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Artificial Emotional Intelligence in Socially Assistive Robots

Abstract

Artificial Emotional Intelligence (AEI) bridges the gap between humans and machines by demonstrating
empathy and affection towards each other. This is achieved by evaluating the emotional state of human
users, adapting the machine’s behavior to them, and hence giving an appropriate response to those
emotions. AEl is part of a larger field of studies called Affective Computing. Affective computing is the
integration of artificial intelligence, psychology, robotics, biometrics, and many more fields of study. The
main component in AEl and affective computing is emotion, and how we can utilize emotion to create a
more natural and productive relationship between humans and machines.

An area in which AEI can be particularly beneficial is in building machines and robots for healthcare
applications. Socially Assistive Robotics (SAR) is a subfield in robotics that aims at developing robots
that can provide companionship to assist people with social interaction and companionship. For example,
residents living in housing designed for older adults often feel lonely, isolated, and depressed; therefore,
having social interaction and mental stimulation is critical to improve their well-being. Socially Assistive
Robots are designed to address these needs by monitoring and improving the quality of life of patients
with depression and dementia. Nevertheless, developing robots with AEI that understand users’ emotions
and can reply to them naturally and effectively is in early infancy, and much more research needs to be
carried out in this field.

This dissertation presents the results of my work in developing a social robot, called Ryan, equipped with
AEl for effective and engaging dialogue with older adults with depression and dementia. Over the course
of this research there has been three versions of Ryan. Each new version of Ryan is created using the
lessons learned after conducting the studies presented in this dissertation. First, two human-robot-
interaction studies were conducted showing validity of using a rear-projected robot to convey emotion
and intent. Then, the feasibility of using Ryan to interact with older adults is studied. This study
investigated the possible improvement of the quality of life of older adults. Ryan the Companionbot used
in this project is a rear-projected lifelike conversational robot. Ryan is equipped with many features such
as games, music, video, reminders, and general conversation. Ryan engages users in cognitive games and
reminiscence activities. A pilot study was conducted with six older adults with early-stage dementia and/
or depression living in a senior living facility. Each individual had 24/7 access to a Ryan in his/her room
for a period of 4-6 weeks. The observations of these individuals, interviews with them and their
caregivers, and analysis of their interactions during this period revealed that they established rapport with
the robot and greatly valued and enjoyed having a companionbot in their room.

A multi-modal emotion recognition algorithm was developed as well as a multi-modal emotion expression
system. These algorithms were then integrated into Ryan. To engage the subjects in a more empathic
interaction with Ryan, a corpus of dialogues on different topics were created by English major students.
An emotion recognition algorithm was designed and implemented and then integrated into the dialogue
management system to empathize with users based on their perceived emotion. This study investigates
the effects of this emotionally intelligent robot on older adults in the early stage of depression and
dementia. The results of this study suggest that Ryan equipped with AEI is more engaging, likable, and
attractive to users than Ryan without AEI. The long-term effect of the last version of Ryan (Ryan V3.0) was
studied in a study involving 17 subjects from 5 different senior care facilities. The participants in this
study experienced a general improvement in their cognitive and depression scores.
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Abstract

Artificial Emotional Intelligence (AEI) bridges the gap between humans and machines
by demonstrating empathy and affection towards each other. This is achieved by evaluating
the emotional state of human users, adapting the machine’s behavior to them, and hence
giving an appropriate response to those emotions. AEI is part of a larger field of studies
called Affective Computing. Affective computing is the integration of artificial intelligence,
psychology, robotics, biometrics, and many more fields of study. The main component in
AEI and affective computing is emotion, and how we can utilize emotion to create a more
natural and productive relationship between humans and machines.

An area in which AEI can be particularly beneficial is in building machines and robots
for healthcare applications. Socially Assistive Robotics (SAR) is a subfield in robotics
that aims at developing robots that can provide companionship to assist people with social
interaction and companionship. For example, residents living in housing designed for older
adults often feel lonely, isolated, and depressed; therefore, having social interaction and
mental stimulation is critical to improve their well-being. Socially Assistive Robots are
designed to address these needs by monitoring and improving the quality of life of patients
with depression and dementia. Nevertheless, developing robots with AEI that understand
users’ emotions and can reply to them naturally and effectively is in early infancy, and
much more research needs to be carried out in this field.

This dissertation presents the results of my work in developing a social robot, called

Ryan, equipped with AEI for effective and engaging dialogue with older adults with de-
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pression and dementia. Over the course of this research there has been three versions of
Ryan. Each new version of Ryan is created using the lessons learned after conducting the
studies presented in this dissertation. First, two human-robot-interaction studies were con-
ducted showing validity of using a rear-projected robot to convey emotion and intent. Then,
the feasibility of using Ryan to interact with older adults is studied. This study investigated
the possible improvement of the quality of life of older adults. Ryan the Companionbot
used in this project is a rear-projected lifelike conversational robot. Ryan is equipped with
many features such as games, music, video, reminders, and general conversation. Ryan
engages users in cognitive games and reminiscence activities. A pilot study was conducted
with six older adults with early-stage dementia and/or depression living in a senior living
facility. Each individual had 24/7 access to a Ryan in his/her room for a period of 4-6
weeks. The observations of these individuals, interviews with them and their caregivers,
and analysis of their interactions during this period revealed that they established rapport
with the robot and greatly valued and enjoyed having a companionbot in their room.

A multi-modal emotion recognition algorithm was developed as well as a multi-modal
emotion expression system. These algorithms were then integrated into Ryan. To engage
the subjects in a more empathic interaction with Ryan, a corpus of dialogues on different
topics were created by English major students. An emotion recognition algorithm was
designed and implemented and then integrated into the dialogue management system to
empathize with users based on their perceived emotion. This study investigates the effects
of this emotionally intelligent robot on older adults in the early stage of depression and
dementia. The results of this study suggest that Ryan equipped with AEI is more engaging,
likable, and attractive to users than Ryan without AEI. The long-term effect of the last
version of Ryan (Ryan V3.0) was studied in a study involving 17 subjects from 5 different
senior care facilities. The participants in this study experienced a general improvement in

their cognitive and depression scores.
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Chapter 1

Introduction

The research described in this dissertation focuses on the potential benefits of artificially
emotionally intelligent social robots in elder care, specifically for individuals with early-
stage Alzheimer’s Disease (AD)/Alzheimer’s Disease and Related Disorders (ADRD) and
mild depression. The goal is to explore how these robots can improve the social, mental,
and physical well-being of older adults and potentially slow down the progression of these
debilitating diseases. To achieve this, we develop a social robot, equip it with tools for
a more natural and affect-aware interaction, and study its effect on older adults living in
senior care facilities in the Denver Metro Area.

This introductory chapter provides a concise overview of the motivation behind this
study, highlighting the implications of demographic changes and the aging population, as
well as the potential role of robots and artificial emotional intelligence in addressing the
challenges associated with elder care.

Finally, we then describe the focus of our work and provide a brief overview of the

structure and organization of this dissertation.



1.1 Motivation

1.1.1 AD/ADRD

More than 6 million Americans are living with Alzheimer’s disease (AD), and it is ex-
pected that the number will rise to 13.8 million by 2050 as the population ages (Hebert
et al., 2013). AD/ADRD is the sixth leading cause of death among adults 65 years of age
and older, with deaths more than doubling between 2000 and 2019 (Alz; Hebert et al.,
2013). Figure 1.1, shows the facts and figures for 2022 by Alzheimer’s association. Com-
mon symptoms of AD and AD related dementia (ADRD) include cognitive decline, short-
term memory loss, changes in mood, depression, communication difficulties, loss of inter-
est in hobbies or activities, and repetitive behavior. In 2023, Alzheimer’s and other demen-
tias will cost US $345 billion with projected annual costs of over $1 trillion by 2050 (Alz).
Unfortunately, to date, there are no effective treatments available to cure AD and demen-
tia. Traditional disease management methods have shown limited success in treating AD or
mitigating its symptoms; The drug failure rate for AD is currently 99.6% (compared to 81%
for cancer) (Cummings, 2018). Although there is no cure for dementia, the Alzheimer’s
Association emphasizes the importance of helping individuals with AD keep their brain
active through social interaction, music therapy, reminiscence therapy, and other cognitive
activities, in addition to pharmacological treatment (Alz).

Due to the growing demand for the care and treatment of elderly people with dementia,
healthcare personnel and caregivers are physically and emotionally taxed and actively seek
new methods to assist the growing number of people. According to Plunkett, “Healthcare
is one of the largest and fastest growing industries in the world, and virtually all govern-
ment and private health initiatives that pay for health care are desperately seeking ways

to improve patient care outcomes”. By 2030, the global demand for health workers will



rise to 80 million workers, while the supply is expected to reach 65 million, resulting in a

worldwide shortage of 15 million health workers (Liu et al., 2017).

