30 research outputs found

    Toward the use of a proof assistant to teach mathematics

    No full text
    International audienceProof is a crucial aspect of mathematics and must have a prominent role in the education. Dynamic Geometry Software (D.G.S.) and Computer Algebra Software (C.A.S) are widely used in a pedagogical context. These tools are used to explore, visualize, calculate, find counter examples, conjectures, or check facts, but most of them can not be used to build a proof in itself. But there are software whose sole purpose is to help the user produce proofs : the proof assistants. We believe that proof assistants are now mature enough to be adapted to the education. After giving a quick overview of what a proof assistant is, we will discuss the possible advantages of using it in the education. Finally we report on the ongoing work to ease the use of a proof assistant in the classroom

    An embedded geometrical language in Haskell : construction, visualisation, proof

    Get PDF
    Geometric constructions based on compass and straight-edge have been thoroughly studied and explored. In this paper, we present a language embedded in Haskell, to describe, manipulate and analyse such constructions. The use of embedded languages has been explored in various specialised domains, and have been shown to be an excellent frontend to describe such specialised programs, enabling, for instance, the description of families of constructions as functions in the host language, which produce different specialised programs based on input parameters. In particular, we are interested, not only in providing a framework within which one may describe a construction and families of similar constructions in an algorithmic fashion, but also in providing facilities to both test and verify certain properties of constructions, such as equivalence of constructions, or equality of angles and distances in a construction.peer-reviewe

    An Extensible User Interface for Lean 4

    Get PDF
    Contemporary proof assistants rely on complex automation and process libraries with millions of lines of code. At these scales, understanding the emergent interactions between components can be a serious challenge. One way of managing complexity, long established in informal practice, is through varying external representations. For instance, algebraic notation facilitates term-based reasoning whereas geometric diagrams invoke spatial intuition. Objects viewed one way become much simpler than when viewed differently. In contrast, modern general-purpose ITP systems usually only support limited, textual representations. Treating this as a problem of human-computer interaction, we aim to demonstrate that presentations - UI elements that store references to the objects they are displaying - are a fruitful way of thinking about ITP interface design. They allow us to make headway on two fronts - introspection of prover internals and support for diagrammatic reasoning. To this end we have built an extensible user interface for the Lean 4 prover with an associated ProofWidgets 4 library of presentation-based UI components. We demonstrate the system with several examples including type information popups, structured traces, contextual suggestions, a display for algebraic reasoning, and visualizations of red-black trees. Our interface is already part of the core Lean distribution

    Automated Theorem Proving in GeoGebra: Current Achievements

    Get PDF
    GeoGebra is an open-source educational mathematics software tool, with millions of users worldwide. It has a number of features (integration of computer algebra, dynamic geometry, spreadsheet, etc.), primarily focused on facilitating student experiments, and not on formal reasoning. Since including automated deduction tools in GeoGebra could bring a whole new range of teaching and learning scenarios, and since automated theorem proving and discovery in geometry has reached a rather mature stage, we embarked on a project of incorporating and testing a number of different automated provers for geometry in GeoGebra. In this paper, we present the current achievements and status of this project, and discuss various relevant challenges that this project raises in the educational, mathematical and software contexts. We will describe, first, the recent and forthcoming changes demanded by our project, regarding the implementation and the user interface of GeoGebra. Then we present our vision of the educational scenarios that could be supported by automated reasoning features, and how teachers and students could benefit from the present work. In fact, current performance of GeoGebra, extended with automated deduction tools, is already very promising—many complex theorems can be proved in less than 1 second. Thus, we believe that many new and exciting ways of using GeoGebra in the classroom are on their way

    Une axiomatique de la géométrie plane en Coq.

