispersion is based on
geometrical optics [36]. Fibers are divided into two main types, in terms of
refractive index profile: fibers with step index and fibers with graded index.
Figure 1.3 presents the difference in the profiles. The step index fiber has
the same refractive index through the core, and the refraction occurs only
at the core–cladding boundary. The refractive index of the graded index
fiber gradually decreases from the fiber core center towards the cladding.
In step-index fibers guiding is through complete internal reflection, whereas
guiding for graded index fibers is through continuous refraction.

The rays can take several paths in the fiber, depending on the incident
angle at the input to the fiber. The shortest path goes straight through
the center of the core and has the length of the fiber L. This path is taken
by the rays launched under the incident angle of 90◦. The longest path in
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Figure 1.3: a) Step Index and b) graded index fibers.

the step index fiber is taken by the rays for which the angle of incidence
on the cladding is φc, critical angle. Larger angle would result in beams
leaving the fiber. The longest path length is equal to L/sinφc. Two rays
that take the shortest and longest paths arrive at the end of the step index
fiber with the time delay ∆T [36]:

∆T =
n1
c

(
L

sinφc
− L

)
=
L

c

n1
n2

∆ (1.18)

c — speed of light

n1 — the refractive index of the fiber core

n2 — the refractive index of the cladding

∆ is the fractional index change at the core-cladding interface, typically
< 0.01.

The delay in arrival times described above is called differential mode
delay (DMD). It causes a pulse broadening and ISI. The transmission is
possible only if the delay ∆T is smaller than the bit slot of the information
TB = 1/B, where B is bitrate:

∆T < TB (1.19)

This condition gives a rough estimate of the maximum pulse spreading.
The the maximum allowable pulse spreading in the implemented systems
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is typically specified as ∆T = 10% ·TB, but for the sake of simplicity I will
use the condition from Equation 1.19.

B∆T < 1 (1.20)

This fundamental limit defines the estimated capacity of the step index
fiber derived from Equation 1.18:

BL <
n2
n1

c

∆
(1.21)

The graded index fibers with parabolic refractive indexes were intro-
duced to reduce the DMD. The principle of the graded index fibers is pre-
sented in Figure 1.3 b. The refractive index is n1 at the core center and
gradually decreases to n2 at the cladding. The refractive index profile can
be described using the α profile:

n(ρ) =

{
n1 [1−∆ (ρ/a)α] ρ < a

n1(1−∆) = n2 ρ ≥ a
(1.22)

a — the core radius
α — describes the index profile (is equal to 2 for parabolic index fibers).

In the graded index fibers the length of the shortest path is the same as
in the step index fibers but the shortest path ray travels slower than the
rays that take longer paths. The reason is that the refractive index is the
largest in the very center of the core. The other rays take most of their
longer paths in the medium or lower refractive index. The velocity for
these rays changes along the path, because of the variation in the refractive
index. The fiber capacity limit for graded index fibers is defined as [36]:

BL < 8c/n1∆
2 (1.23)

The index profile shape highly influences the achievable distance and the
capacity of the fiber. Well optimized graded index fibers have a perfor-
mance multiple times better than the step index fibers [37]. The profiles
of commonly implemented MMFs, OM3 and OM4 fibers, are optimized for
use with 850 nm multimode VCSELs. They will be addressed in Section
1.5.5.

It is possible to design a graded index fiber in a way that all of the rays
from a single mode source arrive at the fiber end in the same time. The
fiber can be designed to minimize the modal dispersion for the principal
modes, there will, however, always be dispersion for higher order modes [38].
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Additionally, the modal dispersion and modal coupling arises due to the
imperfections of the MMF refractive index profile, additional modes related
to the fiber bending, or when the operating wavelength of the source is not
ideal, i.e. does not fit exactly the optimized fiber wavelength window.

1.5.2 Chromatic dispersion

Chromatic dispersion causes the group velocity of the mode to be frequency
dependent. That means that different spectral components of a pulse travel
with different group velocities. As a result, different spectral components
of the pulse disperse during propagation and do not reach the fiber output
at the same time. The pulse broadening due to chromatic dispersion for a
single mode is defined as:

∆T = DL∆λ (1.24)

D — a dispersion parameter expressed in ps/(km·nm)
L — a fiber length
∆λ — a spectral width of the pulse, commonly treated also as a wave-

lengths range emitted by the laser.
Spectral width of the source was introduced in Section 1.3.3 and referred

to as σα. The chromatic dispersion depends on the spectral width of the
source, on the launch conditions [39], as well as on the silica properties for
the specific wavelength. At 1300 nm chromatic dispersion is equal to 0 and
the chromatic dispersion effect increases for higher and lower wavelengths.
The chromatic dispersion at 850 nm is equal to -105 ps/nm/km. The
maximum bitrate times distance, limited by chromatic dispersion, can be
calculated in an analogous way to Equation 1.20:

BLDδλ < 1 (1.25)

Spectral width includes the wavelengths of all of the transverse modes in
multimode sources. Even though the chromatic dispersion at 850 nm is
much higher than at higher wavelengths, it still has a smaller effect than
the modal dispersion. The difference between the chromatic and modal
dispersion for several fiber types is presented in Figure 1.4. The units from
the figure (MHz·km) will be explained in the following subsection.

1.5.3 Fiber bandwidth

Effective modal bandwidth (EMB) is a metric popularly used to describe
the fiber capacity limited by the modal dispersion [41]. It defines the max-
imum signaling rate multiplied by a distance and is expressed in MHz·km.
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Figure 1.4: Chromatic vs. modal dispersion in OM3 and OM4 fibers. Figure adapted
from [40].

DMD discussed in Section 1.5.1 could not be easily compared for differ-
ent fibers because it depends on the fiber length, launch conditions, and
mode structure of the VCSEL. EMB was created to easily compare fibers
of different lengths. In order to measure a EMB of a fiber, telecommu-
nication industry association (TIA) describes the method in a standard
TIA FO 4.2.1 which is based on scanning the fiber core with a single mode
pulses. The result is a DMD plot as a function of the radial position of
the launched light. There are two standardized methods to estimate a fiber
effective modal bandwidth (EMB). First is the DMD mask approach. The
overall fiber delay is calculated by subtracting the slowest trailing edge from
the fastest leading edge. The delay is expressed in units ps/m. Second, cal-
culated effective modal bandwidth (EMBc), combines DMD measurement
for fibers with the standard-compliant VCSELs. The output pulse is cre-
ated for each fiber–VCSEL combination and EMB is calculated in units
MHz·km. The second method allows for a better link performance predic-
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Figure 1.5: EMB vs. EB adapted from [44].

tion assuming launch created by a particular source, e.g. VCSEL. EMBc
is indicated for five fibers in Figure 1.4.

Effective bandwidth (EB) combines the effects of modal and chromatic
dispersion in the fiber [42], and can be used for reach predictions better
than EMB [43]. It is also a better metric to approximate bandwidth of
wideband fibers, which will be discussed in the following section. The modal
and chromatic dispersion interaction (MCDI) is often not accounted for.
Analogously to EMB, EB is expressed in MHz·km. The relation between
effective bandwidth (EB) and EMB is presented in Figure 1.5 adapted from
Molin et. al [44].

A traditional bandwidth metric is the over-filled launch (OFL) band-
width. It was designed when MMF was used with systems based on light
emitting diodes (LEDs). It is measured in the same way as EMB, but
with an LED overfilling the core of the fiber instead of the laser. The light
from LED is uniformly distributed in the core. This method however does
not indicate the performance of the laser launch and does not serve as a
prediction of the VCSEL-based system performance.

1.5.4 Losses

Losses in the fiber are defined as a reduction in signal power that reaches
the receiver. The loss limits the transmission distance because of receiver
sensitivity, i.e. the minimum power at which it recovers the signal correctly.
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Power of the data stream propagating through the fiber is described by
Beer’s law [36]:

Pout = Pinexp(−αLL) (1.26)

αL — attenuation coefficient
Pout — output power
Pin — input power to the fiber
L — Fiber length.
The attenuation coefficient depends on the transmitted wavelength, in-

creasing towards the lower wavelengths. A typical attenuation of silica at
1300 nm equals to 0.37 dB/km and at 850 nm to 2.89 dB/km. The max-
imum loss for standard MMFs (OM3, OM4) used in todays applications
is standardized as 3.5 dB/km [45]. As the MMF link is usually limited to
hundreds of meters by the dispersion, the losses are not a major concern
in the short-range link design, yet important to consider for power budget
design.

1.5.5 OM3 OM4 MMF

The 850 nm optimized MMFs, such as OM3 and OM4, are commonly used
high-speed inter data center links. They have been standardized by TIA
with a 850 nm VCSEL assumed as a source. An OM3 MMF has a modal
bandwidth of 2 GHz·km [45] in the wavelength range of 780–920 nm, the
graded-index core of 50 µm, and a maximum loss per km is 3.5 dB [45].
The modal bandwidth of an OM4 MMF is 4.7 GHz·km [46] at 850 nm.
The core of OM4 MMF is typically graded-index and has a diameter of
50 µm. The α parameter of the refractive index profile (see Equation
1.22) for these two fibers is chosen to minimize the modal dispersion and
therefore maximize the modal bandwidth at 850 nm. Their parameters and
minimum guaranteed standardized distances are summarized in the Table
1.1. The maximum reach over these fibers depends on the spectral width of
the source due the chromatic dispersion. The standard assumes 0.4 nm as
the spectral width of the source. Figure 1.6 presents the maximum reach
depending on the source’s spectral width for OM4.

1.5.6 Wideband fibers

The index profile of the fibers described in the previous section was designed
to support high speed and low dispersion at 850 nm. Lately, short-wave
wavelength division multiplexing (SWDM) was introduced to improve the
capacity and data density in MMF links [48]. Several works presented the
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Fiber type
Min EMB

(MHz·km)

OFL

(MHz·km)

Distance

(m)

OM3 2000 2000 100

OM4 4700 3500 125

Table 1.1: OM3 and OM4 MMF specifications for 850 nm transmission [45], [46].
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Figure 1.6: Maximum reach versus spectral width for OM4; figure adapted from [47].

SWDM transmitted at short wavelengths with the standard OM4 MMF
[49]. However, the performance for the wavelengths higher than 900 nm was
degraded due to discrepancy between the wavelength the index profile was
optimized for and the transmitted wavelength. As a response, a few of fiber
providers proposed an adjusted fiber design, which supports a wider range
of wavelengths [13, 50]. The minimum required bandwidth of wideband
fibers is defined in Reference [13]. The minimum bandwidth used for OM4
fibers at 850 nm was applied for wavelengths in the range from 850 nm to
950 nm. This fiber type has been used in several experiments in Paper 2.
Other examples of wideband fibers were demonstrated in References [51]
and [44].
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1.6 Equalization techniques

Equalization is used to compensate for frequency-dependent losses in a
channel or a component. A linear equalizer has a frequency response reverse
to that of the compensated component. As a result, the combination of the
two has a flat frequency response and the signal quality is improved.

Equalizers can be fixed or adaptive. A fixed equalizer is relatively easy
to implement, however it does not respond to a dynamically changing per-
formance of a link. Adaptive schemes are more complex and power con-
suming, as they require a feedback on the channel performance. Yet, they
provide a better performance for links: a) changing in time, or b) the
performance of which is not easy to predict. For example, an adaptive
compensation scheme can be a right choice for the MMF links, where the
frequency response is strongly dependent on the launch type.

Equalizers can be implemented in both the analog and the digital do-
main. The analog implementations are less energy consuming but the digi-
tal equalizers enable higher flexibility. Both implementations can be adap-
tive. A digitally controlled resistors array can be introduced for the analog
equalizers to enable a parameter variation [52]. The adaptive schemes of
a digital implementation can be based on algorithms such as least mean
square (LMS), where equalizer’s parameters are adjusted with a prede-
fined step to optimize a certain performance parameter. The performance
parameter, e.g. signal-to-noise ratio (SNR), is monitored via a feedback
loop [53].

Equalization can be used both on the transmitter and the receiver side.
The frequency response of the channel is a sum of the responses of all of
the link elements. Hence, the placement of the equalizer does not affect
the ideal system’s performance. In practice, however, the placement of the
equalizer is crucial and depends on the application. The typical equalization
schemes used at transmitter (TX) and receiver (RX) are briefly described
in the following subsections.

1.6.1 TX equalization

A VCSEL based transmitter is limited by intrinsic or extrinsic factors de-
scribed in Section 1.3.4. They result in a non-flat frequency response of
the device, and hence slow rising and falling slopes of the waveform. Low
damping of the laser often results in overshoots (ripples) in optical eye
diagram of a VCSEL. These limitations can be mitigated with the TX
equalizer. The TX equalizer can also partly compensate for the limited
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Figure 1.7: a) 2-tap FFE; b) A corresponding output waveform. Figure adapted from
[52].

fiber link bandwidth, if it is known in advance. In case of the closed link
scenarios, such as active cables in data centers, bandwidth of the fiber can
be characterized in advance and corrected for at the TX.

Pre-emphasis and de-emphasis are low-cost, -power, and -complexity
approaches to equalization and are based the feed forward equalizer (FFE)
scheme. They can be implemented in both the digital and the analog do-
main (using an analog delay line). FFE gives different emphasis (weights)
to the different frequency components. For example, low frequency com-
ponents are de-emphasised and high frequency components are boosted in
order to improve the slow rising and falling slopes in the transmitter’s eye
diagram. The low frequency components correspond to the sequences of
the same bits (non-transition bits, e.g. 1, 1 and -1, -1). The high frequency
components refer to the bits transitions (transition bits, -1,1 and 1, -1).
The scheme for a 2-tap FFE is presented in Figure 1.7 a) and the corre-
sponding equalized waveform is presented in Figure 1.7 b). The k1 and
k2 are tap coefficients. Their values are chosen to improve the TX signal
performance. TX coefficients are usually fixed because the feedback from
the RX on the signal performance is rarely available. If it is, the coefficients
can be changed adaptively.

Multiple implementation examples of TX FFE were published, such as
a BiCMOS based 2-tap FFE implemented in a 71 Gbps NRZ VCSEL driver
[13], and in a 40 Gbps NRZ VCSEL driver [54]. A one-tap pre-emphasis was
demonstrated in a 25 Gbps VCSEL link in Reference [55]. Another CMOS
based implementation for VCSEL based links was presented in Reference
[56]. Pulse equalization technique was presented in Reference [57]. The
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Figure 1.8: 1-tap FFE/DFE scheme. The graphic adapted from [53].

TX equalizers have also been implemented to optimize the performance of
advanced modulation formats, e.g. pulse amplitude modulation (PAM)-4
in Reference [58].

1.6.2 RX equalization

Equalizers on the receiver side correct for a frequency response of a full
channel. The FFE introduced in the previous section can also be used in
the RX. Its performance, however, is limited in the noisy channels, e.g.
after an MMF link when an SNR is low. The noise of the high frequency
components is amplified together with the signal, further enhancing the
noise and therefore degrading the achievable bit error rate (BER) [53]. A
decision feedback equalizer (DFE) is often implemented together with FFE
to further improve the quality of the received signal. The DFE improves
the sensitivity and reduces the noise at the cost of the RX complexity [59].
It uses the information about the previous decision to set the threshold and
decode the present bit. The knowledge of preceding bit is required. This
feedback based approach allows for an accurate equalization of channels
with a slow response. The tap coefficients of this scheme can be prepro-
grammed or adaptive. Adaptive schemes are more often used on the RX
side because there is a convenient access to the feedback information on the
received signal quality, e.g. SNR [60]. The schematic of a 1-tap FFE/DFE
equalizer is presented in Figure 1.8. The optimization of the feedback filter
taps is often performed using an LMS algorithm.

An example implementation of an FFE/DFE for short-range MMF links
has been demonstrated in Reference [61]. The FFE/DFE has been opti-
mized to find a trade-off between complexity and link capacity for the NRZ
links [62] and the PAM-4 links [63]. The FFE/DFE combination for the
discrete multitone (DMT) has been studied in Reference [64].

The advanced modulation formats presented in further sections require
more complex equalizers. E.g. MultiCAP uses an equalizer based on an
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adaptive K-means algorithm [65] combined with a DFE. Non-linear equal-
izers have also been recently proposed and applied to correct for the laser
nonlinearities [66].

1.7 Modulation formats

Here I introduce several modulation formats used in the IM/DD short-
range VCSEL MMF based links. Non-return-to-zero (NRZ) has tradition-
ally been used in communication systems and, at the moment, it is the only
modulation format implemented in the commercial modules. NRZ uses one
bit per symbol. Advanced modulation formats that use multiple bits per
symbol are proposed to improve short-range link capacity. The capacity
can be improved multiple times at the cost of complexity, higher require-
ments in terms of SNR, and a higher energy dissipation of transceivers.
The number of parallel optical lanes and transceivers can be minimized for
all of the presented formats to reach the same capacity as NRZ.

Multiple types of advanced modulation formats were proposed for short-
range links application. They can be multilevel and multidimensional. The
most popular ones include: PAM (e.g. PAM-4, PAM-8) and DMT. Multiple
amplitude levels are used in PAM, e.g. in PAM-4 four levels are utilized
doubling the capacity of the link compared to NRZ. DMT uses multiple
orthogonal subcarriers, each of ehich is modulated separately. Two novel
modulation formats have been experimentally demonstrated and tested for
short-range applications during the course of this PhD project: MutiCAP
and BB8. This section includes an introduction to forward error correc-
tion (FEC), followed by the summary of record short-range transmissions
presented in literature. The section ends with a brief description of the
modulation formats used in Papers 1–8.

1.7.1 Forward error correction

The short-range transmission is assumed to be error-free at a BER<1e-
12. However, the new multilevel modulation schemes are limited by e.g.
laser’s RIN. Consequently, BER level of 1e-12 can rarely be met within
the existing power budget. Therefore, FEC, previously used in long-haul
systems, gets the support of the short-haul community. FEC is a technique
used in noisy channels where redundant information is encoded together
with the message to improve the detection accuracy. FEC is included in the
most recent Infiniband standard [67], and considered by a IEEE 802.3.bm
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Bitrate

(Gbps)

Transmission

distance

(m)

3 dB BW

of VCSEL

(GHz)

Equalization Ref.

71 7 26 2-tap FFE TX [13]

64 57 26 2-tap FFE [72]

60 107 26 2-tap FFE [72]

57 1 24 unequilized [73]

43 100 24 unequilized [73]

Table 1.2: State of the art for NRZ short-range transmissions; OM4 MMF was used in
all of the presented experiments.

standard task force [1], as well as by the 32G and 128G Fibre Channel task
force [68]. Net coding gain (NCG) of a coding scheme has to be analyzed
together with the latency and overhead size to decide if FEC should be used
in a specific scenario. The codes considered by the Ethernet 100GBASE-
SR4 and used in the electrical backplane are Reed Solomon (RS) codes
introduced in Reference [69]. Ethernet 100GBASE-KR4 and 100GBASE-
KP4 [70] have adapted RS(528,514) and RS(544,514) codes, respectively.

In Paper 3 we use a 7% FEC with the input BER at 4.5e-3 [71]. In
Paper 2 and 11 we employ KP4 FEC.

1.7.2 State of the art

State of the art VCSEL MMF link capacities for different modulation for-
mats are summarized in Table 1.2 and Table 1.3. First, for the sake of
comparison, the NRZ record transmissions are summarized in Table 1.2.
All of the presented transmission results were error-free, i.e. reached BER
of 1e-12. They were taken at the room temperature of 25 ◦C and the OM4
MMF was used for transmission.

Table 1.3 summarises the achieved bitrates and distances for five ad-
vanced modulation formats. In all of the presented examples a multimode
850 nm VCSEL and an MMF were used. All of the schemes required RX
equalization.
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Bitrate

(Gbps)

Bitrate

reported at

BER of

Netrate

(Gbps)

Transmission

distance

(m)

Fiber

type
Ref.

PAM-4

80 2e-3 70 2 OM4 [74]

60 2e-5 56.7 100 OM4 [75]

50 2e-5 48.7 200 OM4 [76]

52 2e-4 48.7 300 OM4* Paper 2

8-PAM

60 1.8e-4 56 50 OM4 [74]

37.5 1.5e-4 35.2 100 OM4 [77]

DMT

74 1e-3 66 100 OM3 [78]

50 1e-3 44.6 200 OM3 [78]

46 1e-3 41 300 OM3 [78]

30 7e-4 27.2 500 OM4** [79]

28 1e-3 25.4 1000 OM4** [79]

MultiCAP

107.5 3.8e-3 100.5 10 m OM4 [80]

70.4 4.5e-3 65.7 100 m OM4 Paper 3, 10

BB8

56 2e-5 54.5 100 OM3 Paper 4

Table 1.3: State of the art for advanced modulation formats applied in the short-
range links; Netrates are calculated by subtracting FEC overhead. * Wideband OM4;
**MaxCap550 OM4 with EMB of 4700 MHz·km.
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1.7.3 NRZ

Non-return-to-zero (NRZ) carries one bit per symbol and has two signal
levels. It is nowadays the only modulation format used in commercially
available transceivers. Its implementation is simple and therefore cost-
and power-efficient. The capacity of the NRZ links has grown through
the recent years with the increasingly improved VCSEL structures and,
therefore, their higher bandwidths. However, the achievable distance for
the high-speed VCSELs is limited by the fiber bandwidth. The capacities
of the state of the art NRZ based short-range links are presented in Table
1.2. For the few meters long links the capacity is limited by the VCSEL’s
intrinsic or extrinsic behavior, e.g. Reference [72]. In case of longer links,
the performance is limited by the dispersion of the fiber, e.g. Reference [72].
The highest bitrate presented with NRZ modulation over 7 m MMF is
71 Gbps [13]. At 100 m it is 60 Gbps [72]. The NRZ modulation was used
during the course of this PhD project in Papers 2, 5–8, 10–11, 13, and C2.

1.7.4 PAM-4

The limited bandwidth–distance product of NRZ links led the short-range
community to investigate advanced modulation formats to support longer
links. PAM-4 offers doubling the capacity compared to NRZ with the same
bandwidth. It is the least complex of the advanced modulation schemes
presented in Table 1.3.

Realization

PAM-4 has four amplitude levels. Two additional voltage levels are intro-
duced in between the maximum and minimum levels of NRZ. This results
in reduced spacing between the levels and the twofold increase of the signal
capacity. Gray coding, which has 1 bit difference between adjacent levels,
is typically used to encode PAM-4 signals. One of the possible simple ways
to realise PAM-4 is to couple together two decorrelated binary signals, one
of them attenuated. Demodulation is performed by decoding the amplitude
of the signal and using three decision thresholds to distinguish the symbol.
All PAM-4 implementation examples presented in Table 1.3 required the
FEC overhead and equalization. Physical layer integrated circuits (PHY)
PAM-4 was used in Paper 2 and Paper 11 for PAM-4 realization.
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Advantages and disadvantages

A clear advantage is the doubled spectral efficiency as compared to NRZ.
PAM-4 reduces the bandwidth requirement and potentially extends the
reach over MMF. A disadvantage is a tripled requirement on SNR that
comes with closer spaced levels. This, in turn, puts a more stringent re-
quirement on VCSEL’s RIN and other noise sources in the link. With
an increased number of levels, the ISI penalty increases together with the
eye closure penalty [63, 74]. Therefore, PAM-4 transceivers need FEC and
an equalization circuits. Consequently, they are more complex and energy
consuming than NRZ transceivers.

Realization in short-range links

PAM-4 requires half of the bandwidth to reach the same bit rate as NRZ,
and therefore is a solution for bandwidth limited channels such as MMF
links. The PAM-4 systems realized in short-range scenario are presented
in the Table 1.3. Paper 2 includes the PAM-4 results on an SWDM grid.
PAM-4 shows an advantage over NRZ for links longer than 100 m, where
the modal dispersion is dominant. The highest PAM-4 net rate reported is
equal to 70 Gbps for 2 m and 56.7 Gbps for a 100 m transmission. NRZ
outperforms PAM-4 for both these distances. At 200 m PAM-4 enables a
net rate of 48.7 Gbps, which cannot be reached by NRZ.

1.7.5 MultiCAP

MultiCAP is a multiband approach to carrierless amplitude phase (CAP)
modulation introduced in detail in Reference [81]. A single frequency band
of CAP is broken into smaller sub-bands. It results in a multidimentional
and multilevel modulation, which uses the advantages of both CAP and
DMT. It inherits a low peak-to-average power ratio (PAPR) from CAP
and an ability to fit the non-flat response of the channel from DMT.

Realization

Figure 1.9 presents the steps required to realize MultiCAP modulation. A
data stream is first encoded into a constellation, for each band separately,
using Gray coding. The constellation can be different in each band. Then,
the signal is upsampled; sample rate depends on subcarriers’ frequencies.
In-phase (I) and quadrature (Q) components of the constellations create I
and Q channels. I and Q channels for each frequency band are filtered by
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Figure 1.9: MultiCAP adapted from [81].

the orthogonal CAP filters. The filters are realized as orthogonal finite im-
pulse response (FIR) filters in the experimental validation in Reference [81].
The number of filters and their characteristics need to be chosen during the
implementation. The characteristics include: sin/cos frequency (frequency
of the band), roll-off factor, and the filter’s length. The signals from chan-
nels I and Q for all frequency bands are added and comprise a MultiCAP
signal. On the receiver side, the inverted matched CAP filters separate
the two channels for each frequency band. Demodulation is performed in
baseband using the k-means algorithm [65].

