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Teaching Pepper Robot to Recognize Emotions of Traumatic Brain
Injured Patients Using Deep Neural Networks

Chaudhary Muhammad Aqdus Ilyas! Viktor Schmuck? Muhammad Ahsanul Haque?
Kamal Nasrollahi* Matthias Rehm® and Thomas B. Moeslund®

Abstract— Social signal extraction from the facial analysis is
a popular research area in human-robot interaction. However,
recognition of emotional signals from Traumatic Brain Injured
(TBI) patients with the help of robots and non-intrusive sensors
is yet to be explored. Existing robots have limited abilities to
automatically identify human emotions and respond accord-
ingly. Their interaction with TBI patients could be even more
challenging and complex due to unique, unusual and diverse
ways of expressing their emotions. To tackle the disparity
in a TBI patient’s Facial Expressions (FEs), a specialized
deep-trained model for automatic detection of TBI patients’
emotions and FE (TBI-FER model) is designed, for robot-
assisted rehabilitation activities. In addition, the Pepper robot’s
built-in model for FE is investigated on TBI patients as well
as on healthy people. Variance in their emotional expressions
is determined by comparative studies. It is observed that the
customized trained system is highly essential for the deployment
of Pepper robot as a Socially Assistive Robot (SAR).

[. INTRODUCTION

Researchers have conducted extensive investigation into
human-focused robotic technologies, designed to achieve real
time and close to human-like human-robot interactions [1].
However, existing robotic technologies that facilitate robots
in human emotions recognition have limitations [1] and
require more intelligent platforms and software to communi-
cate and respond naturally with people [2]. Recently robots
have been developed to collaborate with doctors, physicians
or physiotherapists. In the health care sector these robots
are tailored-made, particularly Socially Assistive Robots
(SAR), to provide assistance and improvement in a wide
range of medical applications such as robot-assisted therapies
[3], [4], complex-surgical operations [5], [6], or for social
engagement with people with special needs like children
with autism spectrum disorder (ASD) [7]-[10]. Machine
learning, especially deep learning, approaches have enabled
these robots to automatically identify and react intelligently
to subject emotional states. These smart machines require
techniques that can accurately and robustly recognize human
emotional clues from uncontrolled and natural environmental
conditions [11].

A typical robot for health monitoring and improvement
needs to receive audio, video or proximity information from
its sensors. This information is then processed based on
the algorithm that interpret the information into meaningful
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signals. This is followed with robot action or response
for the desired task [7]. In some cases, therapist or ’an
agent behind the curtain’ controls the robots due to lack of
automatic perception of signals and spontaneous response to
the emotional cues, consequently making less autonomous
human-robot interaction. There is a need of autonomous
and data-driven machines that can determine patient behav-
ior and react accordingly [12]. Furthermore, these systems
are heavily relying on both audio and video sensors input
for making stronger relation. However, robots placement
to aid TBI patients in a home or in a specialized neuro-
center, face certain additional obstacles that are necessary to
be considered. These include the patients’ non-cooperative
behavior, inappropriate responses and inability to express
their emotions. This is due to the nature of the condition
like stroke or accident, resulting in damaged sensory motor
control and reasoning skills, along with restricted muscle
movements due to paralysis [13], [14]. However, these chal-
lenges can be different from patient-to-patient, depending
on the nature and severity of the injury, producing speech
inhibition, partial or complete paralysis, involuntary body
movements, abrupt emotional changes, aggression, lack of
consciousness or attention and varied emotion elicitation
[15]. Therefore, we aim to exploit only visual signals for
system generalization for TBI patient’s emotional analysis
through facial expressions.

