6,840 research outputs found

    Real-Time, Real World Learning—Capitalising on Mobile Technology

    Get PDF
    This chapter explores the adoption of Web 2.0 technologies to promote active learning by students and to both mediate and enhance classroom instruction. Web 2.0 refers to open source, web-enabled applications (apps) that are driven by user-manipulated and user-generated content (Kassens-Noor, 2012). These apps are often rich in user participation, have dynamic content, and harness the collective intelligence of users (Chen, Hwang, & Wang, 2012). As such, these processes create “active, context based, personalised learning experiences” (Kaldoudi, Konstantinidis, & Bamidis, 2010, p. 130) that prioritise learning ahead of teaching. By putting the learner at the centre of the education process educators can provide environments that enhance employability prospects and spark a passion for learning that, hopefully, lasts a lifetime. As such, we critique an active learning approach that makes use of technology such as mobile applications (apps), Twitter, and augmented reality to enhance students’ real world learning. Dunlap and Lowenthal (2009) argue that social media can facilitate active learning as they recreate informal, free-flowing communications that allow students and academics to connect on a more emotional level. Furthermore, their use upskills students in the technical complexities of the digital world and also the specialised discourses that are associated with online participation, suitable for real world learning and working (Fig. 16.1). Three case studies explore the benefits of Web 2.0 processes. The first details the use of Twitter chats to connect students, academics, and industry professionals via online synchronous discussions that offer a number of benefits such as encouraging concise writing from students and maintaining on-going relationships between staff, students, and industry contacts. The second details a location-based mobile app that delivers content to students when they enter a defined geographical boundary linked to an area of a sports precinct. Finally, we explore the use of augmented reality apps to enhance teaching in Human Geography and Urban Studies

    Using Augmented Reality in Science Education to Foster 21st-Century Skills and Higher-Order Thinking Skills

    Get PDF
    No abstract required

    Benefits of Using Augmented Reality in Learning Settings: A Systematic Literature Review

    Get PDF
    Over the last years, Augmented Reality (AR) technology has been increasingly used in various settings. Yet, AR is still often considered as experimental, which is partly due to the unclear picture of the benefits of using AR. This study systematically reviews research on using AR in learning settings. By examining 93 relevant articles, we identified 21 benefits related to AR learning gains and outcomes. To obtain a comprehensive and coherent overview of the benefits, we classified them based on Fink’s taxonomy of significant learning. Our analysis shows that the positive effects of using AR on learners’ motivation and joy have been well-studied, whereas the effects on independent learning, concentration, spontaneous learning, critical thinking, and practical skills have not yet been examined in detail. Our study provides directions for future studies on using AR in learning settings and can also help to improve learning designs

    Effects of Augmented Reality Integration (ARI) based Model Physics Independent Learning (MPIL) for facilitating 21st-Century Skills (21-CS)

    Get PDF
    Augmented Reality (AR) based learning provides real experiences for educators and new strategies for presenting physics concepts but also provides opportunities for students to interact interactively, spontaneously, and interestingly. Previous research has shown that AR has many advantages in education, but only a few focus on Independent Learning, such as freedom in problem solving and independent learning skills in physics learning. This study develops an Augmented Reality Integration (ARI) learning application based on the Physics Independent Learning (MPIL) model on the marine physics concept. This application is to explore the influence of ARI on 21st-Century Skills (21-CS) which consists of Critical Thinking, Collaboration, Communication, and Creativity. A Quasi-Experimental Method was used, and 88 students aged 20-22 were randomly assigned to the experimental and control groups. After an intervention for 3 weeks, it was found that integrating ARI technology into physics learning can (1) significantly increase students’ Creativity Thinking and Critical Thinking on Marine physics concepts; (2) guiding students to further improve in Communication, and Collaboration in solving problems contained in the ARI application; and (3) stimulate students’ learning motivation to be enthusiastic about learning physics conceptsPeer Reviewe