Advantages and disadvantages

MultiCAP’s advantage is the ability to fit non-flat system frequency re-
sponse by choosing a different constellation order in different bands (bit
loading) and a power level for each constellation (power loading) depend-
ing on the band’s SNR. As presented in Reference [81], a 25 Gbps MultiCAP
signal can tolerate bandwidth as low as 14 GHz. MultiCAP has also been
presented to be more robust in the dispersive channels than a standard
CAP. It inherits the CAP’s low PAPR and an option of a simple analog
implementation of the filters. Multiple bands require several narrow band
filters. The main disadvantage of MultiCAP is the complexity, if the filters
are implemented in the digital domain. The throughput flexibility of the
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digital implementation comes at the cost of energy consumption. Moreover,
the lack of the carrier results in a decrease in the horizontal eye opening.
Another disadvantage that comes with using multiple closely spaced bands
is the inter-band interference.

Realization in short-range links

MultiCAP provides high capacities in the IM/DD links (net rate of 100.5 Gbps
for back to back (B2B) in Reference [80] and 65.7 Gbps for 100 m in Paper
3), outperforming both NRZ and PAM-4. A MultiCAP realization based
on a single wavelength, single polarization, and direct detection (DD) op-
tical link is presented in Paper 3. MultiCAP is a good choice for high
capacity VCSEL MMF links, as it performs well in the bandwidth- and
dispersion-limited channels [82].

1.7.6 BB8

The theoretical background for this modulation format has been presented
in Reference [83] and it experimentally validated in Paper 4. BB8 is a block-
based 8-dimentional/8-level format. It uses the properties of the modula-
tion formats previously implemented in the coherent systems and applies
them for the IM/DD applications. Two temporally adjacent symbols of
four parallel optical lanes are used as the orthogonal basis of BB8. BB8
carries two bits per symbol, hence, has the spectral efficiency equivalent
to PAM-4. A commercially available module quad small form-factor plug-
gable (QSFP) is an example of a potential application because it has four
parallel uncorrelated lanes.

Realization

Block-based 8-dimentional/8-level (BB8) is optimized using an E8 lattice.
E8 is the densest lattice and it maximizes the Euclidean distance between
the pairs of transmitted points to avoid overlapping of the noise spheres
[84]. In case of a short-range VCSEL based application, a solution for E8
optimization is limited by the extinction ratio of the VCSEL. The optimized
modulation format BB8 has eight equally probable levels.

A sequence of 16 bits is mapped onto 8 symbols to implement BB8. A
predefined mapping algorithm is introduced in Paper 4. Each symbol is
modulated in 8 levels. The super symbol of BB8 is created of 8 symbols
and forms four two-dimensional projections p, as presented in Figure 1.10.
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Figure 1.10: A BB8 super-symbol mapped on four projections with two symbols in
each.

Four projections correspond to four parallel lanes. Every two symbols are
projected in a constellation diagram in a projection p. The points in each
projection are divided into four sub-groups G1-G4. The set of all constel-
lation points is divided into two independent subsets: even and odd. The
subsets are constructed with conditional combinations of G1, G2 (for even)
and G3 and G4 (for odd). The transmitted signal is distributed among four
independent lanes. After the transmission it is demodulated based on the
conditional dependence of the subsets.

Advantages and disadvantages

BB8 carries two bits per symbol, has the spectral efficiency equivalent to
PAM-4. Compared to PAM-4: it has a 1.5 dB asymptotic benefit, it is less
prone to the noise in signal levels, it has an improved sensitivity, and, as a
consequence, it has a lower power consumption and can be transmitted over
higher distances. The mapping technique presented in Paper 4 includes a
minimal alteration from PAM-4. The transceiver complexity is similar to
PAM-4, but the issues related to parallelization can be expected.

Realization in short-range links

Paper 4 presents BB8 applied in a short-range application. As shown in
Table 1.3, the demonstration for VCSEL–MMF link of BB8 included a
54.5 Gbps transmission over 100 m OM3 and OM4 MMFs. Because of its
better sensitivity and tolerance to noise than PAM-4, BB8 is well suited
for short-range VCSEL–MMF based applications.
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1.8 Non-standard wavelengths for short-range
communication

This section describes wavelengths higher than 850 nm applied in short-
range MMF links. There are two basic motivations for moving towards
higher wavelengths. First, CD is lower at higher wavelengths, thus en-
abling higher transmission distances. Second, the need for higher capacity
drives the short-range community towards using multiple-wavelength solu-
tions [85]. In the wavelength division multiplexing (WDM) scenario, several
higher wavelengths have to be supported by the transceivers and the trans-
mission medium.

Adding InGaAs quantum wells to a VCSEL increases its operating
wavelength. VCSELs modified this way emit light from 860 to 1200 nm
and offer a number of advantages: they can achieve a higher modulation
bandwidth, have a higher differential gain, lower operating current density,
lower operating voltage, higher reliability, improved thermal dissipation,
and higher temperature stability [86].

PDs commonly used for 850 nm short-range links are GaAs based. Their
responsivity ranges from 850 nm to 870 nm. Broadband detectors, such as
InGaAs PDs, are required to support higher wavelengths. They operate
in the range from 840 nm to 1300 nm; their responsivity increases with
wavelength.

CD and attenuation of the silica fiber decreases for higher wavelengths
allowing longer transmission distances. However, as explained in section
1.5.1, the further from 850 nm the wavelength is, the lower the modal
bandwidth of the currently used MMFs. The fibers currently implemented
in short-range links are optimized to support 850 nm sources and are not
specified at wavelengths higher than 900 nm (Section 1.5.5).

1.8.1 1060 nm

Recent works improved transmission distances using a 1060 nm source [87].
A very good reliability performance has been presented for 1060 nm VC-
SELs in Reference [88]. Their energy efficiency has been studied in Ref-
erence [89]. The transmission loss at 1060 nm is 0.95 dB/km, compared
to 3 dB/km at 850 nm. The chromatic dispersion at 1060 nm is equal
to -37.4 ps/nm/km and at 850 nm it equals to -105 ps/nm/km. How-
ever, as explained in the beginning of the section, the fiber performance at
1060 nm is suboptimal due to the modal dispersion of MMF. OM4 sup-
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Net baudrate

(Gbaud/s)

Transmission

distance

(m)

Fiber

type

EMB

@1060 nm

(MHz·km)

Ref.

25.78 1000 OM4* 9000 [87]

28 500 OM4* 4000 [90]

25 100 OM3 2800 [91]

24.34 200 OM3 4700 [91]

28 50 OM3 < 2000 [92] (Paper 5)

Table 1.4: State of the art for 1060 nm MMF transmissions. * OM4 optimized for
1060 nm.

ports wavelengths up to 900 nm, and above that wavelength the modal
bandwidth decreases. Wideband MMFs need to be compatible with the
previously standardized fibers, i.e. they must cover the operating win-
dow from 850 nm. The highest wavelength supported by wideband fibers is
980 nm because the refractive index profile can be optimized only for a lim-
ited range of wavelengths [42]. A promising alternative is a fiber specifically
optimized for 1060 nm, with the refractive index profile of OM4 changed
to support this wavelength, e.g. [90]. This solution would, however, require
a separate standardization line.

Table 1.4 summarises the recent results obtained at 1060 nm with the
corresponding fiber types. The record transmission over 1 km used an
active optical alignment subassembly to centralize the optical power in the
center of the MMF core [87]. Other researchers used either optical [91] or
electrical [92] preemphasis.

1.8.2 WDM

Wavelength division multiplexing (WDM) is another method of increasing
the capacity density per lane. It has long been employed in SMF based
systems, together with tuneable transmitters, filters, and receivers [93–95],
while MMF systems used parallel optics. A WDM signal is created by
multiplexing signals at different wavelengths from multiple transceivers in a
single optical lane. The short-wave WDM (SWDM) approach is currently of
interest of the short-range community because it reduces the footprint and
minimizes the number of fiber lanes used. Hence, improves the utilization
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λ range

(nm)

Bitrate in one λ

(Gbps)

Transmission

distance

(m)

Fiber

type
Ref.

850 - 940 10 300 WB-OM4 [3]

990 - 1080 10 300 OM3 [96]

990 - 1080 10 1 OM3 [97]

855 - 947 40 100 OM4* [49]

855 - 947 26 200 OM4* [49]

855 - 945 25 300 WB-OM4** [48]

850 - 940 25 300 WB-OM4 Paper 2

Table 1.5: State of the art for SWDM4 MMF transmissions; wavelength spacing is
30 nm in all grids. *EMB that peaks >860 nm **EMB between 4000 - 9000 MHz·km.

of the data center fibers [48].

The lasers and broadband photodiodes technology for wavelengths higher
than 850 nm is feasible and available, as explained at the beginning of the
section. The bottleneck for the short-range WDM implementation with
MMF is the modal bandwidth of the fiber. The OM4 fibers are standardized
for 850 nm only, and their performance decreases for higher wavelengths.
New wide-band fibers are proposed to tackle this problem, specifying the
EMB in the wavelength window up to 980 nm [50], as described in Section
1.5.6. Multiplexers and demultiplexers are another challenge for SWDM
implementation because of the data centers’ temperature conditions. Tem-
perature in data centers varies from 25 ◦C to 85 ◦C and this affects the
temperature of uncooled VCSELs in the transceivers. The operating wave-
length changes as a result of VCSEL’s thermal drift. The multiplexer’s and
demultiplexer’s pass-bands need to account for this wavelength fluctuation
as well as for the source’s spectral width.

A wavelength grid, channel spacing, and the fiber type need to be cho-
sen to optimize SWDM system’s performance, as discussed in Paper 6.
Table 1.5 summarises several demonstrated SWDM4 systems (four wave-
lengths) with NRZ modulation format. Wavelength spacing in each of the
demonstrated SWDM4 examples is 30 nm. There have been several demon-
strations of WDM in combination with PAM-4. They will be addressed in
the Section 1.10.



i
i

“main˙ATAT” — 2016/11/6 — 18:30 — page 38 — #54 i
i

i
i

i
i

38 Introduction

IEEE 802.3bs Task Force is currently discussing a 400 Gbit/s short-
range systems. One of the proposed solutions is a combination of SWDM
with parallel lanes [85]. Additionally, TIA has recently developed a new
wideband fiber standard TR-42.12 for MMF to support wavelengths up to
950 nm. Both organizations consider the following wavelength grid: 850,
880, 910, 940 nm. This grid is used in the experimental demonstration in
Paper 2.

1.9 Selective modal launch

The effect of modal dispersion is more pronaunced when the difference
between velocities of different mode groups increases. The difference in
velocities within a group is bigger for higher order modes than for lower
order modes [98]. The propagation delay ∆T and, therefore, the modal
dispersion effect can be minimized by reducing the number of fiber mode
groups. Hence, the fiber bandwidth can be improved by precisely exciting
fiber modes of the MMF. This dispersion mitigation technique redirects
the light to the desired modes and, unlike electrical equalizers, does not
amplify the noise. The selectively launched modes will not fully preserve
in the MMF due to mode coupling. But the coupling will happen within
the adjacent mode groups, where the velocity difference between modes is
lower than the velocity difference for higher an lower order modes. As a
result, the dispersion effect will be minimized even when mode coupling is
present. Selective modal launch techniques are divided here into central
launch and off-center launch.

1.9.1 Central launch

Central launch excites a few low order modes in the core of the MMF by
launching a smaller beam waist into the center of an MMF. To do so, e.g.
SM fiber is used at the TX side [99] or a single mode source is precisely
coupled in into the MMF [100]. This technique has stringent mechanical
alignment requirements to ensure central launch. It is very sensitive to
bending and fiber core imperfections. The imperfections, which dominate
in the center of the MMF refractive index profile, and bending result in
exciting higher order modes. This method yields a performance superior
to other types of launches, assuming correct launch conditions and no fiber
bending. Recently, several works on the central launch of SM sources have
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been presented and reached capacities of 54 Gbps over 1 km OM4 and
20 Gbps over 2 km OM4 [100,101].

1.9.2 Off-center launch

Offset launch

An offset launch is one of the off-center launch techniques. In this approach,
the beam is coupled to the MMF with an offset from the core center and
excites higher order modes of the MMF. The difference of velocities between
higher order modes is smaller than the corresponding velocity difference in
the modes excited in the standard launch, yielding a higher bandwidth
[102]. This technique requires high-tolerance connectors. A theoretical
study and modeling of an optimal offset launch for graded index fibers is
presented in Reference [103].

Selective launch

Selective modal launch assumes exciting only a fraction of fiber modes, in
the adjacent mode groups. Selective modal launch has been presented in
literature with a single mode source in a few wavelength regions, e.g. in
1550 nm [98], 1300 nm [104], 850 nm [105], and 640 nm [106]. The transmis-
sion performance of separately excited linearly polarized (LP) eigen modes
of MMF modes has been studied in References [98,98,105–107].

Selective modal launch is performed in the following way: a single mode
beam is collimated, goes through a phase plate or is reflected from an
spatial light modulator (SLM), and refocused on an MMF. The beam is
spatially modulated either by a phase plate or by an SLM. The phase
plates are binary, and calculated for a specific wavelength of the mode.
The phase of the phase plate bases usually on the Fourier transform of
the far field modal pattern, because the modes in near and far fields are
similar [98]. Phase mask is low cost, but not flexible (glass etching is fixed),
e.g. Reference [104]. In SLM, a phase information is encoded in a calculated
pattern. A beam modulated with this pattern will have a desired modal
field. This expensive solution allows for much higher flexibility because the
mask can be easily adjusted, but the resolution is limited by the matrix
pixel size [107].

Several adaptive algorithms were proposed to find optimal launch con-
ditions using SLM. The feedback loop reported on the signal performance
and the phase mask was adjusted. In Reference [98], the SLM pixels were
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flipped one by one, starting with the random setting. The optimization ob-
jective was to find the best mode shape in the far field. In Reference [108]
the SLM pixels were flipped with the cryterion of maximum eye opening.
In Reference [109] the objective was to find the trade-off between signal to
interference ratio (SIR) and a minimum distance between signal levels.

In the experiments described in Paper 2, 7–8, and 11 the effectiveness
of the beam modulation was first crudely confirmed in free space using
a charge-coupled device (CCD) camera. Then, the optimal phase plate
was chosen based on the BER performance after the transmission (Paper
7). In Paper 2 the phase plate design was chosen based on the numerical
simulation of the DMD in Paper 2.

1.10 Combination of capacity improvement
techniques

The techniques I described so far can be combined to vastly improve the
capacity and meet the requirements of future interconnects. Here, I list
a few record results. An impressive capacity of 49 Gbps over 2.2 km of
OM4 MMF has been presented in Reference [110] by combining a DMT
and a single mode VCSEL launched centrally. That same combination, but
with a different single mode structure, resulted in a 72 Gbps transmission
over 300 m of OM4 MMF [111]. Central launch into the fiber optimized
for 1060 nm resulted in a record 1 km transmission at 25.78 Gbps [87].
200 Gbps in a single lane using 25 Gbps components was enabled by the
combination of PAM-4 and SWDM [50,112]. 100 Gbps using SWDM2 was
presented in References [63, 113]. This combination is presented also in
Paper 2.

1.11 Main contributions and outline of the thesis

The work presented in this thesis has contributed the capacity improvement
techniques to the state of the art in the area of short-range optical com-
munication. The presented schemes are based on: equalization, advanced
modulation formats, 1060 nm transmission over MMF, SWDM, and selec-
tive modal launch.

In the area of equalization, I designed a K-mean based DD equalizer on
the receiver side for a MultiCAP modulation format, described in Paper
3. It enabled a net rate of 100 Gbps in 1300 nm range, higher by 6 Gbps
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than in the previously presented unequalized system [114]. It was applied
in a 850 nm short-range application and resulted in 65.7 Gbps transmission
over 100 m OM3 as presented in Paper 3. Moreover, the thesis presents
the results for a pre-emphasised 1060 nm transmission. The TX equal-
izer parameters were optimized based on the eye diagram opening and are
presented in Paper 5.

Two novel advanced modulation formats were experimentally validated
in short-range link during the course of this PhD: MultiCAP and BB8.
The B2B capacities of 74.8 Gbps and 54.5 Gbps using a single VCSEL are
reported, respectively. At the time of publication, the B2B result for Mul-
tiCAP was the record transmission in the IM/DD VCSEL–MMF link [82].
BB8 was first demonstrated in Paper 4 and presented to have receiver sen-
sitivity higher by 1.5 dB than its counterpart of an equal spectral efficiency,
PAM-4.

Next, the I experimentally validated the performance of a VCSEL–
MMF link in the lower chromatic dispersion wavelength region, namely at
1060 nm. In collaboration with UCSB, we reported the 28 Gbps transmis-
sion over 50 m OM3, demonstrated in Paper 6. OM3 optimized for 850 nm
is suboptimal for 1060 nm transmission, due to high modal dispersion. Our
result was reported simultaneously with, at the time, the record 28 Gbps
1060 nm transmission over 500 m of the MMF optimized for 1060 nm [90]
(Table 1.4). Additionally, an SWDM concept is theoretically introduced
in the thesis in Paper 6. SWDM performance over wideband fibers is pre-
sented in Paper 2.

Finally, this PhD study contributed with an application of the selective
modal launch technique to the 850 nm multimode VCSEL–MMF scenario.
This concept, previously studied with the single mode sources [105], en-
abled a modal dispersion mitigation and hence the MMF bandwidth im-
provement. Primary 10 Gbps results over 400 m MMF have been presented
in Paper 7–Paper 8 used the same technique for an RoF antenna link. I
performed an experimental validation of the technique at 25.7 Gbps over
300 m in collaboration with Finisar. This result is presented in Paper
2. Overall, this PhD study provided an overview on the possible capacity
improvements techniques that have been summarized in Paper 1.

This thesis is structured as follows: Chapter 1 introduces the context
of the topic. It briefly describes the short-range links scenario, the devices,
and the basics of the capacity improvement schemes implemented during
this PhD project. Chapter 2 describes the main papers published as a
result of this PhD study. To conclude, chapter 3 summarises the main
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achievements of this research and provides an overview of the potential
future work in the field of short-range high-speed optical communication.
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Chapter 2

Description of papers

This thesis is based on a set of articles already published or submitted for
publication in peer-reviewed journals and conference proceedings. The ar-
ticles present the results I obtained during the course of my PhD studies
together with my colleagues and collaborators. In PAPER 1 I review the
state-of-the-art for short-range VCSEL-MMF links. High-capacity short-
range links, and their applications in data centers in particular, are studied
and their performance is demonstrated experimentally in PAPER 2 to
PAPER 7. PAPER 8 presents experimental results for an antenna mul-
timode short-range link which carries radio over fiber (RoF) signal.

In PAPER 1 I describe the main applications of the VCSEL-MMF links,
including: data center links, antenna links, inter-, and intra- building links.
I also explain a need for improving the capacity in existing optical networks
and provide a literature review on the topic. The paper offers a comprehen-
sive overview of the strategies developed further in this thesis: advanced
modulation formats, equalization, and SWDM. Additionally, I outline the
methods for improving the multimode link bandwidth, by using single- or
quasi-single-mode sources or selective modal launch.

PAPER 2 reports and summarizes the experimental results for short-range
data center applications. The results include MMF bandwidth improve-
ment techniques based on: (1) SWDM transmission in combination with
NRZ and PAM-4 and (2) selective modal launch. We describe and charac-
terize the structure of VCSELs and PDs used for SWDM. Then, we present
the reliability study results for these devices. In the SWDM-4 transmission
experiment, we combine four NRZ 25.78 Gbps signals at different wave-

43
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lengths in an external multiplexer (MUX). It allows 100 Gbps transmission
in a single fiber lane. The experimental results include a 100 Gbps error-free
unequalized transmission over 200 m wideband OM4 MMF, and a below
FEC 100 Gbps transmission over 300 m wideband OM4 MMF. The second
part of the SWDM experiment includes PAM-4 signalling. We modulate
four VCSELs at different wavelengths with 22.5 Gbaud PAM-4 and con-
secutively transmit four wavelengths over 100 m wideband OM4, 300 m
wideband OM4, and 200 m standard OM4. Additionally, we modulate two
VCSELs at the outer wavelengths with 25.8 Gbaud PAM-4 and consecu-
tively transmit two wavelengths over 300 wideband OM4. I worked on the
experimental demonstration of selective modal launch in the multimode
VCSEL-MMF scenario. We measure the bandwidth of the same 305 m
fiber with the standard launch and the selective modal launch. Selective
launch improves bandwidth by 2.1 GHz at -6 dB. We collate the experi-
mental results with the simulation results run at a sample of 2300 OM3
MMFs. The simulations indicate that the bandwidth can be improved for
80% of the OM3 fiber spools using the selective modal launch technique.
This paper is an extended version of the results published in PAPER 11.

In PAPER 3 we provide an overview of a uniform solution for the 400 G
Ethernet links that is based on the MultiCAP advanced modulation format.
We apply the same modulation scheme in 20 km long range (LR) and
40 km extended range (ER) scenarios, using WDM lanes, and in short
range (SR), using parallel optical lanes. MultiCAP increases capacity per
lane and, therefore, decreases number of transceivers. It is a multi-level
approach that employs multiple bands transmitted in baseband, each of
them carrying a different modulation order. We use features of power
and bit loading to account for the non-flat system frequency response and
optimally use our setup. The paper summarizes results we obtained in O-
band using externally modulated lasers (EMLs): 432 Gbps in a single lane
transmitted over an unamplified 20 km SMF link and an amplified 40 km
SMF link. In the 850 nm band, we use a multimode VCSEL of 10.1 GHz
3 dB BW to transmit 70.4 Gbps over 100 m OM3. That result shows the
feasibility of transmitting 100 Gbps with a VCSEL of a higher bandwidth
(BW). The listed results are below 7% FEC limit.

A digital-to-analog converter (DAC) generates MultiCAP signal in our
experimental validation. We implement a 6-band MultiCAP configuration,
where each band carries a different modulation order and therefore a dif-
ferent bit rate. The modulation orders range from 4 to 64, fitting the SNR
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of the specific band. The MultiCAP signal occupies 26 GHz in LR and ER
and 21 GHz in SR. We measure four WDM lanes for LR and ER scenar-
ios and a single lane for SR. We demodulate the signal offline. The paper
describes the equalization step of the RX digital signal processing (DSP).
We implement an adaptive decision directed frequency domain equalization
to mitigate the linear impairments. We compare the BER for unequalized
system, for multi-modulus algorithm (MMA) equalizer, as well as the K-
means based DD equalizer. The last one outperforms MMA by 0.0181 dB
at the SNR level of 20 dB. SR scenario has a 3.6 dB power budget, whereas
LR has 12.6 dB and ER with semiconductor optical amplifier (SOA) has
15.9 dB. We demonstrate the feasibility of using MultiCAP in all three
scenarios. This paper contains an extended and more detailed description
of the results presented in PAPER 10 and PAPER C1.

In PAPER 4 we introduce and experimentally validate a new modula-
tion format — block-based 8-dimentional/8-level format — BB8. It uses
super-symbols visualized in 8-dimentional space, carries 2 bits per symbol,
and enables 56 Gbps transmission over 100 m MMF with the sensitivity
1.5 dB higher than PAM-4. We introduce the format, the bit-mapping
and demapping, and a hyper space hard decision which is suitable for the
specific experimental scenario. The modulation format design is a result of
a trade-off between performance (maximum link capacity) and computa-
tional simplicity. We experimentally validate BB8 using an 850 nm VCSEL
and an MMF. 65 GSa/s 8-bit AWG generates 520 mVpp 28 Gbaud signal.
The signal is transmitted over 100 m OM3 MMF and over 100 m OM4
MMF. PD serves as a receiver and a 33 GHz 80 GSa/s digital storage ana-
lyzer (DSA) captures the trace. The equalization in the RX consists of T/2
factional IIR filter with fixed taps. Using the same experimental setup, we
compare the BB8 modulation format in terms of BER with PAM-4, which
has the same spectral efficiency, and with PAM-8, which has the same num-
ber of levels. Our experimental study finds that, in the B2B scenario, the
BB8 outperformes PAM-4. It does not result in the error floor which is
observed for PAM-4. PAM-8 does not reach the 7% FEC limit, hence the
transmission is unsuccessful. In 100 m 56 Gbps transmission, BB8 reaches
the 2.7% FEC limit (BER of 2e-5) while PAM-4 reaches only 7% FEC
(BER of 3.8e-4).

PAPER 5 reports on the 28 Gbps and 30 Gbps transmissions over the
short-range communication data link obtained using a 1060 nm laser source.
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We bias the 1060 nm bottom-emitting VCSEL at 3.77 mA and directly
modulate it with the 0.55 Vpp pre-emphasised electrical signal. The optical
signal is transmitted over 50 m of OM3 MMF and received by the InGaAs
PD. We analyze BER in real time and we do not use post-equalization. We
achieve the BER below 1e-4 and 1e-3 for 28 Gbps and 30 Gbps scenarios,
respectively. This work explores the performance and characteristics of the
non-standard short-range wavelength in the multimode medium. Moreover,
we study the impact of the pre-emphasis on the transmission performance.
The benefits of using the higher wavelength include lower fiber attenuation
and high energy efficiency due to the low threshold current of the source.
A disadvantage is fiber’s higher modal dispersion compared to the 850 nm
standard short-range region. The work indicates that the wavelength and
the VCSEL used are suitable for the high speed transmission. Longer
transmission distances could be obtained using 1060 nm optimized OM4
fiber. This work is a base for moving towards the wavelength division
multiplexing in short-range.