    Get PDF
    National audienc

    A Coq-based Library for Interactive and Automated Theorem Proving in Plane Geometry

    Get PDF
    International audienceIn this article, we present the development of a library of formal proofs for theorem proving in plane geometry in a pedagogical context. We use the Coq proof assistant. This library includes the basic geometric notions to state theorems and provides a database of theorems to construct interactive proofs more easily. It is an extension of the library of F. Guilhot for interactive theorem proving at the level of high-school geometry, where we eliminate redundant axioms and give formalizations for the geometric concepts using a vector approach. We also enrich this library by offering an automated deduction method which can be used as a complement to interactive proof. For that purpose, we integrate the formalization of the area method which was developed by J. Narboux in Coq

    A combination of a dynamic geometry software with a proof assistant for interactive formal proofs

    Get PDF
    International audienceThis paper presents an interface for geometry proving. It is a combination of a dynamic geometry software - Geogebra[11] with a proof assistant - Coq[8]. Thanks to the features of Geogebra, users can create and manipulate geometric constructions, they discover conjectures and interactively build formal proofs with the support of Coq. Our system allows users to construct fully traditional proofs in the same style as the ones in high school. For each step of proving, we provide a set of applicable rules veri ed in Coq for users, we also provide tactics in Coq by which minor steps of reasoning are solved automatically

    Visualization Technology Use in Secondary Mathematics Classroom Education

    Get PDF
    Previously literature has investigated the visualization tools used in primary education innatural sciences, and this research focuses on visualization tools that could be used in college level mathematics classroom to facilitate students’ learning and teachers’ teaching experience. In the end, the research derived future visualization tool design implications from students’ and teachers’ interviews and four class observations.Bachelor of Scienc

    QED-Tutrix : système tutoriel intelligent pour l'accompagnement des élèves en situation de résolution de problèmes de démonstration en géométrie plane