1.1.2 Depression

Depression is the most common type of mental disorder in the United States. Depres-
sion increases the risk of many physical health problems, particularly long-lasting condi-
tions such as diabetes, heart disease, and stroke. It causes severe symptoms that affect how
you feel, think, and handle daily activities, such as sleeping, eating, or working. Research
suggests that genetic, biological, environmental and psychological factors play a role in
depression (Saveanu and Nemeroff, 2012). According to the National Institute of Mental
Health, in 2020: 1) an estimated 21.0 million adults in the United States had at least one
major depressive episode. This number represented 8.4% of all US adults. 2) The preva-
lence of major depressive episodes was higher among adult women (10.5%) compared to
men (6.2%) (NIMH, 2020).

Depression can cause tremendous challenges and burdens for individuals and families.
According to Greenberg et al. (2021) the economic burden of major depressive disorder
among US adults was estimated at $236 billion in 2018, an increase of more than 35% since
2010 (values for 2020). Depression can occur at any age, but often begins in adulthood.
Depression is now recognized to occur in children and adolescents, although it sometimes
presents with more prominent irritability than low mood. Many chronic mood and anxi-
ety disorders in adults start as high levels of anxiety in children. Depression, especially in
midlife or older adults, can co-occur with other serious medical illnesses, such as diabetes,
cancer, heart disease, Alzheimer’s disease, and Parkinson’s disease. These conditions are

often worse when depression is present, and research suggests that people with depres-



sion and other medical conditions tend to have more severe symptoms of both illnesses.

Thoughts of death or suicide, or suicide attempts, are common symptoms of depression.

1.2 Socially Assistive Robots

As the global population ages, the demand for elder care increases and the need for
innovative solutions becomes more pressing. Social robots have emerged as a promising
technology to address some of the challenges associated with elder care, such as social
isolation, depression, and cognitive decline.

Socially intelligent robotics is a rapidly emerging field aiming to design robots that
are able to communicate and interact with humans in a socially acceptable way (Breazeal,
2005; Dautenhahn, 2007). They often achieve positive outcomes in diverse applications
such as education, health-care, quality of life, entertainment, communication, and tasks
requiring collaborative teamwork (Breazeal et al., 2016). These robots are becoming an
integrated part of our daily lives. For social robots to be able to communicate with us
naturally, they need to be more affect-aware.

Affective computing is the integration of artificial intelligence, psychology, robotics,
biometrics, and many other fields of study. Affective computing allows us to interact with
machines and robots using our emotions (Yonck, 2020). It may be difficult to formally
define an emotion, but it is evident that emotions are at the center of human experience.
A famous question posed by Minsky (1988) asks: “the question is not whether intelligent
machines can have any emotions, but whether machines can be intelligent without any
emotions.” Affective computing is a very natural progression in our ongoing efforts to build
technologies that operate increasingly on human terms, rather than the other way around.
Damasio (1994) presented some neurological evidence to prove that emotions do in fact

play an active and important role in the human decision-making process. The interaction



between the emotional process and the cognitive process may explain why humans excel
in making decisions based on incomplete information, “acting on our gut feelings”. This
in turn was the reason for emergence of the term “emotional intelligence”.

With the recent growth in the adoption of Artificial Intelligence (AI) technology in a
variety of applications and disciplines, every aspect of our lives will soon be affected by
Al Personal assistants in our pockets, robots in our homes and workplaces, as well as self-
driving cars on the streets, are just a few examples of the ubiquity of Al. The Al community
has mostly focused on making smarter and more intelligent systems that are capable of
solving hard technical problems, though the need for emotionally intelligent systems that
understand users’ feelings and can connect with them in a natural and welcoming manner
is growing rapidly.

An area in which AEI can be particularly beneficial is in building machines and robots
for healthcare applications. Socially Assistive Robotics (SAR) is a niche field in robotics
that aims at developing robots that can provide companionship to assist people with social
interaction and companionship. For instance, residents living in housing designed for older
adults often feel lonely, isolated, depressed and hence having social interaction and mental
stimulation is critical for improving their well-being. Socially Assistive Robots, such as
Ryan and Pepper are designed to address these needs by monitoring and improving the
quality of life of patients with depression and dementia. Nevertheless, developing robots
with AEI that understand users’ emotions and can reply to them naturally and effectively
is in early infancy, and much more research needs to be carried out in this field.

A futuristic version of an emotionally intelligent machine was depicted in the film Her
(2013). After only 10 years of development in Al, especially affective computing, an emo-
tional relationship with a machine does not seem far-fetched anymore. While humanoid

robots such as Sophia are capable of showing emotions using a prosthetic face, a truly



emotionally intelligent robot needs to be able to perceive the user’s emotion and mental

state, devise an emotionally appropriate response, and then convey it while expressively.

1.3 The outline

This dissertation provides a research investigation into the potential use of socially as-
sistive robots in elder care, with a specific emphasis on the design and development of an
emotionally intelligent robot named Ryan. Chapter 2 covers the related work and literature
review. It studies the robots used in elder care and other studies in artificial emotional in-
telligence. Chapter 3 introduces Ryan, the Companionbot, that serves as the focus of this
research. Three versions of Ryan are explained in detail in this chapter. Chapter 4 presents
the preliminary human-robot-interaction studies conducted to explore various features of
Ryan in a lab environment. Chapter 5 delves into the use of Ryan in elder care and exam-
ines the feasibility of a robotic companion and the potential for an emotional bond between
humans and a robot. Finally, Chapter 6 presents the design and development of a multi-
modal emotion recognition algorithm and a multi-modal emotion expression system that
are integrated into Ryan. Furthermore, this chapter presents the outcomes of two separate
studies that were conducted using the emotionally intelligent version of Ryan. This chapter
offers an in-depth analysis of the findings from these studies, which serve to further demon-
strate the efficacy and potential of incorporating emotional intelligence into the design of

socially assistive robots.
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Chapter 2

Literature Review and Related Works

In recent years, there has been an increase in the use of robots not only in industrial
fields, but also in other areas such as schools (Conti et al., 2018), homes (Cavallo et al.,
2014), hospitals (D’Onofrio et al., 2018), rehabilitation centers (Loi et al., 2018), and in
senior care facilities (Khosla et al., 2012).

There are three types of robots used in healthcare: 1): Physically assistive robots, such
as sophisticated wheelchairs and surgical robots, 2): Socially interactive robots, such as
spoken-dialog-enabled receptionists, and 3): Socially assistive robots, such as Pepper (Fig-
ure 2.1.1), that are designed to monitor and improve the quality of life of users. Our focus
in this dissertation is on the last type.

In this dissertation, I have focused on social robots used in healthcare, specifically with
older adults. The use of socially assistive robots (SAR) to help older adults has recently
become more relevant due to the increase in the number of elderly people, the decrease in
the cost of technology, and recent advances in artificial intelligence Leite (2015). Nursing
home residents live alone with disabilities, while in most cases their cognitive abilities are
degraded due to old age or various types of dementia Kotwal et al. (2016). Studies sug-

gest that social support for elderly people could improve their cognitive function (Zamora-



Macorraetal., 2017). Using SARs with a focus on the socialization aspect of Human-Robot
Interaction (HRI) is a viable option to reduce the burden on caregivers while providing
companionship to elderly people, improving their quality of life and avoiding depression

and further degradation of their mental abilities.

-
e) Nao f) Paro g) Furhat h) Socibot

Figure 2.1: Robots used in social robotics studies.

Wada et al. (2003) used the Paro (Figure 2.1.f) robot to study the long-term effect of
social robots on residents of a senior care center. The results indicated that the residents
established a relationship with the robot, developed stronger social bonds among them-
selves, and also maintained a lower stress level. However, Paro lacks the ability to talk and
communicate. It is shown that to be accepted more easily, a social robot should be com-
municative (Heerink et al., 2006) and must employ a form of communication with which
humans are habituated (Krdamer et al., 2012). Paro does not have any human-like features.

Studies show that humans feel closer to a social robot when they interact with it in a
one-on-one setting (Lee et al., 2005). It has also been shown that to build a relationship
with robots, humans use principles that are more in line with the human-human interaction
than the human-robot interaction (Krdmer et al., 2012). These studies suggest that a robot

can substitute human companionship or at least have a higher chance of making a bond if
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the robot looks and acts like a human. Anthropomorphic characteristics in social robots can
facilitate human social understanding (Breazeal, 2000; Duffy et al., 2002) and are important
in the development of a meaningful social interaction between robots and people (Duffy,
2003)

Another key aspect of having a robot as a companion is continuous (uninterrupted)
companionship, which means having access to the robot at all times. The majority of stud-
ies on human-robot interaction (HRI) are often brief and conducted in public spaces, or
focus on specific domains such as education (Michaelis and Mutlu, 2017), healthcare (Bo-
dala et al., 2021; Robinson et al., 2020; Van Maris et al., 2020), or rehabilitation (Céspedes
et al., 2021a,b). However, conducting longitudinal studies that involve physically embod-
ied social robots in users’ homes to examine repeated interactions remains rare due to the
logistical and cost-related challenges associated with situating these devices in domestic
settings.

