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Training and assessment paradigms for laparoscopic 
surgical skills are evolving from traditional mentor-
trainee tutorship towards structured, more objective 
and safer programs. Accreditation of surgeons re-
quires reaching a consensus on metrics and tasks 
used to assess surgeons' psychomotor skills. Ongoing 
development of tracking systems and software Solu­
tions has allowed for the expansión of novel training 
and assessment means in laparoscopy. The current 
challenge is to adapt and include these systems within 
training programs, and to exploit their possibilities for 
evaluation purposes. This paper describes the state of 
the art in research on measuring and assessing psycho­
motor laparoscopic skills. It gives an overview on 
tracking systems as well as on metrics and advanced 
statistical and machine learning techniques employed 
for evaluation purposes. The later ones have a poten-
tial to be used as an aid in deciding on the surgical com-
petence level, which is an important aspect when 
accreditation of the surgeons in particular, and pa-
tient safety in general, are considered. The prospective 
of these methods and tools make them complementary 
means for surgical assessment of motor skills, espe-
cially in the early stages of training. Successful exam-
ples such as the Fundamentáis of Laparoscopic 
Surgery should help drive a paradigm change to struc­
tured curricula based on objective parameters. These 
may improve the accreditation of new surgeons, as 
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well as optimize their already overloaded training 
schedules. © 2011 Elsevier Inc. All rights reserved. 
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INTRODUCTION 

Minimally invasive surgery (MIS) has changed the 
way surgery is performed in operating rooms (OR). In 
many procedures, it has become the recommended 
standard, displacing open surgery [1]. Laparoscopy, 
one of the most common MIS approaches, has been 
adopted by several surgical sub-specialties, including 
gastrointestinal, gynecologic, and urologic surgeries 
[2]. Effective training and assessment of surgeons in 
these new techniques have become one of the major con-
cerns of hospitals and clinics in recent years, fuelled 
mostly by patients ' and society's demands for safer sur­
geries and well prepared physicians [3-6]. 

Traditional Halsted-based training [7] is potentially 
unsafe for the patient and, as a consequence, no longer 
ethically sustainable [4]. There is a tendency to move 
the early phases of training, concerned with the 
acquisition of motor skills, outside the OR. For this rea-
son, laboratory settings including, for example, box 
trainers and/or virtual reality (VR) simulators have 
been developed [4]. 

Another issue that has become evident is the need for 
structured formation programs inside the OR [8]. As­
sessment based on In-Training Evaluation Reports 
(ITERs) [9] is subjective, expensive, and prone to 
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undesirable side effects, such as a halo effect [10]. The 
halo effect is a result of influenced perception of the per­
formance in one área (e.g., laparoscopic task) by the 
performance in another área (e.g., relationship between 
trainee and mentor) [11]. Additionally the ITERs are 
periodically written, depriving the trainee of immediate 
feedback, and are subject to the evaluators' long-term 
memory [12]. 

Structured reports, based on checklists and immediate 
end-product analysis have been proposed and validated 
[11,13—16]. The Objective Structured Clinical Examina-
tion (OSCE) [13] has been used to assess clinical per­
formance of trainees on various clinical stations 
(comprising different tasks). Since OSCE mainly focuses 
on the assessment of procedural knowledge and attitude 
of the trainee towards the patient, technical evaluation of 
psychomotor skills is not given leading relevance [9]. 

The Objective Structured Assessment of Technical 
Skills (OSATS) pays more attention to motor skills as­
sessment [14]. Validity has been fully established for 
skills assessment ranging from simple tasks to ad-
vanced, complex procedures [15]. Implementation of 
the OSATS in the OR, however, may present ambigui-
ties in the scoring systems [16]. Another drawback is 
the high amount of resources required, from the number 
of experts deployed at each station to evalúate the 
trainees, to the marginal costs of each exam per candi-
date [9]. Laparoscopic video offline-evaluation has 
been proposed to reduce some of these costs with good re-
liability results [17]. However, the presence of a re-
viewer is still required, and trainees do not obtain 
immediate feedback about their performance. A coun-
terpart of OSATS for MIS—the Global Operative As­
sessment of Laparoscopic Skills (GOALS)—has been 
developed by Vassiliou et al. [11]. GOALS are not 
procedure-specific reports, and as such, they can be 
used for any MIS procedure. 

As the need for objective and structured assessment of 
technical performance grows, new tools and methods 
have emerged over the last few years [9,15,18]. Training 
methods are being gradually changed, leaving the tradi-
tional ways behind on behalf of criterion-based curricula 
[19]. This tendency has been favored by the development 
and advances on tracking systems and computing tech-
nologies, which have led to the appearance of human mo-
tion tracking devices and virtual simulation for surgical 
training [20]. With new ways to measure surgical perfor­
mance, the remaining question is: "What does it mean to 
be a competent surgeon?" Thus, simultaneous to the tech-
nological advances, much research has been devoted to 
the development of metrics for skills assessment. These 
metrics determine to a great extent a measuring instru-
ment's proficiency, and are necessary to provide evidence 
of its reliability and validity as an assessment tool [8] 
(Table 1). 

The purpose of this review is to present a state-of-the-
art on the new tools available for acquisition and anal­
ysis of information concerning surgical performance, 
and their influence in the development of new accredi-
tation programs. For this end, we have modeled the pro-
cess of surgical assessment as a three-sided problem: (1) 
the clinical side; (2) the technological side; and (3) the 
analytical side [21]. The clinical side deals with the def-
inition of the optimal tasks, metrics and conditions to 
consider for the assessment of the different psychomo­
tor skills required. The technological side is related to 
the use of tracking technologies and/or computer assis-
ted systems for the creation of surgical training and as­
sessment environments tha t allow capturing objective 
data concerning a surgeon's skill. Finally, the analyti­
cal side studies the use of statistical analysis and ma­
chine learning algorithms for data analysis, in order 
to ascertain whether automatic classification systems 
to aide surgical assessment are viable or not. 