    Get PDF
    RÉSUMÉ Au cours des dernières années, le système scolaire québécois impose une pression croissante sur les enseignants. En effet, ceux-ci doivent gérer des classes de plus en plus nombreuses tout en maintenant un soutien adéquat à l’apprentissage des élèves. Dans ce contexte, l’utilisation de systèmes tutoriels intelligents qui sont en mesure d’assister l’enseignant dans son travail pourrait permettre à ce dernier de consacrer plus de temps aux élèves qui en ont véritablement besoin. Malheureusement, dans le domaine de l’enseignement des preuves en géométrie, l’offre de systèmes tutoriels est limitée. De plus, ceux actuellement proposés forcent l’élève à travailler selon un ordre déterminé et ils ne fournissent pas de soutien dans le cadre d’une exploration libre du problème. Ils l’obligent aussi à rédiger des preuves formelles qui ne sont pas adaptées aux exigences des enseignants du secondaire. Partant de ce constat, nous avons établi l’objectif principal de notre projet qui consiste à proposer un système tutoriel intelligent qui assiste l’élève dans une démarche d’exploration plutôt que de rédaction dans le cadre de l’élaboration d’une preuve en géométrie. Dans le but de l’atteindre, nous proposons le système QED-Tutrix qui a été conçu à la suite d’une analyse des interventions d’enseignants réels observés. Il permet à l’enseignant ou au didacticien de construire un ensemble de preuves acceptables pour un problème donné en fonction de l’objectif d’apprentissage visé. L’élève peut ensuite tenter de résoudre le problème choisi par l’enseignant en utilisant les différents outils offerts à l’interface de QED-Tutrix. Celui-ci a accès à une figure dynamique afin de découvrir des conjectures, à un répertoire d’énoncés pour composer sa preuve et à une démonstration qu’il doit compléter. Tous les énoncés proposés sont analysés par le système qui génère des rétroactions à l’intérieur d’une fenêtre de clavardage afin de guider l’élève lors de l’exploration et de la résolution du problème. L’élaboration de QED-Tutrix a été réalisée par une équipe multidisciplinaire composée d’experts en didactique et en informatique. Le système a été construit itérativement par la mise en oeuvre du paradigme de la conception dans l’usage qui est constitué d’une succession de plusieurs cycles de recherche et de développement. Chaque cycle se clôture par une expé- rimentation qui vise à valider le travail accompli et à recueillir des informations qui sont réinvesties dans le cycle suivant. Une première version du système (GeoGebraTUTOR) a donc été créée afin d’étudier notamment les interventions d’enseignants réels qui ont inspiré l’élaboration de la seconde version (QED-Tutrix), qui est décrite et analysée dans cette thèse. Nous ne prétendons pas que la version actuelle du système a un effet mesurable sur les résultats scolaires, car nous visons, pour l’instant, à permettre à un élève de travailler en conformité avec des théories didactiques reconnues. En effet, la conception de QED-Tutrix s’ancre principalement dans la théorie des situations didactiques qui permet de représenter une situation didactique par une relation élève-milieu. Nous utilisons cependant une version étendue de cette théorie dans laquelle un agent tutoriel, qui joue le rôle d’un enseignant virtuel, peut agir sur la relation élève-milieu. De plus, nous désirons offrir un système tutoriel qui est un véritable espace de travail géométrique, c’est-à-dire qu’il permet à l’élève de résoudre des problèmes en mettant en oeuvre les trois démarches définies dans cet espace. Ces théories didactiques ainsi que les résultats de nos observations ont été implantés dans QED-Tutrix. Il en est résulté un système comportant quatre couches logicielles principales. La première permet de modéliser l’ensemble des démonstrations possibles pour résoudre un problème donné. Pour chaque problème, l’enseignant inscrit toutes les inférences, ou pas de démonstration, qui sont acceptables pour sa résolution selon l’objectif d’apprentissage visé. Chaque inférence contient une justification qui est utilisée pour produire un conséquent à partir de l’ensemble de ses antécédents. Il est possible de les combiner afin d’obtenir un graphe contenant toutes les solutions valides, car les conséquents peuvent être recyclés pour former les antécédents d’autres inférences. Le parcours du graphe contenu dans cette première couche permet donc d’énumérer les différentes solutions au problème représenté. Afin de proposer une aide qui respecte l’état cognitif de l’élève lors de l’exploration d’un problème, il est essentiel de conserver la chronologie de ses actions. Nous l’avons donc modélisée à l’intérieur de la deuxième couche de notre système. Celle-ci contient des données dynamiques qui sont mises à jour au cours de la résolution d’un problème, à l’opposé du graphe qui est statique, et elle se superpose à ce dernier. En effet, nous indiquons, pour chaque noeud du graphe, le temps d’activation le plus récent qui correspond à l’écriture de l’énoncé qui lui est attaché. Cette approche se démarque de celle des autres systèmes, car ces derniers n’utilisent pas la chronologie des actions, étant donné qu’ils imposent une séquence de résolution. Pour être en mesure de suggérer différentes pistes de solution à un élève bloqué dans son processus de résolution, nous avons choisi de traiter les inférences selon un ordre de priorité. Ce classement est réalisé par la troisième couche de QED-Tutrix, qui utilise les données des deux couches précédentes. Pour l’obtenir, nous recherchons d’abord la solution la plus avancée à l’aide d’une heuristique originale, que nous avons élaborée et qui permet d’éviter d’énumérer toutes les solutions. Nous affectons ensuite des priorités plus élevées aux inférences faisant partie de la solution déterminée et qui ont été travaillées récemment par l’élève, afin de respecter son état cognitif. La proposition d’autres pistes nous démarque des systèmes tutoriels traditionnels