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Abstract Abstract 
Artificial Emotional Intelligence (AEI) bridges the gap between humans and machines by demonstrating 
empathy and affection towards each other. This is achieved by evaluating the emotional state of human 
users, adapting the machine’s behavior to them, and hence giving an appropriate response to those 
emotions. AEI is part of a larger field of studies called Affective Computing. Affective computing is the 
integration of artificial intelligence, psychology, robotics, biometrics, and many more fields of study. The 
main component in AEI and affective computing is emotion, and how we can utilize emotion to create a 
more natural and productive relationship between humans and machines. 

An area in which AEI can be particularly beneficial is in building machines and robots for healthcare 
applications. Socially Assistive Robotics (SAR) is a subfield in robotics that aims at developing robots 
that can provide companionship to assist people with social interaction and companionship. For example, 
residents living in housing designed for older adults often feel lonely, isolated, and depressed; therefore, 
having social interaction and mental stimulation is critical to improve their well-being. Socially Assistive 
Robots are designed to address these needs by monitoring and improving the quality of life of patients 
with depression and dementia. Nevertheless, developing robots with AEI that understand users’ emotions 
and can reply to them naturally and effectively is in early infancy, and much more research needs to be 
carried out in this field. 

This dissertation presents the results of my work in developing a social robot, called Ryan, equipped with 
AEI for effective and engaging dialogue with older adults with depression and dementia. Over the course 
of this research there has been three versions of Ryan. Each new version of Ryan is created using the 
lessons learned after conducting the studies presented in this dissertation. First, two human-robot-
interaction studies were conducted showing validity of using a rear-projected robot to convey emotion 
and intent. Then, the feasibility of using Ryan to interact with older adults is studied. This study 
investigated the possible improvement of the quality of life of older adults. Ryan the Companionbot used 
in this project is a rear-projected lifelike conversational robot. Ryan is equipped with many features such 
as games, music, video, reminders, and general conversation. Ryan engages users in cognitive games and 
reminiscence activities. A pilot study was conducted with six older adults with early-stage dementia and/
or depression living in a senior living facility. Each individual had 24/7 access to a Ryan in his/her room 
for a period of 4-6 weeks. The observations of these individuals, interviews with them and their 
caregivers, and analysis of their interactions during this period revealed that they established rapport with 
the robot and greatly valued and enjoyed having a companionbot in their room. 

A multi-modal emotion recognition algorithm was developed as well as a multi-modal emotion expression 
system. These algorithms were then integrated into Ryan. To engage the subjects in a more empathic 
interaction with Ryan, a corpus of dialogues on different topics were created by English major students. 
An emotion recognition algorithm was designed and implemented and then integrated into the dialogue 
management system to empathize with users based on their perceived emotion. This study investigates 
the effects of this emotionally intelligent robot on older adults in the early stage of depression and 
dementia. The results of this study suggest that Ryan equipped with AEI is more engaging, likable, and 
attractive to users than Ryan without AEI. The long-term effect of the last version of Ryan (Ryan V3.0) was 
studied in a study involving 17 subjects from 5 different senior care facilities. The participants in this 
study experienced a general improvement in their cognitive and depression scores. 
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Abstract
Artificial Emotional Intelligence (AEI) bridges the gap between humans and machines

by demonstrating empathy and affection towards each other. This is achieved by evaluating

the emotional state of human users, adapting the machine’s behavior to them, and hence

giving an appropriate response to those emotions. AEI is part of a larger field of studies

called Affective Computing. Affective computing is the integration of artificial intelligence,

psychology, robotics, biometrics, and many more fields of study. The main component in

AEI and affective computing is emotion, and how we can utilize emotion to create a more

natural and productive relationship between humans and machines.

An area in which AEI can be particularly beneficial is in building machines and robots

for healthcare applications. Socially Assistive Robotics (SAR) is a subfield in robotics

that aims at developing robots that can provide companionship to assist people with social

interaction and companionship. For example, residents living in housing designed for older

adults often feel lonely, isolated, and depressed; therefore, having social interaction and

mental stimulation is critical to improve their well-being. Socially Assistive Robots are

designed to address these needs by monitoring and improving the quality of life of patients

with depression and dementia. Nevertheless, developing robots with AEI that understand

users’ emotions and can reply to them naturally and effectively is in early infancy, and

much more research needs to be carried out in this field.

This dissertation presents the results of my work in developing a social robot, called

Ryan, equipped with AEI for effective and engaging dialogue with older adults with de-
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pression and dementia. Over the course of this research there has been three versions of

Ryan. Each new version of Ryan is created using the lessons learned after conducting the

studies presented in this dissertation. First, two human-robot-interaction studies were con-

ducted showing validity of using a rear-projected robot to convey emotion and intent. Then,

the feasibility of using Ryan to interact with older adults is studied. This study investigated

the possible improvement of the quality of life of older adults. Ryan the Companionbot

used in this project is a rear-projected lifelike conversational robot. Ryan is equipped with

many features such as games, music, video, reminders, and general conversation. Ryan

engages users in cognitive games and reminiscence activities. A pilot study was conducted

with six older adults with early-stage dementia and/or depression living in a senior living

facility. Each individual had 24/7 access to a Ryan in his/her room for a period of 4-6

weeks. The observations of these individuals, interviews with them and their caregivers,

and analysis of their interactions during this period revealed that they established rapport

with the robot and greatly valued and enjoyed having a companionbot in their room.

A multi-modal emotion recognition algorithm was developed as well as a multi-modal

emotion expression system. These algorithms were then integrated into Ryan. To engage

the subjects in a more empathic interaction with Ryan, a corpus of dialogues on different

topics were created by English major students. An emotion recognition algorithm was

designed and implemented and then integrated into the dialogue management system to

empathize with users based on their perceived emotion. This study investigates the effects

of this emotionally intelligent robot on older adults in the early stage of depression and

dementia. The results of this study suggest that Ryan equipped with AEI is more engaging,

likable, and attractive to users than Ryan without AEI. The long-term effect of the last

version of Ryan (Ryan V3.0) was studied in a study involving 17 subjects from 5 different

senior care facilities. The participants in this study experienced a general improvement in

their cognitive and depression scores.
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Chapter 1

Introduction

The research described in this dissertation focuses on the potential benefits of artificially

emotionally intelligent social robots in elder care, specifically for individuals with early-

stage Alzheimer’s Disease (AD)/Alzheimer’s Disease and Related Disorders (ADRD) and

mild depression. The goal is to explore how these robots can improve the social, mental,

and physical well-being of older adults and potentially slow down the progression of these

debilitating diseases. To achieve this, we develop a social robot, equip it with tools for

a more natural and affect-aware interaction, and study its effect on older adults living in

senior care facilities in the Denver Metro Area.

This introductory chapter provides a concise overview of the motivation behind this

study, highlighting the implications of demographic changes and the aging population, as

well as the potential role of robots and artificial emotional intelligence in addressing the

challenges associated with elder care.

Finally, we then describe the focus of our work and provide a brief overview of the

structure and organization of this dissertation.
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1.1 Motivation

1.1.1 AD/ADRD

More than 6 million Americans are living with Alzheimer’s disease (AD), and it is ex-

pected that the number will rise to 13.8 million by 2050 as the population ages (Hebert

et al., 2013). AD/ADRD is the sixth leading cause of death among adults 65 years of age

and older, with deaths more than doubling between 2000 and 2019 (Alz; Hebert et al.,

2013). Figure 1.1, shows the facts and figures for 2022 by Alzheimer’s association. Com-

mon symptoms of AD and AD related dementia (ADRD) include cognitive decline, short-

term memory loss, changes in mood, depression, communication difficulties, loss of inter-

est in hobbies or activities, and repetitive behavior. In 2023, Alzheimer’s and other demen-

tias will cost US $345 billion with projected annual costs of over $1 trillion by 2050 (Alz).

Unfortunately, to date, there are no effective treatments available to cure AD and demen-

tia. Traditional disease management methods have shown limited success in treating AD or

mitigating its symptoms; The drug failure rate for AD is currently 99.6% (compared to 81%

for cancer) (Cummings, 2018). Although there is no cure for dementia, the Alzheimer’s

Association emphasizes the importance of helping individuals with AD keep their brain

active through social interaction, music therapy, reminiscence therapy, and other cognitive

activities, in addition to pharmacological treatment (Alz).

Due to the growing demand for the care and treatment of elderly people with dementia,

healthcare personnel and caregivers are physically and emotionally taxed and actively seek

new methods to assist the growing number of people. According to Plunkett, “Healthcare

is one of the largest and fastest growing industries in the world, and virtually all govern-

ment and private health initiatives that pay for health care are desperately seeking ways

to improve patient care outcomes”. By 2030, the global demand for health workers will
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rise to 80 million workers, while the supply is expected to reach 65 million, resulting in a

worldwide shortage of 15 million health workers (Liu et al., 2017).

1.1.2 Depression

Depression is the most common type of mental disorder in the United States. Depres-

sion increases the risk of many physical health problems, particularly long-lasting condi-

tions such as diabetes, heart disease, and stroke. It causes severe symptoms that affect how

you feel, think, and handle daily activities, such as sleeping, eating, or working. Research

suggests that genetic, biological, environmental and psychological factors play a role in

depression (Saveanu and Nemeroff, 2012). According to the National Institute of Mental

Health, in 2020: 1) an estimated 21.0 million adults in the United States had at least one

major depressive episode. This number represented 8.4% of all US adults. 2) The preva-

lence of major depressive episodes was higher among adult women (10.5%) compared to

men (6.2%) (NIMH, 2020).

Depression can cause tremendous challenges and burdens for individuals and families.

According to Greenberg et al. (2021) the economic burden of major depressive disorder

among US adults was estimated at $236 billion in 2018, an increase of more than 35% since

2010 (values for 2020). Depression can occur at any age, but often begins in adulthood.

Depression is now recognized to occur in children and adolescents, although it sometimes

presents with more prominent irritability than low mood. Many chronic mood and anxi-

ety disorders in adults start as high levels of anxiety in children. Depression, especially in

midlife or older adults, can co-occur with other serious medical illnesses, such as diabetes,

cancer, heart disease, Alzheimer’s disease, and Parkinson’s disease. These conditions are

often worse when depression is present, and research suggests that people with depres-
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sion and other medical conditions tend to have more severe symptoms of both illnesses.

Thoughts of death or suicide, or suicide attempts, are common symptoms of depression.

1.2 Socially Assistive Robots

As the global population ages, the demand for elder care increases and the need for

innovative solutions becomes more pressing. Social robots have emerged as a promising

technology to address some of the challenges associated with elder care, such as social

isolation, depression, and cognitive decline.

Socially intelligent robotics is a rapidly emerging field aiming to design robots that

are able to communicate and interact with humans in a socially acceptable way (Breazeal,

2005; Dautenhahn, 2007). They often achieve positive outcomes in diverse applications

such as education, health-care, quality of life, entertainment, communication, and tasks

requiring collaborative teamwork (Breazeal et al., 2016). These robots are becoming an

integrated part of our daily lives. For social robots to be able to communicate with us

naturally, they need to be more affect-aware.

Affective computing is the integration of artificial intelligence, psychology, robotics,

biometrics, and many other fields of study. Affective computing allows us to interact with

machines and robots using our emotions (Yonck, 2020). It may be difficult to formally

define an emotion, but it is evident that emotions are at the center of human experience.

A famous question posed by Minsky (1988) asks: “the question is not whether intelligent

machines can have any emotions, but whether machines can be intelligent without any

emotions.” Affective computing is a very natural progression in our ongoing efforts to build

technologies that operate increasingly on human terms, rather than the other way around.

Damasio (1994) presented some neurological evidence to prove that emotions do in fact

play an active and important role in the human decision-making process. The interaction
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between the emotional process and the cognitive process may explain why humans excel

in making decisions based on incomplete information, “acting on our gut feelings”. This

in turn was the reason for emergence of the term “emotional intelligence”.

With the recent growth in the adoption of Artificial Intelligence (AI) technology in a

variety of applications and disciplines, every aspect of our lives will soon be affected by

AI. Personal assistants in our pockets, robots in our homes and workplaces, as well as self-

driving cars on the streets, are just a few examples of the ubiquity of AI. The AI community

has mostly focused on making smarter and more intelligent systems that are capable of

solving hard technical problems, though the need for emotionally intelligent systems that

understand users’ feelings and can connect with them in a natural and welcoming manner

is growing rapidly.

An area in which AEI can be particularly beneficial is in building machines and robots

for healthcare applications. Socially Assistive Robotics (SAR) is a niche field in robotics

that aims at developing robots that can provide companionship to assist people with social

interaction and companionship. For instance, residents living in housing designed for older

adults often feel lonely, isolated, depressed and hence having social interaction and mental

stimulation is critical for improving their well-being. Socially Assistive Robots, such as

Ryan and Pepper are designed to address these needs by monitoring and improving the

quality of life of patients with depression and dementia. Nevertheless, developing robots

with AEI that understand users’ emotions and can reply to them naturally and effectively

is in early infancy, and much more research needs to be carried out in this field.

A futuristic version of an emotionally intelligent machine was depicted in the film Her

(2013). After only 10 years of development in AI, especially affective computing, an emo-

tional relationship with a machine does not seem far-fetched anymore. While humanoid

robots such as Sophia are capable of showing emotions using a prosthetic face, a truly
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emotionally intelligent robot needs to be able to perceive the user’s emotion and mental

state, devise an emotionally appropriate response, and then convey it while expressively.

1.3 The outline

This dissertation provides a research investigation into the potential use of socially as-

sistive robots in elder care, with a specific emphasis on the design and development of an

emotionally intelligent robot named Ryan. Chapter 2 covers the related work and literature

review. It studies the robots used in elder care and other studies in artificial emotional in-

telligence. Chapter 3 introduces Ryan, the Companionbot, that serves as the focus of this

research. Three versions of Ryan are explained in detail in this chapter. Chapter 4 presents

the preliminary human-robot-interaction studies conducted to explore various features of

Ryan in a lab environment. Chapter 5 delves into the use of Ryan in elder care and exam-

ines the feasibility of a robotic companion and the potential for an emotional bond between

humans and a robot. Finally, Chapter 6 presents the design and development of a multi-

modal emotion recognition algorithm and a multi-modal emotion expression system that

are integrated into Ryan. Furthermore, this chapter presents the outcomes of two separate

studies that were conducted using the emotionally intelligent version of Ryan. This chapter

offers an in-depth analysis of the findings from these studies, which serve to further demon-

strate the efficacy and potential of incorporating emotional intelligence into the design of

socially assistive robots.
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Figure 1.1: 2022 Alzheimer’s disease facts and figures.
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Chapter 2

Literature Review and Related Works

In recent years, there has been an increase in the use of robots not only in industrial

fields, but also in other areas such as schools (Conti et al., 2018), homes (Cavallo et al.,

2014), hospitals (D’Onofrio et al., 2018), rehabilitation centers (Loi et al., 2018), and in

senior care facilities (Khosla et al., 2012).

There are three types of robots used in healthcare: 1): Physically assistive robots, such

as sophisticated wheelchairs and surgical robots, 2): Socially interactive robots, such as

spoken-dialog-enabled receptionists, and 3): Socially assistive robots, such as Pepper (Fig-

ure 2.1.i), that are designed to monitor and improve the quality of life of users. Our focus

in this dissertation is on the last type.

In this dissertation, I have focused on social robots used in healthcare, specifically with

older adults. The use of socially assistive robots (SAR) to help older adults has recently

become more relevant due to the increase in the number of elderly people, the decrease in

the cost of technology, and recent advances in artificial intelligence Leite (2015). Nursing

home residents live alone with disabilities, while in most cases their cognitive abilities are

degraded due to old age or various types of dementia Kotwal et al. (2016). Studies sug-

gest that social support for elderly people could improve their cognitive function (Zamora-
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Macorra et al., 2017). Using SARs with a focus on the socialization aspect of Human-Robot

Interaction (HRI) is a viable option to reduce the burden on caregivers while providing

companionship to elderly people, improving their quality of life and avoiding depression

and further degradation of their mental abilities.

Figure 2.1: Robots used in social robotics studies.

Wada et al. (2003) used the Paro (Figure 2.1.f) robot to study the long-term effect of

social robots on residents of a senior care center. The results indicated that the residents

established a relationship with the robot, developed stronger social bonds among them-

selves, and also maintained a lower stress level. However, Paro lacks the ability to talk and

communicate. It is shown that to be accepted more easily, a social robot should be com-

municative (Heerink et al., 2006) and must employ a form of communication with which

humans are habituated (Krämer et al., 2012). Paro does not have any human-like features.

Studies show that humans feel closer to a social robot when they interact with it in a

one-on-one setting (Lee et al., 2005). It has also been shown that to build a relationship

with robots, humans use principles that are more in line with the human-human interaction

than the human-robot interaction (Krämer et al., 2012). These studies suggest that a robot

can substitute human companionship or at least have a higher chance of making a bond if
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the robot looks and acts like a human. Anthropomorphic characteristics in social robots can

facilitate human social understanding (Breazeal, 2000; Duffy et al., 2002) and are important

in the development of a meaningful social interaction between robots and people (Duffy,

2003)

Another key aspect of having a robot as a companion is continuous (uninterrupted)

companionship, which means having access to the robot at all times. The majority of stud-

ies on human-robot interaction (HRI) are often brief and conducted in public spaces, or

focus on specific domains such as education (Michaelis and Mutlu, 2017), healthcare (Bo-

dala et al., 2021; Robinson et al., 2020; Van Maris et al., 2020), or rehabilitation (Céspedes

et al., 2021a,b). However, conducting longitudinal studies that involve physically embod-

ied social robots in users’ homes to examine repeated interactions remains rare due to the

logistical and cost-related challenges associated with situating these devices in domestic

settings.

To gain a complete understanding of how humans adapt to social robots and how

their perceptions and behavior evolve over time, it is crucial to conduct longitudinal stud-

ies (Leite et al., 2013a). Autonomy plays a crucial role in achieving uninterrupted com-

panionship that enables a longitudinal study. Most studies conducted with social robots in

elder care are performed in a Wizard-Of-Oz (WOZ) manner (Vardoulakis et al., 2012), or

were limited to a specific scenario (Pineau et al., 2003). Vardoulakis et al. (2012) designed

an experiment to study the long-term social companion of older adults. They used a WOZ

method and the subject had a robot at home for one week. However, since the robot was

remotely controlled by an operator, the subject interacted with the robot for only one hour

every day. Employing the WOZ method forces the subjects to use the robot at a specific

time of the day for a short period, which resembles visiting a friend rather than having a

companion at home. Social robots such as Paro are autonomous and provide continuous

10



companionship, but lack the ability of having a robust social interaction such as spoken

dialog and an expressive face.

