969 research outputs found

    ABEONA monitored traffic: VANET-assisted cooperative traffic congestion forecasting

    Get PDF
    The existing mechanisms to monitor vehicular traffic, such as the use of induction loops and cameras, are expensive to deploy and maintain. Vehicular communications opens up a new world of optimization opportunities as each vehicle can be used as a sensor to measure the fundamental variables defining the traffic state (flow, density, and speed). In this article, we propose ABEONA, a beacon-based traffic congestion algorithm and also the name of the Roman goddess of journey, which captures the current and recent-past traffic trends to forecast the near-future road conditions. Compared to the existing monitoring approaches, ABEONA allows for the estimation of the vehicular density and reduces installation and maintenance costs. ABEONA's algorithm incurs low overhead and enables drivers to use forecast traffic congestion events to replan their route accordingly.Publicad

    Virtual induction loops using smartphones for urban traffic control systems

    Get PDF
    Growing traffic in ever congested urban cities can be managed by traffic control systems which monitor and forecast the traffic status and optimises the control strategy according to traffic flow. Such systems use input from inductive loop detectors which are costly to install and maintain. In this paper, we introduce and evaluate a novice software based solution called Virtual Induction Loops using a smartphone application and a central server. We also identify how current urban traffic control systems can benefit from such a dynamic solution

    On the Feasibility of Social Network-based Pollution Sensing in ITSs

    Full text link
    Intense vehicular traffic is recognized as a global societal problem, with a multifaceted influence on the quality of life of a person. Intelligent Transportation Systems (ITS) can play an important role in combating such problem, decreasing pollution levels and, consequently, their negative effects. One of the goals of ITSs, in fact, is that of controlling traffic flows, measuring traffic states, providing vehicles with routes that globally pursue low pollution conditions. How such systems measure and enforce given traffic states has been at the center of multiple research efforts in the past few years. Although many different solutions have been proposed, very limited effort has been devoted to exploring the potential of social network analysis in such context. Social networks, in general, provide direct feedback from people and, as such, potentially very valuable information. A post that tells, for example, how a person feels about pollution at a given time in a given location, could be put to good use by an environment aware ITS aiming at minimizing contaminant emissions in residential areas. This work verifies the feasibility of using pollution related social network feeds into ITS operations. In particular, it concentrates on understanding how reliable such information is, producing an analysis that confronts over 1,500,000 posts and pollution data obtained from on-the- field sensors over a one-year span.Comment: 10 pages, 15 figures, Transaction Forma

    Fully automated urban traffic system

    Get PDF
    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible

    Sensor Technologies for Intelligent Transportation Systems

    Get PDF
    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment

    Smart mobility: a survey

    Get PDF
    Internet of Things (IoT) describes a world where everyday objects are always connected to the Internet, allowing them to communicate and interact with each other. By connecting these everyday objects to the Internet and making them available everywhere at any time, IoT allows to remotely monitor, manage, and gather status information about them and their surrounding environment. IoT is a revolutionary concept that brought new experiences to everyday life and enabled Smart City initiatives all over the world. These initiatives are using a combination of technology paired with physical infrastructure and services, to improve people’s quality of life. One of the high priority domain to support the Smart City’s vision is the field of Smart Mobility. This paper reviews the current IoT approaches and concepts related to Smart Cities and Smart Mobility. In addition, it analyzes distinct features and numerous applications covering both Intelligent Transportation and Real Time Traffic Management Systems.info:eu-repo/semantics/publishedVersio

    Nonuniform Coverage Control on the Line

    Full text link
    This paper investigates control laws allowing mobile, autonomous agents to optimally position themselves on the line for distributed sensing in a nonuniform field. We show that a simple static control law, based only on local measurements of the field by each agent, drives the agents close to the optimal positions after the agents execute in parallel a number of sensing/movement/computation rounds that is essentially quadratic in the number of agents. Further, we exhibit a dynamic control law which, under slightly stronger assumptions on the capabilities and knowledge of each agent, drives the agents close to the optimal positions after the agents execute in parallel a number of sensing/communication/computation/movement rounds that is essentially linear in the number of agents. Crucially, both algorithms are fully distributed and robust to unpredictable loss and addition of agents

    Cooperative vehicular traffic monitoring in realistic low penetration scenarios: The COLOMBO experience

