77,190 research outputs found

    Are persistent delusions in schizophrenia associated with aberrant salience?

    Get PDF
    OBJECTIVE: It has been suggested that positive psychotic symptoms reflect 'aberrant salience'. Previously we provided support for this hypothesis in first-episode schizophrenia patients, demonstrating that delusional symptoms were associated with aberrant reward processing, indexed by the Salience Attribution Test (SAT). Here we tested whether salience processing is abnormal in schizophrenia patients with long-standing treatment-refractory persistent delusions (TRS). METHOD: Eighteen medicated TRS patients and 31 healthy volunteers completed the SAT, on which participants made a speeded response to earn money in the presence of cues. Each cue comprised two visual dimensions, colour and form. Reinforcement probability varied over one of these dimensions (task-relevant), but not the other (task-irrelevant). RESULTS: Participants responded significantly faster on high-probability relative to low-probability trials, representing implicit adaptive salience; this effect was intact in TRS patients. By contrast, TRS patients were impaired on the explicit adaptive salience measure, rating high-probability stimuli less likely to be associated with reward than controls. There was little evidence for elevated aberrant salience in the TRS group. CONCLUSION: These findings do not support the hypothesis that persistent delusions are related to aberrant motivational salience processing in TRS patients. However, they do support the view that patients with schizophrenia have impaired reward learning

    Do patients with schizophrenia exhibit aberrant salience?

    Get PDF
    BACKGROUND: It has been suggested that some psychotic symptoms reflect ‘aberrant salience’, related to dysfunctional reward learning. To test this hypothesis we investigated whether patients with schizophrenia showed impaired learning of task-relevant stimulusreinforcement associations in the presence of distracting task-irrelevant cues. METHODS: We tested 20 medicated patients with schizophrenia and 17 controls on a reaction time game, the Salience Attribution Test. In this game, participants made a speeded response to earn money in the presence of conditioned stimuli (CSs). Each CS comprised two visual dimensions, colour and form. Probability of reinforcement varied over one of these dimensions (task-relevant), but not the other (task-irrelevant). Measures of adaptive and aberrant motivational salience were calculated on the basis of latency and subjective reinforcement probability rating differences over the task-relevant and task-irrelevant dimensions respectively. RESULTS: Participants rated reinforcement significantly more likely and responded significantly faster on high-probability reinforced relative to lowprobability reinforced trials, representing adaptive motivational salience. Patients exhibited reduced adaptive salience relative to controls, but the two groups did not differ in terms of aberrant salience. Patients with delusions exhibited significantly greater aberrant salience than those without delusions, and aberrant salience also correlated with negative symptoms. In the controls, aberrant salience correlated significantly with ‘introvertive anhedonia’ schizotypy. CONCLUSIONS: These data support the hypothesis that aberrant salience is related to the presence of delusions in medicated patients with schizophrenia, but are also suggestive of a link with negative symptoms. The relationship between aberrant salience and psychotic symptoms warrants further investigation in unmedicated patients

    The dynamics of statistical learning in visual search and its interaction with salience processing: an EEG study

    Get PDF
    Visual attention can be guided by statistical regularities in the environment, that people implicitly learn from past experiences (statistical learning, SL). Moreover, a perceptually salient element can automatically capture attention, gaining processing priority through a bottom-up attentional control mechanism. The aim of our study was to investigate the dynamics of SL and if it shapes attentional target selection additively with salience processing, or whether these mechanisms interact, e.g. one gates the other. In a visual search task, we therefore manipulated target frequency (high vs. low) across locations while, in some trials, the target was salient in terms of colour. Additionally, halfway through the experiment, the high-frequency location changed to the opposite hemifield. EEG activity was simultaneously recorded, with a specific interest in two markers related to target selection and post-selection processing, respectively: N2pc and SPCN. Our results revealed that both SL and saliency significantly enhanced behavioural performance, but also interacted with each other, with an attenuated saliency effect at the high-frequency target location, and a smaller SL effect for salient targets. Concerning processing dynamics, the benefit of salience processing was more evident during the early stage of target selection and processing, as indexed by a larger N2pc and early-SPCN, whereas SL modulated the underlying neural activity particularly later on, as revealed by larger late-SPCN. Furthermore, we showed that SL was rapidly acquired and adjusted when the spatial imbalance changed. Overall, our findings suggest that SL is flexible to changes and, combined with salience processing, jointly contributes to establishing attentional priority

    Salience-based selection: attentional capture by distractors less salient than the target

    Get PDF
    Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience

    Selective Effects of Cholinergic Modulation on Task Performance during Selective Attention

    Get PDF
    The cholinergic neurotransmitter system is critically linked to cognitive functions including attention. The current studies were designed to evaluate the effect of a cholinergic agonist and an antagonist on performance during a selective visual attention task where the inherent salience of attended/unattended stimuli was modulated. Two randomized, placebo-controlled, crossover studies were performed, one (n=9) with the anticholinesterase physostigmine (1.0 mg/h), and the other (n=30) with the anticholinergic scopolamine (0.4 mc/kg). During the task, two double-exposure pictures of faces and houses were presented side by side. Subjects were cued to attend to either the face or the house component of the stimuli, and were instructed to perform a matching task with the two exemplars from the attended category. The cue changed every 4–7 trials to instruct subjects to shift attention from one stimulus component to the other. During placebo in both studies, reaction time (RT) associated with the first trial following a cued shift in attention was longer than RT associated with later trials (p<0.05); RT also was significantly longer when attending to houses than to faces (p<0.05). Physostigmine decreased RT relative to placebo preferentially during trials greater than one (p<0.05), with no change during trial one; and decreased RT preferentially during the attention to houses condition (p<0.05) vs attention to faces. Scopolamine increased RT relative to placebo selectively during trials greater than one (p<0.05), and preferentially increased RT during the attention to faces condition (p<0.05). The results suggest that enhancement or impairment of cholinergic activity preferentially influences the maintenance of selective attention (ie trials greater than 1). Moreover, effects of cholinergic manipulation depend on the selective attention condition (ie faces vs houses), which may suggest that cholinergic activity interacts with stimulus salience. The findings are discussed within the context of the role of acetylcholine both in stimulus processing and stimulus salience, and in establishing attention biases through top-down and bottom-up mechanisms of attention

    Exploiting visual salience for the generation of referring expressions

    Get PDF
    In this paper we present a novel approach to generating referring expressions (GRE) that is tailored to a model of the visual context the user is attending to. The approach integrates a new computational model of visual salience in simulated 3-D environments with Dale and Reiter’s (1995) Incremental Algorithm. The advantage of our GRE framework are: (1) the context set used by the GRE algorithm is dynamically computed by the visual saliency algorithm as a user navigates through a simulation; (2) the integration of visual salience into the generation process means that in some instances underspecified but sufficiently detailed descriptions of the target object are generated that are shorter than those generated by GRE algorithms which focus purely on adjectival and type attributes; (3) the integration of visual saliency into the generation process means that our GRE algorithm will in some instances succeed in generating a description of the target object in situations where GRE algorithms which focus purely on adjectival and type attributes fail
    corecore