Studies suggest that social robots are promising tools for delivering and improving men-

tal health interventions (Robinson et al., 2019), supporting rehabilitation (Feingold Polak

and Tzedek, 2020), and providing physical and social support (Henschel et al., 2021) in

various settings. Research has shown that social robots can help minimize social tensions

and anxieties(Nomura et al., 2020), particularly for those with social anxiety, and can serve

as interventions for social anxiety(Rasouli et al., 2022).

Furthermore, the COVID-19 pandemic has highlighted the potential of social robots as

assistive technology, as they can perform tasks such as taking temperature, food and supply

delivery, providing companionship, and mediating social interactions (Henschel and Cross,

2020; Scassellati and Vázquez, 2020; Yang et al., 2020).

Deep social interaction is required when dealing with older adults with dementia. Dif-

ferent robots such as Paro, Nao, and Zeno (Figure 2.1.a,e,f) have been used in studies on

the care of elderly people with dementia (Mordoch et al., 2013). Most of the robots used in

these studies have not been built with the social aspect in mind. But to be able to communi-

cate with older adults with AD/ADRD and try to engage them in conversations and games,

we need a robot that has been designed to accomplish these social goals. Recently, several

studies have investigated the incorporation of empathy into social robots (Alves-Oliveira

et al., 2019; Leite et al., 2013b; Mollahosseini et al., 2018a; Paiva et al., 2005). In chapter 3,

I introduce Ryan, a robot designed to be social, empathic, and emotionally intelligent.
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Chapter 3

Ryan CompanioBot

Despite the tremendous efforts by many researchers in academia and industry to design

and build realistic robotic heads, current robots have yet to reach the perceptive and emo-

tional verbal and nonverbal social capabilities of humans. These social capabilities, which

include the ability to engage users in natural spoken dialog, interpreting users’ affect states,

and respond effectively to them through speech and facial expressions, are necessary for

rich and robust interaction with human beings. Social robots such as Paro (Kidd et al.,

2006) have the robustness and cost effectiveness for large scale, unattended user trials,

but lack the sophistication for deep social interaction. Social robots such as Simon (Si-

mon) possess state-of-the-art capabilities for social interaction, but are too expensive and

maintenance-intensive.

The robot used in this study is Ryan Companionbot (Ryan) which is based on Expres-

sionbot (Mollahosseini et al., 2014a). Ryan has been developed in DreamFace Technolo-

gies, LLC. with the social aspect of HRI in mind. This robot has an emotive and expressive

face with accurate visual speech. Ryan can maintain a spoken dialog, recognize expres-

sions on the user’s face, and it is equipped with a screen on its torso with features such as

cognitive games, music player, narrated photo album, and video player.
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To keep the subject engaged for a long period of time, the SARs must be personal-

ized (Castellano et al., 2008a). Thus, Ryan can be customized for each user. To increase

intimacy and invoke rapport, users can choose a name for the robot. It is worth mentioning

that in the study in Chapter 5 one subject named the robot after his late wife. In that study

we left the Ryan with the subject for 4 weeks. Leaving the robot in an older adult’s home

and having 24/7 access to the robot may cause them to lose motivation. To provoke subjects

to act on intrinsic motivation, we had to define tasks and modify Ryan to be enjoyable and

not repetitive.

After a while that the user exhausts all of the features of the robot, they will lose in-

terest in interacting with the robot. It is shown that the novelty effect of SARs disappears

quickly (You et al., 2006). As the novelty aspect wears off, the social effect could also

decrease (Fernaeus et al., 2010). By endowing Ryan with a character and a sense of humor

on top of various other features implemented into Ryan, we keep the subjects interested to

interact with the robot for a long period.

In the next sections, we will explain the hardware and software of different versions of

Ryan.

3.1 Ryan V1.0

3.1.1 Hardware

Ryan V1.0 hardware is designed with three main components (Figure 3.1): 1) the head

projection system, 2) the neck mechanism, and 3) the torso.
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Figure 3.1: Ryan hardware.

3.1.2 Head Projection System

Using a large number of actuators to build a human-like robotic face capable of show-

ing different emotions and visual speech is difficult and expensive (Mollahosseini et al.,

2014b). To avoid the tremendous effort required to develop a robotic head capable of

having accurate visual speech, state-of-the-art character animation technology was used to

produce an avatar. Using rear projection optics, the head projection system displays the

animated avatar on a mask. This system also allows us to further customize the appearance

of the robot. Consult the work of Mollahosseini et al. (Mollahosseini et al., 2014b) for

more details on the projection system.

Neck Mechanism

The movement of the head to track faces and head gestures is controlled by the neck

mechanism, a two-degree-of-freedom pan/tilt unit. Having only two degrees of freedom

keeps the system simple and suffices for face tracking. The neck has a range of motion of
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30°of flexion and extension (±30° pitch) and 180°lateral rotation (±90°yaw). This range

allows the head to track the user anywhere in front of the robot.

Torso

The main computer, an RGBD camera, a touch screen display, and power supplies are

enclosed inside the torso. Adding a touch screen to the robot added a new way of interacting

with Ryan (touch) and also it added the feature to be able to display more information to

the user. The display was used for cognitive games, music player, video player, and the

narrated photo album. The RGBD camera enables us to have a 3D view of the environment

for better tracking the user and also for future studies on activity recognition.

3.1.3 Software

To make Ryan an intelligent and sociable robot that can understand human language

and communicate through spoken dialog, a series of features have been implemented in

the robot. Ryan must be able to find the user in the environment, read the user’s facial

expression, understand the user’s speech, generate an appropriate response, and say it to the

user through audio, accompanied with visual speech while showing a relevant expression

on the face. Ryan is also able to communicate with users through the touch screen in the

torso.

The Microsoft Kinect sensor V2.0 (Kinect) acts as the eyes of the system to constantly

monitor user’s activities and its face detection feature enables Ryan to find the subject in

the room. For facial emotion recognition, Ryan uses the Intel RealSense SDK (Realsense)

which provides seven basic facial expressions. Intel RealSense SDK is also used as the

speech to text engine. Ryan uses the speech emotion recognition Aylien (Aylien) system

which is an online natural language processing service for sentiment analysis of the user’s
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(a) Main Menu (b) Hearing Ear (c) Shape Up

Figure 3.2: Cognitive Games.

speech. A retrieval-based open dialog management systems available on the web (ChatBot/

Pandorabots (Pandorabots)) is used as the dialog manager.

To reduce subjects’ cognitive abilities deterioration, we equipped Ryan with cognitive

games focused on patients with dementia. Drugs are not the only method to treat mental

diseases such as dementia, Alzheimer’s disease, and depression. There exist alternative

therapeutic methods such as talking therapies, life story and reminiscence work, and cog-

nitive stimulation therapy for these diseases (Lawrence et al., 2012).

We designed four games (Figure 3.2). These games are based on Montessori-based

activities (Judge et al., 2000) to help people suffering from dementia combat the disease.

These visual games are simple and interactive with different levels of complexity. The

game instructions were given by Ryan and the users could answer the questions either via

voice commands or by pushing the buttons on the screen.
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There is evidence that life story, photo albums, and reminiscence work, particularly

when done one-on-one, can improve mood, well-being and some mental abilities such as

memory (Lawrence et al., 2012). For each subject we collected about 15-20 old photos and

the stories about the event in the photos, either from the participant or their close relatives.

The photos are shown on the torso screen one by one, and the robot reads the story back to

the user. Sometimes simple questions are asked to engage the user in the conversation.

Reminiscence and memory work also involves talking about things from the past, using

prompts such as photos, familiar objects, or playing music. A video player application was

created to randomly select and play videos from a list of YouTube video clips. The list

contained URLs of short (4-5 minutes) YouTube videos queried based on the users’ topics

of interests (e.g. healthy foods, sports, and nature).

3.2 Ryan V2.0

Besides a full system overhaul of Ryan’s aesthetics for a sleeker and a more visually ap-

pealing robot, we introduced three fundamental enhancements to Ryan’s form and motion

capabilities to improve social interaction and support between Ryan and the user. These

enhancements focus on Ryan’s arms, neck motion, and projection system. Ryan V2.0 was

not used in any studies in this dissertation.

3.2.1 Hardware

Arm Enhancements: Although Ryan’s purpose is to be socially and not physically

assistive, we decided to include active arms in the second version. Active arms are used

to engage users in physical exercise, which has been shown to elevate mood and have

cognitive health benefits (Tseng et al., 2011). Both have a great impact on the quality of life

of seniors with dementia. With active arms, Ryan is able to coach through demonstration
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of various exercises for the user and engage the user to perform the exercise in synchrony;

adapting to the user’s pace and providing positive reinforcement and feedback.

Safety feature: Although the incorporation of active arms creates opportunities for

greater functionality, it also presents new challenges and risks; specifically, the risk of

accidental collision of the arms with the user or their property. To mitigate these risks and

ensure the safety of the users, a series of proximity sensors are installed on Ryan to ensure

that Ryan only moves its arms if it is safe.

Figure 3.3: Six degree of freedom parallel neck mechanism providing natural head motion
for more natural and emotive dialog.

Neck Enhancements: Studies have shown that head movement plays an important

role in conversation. Head movements can signal familiarity and a sense of rapport with

the conversational counterpart through gestures that communicate affirmation, impatience,

disbelief, desire to speak, and empathy (Heylen, 2006). Because head movement can have
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a profound impact on both the quality and perception of social interaction, Ryan’s neck

mechanism was redesigned to have sufficient degrees of freedom and range of motion to

naturally mimic the varied movements of a human neck.

The neck mechanism of Ryan V1.0 uses a simple pan/tilt unit to produce yaw and pitch

rotations of the head. This design is sufficient as a proof of concept and to verify the feasi-

bility of the system; however, these basic head movements were perceived as unnatural by

participants in the field study, thus detracting from the effectiveness of social interactions.

To provide richer and more expressive interactions, the neck mechanism for Ryan V2.0 was

based on a Stewart platform (Dasgupta and Mruthyunjaya, 2000) parallel manipulator with

six degrees of freedom (Figure 3.3). A six-degree-of-freedom design was chosen for this

version of Ryan because the human head is not limited to solely rotating about its centroid.

It can translate as well (e.g., back in disbelief), and the center of rotation of the head can

also be shifted along the cervical spine to produce rotations about the centroid of the head

or the base of the neck for different effects. Therefore, a purely rotational mechanism is

not sufficient to mimic the sophisticated head movements that play a vital role in emotive

dialog.

Projection Enhancements: Ryan uses character animation technologies to project life-

like 3D models onto a translucent mask to display the rich natural speech and facial expres-

sions. This enables it to display a variety of different characters to suit the preferences of the

individual user with minimal effort and create highly dynamic facial expressions without

mechanical actuators and components that are prone to failure.

The Ryan V1.0 uses a bulky projector positioned outside of the head that was replaced

with a far smaller form factor projector along with a mirror and lens assembly that fits fully

and compactly inside Ryan’s head enclosure. This setup looks more aesthetically pleasing

and natural. It also protects sensitive components from damage. Figure 3.4 depicts the new

design and the placement of the internal components.
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(a) Ryan V2.0 (b) Ryan V2.0 internals

Figure 3.4: (a) frontal view of full Ryan CompanionBot design and (b) transparent view
illustrating positioning of key components and sensors.

3.2.2 Software

For the second version of Ryan, the software stack was rewritten from scratch. In

the new design, every conceptual module is represented by a ROS(Quigley et al., 2009)

node. Instead of using Realsense SDK for emotion recognition, I created a facial expression

recognition model based on MobileNet (Sandler et al., 2018) deep neural network archi-

tecture trained on AffectNet (Mollahosseini et al., 2017) dataset. Kaldi (Povey et al., 2011)

was used for speech recognition and CereProc (Garrido et al., 2008) for text to speech. We

created a “cartoonish” 3d face model (see Figure 3.5) that fits the new body design better.

A few new games were added to Ryan and the tablet UI was redesigned.
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Figure 3.5: A model with different facial expressions designed for Ryan.

3.3 Ryan V3.0

In version 3.0 of Ryan, we introduce new features and upgrade the hardware to make

Ryan more robust and aesthetically pleasing.

3.3.1 Hardware

The microphone in Ryan is upgraded to a mic array, allowing Ryan to filter environ-

mental noise and improve the accuracy of text transcription. The complex Stewart platform

neck introduced in V2.0 is replaced with a simpler 3 degree-of-freedom neck. The arms

are upgraded and other than the proximity sensors in the base, now the arms also monitor

their torque to detect collision. An NFC reader is added to Ryan to make it possible to have

multiple users log into the same robot using a unique NFC tag.

3.3.2 Software

A new authentication backend is designed and implemented that enables Ryan to sup-

port user profiles. This also enables us to collect each users’ analytics automatically. A web
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UI is designed and created that visualizes the recorded data for each user. The offline Kaldi

speech recognition software is replaced by an online service by Microsoft, to improve the

accuracy. A new dialog manager software based on Facebook’s ParlAI system is created

for generative and unbounded conversations. Finally many new games, yoga, Spotify, more

custom faces and an in-house text-to-speech is also integrated into Ryan V3.0. Figure 3.6

shows the latest design and some of the features of the latest version of Ryan.

Figure 3.6: An overview of the Ryan’s latest design and features (Ryan V3.0).

22



3.4 Summary

Table 3.1 contains a summary of some of the changes made to Ryan over the years. The

changes made to Ryan are the results of our field studies and the user feedback. Ryan v3.0

is more expressive, aesthetically pleasing, stable, feature rich, and extensible.

Table 3.1: A summary of some of the improvements between Ryan version 1.0 and version
3.0 and the reasoning behind them. Ryan V2.0 was not used in any experiments and was
refined into Ryan V3.0.

Feature Ryan V1.0 Ryan V3.0 Reason for change

H
ar

dw
ar

e

Arms Passive Active To encourage the users to do more physical activities. Active

arms enable Ryan to teach chair yoga and makes Ryan more

expressive.

Tablet Vertical Horizontal We changed the orientations to be able to show larger pic-

tures and videos. The angle of the tablet is also adjustable,

this helped with the viewing angle and ergonomics of using

Ryan.

Projector Outside the

head

Enclosed in the

head

This was done to improve Ryan aesthetically.

Body Shell Thermoformed 3D printed 3D printing allowed us to change the shape of Ryan’s body

to make it more aesthetically pleasing.

RGBD Camera MS Kinect Intel Realsense Switching to a smaller and more generic RGBD camera al-

lowed us to use a more accurate skeleton tracking algorithm

for Ryan’s game and yoga.

So
ft

w
ar

e

Software Frame-

work

.Net state ma-

chine

ROS Robot Operating System (ROS) is the standard framework

used in robotics. Switching to ROS simplified the integra-

tion of the active arms with the rest of the system.

Facial Animation MS XNA Unity3D Unity3D is a an advance game engine that allows for better

animations and interoperability with other modules.

Speech Synthesis MS TTS Custom DNN

model

Using a voice actor and training a DNN model improved the

quality of synthesized audio and made Ryan’s voice more

natural.

Visual Speech Generated by a

speech recogni-

tion toolkit

Generated by

the Speech

Synthesis

software

This improved the accuracy of the visual speech and lip

movement and lower the computational complexity of the

system.

Continued on the next page
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Table 3.1 – Continued from the previous page

Feature Ryan V1.0 Ryan V3.0 Reason for change

Speech Recogni-

tion

Windows STT Azure Cogni-

tive Services

The state-of-the-art speech recognition offered by Microsoft

Azure reduced the number of errors in the speech transcrip-

tion and in turn improved the quality of the conversations

Facial Expression

Recognition

Kinect SDK Custom DNN

model

Using a more accurate facial expression recognition is cru-

cial in a emotionally intelligent robot.

User Authentica-

tion

N/A Custom Node.js

backend

The first version of Ryan did not have any user authentica-

tion ability. Adding this feature allows multiple users to use

the same robot while preserving their data and privacy.

Music Provided by the

user

Spotify This improvement allows the user to have access to any song

they would like to listen to. Playing music from a specific

decade was also a user requested feature.

Dialog Manager ProgramR KatieBot ProgramR is a retrieval-based chatbot which requires a cor-

pus of pre-written dialog. KatieBot is a hybrid between Pro-

gramR and BlenderBot from Facebook. BlenderBot is a gen-

erative model. This allows Ryan to have sensible conversa-

tions about virtually any topic.
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Chapter 4

Ryan: Human-Robot-Interaction

Studies

4.1 Introduction

In this chapter two preliminary studies are presented. These studies have been con-

ducted in the lab to evaluate the user perception of Ryan as a social robot, the effects of the

embodiment of Ryan, and finally the feasibility of having an empathic social robot.

4.2 Ryan’s embodiment

In this study, my colleague and I aimed to explore how the unique features of Ryan

influence three major elements of human-robot face-to-face communication, namely the

perception of visual speech, facial expression, and eye gaze. The details and results of the

visual speech and facial expression studies are presented in Mollahosseini et al. (2018b).

In this study, I focus on the eye gaze. Below I present the findings of my study.
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4.2.1 Eye Gaze

Eye gaze is one of the most basic and important features of the human face for non-

verbal communication. Humans incorporate gaze both consciously and unconsciously into

various human-human interaction schemes (Chen and Yeh, 2012). For example, neurons

in the primate visual cortex can respond selectively to eye gaze, head orientation, or even

a combination of both (Perrett et al., 1985). Eye gaze serves several different functions

such as capturing attention, maintaining engagement (Cassell, 2000), conveying informa-

tion about emotional and mental state (Ruhland et al., 2014), augmenting verbal communi-

cation (Emery, 2000), orchestrating turn-taking and deictic reference (Kendon, 1967).

Considering the importance of eye gaze in social interaction, it is not surprising that

social gaze behavior has been studied on many robotic platforms (Imai et al., 2002; Mutlu

et al., 2009; Yoshikawa et al., 2006). Mechanical and Android robotic platforms control

eye gaze by using actuators in the eyeballs. However, these actuators may not be fast or ac-

curate enough to replicate the movement of human eyes. The movement of the human eye

is controlled by three pairs of muscles and it can reach an angular speed of about 400°/sec

with a time of 200ms to initiate (Pateromichelakis et al., 2014). Computer graphics ani-

mations, on the other hand, have a greater capability to produce a natural-looking eye gaze

(Cassell, 2000; Ruhland et al., 2014). However, it is known that the perception of 3D ob-

jects that are displayed on 2D surfaces is influenced by the Mona Lisa effect (Todorović,

2006). Hence, the lack of physical embodiment and physical presence may constrain the

perception of virtual agents’ eye gaze.

