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Abstract. Geometric constructions based on compass and straight-edge
have been thoroughly studied and explored. In this paper, we present a
language embedded in Haskell, to describe, manipulate and analyse such
constructions. The use of embedded languages has been explored in var-
ious specialised domains, and have been shown to be an excellent front-
end to describe such specialised programs, enabling, for instance, the
description of families of constructions as functions in the host language,
which produce different specialised programs based on input parameters.
In particular, we are interested, not only in providing a framework within
which one may describe a construction and families of similar construc-
tions in an algorithmic fashion, but also in providing facilities to both
test and verify certain properties of constructions, such as equivalence of
constructions, or equality of angles and distances in a construction.

1 Introduction

Various tools exist, illustrating the concepts of geometric constructions, allowing
the drawing and manipulation of user-given constructions. The main drawback
with most interfaces to such systems is that to have a user-friendly front end
to the drawing program, one sacrifices desirable features (or at least, easy ac-
cess to such features), such as reuse of constructions, constructions which may
require the repetition of certain actions until a condition is met, and other sim-
ilar features. In this paper, we present the design of a domain-specific language
for geometric constructions, and the use of embedded languages to enable the
creation and analysis of constructions in this language. In particular, we are
interested not only in providing a framework within which one may describe a
construction and families of similar constructions in an algorithmic fashion but
also in providing facilities to both test and verify certain properties of construc-
tions, such as equivalence of constructions, or equality of angles and distances
in a construction.

1.1 Geometric Constructions

Geometric construction on the plane has proved to be a fascinating mathemat-
ical area since Greek antiquity, with the idealised straight line and the circle
being considered as basic figures. Since then, mathematicians have been study-
ing these geometric constructions, where one starts with a set of points, lines and

CORE Metadata, citation and similar papers at core.ac.uk

Provided by OAR@UM

https://core.ac.uk/display/132619428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Maria Grima and Gordon J. Pace

edges, and is required to construct new points, lines and circles satisfying a given
specification. By constraining the tools used to calculate the new points, lines
and shapes, one is essentially setting an axiomatic base, and by investigating
the expressiveness and limits of the tools, one is actually studying completeness
results of that axiomatic base. Compass and straight-edge constructions limit
the tools to a collapsible compass, which can be used to draw a circle centred
on a known point, with another known point on the circumference (the com-
pass is said to be collapsible in that it collapses as soon as it is pulled off the
plane, essentially stopping direct transfer of distances using the compass), and
an unmarked straight-edge, which can be used to draw a line between two known
points (it is said to be unmarked in that measurements are not allowed using
the straight-edge). Such constructions, sometimes also known as Euclidean con-
structions, have been explored for centuries, and various interesting results exist,
both in terms of constructions which can be achieved (such as bisecting an angle,
bisecting a line, and constructing a regular pentagon), and ones which cannot
(most famously trisecting an arbitrary angle, squaring the circle and doubling
the cube). All such geometric constructions are based on two basic concepts:
equidistance established by the use of the compass and collinearity established
by the use of the straight edge.

A geometric construction is an algorithm, a step-by-step process, that builds
a geometric figure or model. Such constructions are taught in schools to illustrate
basic geometric concepts and rudimentary notions of a constructive proofs. Some
researchers claim that the use of geometric constructions can sustain proofs and
help to make geometric relationships more understandable through their visual
representation [San98]. From a pedagogic point of view, they can also provide
the motivation required for students to solve problems by reasoning about them
[EA02].

1.2 Embedded Languages

When designing algorithms restricted to a particular domain, it may be ben-
eficial to design a language that is targeted to that domain rather than using
a general-purpose one. However, the initial effort required to develop such a
domain-specific language and the difficulties in evolving the language as changes
are requested, are often the cause for failure in complete development of such
languages, especially when its use will not be so extensive. Similarly, establish-
ing proper semantics for a new language also requires a great deal of effort.
One approach which alleviates some of these problems is that of embedding
the domain-specific language inside a general-purpose programming language
[Hud96a,Hud98]. Using this approach, one designs a domain-specific library,
which enables programs in the domain-specific language to appear as data ob-
jects inside the host language. In this manner, one gets to borrow features from
the host language automatically, for things such as sub-program definition and
control structures. Although the basic components of the domain-specific lan-
guage are still to be designed, and built in such a way that they do appear as part
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of a normal program in the host language, borrowing features of the host lan-
guage drastically reduces language development time. Furthermore, tools such as
interpreters and compilers are automatically available, since the domain-specific
programs are also programs in the host language. All that one needs to do is
to provide an interpretation function (or multiple ones) of the basic features of
the domain-specific language. Arguably, one of the major advantages of this ap-
proach, is that the host language acts as a meta-language of the domain-specific
language, allowing the program to generate regular domain-specific programs,
or modify or analyse them accordingly.

