404 research outputs found

    Evaluating the role of a humanoid robot to support learning in children with profound and multiple disabilities

    Get PDF
    Purpose The purpose of this paper is to identify ways teachers might employ a robot to achieve learning objectives with pupils with intellectual disabilities and potential outcome measures. Design/methodology/approach A series of five case studies where teacher-pupil dyads were observed during five planned video-recorded sessions with a humanoid robot. Engagement was rated in a classroom setting and during the last session with the robot. Video recordings were analysed for duration of engagement, teacher assistance and number of goals achieved. Findings Teachers identified a wide range of learning objectives ranging from an appreciation of cause and effect to improving the pupil's sense of direction. The robot's role could be to reward behaviour, provide cues or provide an active element to learning. Rated engagement was significantly higher with the robot than in the classroom. Research limitations/implications A robot with a range of functions that allowed it to be engaging and motivating for the wide range of pupils in special education would be expensive and require teachers to learn how to use it. The findings identify ways to provide evidence that this expenditure of time and money is worthwhile. Originality/value There is almost no research teachers can refer to on using robots to support learning in children with intellectual disabilities. This paper is therefore of value for researchers who wish to investigate using robots to educate children with intellectual disabilities, as it can provide vital information to aid study design

    Cognitive assisted living ambient system: a survey

    Get PDF
    The demographic change towards an aging population is creating a significant impact and introducing drastic challenges to our society. We therefore need to find ways to assist older people to stay independently and prevent social isolation of these population. Information and Communication Technologies (ICT) provide various solutions to help older adults to improve their quality of life, stay healthier, and live independently for a time. Ambient Assisted Living (AAL) is a field to investigate innovative technologies to provide assistance as well as healthcare and rehabilitation to impaired seniors. The paper provides a review of research background and technologies of AAL

    Case Study on Human-Robot Interaction of the Remote-Controlled Service Robot for Elderly and Disabled Care

    Get PDF
    The tendency of continuous aging of the population and the increasing number of people with mobility difficulties leads to increased research in the field of Assistive Service Robotics. These robots can help with daily life tasks such as reminding to take medications, serving food and drinks, controlling home appliances and even monitoring health status. When talking about assisting people in their homes, it should be noted that they will, most of the time, have to communicate with the robot themselves and be able to manage it so that they can get the most out of the robot's services. This research is focused on different methods of remote control of a mobile robot equipped with robotic manipulator. The research investigates in detail methods based on control via gestures, voice commands, and web-based graphical user interface. The capabilities of these methods for Human-Robot Interaction (HRI) have been explored in terms of usability. In this paper, we introduce a new version of the robot Robco 19, new leap motion sensor control of the robot and a new multi-channel control system. The paper presents methodology for performing the HRI experiments from human perception and summarizes the results in applications of the investigated remote control methods in real life scenarios