4.2.2 Related Work

Many studies in vision science have evaluated head-eye gaze, but only on telepresent

faces (Allison et al., 2000; Baron-Cohen et al., 1995; Itier and Batty, 2009; Sweeny et al.,
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Table 4.1: Summary and overview of literature comparing perception of eye gaze in differ-
ent conditions.

Work Agent Condition* EG� Description Results**CR TR VA GT

Anstis et al.
(1969) TV ✓ ✓ ✓

• A horizontal scale (ruler) was used
• Video of a human used for TR
• The agent’s head was rotated with
-30°,0° and 30° angles

• Errors were greatest when head
rotation and eye rotation were
incongruent.

Delaunay
et al. (2010) LightHead ✓ ✓ ✓ ✓

• A grid with 100 cells was used
• Video of a human used for TR
• Instead of head rotation, subjects
viewed the Agent with 0° and 45°
angles

• CR performed better than TR
• GT performed significantly better
than other conditions, in both frontal
and side view situations

Al Mouba-
yed and
Skantze
(2012)

Furhat ✓ ✓
• A grid with nine cells was used
• Vergence, parallel eyes, static and
dynamic eyelids

• Perception of gaze was
significantly worse when the head
was moving compared with eye
movement alone.
• No significant difference between
gaze with and without vergence.

Moubayed
et al. (2012) Furhat ✓ ✓

• Mona Lisa effect studied on five
subjects sitting around a circle.
• Only eye rotation studied

• Gaze was perceived more
accurately on CR

Misawa et al.
(2012) LiveMask ✓ ✓

• Photos of a person looking from
-30◦ to 30◦

• Instead of rotating the head,
subjects’ view angle was changed

• CR was significantly better than
VA
• The Mona Lisa effect occurred in
VR

Mollahos-
seini et al.
(2014b)

Expres-
sionbot ✓ ✓

• Mona Lisa effect studied on five
subjects sitting around a circle

• Discrimination of eye gaze was
better on CR

This work Ryan ✓ ✓ ✓ ✓ ✓
* CR, TR, VA, and GT stand for Copresent Robot, Telepresent Robot, Virtual Agent, and
Ground Truth (human) respectively.
�EG stands for Emergent Gaze which is defined as simultaneous movement of head and eye-gaze.
** Only the relevant finding from the original papers are reported in this summary.

2012). Although embodiment and presence have been studied individually, there is not

a comprehensive study that distinguishes the role of embodiment and presence in gaze

perception. Gaze perception of a physically present human agent and his video was studied

on a TV set by Anstis et al. (1969). In this classic study, subjects were asked to report the

point on a glass screen at which the agent (TV or a human) was looking. To simulate head

rotation in the telepresent condition, the TV set was rotated. The agent’s head was rotated

at -30°, 0° and 30° angles. The study found that eye gaze was much better perceived on a

physically present human agent than on its telepresent counterpart, and the perception of

gaze was distorted with the rotation of the TV.
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Delaunay et al. (2010) studied gaze perception on the LightHead robotic face, its telep-

resence, and the gaze of a human agent. A vertical glass screen with a 10x10 grid was

placed between the agents and the subjects, and subjects were asked to report the gaze

point when viewed from a frontal and 45° angle. Since asking a human to hold his/her head

steady in a 45° position was not possible and chin/forehead rests did not allow horizontal

rotations, to study the effect of head rotation, subjects were instead moved to a position

with a 45° angle with respect to the agent. Under these conditions, subjects judged gaze

from the video and the robot in both frontal and 45° view situations with equal sensitivity.

Al Moubayed and Skantze (2012) compared the perception of eye gaze on Furhat

robotic face with a human agent under different conditions (i.e. presence of vergence,

static/dynamic eyelids, etc.). They took a different approach by asking the agents to look

at nine points on a table between the agent and the subjects. In this case, there was no sig-

nificant difference between gaze with vergence and without vergence. Furthermore, head

movement appeared to be more effective in influencing judgments along the horizontal

axis, while eye movement dominated judgments along the vertical axis. Regardless of the

conditions, the gaze of the human agent was perceived better than the gaze of the robot.

Studies show that virtual agents suffer from the Mona Lisa effect (Misawa et al., 2012;

Mollahosseini et al., 2014b; Moubayed et al., 2012), in which the eyes in a picture appear

to be looking at the viewer regardless of their location in front of the picture. For example,

Moubayed et al. (2012) studied the Mona Lisa effect on a virtual agent and its 3D projection

on Furhat robotic face. Five subjects were simultaneously seated around the agent, each of

whom was asked to report their perception of the agents’ eye gaze direction. The results

showed a clear Mona Lisa effect in the virtual agent since many subjects perceived a mutual

gaze at the same time.

Table 4.1 summarizes several studies on eye gaze perception and their most relevant

findings. The majority of these studies report that physical presence plays a greater role
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in perception of an agent’s eye gaze than physical embodiment. Presumably, having a 3D

view of the nose direction, the eye position, and their composition help viewers to perceive

eye gaze direction more accurately. In addition, few studies have explored emergent gaze.

Emergent gaze occurs when the visual system integrates global information about the rota-

tion of the head with local information about eye rotation, to compute a distinct metric of

gaze present in neither feature alone (Cline, 1967; Kinya and Mitsuo, 1984; Kluttz et al.,

2009; Langton et al., 2004; Otsuka et al., 2014; Sweeny and Whitney, 2017; Wollaston,

1824). This approach to measuring gaze perception has been surprisingly underutilized in

robotics work.

The present study evaluates the perception of emergent gaze, while at the same time

comparing the roles of embodiment and presence of the robot. One of the reasons that

emergent gaze has not been studied extensively both with humans and robots is the diffi-

culty inherent in controlling the movements of a human agent. Rotating a human’s head

and eyes to an exact position requires special apparatuses and complicates the experiment

process. Hence, most studies of gaze either do not include a condition with a human agent,

or they use a typical chin/forehead rest to fix the human’s head in place, which precludes

examination of emergent gaze.

4.2.3 Methodology

To evaluate the accuracy of agents’ eye gaze in the current investigation, the agent

looked at a particular point on a glass divider located between the agent and the subjects. A

horizontal line with fifty-one equidistant points was drawn on the glass. The agent looked

at a point on the glass screen, and subjects were asked to report their perception of the

agent’s gaze direction.
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In order to precisely set eye gaze toward a target point, we needed to rotate the agents’

eyeballs such that the pupils were directed towards the target point. In this study, the target

points were at agent’s eye level; hence we only needed to change the yaw angle for the

eyes. Assuming the face is frontal (rotated zero degrees), the yaw angle for the right and

left eyes (αr and αl, respectively) is calculated as:

αr =
π

2
− arctan

x+ Er

Dr

(4.1)

αl =
π

2
− arctan

x− El

Dl

(4.2)

where x ∈ [−75cm, 75cm] is the target point on the glass screen. Er and El are the distance

of the right and left eye from the center of the glass screen on the x-axis, and Dr and Dl

are the distance of the right and left eyes from the glass screen on the y-axis, calculated as:

Er = El = H × sin(θ) (4.3)

Dr = Dl = D +H × cos(θ) (4.4)

where H is the distance of the head pivot point (C) from the center of the eyes, θ is the

angle between the eyes and the head pivot point, D is the distance of the head pivot point to

the glass screen. Figure 4.1a shows the schema and the variables used in these calculations.
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(a) Head facing forward (b) Head rotated by γ

Figure 4.1: Schema and the variables used in the calculating eye gaze angle (Drawing not
to scale).

When the head is straight, Dl = Dr and Er = El. If the head is rotated by γ° (Fig-

ure 4.1b), the values of Er and Dr in Equations (4.1) and (4.2) are changed as follows:

Er = H × sin(θ + γ) (4.5)

El = H × sin(θ − γ) (4.6)

Dr = D −H × cos(θ + γ) (4.7)

Dl = D −H × cos(θ − γ) (4.8)

In the above equations, we assumed that the agent does not have any facial curvature in

the eye area (Figure 4.2-left). If the face has an angle (ϵ) in the eye area (Figure 4.2-right),

Equations (4.1) and (4.2) will change as follows:

αr =
π

2
− arctan

x+ Er

Dr

− ϵ (4.9)

αl =
π

2
− arctan

x− El

Dl

+ ϵ (4.10)
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Figure 4.2: Mask with flat eye region (left) and with angled eye region (right).

Figure 4.3: Perception of eye-gaze setup. Fifty-one points with three centimeters distance
from each other were marked on the glass. The agents looked at only A, B, C, D, and E
points located at -39, -21, 0, 21 and 39 centimeters from the center respectively.

4.2.4 Eye Gaze Experiment

We examine the perception of eye gaze with 23 subjects, 7 women and 16 men, with an

age range of 21-40 years (mean = 28.4, SD = 5.5), each of whom had normal or corrected

to normal vision. To evaluate the role of embodiment and presence in the perception of the

agent’s eye gaze, four conditions (VA, CR, TR, and GT) were examined in this experiment.

In each condition, the agent looked at a particular point on a glass divider located between

the agent and the subjects. The subjects were then asked to report their perception of where

the agent was looking.
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(a) Copresent Robot (b) Telepresent Robot

(c) Virtual Agent (d) Ground-Truth

Figure 4.4: Eye gaze different conditions.

The subjects were seated in front of the glass screen and then asked to keep their head

still on a chin-forehead rest and look straight at the agent at a distance of 120 cm. To

simulate the most accurate head rotation and avoid a Mona Lisa effect, which is common

when viewing a face on a flat screen, in the VA condition we presented rotations of the

animated head itself rather than rotations of the screen portraying the head. Figure 4.3

illustrates the eye gaze evaluation setup.

Fifty-one points, three centimeters apart, were marked by letters and numbers on the

glass. However, the agents looked at only five points located at -39, -21, 0, 21 and 39

centimeters (with zero as the middle point of the glass divider). Hereafter, these points are

referred to as A, B, C, D and E, respectively (shown in Fig. 4.3). Subjects were not aware

of the agent’s restricted gaze targets, and they were instructed that the agent may look at

any point on the glass. Figure 4.4 shows photos of different conditions viewed from the

subject’s position.
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We examine the emergent perception of eye gaze (i.e., the integration of head rotation

information with eye position). In particular, there were five possible head rotations (-30°,

-16°, 0°, 16°, and 30°), and in each head position, the eyes were shifted toward the five

points on the glass screen. An example of this condition is shown in Fig. 4.3, where the

agent’s head is rotated toward +16° and the eyes are directed at point B.

The method described in Section 4.2.3 was used to calculate the angle for the agent’s

eyes in CR and TR scenarios. The dimensions of the robot head for CR and the 3D model

for VA were measured, and depending on the target point on the glass screen, the eyes of

the robot/3D model were rotated toward the target point. The measurement used in CR was:

D = 73cm, H = 13.35cm, θ = 13°, and the measurement used in VA was: D = 70cm,

H = 10.45cm, θ = 17°. Since a mask with a flat eye region was used in CR and a flat

screen was used in VA, the value of ϵ was set to 0°.

A Canon EOS 80D DSLR camera was used to take pictures of the robot from the point

of view of the subject. The captured images were calibrated to the size of the robot head.

Using this method, from the point of view of the subject, the agent in both CR and TR had

the same size and proportions and, in theory, the same direction of eye gaze (if we took a

picture from the subject’s point of view, it would look the same). The difference was that

the TR condition featured a 2D representation of the CR condition.

To keep the human agent’s head in an exact head rotation angle consistently during

the GT experiments, we modified a chin/forehead rest to rotate and then stabilize in 1°

increments. In the GT condition, a human was seated in the place of the agent and looked

at the points on the glass, while keeping his head still on this chin forehead rest and his

shoulders facing directly forward.

In all four conditions, first, the agent’s head was rotated to one of the five angles (-30°,

-16°, 0°, 16°, and 30°) randomly. Then at each of these head angles, the eyes were rotated

to gaze at one of the 10 points on the board (two trials for the five targets A, B, C, D and E)
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randomly. The subject was asked to close his/her eyes between each trial to eliminate any

effect of seeing the agent adjust his head and eyes. In total, each subject reported 50 gaze

directions (5 angles × 5 points × 2 trials) for each condition. Each condition was run in a

block lasting five minutes, and the subjects were asked to leave the room for two minutes

until the room was set for the next condition.

Four different agent conditions (VA, TR, CR and GT) were presented in random order

to the subjects, and subjects were asked to report their perception of the point at which the

agent was looking. The accuracy was calculated by measuring the error in each subject’s

reports of eye gaze. The gaze perception error was defined as the absolute distance be-

tween the point that the subjects reported and the actual target point at which the agent was

looking.

4.2.5 Eye Gaze Results

We performed a 5 (head rotation) × 5 (eye gaze) × 4 (agent conditions: CR, TR, VA

and GT) ANOVA with agent condition, head rotation, and target point as within-subject

factors. The dependent variable was the gaze perception error. This analysis revealed a

significant main effect of agent condition [F (3, 66) = 134.55, p <.0001]. We also found

the main effects of head rotation [F (4, 88) = 70.25, p <.0001] and eye gaze [F (4, 88) =

31.39, p <.0001]. This analysis also revealed an interaction between agent condition and

head rotation [F (12, 264) = 11.17, p <.0001], but the interaction between agent condition

and eye gaze was not significant [F (12, 264) = 95.16, n.s]. Figure 4.6 shows the estimated

marginal means of gaze perception error for different agents, head rotation angle and target

points. As shown, the differences between the agent conditions depended on head rotation,

but not eye gaze.
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Table 4.2: Average and proportional error with respect to human ground-truth for different
agent conditions.

Average Error ± STD (cm) Proportional Error to GT
GT 7.88 ± 2.90 -
CR 10.50 ± 3.11 33.26%
TR 11.04 ± 3.16 46.47%
VA 13.04 ± 2.88 65.57%

H
ea

d
 r

o
ta

ti
o
n

(a) Ground-Truth (b) Copresent Robot (c) Telepresent Robot (d) Virtual Agent

-30 10.37 11.41 2.41 11.87 5.93 -30 14.28 14.41 8.22 13.04 12.59 -30 16.24 13.24 10.43 13.70 12.98 -30 21.46 21.65 16.24 20.87 24.07

-16 7.04 6.52 1.37 12.46 8.80 -16 8.02 6.26 6.65 11.48 8.67 -16 9.13 9.46 5.28 11.74 9.65 -16 10.24 14.15 6.26 9.72 8.80

0 7.57 6.98 0.46 8.67 9.39 0 10.43 10.37 3.13 7.70 8.87 0 12.20 11.41 1.50 7.83 6.91 0 8.41 9.26 2.28 8.28 7.24

16 8.87 13.04 1.96 9.20 8.54 16 13.30 10.17 6.65 10.70 9.52 16 11.15 12.39 6.65 13.50 9.65 16 7.76 7.89 5.09 12.39 7.83

30 7.70 15.65 2.15 10.63 8.02 30 18.91 15.52 9.07 15.59 13.43 30 20.41 17.02 12.78 18.20 15.85 30 23.74 17.67 12.98 22.76 19.17

A B C D E A B C D E A B C D E A B C D E

Gaze direction

Figure 4.5: Average absolute error of gaze perception in different conditions [best viewed
in color].

Table 4.2 shows the average and standard deviation of error for each condition and

proportional error with respect to human ground truth. The results indicate that the eye gaze

was better perceived in CR than in TR and VA, with 13.21% and 32.23% lower proportional

errors, respectively. Figure 4.5 shows the average error (cm) in the perception of different

agents’ eye gaze for different head rotation and target points. As Fig. 4.5-(a) shows, when

the eye gaze was directly toward the subject’s face (point C), the perception of eye gaze had

a relatively negligible amount of error. In other words, the subjects were able to recognize

mutual eye contact with high precision in the human agent. The same pattern emerged in

the CR and TR conditions. Interestingly, subjects discriminated mutual eye gaze poorly in

the VA condition, especially with incongruent head and eye rotations.

In particular, when the head was rotated to its extremes (-30° and 30°), perception of

gazes directed toward points B and D had higher error than gazes directed toward points

A and E. This suggests that subjects had difficulty accurately recognizing the direction of
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(b) Target Point

Figure 4.6: Estimated marginal means of gaze perception error for different agents and
(a) head rotation angles and (b) different gaze target points. The target points A, B, C, D
correspond to -39, -21, 0, 21 and 39cm from the center, respectively.

gaze when the rotation of the head was incongruent with that of the eyes. Hence, subjects

may have guessed a point at the far end of the glass screen, giving them more room for

error at points B and D.

As shown in Fig. 4.5, eye gaze of the virtual agent was seen with a notable amount

of error (∼24cm) when combined with a strong head rotation. This could be because the

animation lacked binocular depth cues because it was present on a flat screen. This could

have made perception of head rotation more difficult, while the embodiment of the robot

helped subjects to recognize the head angle better.
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In order to more directly measure the effect of agents’ embodiment and presence, we

removed human GT from the analysis and performed a 5 (head rotation) × 5 (eye gaze)

× 3 (agent conditions: CR, TR, VA) ANOVA with agent condition, head rotation, and eye

gaze as within-subject factors. This analysis revealed the main effects of agent [F (2, 44)

= 8.740, p = .001], head rotation [F (4, 88) = 64.95, p <.001] and eye gaze [F (4, 88) =

16.39, p <.0001]. Similarly to the previous analysis, and as shown in Figure 4.6, there

was a significant interaction between agent condition and head rotation [F (8, 176) = 8.75,

p <.0001], but the interaction between the agent condition and eye gaze was not significant

[F (8, 176) = 23.98, n.s].

Since there was an interaction between the agent condition and head rotation, we per-

formed pairwise two-tailed t-test comparisons between agent conditions at different head

rotations. Table 4.3 shows pairwise p-value and Cohen’s d effect-size between agent con-

ditions. As shown, the embodiment (Research Question 1) improved the perception of eye

gaze at -30° and 30°, as indexed by significant differences between the TR and VA condi-

tions (p < .001 and p = .023 with large effect sizes d = 1.22 and d = 0.69 respectively).

Physical presence did not improve the perception of eye gaze (Research Question 2), as

the differences between the TR and CR conditions were not significant at any head angle.