Current Facial Expression Recognition (FER) systems are
largely based on Convolutional Neural Networks (CNN) for
feature extraction and classification as they provide state-
of-art results for face recognition [16], [17], facial expres-
sion recognition [18]-[21] and emotional states identification
[22], [23]. Their results are highly accurate on healthy people
and in controlled conditions. However, this high accuracy
is still yet to be achieved with challenging environmental
conditions such as large pose variation, low illumination,
and on data sets of people with limited expressions like
TBI patients. In addition to that, remarkable achievements
has witnessed in machines analysis of human emotions, but
there are still noticeable challenges that are needed to be
addressed in order to involve robots into daily interfaces like
social, physical or cognitive activities in real-world scenarios.
Some of the major challenges are as follows:

o The wide range of datasets available for FER are
collected in laboratory and controlled conditions with
little or no pose variations, frontal views, without occlu-
sion, stable illumination and with cooperative subjects.
Undoubtedly, such luxuries are not present in real-
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Block Diagram of Deep Trained TBI-FER Model and Pepper’s Built-in Facial Expression Recognition for Emotion Classification. Black-arrow

represents FER through built-in Pepper robot whereas red-arrows represents deployment of TBI-FER modal

world applications. Systems trained on such data do not
perform well in real-time with real subjects.

o Currently available datasets have FE of healthy people
who are mostly cooperative and sometimes produce
induced-expressions as compared to TBI patients who
have impaired skills, and quite varied and limited ex-
pressions due to facial paralysis [13], [14]. Additionally,
induced FEs that are produced consciously largely alter
from natural involuntary emotions.

e Most of existing intelligent systems are trained on
databases where expressions are clear with little vari-
ance on the vast majority of all 6 basic expressions
such as happiness, sadness, fear, angry, surprise and
disgust. However, in case of TBI patients classification
of 6 basic expressions (7 including neutral) is quite
complex as TBI patient’s expressions are not easily
distinguishable except for one or two and all expressions
are not very common. Hence, SARs trained on these
databases needed to be customized as these special
subjects behave and respond differently than healthy
people.

In this research article, we intend to address the afore-
mentioned complexities and limitations in TBI-human-robot
interaction by the utilization of a TBI-patient database,
which is a collection of multimodal data annotated by TBI-
patient’s care givers, experts, physiotherapists and doctors.
This database is a collection of TBI facial images for
spontaneous expression analysis, captured in an entirely
unconstrained, real-world environment. It contains the events
of natural interactions of subjects of diverse background
and age groups in three scenarios of cognitive, social and
physical rehabilitation activities. We used this database to
develop a deep trained model (TBI-FER Model), composed
of Convolutional Neural Network and Long Short Term
Memory Networks (CNN-LSTM) to exploit the spatio-
temporal information of the TBI subjects. This TBI-FER
Model is dedicated for FER of TBI patients that can be
integrated with SAR robot, like the Pepper robot for ef-

fective human-robot-engagement-research. We performed the
classification of 6 basic expressions through the TBI-FER
model validated on the TBI patient database as well as
the Extended Cohn-Kanade (CK+) (healthy people) database
[24]. We also present the hypothesis that our proposed model
will outperform the pepper robot built in model. Furthermore,
the Pepper robot built-in FER model is employed on both
healthy and TBI patient databases and a FE variance analysis
is made.

The rest of this article is structured as follows. Section II
presents the related work including social robots and facial
expression recognition. Section III describes the methodol-
ogy for the TBI-FER model training with CNN-LSTM and
FE identification through the Pepper robot, and Section IV
describes the experiment and its results. Finally, Section V
presents the discussion and concludes the paper.

II. RELATED WORK
A. Social Assistive Robots

In recent years, there has been a growing interest in
providing assistance and services to people for physical or
cognitive rehabilitation, social interactions and many other
health care applications with the help of special robots,
categorized as social assistive robots (SAR) [25]. SAR are
extensively purposed for monitoring and assisting elderly
people in activities of daily life (ADL) in smart homes.
Paro, a pet robot resembling a baby seal, has shown positive
results for pet therapy by reducing stress in residents in care
centers [26]. This also resulted in increased social interaction
between residents. Similarly, Roball, a mobile SAR with an
IR sensor for touch detection, improved the social interac-
tive behaviour among kids suffering from Autism Spectrum
Disorders (ASDs). Roball has encouraged the kids to play
with trainers, therapists, and family members [27]. AIBO
(Artificial Intelligence roBOt), an autonomous entertainment
robot, was proved effective in enhancing social interaction
as well as in aiding mental therapy [28]. AIBO uses touch,
audio, vision and thermal sensors to perceive information. A