METHODOLOGY 

Search of the literature was performed using PubMed 
and Google Scholar public databases. Key words em-
ployed were: "laparoscopy", "minimally invasive surgery," 
"surgical assessment", "psychomotor skills", "objective 
evaluation", "validation", "virtual reality, " and "motion 
analysis." Obtained article' bibliographies were also 
checked for new references. Additionally, validation bro-
chures for commercial virtual reality simulators were 
scanned. For all considered sections, articles not related 
with laparoscopic surgery were filtered. No a priori re-
strictions regarding publishing date or language were 
applied. 

For the Clinical Definition of Metrics section, recov-
ered results were scrutinized and filtered by construct 
validation studies employing objective data. Our pur­
pose was to cross-reference the most recurrent metrics 
and surgical tasks for box trainers or VR simulators, 
identifying which parameters influence on the different 
psychomotor skills. In this way, it was possible to dis-
cern general pat terns where a given metric/set of met­
rics yields significant differences between training 
groups, with respect to different tasks and abilities. 
Thus, only reports showing positive results are in-
cluded in this review. A complete up-to-date detailed re­
visión on valid/nonvalid systems is presented in [18]. 

In the Tracking Technologies for Skills Assessment 
section, a technological overview of tracking tools for 
skill assessment is given, from an application point 
of view. Depending on the setting on which the track­
ing systems are used, we propose to categorize them as 
those used in (1) VR simulated environments, and (2) 
real settings. The first one refers to tracking 



TABLE1 

Validation Requirements for an Assessment Tool 

Validation parameters 

Face 
Content 
Construct 
Concurrent 
Predictive 

Subjective expert review of the test contents 
Subjective detailed examination of the test contents 
Objective measurement. Degree to which the test captures the hypothetical quality it was designed to measure 
Objective measurement. Extent to which scores on a test and a control instrument are correlated 
Objective measurement. Extent to which scores predict actual t rue performance 

Reliability parameters 

Inter-rater 
Intra-rater 
Test-retest 

Extent to which two different evaluators give the same score in a test performed by a user 
Internal consistency of an evaluator when grading on a given test on different occasions 
Extent to which two different tests made by the same person in two different time frames give the same result 

technologies applied on software-generated environ-
ments ("mimicked" training)—VR simulators. The lat-
ter one is applied on real settings, mainly box t ra iners , 
but also on mannequins , cadavers, animáis, and dur-
ing real OR interventions. Throughout the text, these 
will be referred to as human motion tracking (HMT) 
systems. More detailed description on the technical as-
pects of surgical t racking devices can be found in [20]. 

In the Automatic Analysis for Skills Assessment sec-
tion, a review is given of the studies in the field of auto-
matic classification of surgical skills, highlighting 
advantages but also the need for further clinical evi-
dence regarding their effectiveness. Articles were 
screened for those reporting the use of high-level statis-
tical analysis and machine learning techniques for lap-
aroscopic surgical assessment of competence based on 
motion and forcé data. 

CLINICAL DEFINITION OF METRICS 

Research has been devoted to the definition and val­
idation of new metrics for performance assessment 
[22, 23], as well as to the determination of the ideal 
tasks and skills to t rain [8]. Task definition is usually 
setting-dependant and, as such, can vary whether if 
built for a box trainer or for a virtual simulator. We 
have broadly categorized surgical tasks in the classes 
shown in Table 2, folio wing the laparoscopic skill taxon-
omy presented by Lamata [23]. 

A total of 32 studies cross-referencing tasks and valid 
metrics, both in box trainers and virtual reality simula­
tors, were selected [24-56]. Metrics have been classified 
according to the taxonomy proposed by Fried and Feld-
man into two main categories: (1) efficiency metrics and 
(2) quality metrics [12]. A brief description of the con-
sidered metrics is shown in Table 3 [16]. Results from 
the cross-validation study are presented in Table 4. 

Efficiency metrics are related with measurable phys-
ical parameters [12]. Their definition is usually precise 

and supported by a strong theoretical background. 
These metrics require the use of tracking devices in 
order to be acquired. In consequence, they are objective, 
reproducible and little prone to misinterpretation. A 
distinction can be made between (a) motion-derived 
and (b) force-derived metrics. 

For all considered tasks, the most prominent motion 
efficiency metrics are time, path length and economy 
of movements [24,30,31,34]. They are especially impor-
tan t in the tasks which involve touching or grasping ob-
jects on the scenario, both with one or two instruments; 
and tha t require bi-manual coordination. A stipulated 
reasoning behind this is tha t an expert surgeon per-
forms a task more swiftly, denoting a more clear percep­
tion of the surgical space and the required strategic 
approach [51]. However, depending on the na ture and 
difficultness of the task, these metrics might not always 
show significant differences [57]. For these same tasks, 
a number of studies have shown that speed of move­
ments can be a differentiating aspect [29, 31, 48]. This 
may partly be due to the difficulty of determining an op-
timal path, which in any case will depend on the task's 
goal. It is a common interpretation to consider tha t the 
straight line between two points is the ideal path. In lap­
aroscopic surgery, however, it has been proved that this 
is not always the case [58]. Motion smoothness is also re-
ported as a determining factor for manipulation tasks, 
such as those involving object grasping, transfer, cut-
ting, or suturing [25, 26, 46]. Other motion metrics re­
late to the trainee's mastery of the task space, in terms 
of dimensions and orientation. Those include: depth, an­
gular área, volume, and spatial perception. However, it 
is difficult to establish their validity since they are not 
often considered. Nevertheless, the studies which have 
featured them have shown some significant differences 
for tasks such as grasping, bi-manual coordination, clip-
ping, cutting and navigation [37-40, 44, 46]. 