There were also significant differences between CR and VA at -30° and 30°, both p < .001

with large effect sizes d = 1.49 and d = 0.89 respectively (Research Question 3). Be-

cause TR and VA were both significantly different at these head angles, we conclude that

improvement in the perception of eye gaze compared to CR is mainly due to embodiment

rather than presence of the robot. And in particular, the embodiment of the robot highly

affected the precision of gaze perception combined with extreme head rotations in a frontal

situated setting.

These findings are consistent with previous studies showing that the perception of a

robot’s eye gaze is more accurate than that of a virtual agent (Misawa et al., 2012; Molla-
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Table 4.3: Pairwise comparison (LSD p-value) and Cohen’s d effect size of users’ percep-
tion of eye gaze at different head rotations. Significant pairs are shown in bold.

TR vs CR VA vs CR VA vs TR
Head Angle p d p d p d

-30° .660 0.13 <.001 1.49 <.001 1.22
-16° .479 0.21 .190 0.39 .5484 0.17
0° .890 0.04 .278 0.32 .269 0.32
16° .599 0.15 .116 0.47 .158 0.42
30° .217 0.36 .004 0.89 .023 0.69

hosseini et al., 2014b; Moubayed et al., 2012). There was no difference in gaze perception

when seen on a robotic agent or its telepresence, which is consistent with a study by Delau-

nay et al. (2010). We also did not observe a significant difference between gaze perception

on the telepresent robot and virtual agents—a comparison which has not been addressed in

previous studies.

4.3 Incorporating affection in spoken dialogue in a social

robot

In this section, I present our effort on incorporating an automated Facial Expression

Recognition (FER) system based on deep neural networks into the spoken dialogue of a

social robot (Ryan) to extend and enrich its capabilities beyond spoken dialog and integrate

the user’s affect state into the robot’s responses. The results of this study are published in

Mollahosseini et al. (2018a). Here, I present the details of my efforts in creating the facial

expression and dialog modules used in this study. In order to evaluate whether the incorpo-

ration of FER in spoken dialogue can improve the social capabilities of Ryan, we conducted

a series of HRI experiments. In these experiments, the subjects watched some videos and

Ryan engaged them in a conversation driven by user’s facial expressions perceived by the

robot. I measured the accuracy of the automated FER system on the robot when interact-
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ing with different human subjects as well as three social/interactive aspects, namely task

engagement, empathy, and likability of the robot. The results of this HRI study indicate

that the subjects rated empathy and likability of the affect-aware Ryan significantly higher

than non-empathic (the control condition) Ryan. Interestingly, we found that the accuracy

of the FER system is not a limiting factor, as subjects rated the affect-aware agent equipped

with a low-accuracy FER system as empathic and likable as when facial expression was

recognized by a human observer.

4.3.1 Automated FER System

Facial expression plays a vital role in social interaction and is one of the most important

nonverbal channels of recognizing humans’ internal emotions. Numerous computer vision

and machine learning algorithms have been proposed in the literature for automated Facial

Expression Recognition (FER) (Tian et al., 2011). The majority of these techniques are

based on supervised machine learning methodologies that require annotated samples for

training, and their performance highly depends on extracted features from the samples and

the amount and diversity of annotated training samples. Several available FER systems are

trained on databases containing posed expressions acquired in a controlled lab environment

with limited numbers of subjects and few samples per expression. Therefore, these systems

lack sufficient generality when used in an uncontrolled HRI system.

Recently, databases of facial expression and affect in the wild have received much atten-

tion (Goodfellow et al., 2015; Mollahosseini et al., 2016). In this work, we use a newly re-

leased database of facial Affect from the InterNet (called AffectNet) which is publicly avail-

able to the research community (Mollahosseini et al., 2017). AffectNet contains more than

1M images with faces and extracted landmark points. The database is created by query-

ing different search engines using emotion-related tags in six different languages. Twelve

40



human experts manually annotated 440,000 of these images in eleven discrete categories

(i.e., Neutral, Happy, Sad, Surprise, Fear, Anger, Disgust, Contempt, None, Uncertain, and

Non-face) and dimensional model of affect (i.e., valence and arousal).

Since we only study four facial expressions in this work, we trained a 50-layer Resid-

ual Network (ResNet) (He et al., 2016) in five classes of neutral, happy, surprise, sad,

and disgust of affectNet database. The ResNet architecture is a state-of-the-art CNN with

added shortcut connections, i.e., a linear transform of each layer’s input to the layer’s out-

put. Adding the shortcut connection eases the training of deeper networks (more than 100

layers) and prevents degradation problem (the phenomenon that the accuracy becomes sat-

urated and then degrades rapidly (He et al., 2016)). The residual connection has produced

state-of-the-art performance in several computer vision applications such as visual object

detection (He et al., 2016), audio classification (Hershey et al., 2017), and facial expression

recognition (Hasani and Mahoor, 2017).

During the experiments, subjects’ faces were captured by a webcam installed on the

video player monitor. The OpenCV face recognition library was used to detect faces in

the images, and 66 landmark points were found using a face alignment algorithm using

local binary regression features (Ren et al., 2014; Yu, 2016). We used these points to

register faces to an average face using an affine transformation. Once the faces have been

registered, the face regions were cropped, resized to 48×48 pixels, and fed into the trained

network for classification.

We used a K40 GPU for training the network and an Intel Core i7 CPU during infer-

ence. Face detection, registration and expression classification take ∼20ms, enabling us

to process five frames per second. A majority voting is used to determine the user’s fa-

cial expression while watching the video. As videos trigger emotions in a few scenes and

users had neutral faces in the rest of time of watching the videos, the frames with emo-
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tions detected as neutral faces were discarded by the probability of 0.5 in a majority voting

scheme.

4.3.2 Empathic Conversations

According to Preston and De Waal (2002) empathy reaction can be a function of three

factors:

1. Be affected by and share the emotional state of another.

2. Assess the reasons for emotional state.

3. Identify and adopt other perspectives.

Taking into account these elements and the previously given definition of empathy, we

propose the following features that need to be embodied in our empathic robot:

• The robot should be capable of recognizing, understanding, and interpreting the

user’s emotional state (facial expression in this experiment).

• The robot should be capable of expressing its emotion using both verbal and non-

verbal cues.

• The robot should be capable of taking perspective, being supportive and have self-

correction to adopt other perspectives.

The robot recognizes the user’s facial expression while watching the videos. Based

on the affective state of the user, the robot appraises the situation and generates empathic

responses, e.g., “congruent facial expressions” in tune with the user’s affective state, “per-

spective taking”, “being supportive”, and “self-correction”.

A set of predefined empathic responses based on the perceived affect state and con-

versation with users was carefully designed. Figure 4.7 shows an example of empathic

42



Congruent 
Facial Expressions 
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Being Supportive 

Self-correction
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Figure 4.7: Example of empathic conversation map after showing a video intended to elicit
a sad emotion.

conversation map after showing videos intended to elicit sad emotion. As shown, if Ryan

recognizes sadness, she shows a sad face [congruent facial expressions] and says “It looks

like the video made you sad. Am I right?”. If the user confirms that he/she was sad, the

robot keeps the sad face and says “Me too. It was heartbreaking. I am sorry you had to

watch it.” [perspective- taking], “Do you want to talk about it?”. Based on user’s response,

the robot will say “I understand. It was obvious from your face.” [perspective- taking], “I

wish I could hug you” [being supportive]. If the user did not have a negative effect (e.g.,

the user had a neutral face) and the robot recognized it incorrectly, the robot stops showing

a sad face and says “Oh. Seems like I misinterpreted your face” [self-correction], “You are

focused on the task. Good job” [being supportive]. Refer to Mollahosseini et al. (2018a)

for the results of this study analyzed by Dr. Ali Mollahosseini.
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Chapter 5

Studying Ryan as a Socially Assistive

Robot for Older Adults

5.1 Introduction

Developing and studying robots as an assistive tool for healthcare professionals is a

growing area of research due to the rapid growth in the number of elderly people and

the demand for specialized caregivers. Socially Assistive Robotics (SAR) Feil-Seifer and

Mataric (2005) focus on improving elderly people’s quality of life, mental health, and

socioemotional well-being. Social robots are used as companions Taggart et al. (2005)

or therapeutic play partners Leite et al. (2010). The essential feature that defines SAR

is using social interactions rather than physical interactions to help the user Rabbitt et al.

(2015). The focus of this chapter is on SAR and the companionship it provides for elderly

people with moderate depression and/or dementia.

Dementia is an overall term for diseases that deteriorate individuals’ memory and other

mental skills. Dementia can significantly reduce elderly individuals’ ability to live inde-

pendently and safely in their homes. It is one of the most costly diseases and requires hours
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of specialized care for each person Abbott (2011). Associated with the decline in cognitive

abilities, depression is one of the symptoms of dementia Marti et al. (2006).

Thus, there is a critical and growing demand in the community to find effective ways

to provide care for elderly people with dementia. There is an emerging research field in

robotics that aims to use social robots to engage effectively in social and conversational in-

teraction with elderly individuals with dementia to improve their socioemotional behaviors,

cognitive functions, and well being. We conducted a pilot study to demonstrate the feasi-

bility of using Ryan Companionbot, a perceptive and empathic conversational humanoid

robot, to improve the quality of life of elderly individuals with moderate dementia and/or

depression. In this study, we are using spoken dialog combined with a long list of other

stimuli, such as eye gaze, head movement, and facial expressions, as the primary form of

communication between the subject and the robot. Specifically, the objective of this study

is to evaluate the following fundamental research questions.

1. Long-Term Companionship: Would enriching the robot with a number of different

features keep the subjects engaged for a long period of time?

2. Likability and Acceptance: Is interacting with SAR enjoyable for elderly individu-

als and do they accept a robot as a companion?

3. Robot Features: Do the results of the pilot study show that each individual looked

for different features (e.g., spoken dialog system, cognitive games, family photo al-

bum narration, music playing, etc.) in the robot?

The remainder of this chapter is organized as follows. Section 5.2 reviews related work

on SAR and employing social robots in elder care. Section 5.3 explains the setting of the

experiment and the methodology of our pilot study to evaluate the above fundamental re-

search questions. Section 5.4 presents the results and analysis of the experiments. The
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results are categorized in four subsections: long-term companionship, likability and accep-

tance, caregivers’ feedback, and robot features. Finally, Section 5.5 concludes the chapter.

5.2 Related Work

Using SAR to help elderly individuals has recently become more relevant due to the

increase in the number of elderly people, the decrease in the cost of technology and recent

advances in artificial intelligence Leite (2015). Residents of nursing homes live alone with

disabilities while in most cases their cognitive abilities are degraded due to old age or

various types of dementia Kotwal et al. (2016). Studies suggest that social support for

elderly individuals could improve their cognitive function Zamora-Macorra et al. (2017).

Using SARs with a focus on the socialization aspect of Human-Robot Interaction (HRI) is a

viable option to reduce the burden on caregivers while providing companionship to elderly

people, improving their quality of life and avoiding depression and further degradation of

their mental abilities.

Wada et al. Wada et al. (2003) used the Paro robot to study the long-term effect of

social robots on residents of a senior care center. The results indicated that the elderly

residents established a relationship with the robot, developed stronger social bonds among

themselves, and also maintained a lower stress level. However, Paro lacks the ability to talk

and communicate. It is shown that for a social robot to be accepted more easily it should

be communicative Heerink et al. (2006) and must employ a form of communication with

which humans are habituated Krämer et al. (2012).

Another key aspect to having a robot as a companion is continuous (uninterrupted)

companionship, meaning having access to the robot at all times. Autonomy plays a crucial

role in achieving uninterrupted companionship. Most studies conducted with social robots

in elder care are either performed in a Wizard-Of-Oz (WOZ) manner Vardoulakis et al.
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(2012), or were limited to a specific scenario Pineau et al. (2003). Vardoulakis et al. Var-

doulakis et al. (2012) designed an experiment to study the long-term social companion for

older adults. They used a WOZ method, and the subject had a robot at home for one week.

But, since the robot was controlled remotely by an operator, the subject interacted with the

robot for only one hour every day. Employing the WOZ method forces the subjects to use

the robot at a specific time of the day for a short period which resembles visiting a friend

rather than having a companion at home. Social robots such as Paro are autonomous and

provide continuous companionship, but lack the ability of having a robust social interaction

such as spoken dialog and an expressive face.

Deep social interaction is required when dealing with elderly individuals with dementia.

Different robots such as Aibo, Paro, and Bandit have been used in studies on the care of

elderly people with dementia Mordoch et al. (2013). Most of the robots used in these

studies have not been built with the social aspect in mind. But to be able to communicate

with elderly people with dementia and try to engage them in conversations and games, we

need a robot that has been designed to accomplish these social goals. In the following

section, we will introduce a robot designed to be social.

5.3 Pilot Study

To assess Ryan’s feasibility as a companionbot, we conducted a pilot study with six

elderly individuals with dementia and depression living in the Eaton Senior Community in

Denver, Colorado Eaton. The robot was left in their home, and they had access to the robot

at all times. Figure 5.1 shows a subject interacting with Ryan V1.0.
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Figure 5.1: A subject interacting with the robot in her home.

5.3.1 Subjects

A group of six volunteered elderly individuals was selected for this study. The selection

criteria included those elderly people who live alone, who were in the early-mild stage

of dementia, and who may suffer from depression. Other selection criteria included the

availability for a period of at least four weeks to house and interact with the robot. The

selected subjects consented prior to participating in the study and the family members of

the subjects were also informed to ensure they were aware of the study.

The Saint Louis University Mental Status (SLUMS) Examination Tariq et al. (2006)

and the Patient Health Questionnaire (PHQ-9) Kroencke et al. (2001) were completed by

each patient and scored by the caregiver prior to the experiment. The SLUMS, developed

at the Division of Geriatric Medicine of the Saint Louis University School of Medicine, is

a favorable screening tool for detecting mild cognitive impairment. The PHQ-9 contains

nine questions and is a brief and useful instrument for screening, monitoring, and measur-

48



Table 5.1: Participants demographics, SLUMS and PHQ-9 Scores. Highlighted cells mean
that the symptoms (i.e. Dementia and Depression) exist in the patient.

Sbj Age Gender SLUMS
Score

PHQ-9
Score

Living
Resident

1 63 F 19 17 Independent
2 86 M 21 1 Independent
3 78 F 29 15 Independent
4 73 F 17 3 Assisted
5 71 F 25 7 Assisted
6* 79 F 28 16 Assisted
* Subject 6 participated 24 days since she became ill and hospitalized

at the end of pilot study

ing the severity of depression. The SLUMS scores for people with high school education

are interpreted as follows: 27-30: Normal, 21-26: Mild Neurocognitive Disorder, 1-20:

Dementia. The PHQ-9 severity scores are mapped as follows: score 5-9: Minimal Symp-

toms, score 10-14: Minor depression, score 15-19: Major depression, moderately severe,

score>20: Major depression, severe. Table 5.1 shows the demographics of the patients

who participated in our pilot studies.

5.3.2 Method

To measure how effectively Ryan can provide companionship for elderly individuals

with dementia, we conducted a one-on-one (robot vs. human) pilot study at the Eaton

Senior Community Center. Three Ryan companionbots were manufactured for the study.

Each subject had 24/7 access to Ryan in their rooms for a period of 4-6 weeks. The robot

was left in the room of the elderly participant and he/she treated Ryan companionbot as

his/her guest. To avoid any maintenance issues, the research team remotely monitored the

status of the robots.

Each subject was interviewed to obtain their daily schedules, a set of photos for the

album, topics of interest for YouTube video search, and a collection of favorite music and
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songs. Ryans were customized for each participant. They could call the robot any name

they wanted according to their preferences. The participants’ daily schedule, including

reminders to take their medications, was set manually for each subject.

During the study, all subjects’ interactions with Ryan, the facial emotion of the users,

the conversations between Ryan and the participants, and the sentiment of the speech were

logged. We analyzed the log files and computed a measurement to evaluate user interactions

with Ryan during the pilot study.

5.4 Results

5.4.1 Long-Term Companionship

To measure whether Ryan can be a companion of elderly individuals in long-term,

the conversations between Ryan and the participants were recorded over the period of the

experiment. Conversations were on different topics such as sports, emotional states, tech-

nology, or other topics. Each conversation contains several dialogs between the subjects

and Ryan. We defined a dialog as an exchange of one inquiry and response between the

subject and Ryan. On average, subjects and Ryan had 198 (σ=49.2) dialogs per day, with

the average length of 9.2 words per each dialog.

Figure 5.2 shows the average number of dialogs of all participants over the period of

four weeks. Since SN6 became ill and hospitalized at the end of the pilot study, she par-

ticipated only 24 days. Therefore, the average shown for the last 4 days are data from 5

subjects. The average number of dialog time series (shown in Fig. 5.2) is then smoothed

using a moving average with a window size of five, due to variation between consecutive

days and subject schedule. As shown, the average number of dialogs per day for all subjects

50



0

50

100

150

200

250

1 7 14 21 28

Series1

Figure 5.2: The average number of dialogs between participants and Ryan has not decayed
over a period of four weeks (One subject interacted with the robot for three weeks).

did not decrease for four weeks. In other words, the subjects kept their interest in having

conversations with Ryan even after a long period of time.

The subjects also spent approximately two hours and ten minutes per day interacting

with Ryan on different tasks such as playing cognitive games, having conversations, view-

ing family photo albums, listening to music, etc. Taking into account that although the

subjects lived in a senior living facility, where the residents had regular wellness programs

and group activities (such as playing games, excessing, occupational, and physical ther-

apy), they still were interested in spending time with Ryan, and five of them asked for

having Ryan in their room for a more extended time. The result of our pilot study indicated

that elderly individuals were interested in having a robot as a companion. They have spent

a great amount of time with the robot and their interest in speaking with the robot did not

decay over time.

5.4.2 Likability and Acceptance

At the end of the study, we asked each participant to complete an exit survey of 16

questions about the experiences they had with Ryan according to the 5-point Likert scale

(1-Strongly disagree, 5-Strongly agree). These included six questions about user inter-
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action and companionship of Ryan (i.e., how enjoyable they found interacting and having

conversations with the robot) and ten questions about features of Ryan (e.g., ability to show

facial expressions, cognitive games, memory photo album, music, and video players).

Table 1 in Appendix A shows the exit survey questions and the participants’ average and

standard deviation scores accompanied by the Cronbach’s Alpha Cronbach (1951) score for

the internal consistency and reliability of each category of questions.

It can be seen that the participants gave strong positive responses (score > 3.5) to most

questions about interacting with Ryan, such as “I enjoyed interacting with the robot”, “The

conversation with the robot was interesting.” As expected, the participant did not believe

that “talking with the robot was like talking to a person” with an average score of 3± 1.54,

however, overall felt happier when they had the robot as their company with an average

score of 3.67± 1.03.