It is important that the host language is flexible enough (both in terms
of abstraction features and syntactic features) to enable the designer of the
domain-specific language to ensure that domain-specific programs are an indis-
tinguishable part of a program which mixes domain-specific and host language
features. Haskell [Jon03] has been shown to provide an excellent infrastructure
to embed languages, and there have been several successful implementations of
domain-specific embedded languages hosted in Haskell addressing various do-
mains, including geometric region analysis [HJ94], animation [EH97], hardware
description [BCSS98] and music composition [Hud96b].

In this paper, we look into the design of an embedded domain-specific lan-
guage to describe compass and straight-edge constructions in Haskell. Geomet-
ric constructions will thus appear within Haskell programs, with a library of
functions to allow the visualisation of such constructions and their analysis. In
particular, we emphasise the analysis aspect, with functions to test and verify
properties. Although the aim is primarily to explore the embedding of geomet-
ric constructions in a strongly typed functional language, and not building a
teaching-aid for geometric constructions, we believe that the use of a tool with
such a programming language and access to analysis techniques can be an ex-
cellent way to introduce students to the concepts of program testing and verifi-
cation.

2 Embedding Geometric Constructions

In keeping with the programming style of the host language, we have embedded
geometric constructions as functions. The basic constructors of the language
clearly are the drawing of lines and circles based on known points, and the
identification of points as intersections of known lines and circles. Although con-
structions are usually given in a sequential manner, the order of the instructions
is conceptually not a strict one, in that one should be able to perform any in-
struction, as long as the inputs are already known. Consider the following typical
instructions explaining how to find the midpoint of two given points p0 and p1

(as shown in figure 1):

1. Draw a circle c0 centred on p0, passing through p1.
2. Draw another circle c1 centred on p1, passing through p0.
3. Find the intersection points of circles c0 and c1, calling them p2 and p3.
4. Draw a line l0, passing through p0 and p1.
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5. Draw another line l1, passing through p2 and p3.
6. Find the intersection of lines l0 and l1. This is the mid-point of p0 and p1.

Clearly, the order of steps 1 and 2 is irrelevant, but both must be performed
before the third step. Step 4 depends only on the input, and could thus be
performed earlier. Although we could have kept the exact order in which the
instructions are specified, through basic combinators which specify a strict or-
dering, possibly through the use of monadic constructs, we prefer the view that,
unless there is a dependency, the order of instructions is not important, and
thus could be done in any order. For anyone familiar with Haskell, the following
description conveys precisely this meaning, and is the spirit of the constructions
we sought to create:

midpoint (p0, p1) = midpoint

where

c0 = circle (p0, p1)

c1 = circle (p1, p0)

[p2, p3] = intersections (c0, c1)

l0 = line (p0, p1)

l1 = line (p2, p3)

midpoint = intersection (l0, l1)

A straightforward interpretation of the above piece of code would be to con-
sider points as actual coordinates, and lines and circles as pairs of concrete
coordinates. The function could thus be used to evaluate the midpoint of ac-
tual points on the plane. However, we want to provide other interpretations of
the description, and thus a shallow embedding would not suffice our purposes.
The construction is a deeply embedded, structural description, which can be
evaluated in different ways, for different purposes.