To gain a complete understanding of how humans adapt to social robots and how
their perceptions and behavior evolve over time, it is crucial to conduct longitudinal stud-
ies (Leite et al., 2013a). Autonomy plays a crucial role in achieving uninterrupted com-
panionship that enables a longitudinal study. Most studies conducted with social robots in
elder care are performed in a Wizard-Of-Oz (WOZ) manner (Vardoulakis et al., 2012), or
were limited to a specific scenario (Pineau et al., 2003). Vardoulakis et al. (2012) designed
an experiment to study the long-term social companion of older adults. They used a WOZ
method and the subject had a robot at home for one week. However, since the robot was
remotely controlled by an operator, the subject interacted with the robot for only one hour
every day. Employing the WOZ method forces the subjects to use the robot at a specific
time of the day for a short period, which resembles visiting a friend rather than having a

companion at home. Social robots such as Paro are autonomous and provide continuous
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companionship, but lack the ability of having a robust social interaction such as spoken
dialog and an expressive face.

Studies suggest that social robots are promising tools for delivering and improving men-
tal health interventions (Robinson et al., 2019), supporting rehabilitation (Feingold Polak
and Tzedek, 2020), and providing physical and social support (Henschel et al., 2021) in
various settings. Research has shown that social robots can help minimize social tensions
and anxieties(Nomura et al., 2020), particularly for those with social anxiety, and can serve
as interventions for social anxiety(Rasouli et al., 2022).

Furthermore, the COVID-19 pandemic has highlighted the potential of social robots as
assistive technology, as they can perform tasks such as taking temperature, food and supply
delivery, providing companionship, and mediating social interactions (Henschel and Cross,
2020; Scassellati and Vazquez, 2020; Yang et al., 2020).

Deep social interaction is required when dealing with older adults with dementia. Dif-
ferent robots such as Paro, Nao, and Zeno (Figure 2.1.a,e,f) have been used in studies on
the care of elderly people with dementia (Mordoch et al., 2013). Most of the robots used in
these studies have not been built with the social aspect in mind. But to be able to communi-
cate with older adults with AD/ADRD and try to engage them in conversations and games,
we need a robot that has been designed to accomplish these social goals. Recently, several
studies have investigated the incorporation of empathy into social robots (Alves-Oliveira
etal., 2019; Leite et al., 2013b; Mollahosseini et al., 2018a; Paiva et al., 2005). In chapter 3,

I introduce Ryan, a robot designed to be social, empathic, and emotionally intelligent.
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Chapter 3

Ryan CompanioBot

Despite the tremendous efforts by many researchers in academia and industry to design
and build realistic robotic heads, current robots have yet to reach the perceptive and emo-
tional verbal and nonverbal social capabilities of humans. These social capabilities, which
include the ability to engage users in natural spoken dialog, interpreting users’ affect states,
and respond effectively to them through speech and facial expressions, are necessary for
rich and robust interaction with human beings. Social robots such as Paro (Kidd et al.,
2006) have the robustness and cost effectiveness for large scale, unattended user trials,
but lack the sophistication for deep social interaction. Social robots such as Simon (Si-
mon) possess state-of-the-art capabilities for social interaction, but are too expensive and
maintenance-intensive.

The robot used in this study is Ryan Companionbot (Ryan) which is based on Expres-
sionbot (Mollahosseini et al., 2014a). Ryan has been developed in DreamFace Technolo-
gies, LLC. with the social aspect of HRI in mind. This robot has an emotive and expressive
face with accurate visual speech. Ryan can maintain a spoken dialog, recognize expres-
sions on the user’s face, and it is equipped with a screen on its torso with features such as

cognitive games, music player, narrated photo album, and video player.
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To keep the subject engaged for a long period of time, the SARs must be personal-
ized (Castellano et al., 2008a). Thus, Ryan can be customized for each user. To increase
intimacy and invoke rapport, users can choose a name for the robot. It is worth mentioning
that in the study in Chapter 5 one subject named the robot after his late wife. In that study
we left the Ryan with the subject for 4 weeks. Leaving the robot in an older adult’s home
and having 24/7 access to the robot may cause them to lose motivation. To provoke subjects
to act on intrinsic motivation, we had to define tasks and modify Ryan to be enjoyable and
not repetitive.

After a while that the user exhausts all of the features of the robot, they will lose in-
terest in interacting with the robot. It is shown that the novelty effect of SARs disappears
quickly (You et al., 2006). As the novelty aspect wears off, the social effect could also
decrease (Fernaeus et al., 2010). By endowing Ryan with a character and a sense of humor
on top of various other features implemented into Ryan, we keep the subjects interested to
interact with the robot for a long period.

In the next sections, we will explain the hardware and software of different versions of

Ryan.

3.1 Ryan V1.0

3.1.1 Hardware

Ryan V1.0 hardware is designed with three main components (Figure 3.1): 1) the head

projection system, 2) the neck mechanism, and 3) the torso.
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Figure 3.1: Ryan hardware.

3.1.2 Head Projection System

Using a large number of actuators to build a human-like robotic face capable of show-
ing different emotions and visual speech is difficult and expensive (Mollahosseini et al.,
2014b). To avoid the tremendous effort required to develop a robotic head capable of
having accurate visual speech, state-of-the-art character animation technology was used to
produce an avatar. Using rear projection optics, the head projection system displays the
animated avatar on a mask. This system also allows us to further customize the appearance
of the robot. Consult the work of Mollahosseini et al. (Mollahosseini et al., 2014b) for

more details on the projection system.

Neck Mechanism

The movement of the head to track faces and head gestures is controlled by the neck
mechanism, a two-degree-of-freedom pan/tilt unit. Having only two degrees of freedom

keeps the system simple and suffices for face tracking. The neck has a range of motion of
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30°of flexion and extension (£30° pitch) and 180°lateral rotation (£90°yaw). This range

allows the head to track the user anywhere in front of the robot.

Torso

The main computer, an RGBD camera, a touch screen display, and power supplies are
enclosed inside the torso. Adding a touch screen to the robot added a new way of interacting
with Ryan (touch) and also it added the feature to be able to display more information to
the user. The display was used for cognitive games, music player, video player, and the
narrated photo album. The RGBD camera enables us to have a 3D view of the environment

for better tracking the user and also for future studies on activity recognition.

3.1.3 Software

To make Ryan an intelligent and sociable robot that can understand human language
and communicate through spoken dialog, a series of features have been implemented in
the robot. Ryan must be able to find the user in the environment, read the user’s facial
expression, understand the user’s speech, generate an appropriate response, and say it to the
user through audio, accompanied with visual speech while showing a relevant expression
on the face. Ryan is also able to communicate with users through the touch screen in the
torso.

The Microsoft Kinect sensor V2.0 (Kinect) acts as the eyes of the system to constantly
monitor user’s activities and its face detection feature enables Ryan to find the subject in
the room. For facial emotion recognition, Ryan uses the Intel RealSense SDK (Realsense)
which provides seven basic facial expressions. Intel RealSense SDK is also used as the
speech to text engine. Ryan uses the speech emotion recognition Aylien (Aylien) system

which is an online natural language processing service for sentiment analysis of the user’s
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Figure 3.2: Cognitive Games.

speech. A retrieval-based open dialog management systems available on the web (ChatBot/
Pandorabots (Pandorabots)) is used as the dialog manager.

To reduce subjects’ cognitive abilities deterioration, we equipped Ryan with cognitive
games focused on patients with dementia. Drugs are not the only method to treat mental
diseases such as dementia, Alzheimer’s disease, and depression. There exist alternative
therapeutic methods such as talking therapies, life story and reminiscence work, and cog-
nitive stimulation therapy for these diseases (Lawrence et al., 2012).

We designed four games (Figure 3.2). These games are based on Montessori-based
activities (Judge et al., 2000) to help people suffering from dementia combat the disease.
These visual games are simple and interactive with different levels of complexity. The
game instructions were given by Ryan and the users could answer the questions either via

voice commands or by pushing the buttons on the screen.

16



There is evidence that life story, photo albums, and reminiscence work, particularly
when done one-on-one, can improve mood, well-being and some mental abilities such as
memory (Lawrence et al., 2012). For each subject we collected about 15-20 old photos and
the stories about the event in the photos, either from the participant or their close relatives.
The photos are shown on the torso screen one by one, and the robot reads the story back to
the user. Sometimes simple questions are asked to engage the user in the conversation.

Reminiscence and memory work also involves talking about things from the past, using
prompts such as photos, familiar objects, or playing music. A video player application was
created to randomly select and play videos from a list of YouTube video clips. The list
contained URLs of short (4-5 minutes) YouTube videos queried based on the users’ topics

of interests (e.g. healthy foods, sports, and nature).

3.2 Ryan V2.0

Besides a full system overhaul of Ryan’s aesthetics for a sleeker and a more visually ap-
pealing robot, we introduced three fundamental enhancements to Ryan’s form and motion
capabilities to improve social interaction and support between Ryan and the user. These
enhancements focus on Ryan’s arms, neck motion, and projection system. Ryan V2.0 was

not used in any studies in this dissertation.

3.2.1 Hardware

Arm Enhancements: Although Ryan’s purpose is to be socially and not physically
assistive, we decided to include active arms in the second version. Active arms are used
to engage users in physical exercise, which has been shown to elevate mood and have
cognitive health benefits (Tseng et al., 2011). Both have a great impact on the quality of life

of seniors with dementia. With active arms, Ryan is able to coach through demonstration
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of various exercises for the user and engage the user to perform the exercise in synchrony;
adapting to the user’s pace and providing positive reinforcement and feedback.