personal assistant robot, Philips iCat, used as a companion,
motivator and educator, performed roles of engaging, foster-
ing and instructing [29]. iCat uses vocal emotional expression
as well as facial emotional expressions. Another type of
robot architecture that integrates the domains of robotics,
medicine, psychology, social, cognitive as well as interactive
fields is HealthBot [30]. This robot was designed to help
the elderly, monitoring their health status and detecting
falls. In addition, there is an extensive research on assistive
and interactive robotics focusing on the rehabilitation of
the elderly and people who suffered stroke [31], [32]. The
mentioned companion robots aid in ADL [33] and engaging
socially for the purpose of assistance and recovery to improve
life quality [30], [34], [35] in the field as well as in lab.
Sophia, one of the most advanced humanoid social robot
can display expressions similar to humans to build trust and
aid humans towards a better life and design smarter homes
[36]. She has the ability to process visual, emotional and
conversational data. Sophia incorporates Gardner’s multiple
intelligences [37] into her cognitive architecture. Sophia has
also been used as a meditation consultant, giving step by
step instructions to help people feel better in lab environment
but Sophia has not been placed in field with real subjects.
Additionally, these robots utilize different perceived signals
such as voice, touch, gestures, signals through IR, RGB,
thermal and depth cameras, subject motion tracking, force
sensors, and many other indicators to perform their tasks.
Mabu, the intelligent and socially interactive personal health
care companion, looks after the patients at home, and mainly
reminds them about their medication [38]. Mabu emotionally
engages with patients, and evolves its relationship over time
by tailoring its conversation by adopting behavior psychol-
ogy using Artificial Intelligence (AI) algorithms [39]. It
also focuses on keeping the patients healthy by constantly
monitoring their health and sending encrypted data to a
personal doctor if required. Moreover, it actively involves its
patients in therapies as prescribed by the doctors. One of the
major features of Mabu is active involvement in its speech
with patients and the ability to augment its psychological and
physiological models to generate new conversational models
with the aim of long-term health care [38], [39].

SoftBank robotics have developed NAO [40] and Pepper
[41], which are high performance humanoid robots for
research and education purposes with the ability to process
a wide range of expressions and gesture information. Pepper
is equipped with several sensors, but most importantly two
2D and one 3D cameras, which can easily be accessed by its
SDKs. Due to its cameras and sensors the Pepper robot can
recognize, track and turn while following faces. It also has
a preset FER algorithm. The comparison of the discussed
robot’s input modalities and re-learning capabilities is pre-
sented in Table I whereas their illustration is presented in
Figure 2.

TABLE I
ROBOTS’ INPUT MODALITIES AND RE-LEARNING CAPABILITY

Robot Audio Video Tactile AdaptiYe
Input Input Input |Re-learning

Sophia [36] | Yes Yes No Yes
Mabu [38] Yes Yes Via tablet Yes
Not b

Pepper [41] | Yes Yes Yes defaul}tl
NAO [40] Yes Yes Yes No
iCAT [29] Yes Yes No No
HealthBot [30]| Yes No Via tablet No
PARO [26] Yes |Via light sensor|  Yes No
AIBO [28] Yes Yes Yes No

