88,171 research outputs found

    The increasing water stress projected for China could shift the agriculture and manufacturing industry geographically

    Get PDF
    The sustainable development of China has been challenged by the misalignment of water demand and supply across regions under varying climate change scenarios. Here we develop a water stress prediction index using a fuzzy decision-making approach, which analyzes spatiotemporal variations of water stress and concomitant effects on the populace within China. Our results indicate that water stress will increase from 2020 to 2099 under both low and high emission scenarios, primarily due to decreased water supplies like surface runoff and snow water content. Seasonal analysis reveals that annual fluctuations in water stress are mainly driven by changes in spring and autumn. Water stress is projected to be considerably lower in southeastern provinces compared to northwestern ones, where, on average, over 20% of the Chinese population could be severely impacted. These changes in water stress could lead to the north-to-south migration of the agriculture sector, manufacturing sector, and human population

    Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress

    Get PDF
    Past studies of water stress in Eucalyptus spp. generally highlighted the role of fewer than five “important” metabolites, whereas recent metabolomic studies on other genera have shown tens of compounds are affected. There are currently no metabolite profiling data for responses of stress-tolerant species to water stress. We used GC–MS metabolite profiling to examine the response of leaf metabolites to a long (2 month) and severe (Ψpredawn < −2 MPa) water stress in two species of the perennial tree genus Eucalyptus (the mesic Eucalyptus pauciflora and the semi-arid Eucalyptus dumosa). Polar metabolites in leaves were analysed by GC–MS and inorganic ions by capillary electrophoresis. Pressure–volume curves and metabolite measurements showed that water stress led to more negative osmotic potential and increased total osmotically active solutes in leaves of both species. Water stress affected around 30–40% of measured metabolites in E. dumosa and 10–15% in E. pauciflora. There were many metabolites that were affected in E. dumosa but not E. pauciflora, and some that had opposite responses in the two species. For example, in E. dumosa there were increases in five acyclic sugar alcohols and four low-abundance carbohydrates that were unaffected by water stress in E. pauciflora. Re-watering increased osmotic potential and decreased total osmotically active solutes in E. pauciflora, whereas in E. dumosa re-watering led to further decreases in osmotic potential and increases in total osmotically active solutes. This experiment has added several extra dimensions to previous targeted analyses of water stress responses in Eucalyptus, and highlights that even species that are closely related (e.g. congeners) may respond differently to water stress and re-waterin

    Water Stress And Water Wars

    Get PDF
    This essay argues three propositions: (1) by 2025 roughly one third of the world\u27s population will be living in countries which are water-stressed, at least by conventional criteria; (2) nevertheless, macro evidence does not portend that the world will be unable to feed its growing population at that time; (3) interstate armed conflicts over water, which were not very important in the last quarter of the twentieth century, seem unlikely to become more intense in the coming decades, especially since most countries have not utilized the enormous possibilities for saving scarce water

    Spring water stress in Scots pine

    Get PDF
    Water use and net carbon assimilation during spring was examined on Scots pine trees exposed to different soil warming dynamics in the field. Sap flow, needle water potential and net carbon assimilation were measured on trees that were exposed to a wide range of soil temperature regimes caused by manipulating the snow cover on tree-scale soil plots. This made it possible to quantify the sensitivity of water uptake and recovery of gas exchange by Scots pine in the critical transition from winter dormancy to the growing season, which can be influenced by silvicultural practices. A part of the study was to find a tool for estimating the coupled effect of belowground and aboveground climate on transpiration, as well as to adapt this tool to the harsh climate of the boreal forest. Combining the results of field experiments on tree susceptibility to water stress with a physically based SVAT model as well as a model for estimating the recovery of photosynthesis helped to predict spatial and inter-annual variability of snow depths, soil warming, water uptake and net primary productivity during spring within different Scots pine stands across the landscape. This could provide a better basis for a more frostconscious forest management. The studies have confirmed the importance of low soil temperatures in combination with aboveground climate for root water uptake and net carbon assimilation during spring, when soil warming occurs after the start of the growing season. The studies have also confirmed that earlier, controlled laboratory studies on the inhibiting effects of low soil temperature on water relations and gas exchange for seedlings or saplings also hold true on mature trees in the field. The experimental data served well as the basis for model analyses of the interaction between belowground and aboveground conditions on water use and net photosynthesis. The results of the field studies and model analyses suggest that the effect of soil temperature on tree water uptake and net photosynthesis during spring, in conjunction with aboveground conditions, are factors that need to be considered in forest management in areas susceptible to soil frost and low soil temperatures

    Identification of the water stress level in olive trees during pit hardening using the trunk growth rate indicator.