Safety feature: Although the incorporation of active arms creates opportunities for
greater functionality, it also presents new challenges and risks; specifically, the risk of
accidental collision of the arms with the user or their property. To mitigate these risks and
ensure the safety of the users, a series of proximity sensors are installed on Ryan to ensure

that Ryan only moves its arms if it is safe.

Figure 3.3: Six degree of freedom parallel neck mechanism providing natural head motion
for more natural and emotive dialog.

Neck Enhancements: Studies have shown that head movement plays an important
role in conversation. Head movements can signal familiarity and a sense of rapport with
the conversational counterpart through gestures that communicate affirmation, impatience,

disbelief, desire to speak, and empathy (Heylen, 2006). Because head movement can have
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a profound impact on both the quality and perception of social interaction, Ryan’s neck
mechanism was redesigned to have sufficient degrees of freedom and range of motion to
naturally mimic the varied movements of a human neck.

The neck mechanism of Ryan V1.0 uses a simple pan/tilt unit to produce yaw and pitch
rotations of the head. This design is sufficient as a proof of concept and to verify the feasi-
bility of the system; however, these basic head movements were perceived as unnatural by
participants in the field study, thus detracting from the effectiveness of social interactions.
To provide richer and more expressive interactions, the neck mechanism for Ryan V2.0 was
based on a Stewart platform (Dasgupta and Mruthyunjaya, 2000) parallel manipulator with
six degrees of freedom (Figure 3.3). A six-degree-of-freedom design was chosen for this
version of Ryan because the human head is not limited to solely rotating about its centroid.
It can translate as well (e.g., back in disbelief), and the center of rotation of the head can
also be shifted along the cervical spine to produce rotations about the centroid of the head
or the base of the neck for different effects. Therefore, a purely rotational mechanism is
not sufficient to mimic the sophisticated head movements that play a vital role in emotive
dialog.

Projection Enhancements: Ryan uses character animation technologies to project life-
like 3D models onto a translucent mask to display the rich natural speech and facial expres-
sions. This enables it to display a variety of different characters to suit the preferences of the
individual user with minimal effort and create highly dynamic facial expressions without
mechanical actuators and components that are prone to failure.

The Ryan V1.0 uses a bulky projector positioned outside of the head that was replaced
with a far smaller form factor projector along with a mirror and lens assembly that fits fully
and compactly inside Ryan’s head enclosure. This setup looks more aesthetically pleasing
and natural. It also protects sensitive components from damage. Figure 3.4 depicts the new

design and the placement of the internal components.
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Figure 3.4: (a) frontal view of full Ryan CompanionBot design and (b) transparent view
illustrating positioning of key components and sensors.

3.2.2 Software

For the second version of Ryan, the software stack was rewritten from scratch. In

the new design, every conceptual module is represented by a ROS(Quigley et al., 2009)

node. Instead of using Realsense SDK for emotion recognition, I created a facial expression

recognition model based on MobileNet (Sandler et al., 2018) deep neural network archi-

tecture trained on AffectNet (Mollahosseini et al., 2017) dataset. Kaldi (Povey et al., 2011)

was used for speech recognition and CereProc (Garrido et al., 2008) for text to speech. We

created a “cartoonish” 3d face model (see Figure 3.5) that fits the new body design better.

A few new games were added to Ryan and the tablet UI was redesigned.
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Figure 3.5: A model with different facial expressions designed for Ryan.
3.3 Ryan V3.0

In version 3.0 of Ryan, we introduce new features and upgrade the hardware to make

Ryan more robust and aesthetically pleasing.

3.3.1 Hardware

The microphone in Ryan is upgraded to a mic array, allowing Ryan to filter environ-
mental noise and improve the accuracy of text transcription. The complex Stewart platform
neck introduced in V2.0 is replaced with a simpler 3 degree-of-freedom neck. The arms
are upgraded and other than the proximity sensors in the base, now the arms also monitor
their torque to detect collision. An NFC reader is added to Ryan to make it possible to have

multiple users log into the same robot using a unique NFC tag.

3.3.2 Software

A new authentication backend is designed and implemented that enables Ryan to sup-

port user profiles. This also enables us to collect each users’ analytics automatically. A web
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Ul is designed and created that visualizes the recorded data for each user. The offline Kaldi
speech recognition software is replaced by an online service by Microsoft, to improve the
accuracy. A new dialog manager software based on Facebook’s ParlAl system is created
for generative and unbounded conversations. Finally many new games, yoga, Spotify, more
custom faces and an in-house text-to-speech is also integrated into Ryan V3.0. Figure 3.6

shows the latest design and some of the features of the latest version of Ryan.
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Seated Yoga

Emotion Sl Cognitive Games

Recognition Recognition

Audiovisual _
ﬁ Source Dialog
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Figure 3.6: An overview of the Ryan’s latest design and features (Ryan V3.0).
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3.4 Summary

Table 3.1 contains a summary of some of the changes made to Ryan over the years. The

changes made to Ryan are the results of our field studies and the user feedback. Ryan v3.0

is more expressive, aesthetically pleasing, stable, feature rich, and extensible.

Table 3.1: A summary of some of the improvements between Ryan version 1.0 and version
3.0 and the reasoning behind them. Ryan V2.0 was not used in any experiments and was
refined into Ryan V3.0.

Feature Ryan V1.0 Ryan V3.0 Reason for change
Arms Passive Active To encourage the users to do more physical activities. Active
g arms enable Ryan to teach chair yoga and makes Ryan more
'?i expressive.
= Tablet Vertical Horizontal We changed the orientations to be able to show larger pic-
tures and videos. The angle of the tablet is also adjustable,
this helped with the viewing angle and ergonomics of using
Ryan.

Projector Outside the | Enclosed in the | This was done to improve Ryan aesthetically.
head head

Body Shell Thermoformed 3D printed 3D printing allowed us to change the shape of Ryan’s body
to make it more aesthetically pleasing.

RGBD Camera MS Kinect Intel Realsense Switching to a smaller and more generic RGBD camera al-
lowed us to use a more accurate skeleton tracking algorithm
for Ryan’s game and yoga.

Software Frame- | .Net state ma- | ROS Robot Operating System (ROS) is the standard framework

work chine used in robotics. Switching to ROS simplified the integra-
tion of the active arms with the rest of the system.

o Facial Animation | MS XNA Unity3D Unity3D is a an advance game engine that allows for better
é animations and interoperability with other modules.
2 Speech Synthesis | MS TTS Custom DNN | Using a voice actor and training a DNN model improved the
model quality of synthesized audio and made Ryan’s voice more
natural.

Visual Speech Generated by a | Generated by | This improved the accuracy of the visual speech and lip
speech recogni- | the Speech | movement and lower the computational complexity of the
tion toolkit Synthesis system.

software
Continued on the next page
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Table 3.1 — Continued from the previous page

Feature

Ryan V1.0

Ryan V3.0

Reason for change

Speech Recogni-

tion

Windows STT

Azure Cogni-

tive Services

The state-of-the-art speech recognition offered by Microsoft
Azure reduced the number of errors in the speech transcrip-

tion and in turn improved the quality of the conversations

Facial Expression | Kinect SDK Custom DNN | Using a more accurate facial expression recognition is cru-

Recognition model cial in a emotionally intelligent robot.

User Authentica- | N/A Custom Node.js | The first version of Ryan did not have any user authentica-

tion backend tion ability. Adding this feature allows multiple users to use
the same robot while preserving their data and privacy.

Music Provided by the | Spotify This improvement allows the user to have access to any song

user they would like to listen to. Playing music from a specific

decade was also a user requested feature.

Dialog Manager ProgramR KatieBot ProgramR is a retrieval-based chatbot which requires a cor-

pus of pre-written dialog. KatieBot is a hybrid between Pro-
gramR and BlenderBot from Facebook. BlenderBot is a gen-
erative model. This allows Ryan to have sensible conversa-

tions about virtually any topic.
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Chapter 4

Ryan: Human-Robot-Interaction

Studies

4.1 Introduction

In this chapter two preliminary studies are presented. These studies have been con-
ducted in the lab to evaluate the user perception of Ryan as a social robot, the effects of the

embodiment of Ryan, and finally the feasibility of having an empathic social robot.

4.2 Ryan’s embodiment

In this study, my colleague and I aimed to explore how the unique features of Ryan
influence three major elements of human-robot face-to-face communication, namely the
perception of visual speech, facial expression, and eye gaze. The details and results of the
visual speech and facial expression studies are presented in Mollahosseini et al. (2018b).

In this study, I focus on the eye gaze. Below I present the findings of my study.

25



4.2.1 Eye Gaze

Eye gaze is one of the most basic and important features of the human face for non-
verbal communication. Humans incorporate gaze both consciously and unconsciously into
various human-human interaction schemes (Chen and Yeh, 2012). For example, neurons
in the primate visual cortex can respond selectively to eye gaze, head orientation, or even
a combination of both (Perrett et al., 1985). Eye gaze serves several different functions
such as capturing attention, maintaining engagement (Cassell, 2000), conveying informa-
tion about emotional and mental state (Ruhland et al., 2014), augmenting verbal communi-
cation (Emery, 2000), orchestrating turn-taking and deictic reference (Kendon, 1967).