B. Deep Learning Approaches for Facial Expression Recog-
nition

In the aforementioned robots, different sensors have been
integrated to achieve efficient human-robot interaction but in
our case we would like to rely only on visual information so
that the robot can communicate and recognize the emotions
of TBI patients effectively, regardless of their speech
and locomotion disabilities. It is observed that human
emotions are mostly recognized by facial expressions
[42], [43]. In order to identify emotions accurately, face
and Facial Expression Recognition (FER) approaches
have been evolved from holistic, local-feature-based like
Gabor or Local Binary Pattern (LBP), learning-based-local
descriptors (shallow methods) to deep learning (DL)
methods [44]. Traditional methods failed to address certain
challenges when researchers moved towards automated and
unconstrained FER in challenging conditions. In 1990’s,
the holistic approaches dominated the FR community
with certain low-dimensional representations inferences
like linear subspace, sparse representation and manifold
approaches [45], [46]. However, these holistic methods
failed when exposed to uncontrolled facial changes, different
from prior assumptions. This lead to rise of local features
based facial recognition methods involving Local Binary
pattern (LBP) [47], Gabor [48], SIFT, HOG and other
high-level dimensional representations [49]. Unfortunately,
these handcrafted features could not address the unique
characteristics and denseness of facial features. Following
these limitations, researchers introduced the learning-based-
local descriptors for better distinctiveness and compactness.
This produced FE accuracy of approximately 95% [43]
but this is achieved under controlled conditions with
frontal views and high resolution images. However, these
shallow methods do not handle well non-linear changes in
facial appearance. In real time scenarios, shallow methods
have improved the accuracy on challenging unconstrained
Labeled Faces in the Wild (LFW) dataset [50] to about 95%
[51] in 2010. Alex Net won the Image-Net competition [52],
through deep learning methods, such as convolution neural
networks (CNNs) with a substantial margins. Similarly, in
2014, DeepFace approached close to human performance
(97.53%) on LFW dataset benchmark [50], and acquired
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state-of-arts performance (97.35%) [18]. All of these
experimental evaluations are based on subjects without any
expression impairments like TBI patients. Ilyas et al in [13]
have exercised the CNN-LSTM architecture to exploit the
spatio-temporal information for features classification and
mood analysis of TBI patients and achieved an accuracy of
87.97% on challenging TBI database. We have employed
the same linear combination of CNN-LSTM architecture
to train the TBI database and compared with Pepper robot
built-in FER model to have FER performance analysis.

III. METHODOLOGY
A. Database Development and Training

The main aim of this study is to perform facial expression
(FE) and mood recognition of TBI patients in order to
enhance the social interaction and assist trainers and phys-
iotherapists with the help of robots. First we accumulated a
database in three uniform scenarios namely cognitive, physio
and social rehabilitation activities, ensuring the reliability of
the database as explained in detail in [13], [14]. This database
is comprised of 924 videos taken about 11 participants, each
being a maximum of 5 second in length, recorded with an
Axis RGB and a Logitech RGB camera during multiple ses-
sions at 30fps, resulting in approximately 140,000 captured
frames.

For database training, first various pre-processing tech-
niques like face detection, landmarks detection and tracking
by Supervised Decent Method (SDM) followed by Face
Quality Assessment (FQA), were applied to guarantee high
quality images in Face-Log system. In the next step, this high
quality image database is passed through a linear architecture
of CNN and LSTM, to extract the facial features with the
help of CNN from the input faces of TBI patients and then
feed to LSTM to exploit the temporal relation on the basis of
extracted features in timely manner. For feature extraction we
have fine tuned the CNN with off the shelf pre-trained VGG-
16CNN model [53]. Features are obtained as fc7 layer of

(top) PARO

NAO iCat (bottom) AIBO

HealthBot

Famous SAR robots

CNN with VGG-16 model that is feed into LSTM model to
analyze the performance of combined CNN + LSTM deep
neural architecture, resulting in TBI patients’ FER model
(TBI-FER). For performance evaluation the TBI-FER model
is validated on the CK+ database. The general schematic
of the robotic architecture executed for FER analysis is
demonstrated in Figure 1.

In order to analyze the FER through Pepper robot, the
solution required two distinct operations. Firstly, the NaoQi
Python SDK is used to retrieve video from the 2D camera of
the pepper robot with frame rate of 30FPS and the resolution
to 320x240px. Secondly, subject ID file is created and
participants were then asked to sit in front of the robot and
make different facial expressions related to the 6 emotions.
Figure 3 is illustrating the procedure of emotion elicitation
through Pepper robot.

IV. EXPERIMENTAL RESULTS

In order to present the results, first we explain the ex-
perimental setup. In terms of experiments, we evaluate both
FER models namely TBI-FER and Pepper-FER models on
TBI and CK+ databases for emotion recognition as seen in
Figure 4.