Force-related metrics have been mostly validated for 
suturing tasks [49, 50, 56]. Additionally, Rosen et al. 
demónstrate tha t experienced surgeons apply higher 



TABLE2 

Surgical Metrics Featured in the Literature 

Efficiency metrics 

Time 
Path length 
Economy of movements (EOM) 
Economy of diathermy 
Speed 
Motion smoothness 
Instrument orientation 
Depth 
Angular path 
Angular área 
Volume 
Force/torque 

Total time to perform a task (s) 
Total path followed by the laparoscopic instrument (m) 
Shortest distance to accomplish task/total distance (%) 
For diathermy: excess burn time/optimal burn time (%) 
Rate of change of the instruments ' position per second (m/s) 
Abrupt changes in acceleration resulting in jerky movements of the instruments (m/s3) 
Amount of instrument rotation, measures the ability of correctly placing the instrument (rad) 
Total path length traveled in the instrument 's axis direction (m) 
Sum of all angular paths about the instrument 's pivot point (°) 
Área between the farthest positions occupied by the instrument in the camera plain (rad2) 
Angular área x Depth (rad2 • m) 
Instrument - tissue forcé (N) and torsión (N • m) interactions 

Quality metrics 

Outcome 
Errors 
Idle states 
Task repetitions 
Collisions/tissue damage 

Final score of the task performed. Task-dependant 
Errors performed during the task. Task dependant 
Time periods when instrument movements/interactions are minimal 
Number of repetitions required on a task before achieving satisfactory completion 
On VR: detection of incorrect collisions and damage performed to background tissues 

force/torque magnitudes during tissue dissection than 
novices, and vice versa for tissue manipulation during 
full procedures [59]. More recently, Horeman et al. 
have approached instrument/t issue forces detection 
by means of a pressure platform placed under the box 
trainer task [56]. 

Quality metrics relate to a task's definition and execu-
tion [12]. It has been demonstrated that neither one per­
formance measure ñor efficiency metrics alone 
adequately measure competence, since competence is 
multi-factorial in nature, with knowledge, judgment, 
behavior, and technical abilities each playing a major 
role [60, 61]. Therefore, various performance measures 
that are essential for surgical competence need to be 
taken into account. Most prominent amongst these met­
rics are the errors performed and the end-product anal-
ysis. These are extensively validated throughout all 
tasks, and denote a further understanding of a trainee's 
t rue skill level [30, 33, 36, 38, 40]. VR simulators allow 

quantifying tissue damage by collisions' detection, 
which can be seen as an indicator of the spatial percep-
tion of the environment [23]. Where present, this has 
generated positive validation results as a differenti-
ating metric [24, 36, 40]. Another quality metric— 
detection of idle states—has not gained much attention. 
Nevertheless, studies show significant differences be­
tween a novice surgeon and a more experienced surgeon 
on suture tasks and more complex procedural chores 
[49,50]. The principie behind this metric is tha t a novice 
surgeon takes more time to plan the next move than 
a more experienced surgeon. 

TRACKING TECHNOLOGIES FOR SKILLS ASSESSMENT 

The application of t racking technologies to MIS 
skills assessment allows the registrat ion of efficiency 
metrics. These technologies usually employ optical, 

TABLE3 

Classification of Laparoscopic Basic Tasks 

Task classes 

Touch/coordination 
Navigation 
Peg grasping 
Peg transfer 
Navigation + touch/grasp 
Bi-manual coordination 
Cutting/dissection 
Clipping 
Cauterization 
Suture 

Involves touching fixed or mobile targets with the tip of the instrument 
Navigating the camera within the scenario 
Grasping and placing a target in a predefined point of the scenario 
Grasping tasks involving tool transfer of an object 
Navigating the camera while manipulating objects/targets 
Bi-manual coordinated manipulation of miscellaneous objects within the scenario 
Fine tuning of cutting and dissecting skills 
Placing a clip on a target 
Cauterizing target points on a task 
Suturing and knotting skills 



TABLE4 

Correlation of Basic Tasks and Validated Metrics 

Basic tasks 

Metrics 

Efficiency 
Time 

Path length 

Economy of movements 

Economy of diathermy 
Speed 
Motion smoothness 

Instrument orientation 
Depth 
Angular path 

Angular área 
Volume 
Force/torque 

Quality 
Outcome 

Errors 

Idle states 
Task repetitions 
Collisions/tissue 
damage 

Touch/ 
coordination 

[24] [29] 
[30] [34] 
[36] [38] 
[39] [40] 
[47] [48] 
[29] [34] 
[38] [40] 

[24] [29] 
[34] [47] 

[48] 

[29]* [48]+ 

[40] 

[30] [35] 

[40] 

[39] [40] 

Navigation 

[27] [30] 
[31] [33] 
[34] [39] 

[34] [39] 
[40] 

[24] [27] 
[34] 

[26] 

[39] [40] 

[30] [31] 

[40] 

[40] 

Navigation 
+ touch/grasp 

[24] [33] 
[34] [36] 
[38][39] 

[40] 

[33] [34] 
[39][40] 

[24] [34] 

[39][40] 

[24] 

[33] [35] 
[39] [40] 

[24] [40] 

Peg grasping 

[24] [26] 
[33] [34] 
[36] [38] 
[40] [42] 
[45] [46] 
[26] [33] 
[34] [40] 
[45] [46] 

[34] [38] 
[42] 

[26] [46] 

[51] 
[45][46] 
[38] [40] 

[46] 
[46] 

[36] [45] 

[24] [34] 
[38] [40] 

[41] 
[40] 

Peg transfer 

[30] [31] 
[33] [42] 
[43] [46] 

[31] [33] 

[31] [42] 
[43] 

[31]* 
[46] 

[30] [32] 

[33] [43] 

Bi-manual 
coordination 

[24] [33] 
[34] [35] 
[36] [38] 
[40] [46] 

[34] [36] 
[37] [38] 
[40] [46] 

[34] [37] 
[38] 

[46] 

[46] 
[37] [38] 

[40] 