PAPER 6 describes a simulation-based performance analysis of three
short-wave WDM wavelength grids. The grids are based on four wave-
lengths with 30 nm inter-channel separation and enable 100 Gbps trans-
mission. The simulated wavelengths of the sources range from 850 nm to
1120 nm. We study the 100 Gbps transmission performance over several
types of MMF: OM2, OM3, and OM4. Our study finds that due to the
modal bandwidth of the fiber there are different optimal SWDM grids for
OM2 MMF type and for OM3, OM4 fiber types. We perform the sim-
ulations in OptSim using the existing fabricated VCSELs’ parameters to
simulate the transmission light sources.

PAPER 7 proposes and experimentally validates selective modal launch
in the multimode VCSEL – multimode fiber scenario. We phase-modulate
the multimode 850 nm VCSEL beam in the free space setup using an SLM
and shape it as the orbital angular momentum (OAM) mode. We use three
modes that carry different phase information. They are referred to as M1,
M2, and M3. We compare their performance to the standard mode, referred
to as M0, under the same launch and received optical power conditions. We
consecutively launch the four modes to the multimode fiber and optimize
the coupling to reach the maximum coupled optical power. We evaluate the
different modes launched to MMF in terms of the frequency response as well
as BER (small and large system analysis of the system). The 50 m OM3,
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50 m OM4, 100 m OM3, and 200 m OM3 present the same performance
for all of the tested launched modes. Then, 400 m OM3, 400 m OM4,
and 400 m OM4 are tested and show an improved performance in terms
of BER for higher order modes launched to MMF. Using M3 allows for
the 10 Gbps transmission over 400 m OM3 with BER below a 7% FEC
threshold. The system does not include equalization. The proposed launch
results in exciting fewer modal groups of a fiber than in the central launch
and therefore in improved performance.

PAPER 8 addresses a last-mile antenna link scenario for RoF signals,
where the combination of free-space optics (FSO) and cost effective MMF
is applied. FSO is used to remotely feed the antenna site, and then MMF
to distribute the signal to the antenna. In the presented experiment, we
modulate the 850 nm VCSEL with several RoF signals, of bitrates up to the
1.5 Gbps and carriers up to 10 GHz. We use an SLM to phase-modulate the
VCSEL beam carrying RoF signal and create a donut-shaped beam. First,
we transmit the beam through a 45 cm long FSO link and then launch it to
MMF. We investigate the transmission performance for four independent
types of launches over up to 400 m OM4.

The described above main scientific papers, PAPER 1–PAPER 8, are
attached after the Section 3. Other related scientific papers, PAPER 9–
PAPER 11, are attached in Appendix A–Appendix C.
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Chapter 3

Conclusions and future work

3.1 Conclusions

This thesis proposes a number of capacity improvement schemes for short-
range optical communication, such as equalization, advanced modulation
formats, transmission at wavelength 1060 nm with a chromatic dispersion
lower than 850 nm, SWDM, and selective modal launch. Higher capacity
means that the existing optical networks can be used to transmit higher
bitrates without the need of rewiring, and that new, longer links can be
implemented without compromising the transmission speeds. Our findings
have important implications for short-range data center links as well as
antenna links: at a cost of additional complexity, the proposed methods
enable the transition to the next generation, high-speed optical applica-
tions, e.g. SFP+.

Equalization techniques

The equalization schemes presented in this thesis mitigate fiber dispersion
effects and correct for the frequency response of the devices. The results
in PAPER 5 provide an experimental demonstration of the pre-emphasis
implemented in TX. We correct the bandwidth limited response of the
18 GHz VCSEL using pre-emphasis and transmit a 28 Gbps NRZ signal
over 50 m OM3. The MultiCAP modulation format is supported by the
equalization we developed and described in PAPER 3. Our k-means based
equalizer is integrated in the receiver DSP algorithm. It outperforms the
multi-modulus algorithm decision-directed equalizer in terms of BER. The
comparison of the equalizers is presented in PAPER 3 .
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Advanced modulation formats

Advanced modulation formats allow more efficient usage of bandwidth by
utilizing multiple amplitude levels and/or multiple dimensions. PAPERS
2, 3, and 4 present the performance of PAM-4 (48.7 Gbps over 300 m WB-
OM4), MultiCAP (65.7 Gbps over 100m OM3), and BB8 (54.5 Gbps over
100m OM3), respectively. This work confirms that advanced modulation
formats can be applied in short-range optical links and are a promising
solution to vastly improve their capacity.

Non-standard wavelengths transmission

Transmission at wavelengths higher than 850 nm over MMF results in lower
chromatic dispersion and, consequently, longer possible transmission dis-
tances. In PAPER 3 we study the transmission at 1060 nm over OM3
MMF. Because the refractive index profile of OM3 is optimized for 850 nm,
the modal bandwidth is limited for wavelength of 1060 nm. We achieved
transmission over only 50 m OM3. This work stresses the importance of
fiber structure optimization in supporting higher wavelengths.

A theoretical study of transmission performance of wavelengths 850 nm
— 1060 nm over OM2, OM3, and OM4 is presented in PAPER 6. Our
study finds optimal wavelength grids for an SWDM4 system for each fiber
type. One of the grids is implemented and experimentally tested at 25
Gbaud/s. We present the experimental results in PAPER 2 and show a
potential of SWDM4 to quadruple the capacity in a single MMF link.

Selective modal launch

We introduce selective modal launch in the multimode VCSEL–multimode
fiber scenario in PAPER 7 and then use it in an RoF application in
PAPER 8. Selective launch mitigates the modal dispersion effect and
hence improves the fiber bandwidth for long MMF links of 400 m. We use
beams with four different phase modulations in the experimental validation
to find the optimal launch conditions. We use SLM in PAPER 7 and
PAPER 8 for a phase mask optimization and the maximum BER as an
optimization criterion. In PAPER 2 we perform numerical simulations
of fiber’s DMD to find the optimal phase mask. For the experimental
validation, we use a phase plate with a profile defined in the simulations.
The study shows potential using simple phase modulation to selectively
launch multimode VCSEL’s light to the MMF and obtain improved fiber
bandwidth.
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3.2 Future work

Current challenges of the high speed short-range links are related to the
limited bandwidth of the devices, i.e. VCSELs and MMF. The development
of VCSELs has progressed rapidly during the course of this PhD project:
record transmission bitrates for 850 nm VCSELs increased from 56 Gbps
in 2013 [115] to 71 Gbps in 2016 [13]. The multimode fibers optimization
and standardization have also progressed (TIA [45], IEEE [85]). A closer
integration of the ICs and optics is necessary to continue this development.
The impressive result of 71 Gbps with NRZ was achieved thanks to this
approach [13]. The close integration in combination with the optimized
equalization techniques will further decrease the impact of electrical con-
nection on the bandwidth of the transceivers.

One of the directions which became clear during this PhD study is us-
ing 850 nm VCSELs with a decreased spectral width in multimode fiber
based applications. Single- or quasi-single mode devices, not yet available
during the course of this study, could be used with the presented capac-
ity improvement techniques, i.e. advanced modulation formats (MultiCAP
and BB8) as well as selective modal launch. The combination of these
schemes with SM source is expected to provide further capacity improve-
ment, as indicated in References [100,110], but will require development of
the optimization techniques.

A long term goal for the short-range links is an extension of the SWDM
grid towards higher wavelengths to combine it with the existing 1300 and
1550 nm WDM grids and cover the full optical spectrum. Other possible
future directions for data center short-range links, that are not directly
related to this study, include multicore fibers, spatial division multiplexing,
or silicon photonics.
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Paper 1: Improving the Capacity
of Short-Reach VCSEL-based
MMF Optical Links

Tatarczak, A.; Lu, X.; Tafur Monroy, I., ”Improving the Capacity of Short-
Reach VCSEL-based MMF Optical Links,” LAOP, 2016.
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Improving the Capacity of Short-Reach
VCSEL-based MMF Optical Links

Anna Tatarczak1, Xiaofeng Lu1, Idelfonso Tafur Monroy1,2

1 DTU Fotonik, Technical University of Denmark, Build. 343, DK-2800, Denmark
2 ITMO University, St Petersburg, Russia
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Abstract: We summarize strategies for increasing a capacity of short-reach links that base
on an 850 nm VCSEL and an MMF. Presented methods include advanced modulation formats,
equalization, WDM, quasi-single mode sources and a selective mode launch.
OCIS codes: 060.2330 Fiber optics communications; 060.4510 Optical communications

1. Introduction

A typical short-reach link bases on a cost-effective directly-modulated multimode 850 nm vertical cavity surface
emitting laser (VCSEL), a multimode fiber (MMF) and a photodiode. The multimode 850 nm VCSELs are multiple
times cheaper than commercially available 1300 nm laser sources. Besides cost efficiency, the 850 nm VCSELs have
high modulation bandwidth. The recently demonstrated multimode 850 nm VCSEL supports a 71 Gbps transmission
bitrate [1]. Additionally, the commercially available VCSELs present a high reliability and temperature performance
[2] that indicate maturity of the VCSEL technology. The multimode fibers have higher coupling tolerance than single
mode fibers because of a larger core size. Therefore the multimode solutions are widely implemented in the existing
short-reach links such as data center links. The multimode fibers have a higher attenuation than the single mode
ones. The attenuation is usually negligible because of a limited fiber length in the shot-reach applications. A main
performance degradation factor for the short-reach links is a dispersion. A chromatic and a modal dispersion contribute
to the signal degradation. The chromatic dispersion results in a different arrival times of different spectral components
(wavelengths). Hence, the higher a spectral width of the source is, the higher the chromatic dispersion effect. The
modal dispersion results in a pulse spreading due to different propagation velocities of different modes in the fiber.
Because of the abovementioned factors, the VCSEL-MMF links have a limited bandwidth times distance product. The
higher the number of longitudinal modes (a chromatic dispersion effect) and transverse modes (a modal dispersion
effect), the more limited the fiber bandwidth. Sustaining the same quality of service involves a trade-off between
the bitrates and the achievable distance: increasing the bitrate means the diminishing of the achievable distance and
increasing the link length requires transmitting at lower bitrates. This paper reviews several methods enhancing the
capacity of the short-reach links without a need for a costly rewiring. We will start with describing main applications
of the VCSEL-MMF links. Then the solutions for increasing the bitrate in a single opical link will be presented and
followed by the reach extension solutions.

2. Applications

The short-reach VCSEL-MMF links are used for multiple applications. The main one is a data center interconnect.
The VCSELs are used in the data centers for over a decade due to their low cost, high modulation bandwidth, energy
efficiency, low heat dissipation, good performance in high temperatures, easy testing on wafer and good reliability
results. Another application that requires a cost effective short-reach solution is an antenna link. This type of link
typically carries a radio over fiber (RoF) signal. Wired mobile backhaul and fronthaul segments of a wireless network
were traditionally based on copper links. They have migrated to the optical fiber based links over the last years. The
MMF links based on 850 nm VCSEL lasers meant for short distances up to 300 meters have been demonstrated as
a feasible solution for the RoF applications [3]. Other applications employing the VCSEL-MMF infrastructure are
intra-building client connections. These types of applications are supported by the physical layer of the 10GBASE-SR
Ethernet standard. IEEE 802.3 standardizes 10 Gbps for the 300 m OM3 MMF links. IEEE 802.3bj proposes 25 Gbps
for the 75 m OM3 MMF links. The RoF applications are standardized e.g. by LTE standard. The 43rd band of the
LTE standard defines the speed of 1 Gbps at a 3.7 GHz carrier. Solutions which allow for the capaciy increase of the
already widely implemented MMF links is of interest for both research and industry communities.
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3. Enhanced capacity

A recent literature review suggests a number of ways to increase the bitrate in the optical link. One way is to improve a
VCSEL structure and use a non-return-to-zero (NRZ) signaling [1]. An alternative is employing advanced modulation
formats to increase the bitrate in the bandwidth-limited short-reach link. The NRZ signal can be replaced with the
lower badwidth channel carrying a lower baud rate multilevel signal that results in the same capacity. A following
paragraph summarizes the reported experimental results for the multilevel signaling used in the 850 nm multimode
VCSEL MMF links. With a pulse amplitude modulation PAM-4 60 Gbps has been demonstrated for 100 m OM4 [4].
With a discrete multitone modulation (DMT) 74 Gbps has been obtained for 100 m OM3 link [5]. Using a MultiCAP
signaling resulted in 70.4 Gbps over 100 m OM4 [6]. These technologies offer higher capacity at the cost of the high
energy dissipation. PAM-4 offers doubling the capaciy, it is least complex of the described above advanced modulation
schemes and therefore is currently considered for standardization.

An equalization is another technique used to increase speed in the short-reach links. It can be implemented both
at the transmitter side, in a form of a pre-emphasis [7, 8] as well as on the receiver side [9]. Equalization on the
transmitter side can be designed to compensate for a non-flat VCSELs frequency response, an overshoot in an optical
eye diagram, a time jitter, etc. The receiver side equalization is usually implemented to correct for the chromatic and
the modal dispersion effects. Several studies were performed to find the optimal equalization which allows highest
link capacity for the NRZ [10] and PAM-4 [11]. The equalization is often used together with the advanced modulation
formats to compensate for the non-flat channel response which characterizes the VCSEL MMF links.

A wavelength division multiplexing (WDM) improves the capacity of the single optical link multiple times by com-
bining several signals at different wavelengths within the same fiber [12]. Various short wavelength WDM grids have
been suggested and simulated for the optimal stort-reach link performance [13]. The mature VCSEL and PD technol-
ogy is required to suppot all the WDM wavelengths. In general, higher wavelengths experience a lower attenuation
and a lower chromatic dispersion. However, the fiber bandwidth is lower for higher wavelengths because the standard
multimode fibers are optimized for 850 nm transmission. Wideband fibers have been designed to support higher wave-
lengths such as 980 nm in order to overcome this issue [14]. There have been multiple demonstrations that combine
the previously described techniques [15, 16].

4. Enhanced transmission distance

The multimode link’s bandwidth and the achievable transmission distance are limited by the chromatic and modal
dispersion. The chromatic dispersion effect is more significant for the laser sources with a higher spectral width. A
novel 850 nm VCSEL structure have been proposed to decrease the VCSEL spectral width and therefore increase
the achievable transmission distance. A reported quasi-single mode VCSEL have a 20 dB side-modes suppression
ratio [17]. Using the quasi-single mode 850 nm lasers over the multimode links allow for e.g. a 1 km transmission
at 54 Gbps [18]. This technology requires a laser based on a high suppression ratio of the side-modes and hence
has a low optical output power. Another technique which improves multimode link’s bandwidth is a selective modal
launch [19]. By launching modes from the source to a single fiber modal group the modal dispersion effect is reduced
and the achievable transmission distance is increased [20].

5. Summary

The techniques that allow for increasing the capacity of the 850 nm VCSEL MMF links include the advanced modula-
tion formats, the equalization, the wavelength division multiplexing, the side modes suppression of the laser source and
the selective modal launch. By improving the capacity, the higher bitrates can be supported in the already implemented
MMF links of the fixed lengths.
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Abstract — This paper reviews and examines several 

techniques for expanding the carrying capacity of multimode 
fiber (MMF) using vertical cavity surface emitting lasers 
(VCSELs). The first approach utilizes short wavelength division 
multiplexing (SWDM) in combination with MMF optimized for 
operation between 850 and 950 nm. Both non-return to zero 
(NRZ) and four level pulse amplitude modulation (PAM4) 
signaling are measured and demonstrate up to 170 Gbps post- 
forward error correction (FEC) transmission over 300 m. For 
single wavelength transmission the use of selective modal launch 
to increase the optical bandwidth of a standard OM3 MMF to 
more than 2.1 GHz•km for standard MMF is presented. A 
statistical model is used to predict the bandwidth enhancement of 
installed MMF and indicates that significant link extension can 
be achieved using selective modal launch techniques. These 
results demonstrate the continued effectiveness of VCSEL based 
MMF links in current and future data center environments.  

 
Index Terms—Data center, interconnects, vertical cavity 

surface emitting laser (VCSEL), fiber optics. 

I.   INTRODUCTION 
PTICAL data links based on an 850 nm VCSELs and 

MMF have served as cost-effective data center 
interconnects for more than two decades. It is estimated that 
more than 500M VCSEL based links have been deployed. 
Over this time, the signaling rate defined by standards such as 
IEEE 802.3 (Ethernet) and ANSI X3.T11 (Fibre Channel) has 
increased from 1 Gbps to more than 25 Gbps today. To 
support higher speed operation, MMF has been standardized 
by the Telecommunications Industry Association (TIA) by 
effective modal bandwidth (EMB) at 850 nm, including OM3 
(2000 MHz•km) and OM4 (4700 MHz•km) [1]. To address 
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the need for higher density interconnects, multilane parallel 
optical transceivers and fibers have been developed. However, 
this represents additional fiber and transceiver costs, has 
limited scalability, and does not address the installed base of 
single channel OM3 and OM4 fiber. The need for higher 
bandwidth density has led to investigation of the limits of 
current VCSEL and MMF technologies. For example, a 
43 Gbps link operating error-free without FEC up to 100 m on 
OM4 fiber (57 Gbps at 1 m) has recently been demonstrated 
using NRZ signaling [2]. To further push the VCSEL capacity, 
other signaling protocols such as PAM4, signal processing 
such as Forward Error Correction (FEC), and other digital 
signal processing techniques are being investigated [3,4,5]. 
For example, a two-tap feed-forward equalizer (FFE) on the 
transmitter (TX) side enabled error-free NRZ transmission 
without FEC up to 71 Gbps over 7 m OM4 [6], and 60 Gbps 
over 107 m OM4 [7]. With the addition of PAM4 signaling, a 
148.6 Gbps transmission over 5 m MMF was reported in [8] 
and 100 Gbps PAM4 transmission over 100 m OM4 fibers 
was reported in [9]. In these measurements, the equalization 
was implemented in the receiver and the reported rates are 
after removal of the FEC overhead. Using an optimized OM4 
a 200 m 48.7 Gbps link was achieved in [10] and a 150 m 
50 Gbps link in [11]. Using OM3 and discrete multitone 
(DMT) signaling, links operating up to 66 Gbps at 100 m and 
up to 42 Gbps at 300 m have been reported [4]. 

Another method to increase the capacity of a single MMF is 
to utilize SWDM [12]. In this approach, the capacity of a 
single MMF scales with the number of wavelengths. Using a 
combination of signaling, equalization and SWDM, 200 m 
OM4 links operating at 42.5 Gbps [13], and 48.8 Gbps [14] 
per wavelength have been reported. SWDM technology is 
currently under IEEE 802.3 standardization process [15]. One 
limitation to its deployment is that traditional MMF has not 
been specified for operation outside of the 840 to 860 nm 
range. In response, the TIA has recently developed a new fiber 
standard TR-42.12 for MMF to include operation up to 
950 nm. This MMF is referred to as wide band OM4 (WB-
OM4) in this paper. To achieve operation over the wider 
wavelength the minimum effective bandwidth (the 
combination of modal and chromatic dispersion) is specified 
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as 2000 MHz•km from 840 to 950 nm. A performance 
comparison for OM4 and WB-OM4 for this range of 
wavelengths was presented in [16]. In this paper we will 
expand on the previous set of results and combine the several 
techniques described earlier to achieve 170 Gbps on a single 
optical fiber at distances up to 300 m. Carrying capacity of 
MMF is limited by both the effective bandwidth (EB) and the 
total fiber link length. As the speed of optical communication 
standards has increased, the operating length has been 
reduced. For example, 10 Gbps lengths could be deployed up 
to 300 m and this was sufficient for many data centers. As the 
speed increased to 25 Gbps, the specified link length has been 
reduced to 100 m. This has limited the infrastructure cabling 
deployment in some data centers and has not allowed full 
utilization of the installed base of OM3 and OM4 at 25 Gbps. 
Selective modal launch (SML) is one technique that can be 
used to increase the bandwidth of MMF, and has been 
demonstrated at 1550 nm [17], 1310 nm [18] and 664 nm [19]. 
These schemes employed a single-mode source and a spatial 
light modulator (SLM) to selectively launch light into to the 
MMF. In this paper we utilize a simple phase plate to increase 
the measured effective bandwidth of an OM3 fiber from 
1800 MHz•km to 2100 MHz•km and demonstrate 25 Gbps 
transmission over 300 m.  

 

II.   VCSELS AND PDS FOR SWDM TECHNOLOGY 
The basic SWDM VCSEL structure is derived from the 

commercialized 850 nm 25 Gbps design which was previously 
discussed in [20]. A 30 nm wavelength grid (850, 880, 910 
and 940 nm) was chosen to fit into the WB-OM4 
specifications defined in TIA TR-42.12 standard and allows 
for uncooled operation over the anticipated temperature range 
with the use of relatively low cost optical filters.  The longer 
wavelengths are designed by scaling the mirror thickness and 
active region composition. Extending the SWDM grid towards 
longer wavelengths (970, 1000, 1030 and 1060 nm for 
example) is relatively simple in terms of epitaxial growth and 
device fabrication, allowing for future bandwidth expansion 
on a single MMF. Fig. 1(a) is a plot of the relaxation 
oscillation as a function of current normalized to threshold at 
temperatures from -5 to 95 C.  At 25 C all four wavelengths 
achieve ROF>18 GHz, and more than 14 GHz at 95 C. Fig. 
1(b) depicts eye diagrams captured for each SWDM 
wavelength at three different temperatures. Almost identical 
eye openings were captured using the same NRZ electrical 
drive signal. The uniformity of device performance greatly 
simplifies the laser driver design. Fig 2 shows the reliability 
prediction (time to 50% fail, TT50%, and time to 1% fail, 
TT1%) for each of the VCSELs based on extrapolation from 
accelerated aging tests similar to those described in [21]. The 
time to 1% failure is more than 10 years of continuous 
operation at 80 C. These VCSELs are currently used in 
production transceivers. Note the 10x reliability improvement 
realized in the 850 nm VCSEL (GEN2) from previous reports 
of GEN 1 devices [21].     
A single photodiode (PD) was designed to operate over the 
entire SWDM band. The InGaAs active region is grown on a 
GaAs substrate.  Fig 3(a) shows the PD frequency response 

 
Fig. 1. (a) Relaxation oscillation as a function of normalized current for 
the SWDM VCSELs at temperatures of -5, 25, 55, 80 and 95 C. (b) 
Optical eye diagrams at 25 Gbps for each of the SWDM VCSELs at -5, 
25 and 80 C. The bias current and the measured extinction ratio are 
given in the parenthesis for each temperature. 
  

 
Fig. 3. (a) Frequency response (S21) of the SWDM photodiode as measured 
and with the electrical parasitics extracted (b) Responsivity of the SWDM PD 
as a function of wavelength. 
 

 
Fig. 2. (a) Years to 50% fail and (b) 1% fail as a function of VCSEL heat sink 
temperature. 
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and Fig. 3(b) is the responsivity as a function of wavelength. 
Responsivity >0.5 A/W was achieved for wavelengths from 
820 nm to 1060 nm. The series resistance of the PD is 11 Ω, 
total capacitance is approximately 160 fF. When the electrical 
parasitic is removed, the optical bandwidth of the device is 
>25 GHz.  The optical bandwidth is determined to be limited 
by the transit time of photo-excited carriers in the active 
region by studying several active region thicknesses. Further 
increases in the total bandwidth of the PD can be increased by 
reducing the device pad capacitance and reducing the active 
region diameter. For this PD, the active region diameter was 
chosen to be 35 µm and represents the tradeoffs between total 
PD bandwidth and ease of optical alignment.  

III.   SWDM TRANSMISSION OVER WB-OM4 

In this section we present measured results of a NRZ 
100 Gbps and a PAM4 170 Gbps SWDM link on WB-OM4. 
The VCSELs and PDs described in section II are used in these 
measurements.  

A.   NRZ transmission  
Fig. 4 is a schematic diagram of the experimental setup used 

in the NRZ transmission experiments. Each of the lasers was 
packaged in a small form factor pluggable (SFP+) transceiver. 
Inside each SFP+ is a laser driver and a clock and data 
recovery (CDR) circuit. There is no dispersion compensation 
included in the laser drive circuitry. The SFP+ transceivers 
were driven with a 231-1 pseudorandom binary sequence 
(PRBS) at 25.78 Gbps. The four wavelengths (855 nm, 
883 nm, 915 nm, and 945 nm) were combined using an 
external optical multiplexer (MUX). The external MUX has a 
2 dB insertion loss and 20 nm pass band to account for 
wavelength fluctuations over temperature (the VCSELs and 
transceivers are uncooled). The measured optical spectrum 
after MUX is presented in the inset (a) of Fig. 4. The root 
mean square (RMS) spectral bandwidths of the sources range 
from 0.34 nm to 0.41 nm. The optical signal was passed 

through a variable optical attenuator (VOA) and then coupled 
to a WB-OM4 fiber provided by Prysmian. The solid dark 
blue line in the inset (b) of Fig. 4 displays the measured EMB 
of the WB-OM4 fiber as a function of wavelength. The red 
curve presents the minimum bandwidth requirement of a WB-
OM4 fiber, which was defined for wavelength window of 
850 nm to 950 nm in [22]. The EMB of the WB-OM4 fiber 
measured at 850 nm is above the minimum OM4 requirement 
and increases for higher wavelengths, peaking at 880 nm. 
Since the chromatic dispersion for longer wavelengths is 
lower, the combined effect of the modal and chromatic 
dispersion results in the shift of the EB peak towards longer 
wavelengths [23]. The inset (c) of Fig. 4 displays the peak 
shifted towards 905 nm. At the end of the fiber, the optical 
wavelengths are separated with an external de-multiplexer 
(DEMUX) with an insertion loss of 1.5 dB. The receivers 
were also assembled into SFP+ transceivers using the PD 
described earlier, a transimpedance amplifier (TIA) and a 
CDR.  