    Get PDF
    Water scarcity is generating an increasing interest in deficit irrigation scheduling. The trunk diameter fluctuations are daily cycles that have been suggested as tools for irrigation scheduling. The trunk growth rate (TGR) was suggested as the best indicator for olive trees during pit hardening. The aim of this work is to clarify how the TGR could be used to identify water stress levels. The experiment was performed during the 2017 season, in a commercial, super-high-density orchard in Carmona (Seville, Spain). Four different irrigation treatments were performed according to midday stem water potential values and TGR. The data obtained were very variable and both indicators presented a wide range of water status throughout the season. The maximum trunk diameter data clearly showed the pattern of the trees water status but the comparison between treatments and the identification of the water stress level was not possible. The average TGR was linked to the midday stem water potential, but with a minimum amount of data. Irrigation scheduling based on the average TGR was difficult because of the great increases in some daily TGR values. For clarity, the pool of data was grouped by midday stem water potential. These water stress levels were characterized using the weekly frequency of TGR values. The increase of water stress reduced the frequency of values between -0.1 and 0.3mm day-1 from 60% to less than 25%. Moderate water stress levels increased the percentage of values lower than -0.3mm day-1 from 7% to 37%. The most severe water stress conditions increased the TGR values between -0.3 and -0.1mm day-1 from 16% up to 22%.IRNASINSTITUTO DE LA GRASACSI

    Evaluation of AIS Data for Agronomic and Rangeland Vegetation: Preliminary Results for August 1984 Flight over Nebraska Sandhills Agricultural Laboratory

    Get PDF
    Since 1978 scientists from the Center for Agricultural Meteorology and Climatology at the University of Nebraska have been conducting research at the Sandhills Agricultural Laboratory on the effects of water stress on crop growth, development and yield using remote sensing techniques. We have been working to develop techniques, both remote and ground-based, to monitor water stress, phenological development, leaf area, phytomass production and grain yields of corn, soybeans and sorghum. Because of the sandy soils and relatively low rainfall at the site it is an excellent location to study water stress without the necessity of installing expensive rainout shelters. The primary objectives of research with the airborne imaging spectrometer (AIS) data collected during an August 1984 flight over the Sandhills Agricultural Laboratory are to evaluate the potential of using AIS to: (1) discriminate crop type; (2) to detect subtle architectural differences that exist among different cultivars or hybrids of agronomic crops; (3) to detect and quantify, if possible, the level of water stress imposed on the crops; and (4) to evaluate leaf area and biomass differences for different crops

    Osmotic regulation of alpha-amylase synthesis and polyribosome formation in aleurone cells of barley.

    Get PDF
    Water stress inhibits the gibberellic acid (GA(3))-induced synthesis of alpha-amylase in aleurone layers of barley (Hordeum vulgare L.). Electron microscope evidence indicates that the effect of water stress induced by 0.6 M solutions of polyethylene glycol (PEG) is to reduce the binding of ribosomes to the endoplasmic reticulum. This was confirmed by sucrose density gradient centrifugation of polyribosome preparations from stressed cells. The reduction in polyribosome formation does not result from reduced ribosome activity as measured by [(3)H]peptidylpuromycin formation. Thus, calculation of percent active ribosomes shows that osmoticum has little effect on the ability of ribosomes to incorporate puromycin into nascent protein. Water stress does not cause a marked decrease in the total RNA level of aleurone cells. Estimates of total RNA in postmitochondrial supernatant fractions from stressed cells show only a reduction of 8-9% relative to the control. Membrane synthesis measured by [(14)C]choline incorporation is depressed by 15% in cells stressed with 0.6 M PEG for 2.5 hours

    Evaluation of the effect of irrigation on biometric growth, physiological response and essential oil of Mentha spicata (L.)

    Get PDF
    A field experiment was performed on spearmint (Mentha spicata L.) under different irrigation regimes in a hilly area of Southern Italy. Objectives of the study include evaluating the physiological and biometrical response of mint from plant establishment up to its complete maturation, as well as the yield composition in essential oil at two different dates. Increasing levels of water stress affected later developing leaves and plant’s water status and net photosynthesis (from the beginning of stress (DAT 63), while affecting negatively the biometric response very soon and significantly from 35 DAT. Photosynthesis limitation played a critical role from DAT 53 on, namely later, in the harvest period (DAT 35–70). Under severe water stress, crop restricted water losses by modulating stomatal closure and, at harvest, showing lowered mesophyll conductance. Irrigation treatments did not affect the concentration of organic compounds, while the yield of essential oils was negatively affected by water stress due to reduced crop growth, in terms of total and leaf biomass, leaf area index (LAI) and crop heightinfo:eu-repo/semantics/publishedVersio
    corecore