[24] [36] 
[37] [55] 

[24] [35] 
[38][40] 

[36] [37] 
[40] 

Dissection 

[24] [28] 
[30] [34] 
[36] [38] 
[39] [40] 

[46] 
[26] [28] 
[34] [36] 
[37] [40] 

[46] 
[34] 

[26] [28] 
[46] 

[46] 
[40] 

[27] [30] 
[32] [36] 

[37] 
[26] [34] 
[35] [39] 

[40] 

[41] 
[40] 

Clipping 

[30] [31] 
[34] [37] 

[38] 

[34] [36] 
[37] 

[34] 

[31]* 

[37] 

[30] [32] 
[36] [37] 

[34] [35] 
[36] [38] 

[41] 

Cauterization 

[30] [31] 
[43] 

[46] 

[42] [44] 

[42] 

[30] [32] 
[44] 

[43] [44] 

Suture 

[25] [26] 
[36] [44] 
[45] [50] 
[51] [52] 
[53] [54] 
[25] [27] 
[36] [44] 
[45] [50] 
[53] [54] 
[51] [52] 

[54] 

[25] [26] 

[44] [50] 
[44] [50] 

[49] [50] 
[56] 

[27] [36] 
[44] [46] 
[51] [53] 

[36] 

[49] [50] 

[40] 

Average speed. 
Ins tantaneous speed. 



electromagnetic, mechanical, or ul trasonic t racking 
of the ins t ruments /hands movements , and can indis-
tinctly be used on several t ra in ing sett ings, whether 
vir tual or real. 

Tracking Systems in Virtual Reality Simulators 

Virtual simulation has become a major trend in the 
field of surgical training, and many at tempts have 
been made to develop and validate diverse commercial 
and research models, as shown in a recent meta-
analysis performed by Gurusamy et al. [62]. VR simula­
tors offer various advantages that are valuable for the 
training and assessment of motor skills. They allow 
for training in controlled environments, are generally 
available for the trainee, and do not require the pres-
ence of a supervisor (which may help to optimize the 
mentors ' schedules) [63]. 

The different VR simulators identified for this review 
are shown in Table 5 [24-44], [64-77]. VR simulators 
can be differenced by the way they make use of their di-
dactic resources (Fig. 1) [78]. On the one hand, simula­
tors such as MIST-VR's "Core Skill" module (Mentice 
AB, Goteborg, Sweden) or SIMENDO (Simendo, Rotter­
dam, The Netherlands) focus on formation of psychomo-
tor skills ra ther than on developing complex anatomical 
scenarios. On the other, VR simulators such as Lap-
Mentor (Simbionix, Lod, Israel) or LapSim (Surgical 
Science Ltd., Goteborg, Sweden) adopt the trend of 

ProMIS 

SIMENDO 
SINERGIA 

Concurrent validation results show the method used for comparison. 
BT = box trainer; OR = operating room. 

simple task training, but make a wider use of available 
computer resources (e.g., realistic scenarios [23], forcé 
feedback [79, 80]) to enhance user interaction. 

The use of VR simulators for psychomotor skills as­
sessment greatly benefits from two factors: 

• They allow the acquisition of both efficiency (mo-
tion, forcé) and quality metrics. This is achieved 
thanks to the combination of tracking technologies 
and the computer-generated environments, which 
make possible not only tracking the instruments, 
but also having control over all the elements in 
the scenario. Thus, objective quantification of 
error-counts, repetitions or end-product analysis, 
for example, is viable. 

• They provide immediate feedback to the trainee 
based on these metrics, as well as keeping an up-
dated versión of his/her learning curve, which en-
hances the learning process [81]. 

Despite the advantages of VR simulators, a number 
of limitations have influenced their clinical implemen-
tation [23]. For example, there are resource-derived 
constraints, such as simulators costs, and trainees ' 
loaded schedules, which leave them little time for prac-
tice. There are cases in which these advanced and so-
phisticated systems are available in the hospital but 
residents do not find the time or motivation to use 
them for training. VR realism and interaction might 
not be critical for their didactic valué, but are often 

TABLE5 

VR Simulators: Principal Models, Characteristics and Positive Validation Studies 

Module 

Core Skills 

Nephrectomy 
Basic/E ssential/Suture 

Lap Chole/Ventral 
Hernia/ Gastric Bypass/ 
Gynecology/ 
Sigmoidectomy" 

Basic Skills 

Cholecistectomy/Gyn/ 
Appendectomy 

Suturing & Anastomosis 
Basic Skills 

Procedures 
-
-

Scenarios 

Simple tasks 

Procedure 
Simple/advanced tasks 

Procedures 

Simple/ advanced tasks 

Procedure 

Advanced tasks 
Simple tasks 

Procedural tasks 
Simple/ advanced tasks 
Simple tasks 

Environments 

Non-anatomical 

Anatomical 
Non-anatomical 

Anatomical 

Both 

Anatomical 

Non-anatomical 
Hybrid Simulator 

Non-anatomical 
Both 

Forcé 
feedback 

No 

Yes 
Yes 

Supported 

Realistic 
Interaction 

No 
Supported 

Construct 
validity 

[42] [43] 
[44] 
-

[29] [30] 
[32] 
[31] 

[34] [35] 
[36] [37] 
[38] [40] 

[41] 
[39] 

[37] 
[25] [26] 
[27] [28] 

[64] 
[33] 
[24] 

Concurrent 
validity 

[42] OR 

-
[69] GOALS 

[71] BT 
[72] BT 

[74] OR 
[75] LapSim 

[77] BT 
-

Predictive 
validity 

[65] [66] 
[67] [68] 

-
[70] 

[73] 

[76] 

-
-

Simulator Module Scenarios 

MIST-VR Core Skills Simple tasks 

Nephrectomy Procedure 
LapMentor Basic/E ssential/Suture Simple/advancec 

Lap Chole/Ventral Procedures 
Hernia/ Gastric Bypass/ 
Gynecology/ 
Sigmoidectomy" 

LapSim Basic Skills Simple/ advance 



the key elements to gain the acceptance of physicians. 
Moreover, there are mentality-driven constraints, 
such as thinking of a surgical simulator as a videogame, 
which has no didactic valué. Prior experience with vid-
eogames can also be a handicap when facing virtual 
simulators [82]. It can even happen tha t such systems 
will créate a false sense of security, built on the develop-
ment of incorrect habits while getting used to a virtual 
environment. 