Considering the importance of eye gaze in social interaction, it is not surprising that
social gaze behavior has been studied on many robotic platforms (Imai et al., 2002; Mutlu
et al., 2009; Yoshikawa et al., 2006). Mechanical and Android robotic platforms control
eye gaze by using actuators in the eyeballs. However, these actuators may not be fast or ac-
curate enough to replicate the movement of human eyes. The movement of the human eye
is controlled by three pairs of muscles and it can reach an angular speed of about 400°/sec
with a time of 200ms to initiate (Pateromichelakis et al., 2014). Computer graphics ani-
mations, on the other hand, have a greater capability to produce a natural-looking eye gaze
(Cassell, 2000; Ruhland et al., 2014). However, it is known that the perception of 3D ob-
jects that are displayed on 2D surfaces is influenced by the Mona Lisa effect (Todorovi¢,
2006). Hence, the lack of physical embodiment and physical presence may constrain the

perception of virtual agents’ eye gaze.

4.2.2 Related Work

Many studies in vision science have evaluated head-eye gaze, but only on telepresent

faces (Allison et al., 2000; Baron-Cohen et al., 1995; Itier and Batty, 2009; Sweeny et al.,
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Table 4.1: Summary and overview of literature comparing perception of eye gaze in differ-
ent conditions.

Condition*
CR | TR | VA | GT

Work Agent EGt Description Results**

e A horizontal scale (ruler) was used
. . - e Errors were greatest when head
Anstis et al. vV v v v e Video of a human used for TR rotation and eve rotation were
(1969) o The agent’s head was rotated with inconeruent y

-30°,0° and 30° angles g !
o A grid with 100 cells was used
e Video of a human used for TR

o CR performed better than TR

Delaunay o GT performed significantly better

et al. (2010) LightHead | v* | v/ v v :ig\leangl:lejir\)(\)/:?}??)f’l’asrﬁ)]f SCJS than other conditions, in both frontal
angles & and side view situations
e Perception of gaze was
Al Mouba- o A grid with nine cells was used significantly worse when the head
yed and Furhat v v e Vergence, parallel eyes, static and was moving compared with eye
Skantze dvnamic evelids movement alone.
(2012) y ¥ o No significant difference between
gaze with and without vergence.
Moubayed e Mona Lisa effect studied on five o Gaze was perceived more

Furhat v v subjects sitting around a circle.
e Only eye rotation studied
e Photos of a person looking from | e CR was significantly better than

etal. (2012) accurately on CR

Misawa et al. LiveMask | v v -30° to 30° VA

(2012) o Instead of rotating the head, e The Mona Lisa effect occurred in
subjects’ view angle was changed | VR

Mollahos- . . T
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seini et al. sionbot v v subjects sitting around a circle better on CR

(2014b) ! £

This work Ryan VIV vI|VY v
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Ground Truth (human) respectively.

TEG stands for Emergent Gaze which is defined as simultaneous movement of head and eye-gaze.
*#% Only the relevant finding from the original papers are reported in this summary.

2012). Although embodiment and presence have been studied individually, there is not
a comprehensive study that distinguishes the role of embodiment and presence in gaze
perception. Gaze perception of a physically present human agent and his video was studied
on a TV set by Anstis et al. (1969). In this classic study, subjects were asked to report the
point on a glass screen at which the agent (TV or a human) was looking. To simulate head
rotation in the telepresent condition, the TV set was rotated. The agent’s head was rotated
at -30°, 0° and 30° angles. The study found that eye gaze was much better perceived on a
physically present human agent than on its telepresent counterpart, and the perception of

gaze was distorted with the rotation of the TV.
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Delaunay et al. (2010) studied gaze perception on the LightHead robotic face, its telep-
resence, and the gaze of a human agent. A vertical glass screen with a 10x10 grid was
placed between the agents and the subjects, and subjects were asked to report the gaze
point when viewed from a frontal and 45° angle. Since asking a human to hold his/her head
steady in a 45° position was not possible and chin/forehead rests did not allow horizontal
rotations, to study the effect of head rotation, subjects were instead moved to a position
with a 45° angle with respect to the agent. Under these conditions, subjects judged gaze
from the video and the robot in both frontal and 45° view situations with equal sensitivity.

Al Moubayed and Skantze (2012) compared the perception of eye gaze on Furhat
robotic face with a human agent under different conditions (i.e. presence of vergence,
static/dynamic eyelids, etc.). They took a different approach by asking the agents to look
at nine points on a table between the agent and the subjects. In this case, there was no sig-
nificant difference between gaze with vergence and without vergence. Furthermore, head
movement appeared to be more effective in influencing judgments along the horizontal
axis, while eye movement dominated judgments along the vertical axis. Regardless of the
conditions, the gaze of the human agent was perceived better than the gaze of the robot.

Studies show that virtual agents suffer from the Mona Lisa effect (Misawa et al., 2012;
Mollahosseini et al., 2014b; Moubayed et al., 2012), in which the eyes in a picture appear
to be looking at the viewer regardless of their location in front of the picture. For example,
Moubayed et al. (2012) studied the Mona Lisa effect on a virtual agent and its 3D projection
on Furhat robotic face. Five subjects were simultaneously seated around the agent, each of
whom was asked to report their perception of the agents’ eye gaze direction. The results
showed a clear Mona Lisa effect in the virtual agent since many subjects perceived a mutual
gaze at the same time.

Table 4.1 summarizes several studies on eye gaze perception and their most relevant

findings. The majority of these studies report that physical presence plays a greater role
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in perception of an agent’s eye gaze than physical embodiment. Presumably, having a 3D
view of the nose direction, the eye position, and their composition help viewers to perceive
eye gaze direction more accurately. In addition, few studies have explored emergent gaze.
Emergent gaze occurs when the visual system integrates global information about the rota-
tion of the head with local information about eye rotation, to compute a distinct metric of
gaze present in neither feature alone (Cline, 1967; Kinya and Mitsuo, 1984; Kluttz et al.,
2009; Langton et al., 2004; Otsuka et al., 2014; Sweeny and Whitney, 2017; Wollaston,
1824). This approach to measuring gaze perception has been surprisingly underutilized in
robotics work.

The present study evaluates the perception of emergent gaze, while at the same time
comparing the roles of embodiment and presence of the robot. One of the reasons that
emergent gaze has not been studied extensively both with humans and robots is the diffi-
culty inherent in controlling the movements of a human agent. Rotating a human’s head
and eyes to an exact position requires special apparatuses and complicates the experiment
process. Hence, most studies of gaze either do not include a condition with a human agent,
or they use a typical chin/forehead rest to fix the human’s head in place, which precludes

examination of emergent gaze.

4.2.3 Methodology

To evaluate the accuracy of agents’ eye gaze in the current investigation, the agent
looked at a particular point on a glass divider located between the agent and the subjects. A
horizontal line with fifty-one equidistant points was drawn on the glass. The agent looked
at a point on the glass screen, and subjects were asked to report their perception of the

agent’s gaze direction.
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In order to precisely set eye gaze toward a target point, we needed to rotate the agents’
eyeballs such that the pupils were directed towards the target point. In this study, the target
points were at agent’s eye level; hence we only needed to change the yaw angle for the
eyes. Assuming the face is frontal (rotated zero degrees), the yaw angle for the right and

left eyes (- and «y, respectively) is calculated as:

s x4+ E,
» = — — arct 4.1
« 5 arctan D, “4.1)
—F
o = T_ arctan * l 4.2)

2 D,

where x € [—75cm, 75cm] is the target point on the glass screen. F,. and E; are the distance
of the right and left eye from the center of the glass screen on the x-axis, and D, and D

are the distance of the right and left eyes from the glass screen on the y-axis, calculated as:

E, = E, = H x sin(f) (4.3)

D, =D, =D+ H x cos() 4.4)

where H is the distance of the head pivot point (C) from the center of the eyes, 6 is the
angle between the eyes and the head pivot point, D is the distance of the head pivot point to

the glass screen. Figure 4.1a shows the schema and the variables used in these calculations.
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X E,

(a) Head facing forward (b) Head rotated by

Figure 4.1: Schema and the variables used in the calculating eye gaze angle (Drawing not
to scale).

When the head is straight, D; = D, and E, = Ej. If the head is rotated by ~v° (Fig-

ure 4.1b), the values of £, and D, in Equations (4.1) and (4.2) are changed as follows:

E, = H x sin(6 + ) 4.5)
E = H x sin(f — ) 4.6)
D, =D — H x cos( +7) 4.7
Dy =D — H x cos(f — ) 4.8)

In the above equations, we assumed that the agent does not have any facial curvature in
the eye area (Figure 4.2-left). If the face has an angle (¢) in the eye area (Figure 4.2-right),
Equations (4.1) and (4.2) will change as follows:

T + B,
, = — — arct — 4.9
o 5 arctan D, € 4.9)
- F
o = g — arctanx D ! + € (4.10)

31



Figure 4.2: Mask with flat eye region (left) and with angled eye region (right).