The experimental results are summarized in Fig. 5 and 
described in further detail in [24]. Fig. 5(a) shows the average 
optical power (AOP) received at a bit error rate (BER) of 1e-
12 for each of the wavelengths for three transmission cases; a 
2 m patch cord, 200 m of WB-OM4 and 300 m of WB-OM4. 
The optical extinction ratio was approximately 3.3 to 3.5 dB 
for each of the wavelengths. In this experiment error-free 
transmission (BER<1e-12) was achieved up to 200 m for all 
four wavelengths. At 300 m, the 940 nm channel was able to 
achieve BER<1e-9. There are a few options to improve the 
940 nm channel performance, such as a lower spectral width 
VCSEL, higher bandwidth MMF, transmitter equalization or 
FEC. The Ethernet standards 100GBASE-KP4 and 
100GBASE-SR4 adopted Reed Solomon (RS) code RS 
(528,514) for FEC. By applying this coding scheme, a signal 
can be recovered to a BER less than 1e-12 from an input 
signal with BER less than 2e-4 (KP4 FEC threshold) [25]. The 
KP4 level was used to allow straightforward comparison of 

 
Fig. 4. SWDM experimental setup, each of the VCSELs is packaged in an SFP+ transceiver. The optical signal is combined in a MUX and then passes through a 
VOA, the WB-OM4 MMF (supplied by Prysmian), a DEMUX, and is received by a PD packaged in an SFP+ transceiver. Inset (a) shows the measured optical 
spectra measured after the MUX, inset (b) is the measured EMB WB-OM4 (solid dark blue line) and WB-OM4 minimum EMB requirement (red dashed line) as 
a function of wavelength. Inset (c) is the measured EB of the WB-OM4 (solid dark blue line) and a minimum WB-OM4 EB requirement (red dashed line) as a 
function of wavelength. 
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AOP receiver sensitivities for NRZ and PAM4 signaling to be 
presented in subsection IIIB.  
   Figure 5(b) shows the received AOP at the KP4 FEC 
threshold for each of the wavelengths. For the 2 m patch cord, 
the AOP was approximately -13.7 dBm for all four 
wavelengths. The AOP penalty increased from 0.65 dB at 
850 nm to 1.6 dB at 940 nm for 200 m transmission. For the 
300 m link, the power penalty increased to 2.2 dB and 4.25 dB 
for the 850 nm and 940 nm channel respectively. With the 
KP4 FEC, a recovered BER<1e-12 was achieved for all four 
channels up to 300 m on the WB-OM4 fiber. Fig. 7(a) and (c) 
present the NRZ optical eye diagrams received after 
propagating through 200 m and 300 m of WB-OM4 fibers, 
respectively, for each of the wavelengths.   
  The results presented here demonstrate that SWDM 
transceivers operating on WB-OM4 optical fiber can achieve 
BER<1e-12 up to 200 m without FEC, and up to 300 m using 
KP4 FEC. This further indicates that these transceivers could 
be used with existing 25GBASE-SR and 100GBASE-SR4 
(parallel fiber) channels. 

The results demonstrate a) an error-free 103.12 Gbps 
transmission through a 200 m WB-OM4 fiber on an SWDM 
grid and b) 100 Gbps SWDM realization over a 300 m WB-
OM4 fiber requires using FEC. Thus, the SWDM solution is 
applicable for 100 Gbps Ethernet utilizing the same 
multiplexing and demultiplexing technologies used in the 
existing 40 G SR SWDM product [20].  

B.   PAM4 transmission  

Advanced modulation formats can be coupled with the 
SWDM technology to further increase the capacity of the 
VCSEL MMF link. A combination of SWDM and PAM4 
provides a promising solution for 200 Gbps transmission 
through a single optical lane. Fig. 6 summaries the 
experimental results described in further detail in [13]. AOP 
receiver sensitivities at the KP4 BER threshold of 2e-4 are 
plotted for all four wavelengths (851.9 nm, 888.0 nm, 
912.1 nm, and 942.4 nm) and two edge wavelengths through 
WB-OM4 fibers and/or OM4 fibers at 45 Gbps and 51.6 Gbps, 
respectively. Two experiments were performed with different 
commercially available PAM4 physical layer integrated 
circuits (PHY), two WB-OM4 fiber types from separate 
vendors and an OM4 MMF. The availability of PHYs limited 
our study of different fiber types and lengths. The first PHY 
chip had a symbol rate of 22.5 Gbaud, provided pulse shaping 
and CDR functionalities, and enabled equalization for 
chromatic and modal dispersion compensation. In the first 
experiment, a 45 Gbps PAM4 signal was transmitted over 
100 m and 300 m of the WB-OM4 supplied by Prysmian (the 
same fiber type as in the NRZ experiment), as well as 200 m 
of the OM4 fiber. For a 2 m patch cord, the AOP receiver 
sensitivity at the KP4 BER threshold ranged from -9.6 dBm to 
-9.3 dBm for all four SWDM wavelengths. An AOP penalty 
of 0.2 dB was measured for PAM4 transmission over a 100 m 
WB-OM4 fiber for all four channels. PAM4 transmission over 
200 m of the OM4 fiber resulted in AOP penalties ranging 
from 0.7 dB at 851.9 nm to 2.7 dB at 942.4 nm. Lower AOP 
penalties were captured for two long wavelengths (912.1 nm 
and 942.4 nm) at a 300 m WB-OM4 versus a 200 m standard 
OM4 fiber, indicating that an OM4 fiber is optimized for 850 
nm wavelength while a WB-OM4 fiber covers a wider 

 
Fig. 5.  AOP receiver sensitivities at (a) BER of 1e-12, and (b) KP4 BER 
threshold of 2e-4 for the four NRZ SWDM channels transmitted over WB-
OM4 supplied by Prysmian. The black arrow in Fig. 5 a) shows the receiver 
sensitivity at 1e-9 for 945 nm NRZ channel over 300 m WB-OM4 fiber. The 
measured ER for each wavelength is approximately 3.3 to 3.5 dB.   

 
Fig. 6.  (a) AOP receiver sensitivities at KP4 BER threshold of 2e-4 for 
PAM4 SWDM channels transmitted through WB-OM4 fibers using the 
45 Gbps PHY and WB-OM4 supplied by Prysmian. (b) AOP sensitivity at 
KP4 FEC threshold for the 51.6 Gbps PHY and the WB-OM4 fiber supplied 
by OFS. The measured ER for each of the wavelengths was 3.0 dB and 
4.0 dB for  a) 45 and b) 51.6 Gbps PAM4 signals respectively.   
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wavelength range and is more suitable for SWDM systems. 
The same experiment was repeated with another PAM4 PHY 
chip, which had a 25.8 Gbaud data rate and capabilities 
equivalent to the first PHY chip. Two 51.6 Gbps PAM4 
signals were transmitted at the shortest and longest SWDM 
grid wavelengths (851.9 nm and 942.4 nm) over a 300 m WB-
OM4 fiber supplied by OFS. AOP penalties (2.2 dB) were 
captured for both wavelengths, which imply that the 
transmission at net rate 195.2 Gbps is possible over 300 m of 
this WB-OM4 fiber. The results for this measurement are 
summarized in Fig. 6(b).  

Fig. 7(b) and (d) show the received eye diagrams for 
45 Gbps PAM4 signaling over 200 m and 300 m WB-OM4 
MMFs at four SWDM wavelengths. The columns and rows 
correspond to four different wavelengths and two fiber 
lengths, respectively. 

C.   Discussion 
The results presented show that the combination of SWDM 

and WB-OM4 fiber technologies may provide a promising 
solution for improving both link capacity and reach. The WB-
OM4 fiber type may also serve as a suitable option for 
extending the reach in the newly built data centers. Our results 
show that a) the specified reach using the IEEE KP4 standard 
(100 m OM4 at 25 Gbps) is extended to 300 m OM4 and b) 
100 Gbps transmission is possible by combining either four 
wavelengths carrying NRZ signals or two wavelengths 
carrying PAM4 signals. 

NRZ signaling allows for simple and energy-efficient 
implementation. In scenarios where an additional parallel lane 
can be added, NRZ transmission is a cost-effective option that 
provides the same capacity as PAM4 in two parallel lanes 
instead of one. No equalization is required to enable a net rate 
after FEC of 25 Gbps per wavelength in transmission over 
300 m WB-OM4 fiber, as presented in Section III.A. Standard 
NRZ off-the-shelf electronic solutions, such as CDR circuits, 
may be used. On the contrary, commercially available PAM4 
solutions are equipped with the energy-consuming equalizers 
in the TX for signal shaping and in the RX for the dispersion 
compensation. The PHY chips used in our experiments also 
include CDR. Combination of these functionalities allows for 

a high-capacity density of 50 Gbps per wavelength 
transmission over a 300 m WB-OM4 fiber. Another aspect is 
FEC, which has been standardized at the IEEE KP4 BER 
threshold of 2e-4. While FEC is required for PAM4 signaling, 
it is not necessary for NRZ signaling over shorter transmission 
distances. As presented in Section III.A, the 200 m 
transmission over a WB-OM4 fiber was error-free at 
25.78 Gbps for all four NRZ SWDM channels with margin of 
approximately 3 dB. For this reason, there was no need to 
account for the FEC overhead. Currently, PAM4 electronics 
are improving in power consumption, but they will always 
exceed that of NRZ links. The presented results also show that 
AOP receiver sensitivity (at KP4 BER threshold) for the un-
equalized 25.78 Gbps NRZ scheme is 4.5 dB lower than the 
one required in the equalized 51.6 Gbps PAM4 scheme. Due 
to this inherent penalty resulting from the lower optical 
modulation amplitude, the NRZ scheme supports applications 
that require higher link power budgets. The transmission 
penalties cannot be directly compared because the PAM4 
PHY chip uses an equalizer for dispersion compensation and 
the NRZ module does not.  

IV.   REACH EXTENSION FOR STANDARD MMF 
 
The previous results indicate that WB-OM4 MMF is a good 

choice for the new data center fiber infrastructure. However, 
new data centers are just a portion of the market. In existing 
data centers the fiber infrastructure cabling is rarely 
exchanged due to the high cost of replacement. In this section, 
we discuss solutions for improving the reach of the standard 
MMF links, such as those using OM3. 

A.   Selective mode launch  
One way to improve the bandwidth of the existing OM3 

MMF links is to use a selective modal launch. Utilizing the 
selective launch and an offset launch was proposed in order to 
improve bandwidth and fiber characterization in the 1550 nm 
[17], 1310 nm [18] and 664 nm [19] regimes. These schemes 
employed a single-mode source and a spatial light modulator 
(SLM) to selectively launch light into specific mode groups of 
the MMF. In this section, we present the experimental and 
simulation results for a selective launch in the 850 nm 
wavelength regime. The experiment was performed using an 
optical phase mask designed for 850 nm. The transmitter 
includes the multimode VCSEL structure described in Section 
II and an optical phase mask to enable SML into a MMF. The 
SML excites fewer mode groups in the MMF and the modal 
dispersion effect is mitigated as a result.  

Fig. 8(a) shows the measured frequency responses of a 
300 m OM3 MMF with a selective modal launch (blue line) 
and a standard central launch (black line). The fiber frequency 
response of the 305 m OM3 spool was measured by 
subtracting the optical response measured with a 2 m patch 
cord from the full-system response. In the standard central 
laser launch configuration the fiber bandwidth is 
1800 MHz•km at 6 dB. With the optical phase plate in place 
for the SML, the fiber bandwidth is increased to 

 
Fig. 7.  Received optical eye diagrams for the SWDM wavelengths (a) 
25.78 Gbps NRZ over 200 m WB-OM4,  (b) 45 Gbps PAM4 over 200 m 
WB-OM4, (c) 25.78 Gbps NRZ over 300 m WB-OM4, and (d) 45 Gbps 
PAM4 over 300 m WB-OM4. WB-OM4 fiber was supplied by Prysmian. 
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2100 MHz•km. The NRZ eye diagrams at 25.78 Gbps shown 
in Fig.s 8 (b)-(d) were captured after propagating through 
300 m of the OM3 MMF. Fig. 8(b) is the optical eye diagram 
without SML, and Fig. 8(c) is with the SML. Clear 
improvement in the optical eye diagram is demonstrated. Fig. 
8(d) is the analog electrical output from the receiver which 
does include equalization. With the SML and equalization, 
error-free transmission over 300 m of OM3 fiber was 
obtained.  

To determine if an SML could be used with a wide range of 
OM3 fibers, we have calculated the EMB of a statistically 
representative sample of fiber bandwidths. The OM3 fiber set 
used was a subset of the TIA 5000 fiber set described in [26], 
which lists modal delays for 19 mode groups of 5000 
multimode fibers without specifically describing index profile 
perturbations. The OM3 subset was chosen by simulating 
offset SMF launch procedure, using differential mode delay 
(DMD) weightings from TIA-455-220A to calculate impulse 
response, frequency responses and minimum modal 
bandwidth, which were filtered to >2000 MHz·km and 
<4700 MHz·km. This filtering left 2300 fiber profiles in the 
data set. Because there is a large variance within OM3 fiber 
group, we use the bandwidth criterion to assess if the specific 
fiber sample can support a 300 m 25 Gbps transmission. Fig. 
8(e) is a histogram of the bandwidth-distance product of the 
300 m OM3 links from the data set using a central laser launch 
(dashed line) and the SML profile (solid line). The phase plate 
design has been optimized to improve the worse tail of the 
OM3 fiber distribution. The simulation results indicate that by 
using an SML the variance of the bandwidth-distance product 
distribution of OM3 MMF is reduced, and the bandwidth 
improvement is possible for more than 80 percent of OM3 
fiber samples. More importantly, the minimum bandwidth of a 
300 m OM3 MMF link can be improved to more than 
2000 MHz·km. 

B.   Quasi-single mode VCSELs  
The previous results relied on addressing the modal 

dispersion in the MMF. Another method to increase the MMF 
bandwidth is to reduce the contribution of chromatic 

dispersion to the total bandwidth. In one example, an 850 nm 
VCSEL with an integrated mode filter supported 25 Gbps 
NRZ transmission over 1.3 km of MMF [27], and in another 
example a NRZ net rate after FEC of 50 Gbps was transmitted 
over 2.4 km of MMF [28]. In a third example, an equalized 
25 Gbps transmission over 1 km OM4 was shown by utilizing 
a Zn-diffusion and oxide-relief VCSEL structure [29]. In 
addition, the Zn-diffusion VCSEL structure enabled a 72 Gbps 
DMT transmission over 300 m of OM4 fiber [30]. The 
disadvantage of using single mode lasers is that they are often 
limited in optical power and may require more complex 
optical alignment to minimize feedback to the laser. Still this 
is a promising approach to increasing the optical link length in 
some installed fiber. However, if the modal bandwidth of the 
fiber is low, a SML may also be needed to realize the full 
benefit.  

C.   Discussion 
The experimental results presented in this section indicate 

the possibility of enhanced performance of an existing MMF 
infrastructure when SML is used to improve the modal 
bandwidth and/or a low SBW source is used to minimize the 
chromatic dispersion. The link capacity may be further 
increased if both strategies are combined with SWDM and 
advanced modulation formats. More experimental 
confirmation of the bandwidth improvement from the SML 
across a broad sample of OM3 is required before this 
technique could be widely deployed. SML techniques have 
been previously standardized using an offset launch from a 
single mode fiber for 1310 nm links operating on MMF in 
IEEE 10GGASE-LR. The proposed SML solution can be 
applied to the other SWDM VCSELs by adjusting the phase 
mask design to the specific wavelength. 

V.   CONCLUSION 
We reviewed and suggested several methods for enhancing 

the capacity and extending the reach for VCSEL based MMF 
links. We showed that four wavelength SWDM can support 
100 Gbps NRZ and 200 Gbps PAM4 transmissions. Our 
results demonstrated that an error-free transmission at 

 
Fig. 8.  (a) Bandwidth measured with and without selective modal launch in a 300m OM3 fiber (b) optical eye diagrams captured after 300 m OM3 fiber 
transmission without SML, (c) optical eye diagrams captured after the 300 m OM3 with SML, d) electrical eye diagrams after the 300 m OM3 fiber with SML 
and equalization, (e) Histogram of the calculated bandwidth-distance product of the TIA sample of OM3 fiber with (solid line) and without (dashed line) SML.  
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100 Gbps is possible for all four wavelengths with NRZ 
signaling over a 200 m WB-OM4 fiber, and with the addition 
of KP4 FEC 300 m links are possible. With PAM4 signaling 
and FEC the SWDM link on WB-OM4 fiber achieved 
170 Gbps. Further improvements to these link speeds and 
distance could be realized with the addition of SML or 
possibly quasi-single mode VCSELs. 
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We propose a uniform solution for a future client-side 400G Ethernet standard based on MultiCAP advanced modulation format,
intensity modulation, and direct detection. It employs 4 local area networks-wavelength division multiplexing (LAN-WDM) lanes
in 1300 nmwavelength band andparallel optics links based on vertical cavity surface emitting lasers (VCSELs) in 850 nmwavelength
band. Total bit rate of 432Gbps is transmitted over unamplified 20 km standard single mode fiber link and over 40 km link with
semiconductor optical amplifier. 70.4Gb/s transmission over 100m of OM3 multimode fiber using off-the-shelf 850 nm VCSEL
with 10.1 GHz 3 dB bandwidth is demonstrated indicating the feasibility of achieving 100Gb/s per lane with a single 25GHzVCSEL.
In this review paper we introduce and present in one place the benefits of MultiCAP as versatile scheme for use in a number of
client-side scenarios: short range, long range, and extended range.

1. Introduction

Ever growing video-rich Ethernet traffic on the client-side
optical networks calls for high-speed, cost-effective optical
transport data links. Standardization of client-side optical
data links is critical to ensure compatibility and interoper-
ability of telecom and datacom equipment from different
vendors. As depicted in Figure 1, the IEEE standardization
body classifies the client-side links in three categories: short
range (SR), long range (LR), and extended range (ER). SR
links, which cover up to 100m, are usually employed in data
centers and central offices. LR links cover up to 20 km and
are typically used to privately connect buildings of the same
company or institution. ER links cover up to 40 km and are
typically used to provide connectivity to customer-premises
equipment (CPE) and for metro applications. The current
work of the 400Gbps Ethernet Study Group [1] and the wider
research community focuses on these three scenarios [2]. An
optical intensity modulation/direct detection (IM/DD) link
offering 400Gbps capacity with use of advanced modulation
formats is an attractive and easily adaptable solution for

client-side links, such as inter- and intradata center intercon-
nects.

The client-side links presented in this work are based on
the multiband and multilevel approach to carrierless ampli-
tude phase (CAP) modulation, MultiCAP [3]. In this review
paper we demonstrate the flexibility of the IM/DDMultiCAP
based solutions for a SR 100m link [4], a LR 20 km link,
and an ER 40 km link [5]. A SR client-side link that achieves
error-free 65.7Gbps over a 100m multimode fiber (MMF)
OM3 using an 850 nm vertical cavity surface-emitting laser
(VCSEL) is presented. Furthermore, two IM/DDLAN-WDM
432Gbps links are described: an unamplified 20 km link
for the LR scenario and semiconductor optical amplifier
(SOA) based 40 km link for the ER scenario. Four-lane LAN-
WDM with 108Gbps per lane is obtained using 4 externally
modulated lasers (EMLs) in the O-band.

Figure 2 summarizes the capacity per lane reported at
the considered transmission distances for several modulation
formats. The short range (SR) area of Figure 2 shows the
highest error-free bit rates achieved for 850 nm vertical cav-
ity surface-emitting laser (VCSEL) based links. Bit rate of

Hindawi Publishing Corporation
Advances in Optical Technologies
Volume 2015, Article ID 935309, 9 pages
http://dx.doi.org/10.1155/2015/935309
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Figure 1: Scenario of client-side optical transmission links for short
range (SR), long range (LR), and extended range (ER).
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Figure 2: State-of-the-art summary; capacity per lane versus trans-
mitted distance for the following modulation formats: Nonreturn
to Zero (NRZ), pulse amplitude modulation (PAM), discrete mul-
titone (DMT), carrierless amplitude phase (CAP), and multiband
carrierless amplitude phase (MultiCAP), demonstrated in literature
approaches to 400Gbps systems based on IM/DD WDM are
indicated by the black circle.

70Gbps over 2m OM4 MMF was achieved using 4-level
pulse amplitude modulation (4-PAM) [6], 64Gbps over 57m
OM2 using Nonreturn to Zero (NRZ) [7], and 56Gbps over
50m OM4 using 8-PAM [6]. All of these require very fast
electrical interfaces and suffer from low tolerance to modal
dispersion compared to pass-band modulation formats [8].
Using discrete multitone (DMT) at an 850 nm window
enabled a high transmission distance of 500m MMF with a
bit rate of 30-Gbps [9].

The MultiCAP solution presented in this paper achieves
error-free 65.7Gbps over 100m and 74.7Gbps over 1m using
an 850 nm VCSEL with a bandwidth of 10.1 GHz. This solu-
tion has the prospect of achieving 100Gbps over 100mMMF
with emerging 25GHz 850 nm VCSELs. It overcomes both
electrical and optical bandwidth limitations towards single
lane 100Gbps active optical cable (AOC) and employs cost
efficient 850 nm MMF technologies. The 400 GE standard
requirement can thus be met by employing parallel optical
lanes.

The client-side links of long range (LR) and extended
range (ER) are expected to meet the 400Gbps capacity by
using advanced modulation formats in combination with
wavelength division multiplexing (WDM) [1].The higher the
capacity per lane, the lower the number of WDM lanes and

therefore the number of transceivers. The LR and ER areas
in Figure 2 show the highest capacities per lane reported in
O-band for different modulation formats. In the LR of 10 km,
NRZ coding enables 25Gbps [10], 4-PAM 50Gbps [11], CAP-
64QAM 60Gbps [12], and DMT 106Gbps [13]. MultiCAP
achieves 108Gbps per lane with 20 km reach [5]. In the ER
of 40 km, NRZ coding allows 40Gbps per lane [14]. Beyond
100Gbit/s per lane for ER is reached by DMT modulation
[15] and MultiCAP [5]. The DD/IM WDM-based 400Gbps
systems were demonstrated as feasible in several of the cited
works (indicated in Figure 2). Eight lanes × 40Gbps [14] or
16 lanes × 25-Gbps [10] were used to reach 400Gbps with
NRZ coding. A four-lane LAN-WDM 400Gbps solution was
demonstrated using DMT over 30 km [16] and MultiCAP
over 40 km standard single mode fiber (SSMF) [5]. Both of
them assume the 7% FEC overhead.

The main contribution of this paper is the overview of
a uniform MultiCAP based solution for short, long, and
extended range client-side links. In all of these scenarios
the same implementation scheme can be used. We review
the previously presented experimental results focusing on
the implementation similarities for different client-side sce-
narios. We include detailed description of the performed
experiments.Moreover, we present the first full description of
the used equalizer that was used in previous reported experi-
ments.Having a uniformmodulation format in different links
types, lengths, and different wavelength bands will not only
allow for interoperability between kinds of equipment from
different vendors but also reduce the cost and complexity
for the clients. In this way a newly developed client’s link
can leverage the already existing implementation of different
link type.We show that using the same transceiver’s structure
and equalization technique allows satisfying the 400 GE
capacity requirement in SR, LR, and ER.MultiCAP advanced
modulation format is combined with parallel optics in SR
and withWDM in LR and ER.This easily applicable solution
enables a simple upgrade from 100Gbps to 400Gbps in both
850 nm MM links and 1310 nm SM links. In the context of
400Gbps Ethernet standardization we demonstrate that a
MultiCAP based solution is feasible and worth considering
for SR, LR, and ER.

2. Methods

Figure 3 depicts the experimental setup for all of the con-
sidered transmission scenarios. At the transmitter side, 5
effective number of bits (ENOB) 64GSa/s digital-to-analog
converter (DAC) is used to generate MultiCAP signal. The
transmitter consists of a linear amplifier and a laser. 850 nm
VCSEL is used and in SR EMLs are used in LR and ER
scenarios. The channel consists of 100m MMF for SR and
20 km of SSMF for LR. ER scenario consists of 40 km SSMF
and an SOA at the receiver.The receiver consists of a photodi-
ode, transimpedance amplifiers (TIAs), and a digital storage
oscilloscope (DSO). The 400Gbps standard requirement in
the SR multimode scenario is expected to be fulfilled by
parallel optics. Therefore, for the SR scenario we verify only
one lane. In the LR and ER scenarios the expected solution
to reach 400Gbps is WDM. Hence, in the experimental
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Figure 3: Experimental setup of the short range (SR) scenario employs digital-to-analog converter (DAC), attenuator (Att), vertical cavity
surface-emitting laser (VCSEL), multimode fiber (MMF), photodiode (PD), and analog-to-digital converter (ADC); setups for long range
(LR) and extended range (ER) additionally employ externallymodulated laser (EML),multiplexer (MUX), standard singlemode fiber (SSMF),
semiconductor optical amplifier (SOA), and demultiplexer (DEMUX).

Table 1: Modulation order per band for different bit rates.