Academic research efforts continué exploring the 
boundaries of the capabilities of VR technologies. As 
an example, the SINERGIA laparoscopic simulator ex-
plored the área of perceptual skills [83, 84] . The simu­
lator was conceived as a means for training and 
assessment of motor skills on the first stages of surgical 
formation, comprising seven didactic units (Fig. 2). 

The simulator features advanced assessment feed-
back, by means of an objective evaluation module tha t 
allows monitoring of trainees ' learning curves [85]. In 
order to manage all evaluation data, different graphics 
modalities are implemented for easy following and un-
derstanding of the surgical skills' evolution of the 
trainee. Comparisons between different individuáis or 
groups of pupils and data exchange for statistical anal-
ysis are possible in the user interface. Objective met-
rics' definition allows trainees to learn from their 
mistakes by means of indications when errors are per-
formed (formative feedback) or by visualization of the 
global practice score (summative feedback). 

Human Motíon Tracking in Real Settíngs 

HMT technologies provide the means to capture and 
register efficiency me tries of the surgeon's performance 
in real environments. In contrast to VR simulators, 
they offer a cheaper tracking alternative that can be 

A simulator with a 
perfect reallsm 

A simulator 
as a guide 

A simulator as an 
objective evaluator 

FIG. 1. The three concepts of a VR surgical simulator driven by 
the use of different didactic resources [78]. Author: Biomedicine and 
Telemedicine Centre (GBT). 

used in almost every training setting, from box trainers 
to the OR. Quality measures are, however, more com-
plicated in these systems. Measurement of quality pa-
rameters has been approached in a number of studies 
by using additional sensors in the training scenario 
[86, 87]. Typically, this assessment requires the pres-
ence of a trained supervisor, and the definition of clear, 
structured checklists are necessary [28, 53]. 

Table 6 shows the most widespread HMT capture sys­
tems for surgical assessment identified in the l i terature 
[44-55, 88-91]. Their classification can be done accord-
ing to the na ture of the acquired information. In a ma-
jority, they are used to record both the position (x, y, z 
coordinates) and orientation (yaw, pitch and roll) of 
the surgical instruments. In this review, the following 
systems are considered: ADEPT [92], ICSAD [52] 
(which measures hand movements ra ther than instru­
men ta position), CELTS [45], Zebris [48], TrEndo 
[93], ARH [94], HUESAD [47] and BlueDRAGON 
(which also measures forcé parameters) [95]. 

Most frequently, HMT systems are used on box 
trainers, where the performance of surgeons in basic 
and advanced reproducible tasks is recorded [45-48, 
53]. This trend can easily be explained, since there is 
a need to certify a surgeon's psychomotor skills before 
allowing him/her to opérate on a patient. However, ac­
tive sensing, which relies on sensors mounted on the 
surgical instrument, presents the disadvantage of in-
troducing new elements on the surgical theatre, thus 
altering it; and also of modifying the instruments ' ergo-
nomics, and therefore can be a drawback for OR inclu­
sión. Also, not all HMT devices are suited for 
portability: the bulkiness and configuration of some of 
them make them fit only for a closed-up number of 
box-trainer tasks, and compromises their possible mi-
gration to the OR [20]. Exceptions to this are BlueDRA­
GON, which has been reported to be used on live 
animáis [49], and ICSAD, validated while performing 
surgeries on real patients with the help of video assis-
tance [96, 97]. 

An alternative approach for passive and unobtrusive 
tracking is the analysis of the laparoscopic videos, 
which allows registering movements employing com-
puter visión techniques [98]. The non-invasive charac-
teristics of an assessment system based on these 
technologies makes it fit for any potential training sce­
nario inside and outside the OR. This way, information 
about position and trajectories can be acquired. The 
concept is not new, and has already been exploited in 
the ProMIS simulator (Haptica, Dublin, Ireland). 
Tracking 3D movements of MIS instruments in the 
ProMIS requires two cameras for stereoscopic visión 
[25]. The challenge, however, is to do the same thing us­
ing 2D information obtained using one camera only (en-
doscope). This idea has already been pursued on other 



FIG. 2. An example of VR training solution and its didactic units, the SINERGIA simulator. From left to right, top row: coordination, nav-
igation, grasping, pulling; bottom row: cutting, dissection, suturing. Author: SINERGIA Consortium. 

application fields such as robotic surgery and naviga-
tion [99, 100]. 

Several ways to extract the position of the surgical in-
s trument are being currently researched. 2D tracking 
has been validated for assessment of basic laparoscopic 
tasks (eye-hand coordination task, camera manipula-
tion task and two-handed manoeuvres) on box trainers 
[101,102]. 3D pose extraction has been proven feasible, 
based solely on the instrument 's diameter and the endo-
scope's field of view, and validation studies as an assess­
ment tool are currently being performed [103]. 

Laparoscopic video analysis for surgical skills assess­
ment presents itself as an interesting alternative to ac­
tive based tracking devices: it provides the means to 
calcúlate a wide range of motion efficiency metrics in 
a non-intrusive way: surgical instruments are not mod-
ified and thus the ergonomic experience of the trainee is 
not altered. Additionally, it offers a cheap and portable 
assessment tool tha t can be either exploited on labora-
tory settings such as box trainers or on real procedures 
in the OR. 