Agent Q
7
1 //
/
1 //

60cm

60cm

Participant @\

Figure 4.3: Perception of eye-gaze setup. Fifty-one points with three centimeters distance
from each other were marked on the glass. The agents looked at only A, B, C, D, and E
points located at -39, -21, 0, 21 and 39 centimeters from the center respectively.

4.2.4 Eye Gaze Experiment

We examine the perception of eye gaze with 23 subjects, 7 women and 16 men, with an
age range of 21-40 years (mean = 28.4, SD = 5.5), each of whom had normal or corrected
to normal vision. To evaluate the role of embodiment and presence in the perception of the
agent’s eye gaze, four conditions (VA, CR, TR, and GT) were examined in this experiment.
In each condition, the agent looked at a particular point on a glass divider located between
the agent and the subjects. The subjects were then asked to report their perception of where

the agent was looking.
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(a) Copresent Robot  (b) Telepresent Robot

(c) Virtual Agent (d) Ground-Truth

Figure 4.4: Eye gaze different conditions.

The subjects were seated in front of the glass screen and then asked to keep their head
still on a chin-forehead rest and look straight at the agent at a distance of 120 cm. To
simulate the most accurate head rotation and avoid a Mona Lisa effect, which is common
when viewing a face on a flat screen, in the VA condition we presented rotations of the
animated head itself rather than rotations of the screen portraying the head. Figure 4.3
illustrates the eye gaze evaluation setup.

Fifty-one points, three centimeters apart, were marked by letters and numbers on the
glass. However, the agents looked at only five points located at -39, -21, 0, 21 and 39
centimeters (with zero as the middle point of the glass divider). Hereafter, these points are
referred to as A, B, C, D and E, respectively (shown in Fig. 4.3). Subjects were not aware
of the agent’s restricted gaze targets, and they were instructed that the agent may look at
any point on the glass. Figure 4.4 shows photos of different conditions viewed from the

subject’s position.
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We examine the emergent perception of eye gaze (i.e., the integration of head rotation
information with eye position). In particular, there were five possible head rotations (-30°,
-16°, 0°, 16°, and 30°), and in each head position, the eyes were shifted toward the five
points on the glass screen. An example of this condition is shown in Fig. 4.3, where the
agent’s head is rotated toward +16° and the eyes are directed at point B.

The method described in Section 4.2.3 was used to calculate the angle for the agent’s
eyes in CR and TR scenarios. The dimensions of the robot head for CR and the 3D model
for VA were measured, and depending on the target point on the glass screen, the eyes of
the robot/3D model were rotated toward the target point. The measurement used in CR was:
D = T73cm, H = 13.35¢m, § = 13°, and the measurement used in VA was: D = 70cm,
H = 10.45cm, 6 = 17°. Since a mask with a flat eye region was used in CR and a flat
screen was used in VA, the value of ¢ was set to 0°.

A Canon EOS 80D DSLR camera was used to take pictures of the robot from the point
of view of the subject. The captured images were calibrated to the size of the robot head.
Using this method, from the point of view of the subject, the agent in both CR and TR had
the same size and proportions and, in theory, the same direction of eye gaze (if we took a
picture from the subject’s point of view, it would look the same). The difference was that
the TR condition featured a 2D representation of the CR condition.

To keep the human agent’s head in an exact head rotation angle consistently during
the GT experiments, we modified a chin/forehead rest to rotate and then stabilize in 1°
increments. In the GT condition, a human was seated in the place of the agent and looked
at the points on the glass, while keeping his head still on this chin forehead rest and his
shoulders facing directly forward.

In all four conditions, first, the agent’s head was rotated to one of the five angles (-30°,
-16°, 0°, 16°, and 30°) randomly. Then at each of these head angles, the eyes were rotated

to gaze at one of the 10 points on the board (two trials for the five targets A, B, C, D and E)
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randomly. The subject was asked to close his/her eyes between each trial to eliminate any
effect of seeing the agent adjust his head and eyes. In total, each subject reported 50 gaze
directions (5 angles x 5 points x 2 trials) for each condition. Each condition was run in a
block lasting five minutes, and the subjects were asked to leave the room for two minutes
until the room was set for the next condition.

Four different agent conditions (VA, TR, CR and GT) were presented in random order
to the subjects, and subjects were asked to report their perception of the point at which the
agent was looking. The accuracy was calculated by measuring the error in each subject’s
reports of eye gaze. The gaze perception error was defined as the absolute distance be-
tween the point that the subjects reported and the actual target point at which the agent was

looking.

4.2.5 Eye Gaze Results

We performed a 5 (head rotation) x 5 (eye gaze) x 4 (agent conditions: CR, TR, VA
and GT) ANOVA with agent condition, head rotation, and target point as within-subject
factors. The dependent variable was the gaze perception error. This analysis revealed a
significant main effect of agent condition [F'(3,66) = 134.55, p <.0001]. We also found
the main effects of head rotation [F'(4,88) = 70.25, p <.0001] and eye gaze [F'(4,88) =
31.39, p <.0001]. This analysis also revealed an interaction between agent condition and
head rotation [F'(12,264) = 11.17, p <.0001], but the interaction between agent condition
and eye gaze was not significant [ F'(12, 264) = 95.16, n.s]. Figure 4.6 shows the estimated
marginal means of gaze perception error for different agents, head rotation angle and target
points. As shown, the differences between the agent conditions depended on head rotation,

but not eye gaze.
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Table 4.2: Average and proportional error with respect to human ground-truth for different
agent conditions.

Average Error + STD (cm) | Proportional Error to GT
GT 7.88 £2.90 -
CR 10.50 + 3.11 33.26%
TR 11.04 £ 3.16 46.47%
VA 13.04 + 2.88 65.57%
(a) Ground-Truth (b) Copresent Robot (c) Telepresent Robot (d) Virtual Agent
-30 10.37 1141 241 1187 593 -30 14.28 1441 822 13.04 1259 -30 16.24 13.24 10.43 13.70 12.98 -30 2146 21.65 16.24 20.87 24.07
é -16  7.04 652 137 1246 8.80 -16 802 6.26 6.65 1148 8.67 -16  9.13 946 528 1174 9.65 -16 1024 1415 6.26 9.72 8.80
©
E 0 757 698 | 046 867 9.39 0 1043 1037 | 813 7.70 8.87 0 1220 1141 150 7.83 691 0 841 926 | 228 828 7.24
% 16 887 1304 196 920 854 16 13.30 10.17 6.65 10.70 9.52 16 1115 1239 6.65 1350 9.65 16 776 7.89 509 1239 783
30 7.70 [15.65 2.15 10.63 8.02 30 1891 1552 9.07 1559 13.43 30 [2041 17.02 1278 1820 15.85 30 [23.74 17.67 1298 2276 19.17
A B C D E A B C D E A B C D E A B C D E

Gaze direction

Figure 4.5: Average absolute error of gaze perception in different conditions [best viewed
in color].

Table 4.2 shows the average and standard deviation of error for each condition and
proportional error with respect to human ground truth. The results indicate that the eye gaze
was better perceived in CR than in TR and VA, with 13.21% and 32.23% lower proportional
errors, respectively. Figure 4.5 shows the average error (cm) in the perception of different
agents’ eye gaze for different head rotation and target points. As Fig. 4.5-(a) shows, when
the eye gaze was directly toward the subject’s face (point C), the perception of eye gaze had
a relatively negligible amount of error. In other words, the subjects were able to recognize
mutual eye contact with high precision in the human agent. The same pattern emerged in
the CR and TR conditions. Interestingly, subjects discriminated mutual eye gaze poorly in
the VA condition, especially with incongruent head and eye rotations.

In particular, when the head was rotated to its extremes (-30° and 30°), perception of
gazes directed toward points B and D had higher error than gazes directed toward points

A and E. This suggests that subjects had difficulty accurately recognizing the direction of
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Figure 4.6: Estimated marginal means of gaze perception error for different agents and
(a) head rotation angles and (b) different gaze target points. The target points A, B, C, D
correspond to -39, -21, 0, 21 and 39cm from the center, respectively.

gaze when the rotation of the head was incongruent with that of the eyes. Hence, subjects
may have guessed a point at the far end of the glass screen, giving them more room for
error at points B and D.

As shown in Fig. 4.5, eye gaze of the virtual agent was seen with a notable amount
of error (~24cm) when combined with a strong head rotation. This could be because the
animation lacked binocular depth cues because it was present on a flat screen. This could
have made perception of head rotation more difficult, while the embodiment of the robot

helped subjects to recognize the head angle better.
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In order to more directly measure the effect of agents’ embodiment and presence, we
removed human GT from the analysis and performed a 5 (head rotation) x 5 (eye gaze)
x 3 (agent conditions: CR, TR, VA) ANOVA with agent condition, head rotation, and eye
gaze as within-subject factors. This analysis revealed the main effects of agent [F'(2,44)
= 8.740, p = .001], head rotation [F(4,88) = 64.95, p <.001] and eye gaze [F'(4,88) =
16.39, p <.0001]. Similarly to the previous analysis, and as shown in Figure 4.6, there
was a significant interaction between agent condition and head rotation [F'(8,176) = 8.75,
p <.0001], but the interaction between the agent condition and eye gaze was not significant
[F'(8,176) = 23.98, n.s].