    Get PDF
    The relevance of effective and efficient solutions for vehicle traffic surveillance is widely recognized in order to enable advanced strategies for traffic management, e.g., based on dynamically adaptive and decentralized traffic light management. However, most related solutions in the literature, based on the powerful enabler of cooperative vehicular communications, assume the complete penetration rate of connectivity/communication technologies (and willingness to participate in the collaborative surveillance service) over the targeted vehicle population, thus making them not applicable nowadays. The paper originally proposes an innovative solution for cooperative traffic surveillance based on vehicular communications capable of: (i) working with low penetration rates of the proposed technology and (ii) of collecting a large set of monitoring data about vehicle mobility in targeted areas of interest. The paper presents insights and lessons learnt from the design and implementation work of the proposed solution. Moreover, it reports extensive performance evaluation results collected on realistic simulation scenarios based on the usage of iTETRIS with real traces of vehicular traffic of the city of Bologna. The reported results show the capability of our proposal to consistently estimate the real vehicular traffic even with low penetration rates of our solution (only 10%)

    VANET-based optimization of infotainment and traffic efficiency vehicular services

    Get PDF
    The design, standardization and future deployment of vehicular communications systems have been driven so far by safety applications. There are two more aspects of the vehicular networking that have increased their importance in the last years: infotainment and traffic efficiency, as they can improve drivers’ experience, making vehicular communications systems more attractive to end-users. In this thesis we propose optimization mechanisms for both types of vehicular services. Infotainment services are related to the provision of classic IP applications, like browsing, reading e-mail or using social networks. Traffic efficiency services are those accessing new capabilities to the car-navigation systems, aiming at optimizing the usage of road infrastructures, reducing travel times and therefore minimizing the ecological footprint. Bringing infotainment services to the vehicular environment requires to comply with standard protocols and mechanisms that allow heterogeneous networks to be interconnected in the Internet. There are three main functionalities that have to be provided: i) address autoconfiguration, ii) efficient routing and iii) mobility management. Regarding infotainment services, this thesis proposes mechanisms tackling the abovenamed aspects: an overhearing technique to improve an already standardized address autoconfiguration protocol; a tree-based routing algorithm especially tailored for vehicleto- Internet communications and an optimized mobility management approach for vehicular environments. Regarding traffic efficiency, this thesis proposes two algorithms that make use of vehicular communication techniques to monitor and forecast short-term traffic conditions. We first improved our knowledge on drivers’ behavior by analyzing real vehicular data traces, and proposes a mixture model for the vehicles interarrival time. This outcome was used for validating the proposed infotainment optimization as well. All the algorithms and analytical models described in this thesis have been validated by simulations and/or implementations using standard hardware. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------El diseño, normalización y futuro despliegue de los sistemas de comunicación vehiculares han sido principalmente impulsados hasta el momento por las aplicaciones de seguridad vial. Hay dos aspectos adicionales de las redes vehiculares que han visto crecer su relevancia en los últimos años: los servicios de Infotainment y los de eficiencia del tráfico. Estos servicios pueden mejorar la experiencia de los conductores y hacer que los sistemas de comunicación vehiculares resulten más atractivos para los usuarios finales. En esta tesis, se proponen mecanismos de optimización para ambos tipos de servicios vehiculares. Los servicios de Infotainment están relacionados con la provisión de las clásicas aplicaciones IP tales como, navegar, acceder al correo electrónico, o a las redes sociales. Los servicios de eficiencia de tráfico permiten añadir nuevas funcionalidades a los sistemas de navegación con los objetivos de: optimizar el uso de las infraestructuras viarias, reducir los tiempos de viaje y consecuentemente, minimizar el impacto ambiental. Acceder a los servicios de Infotainment desde redes vehiculares conlleva cumplir con los protocolos y mecanismos estandarizados que permiten la interconexión de redes heterogéneas a Internet. Hay tres funcionalidades principales que tienen que ser proporcionadas: configuración automática de direcciones, encaminamiento eficaz y gestión de la movilidad. Esta tesis propone mecanismos para hacer frente a los tres aspectos mencionados: una técnica basada en overhearing que mejora un protocolo de configuración automática de direcciones ya estandarizado, un algoritmo de encaminamiento basado en árboles especialmente diseñado para las comunicaciones desde el vehículo a Internet y, un algoritmo de gestión de la movilidad optimizado para entornos vehiculares. En cuanto a los servicios de eficiencia de tráfico, esta tesis propone dos algoritmos que utilizando las técnicas de comunicación vehículo a vehículo permiten monitorizar y pronosticar a corto plazo las condiciones en el tráfico, como es el caso de posibles atascos. Todos los algoritmos y modelos analíticos descritos en esta tesis han sido validados a través de simulaciones y/o implementaciones usando hardware estándar
    • …
    corecore