Number Scenario Bit rate Baud rate per band B1 B2 B3 B4 B5 B6
1 SR 70.4Gbps 3.4Gbaud 32 32 16 8 8 4
2 SR 80Gbps 3.4Gbaud 64 32 32 16 8 4
3 LR and ER 108Gbps 4Gbaud 64 64 32 16 16 4

verification of the LR and ER setup, four independent
channels ofDAC are used to drive four parallel lanes ofWDM
transmitter. Additionally, a WDM transmitter includes the
WDMmultiplexer and the receiver a WDM demultiplexer.

2.1. Signal Generation. The signals are generated by a 4-
output 64GSa/s digital-to-analog converter (DAC) with 5
ENOB. For signal generation, we choose a 6-band configu-
ration of MultiCAP [3] with different modulation orders per
band which result in different bit rates. Table 1 presents three
configurations and Figures 4(c)–4(e) depict the correspond-
ing electrical spectra. Each MultiCAP band is constructed
from a pseudorandom bit sequence (PRBS) of 213 − 1 bits
and delivers a baud rate as described in Table 1. The total
number of transmitted symbols is 49146. MultiCAP symbols
are generated by upsampling to 16 samples per symbol and
subsequent CAP filtering. Upsampling factor is an integer
multiple of baud rate of each subband. The upsampling
procedure is explained in detail in [3]. The CAP filters are
realized as finite impulse response (FIR) with a length of
20 symbols for SR scenario and 30 symbols for LR and
ER scenarios. A roll-off coefficient of 0.05 was used at
the transmitter. At the receiver, time inverted versions of
the CAP filters (roll off = 0.09) are used to recover the
symbol constellations. We use the MultiCAP features of
power and bit loading. The constellation and power level
for each band differs and is chosen empirically to best fit

the signal-to-noise ratio (SNR) of the specific frequency
band. The bands’ configuration and power choice depend on
the frequency response of the overall system.

The frequency response of SR system is presented in
Figure 4(a). A 3 dB bandwidth of 10.1 GHz, a 10 dB bandwidth
of 17GHz, and a 20 dB bandwidth of 20.1 GHz are measured.
This frequency response allows for the first and the second
MultiCAP bands configurations presented in Table 1. First
configuration shown in Table 1 and in Figure 4(c) enables
a total throughput of 70.4Gbps (65.7Gbps after 7% over-
head forward error correction (FEC) decoding), whereas the
second configuration shown in Figure 4(d) enables 80Gbps
(74.7Gbps after 7% FEC). In these two cases, 6 MultiCAP
bands occupied the bandwidth of 21 GHz. The frequency
response of optical back-to-back for both LR and ER systems
is presented in Figure 4(b). A 3-dB bandwidth of 8.90GHz,
a 10-dB bandwidth of 17.35GHz, and a 20-dB bandwidth of
24GHz are observed.The bandwidth in this case is effectively
limited by the bandwidth of the DAC used. This response
allowed for implementing the last band configuration from
Table 1 presented in Figure 4(e). This configuration enabled
throughput of 108Gbps (100.9Gbps after 7% FEC). Band-
width of 26GHz has been used for MultiCAP bands.

2.2. Short Range. A commercially available 850 nmVCSEL is
used in the SR scenario. Figure 5 shows the LIV curves and
the optical spectrum measured for the VCSEL. The center
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frequency of the VCSELs’ spectrum at 8mA bias is 857.2 nm.
TheDACoutput is amplified to a 1.2 Vp-p signal that is used to
drive the VCSEL biased at 8mA. An optical power of 6 dBm
is launched into 100m of OM3 compliant MMF, with a total
link loss of 0.5 dB.The signal is photodetectedwith an 850 nm
photodiode reverse biased at 4V.The signal is then amplified
to a Vp-p of 1 V and digitally stored with an 80GSa/s DSO
with a resolution of 8 bits.

2.3. Long Range and Extended Range. The signals generated
by a 4-output DAC are decorrelated with delay lines. The
laser source used in these scenarios is EML. The bias voltage
and temperature characteristics of the EML employed in

Lane 2 are presented in Figure 6. The EML’s bias voltage is
−1.5 V and the MultiCAP signal has a CMOS compatible
peak-to-peak voltage of 2.5 Vp-p. The center wavelengths of
the EMLs in Lanes 0 to 3 are 1294 nm, 1299 nm, 1303 nm, and
1308 nm. In order to keep thewavelengths stable, temperature
control is applied.The output power of the EML in the tested
lane is 6 dBm.Average output power of the EMLs ranges from
4 dBm to 6 dBm.

The optical signals are combined in a LAN-WDMmulti-
plexer (MUX) with a channel spacing of 800GHz (G.694.1
compliant) and transmitted over 20 km or 40 km (G.652
compliant) SSMF links. MUX introduces 0.6 dB of insertion
loss. The span losses are 7 dB and 14 dB, respectively. For the
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Table 2: Equalizer’s performance in terms of BER as compared
to the nonequalized system measured for three different signal-to-
noise ratio (SNR) settings; compared systems: nonequalized system
with a standard multimodulus algorithm (MMA) equalization and
with decision directed (DD)𝐾-means equalizer.

SNR
(dB)

BER
nonequalized

system

BER
MMA

equalizer

BER
DD 𝐾-means
equalizer

20.6 1.89 ⋅ 10−2 3.83 ⋅ 10−3 8.67 ⋅ 10−4

19.5 2.23 ⋅ 10−2 7.66 ⋅ 10−3 3.9 ⋅ 10−3

18.2 3.67 ⋅ 10−2 1.96 ⋅ 10−2 1.48 ⋅ 10−2

40 km transmission case, a semiconductor optical amplifier
(SOA) with a noise figure (NF) of 6.5 dB is employed at
the receiver, before demultiplexing. At the receiver side
the signal is demultiplexed by a LAN-WDM demultiplexer
(DEMUX), received by a photodiode (PD), and amplified by a
transimpedance amplifier (TIA). DEMUX introduces 0.9 dB
of insertion loss. All of the components are 100GBASE-LR4
and ER4 compatible.

2.4. Demodulation and Equalization. The receiver consists
of several digital signal processing (DSP) blocks which are
implemented in Matlab environment. CAP filtering, signal
downsampling, phase offset removal, and signal normal-
ization are performed as explained in [3]. Additionally, we
implement an adaptive frequency domain equalization to
mitigate linear impairments.The described adaptive decision
directed (DD) equalization algorithmminimizes the received
constellation cluster size and quantization noise.

We define the reference constellation by the centroids
found using 𝐾-means algorithm which groups the received
data in the clusters [17].This reference constellation initializes
the describedDD equalization algorithm. Clusters’ means are
the points of reference (starting decision).

We use an iterative equalizer where in every iteration the
following steps are performed: first, the error is calculated
based on the Euclidean distance from the closest centroid as
in a least mean square (LMS) equalizer:

𝜀 (𝑛) = min 󵄩󵄩󵄩
󵄩
C−𝑦 (𝑛)

󵄩
󵄩
󵄩
󵄩
, (1)

where C denotes all centroids of the reference constellation
and 𝑦(𝑛) is the received signal sample. For equalization we
use 𝑇/2 fractionally spaced FIR filter with 12 taps determined
empirically. The taps coefficients of the DD equalizer are
updated according to the following equation:

ℎ (𝑛 + 1) = ℎ (𝑛) + 𝜇 (𝑛) ⋅ 𝜀 (𝑛) ⋅ 𝑦 (𝑛)∗ , (2)

where ℎ(𝑛) is the equalizer coefficient, 𝜇(𝑛) is the step size
initialized as 7.5 ⋅ 10−4, and 𝑦(𝑛)∗ is the complex conju-
gate 𝑦(𝑛). Secondly, the received signal is passed through
the equalizer. Finally, the iterative process reestimates the
centroids of the equalized constellation and the described
steps are repeated. It was experimentally determined that
2 iterations result in satisfactory equalization and further
iterations do not show the performance improvement. To
assure a faster convergence we implement the variable step
in DD.The step size is updated in the following manner [18]:

𝜇 (𝑛 + 1) =
𝜇 (𝑛)

1 + 𝜆𝜇 (𝑛) |𝜀 (𝑛)|2
,

𝜆 =

{
{
{
{

{
{
{
{

{

1, if 𝑛 = 0

0, if sgn (Re {𝜀 (𝑛)}) = sgn (Re {𝜀 (𝑛 − 1)}) , sgn (Im {𝜀 (𝑛)}) = sgn (Im {𝜀 (𝑛 − 1)})

1, otherwise,

(3)

where sgn denotes a sign function.
In order to quantify the improvement due to using an

equalizer, we calculate BER for the equalized and nonequal-
ized system for three different SNR values. Moreover, we
present BER calculated for the system with a standard fre-
quency domain equalizer, namely, multimodulus algorithm
(MMA). Table 2 summarizes the BERs for all equalization
and SNR scenarios. Decision directed (DD) 𝐾-means equal-
izer improves the performance in terms of BER in all three
SNR scenarios. At SNR of 20.6 dB using an equalizer allows
for the improvement of 0.0181 in terms of BER. In the
following sections all of the presented results are equalized
using DD𝐾-means algorithm.

After the signal is equalized, the EVM is calculated and
BER is computed. In order to calculate bit error rate (BER),

the received demodulated signal is cross-correlated with the
transmitted signal and the errors are counted.

3. Experimental Results

Figure 7 shows the measured BER curves for SR scenario. We
define the sensitivity at a BER of the hard decision FEC code
at 7% overhead. For the reported system it is 4.5 ⋅ 10−3 [19].
Thereby, we can observe sensitivities of 2.1, 4.7, and 5.4 dBm
for experimentally obtained 70.4Gbps over 1m, 70.4Gbps
over 100m, and 80Gbps over 1m, respectively.Themeasured
transmission penalty after 100mMMF is 2.5 dB.

For LR scenario, per lane received bit error ratio (BER)
back-to-back (B2B) and after 20 km SSMF transmission (no
SOA) of the received signal is plotted in Figure 8(a). The
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Figure 8: (a) BER versus received optical power (ROP) for B2B and 20 km transmission for 4 lanes; (b) BER versus ROP for the data
transmitted in the single lane (Lane 2) and for the data transmitted in all lines (BER curves for center lane, Lane 2, and side lane, Lane
3); ROP measured before SOA; the total bitrate of WDM system is 432Gbps.

received optical power is measured before the MUX. For all
LAN-WDM lanes, BERs are below the 7% hard decision FEC
limit, and no error floor is observed within the tested power
range. Receiver sensitivity at the FEC limit is −6.0 dBm B2B
and −6.6 dBm after transmission. No transmission power
penalty is observed.The results for ER scenario are presented
in Figure 8(b). Received BER of a center lane and a side lane
is plotted B2B and after 40 km SSMF transmission with all 4
LAN-WDM lanes simultaneously amplified by a single SOA
before demultiplexing. Received optical power per channel
is measured before the SOA. For comparison, the BER of a
single lane (remaining three lanes switched off) is included
in the graph. All LAN-WDM lanes were received with a BER
below the FEC limit after 40 km SSMF transmission with

a worst-case receiver sensitivity of −9.9 dBm. Presence of
neighboring channels in the link does not introduce penalty
in the 20 km scenario. In case of 40 km scenario, we observe
a 0.5 dB power penalty for the center lanes in the 4-lane case
due to interlanemodulation in the SOA. In both scenarios no
penalty is observed in the side lanes.

In the results presented, BER is an average of the BERs in
all MultiCAP bands.

Finally, the power budget calculation is evaluated in
Table 3. For the SR scenario, the optical output power mea-
sured at the output of the VCSEL is 6 dBm. The sensitivity
at 7% FEC limit for 70Gbps 1m transmissions is equal to
2.4 dBm.Therefore power budget for this scenario is equal to
3.6 dB. In the LR and ER scenarios, the optical output power
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Table 3: System power budget.

Transmission
link type

Output
power

Sensitivity @
FEC limit

System
power
budget

sr 70Gbps 6 dBm 2.4 dBm 3.6 dB
LR 20 km
unamplified 5.4 dBm −6.6 dBm 12.6 dB

ER 40 km SOA
amplified 5.4 dBm −9.9 dBm 15.9 dB

per lane is equal to 5.4 dBm. It is measured after transmitter
and hence after MUX. The worst receiver sensitivity is
−6.6 dBm at FEC limit in case of 20 km transmission link
with no amplification. Therefore the power budget of this
link is 12.6 dB. In case of 40 km transmission with SOA based
amplification, the worst receiver sensitivity is −9.9 dBm at the
FEC limit. Therefore for the amplified 40 km link, the power
budget is 15.9 dB. The given receiver sensitivity is based on
ROP measured before receiver: before PD in SR case, before
DEMUX in LR case, and before SOA in ER case.

The SR scenario represents a solution for an active optical
cable for data centers. In terms of power budget, themargin is
necessary only for the components heating up and aging. In
case of LR and ER, the calculated margin of 5.6 dB and 1.9 dB
is sufficient for client-side links.

4. Discussion

In the results presented for SR, a steep roll-off of the VCSEL’s
frequency response reduces the achievable capacity. We use
the bit loading and power loading features of MultiCAP to
overcome those limitations, at the cost of worse sensitivity.
As a consequence, increasing the capacity from 70Gbps
to 80Gbps introduces the 3.1 dB penalty in sensitivity as
shown in Figure 7. The bandwidth of the existing VCSELs
is not sufficient to support 100Gbps per lane. With the
proposed MultiCAP scheme, the emerging 25Gbps VCSELs
are expected to satisfy the bandwidth requirement.

The performance of the EMLs used in LR and ER is
satisfactory to obtain 100Gbps after FEC per lane. Moreover,
the local area network-wavelength division multiplexing
(LAN-WDM) is proved to introduce negligible penalty both
for 20 km and for 40 km link. The power budget calculation
indicates the maturity of the solution, which allows for link
losses of 12.6 dB and 15.9 dB in LR and ER, respectively.

The clear difference in performance and achievable
capacity between SR and LR, ER scenarios is attributed
to the system bandwidth. Even though the 3 dB and 10 dB
bandwidths are similar for both systems, the 20 dBbandwidth
varies by 5 dB. For this reason, the MultiCAP in SR is
recoverable when it occupies up to 21GHz while the LR and
ER signal is possible to recover when it occupies 26GHz
(Figure 4). The last band in all three scenarios is highly
suppressed, but thanks to the power loading and bit loading
features of MultiCAP, the information in the last band is also
possible to recover if it carries QPSK.

The proposed approach for 400Gbit/s client-side trans-
mission links using MultiCAP modulation format represents
an easily applicable solution that is robust, simple, and flexible
in upgrading from 100Gbit/s to 400Gbit/s while operating at
the O-band LAN-WDM wavelengths. Moreover, we present
applicability of the MultiCAP solution in the SR multimode
(MM) links. We expect that with higher bandwidth of the
upcoming 850 nmVCSELs this solution will enable 100Gbps
per lane and 400Gbps using parallel optics. This technology
potentially provides a bridge for gray optics approach to
client-side, inter- and intradata centers, access, and metro
segments.

5. Conclusions

We present a uniform MultiCAP based solution for short
range (SR) MM links, long range (LR) 20 km single mode
(SM) links, and extended range (ER) 40 km SM links. The
advantageous feature of MultiCAP approach of being able
to assign parallel electrical interfaces of smaller bandwidth
into different frequency bands overcomes both electrical and
optical bandwidth limitations and eases the DSP pipelining.
Its pass-band nature and multiband structure allow optimal
usage of the available bandwidth maximizing obtainable
capacity. In the SR scenario, we have achieved record below-
FEC bit rate transmission of 65.7 Gbps over 100m and
74.7Gbps over 1m for 850 nmMMFdata links. For upcoming
400 GE standard long range and extended range criteria, we
present a MultiCAP LAN-WDM 400Gbps solution which
uses only commercial optical components from 100GBASE-
LR4 and ER4. 432Gbit/s MultiCAP signals are transmitted
over 20 km SSMF without amplification and over 40 km
SSMF with SOA. Interchannel mixing in the 40 km link and
in SOA is proven to be negligible for a MultiCAP IM/DD
LAN-WDM system. The proposed MultiCAP approach is
a robust and flexible scheme, which can cover most of the
client-side scenarios, including inter- and intradata centers
and up to 40 km client-side links.
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Abstract  A  novel  8-­dimensional  optimized  modulation  format  is  designed  and  compared  with  PAM-­n  
in  a  28-­GBd  850  nm  VCSEL  based  IM-­DD  system,  enabling  the  transmission  on  100GBASE-­SR4  FEC  
threshold  over  various  100  m  MMF  links.  

Introduction  
Multi-­dimensional  (MD)  modulation  formats  have  
been   investigated   in   coherent   systems1-­5.   MD  
modulations   can   be   also   implemented   in   an  
intensity   modulation   and   direct   detection  
(IM/DD)   system   by   combining   temporally  
adjacent   symbols   into   super-­symbols.  
Additionally,   standard   4-­lane   quad   small   form-­
factor   pluggable   (QFSP)   links   are   inherently   4-­
dimensional  (4D),  as  4  independent  parallel  fiber  
links   form  a  4D  basis   in  signal  space.  With   two  
consecutive   symbols   in   each   channel,   an   8-­
dimensional   (8D)   signal   space   can   be   found   to  
accommodate  8D  optimized  formats.  A  specially  
designed  8D  format  for  IM-­DD  system  has  been  
proposed  and  discussed  numerically6.    
   In   the   following   we   proposed   an   alternative  
Block-­Based   8-­dimsional/8-­level   format,   namely  
BB8,   which   carries   2   bits   per   symbol,   i.e.   the  
same   spectral   efficiency  with   a   four-­level   pulse  
amplitude  modulation  (PAM-­4).  A  corresponding  
simplified   bit-­mapping/de-­mapping   algorithm  
was   designed   with   a   specific   bit-­to-­symbol  
mapping   considering   the   trade-­off   between  
performance   and   computational   simplicity.   A  
hyper-­space  based  hard-­decision  was  designed  
for   the   application   scenario   of   vertical-­cavity  
surface-­emitting   laser   (VCSEL)   and  multi-­mode  
fiber   (MMF)   based   data   links,   where   low  
latencies  are  critical.   In  a  28-­GBd   lab  setup   the  
proposed  8D  format  was  compared  with  PAM-­n  
by   the   bit-­to-­error   ratio   (BER)   performance   in  
back-­to-­back   (BTB)   measurements   and   in  
measurements  in  different  types  of  100  m  MMF.  

8-­Dimensional  Modulation  Format  
BB8   is  an  8D  densest   lattice  optimizing   format,  
in  which  each  super-­symbol  is  visualized  as  one  
8D  point.  The  orthogonal  projections  of  points  in  
each   dimension   correspond   to   individual  
symbols  in  the  transmitted  sequence.  The  points  
are   selected   from   the   E8   lattice,   following   the  
trade-­off   between   optimal   performance   and  
modulation   convenience.   Each   projection   (or  
symbol)  of  BB8  super-­symbols  has  8  levels  with  
equal  transmission  probability.    
   The  set  of  super-­symbols  can  be  divided  into  

4   subsets.   The   subsets   can   be   further   divided  
into   two   independent  groups,   i.e.  even  and  odd  
subsets.  As  an  illustration,  a  2D  projection  in  an  
arbitrary   direction   is   shown   in   Fig.1.   (a),   The  
subsets   are   displayed   in   different   colours.   The  
signal   is   arbitrarily   mapped   into   points   in   the  
same   subset,   or   conditionally   between   either  
two   odd   subsets   or   two   even   ones.   The   BER  
sensitivity  is  determined  by  the  minimum  mutual  
Euclidean  distance  between  closest  points  in  8D  
space.   Theoretically,   relative   to   PAM-­n  
counterparts   having   the   same   maximum   peak-­

to-­peak   modulation   amplitude,   E8   grid   brings  
BB8   a   1.5-­dB   asymptotic   BER   benefit.   The  
histogram   of   an   individual   symbol   and   an  
illustration   of   the   2D   projection   constellation   of  
the  odd  and  even  symbols  are  shown   in  Fig.  1.  
(b).   To   maintain   the   orthogonality   of   signal  

space,   i.e.   the   independence   of   symbols   under  
inter-­symbol  interference,  block-­wise  interleaved  
sequences   were   used   in   the   experiment   as   an  
analogy   of   the   independent   channels   in   real  
QSFP   links.   Each   block   only   contains   the  
symbols   with   the   same   position   in   a   specific  
super-­symbol.      

  
  
  
  
  
  
  

  
Fig.  2:  Bit-­mapping  and  de-­mapping  rules.  
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Fig.  1:  (a)  Designed  formats  with  aids  of  2D  projection  in  
constellation  diagram.  (b)  Experiment  measured  
histogram  of  each  symbol  and  2D  projection.  
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Bit-­mapping,  De-­mapping  and  Decision  
The   principle   of   the   bit-­to-­symbol   mapping   is  
shown  in  Fig.  2.  16  bits  are  mapped  into  one  8-­
symbol   super-­symbol,   with   eight   levels   per  
symbol.   The   first   bit   (b0)   is   used   for   selecting  
candidate  points  from  the  even/  odd  subset.  Bits  
b1-­b14   are   simply  mapped   into  PAM-­4.  The   last  
symbol   is   generated   from   bits   b0,   b15   and   a  
parity   bit   (P);;   P   is   calculated   from   b1-­b14.   The  
benefits   of   such   bit-­mapping   include:   (i)  
minimum   change   from   conventional   PAM-­4;;   (ii)  
minimum   extra   computational   resources;;   (iii)  
real-­time   solution   with   low   latency.   The   de-­
mapping  algorithm   is   implemented  by  decoding  
b0  with   the  subset  parity  of   the   received  super-­
symbol  and  the  rest  bits  with  PAM-­4  decoding.    
   65536   possible   super-­symbol   states   of   BB8  
make  the  maximum  likelihood  (ML)  soft-­decision  
unrealistic   in   real   systems.   Hence,   a   hyper-­
space   hard-­decision   (HS-­HD)   algorithm   was  
used   in   this   work.   Generally,   a   hard   decision  
threshold   is   determined   by   n-­1   dimensional  
boundaries   of   cells   in   n-­dimensional   signal  
space.   Therefore,   7-­dimensional   hyper-­planes  
( 𝐻 = 𝑥 ∈ ℝ&|𝒂)𝑥 = 𝑑 , 𝒂 = (𝑎., 𝑎/, … 𝑎1)) )   can  
divide   the   whole   8D   signal   space   into   cells   of  
symbols,   with   the   normal   direction   determined  
by   the   closest   neighbouring   symbols.   The  
difference  with  the  conventional  decision  is  extra  
linear   transforms   required   before   the   decision.  
Compared   to   the   ML   algorithm,   the   HS-­HD   is  
1600   times   faster.   For   further   enhancing   the  
performance,   a   hybrid   scheme   combining   ML  
and   HS-­HD   can   also   be   used   if   computational  
efficiency  is  not  a  priority.  

Experimental  Setup  
Fig.   3.   (a)   shows   the   experimental   setup.   The  
optical  signal  was  directly  modulated  by  an  850  
nm  multimode   VCSEL  with   a   520  mV   peak-­to-­
peak   differential   electrical   signal.   A   power  
versus   current   and   voltage   versus   current   (LIV  

curve),   a   frequency   response   and   an   optical  
spectrum   of   the   VCSEL   used   are   presented   in  
Fig.  3.  (b),  (c)  and  (d).  The  electrical  signal  was  
generated   from   28   GBaud   sequences   of   256K  
symbols  by  a  65  GSa/s  8-­bit  arbitrary  waveform  
generator   (AWG).   The   sequences   were   pre-­
calculated   with   a   raised   cosine   (roll-­off   =0.5)  
pulse   shaping   and   repeatedly   transmitted.   An  
pre-­equalization   on   the   electrical   signal   was  
included  to  mitigate  the  spectral  roll-­off  of  AWG.  
   The   signal   was   received   with   the  
commercially   available   VI-­Systems   photodiode  
package   with   trans-­impedance   amplifier   (TIA).  
Traces  were  captured  with  a  33  GHz,  80GSa/s  
dynamic   signal   analyser   (DSA).   The   received  
signal  was  processed  offline  with  a  T/2  fractional  
IIR   filter.   The   taps   were   trained   during   the  
initialization  and  fixed  in  measurements.  
   100   traces   with   2M   points   (25   µs)   for   each  
transmission   condition   in   critical   regime  and  10  
traces   with   1M   (12.5   µs)   in   the   remaining  
regimes  were  stored.  The  each  point  was  given  
by  the  mean  value  of  90%  confidence.    