2.1 Strongly-Typed Shapes

The most crucial aspect in embedded languages is probably the type system
used for the domain we are dealing with. A sound type system guarantees that
a user is eventually restricted to use each function with data of the right type.
At the same time, it must ensure that enough flexibility is provided for the
user to be able to use the available functions in all required ways. In other
words, a domain-specific embedded language must provide a type system that
is sound and complete. An approach which involves phantom types [Rhi03] —
parameterized types whose instances are independent of the type parameters —
is one possible way to meet these objectives. Another alternative would be to use
type-classes to enable overloading of certain functions like line intersection,
but we opt for the former approach to avoid cluttering function types with type
constraints.
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data Shape a = Shape UntypedShape

data UntypedShape =

UntypedCircle (UntypedShape, UntypedShape)

| UntypedLine (UntypedShape, UntypedShape)

| UntypedIntersect (UntypedShape, UntypedShape)

| ...

data Circle = Circle

data Line = Line

data Point = Point

Since the user would only be able to view the Shape parametrised type and
the three dummy types Circle, Line and Point, and create instances of shapes
through constructor functions we provide, we can enforce type safety through
the use of strongly typed constructor functions:

circle :: (Shape Point, Shape Point) -> Shape Circle

circle (Shape p0, Shape p1) = Shape (UntypedCircle (p0, p1))

intersection :: (Shape a, Shape b) -> Shape Point

intersection (Shape s1, Shape s2) = Shape (UntypedIntersect (s1, s2))

...

2.2 Non-deterministic Constructions

Most descriptions found in textbooks use the reader’s visual model to refer
to shapes to resolve ambiguity, in particular that induced through the non-
determinism found in order of the results of finding intersection points of a circle
and another shape. One solution is to use conditional constructs which, for ex-
ample, enable the user to identify whether two points are equivalent, or whether
they lie on the same side of a line. Another solution, is to give a deterministic
interpretation to intersection. One such interpretation is the ordering of points
on a shape. The intersection points of two shapes will then be given ordered
by the ordering on the first shape. We take the ordered point approach, with
points on a circle starting on the given point on the circumference and turning
clockwise while the points on a line are ordered in the direction of the vector
subtended between the two given points. However, we also introduce means of
reasoning conditionally about points through equivalence checking to simplify
certain constructions.

For example, consider the problem of constructing an equilateral triangle —
given two points p0 and p1, it is required to identify a third point p2, such that
all three points are equidistant. Clearly, as long as p0 and p1 are distinct points,
one can find two possible solutions to this problem.

equilateral0 :: (Shape Point, Shape Point) -> [Shape Point]

equilateral0 (p0, p1) = ps



6 Maria Grima and Gordon J. Pace

where

c0 = circle (p0, p1)

c1 = circle (p1, p0)

ps = intersections (c0, c1)

Based on this description, we can draw a regular hexagon with a given side,
using the selection function differentFrom, which filters a given list of points
to ones which are different from a particular given point:

hexagon0 :: Shape Point -> [Shape Point]

hexagon0 (p0, p1) = [p0, p1, p2, p3, p4, p5]

where

(centre:_) = equilateral0 (p0, p1)

[p2] = equilateral0 (centre, p1) ‘differentFrom‘ p0

[p3] = equilateral0 (centre, p2) ‘differentFrom‘ p1

[p4] = equilateral0 (centre, p3) ‘differentFrom‘ p2

[p5] = equilateral0 (centre, p4) ‘differentFrom‘ p3

Note that here we chose an arbitrary centre (from the two possibilities) for
the hexagon.

On the other hand, if we constrain the specification with the extra condition
that the three points p0, p1 and p2 turn in a clockwise direction, we can give a
deterministic solution using implicit ordering:

equilateral1 (p0, p1) = p2

where

c0 = circle (p0, p1)

c1 = circle (p1, p0)

p2 = first (intersections (c0, c1))

Note that first takes the head of a list of shapes. Using this code, one can
then produce a regular hexagon starting from a given edge:

hexagon1 :: Shape Point -> [Shape Point]

hexagon1 (p0, p1) = [p0, p1, p2, p3, p4, p5]

where

centre = equilateral1 (p0, p1)

p2 = equilateral1 (centre, p1)

p3 = equilateral1 (centre, p2)

p4 = equilateral1 (centre, p3)

p5 = equilateral1 (centre, p4)

Although the order of execution of the constructors is not crucial in a de-
scription of a construction, the use of shared expressions clearly is. In the code
for drawing hexagons, the centre of the hexagon is computed once and used four
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times. However, due to referential-transparency, the code given is identical to
that with the description of how the centre is drawn replicated. In practice, the
data structure constructed for a hexagon is a tree, with multiple copies of the
process used to calculate the centre. If we were to compute, for example, how
many circles are drawn in the description of a hexagon, the circles used to com-
pute the centre are added on four times, which is clearly undesirable. Various
techniques have been presented in the literature to identify shared nodes in a
structure. Explicit tagging of nodes in which every shared node in a structure
has to be given a name explicitly by the user is one solution [O’D93]. An al-
ternative is to take a monadic approach, using a state monad to compute tags
automatically [BCSS98]. The solution we adopt is that of observable sharing
[CS99], which introduces non-updateable references breaking referential trans-
parency in a limited way. The abstract datatypes presented earlier are thus all
encased within an additional reference type.