qui offrent de l’aide uniquement pour compléter une solution optimale. La liste ordonnée d’inférences est utilisée par la dernière couche du système, soit celle qui produit les différentes rétroactions. Premièrement, QED-Tutrix offre des rétroactions instantanées, en réponse à l’écriture de chaque énoncé, sous forme d’émoticônes et de messages courts. Il permet aussi d’encoder des erreurs courantes afin de leur associer des messages précis. Il offre enfin une aide à la prochaine étape qui est inspirée des interventions des enseignants réels observés. Cette dernière forme d’aide a été modélisée par une machine à états finis qui traite séquentiellement les inférences ordonnées dans la liste et produit une série d’indices permettant de les compléter. Des messages doivent être composés pour cha- cune des inférences, mais des mécanismes ont été implantés afin de réduire leur nombre. Les rétroactions offertes sont comparables à celles d’autres systèmes tutoriels. Environ 450 inférences ont été produites et près de 900 messages composés afin d’implanter les cinq problèmes actuellement offerts dans notre système. Son fonctionnement a d’abord été vérifié par un expert indépendant. Celui-ci a confirmé que les messages produits étaient conformes à la structure déterminée, mais que l’évaluation de la solution la plus avancée était parfois problématique. QED-Tutrix a ensuite été utilisé par des élèves de 4e secondaire. Ceux-ci ont généralement trouvé le système utile et ont apprécié l’expérience. L’analyse des enregistrements nous a permis de constater que la structure des messages générée permet d’ai- der certains élèves. De plus, nous avons observé la mise en oeuvre des différentes démarches, ce qui confirme le statut d’espace de travail géométrique de QED-Tutrix. L’efficacité de ce dernier est, par contre, limitée dans le cas d’élèves plus faibles, car la structure des messages est calibrée afin d’aider des élèves moyens. Le problème concernant l’évaluation de la solution la plus avancée a aussi provoqué la production de messages incohérents avec la stratégie de l’élève. Dans le but d’augmenter l’efficacité du système, nous envisageons, entre autres, de proposer des profils de tuteurs et d’élèves. Malgré les lacunes qui ont été détectées, il n’en demeure pas moins que QED-Tutrix est un système tutoriel innovateur. En effet, dans le domaine des preuves en géométrie, il est le seul à utiliser des émoticônes et à proposer différentes pistes de solution. De plus, son élaboration itérative, par une équipe multidisciplinaire, permet d’obtenir un système respectueux du travail de l’élève, ce qui se démarque de l’approche traditionnelle qui consiste à tenter de reproduire le raisonnement d’un expert. Les étapes suivantes de conception visent à intégrer des rétroactions sous forme de problèmes connexes et à proposer une aide à la construction de la figure. Notre système pourrait facilement être adapté au traitement des démonstrations en logique de premier ordre. Une adaptation pour le traitement du raisonnement sous forme d’argumentation non formelle pourrait aussi être envisagée. Enfin, la suggestion de diverses pistes de solution pourrait être implantée dans d’autres systèmes tutoriels.----------ABSTRACT In the past years, Quebec’s school system imposes a growing amount of pressure on its teaching staff. They must juggle classes with more and more students while assuring the quality of their teaching to each of them. In this context, the use of intelligent tutoring systems which can assist the teacher in his or her work could allow the teacher to dedicate more energy to each student when it’s needed. However, the offer for tutoring systems for the learning of proof is limited. Moreover, the available systems force the student to work according to a determined order and they don’t provide help in the context of a free exploration of the problem. They also force the student to write formal proofs when high school teachers rarely demand. With this assessment in mind, we established the principal objective for our project which aims at offering an intelligent tutoring system that assists the student in an exploratory approach when solving geometry proofs instead of a formal proof writing approach. The system we offer is QED-Tutrix which was designed taking into account actual teacher interventions observed in a classroom environment. QED-Tutrix allows the teacher or didactician to construct a number of admissible proofs for a given problem according to the learning goals. The student can then try to solve the problem chosen by the teacher by using the different tools QED-Tutrix puts at his disposal. The student has access to a dynamic geometric figure he can work with in order to make conjectures, as well as to a repertoire of statements to create their proof and an interactive written proof they can use to complete their proof. All the statements he provides are analyzed by the system which then generates feedback through a chat window in order to guide the student during the exploration and solving of the problem. QED-Tutrix’s elaboration was carried out by a multidisciplinary team comprised of experts in didactics of mathematics and in computer science. The system is built in an iterative manner by adopting a design in use approach which consists of a series of many cycles of research and development. Each cycle is ended with an experimentation which aims at validating the work accomplished and at collecting information to be reinvested in the following cycle. A first version of the system (GeoGebraTUTOR) was created to study, among other things, real teacher interventions which inspired the implementation of the second version (QED-Tutrix). This last version is described and analyzed in the following thesis. We do not claim that the present QED-Tutrix version has measurable effects on academic results, since our aim at the moment is to make sure it allows the student to work in a fashion put forward by known