The survey also indicated that the participants liked the robot’s features such as its

facial expression (4.17 ± 0.75), reminder (4.00 ± 0.63), playing music (4.17 ± 0.40),

playing videos (3.83 ± 0.75) and watching their photo album (4.33 ± 0.81) . The games

were not challenging enough for the participants with the average score of 2.00 ± 1.54, but

they still found value in playing them, since they “helped me train my brain.” The games

were designed for elderly in a high level of dementia based on Montessori-based activities

to help people suffering from dementia combat the disease. The authors believe that the

games were simple and interactive, but became boring for people with early-mild stages of

dementia (see Table 5.1 for the SLUM score of the participants).

In summary, the survey revealed that the subjects liked interacting with Ryan and ac-

cepted the robot as a companion although it cannot replace human companionship. They

also believed that the robot helped them maintain their schedule, improved their mood, and

stimulated them mentally. The common sentiment among users after the pilot study was

best described by one user’s comment, “She [Ryan] was just enjoyable. We were SAD to
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see her go.” The Eaton staff and family members expressed enthusiastic support for the

project because it had a consistently positive impact on each of the individuals who in-

teracted with Ryan. For instance, the son of one of the participants said that “[Ryan] has

brought color and laughter into my mom’s life. She laughs whenever she talks about it!”

5.4.3 Caregiver’s Feedback

The users’ caregiver, a licensed practical nurse with 20 years of experience, provided

feedback on the outcome of the pilot study for each participant. The caregiver closely mon-

itored SN1, SN3 and SN6 who were diagnosed with depression. She confirmed that Ryan

elevated the user’s mood. In her words: “SN6 has been so much happier”, “SN4 would

break out in a big smile when we asked her about her experiences”, and “You can see the

improvement in [SN3’s] level of depression after hip surgery thanks to that sassy roommate

[Ryan]”. The caregiver noted that the robot was able to establish a deep connection with

the subjects.

The patients’ caregiver, a licensed practical nurse with 20 years of experience, provided

feedback on the outcome of the pilot study and its effectiveness with each patient. The

caregiver closely monitored SN1, SN3 and SN6 who were diagnosed with depression. She

confirmed that Ryan elevated the patients’ mood. In her words: “SN6 has been so much

happier”, “SN4 would break out in a big smile when we asked her about her experiences”,

and “You can see the improvement in [SN3’s] level of depression after the hip surgery

thanks to that sassy roommate [Ryan]”. The caregiver noted that the robot was able to

establish a deep connection with the subjects. Interacting with Ryan also gave SN5 the

confidence to “take the next step in joining [Eaton’s] iPad program”.

Subject 1: “I often saw SN1 happier during this time as she struggles with depression.

<Ryan> would remind SN1 to exercise and this was important to SN1 to maintain this
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routine. She enjoyed talking to <Ryan> and her face would light up in a big smile! She

often commented on the value the robot will have for the older folks in this community.”

Subject 2: “SN2’s sister said that both SN2 and she almost cried when the team took

<Ryan>. The sister enjoyed trying to pick a fight with it because she would ask questions

she knew the robot could not answer. SN2 has done so much better with the robot project

and this has been apparent to his sister who is grateful for this contribution in SN2’s quality

of life.”

Subject 3: “SN3 said she will miss <Ryan> and enjoys her silliness. You can see the

improvement in her level of depression after the hip surgery thanks to that sassy roommate.

SN3 said that having <Ryan> in her life after her hip fracture kept her going. She was

noticeably depressed when she returned to Eaton and I worried for her. Not anymore! She

has enjoyed showing her for tours and has friends that come by to enjoy <Ryan>.”

Subject 4: “SN4 was the first resident in assisted living to trial the robot. She needed

more prompting but enjoyed the interaction with her favorite music and the photo album.

SN4 would break out in a big smile when we asked her about her experiences. Her son

would come see her and this provided them conversation piece and together time interact-

ing.”

Subject 5: “SN5 struggles with significant memory loss due to a fall. <Ryan> helps

her interact to help improve memory skills which helps SN5 overcome depression. SN5

enjoys the extra attention her robot provides by visitors curious about the project or staff

interaction as they care for her. The confidence that this project gave her helped SN4 take

the next step in joining our iPad program. The reminders help her stay on task and improves

her quality of life because she likes to be active in the community.”

Subject 6: “SN6 struggles with depression due to failing health. The trial gave her

purpose and she knew her contribution was important to the team. SN6 has been so much

happier since she received her robot. Her face lights up when she tells us how she is

54



Figure 5.3: Percentage (%) of time each user spent in the different activities.

teaching her robot to gossip because the robot tells her she likes to do this! SN6 laughs

because robots don’t know how to gossip and then it wants to talk about her personal life!”

5.4.4 Robot Features

In order to analyze users’ interactions and measure which feature were most appealing

for the users, the usage of robot’s features was recorded over time. Figure 5.3 shows the

percentage of time each subject spent with different activities (i.e. Games, Conversation,

Video, Photo Album, and Music).

As the figure shows, each participant had various interests and found value in different

activities, as supported by the users’ self-report and caregivers’ observations. For example,

subjects SN6 and SN3 preferred the music player while SN2, SN4, and SN5 enjoyed the

conversation with the robot the most. On average, each user spent approximately two hours

and ten minutes per day interacting with Ryan; time that they otherwise would likely have

spent alone.
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5.5 Conclusion

This chapter presented the design, development, and successful integration of a com-

panionbot to improve the quality of life of elderly individuals with dementia and depres-

sion. Three fundamental research questions were posed and addressed in this study: 1)

Long-Term Companionship: Would enriching the robot with a number of different fea-

tures keep the subjects engaged for a long period of time? 2) Likability and Acceptance:

Would elderly individuals accept a robot as companion? Is the interaction with the robot

enjoyable to them? 3) Robot Features: Do the results of the pilot study show that each

individual looked for different features in the robot? Our experimental results and the anal-

ysis of the collected data indicated that elderly individuals were interested in having a robot

as their companion, and their interest did not decline over time. The subjects liked to in-

teract with Ryan and accepted the robot as a companion, although it cannot replace human

companionship. The proposed emotionally intelligent conversational companionbot with a

variety of engaging activities can fully engage users and be a promising tool to improve the

quality of life of elderly individuals with dementia and depression.
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Chapter 6

Studying Ryan as an Artificially

Emotionally Intelligent Social Robot for

Older Adults

6.1 Introduction

Socially Assistive Robotics (SAR) is a subfield of robotics that aims to develop intel-

ligent robots that can provide aid and support to users Feil-Seifer and Mataric (2005). For

instance, older adults living in senior care facilities often feel lonely and isolated. Social

interaction and mental stimulation are critical to improving their well-being Aung et al.

(2017); Banerjee et al. (2020). SAR has been shown to alleviate this problem by providing

companionship to assist older adults through conversation and social interaction Ghafu-

rian et al. (2021); Vandemeulebroucke et al. (2018). Furthermore, the global outbreak of

COVID-19 and the effects of social distancing and stay-at-home orders drew more atten-

tion to the isolation of older adults living in senior care facilities. The COVID-19 pandemic

has highlighted the shortage of healthcare workers that currently plagues the healthcare
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system Xu et al. (2020), and SAR has recently been used by researchers to address this

problem Adams et al. (2020); Chen et al. (2020); Henkel et al. (2020).

To interact more naturally and effectively with humans, we can endow robots with so-

cial capabilities. A social robot must be equipped Tapus et al. (2007) with human-oriented

interaction that exhibits context and user-appropriate social behavior and focuses attention

and communication on the user. Studies suggest that adding emotional information to SAR

enhances user satisfaction Prendinger and Ishizuka (2005); Yu et al. (2015) and results in

a more positive interaction between robot and human. Empathy is a critical skill in health

and elder care; Users perceive robots expressing empathic behavior as more friendly, un-

derstanding and caring Bagheri et al. (2021).

A social robot with Artificial Emotional Intelligence (AEI) can recognize, process, sim-

ulate, and react to human affects/emotions Yonck (2020). The development of affective and

empathic robots that have the ability to recognize users’ emotions and interact with them

naturally and effectively is in its infancy and more research needs to be carried out in this

field Pu et al. (2019).

To demonstrate the use of SAR and the tools necessary to create one, consider the fol-

lowing scenario. Imagine that Katie is an older adult living alone in a nursing home. A

nurse checks on her every day for only a few minutes, as the nurse has to take care of

dozens of residents. Fortunately, Katie has an emotionally intelligent companion robot in

her room. She calls the robot Liz. The following is a conversation between Katie and Liz.

Liz: “Katie, how are you today?” [Robot starts the conversation pro-actively]

Katie: “I’m doing fine Liz.” [User responds, but looks sad]

Liz: “Are you sure? But you’re not smiling.” [The robot tries to make the user talk about

her feelings]

Katie: “Maybe a joke would cheer me up.” [The user acknowledges that she is sad and

asks for help]
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Figure 6.1: Using a multimodal emotion perception system to interpret the input modalities
and output appropriate responses in a multimodal emotion expression system (SA: Senti-
ment Analysis, FER: Facial Expression Recognition).

Liz: “Sure. Here is one: What’s Forest Gump’s password? One Forest one. . . . ” [The

robot tells a joke while smiling for the user]

This dialogue example illustrates the different components that can serve to develop a

friendly robot. Liz pro actively asks Katie how she is doing. When a human-oriented

robot proactively starts a conversation with a user living in a senior care facility, it is help-

ful for the robot to detect the duration for which the user has been in the room. For instance,

if the robot detects that the user has been in their room for a long period of time, then the

user probably has not had a lot of social interaction during that time, and it is probable that

the user has been alone. The robot should also have the ability to engage in a spoken dialog

with the userNielsen et al. (2010). In the example above, the robot uses Sentiment Analysis

(SA) and Facial Expression Recognition (FER) and detects a discrepancy between Katie’s

response and her facial expression. Emotional intelligence requires a multimodal emotion

perception system Picard (2000). To improve Katie’s mood, the robot decides to tell a
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joke and smile. This means that the robot needs multiple channels to express emotional

information.

This chapter presents the results of our recent progress in developing an emotionally

intelligent and autonomous conversational robot named Ryan. Ryan is designed to assist

older adults suffering from mild dementia. Impaired thinking and cognitive decline, apathy,

loss of interest in activities and hobbies, social withdrawal, isolation, and difficulty con-

centrating are common symptoms of both dementia and depression Linnemann and Lang

(2020). Figure 6.1 depicts a general diagram of our HRI system. We utilized state-of-the-art

deep learning technology for multimodal emotion recognition (i.e. affective computing),

the output of which is integrated into Ryan’s dialogue management system. We developed

Ryan’s dialogue management system by writing scripted conversations on 12 different top-

ics, including science, history, nature, music, movies, and literature. Based on the detection

of users’ facial expressions and language sentiment analysis, Ryan appears to empathize

with users through emotive conversation and mirroring users’ positive facial expressions

(for example, Ryan smiles when the user smiles). We conducted an HRI study to measure

the effectiveness of our emotionally intelligent robot in communicating and empathizing

with older adults by creating two versions of the robot, one equipped with emotional in-

telligence (empathic Ryan) and one unequipped for emotional intelligence (non-empathic

Ryan).

In 2016, we studied the feasibility of using a prototype version of Ryan with a broad

range of features (dialogue, calendar reminders, photo album slide shows, music and video

play, and facial expression recognition) to interact with older adults with mild depression

and cognitive impairments Abdollahi et al. (2017). The results of our previous study show

that elderly individuals were interested in having a robot as a social companion and their

interest did not wane over time. The subjects reported to enjoy interacting with Ryan and

accepted the robot as a social companion, although they did not believe that Ryan can
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replace human companionshipAbdollahi et al. (2017). Because Ryan was equipped with

several features, we could not thoroughly study the effect of emotional intelligence on

measuring users’ engagement with respect to conversational interaction. Therefore, in this

study, we specifically focused on how emotional intelligence can improve and impact the

quality of interaction and engagement with Ryan.

The contributions of this study are: 1) creating a multimodal emotion sensory and fa-

cial expressive system, 2) integrating the developed sensory and expressive system into a

physical robot (i.e., creating empathic Ryan), 3) studying the effectiveness of the empathic

Ryan with a cohort of older adults living in a senior care facility. Our hypothesis is that an

emotionally intelligent robot is perceived as more friendly by users and positively affects

their mental well-being (measured by changes in depression score and emotional state) in

comparison to a robot without empathic capabilities.

The remainder of this chapter is organized as follows. Section 6.2 defines the term

Emotional Intelligence and details the makeup of an emotionally intelligent robot. Section

6.3 introduces a social robot named Ryan and explains the robot’s hardware and software,

concentrating on the components that correspond with the definition of emotional intelli-

gence. Section 6.4 lays out the design of the study. The results are presented in Section

6.4.4. Finally, Section 6.6 concludes the chapter.

6.2 Emotional intelligence

Emotional Intelligence (EI) is the combination of thoughts and feelings Brackett et al.

(2011a) that enables us to perceive and manage our own emotions and also observe and in-

terpret others’ emotions and respond accordingly Ochs et al. (2005). Dr. Picard, the author

of “Affective Computing” book Picard (2000), argues the need to integrate emotion in our

machines and claims that it might be impossible to reach true intelligence without emo-
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tions. Integrating emotions into machines and technology services can improve numerous

and diverse aspects of our lives. EI can improve communication systems, governance, per-

sonal assistants, physical and mental healthcare, education, advertisement, and the gaming

industry McDuff and Czerwinski (2018).

Before delving into EI, we will first clarify the word “emotion” and differentiate “empa-

thy” from EI. Since there is no agreed upon definition for emotion, we will use this word as

the intuitive and subjective concept that is used commonly in HRI literature Álvarez et al.

(2010). Empathy is the ability to feel and experience other people’s emotions. Empathy is

the capacity to (a) share other people’s emotional state or be affected by it, (b) infer the rea-

sons of said emotional state, and (c) adopt other people’s perspectives Preston and De Waal

(2002). Compared to empathy, EI is the general ability to perceive, understand, express,

and manage emotions Picard (2000). EI consists of three components, while empathy is

considered as one of the many aspects of EI:

(A) Sensing and measuring emotions: monitor and measure one’s and other’s mental

and emotional state.

(B) Understanding and modeling emotions: understand and interpret recorded emo-

tions. Usually, this step is carried out by mixing sensory information to get a clear

picture of the emotional states of all agents involved.

(C) Using and expressing emotions: utilize the measured emotions and current state of

mind to drive one’s thoughts, take action, choose responses, empathize, and express

appropriate emotions using verbal and nonverbal cues.

Recently, there have been several studies that investigate incorporating empathy in so-

cial robots Alves-Oliveira et al. (2019); Leite et al. (2013b); Mollahosseini et al. (2018a);

Paiva et al. (2005). This is mainly due to advances in emotion recognition in different
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modalities. Due to these advances, more studies have fused different modalities of emotion

to create a more natural emotion recognition system Castellano et al. (2008b); Spezialetti

et al. (2020).

One group of people that has been the subject of robotics studies in healthcare are the

residents of senior care houses. Back in 2003, Wada et al. Wada et al. (2003) successfully

showed that the social robot called Paro can lower stress levels and create a strong bond

with older adults. Although Paro is a pet-like robot with limited emotion expression and no

emotion perception or speech abilities, it can be an effective companion for older adults.

Paro is still being used as a robotic pet in dementia care studies Petersen et al. (2017). With

recent advancements in technology, especially in AI, HRI studies have evolved into a more

sophisticated process. Dino et al. Dino et al. (2019) studied the use of a social robot to

deliver iCBT (Internet-based Cognitive Behavioural Therapy) to adults with depression.

Sarabia et al. Sarabia et al. (2018) used Nao NAO to combat social isolation in acute hos-

pital settings. However, robots such as Paro and Nao are not expressive and these studies

do not focus on emotional intelligence and its effects on the user.

6.2.1 Sensing and measuring emotions

A robot with AEI should be able to detect people’s emotional state while simulating

its own state of mind. The act of understanding one’s feelings is called intra-personal in-

telligence Brackett et al. (2011b). It is possible to simulate intra-personal intelligence by

modeling the state of mind of the robot using an internal emotion model. Sensing other

people’s emotions (interpersonal intelligence Brackett et al. (2011b)) is more challenging.

Other people’s emotions are conveyed in several different modalities. As humans use multi-

ple modalities to express their emotions, an emotionally intelligent robot must ideally have

a multimodal emotion recognition system Pantic et al. (2005); Sebe et al. (2005). However,
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there are very few studies using a multimodal emotion recognition system in a robot. Many

studies on HRI use a uni-modal emotion recognition system. One of the most popular

approaches to uni-modal emotion recognition is FER. Other than FER, which is based on

non-verbal visual cues, sentiment analysis Shi and Yu (2018) provides verbal cues and has

also been used in affective computing. Some researchers have used biological markers such

as heart-rate, Galvanic skin response Prendinger and Ishizuka (2005), vocal features Cowie

and Douglas-Cowie (1996), and body gesture Bianchi-Berthouze and Kleinsmith (2003) as

other modalities to measure users’ emotional state.

6.2.2 Understanding and modeling emotions

In this study, we use a multimodal emotion recognition model (i.e., facial expression

analysis and sentiment analysis). This approach helps us to weigh different modalities

based on their reliability in representing users’ emotion. For instance, we may recognize a

facial expression as “happy” though the person may feel “sad” inwardly. This could be due

to low accuracy in automated FER systems or misinterpreting facial expressions. There-

fore, to best perceive one’s emotional state, we combine different verbal and nonverbal

cues gathered from different sensors. This multimodal measurement model can help dis-

ambiguate the sensory information. Equation 6.1 simply describes our multimodal emotion

perception model:

E = I · S (6.1)

Based on this model, E is a continuous variable {E ∈ R : −1 ≤ E ≤ +1} that describes

valence (i.e., Negative, Neutral, or Positive). E is calculated as the dot product of the

input sensory information vector (I) and the sensitivity vector (S). The sensitivity vector

contains coefficients that indicate the weight of each sensory input values. For example,

we can give a higher weight to the output of the sentiment analysis and a lower weight to
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the output of the FER. The weights can be determined using an HRI study or based on the

measurement accuracy of each modality. This model can be expanded using an emotional

dynamic matrix Álvarez et al. (2010) which represents the influence that each emotion has

on its own and other emotions over time.

