29,361 research outputs found

    Virtual reality training and assessment in laparoscopic rectum surgery

    Get PDF
    Background: Virtual-reality (VR) based simulation techniques offer an efficient and low cost alternative to conventional surgery training. This article describes a VR training and assessment system in laparoscopic rectum surgery. Methods: To give a realistic visual performance of interaction between membrane tissue and surgery tools, a generalized cylinder based collision detection and a multi-layer mass-spring model are presented. A dynamic assessment model is also designed for hierarchy training evaluation. Results: With this simulator, trainees can operate on the virtual rectum with both visual and haptic sensation feedback simultaneously. The system also offers surgeons instructions in real time when improper manipulation happens. The simulator has been tested and evaluated by ten subjects. Conclusions: This prototype system has been verified by colorectal surgeons through a pilot study. They believe the visual performance and the tactile feedback are realistic. It exhibits the potential to effectively improve the surgical skills of trainee surgeons and significantly shorten their learning curve. © 2014 John Wiley & Sons, Ltd

    Virtual reality training for endoscopic surgery : composing a validated training program for basic skills

    Get PDF
    Endoscopic surgery demands different specific psychomotor skills than open surgery.\ud Virtual reality simulation training has the potential to be a valuable tool in training these skills, because simulation provides the opportunity to train psychomotor skills in a safe environment. In addition to training, virtual reality simulators are capable to objectively assess the skills of a subject in training. In contrast to traditional box trainers and animal models that require human monitored evaluation resulting in subjective assessment. The LapSim virtual reality simulator is a system designed to develop and assess basic psychomotor skills and advanced laparoscopic tasks in a virtual environment. Prior to implementation of these simulation based training modalities into the surgical training curriculum the simulator has to be validated. The training programs should be developed and evaluated

    Fully Immersive Virtual Reality for Skull-base Surgery: Surgical Training and Beyond

    Full text link
    Purpose: A virtual reality (VR) system, where surgeons can practice procedures on virtual anatomies, is a scalable and cost-effective alternative to cadaveric training. The fully digitized virtual surgeries can also be used to assess the surgeon's skills using measurements that are otherwise hard to collect in reality. Thus, we present the Fully Immersive Virtual Reality System (FIVRS) for skull-base surgery, which combines surgical simulation software with a high-fidelity hardware setup. Methods: FIVRS allows surgeons to follow normal clinical workflows inside the VR environment. FIVRS uses advanced rendering designs and drilling algorithms for realistic bone ablation. A head-mounted display with ergonomics similar to that of surgical microscopes is used to improve immersiveness. Extensive multi-modal data is recorded for post-analysis, including eye gaze, motion, force, and video of the surgery. A user-friendly interface is also designed to ease the learning curve of using FIVRS. Results: We present results from a user study involving surgeons with various levels of expertise. The preliminary data recorded by FIVRS differentiates between participants with different levels of expertise, promising future research on automatic skill assessment. Furthermore, informal feedback from the study participants about the system's intuitiveness and immersiveness was positive. Conclusion: We present FIVRS, a fully immersive VR system for skull-base surgery. FIVRS features a realistic software simulation coupled with modern hardware for improved realism. The system is completely open-source and provides feature-rich data in an industry-standard format.Comment: IPCAI/IJCARS 202

    Open surgery in VR: Inguinal hernia repair according to Lichtenstein

    Get PDF
    VREST (Virtual Reality Educational Surgical Tools) is developing a universal and\ud autonomous simulation platform which can be used for training and assessment of\ud medical students and for continuing education of physicians. A workstation\ud consisting of two haptic devices and a 3D vision system is part of the VREST\ud platform. Another part of the platform is a generic software environment in which lessons can be built by the teacher and performed by their students. Using the platform one can see, feel and decide as in reality. With the assessment tool the progress and skills of the students can be supervised. The first lesson build on the VREST platform is an inguinal hernia repair according to Lichtenstein. This is an open surgery procedure. The VREST platform is used prior to the first operating room surgery of the resident. Interactive models and case dependant feedback is used to enlarge the residents’ cognition. This should reduce the training time in the operating room

    How to Build a Patient-Specific Hybrid Simulator for Orthopaedic Open Surgery: Benefits and Limits of Mixed-Reality Using the Microsoft HoloLens

    Get PDF
    Orthopaedic simulators are popular in innovative surgical training programs, where trainees gain procedural experience in a safe and controlled environment. Recent studies suggest that an ideal simulator should combine haptic, visual, and audio technology to create an immersive training environment. This article explores the potentialities of mixed-reality using the HoloLens to develop a hybrid training system for orthopaedic open surgery. Hip arthroplasty, one of the most common orthopaedic procedures, was chosen as a benchmark to evaluate the proposed system. Patient-specific anatomical 3D models were extracted from a patient computed tomography to implement the virtual content and to fabricate the physical components of the simulator. Rapid prototyping was used to create synthetic bones. The Vuforia SDK was utilized to register virtual and physical contents. The Unity3D game engine was employed to develop the software allowing interactions with the virtual content using head movements, gestures, and voice commands. Quantitative tests were performed to estimate the accuracy of the system by evaluating the perceived position of augmented reality targets. Mean and maximum errors matched the requirements of the target application. Qualitative tests were carried out to evaluate workload and usability of the HoloLens for our orthopaedic simulator, considering visual and audio perception and interaction and ergonomics issues. The perceived overall workload was low, and the self-assessed performance was considered satisfactory. Visual and audio perception and gesture and voice interactions obtained a positive feedback. Postural discomfort and visual fatigue obtained a nonnegative evaluation for a simulation session of 40 minutes. These results encourage using mixed-reality to implement a hybrid simulator for orthopaedic open surgery. An optimal design of the simulation tasks and equipment setup is required to minimize the user discomfort. Future works will include Face Validity, Content Validity, and Construct Validity to complete the assessment of the hip arthroplasty simulator