2.3 Parametrised Constructions

One advantage of embedding a language, is that the host language automatically
acts as a meta-language, enabling us to define functions which can produce a
family of constructions depending on inputs which it is given. For example, one
can produce a function, which given a natural number n, returns a construction
which given two points, returns a point which is 1

2n of the distance from the first
to the second point:

approach :: Integer -> (Shape Point, Shape Point) -> Shape Point

approach 0 (p0, p1) = p1

approach n (p0, p1) = approach (n-1) (p0, midpoint (p0, p1))

Consider the repetition inherent in the example given earlier with the hexagon
construction. One may give a general description which, given the number of
sides of a regular polygon, its centre, and an edge of the polygon, produces the
list of vertices of the polygon. To do this we start by giving a higher-order con-
struction f , which is given a construction from a pair of shapes to a new shape
(all of the same type), and a pair of shapes x and y, and returns an infinite list
of shapes corresponding to a Fibonacci-like list: [x, y, f(x, y), f(y, f(x, y)), . . .]:

repeatConstruction construction (x,y) =

x: repeatConstruction construction (y, z)

where

z = construction (x, y)

An n-sided regular polygon can now be described as taking the first n ele-
ments of repeatedly finding the next vertex circumscribing the polygon:

regularPolygon n (centre, (p0, p1)) = points

where

c = circle (centre, p1)

nextPoint (p, p’) = second (intersections (c, circle (p’, p)))

points = take n (repeatConstruction nextPoint (p0, p1))
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Fig. 1. Construction steps for bisecting segment P0-P1

2.4 Visualisation of Constructions

Since we keep the whole structure of a construction in our datatype, we can use
it to transform it into an explanation using textual and visual means. In our
geometric construction suite, we provide various visualisation functions, includ-
ing textual explanations on the lines of the natural language explanation given
in section 2, graphical step-by-step explanations in a Postscript document, and
an HTML document combining the textual and graphical descriptions. We also
enable the user to view constructions in a three dimensional animation by gen-
erating input for an external 3D rendering application written for our domain-
specific language [Sal07] (see Figure 2).

Fig. 2. Selection from the animation sequence for the construction of a perpendicular

3 Analysis of Constructions

Geometric constructions can become rather large and difficult to ascertain their
correctness. We provide a number of techniques for the analysis of a given con-
struction, both through the use of testing and theorem proving.

3.1 Testing Constructions

Since we can already evaluate the result of a construction with concrete inputs,
testing can be performed simply through the random generation of input points,
and checking that the outputs satisfy a given property. We provide two struc-
tured approaches to testing constructions:
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QuickCheck Testing: As with all Haskell programs, QuickCheck [CH00] can
be used to test properties of geometric constructions. To aid the user in
testing, we provide a number of functions to calculate information such as
distance between points, and angles subtended by three points. Properties
can then be written in QuickCheck style in a straightforward manner. For
example, to check that the equilateral triangle construction works, we can
write the following property:

prop_distance (p0,p1) =

distance (p0,p1) == distance (p0,p2) &&

distance (p0,p1) == distance (p1,p2)

where

p2 = equilateral1 (p0,p1)

The function checkProperty can then be used to invoke QuickCheck to test
the property:

> checkProperty prop_distance

OK, passed 100 tests.