6.2.3 Using and expressing emotions

In addition to sensing and interpreting emotions, a social robot will have means and

tools to express and demonstrate its own emotions. Among such tools is the ability to show

facial expressions through mechanical actuators or computer graphics, make gestures using

hand and head movement, and express emotions using voice intonation. The robot’s “feel-

ings” can be based on: (a) the internal emotion model that rests on the robot’s emotional

state, or personality, which can manifest when the robot receives a compliment or is being

verbally abused; (b) a reaction to the user’s feelings, which can be as simple as emotion

mirroring. Some studies suggest that empathy can be traced back to the mirror neuron sys-

tem Dapretto et al. (2006); Hess and Blairy (2001); (c) a predefined emotion scripted by a

psychologist. For example, a scripted story or memory can be accompanied by gestures and

emotional expression. Emotion in social robots can be expressed using many modalities

such as spoken language (Nao NAO, Pepper Pepper, Ryan DreamFace-Tech. (2015)), me-

chanical face (Zeno Zeno (2009)), digitally animated face (Ryan DreamFace-Tech. (2015),

Socibot Socibot (2015)), and body gesture (Nao NAO).

In summary, we believe a social robot with AEI would be capable of sensing users’

emotions using multiple modalities, interpreting their perceived emotions, choosing an ap-

propriate response, and delivering it using a multimodal expression system. One such social

robot is Ryan, and we will describe this robot in the following section.
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6.3 Ryan, an emotionally intelligent robot

Due to the increasing life expectancy of human beings and the increasing shortage

of caregivers in the United States, social robots, as a helping hand, are becoming more

appealing. Studies show that social robots are successfully improving the overall well-

being of their users Kanamori et al. (2003); Wada et al. (2003). Social robots may also

alleviate some of the side effects of loneliness in housing designed for older adults, such as

depression or the degradation of cognitive abilities Dino et al. (2019); Kotwal et al. (2016);

Zamora-Macorra et al. (2017).

Ryan, a social robot created by DreamFace Technologies DreamFace-Tech. (2015), is

a companionbot for older adults living in assisted or independent living facilities. Ryan is

specifically designed to be a companion robot which means that we aim for Ryan to be em-

pathic, expressive, appealing in appearance and manner, and able to motivate users to live

in ways that improve their mental and physical health. Such a robot should have multiple

streams of input data for observation, many output streams for reaction, and an intelligent

program for making decisions and empathizing and conversing with users. Ryan has an

expressive animated face 6.2. Ryan also has a high-definition RGB camera, a depth cam-

era, a microphone, an active neck, a 10 inch display, and speakers. Section 6.3.4 describes

Ryan’s hardware in more detail. As described in Section 6.2, there are three components

to emotional intelligence. This section describes how these components are integrated into

Ryan.
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Figure 6.2: Ryan’s animated face is capable of showing facial expressions.

6.3.1 Sensing emotions

Facial expression recognition

There are several models of emotions in the literature Sander (2013), where Rus-

sell’s Russell (1980) and Ekman’s Ekman and Friesen (1978) are the most common models

used in HRI studies Cavallo et al. (2018); Szabóová et al. (2020). We use Russell’s di-

mensional model for measuring emotional facial expression. Using an RGB camera, Ryan

captures 10 images per second. We feed each image into a face detector that uses the Viola-

Jones algorithm Viola and Jones (2004). We then crop the detected face and feed it into

a deep neural network (DNN) for FER. The FER algorithm returns the probabilities for

three emotion classes: Positive, Neutral, and Negative. Figure 6.3 illustrates the structure

of our FER network. The input to the network is a 64× 64 RGB image (output of the face

detector) and the output of the network is three numbers that represent the probability of

the three emotion classes (i.e., Negative, Neutral, and Positive). We use a residual Neural
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Figure 6.3: The ResNet structure used for FER. The first few layers extracts the facial fea-
tures and the Fully Connected Layers and the Softmax layer, classify the emotion. Layers
in order from left to right: Input Image (64× 64× 3); Conv2D (64× 64× 16); 9 Residual
Blocks (64× 64× 16); 1 Residual Block (32× 32× 32); 8 Residual Blocks (32× 32× 32);
1 Residual Block (16 × 16 × 64); 8 Residual Blocks (16 × 16 × 64); Fully Connected (3
outputs); Softmax (3 outputs).

Network (ResNet50) Szegedy et al. (2015) for FER. ResNet is the state-of-art DNN that

has shown to work well with visual data recognition. The depth of the network is of crucial

importance to neural networks and may increase the accuracy. However, increasing the

depth makes training more difficult. Residual networks allow us to train deeper networks

more easily and, therefore, improve the recognition’s accuracy.

We used the AffectNet Mollahosseini et al. (2017) facial image dataset to train the

residual network. AffectNet consists of more than 320,000 facial images with annotated

expressions. We trained the network such that it can classify a facial image into three

categories of emotions (i.e., valence): “Positive” (or class +1), “Negative” (class -1), or

“Neutral” (class 0). The network initially was trained on an Nvidia 1080 Ti GPU using

the AffectNet dataset and then using transfer learning, fine-tuned for the target population

(50+ years old) by using a subset of facial images (44 thousand images) until the accuracy

on the training data was stabilized around 80% (Fig. 6.4).
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Figure 6.4: The loss of the initial training phase (left) and fine tuning the network on images
of people 50+ years old (right).

Emotional state measurement

Our FER algorithm returns 10 estimated values for the user’s facial expression per

second, given that the user’s facial expression may change multiple times while conversing

with the robot. The last frame before the user stops speaking might not be the best candidate

for representing their facial expression at the moment. It could result in a misclassification.

For example, if the user is blinking, yawning, or covering their face the output of the FER

system might be incorrect. To avoid noises and also create a more stable emotional state

measuring system, we use the data from the last 30 frames (see Figure 6.5). However,

to make the algorithm more sensitive to the most recent changes in the subject’s facial

expression, we assigned higher weights to the more recent frames. The value (-1, 0, +1)

for each new frame was added to the end of the list and the oldest one was deleted. Then

the new emotional state was calculated by a dot product of the list of class values and the

weights:

wi =
i∑30
i=1 i

(6.2)

EmotionalState =
30∑
i=1

wivi (6.3)
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Figure 6.5: The emotion tracking system is more robust to sudden changes and noises in
the input. The horizontal axis is time and the vertical axis is the emotional state with a
range between -1 (Negative) and +1 (Positive).

where wi is the weight number i and vi is the valence for the ith frame. Figure 6.5 il-

lustrates the video frames and the measured emotional state for a 72 year old subject that

was not included in the training set. We divided the measured emotional state into three

categories for facial expression mirroring; Negative: [−1,−0.1); Neutral: [−0.1,+0.1];

Positive: (+0.1,+1]. These ranges were chosen experimentally. Based on the output of

our SA and FER algorithms, we found that defining Neutral as [−0.1, 0.1] provides reason-

able accuracy when detecting neutral responses.

Sentiment analysis

Automated sentiment analysis is a mature task in the field of natural language process-

ing with several open-source publicly available toolboxes such as the CoreNLP Manning

et al. (2014) developed at Stanford University for public use. The CoreNLP sentiment anal-

ysis toolbox is based on deep Neural Networks and is trained using the Stanford Sentiment

Treebank consigning of 11,855 single sentences extracted from movie reviews McDuff and
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Czerwinski (2018). The system has an accuracy of 85.4% and is suitable for our research.

The sentiment analysis module returns a value between -1 to +1 as the sentiment value of

the preprocessed sentence.

Finally, we use the model described in Sec. 6.2.2 to fuse perceived emotional facial

expressions and sentiment values to make sure the robot understands the multi-faceted user

emotions correctly:

FinalEmotion = .5 × SentimentV alue + .5 × EmotionalState (6.4)

The FinalEmotion is a weighted average of user utterance sentiment and emotional state

that will be used to direct the flow of conversation. The decision to equally average the

sentiment and the emotional state is made based on our tests in the laboratory, more exper-

iments are needed to find the perfect balance and weight. Since the sentiment is calculated

based on the user input, the FER also needs to span the amount of time the user was talk-

ing. In Equation 6.2, the 30 last frames are used to calculate the mood of the user. The

FER algorithm runs on 10 frames per second. This means the mood is calculated based on

the last 3 second of the user’s speech. Changing the framerate of the FER algorithm, or

changing the size of the window can affect the accuracy of the user’s mood.

6.3.2 Dialogue generation

For a conversation with users, we wrote more than 90 minutes (2342 Questions/Answers)

of conversational dialogues on 12 different topics (family, pets, TV shows, science, music,

nature, foods, travel, art, movies, reading, and sports). We integrated the dialogues with the

emotion recognition technology so that Ryan could engage users in a pleasant conversation

while empathizing with them based on the perceived facial expressions and the sentiment

of their responses. For example, if the participant’s response to the question “How does
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What is
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Fall is quite nice.
There is nothing
like the changing
of the leaves and
the chill in the

air that makes it
perfect sweater

weather. Do
you also enjoy
Thanksgiving?

Many coloradans
love winter. Do

you prefer walking
in the winter night,
sitting by the fire,

or ice skating? . . .

Yes

No

The holidays
can be

fun time
for some.

I have been
told the

holidays can
be a chaotic
and stressful

time and
even lonely.

How do the
holidays

make
you feel?

Positive

Neutral

Negative

It sounds like you
enjoy the holidays. I
also like to celebrate

the holidays. We
have a lot in common.
You seem like a very
interesting person.

The holidays seem to
be a meh time of year

for lots of people. I feel
the same way about
certain holidays. We

have that in common. . .

Sounds like you really
do not like the holidays.

The holidays can
be a hard time for

people because of how
stressful they can be. . .

Figure 6.6: Sample written dialogue between Ryan (blue) and a user (green). The sentiment
of the user’s response is used to choose an empathic reply.

playing cards make you feel?” was negative or the participant showed a “sad” facial ex-

pression, Ryan would say “I’m sorry to hear that!” If the sentiment was positive or Ryan

detected a positive expression on the user’s face, Ryan would say “I thought you seemed

content! Do you prefer to play alone or with friends?”, and if neutral, Ryan would say

“What makes you feel this way?”

Ryan also mirrored the user’s positive facial expressions (Positive valence) to estab-

lish shared feelings and rapport, or showed a compassionate face when users had a nega-

tive emotion to facilitate empathy and rapport. For our dialogue management system we

created Program-R, a modified version of Program-Y Program-Y, a publicly available di-

alogue manager that utilizes Artificial Intelligence Markup language (AIML) for scripted

dialogues. Figure 6.6 demonstrates a sample dialogue between a user and Ryan. As the fig-

ure shows, the dialogue is more than just question-and-answer and users can take different

paths through conversation.
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Figure 6.7: The architecture of the Ryan software. The module on the right is responsible
for the dialogue. The modules on the left are responsible for sensing and expressing emo-
tions.

6.3.3 Affective dialogue system

Program-R is a hybrid (rule-based and machine learning) system that uses state-of-the-

art sentiment analysis to deliver an affective dialogue system. Studies on emotion-based

dialogue systems stress different sources of information to extract user sentiments. Ap-

proaches like Burkhardt et al. (2009); Shi and Yu (2018) use only textual cues for sentiment-

based dialogue system. In Bertero et al. (2016); Nwe et al. (2003) they explored the use of

acoustic features. Our system uses multimodal facial and textual information in a dialogue

management system.

Program-R is a sentiment adaptive AIML-based dialogue system (known as template-

based dialogue systems) that can fuse visual and textual information and respond to users

accordingly. Unlike most dialogue systems Program-R is an active agent, which means

Program-R initiates the conversation and tries to have a controlled chat with the user.

AIML Wallace (2003) is an XML-based language that is used for organizing the set

of all dialogues in different chatbots like Alice Wallace (2009). In AIML-based dialogue

systems, we try to find the best response (responses are stored in the template tag in AIML)

for any user input utterance using Regex matching (stored in the pattern tag). Pattern
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and template tags together represent a unit of conversation under the category tag. One

advantage of AIML is that history can be accessed via a that tag. Every question is con-

textualized and is answered based on the last unit of dialogue between robot and user. To

deliver a more interactive user experience, we added tags and features to AIML. The robot

tags were added to send multimedia information along with the raw text response to give

the user a multimedia experience. The robot tags contain information such as image and

video and the possible answers to multi-option questions such (i.e. yes/no questions) to be

presented to the user in certain dialogues. Moreover, the getsentiment tag, a custom tag

built for this study, takes the user utterance after preprocessing and sends it to the sentiment

analysis module.

Figure 6.7 depicts the architecture of the dialogue system. Program-R communicates

with Ryan through a Representational State Transfer (RESTful) API RestfulAPI. After re-

ceiving the output of speech to text from Ryan, the raw text will be sent to the Preprocessing

module to remove unnecessary punctuation, normalize the text, and sentence segmentation.

The Sentiment Analysis module is where the sentiment of the text is mixed with the out-

put of the Facial Expression Recognition module (Emotional State) to get a single score

(see Eq. 6.4). The Brain’s Question Handler takes into account the context, sentiment and

session data while the Context Manager handles the context in which the conversation is

happening. For example, some questions may have identical answers (i.e. yes/no), without

knowing the context, thus producing the proper response is impossible. With the provided

information from the Context Manager and the computed value based on Emotional State

and Sentiment, the Question Handler produces an answer. Finally, the selected answer is

sent to the Answer Handler and Postprocessing module to be sent back to Ryan.
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6.3.4 Robotic platform

DreamFace Technologies DreamFace-Tech. (2015) has been developing Ryan as a so-

cially assistive bio-inspired humanoid robot designed to provide both companionship and

cognitive stimulation for older adults. Ryan has an expressive, 3D animated face powered

by rear-projection technology that enables the robot to show facial expressions and accu-

rate visual speech (lip movement). Ryan’s head and animated face sit atop a two degree of

freedom actuated neck that allows it to track its user and maintain eye contact for more per-

sonal interactions. A standard RGB webcam mounted in Ryan’s head provides the visual

input for the FER algorithm.

Ryan’s torso houses the remaining I/O, computation, and power components and pro-

vides embodiment complete with passive arms that make it appear more human. Interaction

with a fully embodied physical system such as Ryan can have benefits over a purely virtual,

2D avatar Deng et al. (2019). There are many studies that incorporate emotion into virtual

agents DeVault et al. (2014); Irfan et al. (2020); Kasap et al. (2009); Romano et al. (2005);

Schroder et al. (2011) but in this study we focus on a physical robot. We investigated the

differences between a virtual agent and a physical robot in our previous study Mollahos-

seini et al. (2018b). A Kinect depth camera is embedded in the chest and provides sensing

for body tracking. Given that Ryan is a conversational robot, it needs audio input and out-

put, which is provided by a cardioid microphone and stereo speakers. These conversations

are based on turn-taking and indicator LEDs in the shoulders are used to inform the user

when it is their turn to speak.

An adjustable touch screen display is also mounted on the torso and provides a conve-

nient multimedia interface for Ryan to display images and videos and play the music that

is integrated into the conversations.
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6.4 Study 1: Ryan’s perceived emotional intelligence

6.4.1 Participants

Ten older adults (Age M=77.1 yrs, SD=9 yrs; 7 females; 9 Caucasian, 1 Hispanic)

living in the independent living facility at Eaton Senior Communities located in Lakewood,

Colorado participated in the study. See Table 6.1 for the participants’ demographics.

Inclusion criteria were: i) suspicion of early-stage Alzheimer’s disease or related de-

mentia (ADRD) by administrative staff in their residential facility and/or early-stage ADRD

diagnosed by a qualified provider, ii) being 60+ years old at the time of study, iii) having

Saint Louis University Mental Score (SLUMS)Tariq et al. (2006) between 15-26, iv) ver-

bal skills in English in order to interact with Ryan, v) presence of identifiable behavior

difficulties (depression), vi) availability for a period of three weeks to interact with Ryan.

SLUMS exam is an assessment tool for mild cognitive impairment and dementia and

is commonly used in research on aging and in senior care facilities. Scores of 27 to 30

are considered normal in a person with a high school education. Scores between 21 and

26 suggest a mild neurocognitive disorder. Scores between below 20 indicate dementia.

Prior to participating, subjects were briefed fully on the study design and consented to

their involvement with the proper Institutional Review Board (IRB) approvals for human-

subjects in place.

6.4.2 Experiment setup

Participants interacted and conversed with Ryan twice a week over a period of three

weeks (October 2018 to November 2018) for six sessions total. Figure 6.8 illustrates the

experimental setup and an example of the user’s interaction with Ryan during a session.

Each session consisted of about 15 minutes of the prepared dialogues.
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In order to assess the impact of Ryan’s use of empathy on the user’s engagement and

emotional state, we randomly assigned participants to two groups (G1 and G2). The first

group interacted with a non-empathic version of Ryan that did not show any facial ex-

pressions or empathize with the users (Emotion-OFF), while the second group interacted

with the fully empathic version of Ryan that mirrored the user’s facial expressions and em-

pathized with them throughout the conversation (Emotion-ON). Users were not aware of

the different versions of Ryan. After three sessions, we switched the groups to interact with

the other version of Ryan. This cross-over study design (illustrated in Table 6.2) makes an-

alyzing the results meaningful, as all subjects were exposed to both versions of Ryan and,

therefore, the only independent variable is Emotion (ON/OFF).

6.4.3 Measurements

To measure users’ engagement, we used the average number of words uttered by the

user in each question and answer. The word count has been used as a measure of engage-

ment for chatbots in the affective computing literature Hill et al. (2015). The output of the

FER and sentiment systems was stored for analysis, and the percentage of positive facial

expressions compared to negative expressions could determine the condition that the user

enjoyed the most.

To measure the impact of interacting with Ryan, each user was asked to rate their mood

on a scale of 0 to 10 (on a face-scale) before and after each session. Face-scale mood

measurement has been used in the affective computing literature to assess the participant’s

mood Kargar B and Mahoor (2017); Lorish and Maisiak (1986).

At the end of the study, we interviewed the participants and asked them to complete an

exit survey to measure the robot’s likeability and empathy. Survey questions were adapted

from the EMOTE project Project (2013) and Davis et al. Davis (1983). We also interviewed
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Figure 6.8: Users interacting with Ryan.

Table 6.1: Participants’ demographics. SLUM score: Dementia:1-20, Neurocognitive Dis-
order:21:26, Normal:27-30.

Sbj# Age/Gender SLUMS

Group 1

SN01 69/F 25
SN02 93/M 24
SN03 65/M 22
SN04 93/F 15
SN05 70/F 24

Group 2

SN06 80/F 24
SN07 70/F 25
SN08 75/F 23
SN09 91/M 25
SN10 75/F 23

the caregiver to obtain more information about the participant’s well-being at the nursing

home during the study.