    The effect of 3D-stereogram mobile AR on engineering drawing course outcomes among first-year vocational high schoolers with different spatial abilities: a Bloom�s taxonomy perspective

    Get PDF
    ABSTRACT Engineering drawing is valuable in capturing geometric features, conveying engineering ideas, and creating a blueprint of the intended product. Engineering students usually perform orthographic projections, imagining a 3D situation and sketching its 2D representation. That requires imagination and mental visualization, determined by the learner�s spatial ability. This study proposes the infusion of an AR stereogram mobile application into an engineering drawing course to establish how it influences learning outcomes among students with different spatial abilities. The quantitative experimental study involved two mechanical engineering classes in northern Taiwan, N = 69 first-year vocational high schoolers. Statistical analysis revealed that the experimental group with high spatial ability recorded better results and excellent drawing skills. Bloom�s taxonomy categorization reported that spatial ability influenced �understanding� and �applying� levels, with the strongest effect on �understanding.� Although no significant interaction existed, learning outcomes were highly affected by spatial ability in �understanding� and �applying� levels and AR in the overall performance. The findings and discussions show AR holds great potential to enhance students� spatial ability for real-time visualization and enables better concept comprehension by improving their understanding of engineering topics. Future studies should consider these implications in creating effective and immersive learning environments for different courses in engineering education

    Teacher Educators Perspectives on The Use of Augmented Reality for Foreign Language

    Get PDF
    The purpose of this research is to share reflections on Augmented Reality (AR) technology as an upgrade tool for foreign language development. Exploring the short but considerable literature research, this post discusses AR technology for the rise in the philosophy of upgrading, upgrading teacher nursery in position, teachers, pupils, customs, infrastructure, and sustainability, using the framework of activities outlines the suitability of the use of upgrading technology in development programs. For analysis, AR technology has essential benefits for language development; however, it is not suitable for all language types. Not only that, but this information also offers solid recommendations for activities that are enhanced with AR in 4 skills as well as language-specific applications. This information has some relevance for instructors, teachers, researchers, and creators of Augmented reality content