A. Experimental Setup

The robot was set up to perform FER with its built-in de-
tection algorithm in order to later annotate the recorded one
minute videos and to serve as a base for comparing the built-
in method (Pepper-FER) to our proposed model. This model
is also validated on both TBI and CK+ databases. Pepper
utilizes that trained model for live classification on the robot.
In order to compare with the TBI-FER model, a connection
is established with robot similar to video recording and
images are retrieved. The images were passed onto the loaded

Evaluation plan: Dataset - Model relation

Executed on Pepper

T:; B 1
— & :J;T

Fig. 4. Evaluation of FER Models on TBI and CK+ Database



TABLE II
CONFUSION MATRIX OF 6 BASIC EXPRESSIONS THROUGH TBI-FER
MODEL ON TBI PATIENT’S DATABASE

\ | Neutral | Happy | Angry | Sad | Fatigued | Surprised |
| Neutral | 88 | 3 | 2 | 14 | 2 | 1 |
| Happy | 4 | 82 | 2 [3 |2 | 7 |
| Angry | 2 | 2 | 85 |5 |6 | 1 ‘
| Sad BEORE 4 |78 | 1 |1 \
| Fatigued | 7 | 1 | 5 |2 | 67 | 9 ‘
| Surprised | 2 | 21 | 3 [2 |6 | 711 \

classification model, and the classified emotion was returned
as a string. The information was used to be pushed to the
robot through another initialized service converting text to
speech (TTS). As a result, the robot was capable of reporting
the participants’ emotions through TTS with our proposed
FER model.

B. TBI-FER Model Analysis

In this section, we discuss the training of our system on
the TBI patient database and its validation of the results for 6
basic expressions. It is evident that the neutral expression has
the highest, 88% accuracy, as shown in Table II. This is due
to the fact that neutral is the most common expression in TBI
database. Although, in most cases TBI neutral expression is
most likely recognized as sad for healthy people. Fatigued
or stress expression exhibits the lowest accuracy in the vali-
dation of this FER model. This is due to the unbalanced data
set, which is a result of the difficulty of acquiring this type
of data because of stressed or non-cooperative participants.
On the other hand, when this TBI-FER model is employed
on the CK+ database for identification of expressions, it
is shown that the CK+ database results are much better
compared to the TBI patient one due to the reason that latter
database is mainly of high quality images with frontal faces.
Comparatively, in case of the TBI patients, there is challenge
of working with non-frontal faces. FE of neutral, angry,
sad, happy, surprise and fatigue are identified accurately up
to 91%, 88%, 87%, 85%, 84% and 82% respectively as

TBI-FER Model Vs Pepper Model Comparison Analysis
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Fig. 5. Comparison of FER Modals on TBI Patients and Healthy Subjects
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Fig. 6. Box plot of the FER accuracy score. On the x-axis 1.0 is TBI-FER
model on the TBI database, 2.0 is Pepper-FER model on the TBI database,
3.0 is TBI-FER model on the CK+ database, 4.0 is Pepper-FER model on
the CK+ database

illustrated in Table V.

C. Pepper built-in FER Model Analysis

For the classification of emotions through Pepper, its
built-in FER model is implemented on both TBI patient and
healthy people database. It is observed that Pepper identified
the surprise emotion from TBI patients with an accuracy of
42% as opposed to 71% for CK+ database as demonstrated
in Table IIT and IV respectively. This can be due to the
varied and limited surprise elicitation from TBI patients
due to stroke impact. Furthermore, Pepper identifies neutral
expressions of TBI patients with only 42% accuracy with
sad and neutral expression overlapping, proving that TBI
patients’ neutral expressions are more likely recognized as
sad ones. Experts have annotated the patients’ expressions
as neutral since their ability to display emotional signals is
disturbed due to injury, and during post stroke rehabilitation
they exhibit depression and negative emotions more often
than positive ones [13], [14]. It is also observed that the
Pepper robot failed to identify fatigue expressions due to
technical limitations.

In order to determine which FER model is significantly
more accurate, we have conducted a student’s t-test on
the TBI-FER model and the Pepper built-in model, where
variance is approximated for each of the model. For t-test
each of the model has to follow the normal distribution and
this validated by Q-Q plots and K-S normality tests. We
conducted t-tests on two separate databases for each of the
FER model. As seen in Figure 5, for TBI database, the t-
value comes out 2.54 with a p-value 0.023. Thus, the null
hypothesis can be rejected and we can conclude that the
TBI-FER model is significantly more accurate. By studying
the box plot in Figure 6, it can be seen that TBI-FER score
is greater than Pepper-FER score, it can be concluded that
TBI-FER model has higher accuracy than the Pepper-FER
model on the TBI-database. Similarly, when examining the
CK+ database for FER models accuracy, the t-value comes
out 3.17 with the p-value 0.003. Thus, we can conclude that
the TBI-FER model is also significantly more accurate than
the Pepper FER model for healthy subjects. It is also clearly
evident in the box plot in Figure 6, the TBI-FER model has
higher score than Pepper-FER model on CK+ database.