6.4.4 Results and Discussions

To analyze the study, we used quantitative measures such as word count, percentage

of positive emotions detected from the participants, pre/post-study depression measures, as

well as qualitative measures (i.e. the likeability of Ryan) collected via an exit survey and

post-study interviews with the subjects and the caregiver. The following sections describe

the results in detail.
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Table 6.2: Crossover pilot study design; Percentage of detected facial expression is higher
within each group and between groups when the Ryan Emotion condition is ON.

G1 (Subjects 1-5)
Condition: Non-Empathic
Dialogue Sessions 1, 2, 3

Emotion Percentage
Pos. Neutral Neg.

25.7% 23.4% 50.9%

G1 (Subjects 1-5)
Condition: Empathic
Dialogue Sessions 4, 5, 6

Emotion Percentage
Pos. Neutral Neg.

29.7% 31.3% 39.0%
G2 (Subjects 6-10)
Condition: Empathic
Dialogue Sessions 1, 2, 3

Emotion Percentage
Pos. Neutral Neg.
45% 21.3% 33.7%

G2 (Subjects 6-10)
Condition: Non-Empathic
Dialogue Sessions 4, 5, 6

Emotion Percentage
Pos. Neutral Neg.

33.3% 28.5% 38.2%

Table 6.3: Results of LMM on word count, emotional state, and sentiment values (depen-
dent variables) with emotion (ON/OFF) as fixed effect and subject and session as random
effects.

Information
Criteria

Type III Tests of
Fixed Effects (Emotion)

-2LogLik. AIC∗ df F Sig.
Word Count 17645.67 18031.67 12373.53 11.85 .001
Emotional State 4347.24 4733.24 11196.75 .581 .446
Sentiment 3911.93 4297.93 7159.84 .003 .958
∗ Akaike’s Information Criterion.

6.4.5 Quantitative analysis

This section presents the quantitative analysis of the recorded data. We used the Lin-

ear Mixed-effects Model (LMM) in SPSS with either word count, emotional state (FER

over time), or sentiment as the dependent variable, Emotion ON/OFF (empathic vs. non-

empathic) as a fixed-effect factor, and session and subject as random-effect factors. Ta-

ble 6.3 shows the results of running three separate LMMs in word count, emotional state,

and sentiment values. Before fitting the model, we normalized the emotional state and sen-

timent values per session. This would assure us that the data are not biased and we only
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measure the effect of robot interaction and the condition (empathic vs. non-empathic) on

the dependent variables. As reported in Table 6.3, Emotion ON/OFF has a significant effect

on word count, where individuals who spent time with empathic Ryan uttered more words

compared to when they talked with the non-empathic Ryan. However, the emotional state

and the sentiment of users’ responses were not significantly affected by the type of robot.

We present more measurements and detailed quantitative analysis below.

Word count measurement: To measure how engaged users were in conversations

with Ryan, we recorded each conversation and automatically converted it to text using the

Microsoft Speech Recognition SDK. The robot then counted the number of words in each

utterance and stored them in its database. As Table 6.3 shows, the Emotion feature (i.e.,

Emotion ON/OFF) has a significant effect on the word counts uttered by Ryan’s users. The

mean and standard deviation of word count is M=4.11, STD=5.372 when Ryan empathizes

with users, and it goes down to M=3.71, STD=3.350 when Ryan does not empathize with

users.

Face-Scale mood measurement: Before and after each session, we asked users to tell

us how they felt using a face-scale mood evaluation. The face-scale is a pictorial non-

verbal assessment designed to measure mood on a scale of 0-10, where a score of 10 is

the most positive, and a score of 0 is the most negative mood a person may feel. Previous

evaluations suggest that it is a valid method for assessing mood with little guidance required

and is useful for screenings Kargar B and Mahoor (2017); Lorish and Maisiak (1986).

Figure 6.9 illustrates the difference in the face scale score of users before and after each

session. A Wilcoxon signed rank test Woolson (2007) shows that there is a statistically

significant difference (Z = −5.466, p < 0.001) between pre-session (Median = 7) and

post-session (Median = 9) face-scale mood measurements regardless of empathic or non-

empathic condition. This means that interaction with Ryan is effective in improving users’

mood.
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Figure 6.9: Changes (improvement) in participants’ face-scale score after conversation with
Ryan.

User’s percentage of automated recognized expressions: Using the automated FER

method described in Section 6.3.1, participants’ facial expressions were recorded during

each conversational session with Ryan. As reported in Table 6.3, emotion does not have a

significant effect on the measured valence values. To get a better sense of this effect and

since the duration of each session is constant across all subjects, we counted the number of

times each participant had a positive, neutral, or negative expression throughout the session.

Table 6.2 shows that participants reacted more positively when Ryan empathized with them.

In particular, in the first three dialogue sessions, on average 25.7% of the detected facial

expressions were positive for G1 with Ryan’s emotion disabled, while this value is 45%

for G2 with emotion enabled. Table 6.2 also shows that both G1 and G2 exhibit a lower

percentage of positive expression (4% less in G1 and 11.7% less in G2) when the emotion

condition is OFF. A similar pattern can be seen for negative facial expression, where the

percentage of negative expression decreases when users interact with the empathic Ryan.
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However, the magnitude of the difference may vary between G1 and G2 for several reasons.

One reason is the order of the experiment. The emotion is off for one group for the first

three sessions, while it is on for the other group, and then we switch it on for the first group

and off for the second. This means that the topic of the conversations varied from session to

session and had an effect on the subject’s experience. That is, some participants expressed

their preference for some topics compared to other topics.

In the following, we show examples of dialogues between Ryan and the study partici-

pants, as well as their measured facial expressions.

Session 3 Emotion on

Ryan: “I am happy to be here with you [name is removed]. It is nice to see you again. As

a reminder, my name is Ryan and I have a lot of fun things to talk about! Are you ready to

get started?”

SN03: “Yes please.” With FER of +0.07

Ryan: “Great! Even though we have chatted before, I would still love to know how you

are feeling! How has this experience been so far?”

SN03: “Very extraordinary I like it.” With FER of +0.25, sentiment of +0.97 and a final

sentiment (FER + sentiment) of +0.61

Session 5 Emotion off

Ryan: “I sure am feeling hungry now. Are you hungry?

SN09: “You’re making me hungry yes.” With FER of -0.7

Ryan: “What was it like for you to go on this culinary adventure today?”

SN09: “I had fun.” With FER of -0.37, sentiment of +0.75, and final sentiment (FER +

sentiment) of +0.19

Change in User’s Depression: We used the Patient Health Questionnaire-9 (PHQ-

9) Kroencke et al. (2001) and the Geriatric Depression Scale (GDS) assessments Yesavage
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and Sheikh (1986) for depression measurement to assess participants’ depression level pre-

and post-study. The PHQ-9 is a widely used questionnaire to diagnose and measure the

severity of symptoms for Major Depressive Disorder (MDD). It consists of questions that

are answered on a scale of 0 (not at all) to 3 (nearly every day). Previous studies have

indicated that PHQ-9 is a consistent and valid measure of depression severity Kroencke

et al. (2001).

GDS is a dichotomous ”yes” or ”no” evaluation tool commonly used to measure de-

pression. Although this scale has a long and short form, the long form of 30 questions was

used to obtain the most accurate and comprehensive results. This scale has been specifi-

cally tested and used extensively with older adults aged 65 and older. Data shows that the

GDS is reliable and promising in screening for depression in older adults Yesavage and

Sheikh (1986). The results of our study are given in Table 6.4. As the table shows, 7 of

10 participants had an improvement between 1 and 16 in their GDS depression score (the

maximum score is 30) or between 1 and 6 in the PHQ-9 assessment (the maximum score

is 27).

Exit survey questionnaires

At the end of the study, we asked each participant to complete an exit survey. The

survey contains 33 questions about the experiences they had with Ryan as follows: evalu-

ation of Ryan’s empathy and emotion, and evaluation of the interaction with Ryan and the

likeability of the conversation with Ryan and the conversation topics. We also asked users

to give us feedback on other aspects of the robot and the study. The majority of questions

were based on a five-point Likert scale where 1 means “Strongly Disagree” and 5 means

“Strongly Agree”, with an additional 5 “yes”, “no” questions. Table 2 reports the questions

and the average score. It also shows the score for each topic.
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The average score was above 4.00 on all questions except question “Q17: Talking with

Ryan was like talking to a person”, where the average score was 3.90 (STD = 1.37). In

particular, they gave an average score of 4.5 (STD = .67) on “Q4: I feel happier when I was

in the company of Ryan.” and 4.57 (STD=.49) on “Q10: How much do you agree that Ryan

empathized with you”. We specifically asked participants “Q2/Q9: whether they noticed a

change in the way Ryan communicates with them and its ability to show facial expressions

after the session three crossovers” and 73% of them said they noticed the change.

Participants’ feedback

In our exit interviews, we asked the participants to give us comments on the study and

to provide feedback on the experience they had with Ryan. Participants use the pronoun

“she/her” to refer to Ryan, as Ryan had a female face/voice in this study. In the following,

we report the comments:

SN01: “I had a good time. I enjoyed her very much. You want her to be a real thing

like an addition to your home. I didn’t think of her as a person like a dog or a cat.”

SN02: “ Ryan told me a lot of good things and I had a good time with her. She was

very interesting and helpful.”

SN03: “I liked her (“Ryan”). She is witty. At first, I didn’t know what to think. I got

better as I went. She sure has a pretty smile. It tears me up when she smiles, blinks her

eyes. I would like to take her out to dinner but she wasn’t hungry. Maybe next time.”

SN04: “I liked her when she smiled. She interrupted me sometimes. Give me a chance

to finish what I am saying. She was fun to talk to. I think the first one talked more I like

with a smile. Very friendly.” (Note: She is on G2 where Emotion was ON first and Ryan

Smile and empathized).

SN05: “She was sort of creepy looking a little bit but she was fine. I was surprised I

enjoyed it! I like her when she smiled. When she wasn’t smiling she was kind of crummy.”

84



Table 6.4: Change in GDS and PHQ-9 Scores after participants completed the study. A
negative (-) change means the depression score is lower (less depression).

Subject Number GDS* PHQ9*

Baseline
Post-Study

Change Baseline
Post-Study

Change
G

ro
up

1
SN01 6/30 +2 9/27 +3
SN02 12/30 -1 16/27 -3
SN03 3/30 -1 4/27 -1
SN04 6/30 +5 6/27 -1
SN05 3/30 -2 4/27 -4

G
ro

up
2

SN06 18/30 -16 10/27 -5
SN07 10/30 -4 7/27 -2
SN08 10/30 -1 12/27 -6
SN09 13/30 -1 6/27 +3
SN10 8/30 0 5/27 +1

*GDS: Normal: 0-9; mild depression: 10-19; Severe depression: 20-
30 *PHQ9: Minimal Depression: 0-4; Mild Depression: 5-9; Mod-
erate Depression: 10-14; Moderately Sever Depression: 15-19; Sever
Depression-20-27

SN06: “They forgot the eyelashes. The only thing I had difficulty was the lights. Took

getting used to it. I had so much fun in those meetings. Also, the thing was that when robot

communicated and I paused, it would repeat itself.”

SN07: “Enjoyed talking to Ryan. I would talk to her all the time if she was in my room.

Good company. She needs eyelashes and smiling longer. The lights on the shoulder were

sometimes frustrating. It would have been easier if it was just green.”

SN08: “Ryan was very interesting and informative. When you first told me I was going

to talk to a robot, I thought you were out of your mind but I really enjoyed it. She gave me

ideas and information I had no ideas on.”

SN09: “The longer I made an effort to communicate with Ryan the better it seemed to

go. At a point, it became more natural to speak with the robot. She was cathartic.”
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SN10: “The robot asked a lot of questions and I didn’t get to ask many questions. She

looked really good. Her eyes blinked, her mouth moved. She smiled.”

Caregiver’s feedback

We asked the participants’ caregiver (staff member in Eaton Senior Communities) about

her observations of the subjects’ behavior and mood pre- and post-study. Although the

caregiver’s observations are anecdotal and only represent one person’s views/observations

of subjects, it is still worth reviewing them since the caregiver had seen the subjects pre-

and post-study and can judge changes in their well-being as an outsider.

She reported that subjects who struggled with depression and social isolation benefited

the most from interacting and conversing with Ryan. For instance, SN02 struggled with de-

pression and social isolation (i.e., not attending holiday activities or no longer taking meals

in the dining room), smiled and laughed again post-study and engaged in the community.

The caregiver also reports that the participants continue to talk to him about the varia-

tions in Ryan’s facial expression, and particularly smile as a feature that positively affected

their relationship with Ryan. She reports that the improvement in mood was quickly appar-

ent, as well as cognition, as residents were exposed to research and educational opportuni-

ties and “stimulated human interaction.”
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6.5 Study 2: Studying the effects of an emotionally intel-

ligent robot on older adults with early stage dementia

or depression

6.5.1 Introduction

Alzheimer’s disease (AD) and AD-related dementias (ADRD) are chronic, progressive

neurological disorders that impair cognitive functions, memory, and daily living activi-

ties. The aging population in the United States is growing, and with it, the prevalence of

AD/ADRD is increasing as well. According to the Alzheimer’s Association, it is estimated

that by 2050, the number of people living with AD/ADRD in the United States could reach

as high as 16 million, and the direct costs associated with caring for them could exceed $1

trillion.

Caring for someone with AD/ADRD can be a challenging and emotionally taxing expe-

rience for both the individual with the disease and their family members and caregivers. It is

not uncommon for caregivers to experience symptoms of depression, anxiety, and burnout

due to the demands of providing care for a loved one with AD/ADRD. In addition, peo-

ple with AD/ADRD often experience emotional and behavioral changes, such as agitation,

irritability, and social withdrawal, which can further complicate the caregiving experience.

The emotionally intelligent Ryan has the potential to improve the quality of life of

older adults with early-stage AD/ADRD. In this study, we investigate the effects of the

emotionally intelligent Ryan on older adults with early stage Alzheimer’s disease (AD)

and AD-related dementias (ADRD).
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Table 6.5: Inclusion/exclusion criteria used to recruit participants.

Inclusion Criteria Exclusion Criteria
• Age ≥ 65 years

• Early AD/ADRD diagnosed by a
qualified provider

• Saint Louis University Mental Status
SLUMS (10-25)

• Resident of assisted living facility for
at least one month prior and for the
duration of the study

• Deemed conditioned enough to par-
ticipate in physical activities after a
wellness check

• Verbal skill to interact

• Participant or Legal decision-maker
informed consent

• Aggressive behavior

• Diagnosed with severe dementia or
memory loss

• Acute physical illness that impairs
the ability to participate

• Patients with serious comorbidity, tu-
mors, and other diseases causally re-
lated to cognitive impairment

• History of alcohol or drug abuse,
head trauma, psychoactive substance
use, and other causes of memory im-
pairment

• Significant sensory impairment

Participants

We recruited 17 participants (avg age: 77.7 years; std = 6.43 years; 15 female) in our

study. The participants lived in different senior care facilities such as Kavod, Eaton, Chris-

tian Living, Granville, and Cherry Creek senior homes. Table 6.5 contains the including

and exclusion criteria.

Study design

Each participant in the study had Ryan placed in his/her apartment for 6 to 10 weeks.

They could interact or play games with Ryan at any time. We trained each participant on

how to access and use the games. We also created a (hard copy) user manual for the partic-

ipant. The user manual contained general information on every feature of Ryan including

the objective and description of all the games and how to play them.
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Figure 6.10: The total usage time of Ryan by all the study participants is 887 hours.

Measurement

The type and duration of all activities with Ryan (such as conversation or game) are

recorded. We also collect statistics for each game, including usage time, win/loss rate (if

applicable), difficulty level, average score, and average duration per game, etc. We also

measured PHQ-9, and SLUMS scores, pre, and post-study. The duration of the study was

8-10 weeks. At the end of the study, we conducted an exit survey.

Results

As the Figure 6.10 shows, in total, participants in the study spent 887 hours using Ryan.

They spent 254 hours (28.7%) playing with Ryan. This means that on average each user

spent 12 minutes (std = 5 minutes) per day playing brain games with Ryan. Checkers,

Flow Game, Picture Puzzle, Solitaire, and Word Puzzle, were the most popular games

89



among all. The results of the survey indicated that users preferred these games because

they were familiar. They did not like simpler games as “they were not challenging”.

One of the concerns in the field of socially assistive robotics is novelty effect, which

refers to the phenomenon in which users may lose interest in the robot as they become more

familiar with it. This effect is particularly relevant because it could hinder the adoption and

long-term use of social robots.

To investigate whether the novelty effect occurred in this study, we evaluated the usage

patterns of Ryan by its users over time. Daily usage data from each user were collected and

plotted during the study period. The usage patterns of the users did not show a significant

decrease in usage, indicating that the novelty effect was not observed. However, it should

be noted that the usage patterns appeared to be periodic, with no specific event driving

the peaks and valleys of usage. This finding suggests the possibility that users may seek

companionship during specific periods. More research is needed to explore the underlying

reasons for the observed periodical usage patterns.

The Figures 6.11 and 6.12, the improvement in the users’ scores for PHQ-9 and SLUMS

is presented. These two measures are commonly used to assess depression and cognitive

impairment, respectively. The results demonstrate the potential of Ryan, to slow the pro-

gression of cognitive decline and alleviate the symptoms of Alzheimer’s disease and re-

lated dementias (AD/ADRD).The results show an average improvement of 3.3 points for

the SLUMS scores and 2.88 points for the PHQ-9 scores, indicating a significant positive

impact on the cognitive and emotional states of the users.

Our study also shows that on average, participants performed better over time in playing

the games. As shown in Figure 6.13, the average win rate or scores of participants in

playing the Flow Game, Word Puzzle, improved over time. That means that the participants

were more engaged in playing these games and were able to learn and improve, which is

also evident in their improvement in the SLUMS score.
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Figure 6.11: PHDQ-9 scores measured before (baseline) and at the end of the study. The
subjects are ordered based on their depression score at the start of the study. The subjects
with higher depression score benefitted the most.
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Figure 6.12: SLUMS scores measured before (baseline) and at the end of the study. The
subjects are ordered based on their SLUMS score at the start of the study.

Figure 6.13: Users’ improvement in Flow Game and Word Puzzle.
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Figure 6.14: The new version of Ryan is emotionally more intelligent.