    Artificial Emotional Intelligence in Socially Assistive Robots

    Get PDF
    Artificial Emotional Intelligence (AEI) bridges the gap between humans and machines by demonstrating empathy and affection towards each other. This is achieved by evaluating the emotional state of human users, adapting the machine’s behavior to them, and hence giving an appropriate response to those emotions. AEI is part of a larger field of studies called Affective Computing. Affective computing is the integration of artificial intelligence, psychology, robotics, biometrics, and many more fields of study. The main component in AEI and affective computing is emotion, and how we can utilize emotion to create a more natural and productive relationship between humans and machines. An area in which AEI can be particularly beneficial is in building machines and robots for healthcare applications. Socially Assistive Robotics (SAR) is a subfield in robotics that aims at developing robots that can provide companionship to assist people with social interaction and companionship. For example, residents living in housing designed for older adults often feel lonely, isolated, and depressed; therefore, having social interaction and mental stimulation is critical to improve their well-being. Socially Assistive Robots are designed to address these needs by monitoring and improving the quality of life of patients with depression and dementia. Nevertheless, developing robots with AEI that understand users’ emotions and can reply to them naturally and effectively is in early infancy, and much more research needs to be carried out in this field. This dissertation presents the results of my work in developing a social robot, called Ryan, equipped with AEI for effective and engaging dialogue with older adults with depression and dementia. Over the course of this research there has been three versions of Ryan. Each new version of Ryan is created using the lessons learned after conducting the studies presented in this dissertation. First, two human-robot-interaction studies were conducted showing validity of using a rear-projected robot to convey emotion and intent. Then, the feasibility of using Ryan to interact with older adults is studied. This study investigated the possible improvement of the quality of life of older adults. Ryan the Companionbot used in this project is a rear-projected lifelike conversational robot. Ryan is equipped with many features such as games, music, video, reminders, and general conversation. Ryan engages users in cognitive games and reminiscence activities. A pilot study was conducted with six older adults with early-stage dementia and/or depression living in a senior living facility. Each individual had 24/7 access to a Ryan in his/her room for a period of 4-6 weeks. The observations of these individuals, interviews with them and their caregivers, and analysis of their interactions during this period revealed that they established rapport with the robot and greatly valued and enjoyed having a companionbot in their room. A multi-modal emotion recognition algorithm was developed as well as a multi-modal emotion expression system. These algorithms were then integrated into Ryan. To engage the subjects in a more empathic interaction with Ryan, a corpus of dialogues on different topics were created by English major students. An emotion recognition algorithm was designed and implemented and then integrated into the dialogue management system to empathize with users based on their perceived emotion. This study investigates the effects of this emotionally intelligent robot on older adults in the early stage of depression and dementia. The results of this study suggest that Ryan equipped with AEI is more engaging, likable, and attractive to users than Ryan without AEI. The long-term effect of the last version of Ryan (Ryan V3.0) was studied in a study involving 17 subjects from 5 different senior care facilities. The participants in this study experienced a general improvement in their cognitive and depression scores

    Emerging ExG-based NUI Inputs in Extended Realities : A Bottom-up Survey

    Get PDF
    Incremental and quantitative improvements of two-way interactions with extended realities (XR) are contributing toward a qualitative leap into a state of XR ecosystems being efficient, user-friendly, and widely adopted. However, there are multiple barriers on the way toward the omnipresence of XR; among them are the following: computational and power limitations of portable hardware, social acceptance of novel interaction protocols, and usability and efficiency of interfaces. In this article, we overview and analyse novel natural user interfaces based on sensing electrical bio-signals that can be leveraged to tackle the challenges of XR input interactions. Electroencephalography-based brain-machine interfaces that enable thought-only hands-free interaction, myoelectric input methods that track body gestures employing electromyography, and gaze-tracking electrooculography input interfaces are the examples of electrical bio-signal sensing technologies united under a collective concept of ExG. ExG signal acquisition modalities provide a way to interact with computing systems using natural intuitive actions enriching interactions with XR. This survey will provide a bottom-up overview starting from (i) underlying biological aspects and signal acquisition techniques, (ii) ExG hardware solutions, (iii) ExG-enabled applications, (iv) discussion on social acceptance of such applications and technologies, as well as (v) research challenges, application directions, and open problems; evidencing the benefits that ExG-based Natural User Interfaces inputs can introduceto the areaof XR.Peer reviewe

    Emerging ExG-based NUI Inputs in Extended Realities : A Bottom-up Survey

    Get PDF
    Incremental and quantitative improvements of two-way interactions with extended realities (XR) are contributing toward a qualitative leap into a state of XR ecosystems being efficient, user-friendly, and widely adopted. However, there are multiple barriers on the way toward the omnipresence of XR; among them are the following: computational and power limitations of portable hardware, social acceptance of novel interaction protocols, and usability and efficiency of interfaces. In this article, we overview and analyse novel natural user interfaces based on sensing electrical bio-signals that can be leveraged to tackle the challenges of XR input interactions. Electroencephalography-based brain-machine interfaces that enable thought-only hands-free interaction, myoelectric input methods that track body gestures employing electromyography, and gaze-tracking electrooculography input interfaces are the examples of electrical bio-signal sensing technologies united under a collective concept of ExG. ExG signal acquisition modalities provide a way to interact with computing systems using natural intuitive actions enriching interactions with XR. This survey will provide a bottom-up overview starting from (i) underlying biological aspects and signal acquisition techniques, (ii) ExG hardware solutions, (iii) ExG-enabled applications, (iv) discussion on social acceptance of such applications and technologies, as well as (v) research challenges, application directions, and open problems; evidencing the benefits that ExG-based Natural User Interfaces inputs can introduceto the areaof XR.Peer reviewe
    • …
    corecore