Performance  
A   back-­to-­back   sensitivity   measurement   was  
taken   for   a   primary   characterization.   Then   link  
measurements  were  performed  with   two  spools  
of  100  m  MMF,  i.e.  OM3  and  OM4.  
   Fig.  2.   (e)  shows   the  BTB  BER  sensitivity  of  
BB8,   PAM-­4,   and   PAM-­8.   BB8   and   PAM-­4  
perform   similarly   with   respect   to   the   7%  
overhead   (OH)   FEC   limit   with   required  
BER=3.8×10-­3.   With   the   increase   in   received  
optical   power,   BB8   outperforms   PAM-­4   by   an  
asymptotic   gain   around   1.5   dB.   An   apparent  
error   floor   due   to   laser   nonlinearities   and   a  
limited   bandwidth   can   be   observed   for   PAM-­4,  
while   its   new   counterpart,   BB8,   provides   a  
potential  to  reach  BER=10-­12  before  reaching  the  
maximum   laser   optical   output   power   (can   be  
seen  by   fitting   the   trend),   or   conceals   the   error  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  3:  (a)  Experiment  setup  of  performance  measurements  between  PAM-­4  and  BB8.  (b)  LIV  curves.  (c)  S21  curve.  (d)  
Spectrum  of  VCSEL.  (e)  Comparison  on  back-­to-­back  BER  sensitivity  between  BB8  (azure),  PAM-­4  (lemon  grass)  and  

PAM-­8  (lavender)  in  28GBaud/s  data-­links.  
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floor   below   the   detection   limit   at   BER=10-­7.  
PAM-­8   displays   an   unsuccessful   transmission  
using   7%   FEC.   Recently   2.7%   OH   FEC   of  
Reed-­Solomon   (528,  514)  has  been  adopted   in  
IEEE  802.3  bm,  100GBASE-­SR47,8.  BB8  gives  a  
2dB   power   margin   (maximum   optical   power   -­
2dBm)   on   such   limit,   which   gives   the   output  
BER<10-­12,   whereas   PAM-­4   has   a   major   BER  
gap  of  larger  than  an  order  of  magnitude.  
   As   shown   above,   BB8   transmitted   over   two  
100  m  MMF  links  (OM3  in  Fig.  4.  (a)  and  OM4  in  
Fig.   4.   (b)   performs   similarly   in   BTB  
measurements   by   <1   dB   degradation   with  
respect   to   7%   FEC   limit.   Yet,   PAM-­4  
experiences  a  0.5  dB  degradation   from  OM3   to  
OM4.   Unlike   the   ideal   simulation,   the   gap  
between  two  formats  is  enlarged  to  1  dB.  In  both  
cases  BB8  has  a  successful  transmission  at  the  
lower   FEC   threshold,   but   with   reduced   power  
margin;;   error   floor   close   to   VCSEL’s  maximum  
output   power   makes   56   Gbit/s   PAM-­4  
unsuccessful.   Since   100   m   links   are   typical   in  
commercial   product,   these   results   imply   the  
potential   of   BB8   in   application   of   MMF   based  
data  links.    

Conclusions  
An   8D   modulation   format   based   on   E8   lattice  

was   proposed   for   short-­reach   data   links.   The  
experimental  performance  shows  a  2  dB  power  
margin   in   BTB   and   ~1.5   dB   over   100   m  
OM3/OM4   MMF   links   with   respect   to   2.7%  
100BASE   SR4   FEC.   It   implies   the   potential  
advantages  of  BB8  in  intra-­datacentre  and  other  
short-­reach   applications.   Due   to   better  
asymptotic  BER  performance,  BB8   relieves   the  
requirement   on   maximum   laser   output   power.  
Potential  non-­FEC  transmission  of  BB8  down  to  
BER=10-­12   without   extra   redundancy   reduces  
latency   and   complexity   of   the   transceivers.  
Moreover,   it   is   inherently   compatible   to   the   4-­
lane   QSFP   links.   BB8   has   also   a   potential   in  
future   modulation   flexible   transceivers   as   the  
simplified   mapping   and   de-­mapping   offer   a  
smooth   transition   between   BB8   and   PAM-­n.  
Considering   the   requirements   on   spectral  
efficiency,   power   efficiency,   latency,   reliability  
and   flexibility,   BB8   is   a   possible   candidate   for  
next  generation  IM/DD  optical  interconnections.  
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30 Gbps Bottom-Emitting 1060 nm VCSEL 
A. Tatarczak(1), Y. Zheng(2), G. A. Rodes(1), J. Estaran(1), Chin-Han Lin(2), A. V. Barve(2), R. Honoré(1), 

N. Larsen(1), L. A. Coldren(2), I. Tafur Monroy(1) 

(1) DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, DK2800 Kgs. 
Lyngby, Denmark, atat@fotonik.dtu.dk  
(2) Departments of Electrical and Computer Engineering and Materials, University of California, Santa 
Barbara, CA 93106, USA  

Abstract 1060 nm VCSEL-based data transmission over 50 m OM3 MMF at 30 Gbit/s is 
experimentally demonstrated. A highly-strained bottom-emitting QW VCSEL with p-type modulation 
doping is used with 3.77 mA bias and 0.55 V data amplitude.  

Introduction 
Vertical cavity surface emitting lasers (VCSELs) 
have long been recognized as key components 
for optical interconnects due to their small size, 
high speed and low power consumption. The 
most common operating wavelength for 
VCSELs used for data transmission, using 
multimode fibers (MMF), is 850 nm. Other 
VCSELs wavelengths explored are 980 nm, 
1010 nm, 1060 nm, 1090 nm and 1310 nm. 
Moving to higher wavelengths allows taking 
advantage of e.g. lower fiber attenuation.  
 VCSELs operating in the wavelength region 
around 1060 nm are particularly attractive due to 
very high energy efficiency1,2 and good 
reliability3. An interesting feature of the 
presented 1060 nm VCSEL is the possibility of 
emitting the light through the bottom of the 
VCSEL rather than through top as it is usually 
done4. This offers significant benefits in terms of 
optical coupling, packaging and heat 
management, since the wirebonding can be 
placed opposite the optical aperture5. As 
previously mentioned, the 1060 nm wavelength 
region has the advantage over 850 nm region in 
terms of lower fiber attenuation (1.5 
dB/km@1060 nm compared to 3.5 dB/km @850 
nm), lower power consumption (threshold 
currents below 1 mA) and of existence of high 

sensitivity indium-gallium-arsenide (InGaAs) 
photodiodes. Unfortunately, the most common 
multi-mode fibers OM3 and OM4 have higher 
modal dispersion at 1060 nm than at 850 nm; a 
factor that makes high-speed transmission 
challenging. Even so, in this paper we present 
the FEC-conformed performance over 50 m of 
OM3 multimode fiber. 
 A transmission over 200 m OM3 MMF has 
been recently reported using a top emitting 1060 
nm VCSEL operating at 25 Gbaud4. In this 
contribution we present a 30 Gbps transmission 
over 50 m of OM3 MMF. This result is realized 
with a bottom-emitting 1060 nm VCSEL using 
only 3.77 mA bias and 0.55 V peak-to-peak data 
amplitude.  

1060 nm VCSEL design 
The employed light source is a bottom emitting, 
highly-strained 1060 nm QW VCSEL with p-type 
modulation doping. It has previously been 
presented and described in the referenced 
work1. Fig. 1 shows the schematic diagram of 
the device.  
 The VCSEL is grown on a semi-insulating 
GaAs substrate using molecular beam epitaxy 
(MBE). The bottom mirror consists of GaAs/AlAs 
and Si doped GaAs. The top mirror consists of 
GaAs/AlGaAs. The active region is surrounded 
by an asymmetric Al0.3Ga0.7As separate 

Fig. 1: Optical spectrum; VCSEL structure1; Power versus current curve. 
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confinement heterostructure (SCH) that is 
parabolically graded down to GaAs spacers. 
Three 8 nm thick highly-strained In0.3Ga0.7As 
quantum wells (QWs) are separated by 8 nm 
GaAs barriers. Growth is stopped halfway into 
the barrier and the surface is -doped with 
carbon using a carbon tetrabromide (CBr4) 
precursor. The high differential gain of the 1060 
nm laser comes at the price of increasing the 
nonlinear gain compression. Modulation p-type 
doping was used to suppress nonlinear gain 
compression which resulted in increasing the K-
factor compared to stained QWs alone.  
 Fig. 1 shows the power versus current curve 
measured at T=25°C for the VCSEL used in the 
transmission experiment. A very low threshold 
current of 0.15 mA is observed. The 
corresponding optical spectrum measured at a 
bias current of 3.77 mA is presented in an inset 
of Fig.1. Further information on the presented 
1060 nm VCSEL design are described in  
referenced work1 and the details on analogous 
device design at 980 nm is presented in the 
Chapter 7 of ‘VCSELs’6. 

Experimental setup 
Fig. 2 shows the setup used in the transmission 
experiment. Electrical pseudo-random binary 
(PRBS 215-1) data signals at 28 Gbps (0.682 V 
peak-peak) or 30 Gbps (0.548 V peak-to-peak) 
generated by a pulse pattern generator (PPG) is 
combined with a 3.77 mA bias current in a bias-
Tee and applied to the VCSEL using a 40 GHz 
electrical probe. The temperature is stabilized at 
25°C using a temperature controller. The 
modulation format used is non-return-to-zero 
(NRZ). In the transmitter the 1 post/1 pre-cursor 
pre-emphasis configuration is used, as shown in 
Fig. 3. The pre-emphasis parameters (Cursor 1, 
2 and Vpp in inset Table in Fig. 3) are optimized 
for the transmission scenario and the same 
settings are used for measuring the B2B case. 
The light from the VCSEL is coupled into a 50 m 
OM3 compliant multimode 50 μm core diameter 
fiber. Fiber launch power is 0.7 dBm and the 
attenuation of the used 50 m fiber link is 0.9 dB. 
The optical signal is received by a VI Systems 
photodiode with a wavelength range of 900-
1350 nm and a 30 GHz 3-dB bandwidth. The 

 
Fig. 3: Pre-emphasis module settings; Eye diagrams for B2B and transmission over 50 m OM3 MMF at 28 Gbps and 30 Gbps. 
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Fig. 2: Experimental setup for high speed transmission with 1060 nm VCSEL. 
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received signal is then amplified to 1 V peak-to-
peak and analyzed in real time by an error 
detector.  

Results and Discussions  
Fig. 3 shows the measured eye diagrams and 
Fig. 4 bit error ratio (BER) as a function of the 
received optical power back-to-back (B2B) and 
after 50 m MMF transmission for the two 
considered bit rates. Receiver sensitivity at the 
7%-overhead forward error correction (FEC) 
limit of 1x10-3 for B2B is -5.4 dBm at 28 Gbps 
and -2.05 dBm at 30 Gbps. In both cases a 
penalty of 0.8 dB is observed after fiber 
transmission.  
     The optimal setting of pre-emphasis (Fig. 3) 
improves the transmission BER by 1 order of 
magnitude allowing BER to be below the FEC 
limit. 
     Further work on pre-emphasis is required to 
maximize the achievable distance. Moreover, 
the transmission reach can be imcreased by 
employing OM4 MMF or fibers designed and 
optimized for 1060 nm range. The 1060 nm 
VCSEL is proven to be a potential candidate for 
the optical interconnects which use the benefits 
of direct intensity modulation and direct 
detection. The advantage of 1060 nm VCSELs 
for interconnect links include the ability to 
balance energy efficiency and reliability.  

Conclusions  
A high speed 28 Gbps and 30 Gbps 
transmission employing 1060 nm bottom-
emitting VCSEL has been demonstrated with 
transmission over 50 m of OM3 MMF resulting 
in a bit rate-distance product of 1.5 Tbpsxm. In 
the reported experiment, the bias of only 3.77 
mA and 0.55 V peak-to-peak data amplitude 

confirms energy efficiency of the VCSEL based 
system. The optimized pre-emphasis module at 
the transmitter allows a FEC-conformed BER 
values to be achieved.  
     Our reported results have encouraging 
prospects in relation to bottom emitting devices 
for packaging and heat management when 
incorporating these light sources into modules 
for interconnects and short range links. 
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Fig. 4: Bit error rate curves for B2B and Transmission at 28 Gbps and 30 Gbps with 1060 nm VCSEL. 
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(1) Technical University of Denmark, Department of Photonics Engineering, Ørsted Plads, Building 343, Kgs. Lyngby, 2800, Denmark, 

idtm@fotonik.dtu.dk 
 

Abstract: We present a comparative performance analysis for wavelength-grid selection in WDM short-
range multimode-fibers. We study 100Gbps links over OM2, OM3 and OM4 fibers and show it is feasible 
to reach over 100 m transmission distances. 

 
1. Introduction 

Cisco analysis forecasts that as much as 76% of the traffic increase over the next 4 years will remain within data centers [1], 
where currently more than 80% of the existing data links are shorter than 100m [2]. In order to tackle the upcoming need for 
high capacity in data center links, 100G standards have already been made available and a task force is finalizing the 400G 
standards. 100GBASE-SR10 and 100GBASE-SR4 standards propose parallel 10-lanes of 10G and 4-lanes of 25G links 
using 850 nm vertical-cavity surface-emitting lasers (VCSELs) and multimode fibers (MMF) technologies [3]. In this paper, 
we study links that migrate from the standard multiple-fiber-lane approach to a single-fiber-lane link by employing 
wavelength division multiplexing (WDM) of 4x25G channels. 

The main benefit of using WDM is the reduction of the number of fibers per link while keeping the same capacity and 
reducing footprint [4]. As to reported experimental work, a total capacity of 10 Gbps over 100 m and 20 Gbps back-to-back 
transmission was reported by Hewlett-Packard Laboratories and Agilent, respectively [5,6]. Considering that both cost and 
simplicity are mandatory for such WDM MMF links, it is relevant to study which wavelength grid in combination with the 
OM fiber types fulfills both requirements on capacity, reach and simplicity. Our study shows that WDM data links over 100 
m of MMF is achievable with capacity of 100G even with OM2 fiber types for properly selected WDM grids.  

2. WDM short-wavelength over multimode-fiber data link 

Figure 1 depicts the generic multimode WDM transmission link for which we perform a comparative performance analysis. 
Three WDM grids of four wavelengths, which cover the entire short-wave band, are considered in this paper. The 
interchannel spectral separation is fixed to 30 nm according to the standard for Coarse WDM (CWDM): ITU_T Rec. 
G.694.2 Appendix I. The modal bandwidth Bm of the fiber is one of the key limiting factors in transmission over MMF [7]. 
Modal bandwidth stems from the modal dispersion, which depends significantly on the nominal wavelength of the 
transmitted signal. 

 
Fig 1: Schematic diagram of 100G WDM data transmission over MMF. PD: Photodiode. 

3. Computer simulation of data transmission performance 

Computer simulations were performed using the commercially available software OptsimTM version 5.2 of Rsoft. The 
VCSEL modules at the transmitter side adopt parameters from reported realized devices as follows. The 850 nm and 880 
nm are based on [8], the 910 nm, 940 nm, 970 nm and 1000 nm on [9], the 1030 nm and 1060 nm on  [10], and the 1090 nm 
and 1120 nm are based on [11]. In all cases considered, the MUX/DEMUX has a 3-dB bandwidth of 20 nm and a minimum 
band isolation of –14 dB. For comparison reasons we use three types of fibers: OM4, OM3 and OM2. As we present in 
Table 1, OM4 and OM3 fibers grant the best performance in terms of modal bandwidth for the standard wavelength 850 
nm; instead OM2 fibers are not optimized for 850 nm and their lowest dispersion wavelength is close to 1060 nm [12].  

At the receiver side, simple PIN photodiodes (PDs) are used and variable power attenuators control the received optical 
power level. We assume a maximum received optical power tolerated by the PDs of 3 dBm. 
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Table 1: WDM grids and their modal bandwidth 

WDM Grid Wavelength (nm) OM4 
Bm (MHz∙km) 

OM3 
Bm (MHz∙km) 

OM2 
Bm (MHz∙km) 

A 

CH#1 850 4500 2000 700 
CH#2 880 3300 1750 800 
CH#3 910 2325 1500 870 
CH#4 940 2000 1250 1030 

B 

CH#1 970 1625 1100 1160 
CH#2 1000 1350 875 1345 
CH#3 1030 1200 780 1530 
CH#4 1060 1000 700 1625 

C 

CH#1 1030 1200 780 1530 
CH#2 1060 1000 700 1625 
CH#3 1090 750 625 1630 
CH#4 1120 625 575 1570 

Electrical outputs of the PDs are amplified before being processed by the bit error rate tester (BERT) for error counting. 

 

Fig 2: Generic setup for experimental channel testing. 

4. Simulation results 

Simulation results are presented as BER curves: Log(-Log(BER)) versus the received optical power by the PDs. The BER 
are calculated through the overlap integration of the noise distributions per symbol, which were estimated with Monte Carlo 
(MC) technique of OptSimTM. The forward error correction (FEC) threshold adopted is 5x10-5 [13], and the receiver BER 
operating limit is set to 10-9.  

 
Fig 3: WDM grid A BER curves 

 
Fig 4: WDM grid B BER curves 

Fig 3 show that transmission over 100 m of OM4 with BER<10-9 is achievable for all the channels of the WDM grid A. 
CH#4 (940 nm) has the worst performance due to its higher modal dispersion. Results shown in Fig 4 confirm that 
transmission over 50 m of OM4 with BER<10-9 is still achievable in the WDM grid B, whose wavelengths are located 
above 100 nm higher than the standard 850 nm wavelengths.  

BER curves presented in Fig 5 show that data transmission over 100 m of OM2 is achievable for all the channels of 
WDM grid C. CH#1 (1030 nm) has the narrowest modal bandwidth of 1530 MHz∙km, however CH#3 and CH#4 have 
worse performance because of the narrower bandwidths of the employed VCSELs [10,11]. BER floors appear when the 
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modal bandwidth, which decreases with the distance, is too narrow. Then the signal is deteriorated resulting in considerable 
eye aperture closure.  

The curves in Fig 6 represent the power penalty introduced by the MMF, in particular by the modal dispersion, at the 
FEC threshold; the red line depicts the maximum power tolerated by the PDs (3 dBm). In Fig 6 we consider the worst 
channel for each grid, hence the one with the highest modal dispersion for the tested types of MMF. 

 
Fig 5: WDM grid A BER curves  

Fig 6: WDM grid A BER curves 

Table 2 reports the maximum fiber length, which grants the FEC BER threshold performance over OM4, OM3 or OM2 
at 25.78 Gbps per channel for each WDM grid. Grid A and C grant 100 m transmissions over OM4 and OM2 respectively. 

Table 2: Reach limitations of the three WDM grids 
Grid Fiber Worst channel FEC 

max reach (m) 
BER<10-9 

max reach (m) 

A OM4 CH#4 (940nm) 140 115 
OM3 CH#4 (940nm) 70 50 

B OM4 CH#4 (1060nm) 60 50 
OM2 CH#1 (970nm) 60 50 

C OM2 CH#1 (1030nm) 105 80 

5. Conclusion 
Computer simulations perform 100G transmissions over a single MMF data link using short-wavelength WDM. WDM 
grids ranging from 850 nm to 1120 nm and using OM2,3,4 MMF fibers are tested in order to study the limitations due to 
modal dispersion on the achievable transmission distance. Simulation results confirm that grid A, which is close to 850 nm 
is a valid solution for OM4 and OM3 data center links. Moreover, WDM grid C allows transmission over 100 m of OM2. 
This result rehabilitates existing OM2 links and 1100 nm VCSELs technologies for 100G data center solutions. 
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OAM-enhanced transmission for multimode short-range links

Anna Tatarczak, Mario A. Usuga, and Idelfonso Tafur Monroy

DTU Fotonik, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

ABSTRACT

We propose, experimentally demonstrate, and evaluate the performance of a multimode (MM) transmission fiber
data link which is based on orbital angular momentum (OAM) modes. The proposed scheme uses OAM modes
to increase capacity or reach without recurring to mode division multiplexing (MDM) or special fibers: we first
excite an OAM mode and couple it to a 50 m, 100 m, 200 m and 400 m MM fibers. We compare three OAM
modes and a conventional optical multimode under the same launch and received optical power conditions. The
proposed OAM based solution is a promising candidate for the data centers interconnects and short range links
that employ the existing multimode fiber infrastructure.

Keywords: Optical Communication, Data Center Interconnects, OAM

1. INTRODUCTION

Vertical cavity surface emitting lasers (VCSELs) are the dominant optical sources in the data center’s inter-
connects due to their low power consumption and a small footprint. In particular, 850 nm VCSELs together
with OM3 multi mode fiber (MMF) or OM4 MMF are the base of the short-range links, widely employed in the
existing data center infrastructures. The main restraint in this type of links is the intermodal dispersion, which
limits the transmission distance to a few hundred meters for bitrates of 10 Gbps. IEEE 802.3ae 10G Ethernet
standard specifies 300 m as the multimode span length for 10 Gbps transmission and IEEE 802.3ba 40G/100G
Ethernet gives 75 m as the maximum transmission length required at 40 Gbps. Due to the increasing lengths
of connections between buildings in data centers there is a need for longer reach multimode interconnects sup-
porting high bit-rates.1 Several ways of achieving further distances with 850 nm VCSELs have been presented
in the literature. First approach involves mode filtering of a multi-mode VCSEL. This results in a VCSEL that
emits single or quasi-single fundamental transverse mode with a high side-mode suppression ratio of e.g. 16 dB,2

22 dB,3 or 30 dB.4 The mode-filtering is performed within the VCSEL structure. Error-free transmission with
the single mode 850 nm VCSEL is achieved over 1 km OM4 MMF at 25 Gbps,5 over 1.1 km OM4 MMF at
20 Gbps,6 over 600 m OM3+ MMF at 25 Gbps7 and over 50 m OM3+ MMF at 40 Gbps. A second approach is
to couple the light from a multimode VCSEL to a standard single mode fiber (SSMF). Adding a mode filter
to remove LP11 mode allows transmission distance of 1 km SSMF at 10 Gbps.8 The third approach involves
using special 850 nm optimized singlemode fiber, e.g. photonic crystal fiber (PCF). The core region of PCF is
surrounded by multiple air holes, thus assuring single mode operation. Transmission over 3 km PCF has been
presented at 10 Gbps.9 For the multimode VCSELs over multimode fiber, error free transmission over 200 m has
been achieved at 25 Gbps.10 All these approaches require substantial modifications of the existing data center
infrastructure: replacement of the multimode sources in the first approach, or the fibers in the second and third
approaches. Therefore, an alternative solution that employs the existing fibers and VCSELs is of interest.

Figure 1. Orbital angular momentum (OAM) modes captured with the camera after spatial light modulator (SLM): M0
(left), M1, M2 and M3 (right); M0 is a standard optical mode.
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Figure 2. Experimental setup for the transmission of the orbital angular momentum (OAM) modes over multi mode fiber
(MMF); Signal from pulse pattern generator (PPG) directly modulates vertical cavity surface-emitting laser (VCSEL)
biased at 8 mA; the VCSEL beam is collimated at lens L1 and in free-space passes through the attenuator to the spatial
light modulator (SLM), where the beam is shaped to the OAM mode; the shaped beam is coupled to the 3 m OM3 MMF
patchcord; Lens L2 is used for the coupling; The signal is then transmitted through the multi mode fiber (MMF): 3 m
back to back (B2B), 50 m OM3, 50 m OM4, 100 m OM3, 200 m OM3, 400 m OM3, 400 m OM4 and 400 m customized
OM4 by Draka; the signal is then received with photodiode (PD) with the inbuilt transimpedance amplifier (TIA) and
the data is stored at digital storage oscilloscope (DSO).

In this paper we propose an approach to increase the obtainable transmission distance for the multi-mode
sources over multi-mode fibers. Shaping a multimode VCSEL beam as an orbital angular momentum (OAM)
mode (Fig. 1) enabled achieving performance below forward error correction (FEC) threshold during transmis-
sions at 10 Gbps over 400 m MMF. We provide a comparison between transmission of OAM modes M1, M2,
and M3 and standard optical mode M0. The modes are transmitted over: 50 m OM3, 50 m OM4, 100 m OM3,
200 m OM3, 400 m OM3, 400 m OM3, and 400 m Draka OM4. The last mentioned fiber is a Max-CAP-OM4
fiber designed by Prysmian Group Draka. It will be further referred to as Draka OM4 fiber.

2. SETUP

The experimental setup is shown in Fig. 2. The 850 nm multimode commercially available VCSEL is biased at 8
mA and directly modulated with 10 Gbps or 11 Gbps pseudo-random bit sequence (PRBS). The sequence length
is 215− 1 and the amplitude is 800 Vpp. The LIV curves and optical spectrum of the VCSEL used are presented
in Fig. 3 and Fig. 4, respectively. The modulated optical beam from the pigtailed VCSEL is collimated and
passed through the variable attenuator to the spatial light modulator (SLM) in the free-space part of the setup.
The optical power level is controlled by the variable attenuator. The SLM is used to shape the multimode beam
to the OAM mode. We verify the transmission performance with OAM modes M1 to M3 and a conventional
multimode M0. For M0, SLM behaves as a mirror. The 4 modes under investigation are captured with the
camera after SLM and presented in Fig. 1. The full length of the free-space link is 1.5 m. At the end of the
free-space link the beam is coupled into the 1 m long MMF OM3 patchcord. The coupling after free-space is
aligned to obtain maximum output power and is readjusted for each OAM mode.

The OM3 patchcord used for coupling is connected to the multimode fiber spool via the fiber connector.
Several MMFs are tested: 50 m OM3, 50 m OM4, 100 m OM3, 200 m OM3, 400 m OM3, 400 m OM4 and 400 m
OM4 special fiber by Draka. The loss in 50 m, 100 m and 200 m is below 0.5 dB. For 400 m spools the measured
loss is: 0.98 dB for OM3, 0.95 for OM4, and 0.97 dB for Draka OM4. After transmission the signal is received by
the 850 nm commercially available photodiode (PD) with 25 GHz bandwidth. The signal is then stored at digital
storage oscilloscope (DSO) with 14 GHz bandwidth. For each BER point 107 symbols are saved and errors are
counted. No additional equalization is used.