In the exit survey, the participants gave scores of 4.17 out of 5, to the question “I enjoyed

interacting with the robot.” Additionally, they gave a score of 4.3 and 4.5 out of 5 to the

questions “I find Ryan likable” and “I find Ryan friendly”, respectively. See Appendix C

for the complete survey.

6.6 Conclusion

The increasing population of the elderly and widespread understaffing in nursing homes

can worsen residents’ feelings of loneliness and overload nursing staff. During the COVID-

19 pandemic, this problem became more evident Xu et al. (2020). The development of

AI technologies drew attention to service robots and SAR as potential solutions to these

problems. Robots can effectively relieve the burden on healthcare workers and improve the

well-being of elderly individuals. Such robots need to be socio-emotionally intelligent in

order to effectively engage the aging population.
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In this chapter, we discuss a socially assistive robot and its multimodal emotion recog-

nition and multimodal emotion expression systems. More specifically, we compared two

versions of the robot: one that uses a scripted dialogue that does not factor in the users’

emotions and is lacking facial expressions (non-empathic version), and one with facial

expressions that uses an affective dialogue manager to generate a response and has the

capability to recognize users’ emotions (empathic version).

We studied the differences and effects of Ryan’s two versions with a cohort of older

adults living in a senior care facility. The statistical analysis of the users’ face-scale mood

measurement (illustrated in Figure 6.9) indicates an overall positive effect as a result of

the interaction with Ryan, irrespective of the robot being empathic or non-empathic. How-

ever, word count measurement (Table 6.3) and exit survey analyzes (Table 2) suggest that

empathic Ryan is perceived as more engaging and likable. Considering that the only differ-

ence between Ryan’s two versions is empathic versus non-empathic, the findings suggest

that empathy can encourage users to have longer conversations. However, more exper-

iments are needed to further study interactions using a more natural dialogue manager

(chatbot). Changes in user depression measurement scores (Table 6.4) suggest that Ryan

can potentially decrease users’ depression, although to verify this finding, more subjects

and long-term studies are required.

We then conducted longitudinal research investigating Ryan’s potential to slow the pro-

gression of cognitive decline and reduce the symptoms of AD/ADRD. Our approach pri-

oritized human-robot social interaction, companionship, and cognitive game play. The

participants played serious brain games with Ryan including Picture Puzzle, Word Puzzle,

Chess, Checkers, etc. Our study shows average improvements in SLUMS and PHQ-9 of

3.3 points and 2.88 points, respectively.
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Chapter 7

Conclusion, Limitations, and Future

works

This dissertation presented the design, development, and successful integration of a so-

cial robot equipped with artificial emotional intelligence. This robot is created to improve

the quality of life of older adults with dementia and depression. Due to the increasing pop-

ulation of the older adults and the widespread understaffing in nursing homes it is important

to study the feasibility of using a social robot as a companion, to improve the quality of life

of older adults. During the COVID-19 pandemic, this problem became more evident Xu

et al. (2020) as visiting senior care facilities became impossible. Worsening the isolation of

this vulnerable group. The development of AI technologies drew attention to service robots

and SAR as potential solutions to these problems. Robots can effectively relieve the burden

on healthcare workers and improve the well-being of elderly individuals. Such robots need

to be socio-emotionally intelligent in order to effectively engage the aging population.

We studied the effects of the artificially emotionally intelligent Ryan on a cohort of

older adults living in a senior care facility. The statistical analysis of the results indicates

an overall positive effect as a result of the interaction with Ryan and an improvement to
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both PHQ-9 and SLUMS. While there has been progress in the users’ scores, it is crucial

to carry out additional studies that involve a larger number of participants and a control

group to establish the validity of these findings. Especially, besides interaction with Ryan,

other factors such as participants’ medical, personal, and environmental conditions should

be considered as they can influence their quality of life.

7.1 Ethical Consideration

The use of socially assistive robots in healthcare, particularly elder care, raises ethical

considerations that must be carefully evaluated. On the one hand, these robots have the

potential to address issues related to loneliness and social isolation, which are prevalent

among older adults. By providing companionship and emotional support, socially assis-

tive robots can improve the quality of life of those who may not have regular access to

human interaction. However, their use also raises questions about privacy, autonomy, and

the potential for overreliance on technology. It is important to ensure that these robots

are designed and used in a way that respects individuals’ dignity, privacy, and autonomy,

and that they are not viewed as a substitute for human companionship and care. In this

dissertation, all the studies were conducted with proper Institutional Review Board (IRB)

approval. By conducting the research with proper IRB approval, we ensured that the study

was conducted in an ethical and responsible manner. Furthermore, the participants were

explicitly informed that Ryan is a machine, and they were advised not to take offense in

case of any impoliteness. The research conductor provided instructions to the participants

to report any such instances to update the dialog manager accordingly.
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7.2 Future Work

While this dissertation has demonstrated the potential of the proposed emotionally intel-

ligent robot, there are some future research and improvements that can be made to enhance

the proposed platform. Some of these directions are:

1. Improving the accuracy of the facial expression recognition system: The pro-

posed FER system in this dissertation showed a good accuracy in classifying facial

images in a controlled environment. However, in practice, the robot is used in dif-

ferent environment with different lighting. The subjects are mainly older adults and

their facial expression could be improved using a different dataset or training a more

robust algorithm. I am going to create a more accurate and specialized FER for older

adults.

2. Affect recognition from other modalities: In this dissertation, we only used facial

expression recognition to understand user’s affect. Although facial expressions play

a vital role in social interaction and they are a common nonverbal channel through

which an AI systems can recognize humans’ internal emotions, human affect sensing

can be obtained from a broader range of behavioral cues and signals such as body

gestures, head movements, speech acoustic analysis, dialog sentiment analysis. Us-

ing multi-modal affect recognition with audiovisual affect sensing and tactile sensors

(e.g., heart rate, skin conductivity, thermal signals etc.) can enable social robots to

understand non-visible user’s affect beyond basic expressions with higher accuracy.

I will investigate other methods and try to incorporate them in my moodometer.

3. Creating a better emotional model: The emotional model used in these studies

(moodometer) is simplistic and not natural. I intend to study other emotional models

and improve the moodometer to better represent the user’s true emotions.
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4. Including more modalities for emotion: When it comes to Ryan’s perception and

sensory input, acoustic signals such as tone of voice, volume of voice and other

modalities such as eye movement, gaze, head and body gesture, posture, and even

breathing rhythm can be used to determine users’ emotional state. Currently, Ryan

does not utilize these sensory inputs. Adding these features would make the recog-

nition of users’ emotional state and intention more accurate and reliable.

5. Exploring large language models: The recent proliferation of chatbots and dialog

systems, such as ChatGPT, has shown the power of large language models to have

longer and deeper conversations. This is a great opportunity to study the perceived

emotional intelligence of a robot equipped with such a sophisticated dialog manager.
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D. Todorović. Geometrical basis of perception of gaze direction. Vision research, 46(21):
3549–3562, 2006. 26

C.-N. Tseng, B.-S. Gau, and M.-F. Lou. The effectiveness of exercise on improving cogni-
tive function in older people: a systematic review. Journal of Nursing Research, 19(2):
119–131, 2011. 17

A. Van Maris, N. Zook, P. Caleb-Solly, M. Studley, A. Winfield, and S. Dogramadzi. De-
signing ethical social robots—a longitudinal field study with older adults. Frontiers in

Robotics and AI, 7:1, 2020. 10

T. Vandemeulebroucke, B. D. de Casterlé, and C. Gastmans. How do older adults experi-
ence and perceive socially assistive robots in aged care: a systematic review of qualitative
evidence. Aging & mental health, 22(2):149–167, 2018. 57

L. P. Vardoulakis, L. Ring, B. Barry, C. L. Sidner, and T. Bickmore. Designing relational
agents as long term social companions for older adults. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 7502 LNAI:289–302, 2012. ISSN 03029743. 10, 46, 47

P. Viola and M. J. Jones. Robust real-time face detection. International journal of computer

vision, 57(2):137–154, 2004. 67

K. Wada, T. Shibata, T. Saito, and K. Tanie. Effects of robot assisted activity to elderly peo-
ple who stay at a health service facility for the aged. In Intelligent Robots and Systems,

2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, volume 3,
pages 2847–2852. IEEE, 2003. 9, 46, 63, 66

R. Wallace. The elements of aiml style. Alice AI Foundation, 139, 2003. 73

R. S. Wallace. The anatomy of alice. In Parsing the Turing Test, pages 181–210. Springer,
2009. 73

W. H. Wollaston. On the apparent direction of eyes in a portrait. Philosophical Transactions

of the Royal Society of London, 114:247–256, 1824. 29

115



R. F. Woolson. Wilcoxon signed-rank test. Wiley encyclopedia of clinical trials, pages 1–3,
2007. 80

H. Xu, O. Intrator, and J. R. Bowblis. Shortages of staff in nursing homes during the covid-
19 pandemic: What are the driving factors? Journal of the American Medical Directors

Association, 21(10):1371–1377, 2020. 58, 93, 95

G.-Z. Yang, B. J. Nelson, R. R. Murphy, H. Choset, H. Christensen, S. H. Collins, P. Dario,
K. Goldberg, K. Ikuta, N. Jacobstein, et al. Combating covid-19—the role of robotics in
managing public health and infectious diseases, 2020. 11

J. A. Yesavage and J. I. Sheikh. 9/geriatric depression scale (gds) recent evidence and
development of a shorter version. Clinical gerontologist, 5(1-2):165–173, 1986. 82, 83

R. Yonck. Heart of the machine: Our future in a world of artificial emotional intelligence.
Arcade, 2020. 4, 58

Y. Yoshikawa, K. Shinozawa, H. Ishiguro, N. Hagita, and T. Miyamoto. Responsive robot
gaze to interaction partner. In Robotics: Science and systems, 2006. 26

Z.-J. You, C.-Y. Shen, C.-W. Chang, B.-J. Liu, and G.-D. Chen. A robot as a teaching assis-
tant in an english class. In Advanced Learning Technologies, 2006. Sixth International

Conference on, pages 87–91. IEEE, 2006. 13

L. Yu. Face alignment in 3000fps. https://github.com/yulequan/face-alignment-in-3000fps,
2016. 41

Z. Yu, A. Papangelis, and A. Rudnicky. Ticktock: A non-goal-oriented multimodal dialog
system with engagement awareness. In 2015 AAAI Spring symposium series, pages 108–
111, 2015. 58

M. Zamora-Macorra, E. F. A. de Castro, J. A. Ávila-Funes, B. S. Manrique-Espinoza,
R. López-Ridaura, A. L. Sosa-Ortiz, P. L. Shields, and D. S. M. del Campo. The associ-
ation between social support and cognitive function in mexican adults aged 50 and older.
Archives of Gerontology and Geriatrics, 68:113–118, 2017. 8, 46, 66

Zeno. Zeno, 2009. URL http://www.hansonrobotics.com/robot/zeno/. 65

116

https://github.com/yulequan/face-alignment-in-3000fps
http://www.hansonrobotics.com/robot/zeno/


Appendices

A Full questionnaire used in the pilot study

Table 1: The mean rank and questions of the exit survey evaluating users’ likability and
acceptance of interacting with Ryan and its features (1-strongly disagree, 5-strongly agree).

Question Avg. Score
± (STD)

Cronbach’s
alpha

Q
ue
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ns
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bo
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se

r
In

te
ra

ct
io

n
w
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R
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n

Q1. I enjoyed interacting with the robot. 4.17 ± 0.75

0.930

Q2. The conversation with the robot was
interesting.

4.00 ± 0.89

Q3. Talking with the robot was like talking
to a person.

3.00 ± 1.54

Q4. I feel happier when I had the robot as
my company.

3.67 ± 1.03

Q5. I would like to have this robot in my
home again.

3.33 ± 1.50

Q6. I feel less depressed after talking to the
robot.

3.33 ± 1.36

Continued on the next page
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Table 1 – Continued from the previous page

Question Avg. Score
± (STD)

Cronbach’s
alpha

Q
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Q7. I liked the robot’s facial expressions. 4.17 ± 0.75

0.924

Q8. I liked the robot mirroring my facial
expressions.

3.50 ± 1.04

Q9. The robot reminder helped me to be on
schedule.

4.00 ± 0.63

Q10. I enjoyed the robot playing my fa-
vorite music.

4.17 ± 0.40

Q11. I enjoyed the robot playing videos for
me.

3.83 ± 0.75

Q12. The videos were effective and af-
fected my life style.

3.50 ± 1.51

Q13. I enjoyed playing the games. 3.33 ± 1.50
Q14. The games helped me train my brain,
though they were simple.

3.17 ± 1.32

Q15. The games were challenging. 2.00 ± 1.54
Q16. I enjoyed watching my photo album
shown by the robot.

4.33 ± 0.81
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B Full survey questionnaire used in AEI study

Table 2: the mean rank and questions of the exit survey evaluating users’ likability and
Ryan’s emotion and sympathy with participants.

Question mean±std
E

va
lu

at
io

n
of

R
ya

n
E

m
pa

th
y

an
d

E
m

ot
io

n
Q1. I felt Ryan was gentle with me. 4.80±.40
Q3. On scale of 1-5 how would you rate Ryan’s facial
expressions?

4.38±.70

Q4. I feel happier when I was in the company of
Ryan.

4.50±.67

Q5. I feel less depressed after talking to Ryan. 4.50±.81
Q6. I felt Ryan understood my emotions. 4.10±1.04
Q7. Ryan encouraged me to open up about my
mood/feelings.

4.00±1.18

Q8. The sessions with Ryan improved my mood and
made me feel happier than I was before we began the
session.

4.50±.92

Q10. How much do you agree with the statement: “I
like that Ryan empathized with me”

4.57±.49

Q11. How well did Ryan empathize with your feel-
ings?

4.40±.80

Q23. I feel happier when I was in the company of
Ryan.

4.60± .66

Continued on the next page
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Table 2 – Continued from the previous page
Question mean±std
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Q14. The conversation with Ryan was enjoyable. 4.50±.67
Q15. The conversation with Ryan was engaging. 4.20±.75
Q16. Learning to interact with Ryan was easy. 4.00±1.00
Q17. Talking with Ryan was like talking to a person. 3.90±1.37
Q18. I felt Ryan understood what I was saying. 4.00±1.26
Q19. Ryan was friendly. 4.80±.40
Q20. Ryan was likeable. 4.90±.30
Q21. Ryan was warm. 4.40±1.28
Q22. Ryan was intelligent. 4.70±.64
Q24. Ryan was acting natural. 4.50±.67
Q25. I would like to interact with Ryan again. 4.60±.66
Q26. I enjoyed interacting with Ryan at the end of
week 3 as much as I did in the beginning of the study.

4.70±.46

Q27. I found myself looking forward to my sessions
with Ryan.

4.70±.64

Q28. I enjoyed Ryan showing photos to me. 4.90±.30
Q29. I enjoyed Ryan playing videos for me. 4.90±.30
Q30. The videos played by Ryan were effective and
helped me either learn something new or have a fun
conversation.

4.90±.30

Q31. The conversations were organized and made
sense.

4.80±.60

Q32. If given the change, I would continue further
sessions with Ryan.

4.70±.64

O
th

er
Q

ue
st

io
ns

Q12. We showed you two versions of Ryan,
one with smile and empathy, and one without.
Which versions of Ryan do you like the most?

100% selected the
version with the
smile expression

Q2/Q9: did you notice a change in the way Ryan com-
municates with you and her ability in showing facial
expressions after the session three crossover?

73% said yes.

Q33. On the scale of 1-5, how did you like the topics
of the conversations Ryan had with you?
Response: Kids:4.56, Pets:3.75, TVShows: 3.5
Science:4.50, Music:4.50, Nature:4.88 Foods:4.38,
Travel:4.63, Art:3.86, Movies:3.33 Reading:4.13,
Sports: 3.44
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C Full survey used in the second AEI study

Table 3: The exit survey evaluating users’ perception of Ryan with AEI.

Question Avg Std
1 I felt Ryan was gentle with me. 4.22 1.17
2 Did you notice when Ryan smiled and showed com-

passion on his face?
Yes
(100%)

3 If answered Yes to Q2, on a scale of 1-5 how would
you rate Ryan’s facial expressions (Smile and Com-
passion)?

4.39 0.78

4 I felt happier when I was in the company of Ryan. 3.82 1.13
5 I felt less depressed after talking to Ryan. 3.65 1.27
6 I felt Ryan understood my emotions. 3.28 1.36
7 Ryan encouraged me to open up about my mood

and/or feelings.
3.72 1.02

8 The time with Ryan improved my mood and made
me feel happier than I was before spending time with
him.

3.78 1.11

9 How much do you agree with the statement: “I liked
that Ryan empathized with me.”

4.00 1.19

10 On a scale of 1-5 how well Ryan did empathize with
your feelings?

3.65 1.06

11 Ryan was acting natural. 3.94 1.00
12 Ryan’s head/neck movement was natural. 3.94 0.94
13 I liked Ryan’s facial expressions. 4.44 0.92
14 I liked Ryan mirroring my facial expressions. 4.00 1.08
15 Ryan’s facial expressions were natural. 3.94 1.16
16 The conversation with Ryan was enjoyable. 3.89 1.18
17 The conversation with Ryan was engaging. 3.72 1.18
18 Learning to interact with Ryan was easy. 3.94 1.06
19 Talking with Ryan was like talking to a person. 3.33 1.37
20 I felt Ryan understood what I was saying 3.39 1.09
21 Ryan was friendly. 4.50 0.92
22 Ryan was likable. 4.39 0.98
23 Ryan was warm. 4.06 1.06
24 Ryan was intelligent. 3.83 1.38
25 I felt happier when I was in the company of Ryan. 3.94 1.00
26 Ryan acted naturally. 3.72 1.36
27 I would like to interact with Ryan again. 3.89 1.08
28 I enjoyed interacting with Ryan at the end of the study

as much as I enjoyed it at the beginning of the study.
4.06 1.21

Continued on the next page
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Table 3 – Continued from the previous page
Question Avg Std

29 I found myself looking forward to spending time with
Ryan.

3.72 0.83

30 I enjoyed Ryan showing photos to me. 3.40 1.26
31 I enjoyed Ryan playing videos for me. 3.80 1.23
32 The videos played by Ryan were effective and helped

me either learn something new or have a fun conver-
sation.

3.33 1.50

33 The conversations were organized and made sense. 3.67 0.91
34 If given the chance, I would continue further sessions

with Ryan.
3.83 1.04

35 The Ryan calendar is useful for users. 3.81 1.05
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