didactic principles. Indeed, QED-Tutrix’s conception is rooted mainly in the didactical situation’s theory which represents a didactical context by a student-milieu interaction. However, we use an extended version of this theory in which a tutorial system playing a virtual teaching role may influence this student-milieu interaction. Moreover, we aim at offering a tutoring system that is a true geometrical workspace, meaning that it allows the student to solve problems by engaging in three mathematical processes described in the geometrical workspace model. The didactic theories and conclusions drawn from our observations were implemented in QED-Tutrix. This resulted in a system made of four main software layers. The first of these layers is for the organization of the different proof solutions for a given problem. For each solution, the teacher or didactician registers all the inferences or proof steps which are admissible according to a specific learning context. Each inference includes a justification that is used to produce a result stemming from a group of premises. It is possible to combine the different inferences in order to generate a graph of all the different admissible solutions, since the results of one inference can be recycled as a premise for another. The different pathways of this graph which is the output of the first software layer allow for the account of the different solutions to each implemented problem. In order to offer help that takes into account the cognitive state of the student exploring the problem, it is essential to keep track of the chronology of his or her actions. This memory was implemented in the second layer of the system. It contains information that is dynamic and evolves as problem solving occurs. It also overlays the solution graph which is static. Therefore, we indicate for each of the graphs nodes, the most recent activation time associated with the writing of the statement attached to it. This approach stands out from the way other systems operate and in which chronology is usually not taken into account since a solving sequence is imposed. In order to be able to suggest alternative paths to a student who is stuck in his or her solving process, we chose to treat inferences according to an order of priority. This ranking is carried out by QED-Tutrix’s third layer which uses the data from the first two layers. In order to achieve this ordering, we look for the most advanced solution with the help of an original heuristic, elaborated for this project, which spares the system from running through all the admissible solutions. We then assign the highest priorities to the inferences which are part of the identified solution and that has been worked on recently by the student keeping his or her cognitive state in mind. The ability to suggest other solution option distances us from traditional tutorial systems which offer help only to complete an optimal solution. This list of ranked inferences is used by the fourth and last layer of the system, meaning the layer which generates various feedback. Firstly, QED-Tutrix replies to the writing of each statement with instant feedback in the shape of emojis or short messages. It also allows the programming of particular messages associated with known common mistakes. Lastly, this layer of the system offers help with the next step which is inspired by actual teacher interventions. This last form of help was modelled by a finite state machine that sequentially treats the ranked inferences from the list and produces a series of hints to help the student complete them. Messages must be created for each of the inferences, but mechanisms are implemented in order to reuse messages according to the inferences content, limiting the number of entries. The feedback offered by these messages is similar in form to the feedback offered by other tutorial systems. Approximately 450 inferences were produced and close to 900 messages were created in order to implement the five problems currently available in QED-Tutrix. It’s operating has been verified by an independent expert, which confirmed that the output of messages is true to the identified structure, but the evaluation of the most advanced solution is sometimes problematic. QED-Tutrix was then put through a second trial in a class of 4th year of high school. The students generally found the system to be useful and appreciated the experience. The analysis of the session recordings revealed that the generated messages help some students. Also, we observed different mathematical processes which confirmed QED- Tutrix’s geometrical workspace status. However, the efficiency of QED-Tutrix is limited when helping students with less mathematical abilities since the message structure is built with the average student as a reference. Problems with the identification of the most advanced solution also lead to incoherence between messages and student strategies. In order to enhance the system’s efficiency in helping the student solve problems, we contemplate, among other things, to differentiate tutorial profiles according to students solving profiles. In spite of witnessing shortcomings, QED-Tutrix is an innovative tutorial system. Indeed, in the field of geometry proofs, it is the only automated tutoring system to use emojis and to suggest alternative solution paths. Moreover, the iterative and multidisciplinary approach adopted for its design and development stands out from a traditional approach which aims at reproducing expert reasoning. The next design steps aims at including feedback in the form of related problems and to provide help with building the geometrical figure. Our system could easily be adapted to handle first order logical proofs. An adjustment to process non- formal argumentation could also be considered. Finally, the suggestion of alternative solution paths could be implemented in other tutorial systems

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions
    corecore