AUTOMATIC ANALYSIS FOR SKILLS ASSESSMENT 

One of the key points in a training program is providing 
trainees with immediate feedback of their performance 
[23]. VR simulators and HMT systems are able to provide 
real-time scores in the form of evidence-based reports 
(path length, errors, overall score, time, etc.) [9]. How-
ever, this information is devoid of meaning without 
proper interpretation which, if provided by a tutor figure, 
may lose its character of immediate and objective. 

Constructive feedback can be provided in many ways. 
It can be in the form of simple reports based on 
weighted averages such as proposed by Cotin et al. 
[22]. It may also be handed by informative messages 
where, next to measurements like time or movements, 
formative assessment is handed with what could be 
the advice of a surgical expert, with messages like 
"too much tissue bitten" [23, 104]. Or it can be provided 
by a progress monitoring software, which allows 
trainees to view their achievements and compare their 
learning curve with those of other residents [85, 96, 97]. 

TABLE6 

HMT Devices: Principal Models, Characteristics, and Positive Validation Studies 

HMT systems 

ICSAD 

ARH 
BlueDRAGON 
CELTS 
Adept 
Zebris 
HUESAD 
TrEndo 

Technological base 

Electromagnetic 

Electromagnetic 
Mechanical 
Mechanical 
Mechanical 
Ultrasound 
Optical 
Optical 

Range of application 

BT, OR* 

BT 
BT, OR+ 
BT, VR 
BT 
BT 
BT 
BT, VR 

Metrics registered 

Hand movements 

Motion 
Motion/Force 
Motion 
Motion 
Motion 
Motion 
Motion 

Portability 

Yes 

Yes 
No 
Yes 
No 
Yes 

-
Yes 

Construct validity 

[51] [52] [53] [54] 

[88] 
[49] [50] 
[44] [45] 
[55] 
[48] 
[47] 
[46] 

Concurrent validity 

[89] OSATS 
[90] OSATS 

-
-
-

[91] OR 
-
-
-

Concurrent validation results show the method used for comparison. 
BT = box trainer; OR = operating room; VR = virtual reality simulator. 
OR real patients. 

tQR animáis. 



Establishing surgical competence is another crucial 
aspect for surgical assessment [16]. High level statisti-
cal analysis and machine learning techniques are em­
ployed to infer knowledge and correlate metrics 
information to surgical expertise, so automatic classifi-
cation of trainees according to their competence is at-
tained. These methods usually require two phases: (1) 
training and (2) classification [105]. During the train-
ing phase, representative data from each surgical level 
(e.g., novices, intermediates, experts) is used to estab-
lish the different classes representative of the compe­
tence level. In the classification phase, the data 
recovered for a new surgeon is compared to those clas­
ses, and an assignation to one of them is performed 
based on a likelihood probability. 

Several techniques have shown promising results for 
surgical assessment (Table 7). Sequential analysis of 
surgical tasks by Markov modeling has been the most 
common approach [49, 50, 106-111]. Simple Markov 
models (MM) interpret sequences of actions as a series 
of steps, defined by a closed number of states and the 
probabilities from going from one state to another. 
States are usually taken as sets of predefined surgical 
maneuvers (or surgemes) [106]. MMs that decompose 
tasks into states based on force/torque pat terns have 
been employed by Rosen et al. for modeling surgical 
steps with an 86% success ra te [50]. However, definition 
of these surgemes is often done manually and, as an al-
ternative, hidden Markov models (HMM) have been 
widely used [49,106-111]. Rather than requiring a pre-
vious definition of actions, HMMs model their states as 
probabilistic functions based on physical observations 
(such as motion metrics) [112]. Thus, they are powerful 
tools for classification without previous surgical knowl­
edge, whether at (1) task level [49, 107-109] or (2) sur-
geme level [110, 111]. Results ranging in success rates 
between 90-100% (Table 7) show their potential useful-
ness for competence assessment. Despite this, deter-
mining the number of states to use and the model's 
topology can be a daunting task, subjected in many 
cases to trial and error [107, 112]. Moreover, reported 
results seem not to be so different between using 
MMs or HMMs [106], although HMMs fiexibility may 
help to better accommodate the needs of different as­
sessment systems. 

Nonsequential analysis has also been approached, 
generally basing competence level on a combination of 
metrics. When considering several parameters, how­
ever, it is sometimes desirable to reduce the dimension-
ality of the problem. Several authors have employed 
methodologies based on linear discriminant analysis 
(LDA). LDA correlates information from different met­
rics to detect redundancies, and additionally can per-
form classification based on the resulting simplified 
data. Chmarra et al. explored the use of LDA combined 

with principal component analysis (PCA) as a way to 
compare performance on a box trainer for novices, inter­
mediates, and experts using six different motion metrics 
[46]. Results yielded a success rate of 74% on a first re-
port. Lin et al. combined the use of LDA with a Bayes 
classifier for a suture task, obtaining success rates of 
92% [113]. Finally, fuzzy logic, which allows establishing 
patterns of knowledge based on the training data, has 
been proposed in [114, 115]. However, reported results 
did not fully meet the expectations for determining sur­
gical competence. 

Choosing a classification scheme for automatic surgi­
cal assessment is not a trivial job. Sequential analysis 
based on Markov modeling has been proved to be robust 
and accurate. However, its complexity and computa-
tional requirements may handicap its use. Moreover, 
the fact that previous expert surgical knowledge must 
be considered is an additional potential source of error. 
In this sense HMMs are key techniques, proven both 
by their recurrence and results. Their usefulness for sur-
gery modeling has been exploited successfully in other 
surgical fields such as robotics [116, 117]. The differ-
ences with simple MM in terms of results are not so sig-
nificant, though their nature makes HMMs more flexible 
to the requirements of competence assessment. Finally, 
LDA also shows potential as a less complex yet powerful 
classifier. The reports, however, are still scarce, and ad­
ditional validation is necessary. In general, studies pre-
sented he re are limited to certain tasks and metrics, and 
limited in the number of participants. Therefore, further 
proof of validation must be given. Also, exploration of 
other techniques such as neural networks or support 
vector machines should, furthermore, be explored. 