The optical system frequency response is characterized with the vector network analyzer (VNA) before the
transmission is performed. For the S21 measurement the output of pulse pattern generator (PPG) is replaced
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Figure 3. Static characteristics of the VCSEL: Power versus
current and voltage versus current (LIV curves).
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Figure 4. Optical spectrum of the VCSEL captured after
400 m of MMF; two major modes are around 858 nm.

with the VNA output and input to DSO is instead received by the VNA input. The optical path, from VCSEL
to PD included, is kept the same.

3. RESULTS

We compare a transmission performance for different OAM modes (M1, M2, M3) and for a conventional multi-
mode M0. Firstly, the modes M0 – M2 are transmitted at 11 Gbps over 100 m OM3 and 200 m OM3. Secondly,
the modes M0 – M2 are transmitted over two 50 m long MMFs, OM3 and OM4, at 11 Gbps. Finally, modes M0
– M3 are transmitted over 3 types of 400 m MMF. The performance is compared in terms of the bit-error-ratio
(BER) relative to the received average power measured before PD. Transmission over 1 m of OM3 MMF is
referred to as back to back (B2B) transmission. Additionally, the S21 is measured for each optical system.
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Figure 5. S21 measured for the optical system with back
to back (B2B) and four different multi mode fiber (MMF):
50 m OM3, 50 m OM4, 100 m OM3 and 200 m OM3; All
curves are measured with a conventional multimode M0.
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Figure 6. BER versus received optical power (ROP) mea-
sured for back to back (B2B), 100 m OM3 and 200 m OM3
for 2 different orbital angular momentum (OAM) modes:
M1 and M2 and a conventional multimode M0.
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3.1 Transmission over B2B, 100m OM3, and 200m OM3

Fig. 5 presents S21 measured for the optical system with back to back (B2B), 50 m MMF, 100 m and 200 m. All
of the S21 are measured for a conventional multimode M0. 3-dB bandwidth of the system ranges from 16 GHz for
200 m to 22 GHz for B2B. The measured analog bandwidths for all presented cases are sufficient for the 11 Gbps
transmission. The bit error rate (BER) curves measured at 11 Gbps for B2B and all the fibers are presented
in Fig. 6. No penalty is observed, neither for different fiber lengths nor for the different modes. The power
measurement error due to the procedure is equal to -/+ 0.25 dB. Receiver sensitivity at BER of 10−3 is equal
to -10 dBm.

3.2 OM3 vs. OM4

In Fig. 7 the comparison between 11 Gbps transmission over 50 m links, OM3 and OM4 MMF, is presented.
As apparent from Fig.5, the bandwidth for both fibers is the same. The measured 3-dB bandwidth is 20 GHz
for the length under consideration. The sensitivity at BER 10−3 for OM4 fiber is up to 0.2 dB better than for
OM3. The same is observed for all of the OAM modes. This difference in the sensitivity is within the power
measurement error margin. The difference between OM3 and OM4 is expected to be more significant for longer
fiber link.

3.3 400m

A link of 400 m is used to evaluate the transmission performance with the OAM modes. We use three different
400 m long links in which the intermodal dispersion is dominant. S21 curves measured for the optical system
with each of the three links are shown in Fig. 8. The S21 curves are measured with for M0 OAM mode. The
3-dB bandwidth is only 4.9 GHz for MMF OM4 by Draka, 4.8 GHz for MMF OM3 and 4 GHz for 400 m MMF
OM4.

The impact of the OAM modes on the S21 of the system is presented in Fig. 9. The frequency response is
measured for OM4 Draka fiber with OAM modes from M1 to M3 and with the conventional multimode M0.
The measured responses are the same for modes M0 and M1, while responses of modes M2 and M3 have ∼2dB
less power for frequencies above 15 GHz. For each of the modes the coupling is realigned to reach the highest
coupled power. The coupling efficiency is a ratio between the power coupled to the MMF OM3 patchcord and
the input power to the lens. Fig. 10 presents the coupling efficiency measured for modes M0 to M3. It shows
that there is no difference in coupling efficiency for M0 and M1, however for M2 and M3 the coupling efficiency
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Figure 7. BER versus received optical power (ROP) mea-
sured for 2 OAM modes (M1 and M2) and a conventional
multimode M0 for two types of 50 m MMF: OM4 and OM3.
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Figure 8. S21 measured for the optical system with three
400 m spools: OM3, OM4 and OM4 fiber by Draka; All
curves are measured with a conventional M0 mode.
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Figure 9. S21 measured for the optical system with 400 m
OM4 by Draka with 4 OAM modes: M0, M1, M2 and M3.
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Figure 10. Coupling efficiency measured in the system as
Pcoupled/PIN for 4 modes.

decreases. Higher order modes suffer from larger loss, as the power is distributed outside of the beam center and
the coupling is imperfect.

Fig. 11, Fig. 12 and Fig. 13 depict the BER curves measured at 10 Gbps for three 400 m links. For all of the
curves the same tendency is observed: the higher the order of OAM mode, the lower amount of errors is counted.
During the measurement the coupling from the free-space through the second lens L2 is realigned for each mode
to reach the highest coupling efficiency. The BER below FEC threshold is obtained by transmitting the beam
shaped in OAM mode. The error floor observed at log(BER) of -1.8 for 400 m OM3 link is moved down to -2.1
with M1 and M2 and down to -2.8 with M3. OM4 fiber has the lowest 3-dB bandwidth out of the three links
under consideration, as shown in Fig.8. The error floor for this fiber is measured at log(BER) of -1.3. Using
OAM mode M1 allows to move the error floor down to log(BER) of -1.5, M2 to -2.3 and M3 to -3.3. In case of
Draka 400 m OM4 fiber, the 3-dB bandwidth is the highest of the three links (Fig.8). Therefore, the error floor
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Figure 11. Bit error rate (BER) versus received optical
power (ROP) measured at 10 Gbps for 400 m OM3 multi
mode fiber (MMF) for 3 OAM modes (M1, M2, and M3)
and a conventional multi mode M0.
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Figure 12. Bit error rate (BER) versus received optical
power (ROP) measured at 10 Gbps for 400 m OM4 multi
mode fiber (MMF) for 3 OAM modes (M1, M2, and M3)
and a conventional multi mode M0.
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Figure 13. Bit error rate (BER) versus received optical power (ROP) measured at 10 Gbps for 400 m OM4 multi mode
fiber (MMF) by Draka for 3 OAM modes (M1, M2, and M3) and a conventional multi mode M0.

for M0 is the lowest, at log(BER) of -2.6. Usage of M3 allows reaching -3.45.

4. DISCUSSION

As shown in Fig. 6, using the OAM modes M1 and M2 over 100 m OM3 and 200 m OM3 results in the same
performance in terms of BER as using a conventional multimode M0. The same transmission performance
within the tested BER range indicates a potential for simultaneous use of several OAM modes in the future
spatial division multiplexing (SDM) systems.

For 400 m transmission, 3-dB system bandwidth becomes a limiting factor, as presented in Fig. 8. The
’dip’ in the frequency response occurs due to the interaction between several modes in the fiber. It is the most
pronounced for the OM3 fiber and the least for the Draka’s OM4 fiber. The 3-dB bandwidth of 4 GHz measured
for 400 m OM4 fiber results in the error floor measured at log(BER) of -1.3 for 10 Gbps transmission. Using
OAM modes introduces the most significant performance improvement for 400 m OM4 fiber. Using OAM mode
M3 allows to reach error floor below FEC threshold, at log(BER) of -3.3. For Draka OM4 fiber, the measured
3-dB bandwidth was 4.9 GHz. It allows for the error floor below log(BER) of -2.6. Using OAM mode M3 enables
log(BER) of -3.45. An improvement in the transmission performance while using higher order OAM modes is
measured for all 400 m fiber types with the best performance of OAM mode M3 transmitted over Draka OM4
MMF.

5. FUTURE WORK

The presented results provide an interesting solution for improving performance in terms of BER in the multimode
transmission scenarios. A further study is required to define the optimal launching and transmission conditions.
The next step is to create an all fiber coupled OAM-enhanced transmission, with no free-space link. Secondly,
higher order modes M4 – M6 are expected to result in further performance improvement, hence need to be
tested. Additionally, checking the behavior of the OAM enhanced transmission with a single mode source should
be verified and compared with the presented results.

6. CONCLUSION

In this work we present a novel OAM-enhanced transmission over multi mode fiber (MMF) which can be applied
in the short-range optical interconnects. OAM modes M1 and M2 perform the same as conventional multi mode
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M0 within the tested BER range for transmission over 50 m OM3, 50 m OM4, 100 m OM3, 200 m OM3. For a
further distance of 400 m, the higher order modes perform better than the conventional M0 mode, enabling BER
below FEC threshold at 10 Gbps in the system with 3-dB bandwidth of 4 GHz.
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Abstract—This paper experimentally demonstrates the distri-
bution of radio-over-fiber signals over multimode fiber. We study
four types of launches to the MMF and their impact on the
RoF system performance. The carrier frequencies of the RoF
signal range from 3.7GHz to 10GHz and bitrates up to 1.5Gbps.
The selective launch enables higher achievable reach over MMF
as compared to the standard launch, hence the fiber’s capacity
is improved. This approach can be applied in MMF antenna
links and combined with free-space optics for easier access to the
isolated cell stations. This work supports current developments
towards 5G mobile backhaul systems.

Index Terms—Radio frequency photonics, multimode fibers,
selective modal launch.

I. INTRODUCTION

THE growth and expansion of wireless networks is sus-
tained thanks to parallel developments in wired transport

networks operating underneath; these underlying networks,
traditionally based on copper links, have migrated to optical
fiber based links over the last years. However, fiber based links
to feed antenna sites may not be a viable solution when the
operator does not have access to the deployed fiber or the costs
of deployment are deemed to be too high. Recently, radio-over-
fiber (RoF) systems [1] and free space optics (FSO) [2] have
been proposed and successfully demonstrated to provide large
bandwidth to antenna sites, smoothly integrating the mobile
fronthaul segment with the mobile backhaul segment.

The advantages of using RoF techniques to distribute wire-
less signals are multifold: it provides a scalable technology
that allows seamless integration of the optical access net-
work and the transmitting antenna by providing direct optical
baseband to optical radio frequency (RF) up-conversion. The
low transmission loss of optical fiber allows for antenna
remoting, allowing centralizing wireless carrier generation and
signal processing. Photonics is generally of advantage when
generating and transmitting spectrally-broad and spectrally-
efficient ultra-high capacity data signals. On the other hand,
FSO has been proven to be a flexible tool to link short- to
mid-range distances. Furthermore, the network planners and
operators can skip fiber deployments in the last mile and utilize
(largely) license-free RF bandwidth.

A selective modal launch is used to excite a single mode
group or a fraction of fiber mode groups. Consequently, the
propagation delay between different mode groups is decreased
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and the dispersion effect mitigated [3]. This approach has been
presented with a single mode source and a multimode fiber in
multiple works to study perfomance of the linearly polarized
(LP) eigen modes of MMF [4]–[7]. The selective modal launch
applied to multi mode fiber (MMF) links combined with
a multimode vertical cavity surface-emitting laser (VCSEL)
light source has been presented in [8]. In this approach
the achievable distance is increased by launching a phase
modulated beam to the MMF instead of a standard multi mode
beam. A Liquid Crystal on Silicon – Spatial Light Modulator
(LCOS-SLM) or a phase plate can be used to modulate the
phase of the beam [9], [10]. Alternatively, a phase plate has
also been proposed to be integrated within a light source, e.g.
in the VCSEL structure [11]. The combination of FSO and cost
effective MMF with a reach enhanced by a selective modal
launch is a candidate for last mile RoF systems [12].

Fig. 1 shows a network scenario where the antenna is
fed with the signal either through the MMF or through the
combination of FSO and MMF. The selective mode launch
can be performed at the cell cabinet or at the end of the
FSO link (the phase information is preserved in free space
[13]. The MMF links based on 850 nm VCSEL lasers meant
for short distances up to 300 m have been demonstrated as a
feasible solution for RoF applications [14]. In this work, we
present RoF transmission over MMF as well as the potential
of the selective launch to increase the length of the link
carrying the RoF signal. We provide results for 850 nm
VCSEL based intensity modulation/direct detection (IM/DD)
links up to 400 m. The antenna link is used to support RoF
signal distribution and serves as a range extension structure
for mobile fronthaul systems.

We consider three different RoF signal configurations.
Firstly, the LTE frequency band of 200 Mbps at 3.7 GHz
carrier frequency is tested. Secondly, a bitrate of 1 Gbps is
tested at the carrier frequency of 4 GHz. This scenario reveals
an interesting property of higher order modes launched into
the multimode fiber. With increasing order m of the phase
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Fig. 1. Scenario of radio over fiber over a) MMF and b) FSO and MMF.
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Without 

data

With data

M0 M1 M2 M3

Fig. 2. Modes M0–M3 captured by the camera; continuous wave (CW) is
compared with modes carrying 1.5 Gbps data on a 10 GHz carrier.

Fiber 1 Fiber 2f1 f2SLM

S1 S2 S’2 S3

Fig. 3. Mode distribution transformation: the light from the multimode Fiber
1 is launched to free space, passes through the collimating lens f1, spatial light
modulator (SLM), and lens f2 and is coupled to the second MMF Fiber 2.
The mode densities S for the specific path’s part are presented at the bottom
of the Figure.

modulation, an improvement in terms of bit error rate (BER)
is observed. Finally, the transmission of a 1.5 Gbps signal on
a 10 GHz carrier is presented. This choice of frequencies is
tested because higher carrier frequencies are proposed to be
the next step for the RoF systems [15].

Four types of launches to MMF are tested. Fig. 2 presents
the four modes modulated with the different phase information
of order m. The modulated beams have been captured with
the CCD/CMOS camera. M0 refers to a standard multimode
beam without a phase information (ϕ = 0), modes with phase
modulation orders from 1 to 3 are referred to as M1 to M3. The
top row of Fig. 2 presents the beams without the RoF signal
modulation (continuous wave (CW) light from a multimode
VCSEL at 8 mA), while the bottom row presents the beams
modulated with a 1.5 Gbps signal on a 10 GHz carrier.

II. CHANNEL DESCRIPTION

The signal transformations which occur in the presented
scenario are described in this section and depicted in Fig. 3.
We cover the mode distribution in the pigtail of the multimode
fiber (Fiber 1) where the light was launched form the multi-
mode laser, the transformation to free space, through the lens
f1, the phase modulation by the SLM, as well as the coupling
through the lens f2 and a launch to the second fiber (Fiber 2).

The mode distribution S1 at the end of the launch fiber
(pigtail of the laser) can be decribed as the sum of the linearly
polarized (LP) modes:

S1 =
∑

m,n

αmnLPmn(x) (1)

where m,n is an index of the modes, αmn is the mode coeffi-
cient, and LPmn is a fiber Eigenmode. The spatial coordinates
are described by x = (x, y). The phase information is assumed
to be included in the LPmn mode expression. At the fiber edge

we need to transform LP mode combinationa to LG mode
combinations to a free space description:

S1 =
∑

m′,n′

βm′n′LGm′n′(x) (2)

m′, n′ are the indices of the modes in air, βm′n′ is the
coefficient of the Laguerre Gaussian (LG) modes that depends
on αmn. The signal distribution after transformation to free
space, through the lens, and back to free space results in
distribution S2:

S2 = F̃1

{
P̃1 {S1}

}
(3)

P̃1 is a free space propagation transform, F̃1 is a field
transform of the lens f1. After being modulated on the SLM,
the phase information is added to the distribution:

S′2 = F̃1

{
P̃1 {S1}

}
eimϕ (4)

where m is the phase modulation order, and ϕ is the azimuthal
angle of the modulation. The phase modulation is dependent
on the mode’s wavelength. The distribution after launching
back to the MMF Fiber 2 contains a different mode set than
in Fiber 1, because they were spatially redistributed during the
phase modulation and during other transformations:

S3 = P̃3

{
F̃2

{
P̃2 {S′2}

}}
(5)

P̃2 and P̃3 are free space propagation transforms and F̃2 is a
field transform of the lens f2.

III. EXPERIMENTAL SETUP

An experimental setup is presented in Fig. 4. The pseudo-
random bit sequence (PRBS) signal of length 215−1, with an
amplitude of 500 mVpp, is mixed with the carrier frequency in
the Vector Signal Generator (VSG), producing a modulated RF
carrier with a power of 0 dBm. Three configurations of data
rate and carrier frequency are investigated and are summarized
in Fig. 5. The corresponding electrical spectra are presented
in Fig. 5(a)–(c).

The upconverted signal is used to directly modulate a
multimode 850 nm VCSEL biased at 8 mA. The multimode
beam from the fiber pigtailed VCSEL is launched to free space
using a collimator. The beam passes through the polarizer
and a single polarization is passed to the LCOS-SLM which
phase modulates the beam. A second polarizer together with
a polarization beam splitter are used as a variable attenuator
to set the power required for BER measurement. The beam is
then coupled into the MMF patchcord. The 1 m long patchcord
is connected to the MMF spool. The fiber links considered in
the scenarios are: 100 m OM4, 200 m OM3 and 400 OM4.
An 850 nm reverse biased photodiode (PD) is used for direct
detection of the signal. The received signal is then recorded
with a digital storage oscilloscope (DSO) and downconverted
in MATLAB.

The phase modulated beams presented in Fig. 2 are trans-
mitted one by one in the multimode fiber and the transmission
performance for each mode is evaluated in terms of BER. The
BER is determined in MATLAB through bit error counting
over a number of recorded sequences with a combined length
of 5 Mbit.
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Fig. 4. Experimental setup. Pulse pattern generator (PPG), vector sig-
nal generator (VSG), vertical-cavity surface-emitting laser (VCSEL), liquid
crystal on silicon spatial light modulator (LCOS SLM), polarization beam
splitter (PBS), multimode fiber (MMF), photodiode (PD), digital sampling
oscilloscope (DSO).
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Fig. 5. Regarded data rates and carrier frequencies and their corresponding
electrical spectra: (a) 200 Mbps signal on a 3.7 GHz carrier; (b) 1 Gbps signal
on a 4 GHz carrier; (c) 1.5 Gbps signal on a 10 GHz carrier.

IV. OPTICAL CHANNEL CHARACTERIZATION

In this section, we present optical spectra captured without
modulation and with modulation of a 1.5 Gbps signal on
a 10 GHz carrier; the bias current of 8 mA is the same
as used in the data transmission experiment. The optical
spectra are presented in Fig. 6(a). The spectrum broadening
due to modulation in the case of 1.5 Gbps on the 10 GHz
carrier is negligible. For two other frequency scenarios with
lower carrier frequency and bitrate no broadening is measured.
Fig. 6(b) presents the measured static characteristics of the
VCSEL used.

Additionally, as most of the signals driving RoF links
are of small signal nature, we use small signal analysis to
characterize the full channel. S21 curves measured with 100 m
OM4 fiber and with 200 m OM3 fiber for modes M0 to M3 are
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Fig. 6. (a) Optical spectra captured with and without modulation; (b) Light-
current-voltage curves for the 850 nm VCSEL.
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Fig. 7. (a) S21 captured for Modes M0–M3 for 100 m OM4 and 200 m
OM3; (b) S21 captured for Modes M0–M3 for 400 m OM4.

presented in Fig. 7(a). The 3 dB bandwidth of the full optical
link with 100 m OM4 fiber is 16 GHz for all tested modes; for
the link with 200 m OM3 fiber the 3 dB bandwidth measured
is 10 GHz for all modes. Fig. 7(b) presents S21 captured for
the 4 modes with a 400 m OM4 fiber link. The S21 displays
a discrepancy in the bandwidth below -3 dB between the 4
modes. 3 dB bandwidth is 4.4 GHz for all modes, but at −6 dB
mode M3 has bandwidth of 2 GHz higher than mode M0.
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Fig. 8. (a) BER for LTE transmitted over 200 m OM3; (b) BER for LTE transmitted over 400 m OM4; (c) BER measured for a 1 Gbps signal on a 4 GHz
carrier transmitted over 400 m OM4; (d) BER measured for a 1.5 Gbps signal on a 10 GHz carrier transmitted over 100 m OM4.

V. RESULTS

A. LTE-like Signal

First, a signal in the 43rd LTE band is transmitted over
200 m of OM3 multimode fiber. The electrical and optical
spectra for this scenario are presented in Fig. 5(a) and Fig. 6(a)
respectively; the frequency response of the full optical link
with 200 m OM3 fiber is presented in Fig. 7(a). The BER
results for 4 different launched modes transmitted consecu-
tively through the 200 m fiber are presented in Fig. 8(a). After
200 m transmission the performance of all tested modes is the
same. The receiver sensitivity at a BER of 10−3 is -7 dBm.
The observed differences of up to 0.5 dB between the modes’
performance at a BER of 10−3 are within the error margin due
to instabilities in the system including temperature variation
impacting VCSEL and PD behavior.

Second, the LTE-like signal is transmitted over 400 m OM4
multimode fiber. The frequency response of the full optical
link with 400 m OM4 fiber is presented in Fig. 7(b). The BER
results are presented in Fig. 8(b). A performance improvement
in terms of BER is observed for launched modes with higher
order phase modulation. For a launched mode M3 a sensitivity
improvement of 1.3 dB compared to M0 is observed at a BER
of 10−3.

B. 1 Gbps on a 4 GHz Carrier

In the previous section, the improvement in performance has
been observed for phase modulated modes launched to MMF.
They were modulated at low bitrates for a 400 m OM4 MMF
link. Therefore, a higher data bitrate of 1 Gbps is tested on
a 4 GHz carrier over the same distance of 400 m. Fig. 8(c)
displays the results. The improvement in terms of BER for
higher order phase modulation is more pronounced in this
scenario and the difference in required received optical power
between mode M3 and M0 is 1.8 dB at a BER of 10−3.

C. 1.5 Gbps on a 10 GHz Carrier

The last scenario regarded includes a 1.5 Gbps signal on a
10 GHz carrier. The signal was transmitted over 100 m OM4
fiber. The electrical spectrum is presented in Fig. 5(c) and the
frequency response of the full optical link with 100 m OM4
fiber is presented in Fig. 7(a). The BER results are presented
in Fig. 8(d). All modes under test show the same performance
within the tested BER range. The receiver sensitivity is -
5.5 dBm at a BER of 10−3. The differences in performance
between modes in terms of BER are up to 0.5 dB and are
related to the instability and thermal variations.

VI. DISCUSSION

We show that launching a beam with a phase modulation
supports carrying RoF signals in MMF both at the carrier
frequencies and bandwidths specified by the LTE standard as
well as at higher carrier frequencies and data rates (10 GHz,
1.5 Gbps). Four tested types of launches (modes M0–M3)
yield the same performance in terms of BER when transmitted
over 200 m (in case of LTE) and 100 m (in case of a 1.5
Gbps signal on a 10 GHz carrier) of MMF. The observed
performance proves that the mobile fronthaul can be supported
using MMF, where the multi mode links to the antennas are
between 100 m and 400 m long.

An improvement in performance for higher order phase
modulated modes was observed for a longer fiber link of
400 m. The selective modal launch technique enables the
support of longer antenna links, or higher speeds on the
existing links.

VII. CONCLUSIONS

Transmission of analog radio signals over conventional
MMF fibers with enhanced robustness and enhanced capacity
are a new prospect for low cost MMF RoF links. This paper
presents different experiments on RoF distribution in MMF,
using selective modal launch.
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We demonstrate the stable performance of RoF signals with
carriers varying from 3.7 GHz to 10 GHz. The transmitter
is based on a multimode 850 nm VCSEL source, which is
arguably a low-cost transmitter. The phase modulation of the
beam is done using a SLM, although current developments in
the area of devices indicate simple holographic masks enable
selective on-chip mode generation [16].

Further work includes the assessment of transmission of
more complex modulation formats; this aspect is critical to
fully support radio signals for mobile communications and
especially when considering turbulence effects, requiring the
development of novel turbulent channel models to correctly
parametrize the link including the MMF segment.
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Abstract 

We demonstrate for the first time optical-domain 

compensation for coupling between conjugate vortex modes 

in optical fibers. We introduce a novel method for 

reconstructing the complex propagation matrix of the 

optical fiber with straightforward implementation. 

I.  INTRODUCTION 

Nowadays a number of applications involving the use 

of orbital angular momentum (OAM) of light for data 

transmission are under development, including classical 

communications approaching the nonlinear Shannon limit 

and OAM-based quantum communications. However, 

OAM modes, or optical vortices, transmitted over 

conventional optical fibers are subject to random mode 

coupling caused by fiber bending, twisting and inherent 

optical fiber fabrication defects [1]. Therefore, 

computationally heavy multiple-input multiple-output 

(MIMO) digital signal processing is a standard technique 

to compensate for such mode coupling and recover the 

transmitted data in current optical fiber mode-division-

multiplexed (MDM) transmission systems [2, 3]. 

However, this approach demands great computational 

resources for real-time signal processing implementation. 

Optical-domain mitigation of crosstalk resulting from 

mode coupling is a more effective solution in respect to 

better scalability and reduced power consumption. 

Compensation of the crosstalk between OAM-

multiplexed channels transmitted over atmospheric 

turbulence has been recently demonstrated by means of 

adaptive optics [4]. Several adaptive techniques for 

multimode fiber modes control have also been proposed 

[5, 6], however the main goal of these works is to control 

the output field distribution, rather than to provide 

independent transmission of modes over the fiber. 