Since there was an interaction between the agent condition and head rotation, we per-
formed pairwise two-tailed t-test comparisons between agent conditions at different head
rotations. Table 4.3 shows pairwise p-value and Cohen’s d effect-size between agent con-
ditions. As shown, the embodiment (Research Question 1) improved the perception of eye
gaze at -30° and 30°, as indexed by significant differences between the TR and VA condi-
tions (p < .001 and p = .023 with large effect sizes d = 1.22 and d = 0.69 respectively).
Physical presence did not improve the perception of eye gaze (Research Question 2), as
the differences between the TR and CR conditions were not significant at any head angle.
There were also significant differences between CR and VA at -30° and 30°, both p < .001
with large effect sizes d = 1.49 and d = 0.89 respectively (Research Question 3). Be-
cause TR and VA were both significantly different at these head angles, we conclude that
improvement in the perception of eye gaze compared to CR is mainly due to embodiment
rather than presence of the robot. And in particular, the embodiment of the robot highly
affected the precision of gaze perception combined with extreme head rotations in a frontal
situated setting.

These findings are consistent with previous studies showing that the perception of a

robot’s eye gaze is more accurate than that of a virtual agent (Misawa et al., 2012; Molla-
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Table 4.3: Pairwise comparison (LSD p-value) and Cohen’s d effect size of users’ percep-
tion of eye gaze at different head rotations. Significant pairs are shown in bold.

TR vs CR VA vs CR VA vs TR

Head Angle | p d P d P d
-30° .660 | 0.13 | <.001 | 1.49 | <.001 | 1.22
-16° 479 1 021 | 190 | 0.39 | .5484 | 0.17
0° .890 | 0.04 | 278 | 0.32 | .269 | 0.32
16° 599 | 0.15 | .116 | 047 | .158 | 0.42
30° 217 1036 ( .004 | 0.89 [ .023 | 0.69

hosseini et al., 2014b; Moubayed et al., 2012). There was no difference in gaze perception
when seen on a robotic agent or its telepresence, which is consistent with a study by Delau-
nay et al. (2010). We also did not observe a significant difference between gaze perception
on the telepresent robot and virtual agents—a comparison which has not been addressed in

previous studies.

4.3 Incorporating affection in spoken dialogue in a social
robot

In this section, I present our effort on incorporating an automated Facial Expression
Recognition (FER) system based on deep neural networks into the spoken dialogue of a
social robot (Ryan) to extend and enrich its capabilities beyond spoken dialog and integrate
the user’s affect state into the robot’s responses. The results of this study are published in
Mollahosseini et al. (2018a). Here, I present the details of my efforts in creating the facial
expression and dialog modules used in this study. In order to evaluate whether the incorpo-
ration of FER in spoken dialogue can improve the social capabilities of Ryan, we conducted
a series of HRI experiments. In these experiments, the subjects watched some videos and
Ryan engaged them in a conversation driven by user’s facial expressions perceived by the

robot. I measured the accuracy of the automated FER system on the robot when interact-
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ing with different human subjects as well as three social/interactive aspects, namely task
engagement, empathy, and likability of the robot. The results of this HRI study indicate
that the subjects rated empathy and likability of the affect-aware Ryan significantly higher
than non-empathic (the control condition) Ryan. Interestingly, we found that the accuracy
of the FER system is not a limiting factor, as subjects rated the affect-aware agent equipped
with a low-accuracy FER system as empathic and likable as when facial expression was

recognized by a human observer.

4.3.1 Automated FER System

Facial expression plays a vital role in social interaction and is one of the most important
nonverbal channels of recognizing humans’ internal emotions. Numerous computer vision
and machine learning algorithms have been proposed in the literature for automated Facial
Expression Recognition (FER) (Tian et al., 2011). The majority of these techniques are
based on supervised machine learning methodologies that require annotated samples for
training, and their performance highly depends on extracted features from the samples and
the amount and diversity of annotated training samples. Several available FER systems are
trained on databases containing posed expressions acquired in a controlled lab environment
with limited numbers of subjects and few samples per expression. Therefore, these systems
lack sufficient generality when used in an uncontrolled HRI system.

Recently, databases of facial expression and affect in the wild have received much atten-
tion (Goodfellow et al., 2015; Mollahosseini et al., 2016). In this work, we use a newly re-
leased database of facial Affect from the InterNet (called AffectNet) which is publicly avail-
able to the research community (Mollahosseini et al., 2017). AffectNet contains more than
IM images with faces and extracted landmark points. The database is created by query-

ing different search engines using emotion-related tags in six different languages. Twelve

40



human experts manually annotated 440,000 of these images in eleven discrete categories
(i.e., Neutral, Happy, Sad, Surprise, Fear, Anger, Disgust, Contempt, None, Uncertain, and
Non-face) and dimensional model of affect (i.e., valence and arousal).

Since we only study four facial expressions in this work, we trained a 50-layer Resid-
ual Network (ResNet) (He et al., 2016) in five classes of neutral, happy, surprise, sad,
and disgust of affectNet database. The ResNet architecture is a state-of-the-art CNN with
added shortcut connections, i.e., a linear transform of each layer’s input to the layer’s out-
put. Adding the shortcut connection eases the training of deeper networks (more than 100
layers) and prevents degradation problem (the phenomenon that the accuracy becomes sat-
urated and then degrades rapidly (He et al., 2016)). The residual connection has produced
state-of-the-art performance in several computer vision applications such as visual object
detection (He et al., 2016), audio classification (Hershey et al., 2017), and facial expression
recognition (Hasani and Mahoor, 2017).

During the experiments, subjects’ faces were captured by a webcam installed on the
video player monitor. The OpenCV face recognition library was used to detect faces in
the images, and 66 landmark points were found using a face alignment algorithm using
local binary regression features (Ren et al., 2014; Yu, 2016). We used these points to
register faces to an average face using an affine transformation. Once the faces have been
registered, the face regions were cropped, resized to 48 x48 pixels, and fed into the trained
network for classification.

We used a K40 GPU for training the network and an Intel Core 17 CPU during infer-
ence. Face detection, registration and expression classification take ~20ms, enabling us
to process five frames per second. A majority voting is used to determine the user’s fa-
cial expression while watching the video. As videos trigger emotions in a few scenes and

users had neutral faces in the rest of time of watching the videos, the frames with emo-
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tions detected as neutral faces were discarded by the probability of 0.5 in a majority voting

scheme.

4.3.2 Empathic Conversations

According to Preston and De Waal (2002) empathy reaction can be a function of three

factors:

1. Be affected by and share the emotional state of another.
2. Assess the reasons for emotional state.

3. Identify and adopt other perspectives.

Taking into account these elements and the previously given definition of empathy, we

propose the following features that need to be embodied in our empathic robot:

* The robot should be capable of recognizing, understanding, and interpreting the

user’s emotional state (facial expression in this experiment).

* The robot should be capable of expressing its emotion using both verbal and non-

verbal cues.

* The robot should be capable of taking perspective, being supportive and have self-

correction to adopt other perspectives.

The robot recognizes the user’s facial expression while watching the videos. Based
on the affective state of the user, the robot appraises the situation and generates empathic
responses, e.g., “‘congruent facial expressions” in tune with the user’s affective state, “per-
spective taking”, “being supportive”, and “self-correction”.

A set of predefined empathic responses based on the perceived affect state and con-

versation with users was carefully designed. Figure 4.7 shows an example of empathic
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Being Supportive

Perspective-Taking (sad face) I understand.
It was obvious from
. your face. I wish I could
(sad face) Me too. It was hug you. Let's watch
heartbreaking. I'm the last video.
T sorry you had to watch
/ it. Do you want to talk (sad face) I u_nderstand.
/ about it? (sad face) Tell me more o
/ ._ about your feelings? y:‘;’g’;gﬁ 'L’;f’t'ss"v::;‘:“
Congruent [ the last video.

Facial Expressions |

(sad face) It looks like
the video made you sad.
Am I right?

Would you describe the
video in one word.

" ~{Read: Sad/Disgust

/

/ positive side of things.