    EL LABORATORIO DE CIENCIAS DE LA FUTURA ESCUELA. TECNOLOGÍAS Y CONTENIDOS EMERGENTES

    Get PDF
    Este artigo investiga as tendências atuais na transformação de laboratórios STEM na era da digitalização devido à integração de tecnologias digitais e ao reconhecimento da importância do desenvolvimento de habilidades metacognitivas. O artigo examina o papel da metacognição e seu impacto no processo de aprendizagem, bem como o uso de tecnologias digitais, como laboratórios remotos, laboratórios virtuais, realidade aumentada, realidade virtual e dispositivos móveis na educação STEM. Os resultados desta pesquisa sugerem que o uso dessas tecnologias digitais pode ser benéfico para a aprendizagem de ciências no ensino superior e secundário. Além disso, essas tecnologias podem ser usadas para promover o engajamento, a colaboração e o acesso dos alunos ao conhecimento científico. Além disso, a metacognição é uma habilidade importante para professores e alunos, e pode ser desenvolvida através do uso da pirâmide do conhecimento, pirâmide de inteligência emocional, pirâmide metacognitiva e modelos de pirâmide de superdotação.This paper investigates the current trends in the transformation of STEM laboratories in the age of digitization due to the integration of digital technologies and the recognition of the importance of developing metacognitive skills. The paper examines the role of metacognition and its impact on the learning process, as well as the use of digital technologies such as remote labs, virtual labs, augmented reality, virtual reality, and mobile devices in STEM education. Results from this research suggest that the use of these digital technologies can be beneficial for science learning in both higher and secondary education. Additionally, these technologies can be used to promote student engagement, collaboration, and access to scientific knowledge. Furthermore, metacognition is an important skill for both teachers and students, and can be developed through the use of the knowledge pyramid, emotional intelligence pyramid, metacognitive pyramid, and giftedness pyramid models.Este artículo investiga las tendencias actuales en la transformación de los laboratorios STEM en la era de la digitalización debido a la integración de tecnologías digitales y al reconocimiento de la importancia del desarrollo de habilidades metacognitivas. El documento examina el papel de la metacognición y su impacto en el proceso de aprendizaje, así como el uso de tecnologías digitales como laboratorios remotos, laboratorios virtuales, realidad aumentada, realidad virtual y dispositivos móviles en la educación STEM. Los resultados de esta investigación sugieren que el uso de estas tecnologías digitales puede ser beneficioso para el aprendizaje de las ciencias tanto en la educación superior como en la secundaria. Además, estas tecnologías pueden utilizarse para promover la participación, colaboración y acceso al conocimiento científico por parte de los estudiantes. Además, la metacognición es una habilidad importante tanto para profesores como para estudiantes y puede desarrollarse mediante el uso de los modelos de pirámide del conocimiento, pirámide de inteligencia emocional, pirámide metacognitiva y pirámide de talento.Este artigo investiga as tendências atuais na transformação de laboratórios STEM na era da digitalização devido à integração de tecnologias digitais e ao reconhecimento da importância do desenvolvimento de habilidades metacognitivas. O artigo examina o papel da metacognição e seu impacto no processo de aprendizagem, bem como o uso de tecnologias digitais, como laboratórios remotos, laboratórios virtuais, realidade aumentada, realidade virtual e dispositivos móveis na educação STEM. Os resultados desta pesquisa sugerem que o uso dessas tecnologias digitais pode ser benéfico para a aprendizagem de ciências no ensino superior e secundário. Além disso, essas tecnologias podem ser usadas para promover o engajamento, a colaboração e o acesso dos alunos ao conhecimento científico. Além disso, a metacognição é uma habilidade importante para professores e alunos, e pode ser desenvolvida através do uso da pirâmide do conhecimento, pirâmide de inteligência emocional, pirâmide metacognitiva e modelos de pirâmide de superdotação

    Augmented Reality in Learning Settings: A Systematic Analysis of its Benefits and Avenues for Future Studies

    Get PDF
    Despite its increasing use in various settings, Augmented Reality (AR) technology is still often considered experimental, partly due to a lack of clear understanding of the benefits of using AR. This study systematically reviews research on the use of AR in learning settings. Our analysis of 93 relevant articles offers 21 benefits related to the learning gains and outcomes of using AR. Our study shows that the positive effects of using AR on learners’ motivation and joy have been well-studied, whereas the effects on independent learning, concentration, spontaneous learning, critical thinking, and practical skills have not yet been examined in detail. Beyond classifying and discussing the benefits of using AR in learning settings, we elaborate avenues for future studies. We specifically point to the importance of conducting long-term studies to determine the value of using AR in learning beyond the initial novelty and exploring the integration of AR with other technologies

    Can virtual reality have a positive influence on student engagement?

    Get PDF
    Through the rapid development of virtual reality (VR), South African Higher Educational Institutions (HEIs) have shown interest in the potential VR has in teaching and learning practices. HEIs are further urged by the South African government to use cutting edge educational technology (edtech) tools to promote student engagement and limit the high dropout rates noticeable in HEIs. The researcher explored the perceived impact VR can have on student engagement. A qualitative research methodology was adopted for this study and the research instruments included open-ended questionnaires, semi-structured interviews, and a true experiment. Thirty-six participants took part in the study. The results of the study highlight a 23 per cent higher pass rate and a 180 per cent higher engagement level in students using VR as opposed to students studying via online distance learning. Two themes emerged from the results, namely: (1) the use of VR in teaching and learning, and (2) the influence VR has on student engagement levels. The results of this study further highlight that VR learning yields higher student engagement levels and as a result, students achieve higher marks. The significance of the study lies in the assistance it can offer higher educational institutions in their decision-making process of adopting VR into their teaching and learning processes
    corecore