We demonstrate experimentally for the first time that 

the intensity of conjugate OAM modes transmitted over 

the fiber in the presence of mode coupling can be 

recovered in the optical domain. A standard single mode 

fiber (SSMF) patch cord in 3-mode regime is used for our 

demonstration. We employ a novel method for 

reconstructing the fiber complex propagation matrix 

based on the output field azimuthal decomposition [7] 

that allows matrix elements determination by direct 

calculations from the beam intensities in the 

corresponding diffraction orders. 

                                                           
This work is partly supported by the Ministry of Education and Science 

of Russian Federation under the State assignment for higher education 
organizations. 

II.  METHOD PRINCIPLES AND EXPERIMENTAL SETUP 

Fig. 1 shows the simplified scheme of the 

experimental setup, where the key building blocks are 

two spatial light modulators (SLMs), first of those is 

intended for excitation of vortex beams and their 

superpositions, and the second one is used for the fiber 

propagation matrix analysis and mode coupling 

compensation. 

xyz stage

OSAVOA+
isolator

FS
SM laser

HWP1L1 BP1
SLM1

M2

SSMF in few-mode 
regime (N=3)

SLM2
FL

 l=848 nm

xyz stage

M1

L2

HWP2 L3BP2

f = 150mm

xyz stage

CMOS camera

 
Fig. 1. Experimental setup for the fiber analysis and mode coupling 

compensation: SLM1, SLM2 – spatial light modulators Hamamatsu 

X10468-02 (792x600 pixels); OSA – optical spectrum analyzer; FS – 

fiber splitter; L1-L3 – lenses; FL – Fourier lens; HWP1, HWP2 – half-

wave plates; BP1, BP2 – beam polarizers; M1, M2 – mirrors. 

A patch cord (L = 4 m) made of conventional SSMF 

has been used as a transmission medium. It behaves as a 

3-mode fiber at the wavelength 848 nm. A considered 

modal basis consists of the fundamental mode LP01 and 

the two conjugate vortex modes LP11 = LP11a  iLP11b. 

To build the propagation matrix reconstruction, our 

proposed method involves only two consecutive steps. 

First, we transmit individual modes and determine 

amplitudes of all elements in the propagation matrix and 

phase differences within each column relative to the 

element on the main diagonal. Next it is sufficient to 

determine phase differences between matrix columns by 

transmitting twin-mode superpositions through adjacent 

modal channels. Theoretical details of our method and 

simulation results are presented in [8]. Here we report, for 

the first time, experimental verification of the proposed 

method. Validity and accuracy of the experimentally 

obtained propagation matrix is controlled by two factors: 

coincidence of the free space experiment data (when 

propagation matrix tends to be identity) with the 

simulation results; fulfillment of the phase loop 

condition, providing the determined relative phases are 

correct throughout the columns and rows of the 

propagation matrix (phase loop inaccuracy does not 

exceed 0.4 rad throughout all our experiments).  
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In order to implement inverse fiber propagation 

operator using SLM2, the transfer function of the 

computer generated hologram (CGH) is defined as: 

               1

SLM2 1 1
( )=

N N il i
u e e 



 



= =
  

w x
x             (1) 

where 1u

  are the elements of the matrix inverse to the 

normalized propagation matrix U, N is the number of 

modes, l is the topological charge of the -th transmitted 

mode; w is the spatial carrier corresponding to the -th 

received mode; x = (x, y). 

III.  EXPERIMENT RESULTS AND DISCUSSION 

Our experimental observations show that coupling 

between conjugate modes which possess equal propagation 

constants and differ from each other only by the phase 

front vorticity handedness is much stronger than coupling 

between modes with adjacent azimuthal indices (Fig. 2 (a)-

(c), (g) shows an exemplary output modal content). It may 

appear significant even in a fiber of short length and lead to 

almost complete transfer of energy between modes. But 

when the fiber complex propagation matrix is determined, 

this coupling can be compensated for (Fig. 2 (d)-(f), (h)), 

while energy distribution between vortex modes and 

fundamental modes remains almost the same. 

Effectiveness of the compensation in our setup was limited 

by the SLM property to operate with only one polarization, 

whereas coupling between two polarizations of OAM 

modes increases with the fiber length and can be 

compensated by their simultaneous processing. 

Alternatively, polarization coupling may be avoided by 

using polarization maintaining fiber. 
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Fig. 2. (a)-(c) Intensity distribution at the Fourier lens focus plane when 

testing the fiber with modes LP–11, LP01, and LP11 respectively (the 
lower diffraction order corresponds to topological charge l = –1, left one 

– to l = 0, and the upper one – to l = 1); (d)-(f) when applying optical 

compensation; (g), (h) normalized intensity distribution between modes 
during fiber analysis and after optical compensation respectively. 

Our proposed method allows for using potentially 

conjugate modes as independent orthogonal carriers for 

OAM-multiplexed data transmission systems, effectively 

increasing the capacity of the channel. Moreover, as 

conjugate modes have the same propagation constants, 

extension from continuous wave to modulated signal 

transmission should not require additional means to deal 

with differential mode delay. 

IV.  CONCLUSIONS 

The presented experimental results are the first proof-of-

concept demonstration that mode coupling between 

conjugate vortex modes can be compensated in the optical 

domain by means of a CGH, whose transfer function is 

defined to perform the inverse fiber propagation matrix. 

We show reconstruction of the waveguide complex 

propagation matrix, implemented experimentally, on the 

basis of azimuthal field decomposition with an accuracy 

level sufficient for straightforward compensation for the 

mode mixing. Our demonstrated approach allows a 

potential utilization of the conjugate vortex modes as 

signal carriers in MDM communication systems using 

efficient optical-domain signal processing. 
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Abstract: Employing MultiCAP signaling, successful 70.4 Gbps transmission over 100m of OM3 
MMF using off-the-shelf 850 nm VCSEL with 10.1 GHz 3-dB bandwidth is experimentally 
demonstrated indicating the feasibility of achieving 100 Gbps with a single 25 GHz VCSEL.  
OCIS codes: (060.2330) Fiber optics communications; (060.4080) Modulation 

 
1. Introduction 

Active optical cables (AOC) for datacenter interconnect and supercomputer applications are forecasted to surpass a 
market of 40 million units per year by 2015 and to evolve from current 40 Gbps to 100 Gbps capacity [1]. 
Furthermore, AOC are required to meet the growing bandwidth demands while keeping the cost at minimum, 
providing longer reach, lighter weight and smaller form factor [2]. AOCs typically use vertical-cavity surface-
emitting lasers (VCSEL) and photodiodes operating at 850 nm, combined with multi-mode fiber (MMF) of 1 to 
100 m length. This combination offers a good tradeoff between capacity and cost. Although the objective is very 
clear, how to increase capacity without increasing the cost, the power consumption and the form factor is a timely 
and challenging research question.  Moving towards longer wavelength would provide more bandwidth at the cost of 
more expensive light sources, whereas increasing the number of lanes incurs in more complex designs and bigger 
form factors. Therefore, more spectrally efficient modulation formats are now being researched. The highest error-
free bitrates reported for 850 nm VCSELs-based links are 60 Gbps over 2 m OM4 using 4 level pulse amplitude 
modulation (4-PAM) [3], 55 Gbps over 5m OM2 using on-off keying (OOK) [4], and 35.2 Gbps over 100m OM4 
using 8-PAM [5]. All of which require very fast electrical interfaces, and suffer from low tolerance towards modal 
dispersion as compared to pass-band modulation formats [6]. 

We report on a 100 m MMF OM3 link that achieves below-FEC 70.4 Gbps (65.7 Gbps net rate) using a VCSEL 
with a bandwidth of 10.1 GHz. We use multiband and multilevel approach to carrierless amplitude phase (CAP) 
modulation [7]. Our proposed MultiCAP signaling has the prospect of achieving 100 Gbps over 100 m MMF with 
emerging 25 GHz 850 nm VCESLs. This solution overcomes both electrical and optical bandwidth limitations 
towards single lane 100 Gbps AOC employing cost efficient 850 nm MMF technologies.  

2.  Experimental Setup 

Fig. 1 shows the experimental setup. The transmitter is composed of a digital-to-analog converter (DAC), a linear 
driver amplifier, a bias-tee and a commercially available 850 nm VCSEL. The fiber is a 100 m MMF OM3 
compliant. The receiver consists of a photodiode, a linear amplifier and a digital-storage-oscilloscope (DSO). Signal 
generation and demodulation is performed off-line using Matlab. 

 For signal generation, we choose a 6 band configuration of MultiCAP [8] with different modulation orders per 
band depending on the aimed bitrate (see Tab. 1). The first configuration enables a total throughput of 70.4 Gbps 

 
 

Fig. 1: Experimental Setup as in a CXP connector. Digital Signal Processing (DSP), digital-to-analog converter (DAC), 
attenuator (Att), analog-to-digital converter (ADC). 

 

978-1-55752-993-0/14/$31.00 ©2014 Optical Society of America
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(65.7 Gbps after 7% overhead forward error correction (FEC) decoding), whereas the second configuration enables 
80 Gbps (74.7 Gbps after 7% FEC). Received electrical spectrum and constellations are presented in Fig. 2. Each 
band was constructed from a pseudo-random binary sequence (PRBS) of 213-1 bits and delivers a baud rate of 3.2 
Gbaud.  The CAP filters were 20 symbols long with 0.05 and 0.08 roll-off factors for transmitter and receiver 
respectively, and the number of samples per symbol and band was 20. Each band is equally spaced 4.28 GHz. The 
electrical signal generation is performed by a 64 GSa/s DAC with 5 effective number of bits (ENOB). 

The DAC output is amplified to a 1.2 Vpp signal that is used to drive an 850 nm VCSEL biased at 8 mA. Fig. 3a 
shows the light-intensity-voltage (LIV) curve of the VCSEL together with its operation region. Fig. 3b shows optical 
spectrum of the VCSEL driven with a MultiCAP signal. An optical power of 6 dBm is launched into 100 m of MMF 
with a total link loss of 0.5 dB for 100 m. The signal is photo-detected with an 850 nm photodiode reverse biased at 
4 V. The signal is then amplified to a Vpp of 1 V and digitally stored with an 80 GSa/s DSO with a resolution of 8 
bits. Offline processing is performed as described in [8]. Multimode dispersion and other linear impairments are 
compensated by using a 15 tap decision-directed (DD) equalizer per band. 

Tab. 1: Modulation order per band for different bitrates 
Bitrate (Gbps) B1 B2 B3 B4 B5 B6 

70.4 32 32 16 8 8 4 
80 64 32 32 16 8 4 

108 64 64 32 16 16 4 

3.  Results 

Fig. 4b shows the measured bit error rate (BER) curves. We define the sensitivity at a BER of 4.4 10-3  which is 
below the theoretical limit of 7% FEC based shortened BCH (Bose - Chaudhuri - Hocquenghem) components [9]. 
Thereby, we can observe sensitivities of 2.1, 4.7 and 5.4 dBm for experimentally obtained 70.4 Gbps over 1 m, 70.4 
Gbps over 100 m, and 80 Gbps over 1 m respectively. The measured transmission penalty after 100m MMF is 2.5 
dB; a significantly low penalty considering the high bitrate. 

Fig. 4a shows the end-to-end frequency response of the transmission link as well as electrical B2B. A 3 dB 
bandwidth of 10.1 GHz was measured for the optical end-to-end link and 11 GHz for the electrical B2B. However, a 
difference of up to 10 dB can be observed between the electrical and optical frequency responses at 20 GHz. Such a 

 
 

Fig. 2: Received spectrum and constellations MultiCAP signals for a)70.4 Gbps  over 100 m and b) 80 Gbps over 1 m. 

a) 

 

        b) 

 
Fig. 3: a) LIV curve for VCSEL. b) Measured optical spectrum. 
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steep roll-off drastically reduces the achievable capacity. We use the bit loading and power loading features of 
MultiCAP to overcome those limitations, at the cost of worsening the sensitivity. This can be directly observed as 
3.1 dB penalty introduced by increasing the capacity from 70.4 to 80 Gbps. The latency of a MultiCAP system is 
mainly governed by the group delay of the CAP filters at both the transmitter and the receiver side:  

�������	 = 2	 ×
�
��

2
	
1

��
 

Where Nsym is the length of the filter in symbols, and Rb is the baud rate of each subband. For our reported 
configuration, the calculated latency value is 6.25 ns, which is a much lower value compared to the latency due to 
FEC processing (~100 ns) [10]. 

4.  Conclusions  

We have achieved record transmission of 70.4 Gbps (65.7 Gbps net rate) over 100m, and 80 Gbps (74.7 Gbps net 
rate) over 1 m for 850 nm MMF data links. The advantageous feature of MultiCAP approach of being able to 
assigning parallel electrical interfaces of smaller bandwidth into different frequency bands overcomes both electrical 
and optical bandwidth limitations, and eases the DSP pipelining. Its pass-band nature and multi-band structure 
greatly increase tolerance towards multimode dispersion, while retaining the same complexity as in baseband 
approaches. And the added latency is considerably low in comparison to other DSP processes such as FEC.  
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Fig. 4: a) Frequency response of the end-to-end link with and without the optical subsystem b) BER curves 
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Abstract: Experimental data is presented demonstrating 100GbE (4x25.8 Gbps) SWDM4 VCSEL 

technology, and SWDM4 transmission over 200m and 300m of wideband OM4 fibers. All NRZ 

SWDM4 channels achieved error-free transmission at 200m, and BER < 1e-9 at 300m. In 

addition, successful 180 (4x45) Gbps transmission is demonstrated over 300m wideband OM4 

fibers using a 45-Gbps-PAM4 chip. Real time BERs < 2e-4 were achieved for all four SWDM 

grid channels in the 850-950nm wavelength range. Precise modal excitation in MMF fibers for 

improving the fiber bandwidth by minimizing modal dispersion is also discussed. Using our novel 

modal excitation method, 25 Gbps NRZ transmission over 300m OM3 is shown. 

OCIS codes: (060.0060) Fiber optics communications; (060.4080) Modulation 

 

1. Introduction 

Multimode fiber (MMF) optical modules based on vertical cavity surface emitting laser (VCSEL) technology 

provide a low cost and power efficient solution for 100 Gbps data center networks based on parallel multimode fiber 

[1]. The IEEE recently standardized these systems as 100GBASE-SR4 (100GbE), providing a maximum reach of 

100m on OM4 fiber. It would be desirable to extend the reach to 300m OM4, while also saving on fiber plant costs 

by reducing or eliminating the need for parallel fiber. In addition, 300m OM3 reach is attractive for data center 

networks. Higher transmission rates and longer reach can be achieved for data center networks by leveraging of 

electronic or/and optical technologies such as four-level Pulse Amplitude Modulation (PAM4) [2] and electronic 

equalizers [3] as well as short wavelength division multiplexing (SWDM) and novel wideband MMFs [4]. However, 

powerful DSP based modulation and equalization techniques suffer from high power consumption.  

In this paper, we describe SWDM4 transmission over wideband OM4 fiber as well as selective mode excitation 

in OM3 fiber to increase data rate and extend reach without using DSP based modulation and/or equalization 

techniques. We demonstrate that the extended reach, high capacity, fiber efficiency, and low power consumption are 

achievable by simultaneous use of 4 x 25.8 Gbps SWDM (SWDM4) VCSEL technology and novel wideband OM4 

fiber. Successful 100 GbE SWDM4 transmission is shown over 300m wideband OM4 by utilizing only conventional 

low-power NRZ electronics and low-cost SWDM optics. We also show that the selective mode excitation enables us 

to increase the 3 dB transmission bandwidth of MMF. In conjunction with simple equalization, this method extends 

the reach of OM3 fiber to over 300m at 25.8 Gbps; a distance objective for the extended reach data center 

applications. By combining optical and electronic technologies, we experimentally demonstrate the potential 

application of 200GBASE-SWDM4 over wideband OM4 fiber using a single chip PAM4 generator and equalizer. 

The measured average optical powers (AOPs) are shown at IEEE standard KP4 FEC with a BER threshold of 2e-4 

for 180/204 Gbps PAM4-SWDM transmission over 100m and 300m wideband OM4 fiber as well as 200m 

conventional OM4 fiber. 

 

Fig. 1 (a) Measured SWDM4 spectrum, (b) measured effective modal bandwidth (EMB) and (c) effective bandwidth (EB) of the wideband OM4 

(blue) and OM4 bandwidth requirement (red).  
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2. Experimental Setups and Results 

A set of four 25G VCSELs and photodetectors (PDs) are designed and fabricated for SWDM application in the 850-

950nm band. The VCSELs and PDs are assembled into conventional 25.8 Gbps TOSA and ROSA packages. For 

this initial demonstration, we employ separate SFP+ modules for each channel. The modules include conventional 

25G NRZ CDR, and there is no DSP or adaptive technology, the channel spacing is 30nm, the external wavelength 

multiplexer has passbands of ~20nm to accommodate the wavelength accuracy specifications for uncooled VCSEL 

operation. The four-channel SWDM spectrum measured at output of the multiplexer is shown in Fig. 1 (a). The 

VCSEL center wavelengths are measured at 855, 883, 915, and 945nm, and RMS spectral bandwidths (SBWs)  are 

in the range 0.34 to 0.41.The link includes a mode preserving VOA to adjust the optical power, and various lengths 

of wideband OM4 fiber. The measured effective modal bandwidth (EMB) is shown in Fig. 1 (b). This fiber is 

designed for peak EMB at ~ 890nm. Note that chromatic dispersion bandwidth tends to shift the peak of net 

effective bandwidth (EB) to slightly longer wavelengths at ~ 905nm. The EB shown in Fig. 1 (c) is calculated from 

the EMB data (Fig. 1 (b)) and chromatic dispersion bandwidth, assuming a VCSEL SBW of 0.4 nm, without taking 

into account modal and chromatic dispersion interaction. 

Figure 2 shows the measured BER curves for 4 x 25.8 Gbps NRZ-SWDM (SWDM4) over the link with 

wideband OM4 fiber as a function of the received AOP measured at the receiver. The BER was measured 

simultaneously on the SWDM4 channels using a four-channel BERT. We used pseudo-random bit sequences 

(PRBS) of length 2
31

-1 in all tests. For clarity, the BER data is organized into four separate plots, one for each 

wavelength channel. We show BER waterfall curves measured B2B (black squares), after 200m (blue triangles), and 

after 300m (red diamonds) for each wavelength channel. The B2B receiver sensitivities at BER=1.e-12 are 

approximately in the range of -10 to -10.5 dBm. At 200m, we achieve error-free transmission on all channels when 

the received power is > - 8 dBm. The 200m power penalties relative to B2B are modest, approximately ranging from 

1 to 2 dB at BER=1.e-12. We believe this SWDM transmission result demonstrates acceptable performance over 

200m wideband OM4 without the need for FEC. At 300m, the penalties increase significantly as expected from the 

measured eye diagrams. Nevertheless, all channels achieve BER < 1.e-9. This BER performance provides adequate 

margin to achieve error-free transmission in data center systems employing IEEE standard KR4 FEC with a BER 

threshold at 5.e-5. 

 

Fig. 2 Measured BER B2B (black), 200m (blue), and 300m (red) for a) 855nm, b) 883nm, c) 915nm, and d) 945nm channels. 
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To improve 3dB MMF bandwidth and extend the reach, a selective mode VCSEL beam launcher was used at the 

output of a 25.8 Gbps NRZ TOSA at 850nm. Figures 3 (a-b) show the received NRZ eye diagrams at 25.8 Gbps 

after transmission over OM3 fiber. The eye diagram (Fig. 3 (a)) was measured using a standard launch and no 

equalization. In this case, the eye at the output of a 300m link of OM3 fiber is completely closed. The eye in Fig. 3 

(b) was measured using a selective mode launcher and simple Feed-Forward Equalization (FFE). This eye 

demeonstartes enhanced data transmission through a 300m OM3 fiber link at 25.8 Gbps. 

 

Fig. 3 Received optical eye diagrams after transmission over 300m OM3 fiber (a) using standard launch and no equalization and (b) using 

selective mode launch with simple FFE equalization. (c) AOPs at IEEE standard KP4 FEC with a BER threshold of 2e-4for four 45 Gbps PAM4 

channels at 851.9, 882.0, 912.1, and 942.4nm and two 51.6 Gbps PAM4 channels at 851.9 and 942.4nm. 

To study PAM4 SWDM4 receiver sensitivities, a single chip was used to generate 45 (or 51.6) Gbps PAM4 

optical data stream. The 25G VCSELs were directly and differentially driven by 22.5-Gbaud (or 25.8-Gbaud) PAM4 

PRBS of length 2
31

-1 produced by integrated DACs, with ~0.8 Vpp electrical signal. The chip also performed the 

main functions, such as 45 Gbps PAM4 clock and data recovery, pulse shaping at the transmitter, adaptive modal 

and chromatic dispersion equalization at the receiver, and real-time BER measurement. Two sets of MMF types and 

various fiber lengths were used for this experiment including: 200m conventional OM4 fiber and wideband OM4 

fibers (100m/300m). The wideband OM4 fibers are manufactured by Prysmian Group and OFS Corporation. The 

25G VCSELs used in this experiment were production-grade Finisar VCSELs. The measured VCSEL center 

wavelengths were 851.9, 882.0, 912.1, and 942.4nm. RMS SBWs were 0.558, 0.370, 0.5011, and 0.527nm from the 

short wavelength to the long wavelength, respectively. The measured average RINs were ~-141 dB/Hz. In this 

study, a Finisar ROSA operating over the SWDM grid was used. The chip DSP provided functionality for digital 

pre-emphasis compensation. Using 22.5-Gbaud and 25.8-Gbaud PAM4 chips, the measured transmitter ERs were 

around 3.1 dB and 4.5 dB at four wavelengths, respectively. Figure 3 (c) shows the measured AOPs at IEEE 

standard KP4 FEC with a BER threshold of 2e-4for four SWDM 45 Gbps channels over 200m conventional OM4 as 

well as 100m and 300m Prysmian and OFS wideband OM4 fibers. The measured AOPs were ~-9.5 dBm for back-

to-back over all SWDM 45 Gbps and 51.6 Gbps PAM4 channels at BER of 2e-4. Negligible AOP penalty (<0.2 dB) 

was captured over 100m Prysmian wideband OM4 fiber for all SWDM 45 Gbps PAM4 channels at KP4 level. Less 

than 0.5 dB AOP penalty was observed over 300m Prysmian wideband OM4 fiber in comparison with 200m 

conventional OM4 fiber for two short wavelength 45 Gbps PAM4 channels (850 nm and 880 nm). Long wavelength 

PAM4 channels (910 nm and 940 nm) over 300m Prysmian wideband OM4 fiber showed better receiver 

sensitivities at KP4 BER threshold compared to 200m conventional OM4 fiber. The required AOPs were ~-7.2 dBm 

over 300m OFS wideband fibers at 51.6 Gbps PAM4 channels at 850 nm and 940 nm. 

3. Acknowledgement 

We wish to thank Dr. Julie Eng at Finisar, Prysmian group, and OFS Corporation for their supports of this research. 

4. References 

[1] J. A. Tatum, et al., “VCSEL-Based Interconnects for Current and Future Data Centers,” J. Lightwave Technol., 33, 727-732 (2015). 

[2] I. Lyubomirsky, et al., “Digital QAM Modulation and Equalization for High Performance 400 GbE Data Center Modules,” OFC’14, W1F.4. 

[3] R. Motaghian, et al., “45Gb/s PAM4 VCSEL 850/940nm Transmission over OM3 and OM4 Multimode Fibers,” FIO’15, FM2E.3. 

[4] D. Molin et al., “WideBand OM4 Multi-mode Fiber for Next-Generation 400Gbps Data Communications,” ECOC’14, P.1.6. 

 

 


	Abstract
	Resumé
	Acknowledgements
	Summary of Original Work
	Introduction
	Problem statement
	Applications
	Vertical cavity surface emitting laser
	Structure
	Rate equations
	Characterization
	Bandwidth limitations

	Photodiode
	Responsivity
	Bandwidth

	Multimode fiber
	Modal dispersion
	Chromatic dispersion
	Fiber bandwidth
	Losses
	OM3 OM4 MMF
	Wideband fibers

	Equalization techniques
	TX equalization
	RX equalization

	Modulation formats
	Forward error correction
	State of the art
	NRZ
	PAM-4
	MultiCAP
	BB8

	Non-standard wavelengths for short-range communication
	1060 nm
	WDM

	Selective modal launch
	Central launch
	Off-center launch

	Combination of capacity improvement techniques
	Main contributions and outline of the thesis

	Description of papers
	Conclusions and future work
	Conclusions
	Future work

	Paper 1: Improving the Capacity of Short-Reach VCSEL-based MMF Optical Links
	Paper 2: Reach Extension and Capacity Enhancement of VCSEL based Transmission over Single Lane MMF Links
	Paper 3: Enabling 4- Lane Based 400 G Client-Side Transmission Links with MultiCAP Modulation
	Paper 4: Eight Dimensional Optimized Modulation for IM-DD 56 Gbit/s Optical Interconnections Using 850 nm VCSELs
	Paper 5: 30 Gbps bottom-emitting 1060 nm VCSEL
	Paper 6: 100G WDM Transmission over 100 meter Multimode Fiber
	Paper 7: OAM - enhanced Transmission for Multimode Short-Range Links
	Paper 8: Radio-over-Fiber Transmission over 400m MMF
	Bibliography
	Appendix Paper 9: Optical-domain Compensation for Coupling between Optical Fiber Conjugate Vortex Modes
	Appendix Paper 10: Towards 100 Gbps over 100m MMF using a 850 nm VCSEL
	Appendix Paper 11: SWDM Strategies to Extend Performance of VCSELs over MMF