TABLE III
CONFUSION MATRIX OF FACIAL EXPRESSION RECOGNITION THROUGH
PEPPER-ROBOT BUILT-IN MODAL ON TBI PATIENTS

Neutral | Happy | Angry | Sad | Fatigued | Surprised

\ \ |
| Neutral | 42 | 0 | 12 | 18 | X | 1 |
| Happy | 1 | 67 | 2 | 0 | X | 5 |
| Anmgry | 12 | 5 | 713 | 9 | X | 2 |
| Sad | 17 | 1 | 12 | 76 | X | 2 |
‘ Fatigued” ‘ X ‘ X ‘ X ‘ X ‘ X ‘ 0 ‘
| Surprised | 2 [ 2 | 3 ] 2| X | 42 |

* The Pepper robot lacks ability to identify fatigue expressions.
TABLE IV
CONFUSION MATRIX OF FACIAL EXPRESSION RECOGNITION THROUGH
PEPPER-ROBOT BUILT-IN MODAL ON HEALTHY PEOPLE

Neutral | Happy | Angry | Sad | Fatigued | Surprised

| \ |
| Neutral | 59 | 1 [ 5 | 7 | X | 1 |
| Happy | 14 | 74 | 2 | 2 | X | 23 |
| Angry | 11 | 3 | 78 | 4 | X | 2 |
| Sada | 17 | 1 | 9 | 81| X | 3 |
| Fatigued” | X [ x | x | x | X | 0 |
| Surprised | 2 | 15 | 7 | 2 | X | 71 |

* The Pepper robot lacks ability to detect fatigue expressions.

TABLE V
CONFUSION MATRIX OF 6 BASIC EXPRESSIONS THROUGH TBI-FER
MODEL ON CK+ DATABASE

| | Neutral | Happy | Angry | Sad | Fatigued | Surprised |
| Neutral | 91 | 2 | 3 |5 |1 | 1 |
| Happy | 3 | 85 | 2 [3 |2 | 4 |
| Angry | 2 | 2 | 88 |5 |6 | 2 |
| Sad | 5 | 1 | 4 | 87 | 12 | 2 |
| Fatigued | 5 | 1 | 5 |3 | 8 | 2 |
| Surprised | 5 | 4 | 1 [2 |6 | 84 |

V. CONCLUSION AND DISCUSSION

In the general context of FER and social interaction of
TBI patients, this paper has presented a robotic framework
to identify the FE and emotional signals of TBI patients
specifically by introduction of customized deep trained
model to meet the requirements of a specialized scenario.
To do so, two FER-models, customized TBI-FER model and
Pepper-FER model are compared, and their performance
is analyzed. For this purpose, TBI patients database was
collected in three uniform scenarios, than deep trained
model composed of linear combination of CNNs and LSTM
is developed to identify the FE and mood of TBI patients.
This model is compared with the Pepper robot built-in FER
model and FER accuracy is determined using objective
assessment methods. Objective evaluation method is used
by analyzing facial expressions on test subjects. The results
demonstrated that TBI-FER model has significantly higher
performance as compared to the Pepper-FER model, on
both TBI database and CK+ database (healthy subjects).
Furthermore, individual expressions are more pronounced

by TBI-FER model, this cross validates the previous results.
So in order to place the Pepper robot with TBI patients,
it is essential to use customized trained model for more
meaningful interaction. Facial expression recognition has
proved to be a vital tool to evaluate the mood of subjects
in non-obtrusive manner for enhancing social interaction.
Therefore, the Pepper robot can use these self-trained
models, in our case a TBI-FER model. This can lead
to behavioral adaptation of the robot in accordance with
patient mood, similar to the implementations of Mabu and
Sophia [36], [38] but with less cost and computational power.
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