Really? How did you\ (happy face) It is great
feel? - that you can see the
\

Let's watch the last video.
\ \ \ Self-correction
s \ . .
) B Being supportive

R

Figure 4.7: Example of empathic conversation map after showing a video intended to elicit
a sad emotion.

conversation map after showing videos intended to elicit sad emotion. As shown, if Ryan
recognizes sadness, she shows a sad face [congruent facial expressions] and says “It looks
like the video made you sad. Am I right?”. If the user confirms that he/she was sad, the
robot keeps the sad face and says “Me too. It was heartbreaking. I am sorry you had to
watch it.” [perspective- taking], “Do you want to talk about it?”. Based on user’s response,
the robot will say “I understand. It was obvious from your face.” [perspective- taking], “/
wish I could hug you” [being supportive]. If the user did not have a negative effect (e.g.,
the user had a neutral face) and the robot recognized it incorrectly, the robot stops showing
a sad face and says “Oh. Seems like I misinterpreted your face” [self-correction], “You are
focused on the task. Good job” [being supportive]. Refer to Mollahosseini et al. (2018a)

for the results of this study analyzed by Dr. Ali Mollahosseini.
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Chapter 5

Studying Ryan as a Socially Assistive
Robot for Older Adults

5.1 Introduction

Developing and studying robots as an assistive tool for healthcare professionals is a
growing area of research due to the rapid growth in the number of elderly people and
the demand for specialized caregivers. Socially Assistive Robotics (SAR) Feil-Seifer and
Mataric (2005) focus on improving elderly people’s quality of life, mental health, and
socioemotional well-being. Social robots are used as companions Taggart et al. (2005)
or therapeutic play partners Leite et al. (2010). The essential feature that defines SAR
is using social interactions rather than physical interactions to help the user Rabbitt et al.
(2015). The focus of this chapter is on SAR and the companionship it provides for elderly
people with moderate depression and/or dementia.

Dementia is an overall term for diseases that deteriorate individuals’ memory and other
mental skills. Dementia can significantly reduce elderly individuals’ ability to live inde-

pendently and safely in their homes. It is one of the most costly diseases and requires hours
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of specialized care for each person Abbott (2011). Associated with the decline in cognitive
abilities, depression is one of the symptoms of dementia Marti et al. (2006).

Thus, there is a critical and growing demand in the community to find effective ways
to provide care for elderly people with dementia. There is an emerging research field in
robotics that aims to use social robots to engage effectively in social and conversational in-
teraction with elderly individuals with dementia to improve their socioemotional behaviors,
cognitive functions, and well being. We conducted a pilot study to demonstrate the feasi-
bility of using Ryan Companionbot, a perceptive and empathic conversational humanoid
robot, to improve the quality of life of elderly individuals with moderate dementia and/or
depression. In this study, we are using spoken dialog combined with a long list of other
stimuli, such as eye gaze, head movement, and facial expressions, as the primary form of
communication between the subject and the robot. Specifically, the objective of this study

is to evaluate the following fundamental research questions.

1. Long-Term Companionship: Would enriching the robot with a number of different

features keep the subjects engaged for a long period of time?

2. Likability and Acceptance: Is interacting with SAR enjoyable for elderly individu-

als and do they accept a robot as a companion?

3. Robot Features: Do the results of the pilot study show that each individual looked
for different features (e.g., spoken dialog system, cognitive games, family photo al-

bum narration, music playing, etc.) in the robot?

The remainder of this chapter is organized as follows. Section 5.2 reviews related work
on SAR and employing social robots in elder care. Section 5.3 explains the setting of the
experiment and the methodology of our pilot study to evaluate the above fundamental re-

search questions. Section 5.4 presents the results and analysis of the experiments. The
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results are categorized in four subsections: long-term companionship, likability and accep-

tance, caregivers’ feedback, and robot features. Finally, Section 5.5 concludes the chapter.

5.2 Related Work

Using SAR to help elderly individuals has recently become more relevant due to the
increase in the number of elderly people, the decrease in the cost of technology and recent
advances in artificial intelligence Leite (2015). Residents of nursing homes live alone with
disabilities while in most cases their cognitive abilities are degraded due to old age or
various types of dementia Kotwal et al. (2016). Studies suggest that social support for
elderly individuals could improve their cognitive function Zamora-Macorra et al. (2017).
Using SARs with a focus on the socialization aspect of Human-Robot Interaction (HRI) is a
viable option to reduce the burden on caregivers while providing companionship to elderly
people, improving their quality of life and avoiding depression and further degradation of
their mental abilities.

Wada et al. Wada et al. (2003) used the Paro robot to study the long-term effect of
social robots on residents of a senior care center. The results indicated that the elderly
residents established a relationship with the robot, developed stronger social bonds among
themselves, and also maintained a lower stress level. However, Paro lacks the ability to talk
and communicate. It is shown that for a social robot to be accepted more easily it should
be communicative Heerink et al. (2006) and must employ a form of communication with
which humans are habituated Kridmer et al. (2012).

Another key aspect to having a robot as a companion is continuous (uninterrupted)
companionship, meaning having access to the robot at all times. Autonomy plays a crucial
role in achieving uninterrupted companionship. Most studies conducted with social robots

in elder care are either performed in a Wizard-Of-Oz (WOZ) manner Vardoulakis et al.
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(2012), or were limited to a specific scenario Pineau et al. (2003). Vardoulakis et al. Var-
doulakis et al. (2012) designed an experiment to study the long-term social companion for
older adults. They used a WOZ method, and the subject had a robot at home for one week.
But, since the robot was controlled remotely by an operator, the subject interacted with the
robot for only one hour every day. Employing the WOZ method forces the subjects to use
the robot at a specific time of the day for a short period which resembles visiting a friend
rather than having a companion at home. Social robots such as Paro are autonomous and
provide continuous companionship, but lack the ability of having a robust social interaction
such as spoken dialog and an expressive face.

Deep social interaction is required when dealing with elderly individuals with dementia.
Different robots such as Aibo, Paro, and Bandit have been used in studies on the care of
elderly people with dementia Mordoch et al. (2013). Most of the robots used in these
studies have not been built with the social aspect in mind. But to be able to communicate
with elderly people with dementia and try to engage them in conversations and games, we
need a robot that has been designed to accomplish these social goals. In the following

section, we will introduce a robot designed to be social.

5.3 Pilot Study

To assess Ryan’s feasibility as a companionbot, we conducted a pilot study with six
elderly individuals with dementia and depression living in the Eaton Senior Community in
Denver, Colorado Eaton. The robot was left in their home, and they had access to the robot

at all times. Figure 5.1 shows a subject interacting with Ryan V1.0.
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Figure 5.1: A subject interacting with the robot in her home.

5.3.1 Subjects

A group of six volunteered elderly individuals was selected for this study. The selection
criteria included those elderly people who live alone, who were in the early-mild stage
of dementia, and who may suffer from depression. Other selection criteria included the
availability for a period of at least four weeks to house and interact with the robot. The
selected subjects consented prior to participating in the study and the family members of
the subjects were also informed to ensure they were aware of the study.

The Saint Louis University Mental Status (SLUMS) Examination Tariq et al. (2006)
and the Patient Health Questionnaire (PHQ-9) Kroencke et al. (2001) were completed by
each patient and scored by the caregiver prior to the experiment. The SLUMS, developed
at the Division of Geriatric Medicine of the Saint Louis University School of Medicine, is
a favorable screening tool for detecting mild cognitive impairment. The PHQ-9 contains

nine questions and is a brief and useful instrument for screening, monitoring, and measur-
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Table 5.1: Participants demographics, SLUMS and PHQ-9 Scores. Highlighted cells mean
that the symptoms (i.e. Dementia and Depression) exist in the patient.

. SLUMS | PHQ-9 Living

Sbj | Age | Gender Score Score Resident

1 63 F 19 17 Independent
2 86 M 21 1 Independent
3 78 F 29 15 Independent
4 73 F 17 3 Assisted

5 71 F 25 7 Assisted

6* 79 F 28 16 Assisted

* Subject 6 participated 24 days since she became ill and hospitalized

at the end of pilot study
ing the severity of depression. The SLUMS scores for people with high school education
are interpreted as follows: 27-30: Normal, 21-26: Mild Neurocognitive Disorder, 1-20:
Dementia. The PHQ-9 severity scores are mapped as follows: score 5-9: Minimal Symp-
toms, score 10-14: Minor depression, score 15-19: Major depression, moderately severe,
score>20: Major depression, severe. Table 5.1 shows the demographics of the patients

who participated in our pilot studies.

5.3.2 Method

To measure how effectively Ryan can provide companionship for elderly individuals
with dementia, we conducted a one-on-one (robot vs. human) pilot study at the Eaton
Senior Community Center. Three Ryan companionbots were manufactured for the study.
Each subject had 24/7 access to Ryan in their rooms for a period of 4-6 weeks. The robot
was left in the room of the elderly participant and he/she treated Ryan companionbot as
his/her guest. To avoid any maintenance issues, the research team remotely monitored the
status of the robots.

Each subject was interviewed to obtain their daily schedules, a set of photos for the

album, topics of interest for YouTube video search, and a collection of favorite music and
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songs. Ryans were customized for each participant. They could call the robot any name
they wanted according to their preferences. The participants’ daily schedule, including
reminders to take their medications, was set manually for each subject.

During the study, all subjects’ interactions with Ryan, the facial emotion of the users,
the conversations between Ryan and the participants, and the sentiment of the speech were
logged. We analyzed the log files and computed a measurement to evaluate user interactions

with Ryan during the pilot study.

5.4 Results

5.4.1 Long-Term Companionship

To measure whether Ryan can be a companion of elderly individuals in long-term,
the conversations between Ryan and the participants were recorded over the period of the
experiment. Conversations were on different topics such as sports, emotional states, tech-
nology, or other topics. Each conversation contains several dialogs between the subject