    How to Build a Patient-Specific Hybrid Simulator for Orthopaedic Open Surgery: Benefits and Limits of Mixed-Reality Using the Microsoft HoloLens

    Get PDF
    Orthopaedic simulators are popular in innovative surgical training programs, where trainees gain procedural experience in a safe and controlled environment. Recent studies suggest that an ideal simulator should combine haptic, visual, and audio technology to create an immersive training environment. This article explores the potentialities of mixed-reality using the HoloLens to develop a hybrid training system for orthopaedic open surgery. Hip arthroplasty, one of the most common orthopaedic procedures, was chosen as a benchmark to evaluate the proposed system. Patient-specific anatomical 3D models were extracted from a patient computed tomography to implement the virtual content and to fabricate the physical components of the simulator. Rapid prototyping was used to create synthetic bones. The Vuforia SDK was utilized to register virtual and physical contents. The Unity3D game engine was employed to develop the software allowing interactions with the virtual content using head movements, gestures, and voice commands. Quantitative tests were performed to estimate the accuracy of the system by evaluating the perceived position of augmented reality targets. Mean and maximum errors matched the requirements of the target application. Qualitative tests were carried out to evaluate workload and usability of the HoloLens for our orthopaedic simulator, considering visual and audio perception and interaction and ergonomics issues. The perceived overall workload was low, and the self-assessed performance was considered satisfactory. Visual and audio perception and gesture and voice interactions obtained a positive feedback. Postural discomfort and visual fatigue obtained a nonnegative evaluation for a simulation session of 40 minutes. These results encourage using mixed-reality to implement a hybrid simulator for orthopaedic open surgery. An optimal design of the simulation tasks and equipment setup is required to minimize the user discomfort. Future works will include Face Validity, Content Validity, and Construct Validity to complete the assessment of the hip arthroplasty simulator

    Methods and Tools for Objective Assessment of Psychomotor Skills in Laparoscopic Surgery

    Get PDF
    Training and assessment paradigms for laparoscopic surgical skills are evolving from traditional mentor–trainee tutorship towards structured, more objective and safer programs. Accreditation of surgeons requires reaching a consensus on metrics and tasks used to assess surgeons’ psychomotor skills. Ongoing development of tracking systems and software solutions has allowed for the expansion of novel training and assessment means in laparoscopy. The current challenge is to adapt and include these systems within training programs, and to exploit their possibilities for evaluation purposes. This paper describes the state of the art in research on measuring and assessing psychomotor laparoscopic skills. It gives an overview on tracking systems as well as on metrics and advanced statistical and machine learning techniques employed for evaluation purposes. The later ones have a potential to be used as an aid in deciding on the surgical competence level, which is an important aspect when accreditation of the surgeons in particular, and patient safety in general, are considered. The prospective of these methods and tools make them complementary means for surgical assessment of motor skills, especially in the early stages of training. Successful examples such as the Fundamentals of Laparoscopic Surgery should help drive a paradigm change to structured curricula based on objective parameters. These may improve the accreditation of new surgeons, as well as optimize their already overloaded training schedules

    Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery

    Get PDF
    Background The utility of the virtual-reality robotic simulator in training programmes has not been clearly evaluated. Our aim was to evaluate the impact of a virtual-reality robotic simulator-training programme on basic surgical skills. Methods A simulator-training programme in robotic surgery, using the da Vinci Skills Simulator, was evaluated in a population including junior and seasoned surgeons, and non-physicians. Their performances on robotic dots and suturing-skin pod platforms before and after virtual-simulation training were rated anonymously by surgeons experienced in robotics. Results 39 participants were enrolled: 14 medical students and residents in surgery, 14 seasoned surgeons, 11 non-physicians. Junior and seasoned surgeons’ performances on platforms were not significantly improved after virtual-reality robotic simulation in any of the skill domains, in contrast to non-physicians. Conclusions The benefits of virtual-reality simulator training on several tasks to basic skills in robotic surgery were not obvious among surgeons in our initial and early experience with the simulator

    3D sound for simulation of arthroscopic surgery

    Get PDF
    Arthroscopic surgery offers many advantages compared to traditional surgery. Nevertheless, the required skills to practice this kind of surgery need specific training. Surgery simulators are used to train surgeon apprentices to practice specific gestures. In this paper, we present a study showing the contribution of 3D sound in assisting the triangulation gesture in arthroscopic surgery simulation. This ability refers to the capacity of the subject to manipulate the instruments while having a modified and limited view provided by the video camera of the simulator. Our approach, based on the use of 3D sound metaphors, provides interaction cues to the subjects about the real position of the instrument. The paper reports a performance evaluation study based on the perception of 3D sound integrated in the process of training of surgical task. Despite the fact that 3D sound cueing was not shown useful to all subjects in terms of execution time, the results of the study revealed that the majority of subjects who participated to the experiment confirmed the added value of 3D sound in terms of ease of use
    corecore