External Testing: We also provide another means of testing a construction
by generating optimised C code to try to falsify the property through ran-
dom testing. Whereas in QuickCheck, properties are written in plain Haskell,
since they are evaluated directly by the Haskell interpreter or compiler, in
this second approach, arithmetic and geometric comparison operators which
one may need for the property specification language are also deeply em-
bedded in Haskell. The upside of this approach is that expressions can be
massaged and optimised before compilation, whereas in QuickCheck, the ex-
pressions have to be interpreted in every iteration. Furthermore, since both
the constructions and properties are all relative to the inputs, thus guar-
anteeing that properties are invariant under transformation and scaling of
the construction, we optimise further by fixing the first input point to lie at
the origin, and the second at (1, 0)1. This last optimisation improves testing
drastically, especially when the construction has a small number of inputs.
In the case of the equilateral triangle, it turns out that with a single testing
point, the property can in fact be exhaustively verified correct.

3.2 Verifying Constructions

Although testing can be beneficial when trying to find bugs in a construction,
one can benefit from the mathematical foundations underlying geometric con-
structions to actually prove that a construction works as intended. We have
implemented an automatic geometry theorem prover, applying the full-angle
[Wu87,CG96] method, to enable such reasoning.

1 Here, we consider the case when the input points are all distinct. The other cases
can be checked separately.
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The full-angle method enables one to reason about equality of angles, and
collinearity of lines. It works by transforming the proof goal into an equation in
terms of full-angles, where a full-angle is the rotation required for a particular
edge to become parallel to another. The method then proceeds by farming geo-
metric information predicates from the construction, for example deducing that
any two points lying on the same circle are equidistant from the centre of the
circle. A forward chaining process then follows, in which a number of inference
rules are applied to the known predicates, producing more information predi-
cates. Rewrite rules are then used to transform the predicates into full-angle
equations to try to prove the original conjecture. The full-angle proof method
is not complete on its own, but can be made complete through the use of the
full-area method.

Verification proceeds in a very similar manner to testing, in which the user
builds a conjecture, where the inputs are taken to denote universally quantified:

conjecture (p0, p1) = collinear (p0, p1, p2)

where

p2 = midpoint (p0, p1)

Applying the prove function to the conjecture starts off the proof search,
which will result in a proof consisting of the initial predicates (and derived ones),
and followed by a proof script of how the result follows in terms of full-angles.

4 Conclusions

The aim of this paper is to discuss the challenges and possible solutions when
building a validation and verification based geometrical construction assistant.
Our approach was to start with an algorithmic view of the constructions, which
can then be visualised at a later stage. The use of embedded languages al-
lowed us to produce regular constructions through a two-staged interpretation
of the parametrised constructions. Apart from the actual construction process,
we emphasise the analysis of their correctness, enabling straightforward access
validation and verification methods.

Various tools exist for the description and manipulation of geometric draw-
ings. For instance, as in our case, Cabri Geometry [PA96] allows drawing of ob-
jects on a geometric basis rather than on a perceptual basis. Constructions can
also be instantiated and reused as the input to other functions for higher-order
constructions. This approach is very similar to the approach that we took to pro-
vide the functionality for a user to define constructions as well as being shown
the corresponding explanations, but without the capability of analysis. GeoView
[BGP04], on the other hand, emphasises verification, and provides constructive
capabilities to generate statements representing geometric theorems, and interac-
tive means to build proofs via constructions. The reasoning is all done using the
general purpose theorem prover Coq as a back-end. Finally, Geometry Explorer
[WF05] also provides access to a full-angle method based prover implemented in
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Prolog, but provides only a graphical front-end, thus limiting the complexity of
the constructions.

Currently, all parametrised constructions in our system are generated by
Haskell programs, using recursion on parameters from the Haskell side of the
program. It would be interesting to add stronger condition checks on geometric
constructions (such as whether two shapes intersect, or whether two points lie on
opposite sides of a line), and thus enable stronger interaction between the Haskell
and geometric parts of the code. Given a construction which given two adjacent
vertices produces the next vertex of the polygon, one could, for instance, generate
the remaining vertices iterating the construction until a vertex is repeated.

We believe that the use of embedded languages, providing us with a meta-
language in which to generate, transform, and analyse constructions is a very
strong contender for a front-, to middle-end for an educational tool for geometri-
cal constructions. Building a front-end, enabling beginners to draw constructions
(which can be automatically translated into programs in our embedded language)
would clearly be needed. However, the possibility to describe constructions in
a programming environment is too strong to hide away as a possible means of
input from the user. Finally, one can connect the language to multiple validation
and verification tools, as for example is the case with Lava [BCSS98], which is
connected to various model-checkers.
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