DISCUSSION 

New tools and techniques developed for the benefit of 
surgical training have been presented. Based on our ex-
perience, we believe that they have the potential to be 
adapted into surgical training programs, fulfilling 
a complimentary role on the evaluation of motor skills. 

There is a crescent pressure to develop training pro­
grams tha t on one hand address social pressure to re­
duce clinical errors, and on the other adjust to the 
time constraints affecting both trainees and mentors 
[2, 118]. The general consensus behind these programs 
is that the moment when the trainee confronts a real 
surgical procedure should be postponed as much as pos-
sible, leaving the acquisition of the basic cognitive and 
psychomotor skills on stress-free environments, where 
the learning process can be more effective without com-
promising patient safety. Thus, according to [2], an in­
tegral formation program should be structured in four 
major levéis (Fig. 3): (1) training of basic and advanced 



TABLE7 

Literature Overview on Automatic SkiUs' Assessment 

Technique 

HMM 

MM 

Fuzzy 

LDA 

Methodology 

Train expert model 

Train mixed model 

One model/procedure 
step & skill level 

One model/motion 
signature & skill 
level 

One model/motion 
signature & skill 
level 

One model/skill level 

One model/skill level 

One model/subject 

One model/procedure 
step & skill level 

1 Classifier/skill level 
& task 

2 Classifiers/task 

1 Classifier/skill level 
& task 

1 Classifier/motion 
signature 

Scenario 

LapSim "Basic Skills" 

Box trainer 

Animal + BlueDragon 

Da Vinci® 

Da Vinci® 

Da Vinci® 

Da Vinci® 

Animal + BlueDragon 

Animal + BlueDragon 

MIST-VR core skills 

MIST-VR core skills 

Box trainer + TrEndo 

Box trainer 

Tasks 

Touch/coordination 

Touch/ coordination 

Cholecystectomy 

Suture 

Suture 

Suture 

Suture 

Suture 

Cholecystectomy/ 
Nissen 

Peg grasp, 
transfer. 

Suture 

Peg grasp, 
transfer. 

peg 

peg 
, bi-manual 

coordination, 
cutting 

Suture 

Metrics 

Acceleration (STFT) 

Trajectory 

Forcé signatures, idle 
states 

Motion signatures, idle 
states 

Motion signatures 

Motion signatures 

Motion signatures 

Forcé signatures, idle 
states 

Forcé signatures, idle 
states 

Time, errors, economy 
of movements, score 

Time, errors, 
collisions/tissue 
damage 

Time, path length, 
depth, smoothness, 
angular área, 
volume 

Motion signatures 

Sample population 

4 Novices 
2 Experts 
9 Novices 
2 Experts 
2 X Rl , R3, R5 
2 Experts 
1 Novice 
1 Resident 
1 Expert 
# Experts 
# Intermediates 
# Novices 
(9 surgeons total) 
# Experts 
# Intermediates 
# Novices 
(9 surgeons total) 
# Experts 
# Intermediates 
# Novices 
(9 surgeons total) 
5 X Rl , R2, R3, R4, R5 
5 Experts 
5 Novices 
5 Experts 
4 Novices 
4 Intermediates 
4 Experts 
10 Novices 
8 Intermediates 
8 Experts 
11 Novices 
10 Intermediates 
10 Experts 

2 Experts 
(15 triáis) 
1 Intermedíate 
(12 triáis) 

Average 
success rate (%) 

100 

93 (OSATS) 

N/A 

58.05 

100 

94.7 

100 

86 

87.5 

N/A 

38.25 

74 

92 

Ref. 

[107] [108] 

[109] 

[49] 

[110] [111] 

[106] 

[106] 

[106] 

[50] 

[59] 

[114] 

[115] 

[46] 

[113] 

In [109], success results are reported 
HMM = hidden Markov model; MM = 

confronted with OSATS. 
= Markov model; PCA = principal component analysis; LDA = linear discriminant analysis; # = unknown number. 



skills in laboratory settings, (2) training of anatomical 
protocols and advanced skills with animal models, (3) 
training advanced procedural skills with tele-surgical 
applications, and (4) training in the OR. 

In the first phases of training, where psychomotor 
skill acquisition is crucial, VR technologies and track-
ing in box trainers may be the most suitable choice for 
the assessment of dexterity [21]. On advanced phases, 
where cognitive and judgment abilities gain impor-
tance, and training gradually moves to the OR, tracking 
of movements becomes more complicated. As sensor-
based tracking systems may interfere in the surgical 
workflow, we believe the use of endoscopic video infor-
mation for computer-vision based tracking will be the 
solution [98]. Moreover, despite current limitations on 
validation studies, automatic analysis techniques will 
enhance these systems, allowing to determine not 
only surgical expertise, but also to unfold and quantify 
hidden aspects of surgical skill, like the level of automa-
tion of tasks (i.e., novices spending much more time in 
an idle "thinking" state) or the optimal combination of 
both efficiency and quality metrics for a given task. 

Accreditation at each of the formation levéis should be 
achieved before moving on to the next level [5, 8]. How-
ever, there is a general lack of consensus on the criteria 
that should mark official recognition; on the tasks, met­
rics and assessment methods to employ. Formation and 

accreditation programs are diverse, and their scope is 
limited at the topmost to national levéis, such as the Fun­
damentáis of Laparoscopic Surgery (FLS), (USA) [119], 
or the Cobra-alpha courses (The Netherlands) [120]. 

Specific issues surrounding the change of paradigm 
in surgical formation will be discussed following the 
structure proposed in this review [21], attending to (1) 
the clinical, (2) the technological, and (3) the analytical 
sides of the problem. 

The clinical side deals with the basic question of what 
needs to be measured and under what conditions; i.e., 
the tasks and metrics necessary and the training envi-
ronment where skills will be tested. The number and 
nature of these tasks are not predefined, but should 
cover the range of basic psychomotor skills. Concerning 
metrics, traditional assessment has limited evaluation 
parameters to: completion time, procedural performance 
(accuracy, errors), and end-product analysis. Some pro­
grams, such as FLS, state that these are sufficient for 
evaluation purposes [119, 121]. However, to better un-
derstand surgical gestures and to exploit the possibilities 
provided by tracking technologies, a whole range of new 
efficiency metrics should be carefully considered and 
analyzed. 

Identification of valid metrics can be a difficult pro-
cess, especially considering their degree of dependence 
to a given exercise [16]. Error-related metrics, for 

FIG. 3. Hierarchical levéis of the training pyramid followed in the Minimally Invasive Surgery Centre Jesús Usón (Cáceres, Spain). 
Author: Minimally Invasive Surgery Centre Jesús Usón. 



example, will be closely associated to a task's goal. 
Moreover, different validation studies show different 
conclusions for the same metric. Often this is due to 
the nature and difficulty of the task associated to it 
[57]. Some of them, however, seem recurrent for differ­
ent tasks and skills, such as time and path length. Re-
lationship between metrics is also an important factor 
when considering validation. Examples of this are 
time-related metrics: speed of task completion is not 
a useful indicator of skill if the trainee has performed 
too many mistakes [12]. Finally, when considering sev-
eral metrics and their nature, it must be taken into ac-
count tha t the means for registering them may vary. 
For example, motion analysis or path length may be de-
rived for a box trainer task from a precise tracking de-
vice; but if information about mistakes performed is 
desired, it will be necessary to supervise directly or by 
reviewing the video of the performance [17]. Inter-
rater reliability must be carefully analyzed in those 
cases [23]. 

The technological side deals with the capabilities and 
performance of the systems tha t will be used in the ac-
creditation process. Traditionally, these have relied on 
direct or indirect (vía video review) supervisión, and on 
the usage of structured reports. The challenge nowa-
days is to find out whether the new automatic tracking 
and software solutions for HMT and VR can fit within 
this scheme; and if traditional clinical validation pro-
cesses can assimilate these systems. In general, VR 
simulators are nowadays considered as useful tools 
for skill training, especially in the early stages of for-
mation, during which the resident must acquire and 
t ra in psychomotor abilities [62]. Thus, it is safe to as-
sume tha t these systems are a valid supplementary 
method for surgical training, as effective as that pro-
vided by video-based box trainers. There is, however, 
more reluctance when considering laparoscopic VR 
simulators as accreditation tools [57, 122]. Their cost 
and lack of realism, amongst other limitations, hold 
sway amongst many clinicians. Despite that , valida­
tion studies prove tha t some of the simulators, e.g., 
MIST-VR or LapSim, are fully capable of addressing 
formative assessment [18, 123]. Moreover, they are 
capable of performing unsupervised assessment of 
trainees in a whole range of efficiency and quality pa-
rameters . Nevertheless, these studies are in many 
cases scarce, and others report negative [124-126] or 
inconclusive results [77]. This is often the case consid­
ering the high variability between studies, concerning 
participants, definition of surgical levéis, and in gen­
eral the experiments ' contour conditions (previous 
t raining in the system, number of repetitions allowed, 
etc.). Fur ther validation studies are thus required to 
fully prove the potential of VR simulators, especially 
those regarding predictive skill transfer [57]. 

HMT tracking devices are cheaper alternatives for 
VR simulators. In general, HMT's capabilities are gen-
erally limited to the acquisition of efficiency metrics. 
Quality measures are, however, more complicated in 
these systems, usually requiring the presence of an 
evaluator, thus compromising immediate feedback for 
the trainee [28, 53]. Moreover, as Table 6 shows, valida­
tion studies are still insufficient and diverse in their na­
ture, and additional proof of their effectiveness for 
assessment and accreditation purposes is necessary. 
Besides that , incorporated active trackers tend to limit 
them to laboratory settings. Therefore, their usage be-
comes restricted to analysis of box trainer tasks. Pas-
sive tracking solutions, such as video analysis, may 
help boost use of the HMTs for motion analysis on 
more demanding scenarios (such as the OR). However, 
research is still on preliminary phases, having been 
tested on box trainers, and full validation studies 
must be carried out to ascertain their potential. 

The analytical side deals with the evaluation process 
per se. The needs and requirements of the new forma-
tion programs require tha t trainees receive immediate 
and objective formative feedback of their performance, 
preferably in the form of comprehensible messages 
and suggestions tha t will allow them to improve their 
skills [104]. Determination of a certification score for 
summative feedback is a difficult task, partly due to 
the high number and diverse na ture of the metrics 
available, and the lack of gold standards of surgical 
competence [16]. The inclusión of advanced automatic 
evaluation systems, currently an expanding research 
field, may allow for unsupervised assessment. Never­
theless, studies on this subject are yet few and limited 
in relation to the number of participants and tasks con­
sidered. Moreover, successful classification rates are, in 
some cases, very low. Additionally, they are conditioned 
by a training phase, which may be mostly meaningful in 
standardized tasks (in box trainers), but which might 
be less valid for clinical procedures. New proof is needed 
before these systems can be considered for their clinical 
implan tation. 

Despite the need for objectivity in new formation pro­
grams, the fact remains that, ultimately, final expertise 
accreditation should come by the hand of an expert men­
tor. Whilst measurable parameters offer reliable and un-
biased data on psychomotor skills, there are many other 
abilities, such as reaction time, mentality, patient care, 
handling of stress, or group working capability, which 
are equally important but more difficult to quantify. 
Consequently, we consider there is a human, more per­
sonal component to the determination of a surgeon's 
readiness, which will imply evaluation of the aforemen-
tioned abilities. These are all important factors that add 
a human dimensión to the qualification process and, con­
sequently, should always be considered. 
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